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EXPERIMENTAL AND THEORETICAL GEOPHYSICS

THE EFFECT OF TWO-DIMENSIONAL TOPOGRAPHY
ON SUPERFICIAL THERMAL GRADIENTS

By ArtHUur H. LAcHENBRUCH

ABSTRACT

The Jeffreys-Bullard theory of the topographic disturbance to geothermal
gradients is only approximate because it neglects the effects of lateral heat loss
through sloping surfaces. It cannot be applied with confidence where the height
of the relief features is large relative to their horizontal distance from the station
and to the depth of the measurement points. Such conditions arise in the near-
surface geothermal measurements made in the ocean bottom if bold relief occurs
on a scale exceeding a few meters, or on the continents in observations in shallow
boreholes in rugged terrain.

In an important special case, the measurement depth is small relative to the
distance to the relief, and the gradient anomaly can be approximated by the
value applicable at zero depth. To investigate this case, an exact solution was
obtained for the steady heat flux through an inclined plane of arbitrary height
and slope angle. These two parameters are easily visualized and represented
graphically so that models which approximate or bracket real topography can
often be identified quickly. The effects of slopes of fairly general (two-dimensional)
form can be approximated by identifying them with their equivalent plane
slopes—the plane slopes which yield the same Jeffreys approximation at the
station. The results can be applied to stations on planes, valleys, ridges, or benches
bounded by irregular slopes. They are valid at points arbitrarily close to slopes
of any height or inclination. Finite slope and curvature of the surface at the
station can be accommodated if they are not too great. Although direct appli-
cation of the theory is limited to cases in which the measurement depth is less
than the horizontal distance to the relief, useful limits can be obtained for other
cases. Even where other theories of the topographic correction are applicable,
the present method can be useful as it leads to rapid estimates by graphical
means.

In oceanic heat-flow measurements, the uncertainty in the topographic anomaly
is less than 10 percent only if the probe length is at least 2 or 3 times the uncer-
tainty in local elevation differences, and the curvature of the temperature profile
is negligible. Over an irregular ocean bottom, relief not detectable by modern
echo-sounding techniques could cause errors of 50-100 percent in gradient
measurements to depths of a few meters. Such errors will often, but not always,
be accompanied by marked curvature in the temperature profile. Heat-flow
anomalies of several hundred percent, such as some reported from oceanic ridges,
cannot be attributed to undetected relief. The steady-state topographic anomaly
in the center of a deep narrow oceanic trench can be on the order of 25 percent.
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E2 EXPERIMENTAL AND THEORETICAL GEOPHYSICS

The theory may be applied also to topographie corrections in lakes and bore-
holes on the continents, and to the case of thermal refraction across a sloping
bedrock surface buried in alluvium,

INTRODUCTION

Topographic relief causes local irregularities in near-surface geo-
thermal gradients and they must be identified before regionally
meaningful values of geothermal flux can be obtained. A steady-state
theory of the topographic correction was presented by Jeffreys (1938)
and elaborated by Bullard (1938). A comprehensive discussion by
Birch (1950) extended the theory to account for topographic evolu-
tion. The fundamental simplification in these corrections results from
replacing the irregular surface by a reference plane upon which the
temperature varies in proportion to the relative elevation of the
actual surface. There is no limit to the fidelity with which the topo-
graphic surface can be represented, as the representation is achieved
by & numerical procedure. The mathematical approximation of
Jeffreys was verified by Birch (1950) for subsurface points by com-
parison with exact solutions for simple topographic models obtained
by superimposing a uniform field and the fields of continuous point
or line doublets (Lees, 1910).

In an alternative approach, Jaeger and Sass (1963) approximated
the topography with Lees’ line-doublet model and calculated the
subsurface temperature corrections directly (Jaeger, 1965, p. 10).
The Lees’ model gives results for symmetrical ridges or valleys
(depending on the polarity of the doublet) with geometric parameters
determined by the distance of the doublet above the surface and the
relative strengths of the doublet and uniform field. Integrating the
doublet solution over a half plane, Jaeger and Sass obtained the
solution for a monocline, that is, a family of monotone sloping surfaces
asymptotic to horizontal planes at different elevations. Other exact
solutions for special topographic forms have been given by Castoldi
(1952) and in various works discussed by Birch (1950).

Thus, in the two classical approaches to the geothermal terrain
correction, one approach considers the approximate effects of an
(effectively) exact representation of topography, and the other, the
exact effects of an approximate representation of topography. As
Birch (1950) has shown, the first method is more general, and it
lends itself readily to refinements accounting for topographic evolu-
tion. It has been pointed out by Jaeger and Sass (1963) that the
second method is useful for very rapid estimates of terrain effects
where detailed corrections are not warranted because of imperfectly
known topography or other uncertain sources of disturbance. This
last statement depends upon the geometric model being sufficiently
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simple that it can be easily identified with the topographic surface to
be approximated. Both methods generally become less satisfactory as
the gradient measurement to be corrected approaches the surface.
This can be explained as follows: In general the frequency of occur-
rence of features of the earth’s topographic relief decreases as the
size of the feature increases; the largest and most infrequent features
have a vertical scale on the order of a few kilometers. However, the
effect of topographic features on the geothermal gradient is not large
as long as their height is (1) less than the horizontal distance to the
measurement point, or (2) less than the depth of measurement. Thus,
for measurements a few kilometers beneath the surface, condition 2
is satisfied even for the most rugged relief (at any horizontal distance),
and only a gross representation of the topography, used with any
reasonable approximation scheme will generally suffice. As the meas-
urement points approach the surface, progressively smaller (and more
frequently occurring) features will fail to satisfy condition 2, and
those that are not far enough from the station to satisfy condition 1
will have to be accounted for with progressively increasing rigor;
although the effects of distant relief do not diminish, the effects of
close-in relief increase greatly, and small-scale irregularities can cause
sizable anomalies. Under these conditions the second method becomes
less satisfactory because it becomes increasingly difficult to represent
close-in relief in detail and still account for distant relief in a gross
way with a simple geometric model. The first method becomes un-
certain for near-surface measurements because it neglects second-
order effects of lateral variations of the vertical gradient in the relief.
These effects can become appreciable when close-in relief must be
considered. Birch (1950, p. 625) pointed out that, “at shallow depths,
under sharp irregularities, the approximation is sure to be poor.”
For this report it is necessary to define ‘“shallow” or ‘near-surface”
gradient measurements. For this purpose the term ‘‘superficial
gradient” will be used to refer to a gradient in which the topographic
anomaly is approximated well by the value applicable at the surface
(2=0).

Almost 90 percent of the determinations to date of earth heat
flow were computed from measurements of gradient made within
a few meters of the surface of the solid earth (Lee and Uyeda, 1965).
They were made beneath the world’s oceans and seas where effects
of topographic relief are surely unimportant over much, but not all,
of the bottom. Generally these measurements are not corrected for
topographic effects because continuous precision depth soundings and
bottom photographs indicate that there is no nearby relief with a
scale exceeding a few meters, because the bottom topography is not
adequately known, or because there is no readily available simple
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method of estimating the effects. In most determinations (Bullard
and others, 1956) it will be found that the bottom topography is
not known well enough to permit detailed corrections. Investigation
of the problem is necessary to ascertain what must be known of the
topography near a superficial gradient measurement in order that it
might be reduced to a regionally meaningful quantity. This problem
is considered for the two-dimensional case in the present paper. In
return for the loss of generality imposed by the two-dimensional
model, we gain an intuitive simplicity that makes the results easy to
visualize and apply. The effects of many real topographic surfaces
can be approximated or bracketed by the two-dimensional model.

An additional limitation of the present treatment is that most of
the results apply only to the limiting value of the topographic anomaly
as the depth approaches zero; that is, they apply to superficial gradi-
ent measurements. Although the superficial case includes many
important trouble spots for the Jeffreys approximation, it does not
include them all.

The plan of this paper is as follows:

Exact expressions are derived for the anomaly in the vertical surtace
flux caused by a plane slope, defined as an inclined plane segment
joining two horizontal halfplanes of different elevation.

The corresponding analytical result for the plane slope that follows
from Jeffreys’ reference-plane assumption is given.

The two results are compared.

Upper and lower limits are given for the heat flow where two plane

slopes coexist to form a plane valley, plane ridge, or plane bench.

A simple procedure is described for bracketing the anomaly due to a
general slope by exact results for plane slopes.

The first and second methods for terrain corrections (described pre-
viously in introduction) are combined to obtain a method for
approximating and bracketing the effects of a general slope,

Conditions for neglecting gentle slopes at the station are derived.

Variation of the topographic anomaly with depth is discussed, and
conditions under which a gradient anomaly may be considered
superficial are presented.

Transient effects are considered and an additional application, in-
volving the heat-flow anomaly caused by a buried bedrock
pediment, is given for previously obtained results.
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HEAT FLOW THROUGH A PLANE SLOPE:
EXACT SOLUTION

An expression is needed for the vertical thermal flux through a plane
slope on the earth’s surface. The earth is assumed to be homogeneous
and isotropic, and the surface is represented by a plane segment in-
clined at an angle 8 to horizontal surfaces beyond the toe and behind
the brink which are at an elevation difference H. The model is illus-
trated by the region below the contour 1’ (4’,B’,¢’,D’,E’) in the
n-plane, figure 1. The slope angle 8 is represented by =/n. To
represent otherwise uniform conditions, it is assumed that the surface
(T’) is at zero temperature, and that at large distances from the slope
the temperature is proportional to distance beneath the surface.
Therefore, in the y-plane we want to find

20
oz |
Subject to
0’0 , 0’6
et o0 W
0=0, (z,2) on I 2)
7n-plane w -plane

B A

c
x ‘ u +1 ‘0 -1
| )¢ |
iH LB 4 |
l
,1,

Frcure 1.—Transformation of the plane boundary of a half space into a plane
slope.
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?ag_’G’ a constant, |2], z—= (3)

The special case of the vertical cliff (n=2) has been discussed by
Castoldi (1952). His solution was obtained by mapping a uniform field
in the w-plane into the region bounded by a step-shaped contour of the
n-plane with the conformal transformation

dn (w+1>}2

The more general function (Kober, 1962, p. 161),

=A (:%D where » is a positive integer, @)

achieves the mapping illustrated in figure 1. It follows, from the
properties of conformal transformations, that this function maps the
uniform field

0*(w) =0, v a constant, v>0,

into the function 6(y) which satisfies conditions 1 and 2. It also
satisfies condition 3 if

y=GA. (5)
Inasmuch as the ratio of normal derivatives on corresponding con-

tours is the reciprocal of the magnitude of the derivative of the trans-
formation, we have from 4 and 5

e [A|<w+l

-1

__GKQH'I g (6)
We shall adopt the notation
1
) @)

N =p(a, ). 8)
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Hence
106 1
Gozle " p lul>1 (92)
cos~
9b
pn, || <1. (9b)

The expression on the left is the quantity sought. It is the ratio of
the vertical heat flow through any part of the surface I'” to the regional
heat flow. It is expressed in terms of p which is known in terms of u, and
we should like to have it in terms of z=R(y). To get 2 as a function of
u we integrate equation 4 on the boundary T. Thus:

ﬂ(u)=2nAﬁg(t—j_n—1? dt=A[ +2f ;lt 1:', (10)

which yields for » an even integer (Grébner and Hofreiter, 1949,
table 16, formula 12b):

n(u)=};l ———+1 I:)\ _H:I
A" —1

2 1
ni N 20" cos 2274 1
2vw n
+ Z cos — In| -
=1 n Z a 20
A" —2)\" cos _1z_+1

—2(1—e) tan ! k%l> ) (11)

J

where
=0, n/2 even,
=1, n/2 odd,
and X is defined by equation 7.
This result includes the value of the constant in equation 10

A_nH

T or
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which is obtained from the condition:
n=H('—cot$ when u=—1, i.e., when A=0.

Equation 11 maps the boundary T into I".

HEAT FLOW BEHIND THE BRINK AND IN FRONT OF THE TOE

The horizontal parts of T/ to the left and right of the sloping part
are represented respectively by u<{—1 and u>-41. Over both these
1

ranges A is positive and hence A" is real and equal to p. The only imagi-
nary quantity that appears in 11 for |u|>1 is the 1H generated by the
second term for ©<—1 as required by the mapping.

Thus the z-coordinate of a point on the horizontal portion of the

) . R
surface I at which the normalized heat flow is » is given by:

np

sp)=21 a2

2vm
"t 2 k]
i1 - P°+2p cos n +1 % 1—p?
+ >3 { cos=In —2sin— " Ttan~!f — 2

o= " p—2peos 2T P
2p cos n +1 2p sin pm

24
2
+-’§'[1—e—glsin 2%":'—2(1—5) tan—1= L lu/>1,  (12)

where

Equation 12 is valid only for n=even integer. The corresponding
general expression for n odd is not needed, as only the case n=3
(that is $=60°) gives useful additional information. The result
corresponding to equation 12, but valid for n=3, is (Grobner and
Hofreiter, 1949, table 16, formula 12b)
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x(p)zg{pgp +Haf 2,

20t 7
43 tan %‘é]} [ul>1, 73, (3

In equations 12 and 13 the normalized surface heat flow, p~!, ranges
between 0 and « with extremes occurring at the brink and toe of the
slope respectively. Values less than unity occur behind the brink and
greater than unity in front of the toe as might be expected.

HEAT FLOW ON THE SLOPING SURFACE

The part of T defined by |u|<{1 maps into the sloping part of T”.

In this region

u+1<0

1
and A" is not real in general and hence is not equal to ». To reduce
11 to an expression corresponding to 12 but valid on the sloping
surface, we set
x.:pﬂ.elr
and hence
l

—( 2k)
=pe" ¥ :!:k=0, 1:2)3;***n_1-

As k=—1 satisfies the conditions of the transformation, we use

in equation 11 and extract the real part to obtain the relation between
» and x on the slope.

(P*—1)+4p* (sin I>2
<p2+ 1—2p cos )2

1

In

™
cos +

H

it
+% > coszﬂrln

v=]

|:;0‘*+1-l~2p2 cos 2n—"——4:;o2 (c 2”)] +|:4 sin —~ cos ——p(p 1)]

[p‘*—l—l +2p? cos —27—:54—41)2 (cos 7) —4 cos ﬁ cos 77’— P(P2 =+ 1)]
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.2
i 9 4 cos 1—rs;n ﬂp(pz-—l)
— ' sin— tan™! +8Z
2 n . 2v1r 2179
v= p*+1—2p%cos ———4p
n—2
2 pz 1
——Zsm—-l—(l—e) tan™! & lu|<1,n even. (14)
2p cos.
where:
i=—1, p<p1
=0, p1<p<p2
. =+1,17 2<P
and

2 . 2vm\?
i, p5 are roots of p*+1—2p?cos f 4p? (sm —;—W> =0.
pi<ps.

Numerical results from equations 12, 13, and 14 are presented in
terms of the following notation, which is more convenient for the
discussion:

G=0Q/K, where @ is the regional heat flux,
and K is the thermal conductivity.

7Y |ul>1 _ Koo normalized vertical heat flux at
p~lcosB, |ul<l [ Qoz surface (I').
m distance behind brink (that is, to the

T left from 7, fig. 1) in units of
slope height.
1 distance beyond toe (that is, to the
E[—x——HcobB]:r, right from B’, fig. 1) in units of
slope height.
—z horizontal distance from brink (that
oot~ is, to the right from D’, fig. 1) in

units of slope width.

s, r, and w will always be used as positive quantities, and w will
never exceed 1. Thus stations on the lower horizontal half plane will
be designated by a value of the coordinate r, those on the upper half
plane will be designated by a value of s, and those on the slope by a
value of w. When a station lies on the lower half plane, that is, beyond
the toe, the relief will be referred to as positive, and when it lies
on the upper half plane (behind the brink), the relief will be called
negative. Where it is not convenient to indicate the sign of the relief
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by explicit reference to the coordinates 7 and s, slopes below the station
will be designated by a negative value of 8 and those above it by a

positive value of 8.
The general form of the normalized surface heat flow ¢(x) is best

seen from figure 2, where the abscissa is in units of slope width.

+1 0 -1 -2
2.0 T
3 A
! \
1.8 ! \
/ \\ !
/o \
16 yay 3
/é? / \ N\ \\
1.4 e /; S " (‘a.)
ST N 5ot
/4@ I S
1.2 X 55 Rameeg——
e /, 9 P
Py ST —— T
q 10 =
— \‘m 5 7;//
08% ______ @0") \m ’go 7

<« z(HcotB)™!

FicUre 2.—Vertical component of normalized heat flow through a plane slope.
Solid curves represent exact results, dashed curves represent the Jeffreys

approximation.

However, when dealing with effects beyond the toe or behind the
brink, it is usually more convenient to consider distances in units
of slope height. This is done in figure 3, which shows the decay of
the topographic anomaly as a function of » and s for selected slope
angles. The results 12, 13, and 14 are easily extended to other slope
angles with graphs using g as the ordinate (fig. 4 and pl. 1). Tabular
results from equations 12 and 13 are presented in tables 1 and 2,
and results from equation 14 are given in table 3 (p. E12-E14).

298334 0—69——2
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Ficure 4.—Vertical component of heat flow through the sloping part of a plane
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HEAT FLOW THROUGH A PLANE SLOPE:
APPROXIMATE SOLUTION

It will be useful to obtain an approximate solution to the problem
solved exactly in the previous section. For this purpose we shall use
the simplification of Jeffreys (1938), Bullard (1938), and Birch (1950),
in which the irregular topographic surface is replaced by a plane
reference surface whose temperature varies locally in proportion to
the topographic relief.

To evaluate the topographic disturbance to temperature by this
model at a point whose horizontal coordinate is z,, and depth be-
neath the real surface is z, we pass the reference plane through (z,, 0)
and assign to it the temperature:

T(z)= Gh(z), (15)

where @ is the regional thermal gradient and A(z) is the elevation of
the topographic surface relative to the reference plane. (For simplic-
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ity, the topographic surface is considered isothermal in this part of
the discussion.) By treating the vertical gradient as uniform in the
topographic irregularities, the approximation neglects the effects of
heat escaping horizontally through the sloping surfaces.

The temperature disturbance, A, is given by a well-known result
from potential theory (for example, Birch, 1950, eq 13):

20, )= [ T@) 2y (16)

Formal differentiation of equation 16 yields an expression for the
disturbance to the thermal gradient.

Z)AG 1, (z—.)—2?
R = L an

At the surface, z=0, the gradient disturbance approaches:

_1 +e T(x)
z=0 f (x %)2 (18)

OAG

The last two equations correspond to Jeffreys’ (1938) equations 17
. . . aT
and 18. The integrals require special treatment where Tz does not
exist, but the mathematics is consistent with physical intuition.

If Gg(x) and Qq(z) represent the vertical gradient and heat flow at
(x), then g(z) and ¢(x) represent these quantities normalized to the
regional values @ and @. Assuming positive heat flow in the direction
of decreasing z, we have:

55 =g —g=a@—F=be@=bg@.  (19)

(G, and Q,, denoting unit gradient and flux, are introduced for di-
mensional consistency.) Throughout this paper, “heat-flow anomaly”’
will refer to the normalized quantity, Ag(x), which can be used inter-
changeably with Ag(x), the normalized gradient anomaly. By “heat
flow” we shall always mean the normalized vertical heat flow:

q(z) =14 Ag(z).
Equation 18 can be written:

T(:c)
Aq(20)= WG _m(x %)2

(20)
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Note that equations 17, 18, and 20 can still be considered exact,
provided we consider 7' as that function which properly represents
the topographic relief at the reference plane.

Applying the Jeffreys assumption (eq. 15) yields an approximation
for Ag which we denote by Ag’.

1+° h(z)
’ — ———
Agq (xo)—"_ » (x-—xo)2dx' (21)
Ag¢’, and ¢’=1+4 A¢’ will be referred to as the ‘‘Jeffreys approximation”
to Aq and g, respectively.

For a plane slope of height H and angle 8 we have:

h(x)=H, >0
=H+z tanB, 0>x>—H cotp (22)
=0, —H cotg>z.

Substituting equations 22 in equation 21 yields:

q’(x)=1+Aq’(x)=l+11—r tan gln (EIP;TW) where O<B<1§r (23a)

1H T
—1—; > where B=5 (23b)

Equations 23 apply for all z except the singular points 2=0 and
z=—H cotB. They represent an approximation to ¢ which is given
exactly by equations 12, 13, and 14. The two quantities ¢ and ¢’
are compared for selected values of g in figure 2 and their difference:

D=g—¢,
is illustrated in figures 5 and 6 and tabulated in tables 1, 2, and 3.

COMPARISON OF THE EXACT
AND APPROXIMATE SOLUTIONS

From figure 2 it is seen that the approximation based on the Jeffreys
assumption is generally good for points beyond the toe or behind
the brink of a plane slope if the angle is less than 30°. For angles less
than about 9° it is also rather good for points on the sloping surface
unless these points lie extremely close to the toe or brink. Inasmuch
as the Jeffreys approximation can be applied to general topographic
forms and the exact solution applies only to the plane slope, the
difference between them will be investigated in an attempt to find
better ways to represent the surface heat flow from more general

topography.
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Ficure 5.—Difference (D) between the exact solution and the Jeffreys approxi-
mation to the heat flow beyond the toe (solid lines) and behind the brink
(dashed lines) of a plane slope for various angles (8).

Figure 7 compares the temperature distribution over the reference
plane assumed in the approximate solution (solid lines) with a sche-
matic representation of the distribution required by the exact solution
(dashed lines) for gradient calculations at the point z, beyond the
toe (fig. 7A4), on the slope (fig. 7B), and behind the brink (fig. 70).
The two reference temperatures differ by a factor denoted by (14¢).
At large distances from the slope, e vanishes, and the two representa-
tions of the reference-plane temperature coincide. The difference in
the two representations is the effect (neglected in the approximation)
of lateral variation in vertical gradient caused by the topographic
relief. Thus e can be viewed as the effect of interaction of the slope
with itself. For example, near x=0 in figure 74, the vertical heat
flow is lower than the regional average and hence so is the vertical
gradient. Thus the reference-plane temperature is lower than antici-
pated by the approximation. The reverse is true near the toe of the
slope (fig. 7A4). In figure 7C where the reference plane is above the
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required by the exact solution (dashed lines) and Jeffreys approximation
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brink (C) of a plane slope.
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topographic surface, high heat flow near the toe results in large grad-
ients and low reference-plane temperatures. Setting Ag=g¢g(z)—1,
we can write an exact expression analogous to equation 21:

aq(eg—1 [ M g, (28
=Aq’(x)+% _T%sgdx (25)
or D=Aq—Ag'=1lr : ( :_(f;:)zdx. (26)

It is seen that e(x) can be viewed (for positive h(x)) as the mean
value of the gradient disturbance at z between the topographic surface
and the reference plane or the mean value of the heat-flow disturbance
there. For negative h it is, of course, a fictitious quantity but never-
theless a useful intuitive concept.

The difference, D, between the exact and approximate solutions at
points on the horizontal surfaces is illustrated for various slope angles
in figure 5. For angles less than 90° the Jeffreys approximation under-
estimates the heat flow near the toe (positive D) and at greater dis-
tances overestimates it (fig. 5, negative D). Positive D for small r
is the second-order effect of the concentration of vertical flux by the
slope near its toe. It can be viewed as a local effect of the positive
portion of e in figure 7A. At larger distances the exact solution yields
lower heat flows than the Jeffreys approximation because of the gen-
eral lowering of reference-plane temperature caused by horizontal
escape of heat from the sloping surface.

The positive values of D for small s are the local effects of reduced
heat flow near the brink which increases reference-plane temperatures
there when it operates through negative topography (fig. 7C'). For
larger s, D is negative because of horizontal losses. Figure 6 illustrates
D for points on the sloping surface. It is positive near the toe and
brink and negative in the central portion, as one would anticipate
from the above discussion.

From equations 23 it is seen that A¢’ is symmetrical about the
midpoint of the slope (x=—0.5Hcot8) with singularities at the brink
and toe. The exact solution is asymmetrical because e is asymmetrical;
the negatively infinite heat flow at the brink becomes zero heat flow
in the exact solution, and heat flows are below the regional value
over most of the slope. At the midpoint where ¢’ is unity, the exact
heat-flow anomaly, Ag, is given to a very good approximation by:

Ag=—0.8sin’B, z=—0.5Hcotgs. (27)
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It is clear from the figures and tables discussed, that the difference,
D, between A¢’ and Ag generally decreases with decreasing slope
angle, 8, and increasing distance from the slope.

THE PROBLEM OF THE GENERAL TWO-DIMENSIONAL SLOPE

We should like to apply the results obtained so far to the rapid
estimation of surface heat-flow anomalies caused by real, roughly
two-dimensional slopes on the earth’s surface. At best, real slopes
might resemble the plane-slope model, but they will never correspond
to it in detail. Generally, real slopes will have distinguishing features
such as humps, hollows, and rounded corners. Even very small de-
partures from the model might cause very large errors in the heat-
flow estimate if they occur near the station. This situation is clear
when it is considered that the superficial effect of a 2-km (kilometer)
slope 1 km from the station is equivalent to that of a 10-m (meter)
slope of the same shape 5 m from the station. (In the case of the latter
slope, the effect would fall off more rapidly with depth.) If both
slopes occurred together, their combined effect could not be accounted
for with confidence by adding the exact solutions for the individual
components, because each slope would affect the heat flow through
the other and alter its effect on the heat flow at the station. Such
interaction precludes the general superposition of plane slopes. It is
possible to perform calculations like those of the first section to obtain
the exact solution for two coexisting plane slopes, but the results
would contain four parameters instead of two, and could not be
presented in any simple way for rapid graphical computations. Fur-
thermore, we would be little better off as far as real topography is
concerned.

Unlike the exact solution, Ag, the Jeffreys approximation, Ag’,
can be obtained easily for any surface shape by adding individual
contributions of the topographic elements. It is clear that it is a good
approximation under some conditions, but as we have already seen,
it can also be very much in error. By approximating the effect of a
plane slope by the sum of exact effects of smaller plane slopes of the
same angle, it can be shown that neither the Jeffreys approximation
nor the summing of exact solutions is consistently better as an approx-
imating scheme. It might be suspected that if a general slope were
decomposed into plane-slope components so small that the sum of
their I’s was negligible, then their individual exact contributions
could be added to obtain the effect of the general slope. However it
can be shown that such an approximation approaches the Jeffreys
result as the components become small. It can be seen from the change
of sign of D with z (figs. 5 and 6), that neither of these approximation
schemes can even be relied upon to give a limit (upper or lower) to
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the heat-flow anomaly from a general slope. Therefore, in the sections
that follow, more indirect methods will be used to apply the results
for a plane slope to estimate the effects of more complicated topo-
graphic relief.

HEAT FLUX ON A HORIZONTAL SURFACE BETWEEN
TWO PLANE SLOPES

It has been pointed out that the plane slope is a highly idealized
topographic form, but that more complicated exact models generally
lose the advantage of the two-parameter representation or of intuitive
simplicity. Extending the plane-slope results to characterize more
general configurations is therefore worthwhile, and can be done with
limited success for the heat flux on a horizontal surface between two
plane slopes (h.(z) and k,(z), fig. 8). There are three cases. In the first
(fig. 84), the station lies on the horizontal surface between two positive
plane slopes. We shall call this the plane valley. In the second case,
the plane ridge (fig. 8B), the station lies on the horizontal surface be-
tween two negative plane slopes. The third case is the plane bench
(fig. 8C) in which the station lies on the horizontal surface between
plane slopes of opposite sign. In presenting the general theory we shall
refer to the example of case 1.

Consider the half space 22>0 upon whose surface z=0, — o <z<4=
are placed two plane slopes h,(x) and h,(z) as illustrated in figure 9.
We denote the topographic surface as A(z):

h(z) =hq(x) +hy(x) =ha(z) , T>a
=0, a<lz<b (28)
=hy(z), b>z.

We shall consider the surface heat flux at a point z, on the horizontal
surface—strip @ >2>b. The heat-flow anomaly, Ag(z,), cannot be
obtained by simply adding the heat-flow anomaly Ag.(z,) and Agy(zo)
of the independent plane slopes because the presence of h, modifies the
heat flow through A, (and conversely) and this modification, in turn,
further modifies the heat flow through A, and so on. There is, however,
a hypothetical temperature distribution, 7'(z), over the plane z=0
that will affect the heat flow at z, in the same way as the isothermal
topographic surface A(x)=h.(z)+hs(z). Although the plane slopes
are not superimposable in the geometric sense, their collective con-
tributions to the reference-plane temperature are. We therefore
represent the reference-plane temperature:

1@T(x)=ha[1+€a+59m(1+€M)+5Qaba(1+€am)+* * x]
+ho[1+€b+5Qab(1+€ab)+59m(1+8m)+ U N (29)
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Ficure 8.—Coexisting plane slopes: A, a plane valley, B, a plane ridge, and C, a

plane bench.

Taking only the first term in each series yields the simple Jeffreys
approximation to the reference-plane temperature. The second terms
have the same meaning as e in equation 24 (fig. 94, B). These terms
adjust the Jeffreys approximation for the independent variation in
vertical gradient within each topographic element; that is, they adjust
for the interaction of each slope with itself. Approximating 7'(z) by
the first two terms of each series is equivalent to approximating
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Ghol g, (1+eg,)+ -]
Gh,16q,(1+e,)+ -]

Figure 9.—Geometrical significance of the leading terms (4, B) of equation 29
and the interaction terms (C) for the plane valley.

g(zo) by the sum of the exact solutions for the effects of k, and &,
independently. The term with subscript ‘ba” is the effect of the first-
order interaction of h, with A,. 8¢s, is the additional flux that would
result across the reference plane beneath &, if b, were not there. e,, plays
a role similar to e, adjusting the reference-plane temperature for
the interaction of the flux increment 8¢, with the slope A, (fig. 9C). It
is represented by a different symbol because we have no theory to
evaluate it, inasmuch as 8¢y, is a function of z. Similarly the “ab” term
represents the first-order interaction effect of k, on the reference-plane
temperature beneath h,. The flux increment dq,, increases the ref-
erence-plane temperature beneath A, and this in turn increases the
flux through A, by an amount 8¢, .and increases the reference-plane
temperature there by Gh.8¢m. (1+€..), and so on. Neglecting the
“¢”’ in the interaction terms results in a Jeffreys-type approximation
to them.
For convenience equation 29 is rewritten:

T(@)=ToAToatTorat Toasat 5 5 ++ Lo+ TartToar+Tarart s+« (30)
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where T.=Gh,(14€s), To=6Ghy(1+¢€s).
TM—Gh.,BqM(l +8m), ;,—Gh,,&q,b(l-{—e,w)
Tos2a=Ghadq s xa(1F€ % % x0), T s % 50=Ghodq 5 5 xo(14-€ % % %)

The asterisks represent an arbitrary number of alternating subscripts.
The terms with multiple subscripts will be referred to as interaction
terms, with T3, and T, being the first-order ones and so on. The
terms are all functions of z. Increasing any one of them increases
T(z), and by equation 21 increases the heat flow.

As long as h,(z) and h,(z) are plane slopes we may replace 3¢p(z) by
Agy(z) and 5q.,,,(a:) by Ag.(z). These quantities decrease in magnitude
with increasing distance from k, and A, respectively. (This condition
and the analysis that follows are valid even if h,(z) and %;(z) are not
plane slopes as long as each is of one sign.) Hence, the greatest
absolute value of Agy(z) in A, is attained at the point of closest ap-
proach of h, to h,, that is, at the toe, z=a. Replacing d¢,, by its
maximum absolute value we obtain the inequality:

hadqua(x) (1+e00)| <|PoAgu(@) (1+e0a)]. (31)

The quantities within the absolute value signs will always be of the
same sign.

The appropriate value of e, on the right side of equation 54 is
very nearly ¢, because of the assignment of the constant value,
Agy(a), to the heat increment. This substitution is largely a matter
of convenience, as the ¢ is of higher order than the A¢. Thus:

| Toa(2)| <|Ghalrgs(@) (1+€0)| =|Ags(a) Tl (32)
| Teo ()] <| GhoAAga(B) (1 €0) | =|Agu(B) T (33)

Proceeding to higher order terms with similar reasoning:
| Tuna(2) | <|GRaGa(B) Ags(a) (1 +€.) | =|Aga(B) Age(a) T, (34)
| Toan ()| <| GhoAqs(@) Aga(B) (1 +€5) | =|Ago(@) Aga (D) T, (35)
| Towsa(2) | <|Ghabg(@) Aga(B)Agr(a) (1+ &) | =402 (@) Aga(B) A (@) Tul,  (36)
| Tasan(2)| <|GhoAga(5) Ag5(@) Aga(b) (1+ &) | =|Aga()Age (@)Aga (B) T,  (37)

with similar expressions for terms of higher order.
Denoting the quantities in absolute value signs on the right side of
equations 32-37 with a prime we have in general:

ITs 5 #2(D|<IT' 5 5 %a(2)]

and IT***a(x)l<|T,***a($)'. (38)
298-334 0—69——3
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The corresponding primed and unprimed 7’s will always be of the
same sign.
The series of equation 30 is dominated term by term by:

| Tal 1T sal +1 T atal 1T saval +4 57+ Tol 4T an 1T san| + | T atao| 5 %5
which by equations 32-37 can be written:

| Tol{1+|Ags(a) |+ |Aga(b)Ags(a) |+ |Agr(@)Aga(B)Ags(@) |+ & x +]
+‘Tb[[1+|AQa(b)|+1AQb(G)AQa(b)|+|AQa(b)A90(a')AQa(b)|+* * %]

And this converges if:

Ag.(D)<1
and Aqu (SJ,))<< 1. (39)

Therefore the series of equation 30 is absolutely convergent under
condition 39. (Absolute value signs are not needed in condition 39,
as Aq can never be less than —1 except in overhanging topography.
At a projecting corner its value is equal to —1, and as this value is
known we shall never want to calculate it.) No attempt will be made
to establish rigorously that the representation of 7T'(z) in equation 30
actually converges to the required limit. In general if 8¢,, and dg,, are
not too large it can be expected to converge rapidly and to yield an
excellent approximation.

Relations 38 apply whenever 7'(z), equation 30 represents the
temperature on a horizontal plane separating two plane slopes. It
has been pointed out that there are three cases. We shall now consider
them individually.

CASE 1, PLANE VALLEY (h.(z) >0, hy(z) >0)

In this case h, can only increase the heat flow through k,, and
conversely. Hence the interaction terms of equation 30 are all positive
and so are their primed approximations relations 38. Therefore,
neglecting the interaction terms yields a lower limit to the heat-flow
anomaly, Ag¢(z,), and replacing them by the primed terms yields an
upper limit.

Using equation 21:

Mga> o [T E A (40)
20 <Jg [ { 1Th Tt Tt o4
X

I Tk Pt ™ 2
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LT { T, [14Ags(@)+Aga(8)Ags(@)+** 1+ T [14Aga(8)

+Aq»(b)Aqa<b)+***1}( % @
but:
= :(x—iydx%, [t @, @
rGf . (x—xo) = _+: hé“;:)”z) dz=4g,(2), (43)
and finally:
Aga(2o) +A4s(20) <Ag(20)

<Age(20) [14-Ag5(a) +-A¢4(5) Agy (@) +Aq,(@) Aga (D) Agy (@) +* * *]
+A¢,(26) [1+Ag,(0) +Agy(a) Aga(D) +Age(B) Ay (@) Age(B)+* **]. (44)

The application of inequality 44 is illustrated with a few simple
numerical examples.

Example 1.—Suppose %, and h, are both 45° slopes of equal height
(H) separated by a distance (a—b) of twice their height (2H). To find
the heat flow at the midpoint we need the following from table 1:

Ag(b)=Agy(a)=Ag(45°, r=2)=0.108
Aga(x0) =Agy(%0) =Aq(45°, r=1)=0.178.
Then by inequality 44:
0.178+0.178<CAq(2,)<[0.178+0.178] [1+0.108+0.012].

Hence
0.356<CAq(,)<0.399,

1.36<Cq(20)<<1.40.

The corresponding result from the Jeffreys approximation is 1.44.

Example 2.—Taking the same configuration as in example 1, we
now consider z, to be 0.1H from h, and 1.9H from h;. Since the
configuration is unchanged, the series is the same as in the previous
example—its sum being 1.120. But now:

or equivalently,

Aq.(z)=Aq(45°, r=0.1)=0.644

Agy(2)=Aq(45°, r=01.9)=0.11,
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where the last value is taken from plate 1. Hence:

0.64440.11<C Ag(0) < [0.644+0.11][1.120},
1.75<q(%0)<1.84.

and

In this example ¢’=1.90.

Example 3.—Leaving h, and the separation, a—b, unchanged we
now double the height of h, and change its angle to 30°. Assume
z, is midway between the slopes as in example 1. From table 1:

Ag.(b)=Aq(30°, r=1)=0.162,
Agq(20)=24A¢(30° r=0.5)=0.243,

Agy(a) =Aq(45°, r=2)=0.108,

Agp(2)=Aq(45°, r=1)=0.178.
Inequality 44 yields:
0.243+0.178<Ag(%)<0.243[1+0.108+0.017]+0.178 [1+-0.162+4-0.017],
or equivalently,

1.42< g(20) < 1.48.

In this example the Jeffreys approximation is ¢’ =1.50.

It is seen that ¢’ is a rather good approximation in all these ex-
amples. This is partly due to the fact that over the useful range of
r and B for inequality 44, D is negative (fig. 5), and this tends to
compensate for the positive interaction terms in the inequality.

CASE 2, PLANE RIDGE (k.(z) <0, hy(x) <0)

In this case the series of equation 30 alternates in sign as follows:

T(w)=_lTal+|Tm!—]Tam]+|Tb¢mi"* * *
—| T+ | Tas] —| Toas) + | Tavas] —# # #- (45)

The factors 8¢, and 8¢y, of equation 29 are negative, but their
effects on T'(z) are positive because k, and k, are negative. The in-
crease in reference-plane temperature (7, and T, caused by these
terms results in the second-order heat increments 8¢.,, and 06qsqs
(eq. 29) being positive with a negative effect on reference-plane
temperature (74, and Tse;) and so on.

From the discussion on convergence we know that the sign of the
series of interaction terms is the same as that of their leading terms,
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Ty and T,,; hence, neglecting interaction gives a lower limit to
Ag(z). Furthermore the error in approximating the interaction is
of the same sign as the first term neglected; hence considering only
the first-order interaction gives an upper limit.

Ag(20) > f -If;';d '

2@ <z [ (Tt Tt Tt T s

Therefore:

Aqa(0)+Ag,(%0) < AG(%0) <AGu(o) [1+Ags(@)]+-Age(%o) [1 +Aga(D)].  (46)

Example 1.—Assume, as before, that h.(z) and h,(z) are of the
same height and are separated by a distance (fig. 88, a—b) equal to
twice their height. For z, midway between two slopes of 45° we obtain
from table 2:

AG (%) =Agy (1) =Ag (45°, s=1)=—0.249,
Ag(b)=Aq,(a) =Agq(45°, s=2) =—0.149,
and from 46:
—0.498<Ag(x) <—0.498[1—0.149]=—0.424,

or equivalently,
0.502<q(,)<0.576.

The corresponding Jeffreys result (¢’=0.56) lies in the bracketing
interval.

The good agreement of ¢’ is again due in part to the sign of D in
these examples; that is, the Jeffreys approximation is better for the
combination of slopes than for the slopes individually.

Example 2.—If both slope angles were 5°, the result would be:

0.86<q(x,)<<0.87.
In this case ¢’=0.87.
Example 3.—Considering the 45° slopes again, we place z, one-
tenth H from ¢ and 1.9H from b and obtain:

0.23< q(26)<0.34.

In this case, D is strongly positive for =45° s=0.1 (fig. 5), and
hence the Jeffreys approximation (¢’=0.10) falls well below the
bracketing interval.
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CASE 3, PLANE BENCH (h,(z) >0, hiy(z) <0)

In this case the signs in the series of equation 30 are alternating
in groups of two as follows:

T(x)=+|Ta|_lTba{_lTaba|+lTbabal+ITababa|_* * %
_ITDI_ITaDI—I"TMbI+‘TGMD,_,TMMbl—* PR (47)

To see this we note that 7, and T, must have the same signs as &,
and h, respectively. A positive sign for 7', leads to a positive heat-flow
increment &q,, through h, and negative T,, because h, is negative.
However, negative T, leads to negative T,, the sign being preserved
because k, is positive. Thus any term in the b series leads to a next
higher order term of the same sign in the a series, whereas the sign
is reversed by negative h, in going from the a series to the next order
term in the b series.

By grouping consecutive terms of the same sign it can be seen that
the total effect of the interaction in the a series is negative and that
T, provides an upper limit and that T,+ T+ Tuse is a lower limit.
The lower limit can be replaced by the still smaller but more manage-

able quantity:
To+That Tapa-

The grouping shows that a lower limit to the b series (eq 47) is
Ty+ T,y which can be replaced by the smaller quantity 7,+7",.
An upper limit to the b series is:

Tt Tt Towt Tavan- (48)

(We cannot select T, as the upper limit because there is no assurance
that the second termn dominates the sum of the third and fourth.) To
get expression 48 in a manageable form we write:

To+TortToart Tarar< Ty~ Toao+ Tarar< Lo+ Trar+ T apar-

Although deleting 7',, weakens the upper limit, it is necessary to
do so because we have no assurance that the inequality would be
preserved when T, was replaced by 7”,,. Thus:

+°
20> [ (Tt Tt Tt Tt T2 2y

1 (*= , , dz
8@ <g; [ (Tt Tk Tk Tiow) 750y

and hence:

Aq(20) >Aqa(20) [1+Ags(a) +Aga(b) Agy (@) | +Agn(20) [1+Ag4(D)], (49a)
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and:
Ag (%) <<AQo(%o) +Ags(%0)[1+ A, (@) Aga(b) + (Aga (D) )*Agr(@)].  (49D)

Example.—Assume as before that h, and h, are of equal height
(H) and separated by a distance (a-b) of twice this height. If the
slope angles are both at 45° and x, is midway between them, we obtain
from tables 1 and 2:

Aqy(%o) =Agq(45° r=1)=40.178,

Ag(b)=Aq(45° r=2)=+40.108,

Ay (%) =A40g(45°, s=1)=—10.249,

Agy(a)=Aq(45°, s=2)=—0.149.
By inequality 49a:
Aq(25)>0.178 [1—0.149—0.016]—0.249 [14-0.108]

=0.178[0.835]—0.249[1.108]=—0.127.

By inequality 49b:

Ag(x)<+0.178—0.249 [1—0.16—0.002]=-0.178

—0.249[0.982]=—0.067,
hence:

0.87< (1)< 0.93.
By comparison q’=1.00.
If », is 1/4H from the toe of A,:
1.02<q(x)<<1.09 and ¢’=1.19.
If it is 1/4H from the brink:
0.70<g(20)<0.77 and ¢’'=0.81.
If 2, is 0.1H from the toe of h, and 1.9H from the brink of A,:
1.37<q(2)<1.50 and ¢’=1.63.
With x, only 0.1H from the brink:
0.41<q(x0)<0.51 and ¢’=0.37.

The Jeffreys approximation tends to be too low very close to the
brink, but elsewhere on the bench it is generally too high.
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In summary, a lower limit to the heat-flow anomaly on the hori-
zontal surface between two plane slopes (k, and h;) of the same sign
(cases 1 and 2) is provided by the sum of the independent exact
solutions for each slope (Ag,(zo) + Ag,(x,)). The upper limit is provided
by adding an overestimate of interaction effects. If the horizontal
surface lies between plane slopes of opposite sign (case 3) both the
upper and lower limits contain interaction terms, but the sum of the
independent exact solutions forms the upper limit to terms of second
order in the interaction. In all three cases the bracketing interval
(Qupper-Glower) 1S represented by the first-order interaction terms with
or without higher order effects.

Qupper-Tiower=|Aga (o) Agp(@) +Agy () Ag, (D) | +higher order.  (50)

Inasmuch as:
|Aga(20)| >|Agq(b)],

[Ags(70)| >|Ags(a)],
hence in all three cases:

Ag(@) = Aga(T0) +Ags(%o) +-[Aga(X0) Aga(20)] [1 £ 1], (51)

where the two signs in the last factor yield upper and lower limits.
Relation 51 forms a useful criterion for neglecting interaction. As
the slopes become smaller or farther apart, the bracketing intervals
become small, and the heat flow is given to a good approximation by
the sum of the independent exact solutions [Ag.(xo) +Agy(xo)] in all
three cases. In all these cases the linear approximation gives sur-
prisingly good results over a wide variety of conditions. It can, how-
ever, contain considerable error at points very near steep slopes.

GEOMETRIC BRACKETING
Consider a slope, A,(x), to which is added a bump, k,(x), such that:

hy(2) >0, 2, <2<,
hb(z) =0’ x>$2,w1>22.

Uniform heat flow at depth is assumed as before; hence the vertical
flux at the surface is positive except at projecting corners where it is
zero (fig. 10).

If Ag,(z) represents the vertical surface flux through A, when &, is
isothermal and Ag.(z), the vertical flux through A,+h, when it is
held isothermal, then:

AGap(2) >AQu(x), & >0, > 2. (52)
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Ficure 10.—Plane slope with a positive (solid curve) or negative (dashed curve)
bump.

This can be seen by noting that for points not in k,, the isothermal
surface A,+h, can be replaced by %, isothermal outside of z;<<x<lxz,
and with some positive temperature distribution over the part of the
surface z,<<x<x,. This temperature excess can be replaced by a
distribution of doublets, positive downward, which in turn will in-
crease the vertical flux at all points outside of &, on A,.

If by is a negative bump (fig. 10), the equivalent temperature
distribution on A, in z,<z<lx, is generally negative. The resulting
bowing down of the isotherms in z,< x< x, will result in a convergence
of flux there that can only result in a decrease in vertical flux at all
points on k, outside of A,.

More generally, let 2(x) be a general surface and h,(x) and h(x)
be two other surfaces such that:

hu(2)ZM(2) Zh(2), + = >e>—e. (53)

The heat-flow anomalies on each surface are denoted respectively by
Ag,(x), Aq(x), and Aq;(z). Then, at any point z, (not a sharp corner)
at which:

(o) =h(zo), (54a)
we have,
Agu(%o) >Ag(%o), (54b)
and where,
h(@o) =h,(20), (65a)
then,

Aq(a0) >Aq (o). (55b)
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It follows that where,

b (o) =h () =k (20), (56a)
we have,
Agu(%0) >Ag(@0) >Aq,(%o). (56b)

Relations 53-56 will be referred to as the theorem on geometric
bracketing. It is illustrated in figure 11 where h(x) is represented
by the horizontal lines, OL and U’P, and the wavy line (LtU’)
joining them. The plane slope OUU’ P represents h, and the plane
slope OLL’P represents h,. Then relation 56 applies for all points
(x) on OL and U’P. One-sided limits are given at z,=¢, (relation 54)
and at zo=¢, (relation 55).

The results of this section can be applied to those of the last section
to establish limits to the heat-flow anomaly at stations interior to
many real valleys, ridges, and benches.

The method of geometric bracketing can lead quickly to a de-
termination of whether or not specific topographic features are signifi-
cant in heat-flow studies. For example, the effect of any positive
feature is overestimated by that of a cliff of the same height and
distance from the station. Thus a positive feature whose height is less
than 10 percent of its distance from the station cannot affect the heat
flow there by more than 2.8 percent (table 1); if its height is 5 percent
of the distance the limit is 1% percent. The corresponding limits for
negative features are 3.6 and 1.7 percent. (It is surprising that the
anomaly 10 slope heights from the toe of a 90° cliff, 2.8 percent, is not
very different from the anomaly 10 slope heights from the toe of a 5°
slope, 2.1 percent, table 1.) If features of the same sign occur at such
distances on both sides of the station, their interaction would be
negligible (inequality 51), and the limiting effects are obtained by
adding the individual limits. If the features are of opposite sign, the
limiting effect is the one with the larger magnitude. Other examples
can be taken quickly from table 1. A positive slope whose height is

Ficure 11.—Geometric bracketing of a general slope by two plane slopes.
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equal to its distance from the station cannot affect the heat flow by
more than 10 percent if its maximum slope angle is 9°. A valley 1-km
deep with a 10-km flood plane will not increase the heat flow at its
center by more than 10 percent if the walls are not steeper than 30°.
(The interaction is negligible by inequality 51.)

When drilling holes to determine heat flow, it is desirable to select
sites at which the topographic anomaly is minimized. Thus, site selec-
tion often involves making many calculations of the type just dis-
cussed. I have found it helpful to take a copy of figure 3 to the field
for this purpose.

Although the bracketing described is achieved with a two-dimen-
sional model, it can, of course, be applied to three-dimensional topo-
graphic forms.

The methods of this section often give a useful upper or lower limit
to the topographic anomaly, but the condition that the bracketing
slopes be everywhere above or below the real surface usually leads to
bracketing intervals that are rather large. A more refined method will
therefore be considered in the next section.

EQUIVALENT SLOPES

To consider the example illustrated in figure 10 in more detail we
write:

1+ hah(l -+ eab) —ha(l +ea) dx

AQM_AQa:

) (z—x)*
=1 f+mhb(1+ea)+hab(eab—ea) dx
TJ-w (2—x)?
o 1 (72 e 1 [+ hade
_Aq°+1rj;1 (w—%)zdx—l_""f—m (B—1,)? @ (67)

where Ae(x)=¢,,(x) —eq.(x). (In this section and those that follow the
quantity e will be understood to include the quantity ¢ which applies
to the special case of a plane slope.)

It was pointed out in the previous section that for z, not in (;, z.)
the difference on the left side of equation 57 has the sign of k,, which
is also the sign of Ag,. Neglecting the second and third terms of the
right side of equation 57 is equivalent to approximating Ag. as the
sum of the exact solution, Ag,, and the Jeffreys approximation to the
perturbation h,, that is,

Aoy AG,+AgS. (68)
We know that the correction term is of the right sign (if A, is of one

sign), but it is not known that the approximation to Ag,, is any better
with it than without it.
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According to equation 26, ¢,(z) represents the anomaly in the mean
gradient in A, at 2. Therefore, the second term on the right side of
equation 57 adjusts Ag, for departures of the local gradient from
unity at h,.

Thus the approximation:

’ 1 h a
AQabgAQa‘l‘AQb’f',—r :f'(—x__Lwo)_zdx7 (59)

is a refined Jeffreys-type representation of the perturbation in which
the effect on reference-plane temperature is adjusted for local condi-
tions of heat flow through h,.

It is seen that positive e, (high heat flow through A,) increases the
magnitude of the correction, and negative e, reduces it as might be
expected. In this sense, ¢, can be viewed as a weighting function.

The Ae(z) in the third term of equation 57 represents the reaction
of the mean gradient throughout the topography occasioned by adding
the perturbation A, to h,. If h, is positive and h, negative, Ae will
tend to be positive in (x;,2;) because of the downward crowding of
the isotherms. It will, however, tend to be negative for z not in
(21,23) for reasons discussed in the previous section. For A, positive
the opposite holds true. Unlike the first and second terms, which
are integrated only over the region of the perturbation, the third
term is integrated over an infinite domain. It is to some extent self-
canceling, as it tends to be of opposite sign to Ag, over the range
2 <zx<z; and of the same sign in 2<lx;, >,

It is clear that the errors arising from approximating h. with a
plane slope k, and correction terms tend to grow with the magnitude
of hy. A better approximation might therefore be obtained by selecting
h. in such a way that &, has parts of both signs so that its magnitude
is reduced, and the correction terms tend to cancel.

In order to consider rather general topographic configurations, and
still restrict the discussion to slopelike forms, we shall define a ‘“slope
form” as two horizontal halfplanes joined by a general (two-di-
mensional) surface whose highest point is the intersection with the
upper halfplane (the brink) and whose lowest point is the intersection
with the lower halfplane (the toe). (Where no ambiguity will result we
shall refer to this figure simply as a “slope.”) The width of the sloping
portion of a slope form is finite; hence it does not include the monocline
of Jaeger and Sass (1963). Consider the slope form A, >0 whose toe
is at & and brink at & (fig. 12). To approximate the heat flow at
in front of the toe we consider A4, as the sum of the plane slope of the
same height, %, and the element, %, with positive and negative
portions.
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&

& ¢

Figure 12.—Notation for the discussion of slope forms.

If h, is chosen in such a way that:

ha—ha

o= %)2d:v =0, (60)

then Ag,(z,) vanishes, and hence:
Agas(20) =A¢4(o)- (61)

Thus any two slopes ke and A, that satisfy 60 must have the same
Jeffreys approximation at z,. They will be referred to as ‘‘equivalent
slopes at x,””. If h, is chosen to be equivalent to A, at z,, equation 57
becomes:

abAe
(z— %)2

ho@a
o)?

Aga()= Aqa(aco)+1 f(z dx + (62)

This choice automatically assures that the first-order contributions of
irregular topographic features are accounted for, so that after weighting
their height by the inverse square of their distance from the station,
their sum is zero. It also assures a symmetry that justifies the inter-
pretation of e, as a weighting function in the second-order correction
term, and it leads to canceling effects both in and out of (£,%) in
the third-order term.

It is clear that any two slopes equivalent to a third slope at x, are
equivalent to each other there. For any slope s there is a family of
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equivalent plane slopes at any point z, not on the slopes. This can

be seen by noting that given he equivalent to kg (fig. 13) another
slope, A%, equivalent to h, can be drawn by increasing the slope angle
and distance from the station simultaneously in such a way as to keep
Aq. constant. Thus, the flatter the equivalent plane slope, the closer
it extends toward the station. The equivalent cliff is the member of the
family farthest from the station.

For any slope form it will be possible to select plane slopes equivalent
at o in such a way that h, has one positive and one negative section,
as long as z, lies a finite distance beyond the toe or behind the brink.
We shall denote the section near the toe by %, and the other by Aq..

w W, —

: |

*

£ X S}

R —
A A A

1‘ z, X Z,

A A

ho, - by,

by

A
Ficure 13.—Notation for the discussion of equivalent plane slopes (k% and h,).
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Those plane equivalent slopes that are steeper than k,,, in the sense
that they make h, positive, will be denoted by h;. The flatter ones

(which make A, negative) will be denoted by he (fig. 13). The heat-
flow anomalies produced at x, by h} and ia,, will be denoted Ag} (o)
and Ag, (x,) respectively. The coordinates of the toe and brink of A.
will be denoted respectively & and & ,and those of #. and B by 21,22
and z},x;. The coordinate of the intersection of A,, with the sloping
parts of h, or hY are denoted respectively by X or X*. Other quantities
related to these slopes such as e, and h, will also be distinguished by
*or A,

Replacing 4, by he in equation 57 yields:

A 1 }Abbl)éu 1 (% }A"bgéa 1 habAAe
Agar(®0) Aq.,(xo)—w N (x—2)* dz "_".LA( (z—20)* dw+1_l’ & (W_xo)zd )
(63)
However, from equation 60 we know that:
& }:bl ;2 ;;’02
R NN PR (T S 64
fa =z %" f& =P ™ 69

Inasmuch as &, is a decreasing function of distance from the toe (z-2:)
in (%;,2,) the sum of the two second-order integrals assumes the sign
of Ay, which, in this case, is negative.

As long as the second-order terms dominate the third-order integral
(which represents interactions that generally tend to cancel) we have
the inequality:

AGa(%0) >Agan(io).- (65)

Replacing %, by k; in equation 57 and rearranging the integrands
we obtain:

1 hiAe*
, x"f(x—xoy

dz+ dz.

1 (Xx* h¥ e 1% hie
AQab(%)"Aﬁ(%):_"r e f 2

4 (@2 " w) xa(a—12o)?
(66)

The changed form of the integrands is necessary because e; is not
defined over the entire domain of k;, but e, is. If e, is generally
larger in the lower part of the slope (below X*) than in the upper part,
the second-order integrals will again take the sign of &,,, now positive.

Assuming again that the third-order effects are dominated we have:

Aga(%0) >Agz(%0). (67)
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In developing inequalities 65 and 67 we have used the example of
hqy positive—the point x, was beyond the toe. If z, lies behind the
brink, A, and h, are negative and occupy all or part of the region
x>z >—. For this case the equation corresponding to 63 is:

h" a 12 hb a
Adun(to) —Ala(E0) = f . e X e et f hade

@28 G2 =z

68)

and only the integrand in the third integral undergoes a change of
sign. Thus the arguments leading to inequalities 65 and 67 apply
whether &, is positive or negative.

There is, however, one difference between the two examples worth
noting. From equation 64 it is seen that:

| f | < | f ], hey>0, (69)

where the integrations are carried out over the domains in which the
integrands are defined. For positive A, the closer x, lies to the toe
of the slope, the stronger inequality 69 becomes, as a very small A,

will balance a very large k,, when they are weighted by the inverse

square of their distance from the station. Inequalities 65 and 67 arise
from the difference in the mean values of the weighting function, e,

. . de .
(or eq), in the two integrals. Inasmuch as s generally greatest

near the toe, the difference between the mean value of ¢ in the two
integrals will be greater as the width of %, becomes smaller. Thus

the closer z, comes to the toe, the stronger inequalities 65 and 67
tend to become.
For negative Aq, h;, and k,, are multiplied by the inverse square

of their distance from the brink in equation 64. Thus:
| [ da>| [, del hus<0, (70)

and for z, very near the brink a very small A,, will balance a very
large A,,; as x, approaches the brink so does X. However, near the

brink the weighting functions ¢, and e, are generally undergoing
their least change with 2. Thus the closer z, comes to the brink, the
weaker inequalities 65 and 67 tend to become.

To summarize we combine inequalities 65 and 67:

AGE(20) <Agan(%0) <AGa(o). (71)
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The mathematical conditions on k., and z, sufficient for the validity
of inequality 71 are:

1. That k., be a slope form.

2. That e, generally be greater below the intersection (X*) of Ag
with A} than above it.

3. That the second-order terms dominate the higher order inter-
action effects.

The condition that A,; be a slope form assures that flatter equivalent
plane slopes £, and steeper ones A, can be drawn for any z, not on
the sloping portion. The second condition is less explicit than we might
like, but it is difficult to imagine cases in which it would be violated.
This can be made clearer by rewriting equation 66:

2 hye 1 (x* hyel
Agua0) Mgt (@)= [ T s e [ s da

kbgea ’lq;bAG
)ttty [ oZaps 2

Because h; is equivalent to he, we know the sum of the first two
integrals would be the negative of the third integral if the e’s were
unity. In this form the weighting function is ¢} (a strongly decreasing
function of ) in zf<a<{w, and e, in the region near the toe,
x; >x>%, where it would generally be positive. Any slope kg for
which the first two integrals did not dominate the third must be very
unusual. For example it might be steep at the top with very thin,
high ridges (resembling cooling fins) near the toe. It could hardly be
important in terrestrial heat-flow applications.

Violations of the last condition are most likely to oceur at points
very close to the brink where the heat flow is very close to zero, and
small effects of higher order can dominate.

TESTS OF INEQUALITY 71

Unfortunately, the only available exact solution for a slope of finite
width (a slope form) is that derived for the plane slope in the second
section. Therefore, to test the inequality we shall represent h,, by
the plane slope of angle 8, and approximate its effect at any point

2, by equivalent plane slopes #, of angle 8 and A? of angle 8* where:
B*>6>.

Results for two examples (8=30°, §*=45°, /§=15°; and 8=15°,
B*=2214°, §=9°) are presented in figure 14.
298-334 0—69——4
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0.001 0.01 0.1

r (FOR3>0)
s (FOR 3<C0)

—
—
o

Ficure 14.—Comparison of the anomaly caused by a plane slope of angle g

with the anomaly from bracketing equivalent plane slopes of angle 3 and 8%.
Jeffreys approximation is shown as dashed line.

In this example inequality 71 holds over the range of four orders
of magnitude of r and s. It is seen that the bracketing interval for
s (points behind the brink) is smaller than the corresponding one for
r, and that it tends to decrease for very small s whereas it increases
for very small 7. Inasmuch as a weakening of inequality 71 is equivalent
to a decrease in the bracketing interval, these results are consistent
with the foregoing discussion.
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To the extent that inequality 71 applies, it should generally follow
that in any family of plane slopes of equal height which yield the
same Jeffreys approximation at points on the horizontal surfaces the
heat flow should decrease with increasing slope angle. This relation
is tested numerically in tables 4 and 5 where each pair of columns
represents members of a family of plane equivalent slopes whose
Jeffreys approximation is the value of ¢’ given at the top. The column
headed r (or s) gives the distance of the toe (or brink) from the
station, and the column headed ¢ gives the exact value of the heat
flow there. It is seen that the relation is satisfied exeept for points
very close to the brink for the steepest angles (see the two entries with
asterisks, case ¢'=—1.00, table 5). Fortunately, for such points a
reliable lower limit is usually obtained easily by geometric bracketing.
It is generally found to be close to the values given by inequality 71
in any case.

TABLE 4.—Comparison of exact solutions for families of positive equivalent plane

slopes
[Powers of 10 are denoted by their exponents in parentheses]
s q'=3 q'=25 q¢'=2 q'=15 g'=1.1
r q r q r q r q r q

90° 1.6 5-—1) L7 21 (-1 L6 3.2(-1) L4 64(-1) L27 32((+0 107
60° 1.6 (—2) 2.6 4.1(-2) 2,1 L1(-1) 170 3.9(-1) L35 2.9 (4+0) 1.082
45° 1.9 (-3) 3.5 901 5—3) 2.6 45 (~2) 1.9 2.6 (—1) 140 2.7 (+0) 1.085
30° 3.3 (-5 4.7 4.9 (-4 3.2 7.5 (—3; 2.16 L2 (-1) 1.47 2.4 (+0) 1.088
2216° 6.2 (~7) 54 2.8 (-5 3.8 1.2 (-3) 231 5.6 2—2) 1,82 2.1 (+0) 1,091
18° 1.2 (—8) 58 1.5 (—6) 3.7 1.9 E—&) 240 25(-2) 154 19 §+0) 1.093
15° 2.5 (~10) 6.1 8.6 (—8) 3.9 3.0 (—5) 2.45 1.1 é-?) 1,566 1.7 (+6) 1.004
M 2.6 (—10) 4.1 7.0 (=7) 2.53 19 (—3) 1.5 1.3 (4+0) 1.096
9° O U 1.5 (—8 257 3.1(—4) 160 1.0 (4+0) 1.098
5° .- - L8 (~7) 162 3.2 (-1 L1io0l
3 - 48 (-2) 1103

2.4 (—4) L104

8.7 (-7 1105

TABLE 5.—Comparison of exact solutio?s for families of negative equivdlent plane
slopes

[Powers of 10 are denoted by their exponents in parentheses]

2 q'=—1.00 q'=—0.50 q'=0.00 q’=-0.50 q'=-+0.90
8 q 8 q 8 q 3 q 8 q
90° 1.6 (—1) 0.124* 2.1 (—1) 0.164 3.2 (—1) 0.240 6.4 (1) 0.43¢ 3.2 (—0) 0.8725
60° 1.6 (—2) L105* 4.1 (=2) .168 1.1 (-1 .278 3.9 (1) .496 2.9 (—0) .8807
45° 1.9 (—3) .103 9.1 (—-3) .175 4.5(—2) .208 2.6 (—1) .525 2.7 (—0) .8848
30° 3.3 (—56) 107 4.9 (—4) .185 7.5 (=3) .319 1.2 (—-1) .553 2.4 (—0) .8895
2215° 6.2 (-7) .12 2.8 (—5) .192 1.2 (-3) .330 5.6 (—2) .567 2.1 (—0) .8924
18 1.2 (—8) .115 1.5(—6 .197 1.9 (—4) .336 2.5 (—2) .516 19 (—0) .8943
15° 2.4 (—10) 118 8.6 (—8) 200 3.0 (—5 .34 1.1 §—2) . 581 1.7 (—0) .8958
e 2.6 (—10) .206 7.0 (—=7) .347 1.9 (—3) .58 1.3 (—0) .8978
0% e 1.5 (—8) .31 3.1(—4 .501 1.0 (—0) .8991
B e e 2.0 (-8 .595 3.2 (-1) .9018
S 1.8 (-7) .598 4.8 (—2) .0031
B N 2.4 (—4) .9040
10 e 8.7 (—7) .9043
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SLOPES CONCAVE AT THE TOE OR CONVEX AT THE BRINK

To investigate some of the implications of inequality 71 it is con-
venient to represent D as a function of 8 and Ag’ (figs. 15 and 16),
where D is the quantity that must be added to A¢g’ to obtain Ag for
a plane slope of angle 8.

D(B,Aq") =Aq(B,A¢") —Ag'. (73)
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F1GURE 1§.—Enor in the Jeffreys approximation (D) as a function of the Jeffreys
approximation (Aq") for constant positive slope angle, 8 (solid curves), or con-
stant distance from the toe, » (dashed curves).
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Ficurg 16.—Error in the Jeffreys approximation (D) as a function of the Jeffreys

approximation (Ag’) for constant negative slope angle, 8 (solid curves), or con-
stant distance from the brink, s (dashed curves).

We have just seen that generally:

D(ﬁerq') >D(I32,AQ'); Bl<62; (74)

that is, smaller angles yield (algebraically) larger D's for the same
Aq’. Tt is seen that this is true over the range of figures 15 and 16.
In this notation, inequality 71 becomes:

D*(8*,Aq' (29)) <D(AZ (29)) <D(B,Ad (20)). (75)

The bracketing interval in inequality 75 (or inequality 71) can be
read directly from figures 15 and 16 for any A¢’ for selected angles,

B8* and é, of the bracketing plane slopes. (For example, if A¢’=+-0.5,
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B*=60°, /§=45°, then the interval is 0.05.) The limiting values of
Ag in equality 71 can be determined by adding the limiting values
of D from figures 15 or 16 to the abscissa, A¢’. (In the example

A
D*=—0.15, D=—0.10 and in equality 71 gives 0.35<A¢<0.40.)
From inequality 74 or from figures 14-16, it is clear that smaller
bracketing intervals are obtained by selecting smaller values of g*

and larger values of ;AS The smallest value of 8* is associated with
the plane slope, h, (x,), that is elosest to the station. The largest value

of B is associated with the plane slope, h (zo), that is farthest from
the station. At present we are chiefly concerned with the upper limit

and h,. For positive relief z; cannot be farther from the station than

A
& (fig. 13) because of the condition h, <0. Similarly for negative
relief, z, cannot be farther from the station than & by the condition
hs,>0. Hence the best &,, that is, the one that gives the lowest upper
limit in inequality 71 ,would be the one that passed through the toe,
&, for a positive slope, or through the brink, &, for a negative slope.
However, not all slopes contain such plane slopes in their family of
permissible A,’s. For example, on a long positive slope which steepens
very near the toe it is generally not possible to draw an equivalent
plane slope through the toe which lies above the slope at the toe.
In such an example the steepest &, has its toe, z;, closer to the station
than ¢, and B8 is reduced correspondingly. This in turn inereases the
upper limit on ¢ in inequality 71 as is seen clearly in figure 15. This
situation corresponds to the physical expectation that for two posi-
tive slopes with the same Ag’(z,), the one with the greater concen-
tration of volume near the toe will generally yield the greater Ag(z,)
because this volume lies in the region of greatest gradients. Similarly,
it is not generally possible to draw A, through the brink of slopes
which steepen very close to the brink. Fortunately, most slopes in
the earth’s surface tend to decrease in inclination near the toe and
brink. We shall call a positive slope “‘concave at the toe” if it is

possible to draw ﬁa(zo) through the toe, £. A negative slope will be

called “convex at the brink” if ﬁa(xo) can be drawn through the
brink. Most natural slopes can be represented by models in these
categories.

In figure 15 any vertical coordinate line can be viewed as represent-
ing a family of equivalent plane slopes, Aqg’(8,r)=constant. The
members of this family can be identified with reference to the coordi-
nate curves of 8 and r. Thus, in the family of equivalent slopes for
which A¢’=+4-0.35, that member which yields D=—0.07 is the 45°
slope at a distance r=0.5 from the station. Any point vertically below
the intersection r=0.5, 8=45°, corresponds to a steeper equivalent
slope farther from the station; points above the intersection correspond
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to equivalent slopes for which 8<{45°, r<0.5. If we are given a positive
slope, concave at the toe, whose height is twice its distance from the
station (r=0.5) and for which Aq¢’(z,)=0.35, we know from the pre-

A
vious discussion that 45° must be the best choice of 8. Hence for any

A
such slope D=—0.07 and A§ is 0.28. We can always choose 8*=90°
which yields (fig. 15) D*=—0.14 and Aq¢*(x,)=0.21. Any other posi-
tive slope concave at the toe for which A¢’=0.35 which was farther

from the station (r>>0.5) would have a larger 8 and hence its upper

A

limit D would eorrespond to an ordinate between —0.07 and —0.14.
More generally, any positive slope concave at the toe, whose height
does not exceed twice its distance from the station, is represented by
points in figure 15 between the curves r=0.5 and =90°. Inasmuch
as the maximum difference in the ordinate between these curves is
0.07, any of these slopes can be replaced by the equivalent cliff with
an error not exceeding 7 percent. From the curve r=1, it is seen that
any positive slope, concave at the toe, whose height does not exceed
its distance from the station can be represented by the equivalent
cliff with errors less than 3 percent; if the height is less than 50 percent
of the distance from the station (fig. 15, »>>2) the error is less than
1% percent. The corresponding results for negative slopes, convex at
the brink, are 4 percent for s>>1 and 114 percent for s >2 (fig. 16).

SOME CONDITIONS FOR VALIDITY OF THE JEFFREYS
APPROXIMATION

From many of the numerical results presented (see fig. 2) the
Jeffreys approximation often gives a satisfactory value for the topo-
graphic correction at the surface. However, it is extremely difficult to
establish general conditions under which the approximation is valid
and without them it cannot be applied with confidence. Consideration
of the equivalent slopes provides some insight into this elusory
problem,

It is seen from figure 15 that in the region between the curves §=30°
and r=0.05 the magnitude of D does not exceed about 0.03. Therefore,
any positive slope, concave at the toe, whose height does not exceed
20 times its distance from the station and whose maximum slope angle
does not exceed 30°, can be represented by the Jeffreys approximation
with errors not exceeding about 3 percent. (The actual condition on
the slope angle is somewhat more general, namely that there exists a
B*<30°.) This description applies to a broad class of slopes of general
interest, with positive anomalies ranging up to 65 percent. Similarly,
the error would not exceed 13 percent for positive slopes, concave at
the toe, even if their height were 100 times their distance from the
station as long as the maximum slope angle (actually minimum g%)
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were less than 45° (fig. 15). If a scarp occurred near the toe (so that
the slope were not concave there), and it was necessary to select an

A

h, that extended to within 1072 slope heights of the station, the linear
approximation might contain substantial errors if A¢” were large (fig.
15).

From figure 16 it is seen that negative slopes, convex at the brink,
can be approximated by the Jeffreys method to within 3 percent
if their height does not exceed about three times their distance from
the station and the maximum slope angle does not exceed about 45°.
Virtually any slope, positive or negative, irrespective of slope at the
toe or brink can be represented by the Jeffreys approximation within
a few percent as long as A¢’ does not exceed 0.15 and g*<C60°.

In general, it is seen (fig. 16) that for negative slopes the Jeffreys
approximation is poor when A¢’ is large because the approximation
becomes negatively infinite at the brink, where the actual heat flow
approaches zero.

It should be noted that although the Jeffreys approximation
might apply to the independent effects of slopes on either side of a
station, it does not apply generally when the two coexist. Their
interaction must be considered, as it must for any other slopes. It is
also seen that small A¢’ is not a sufficient condition for validity of
the Jeffreys approximation unless coexisting slopes are of the same sign.

BRACKETING WITH EQUIVALENT PLANE SLOPES:
NUMERICAL RESULTS

Inequality 71 can be applied to obtain rapid estimates of heat-flow
anomalies on horizontal surfaces near irregular slopes. The calculation
would normally be performed in three steps:

1. Compute Ag.(z,) for the given slope Aq at the station (o)
(pl. 2); .

2. Select a steeper equivalent plane slope A7 and a flatter one A,
(pl. 2);

3. Determine the limiting values of the anomaly Ag* and Ag.
(pl. 1).

These calculations can usually be facilitated by the use of plate 2,
which provides a rapid means of estimating A¢’, 8, or distance of the
station from the slope (r or s) if any two are known. The curves
below and to the left of the line 8=90° are used with the lower abscissal
scale when working with distances from the toe of positive relief (r)
or from the brink of negative relief (s). It is sometimes more convenient
to consider distances from the brink of positive slopes (r+cotg) or
from the toe of negative slopes (s+cotg); in this case the upper right-
hand curves and the upper abscissal scale of plate 2 apply. For many
general slopes Ag’ can be estimated rapidly (step 1) by approximating
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them as the sum of plane slopes whose contributions are determined
from plate 2. Special care should be taken in approximating topog-
raphy close to the station.

It will often be possible to select values for 8* and /§ by inspection,
of the slope, and to obtain limiting values of the anomaly (step 3)
directly from figures 15 and 16. However, when seeking the smallest
bracketing intervals, it will usually be necessary to detel;mine the
coordinates of the toes of the bracketing slopes (h% and A, to see
if these slopes satisfy the requirement that they cross A, at only one
point. It might be necessary to test this by drawing them on the
topographic cross section.

A few simple numerical examples follow:

Ezample 1.—Suppose the upper half of A, is a vertical cliff and
the lower half is a 45° slope and that the heat-flow station, z,, lies
one half of a slope height beyond the toe; that is, r=0.5 (fig. 174).

Step 1: To compute Ag,»(x,) we break h,, into two plane slopes
and add their individual contributions (pl. 2):

Age,(r=0.5)=Aq¢’ (90°, r=2)+Aq¢’ (45° r=1)=0.164-0.22=0.38.

Step 2: The ordinate line Ag’=0.38 of plate 2 identifies the coor-
dinates (8, r) of the family of plane slopes equivalent to kg, at 2. We
must select a slope flatter (iba) than he, and a slope steeper (A2), and
each must intersect the sloping part of A, only once. We have seen
that the best choices are the most distant flatter slope and the closest
steeper slope. In this example the best choice for the flatter slope,
ha, is the one that passes through the toe of h,,,, and hence has 7=0.5.
From plate 2 we find for 7=0.5, A¢’=0.38 that ﬁ—5l°. The best choice
for the steeper slope, A, in this example is the one through the brink.
To find this slope the upper scale in plate 2 is used. We set r*-
cotB*=1, the distance between z, and the brink of A, and find
B*=70°. r*=1—cotBf*=0.64.

Step 3: From plate 1:

AG,(51°,0.5)=0.29,

Aq%(70°, 0.64) =0.26,
hence:
1.26<qa(r=0.5)<1.29. (76)

In the present example we can obtain a result almost as good as
inequality 76 directly from figure 15. From inspection of the slope
(fig. 17A4) it is clear that we may choose:

B=45°,
B*=90°.
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F1Gure 17.—Numerical examples of equivalent slopes.

By inequality 75:

D*(90°, 0.38)< D(0.38)< D(55°, 0.38),

and hence:
1.23< q(2)<1.30, (77)

where inequality 77 is obtained by adding ¢’=1.38 to the values of

D* and D read from figure 15.

In step 1 we found that the Jefireys approximation gave ¢’,,=1.38
which would not have been very satisfactory. However, in this
example simply adding the independent exact solutions for the two
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parts of kg, gives a much better result. It can be taken directly from
table 1 as:

Aq(90°, r=2)+Ag(45°, r=1)=0.115+0.178=0.293.

Example 2—If the point z, were only 0.1 of the height of k4, from
the toe, then:

Step 1 (pl. 2): A¢ a»(r=0.1)=Aq’(90°, r=0.2) +Aq’ (45°, r=0.2)
=0.27+40.57=0.84.

Step 2: Choosing h, through the toe, #=0.1, Ag’=0.84 and plate 2
gives:

B=50°.
Choosing &, through the brink, r*+cot8*=0.6 and figure 17 gives:
B*=69°, r*=0.60—cot3*=0.22.
Step 3: From plate 1:

A§(50°, r=0.1)=0.68,

Ag*(69°, r=0.22)=0.52,
that is:
1.52< ga(r=0.1)<1.68. (78)

The Jeffreys approximation yielded 1.84, and the sum of the exact
solutions for the component slopes gives (pl. 1):

da~1+Ag(90°, r=1.2)+Ag(45°, r=0.2)=1+0.1840.46=1.64.

As in the previous example the sum of the independent exact
solutions gives a satisfactory result.

Ezxample 3—1f the point z, were one-half of a slope height behind
the brink (fig. 17B), we would have (table 2 or pl. 2):

A¢ (8=0.5)=Aq’ (90, s=1)+Aq’ (45, s=1)=—0.538. (79)

Choosing h¥ through the brink and b through the toe from plate 2,
we obtain:

B*=78°, s*=0.5, B=55° $=1—cot 55°=0.30,

and plate 1 yields:
0*(20)=0.44, (o) =0.47.
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Hence:
0.44<qau(s=0.5)<0.47. (80)

From equation 79 we had for the Jeffreys approximation:
Qa»=0.46. (81)

The sum of the anomalies from slope components independently
yields (table 2):

qa~1+Ag(90, s=1)+Ag(45, s=1)=0.34. (82)

Thus, in this example, the Jeffreys approximation is satisfactory
whereas the sum of component contributions is not, a result easily
anticipated from figure 16.

Ezample 4.—The case s=0.1 yields:
Ag’ 1p(8=0.1)=Aq’ (90°, =0.2) +Aq’ (45°, §=0.2) =—2.16.
From plate 2 we obtain:
B*=84°, s*=0.1,

B=60°, $=0.600—cot 60°=0.023

and plate 1 and relation 71 yield:
0.11< gar(s=0.1)<0.13. (83)
In this example the Jeffreys approximation yields:
qopy=—1.16,
and the sum of exact solutions for slope components (pl. 2):
qa~1+4A¢(90°, s=0.2)+Aq(45°, s=0.2)= —0.36.

The second two results are, of course, physically impossible as g
cannot be a negative quantity.

In the last example x, was very close to the brink where, as we
have seen, the left side of inequality 71 might not be rigorously
correct. If we had chosen B*=90° instead of 84°, the same lower
limit to two significant figures in inequality 83 would have resulted.
If, however, we are concerned about the lower limit given by inequality
71 in cases like this, we can resort to simple geometric bracketing
which yields:

9(90°, s=0.1)<ga(s=0.1),
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and from plate 1:
0.08<qap(8==0.1).

This result demonstrates that the lower limit of 0.11 in inequality
83 cannot be much in error. .

Ezample 5—As a final example we consider the topographic
anomaly at the center of a symmetrical valley whose walls have the
same shape as the figure of the previous examples. The floor is assumed
to be flat over a distance equal to the valley’s depth (fig. 17C). We
shall use the notation of inequality 44, referring to one valley wall
as h, and the other as A,. From the first example (inequality 76):

AQo() =Aqy(20) =0.2740.02.

From plates 1 and 2 it is seen that the plane slope equivalent to &, at
Zy, which yields A¢g=0.27, is 8=60°, r=0.59, that is:

Ag’ (60°, =0.59)=0.38,
Ag(60°, r=0.59)=0.27=A¢.(xo) £ 0.02=A¢,(%,) £ 0.02.

The effect of the +0.02 on the interaction is of higher order. Hence,
from plate 1:

Ag,(b)=Ag,(a)=Aq(60°, r=1.18)=0.12.
Applying inequality 44:

0.27+0.02+0.27 +0.02<Ag(2,) < (27 £0.024-0.274-0.02)
[140.1240.01+* * *], 0.54+0.04< Ag (o) <0.61+0.04,
1.50< q(%)<1.65. (84)

The circular valley of the same depth satisfies the conditions in
relations 53 and 54a for an upper limit by geometric bracketing. The
heat flow through its center is known to be 2.0 which is consistent
with inequalities 84 and 54b.

APPROXIMATING WITH A SINGLE EQUIVALENT PLANE SLOPE, i,

The bracketing procedure of the foregoing examples is generally
more elaborate than is warranted by most geothermal applications,
although it is necessary to investigate the limitations of the method.
By inspection of the real slope, an intermediate angle, B, for an
approximating equivalent slope generally can be selected. It should
be weighted in favor of the part of the slope closer to the station,
although the result is rather insensitive to the choice, as can be
determined with a little experimentation. Once B is selected, the result
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can be read directly from figures 15 or 16 or the coordinate 7 or s of
h, can be determined from plate 2 and the result obtained from plate
1. In the foregoing examples, 5=60° would have led to results near
the midpoint of the bracketing intervals, probably within a few
percent of the exact values. (See numerical example, p. E63, eq 103.)

STATIONS ON GENTLY SLOPING SURFACES

Many of the results of the previous sections apply only to stations
lying on geometrically horizontal surfaces, although these stations may
be very close to steep and irregular slopes. The earth’s surface cannot
be considered geometrically horizontal over extended areas, but much
of it (in the ocean basins at least) is inclined at angles of less than a
degree or two. Although slope angles may change very rapidly near
the toe and brink of topographic scarps, the distant transition to
horizontalness is generally gradual. Hence, many heat-flow stations
requiring topographic correction will lie on gently sloping surfaces
adjacent to bold features. We must consider how to apply the fore-
going results to stations on such surfaces.

For this purpose we consider the heat flow at =0 on the gently
sloping part of the surface he, (fig. 18). We should like to establish
conditions under which the heat-flow anomaly can be computed
without appreciable error from the modified surface, k,, which con-
tains a horizontal part extending a distance /2 on both sides of the
station.

F16URE 18.—General slope k. is flattened in the neighborhood of the station
(2=0) by subtracting the increment h; to form the modified slope h..
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We define £, by:
ha=haa_hm
where:
() =hao(z) 2| <
=hab (é)) $>%
—ho((—5), 2<—5: (85)
Hence:

ho(®) =hos(T) —has (—%)’ z<—%
=0, ]ml<%
= ab(w)—hab(%>”>%' (50

The difference between the heat-flow anomaly at =0 on the sur-
face h,p and that on the (locally) flattened surface k&, can be represented
by the exact expressicn:

+ 1 ) —ha .
Aq.,.,(o)—Ag,,(o)z}r J‘_ ha(1+e ,,)f;. (1+ed

[ k) hdey,

([
2 f o (2)[1+e@)] L

f zh,,(—-)[eab(a» —ea(—3) f m(3) [eav@ o (z)]

+ f _Ehﬂff z f h"Aedx} (87)
L

The seven integrals in the last expression on the right-hand side of
equation 87 require discussion. The first integral represents the direct

| bt
wim

effect of reference-plane temperatures in lx]<% on heat flow at the
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station (2=0). The second and fourth integrals taken together
represent the effect of the contribution to reference-plane temperature

in <~ of the sliver of height h,(—%). The second integral contains

the first-order effect, and what will generally be an overestimation of
the second-order effect of the sliver. The expression in brackets

in the fourth integral vanishes at z= ——% and hence the integral
can be viewed as equivalent to the effects of subdued relief of height
ho( —%) at a distance of é from the station. The third and fifth integral

are analogous to the second and fourth. In the sixth and seventh
integrals Ae is of the order of Ag, which, for small A,, is appreciably

different from zero only at z=%+ and z= —%——. At these points h,

passes continuously to zero. Hence the last four integrals are of higher
order, and they will generally be small relative to the first three

integrals when 2|hy( ié) |1~ is small.
Inasmuch as A, is assumed to be gently sloping and smooth, it will
generally be possible to represent it and ¢,; in |xl<§l by a few terms

of a Maclaurin’s series.
h,(x):xh{,+%x2h;’+% PRy w
eal®)=ea(0)+ el +5 Pyt ¥, (83)

where the derivatives are evaluated at z=0. When these expressions
are substituted into the first three integrals of equation 87, only the
even order derivatives of the reference-plane temperature contribute.
We can replace h, with k., as they are identical over the range of
integration:

Agal0)—~Bau(0) =4 (B (1-+ ear(0))+2bLy e/ 1+ 0( 125 (a1 + ) )

(89)

Inasmuch as A, is small, the mean gradient in the relief, (14 e.), can
be replaced by ¢, the heat flow (and gradient) at the surface. Hence:

RO RO ZEE ST (90)
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Equation 90 represents the ‘flattening error.” It is the heat-flow
error that can be expected where a gently sloping smooth part of a
general two-dimensional surface, hq,, is replaced by a horizontal plane
segment of width / centered at the station. The relief beyond x= +1/2
is adjusted upward or downward to eliminate discontinuities at =
+1/2. The error is independent of the local heat flow if the curvature
is negligible, and independent of the lateral gradient of heat flow if
the slope at the station is negligible. The curvature term takes the
sign of the curvature. The slope term is positive if the heat flow is
decreasing downslope and negative otherwise.

For numerical applications it is more convenient to have equation
90 in finite form. Let 8(z) denote the slope of the tangent to h.(x)
measured clockwise from negative , and let:

a8=p(35)-8(5),
e Crel

Qab(o)
Then equation 90 can be written:
2(0)—¢q,(0) 1
%09)—():; [tanAB-+26g tang(0)]. (91)

If the change in slope (AB) over the flattened interval is less than 2°,
the curvature term will not contribute more than 1 percent to the
error; if it is less than 5°, the contribution will be less than about 2%
percent. In general &g, the relative change in heat flow across the
flattened interval, will not be known, but inspection of the slope will
normally permit an estimate of its order of magnitude. If 8¢ is 50
percent, a rather extreme case, the second term will contribute about
1 percent to the error if the slope at the station is 2°. If 6¢ is 20 percent,
a 5° slope will contribute 1 percent.

Equation 91 probably should not be used for AS and 8, much larger

hb(:l:%) 1< <1, Te-
quired to neglect the last four integrals in equation 87. When &¢ is

than 5° or 6° because of the condition, 2

large, g.s(z) is likely to have considerable curvature in |z| <%- It is

seen from equation 89 that the lowest order term containing curvature
of e,»(z) occurs as a product with A’’. Thus, if A is very small, sub-
stantial curvature in ¢, can probably be tolerated in equation 91.
If not, it is probably best to restrict its application to cases in
which ¢é does not exceed about 25 percent. This will include most
cases of interest.

208-334 0—69

5
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NUMERICAL EXAMPLE

To illustrate the use of the flattening procedure with the approxi-
mating schemes of the preceding sections, we consider the monocline
of Jaeger and Sass (1963, eq 11 with a=1.01). The heat flow will be
estimated at two points: (1) In the vicinity of the toe at u=—1.5
(fig. 19), and (2) in the vicinity of the brink at u=-+40.55 (fig. 20).

Point 1: Station at u=—1.5 (fig. 19). The slope is flattened from
u=—1.3 to u=—1.7 in which interval AB=1.6°, $,=4.5° and éq is
obviously small. (Its actual value is 0.02.)

The Jeffreys approximation of the effect of relief to the left and
right of the flattened interval is obtained by numerical integration,
for example, by adding effects of many small plane slopes.

Ag,=0.21
Ag,=—0.035 (92)

Equivalent slopes for the relief to the left of the station are (pls. 1
and 2):

A(8=12.5° r=0.24),
h*(8=38°, r=0.90).

T T T T T T T T T T T T
60° - B
- . % 4
o | < ™ 4
g 6 I
: N
~~ <
20° ~|ey Il | :
' PR -
r Q o «Q 1
o° 1 " " 1 L L 1 1 1 { i
_10 T T T T T T T T T
_0.8 = 4
| . é*(?e, 0 i
—0.6 | 412,59, c ~ i
v L ] R4 ~ -
= I
—-0.4 | K} 1l - —~ B
: o1
i ~ O 7
—02} w=-018  XJ s ¥ Y 1
i P
0 " . 1 L L . . L L
0.8 0.4 0 —-0.4 -0.8 —-1.2 —-1.6 —2.0

Fi1GURE 19.—Numerical example 1, stations on gently sloping surfaces. Monocline
of Jaeger and Sass with a=1.01 (lower scale) and its slope angle (upper scale).
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Hence:
Ag*(38°, r=0.9) < Ag.<< A§ (12.5°, r=0.24)

0.18< Ag,<0.21. (93)
It is known that (fig. 15):
Ag,=Ag,=—0.035. (94)
For the estimation of interaction, Ag, can be represented by:
Aq(B=2° s=1.33).
Applying inequality 49a, b:
0.21—0.035>A¢>0.18[1—0.02] —0.035[1+0.15]
Ag=0.15540.02. (95)

The exact result is 0.161, and the Jeffreys approximation is 0.175.
The good agreement between the two could have been anticipated
from figure 15; the relief to the left is concave at the toe and the
interaction is small.

Point 2: Station at u=+0.55 (fig. 20). The slope is flattened from
#=0.50 to 4=0.60 (that is, /=0.10) (fig. 20). In this interval
AB=—3.1°, ,=3.4° and d&q is large, as this is the region in which
¢(x) has its largest gradients. (Its actual value is about 25 percent.)
The contribution of the slope term to the flattening error (eq 91) is
+0.01¢(x,) and the curvature term contributes —0.015¢(z,). As we
shall see, ¢(x,) ~0.5, and hence the flattening error amounts to only a
few tenths of 1 percent of the regional heat flow. The results for this
example are:

exact solution: Ag(x)=—0.58. (96a)
Jeffreys approximation:  Ag’(2))=—0.675. (96b)
Ag;=—0.69. (96¢)
Age=+0.015. (96d)
8 (%):2.39 (96e)
3(_é)=5.4°. (96f)

We first assume that the information in equations 96a—d is not
available and see what can be done by simple geometric bracketing.
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F1aure 20.—Numerical example 2, stations on gently sloping surfaces.

The effect of relief to the right of the station is overestimated by that
of the plane slope ABC and underestimated by the slope DE (fig. 20).
Thus:

Ag(B=50°, s=0.28)>Ag,>Ag(45°,5=0.051),

and plate 1 yields:
—0.50>>Ag,>—0.69. (97)

The relief to the left is positive, and it is overestimated by the
plane slope tangent to the relief at /2,

Aq(B=2.3° r=3.6) >Aq, >0,
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and from plate 1:

+0.02>A¢,>0. (98)
From inequality 49a,b, the interaction will not exceed —0.01. Hence:
—0.48>Ag(x,) >—0.70. (99)

In practice, one would be more likely to approximate the relief
with plane slopes rather than take the extreme bracketing configura-
tions. This method would generally lead to an estimate near the
midpoint of inequality 99 and within a few percent of the exact value
(eq 96a), considerably better than the Jeffreys approximation without
recourse to numerical integration.

If the Jeffreys approximation, equation 96b, ¢, and d, is computed,
the method of equivalent slopes can be applied. The present example
illustrates a complication because, although the curvature is negative
near the station, the relief to its right is not convex at the brink
because of the long gently sloping toe. It is not possible to obtain the

upper limit, A§, by passing b through the brink z2— —-é- We therefore

replace the part of the slope below —V=0.3 with the horizontal sur-
face GH (fig. 20). By the theorem on geometric bracketing the modified
surface will cause an algebraically larger anomaly than the true
surface, and # for the modified surface will yield the upper limit
required. Ag, for the modified surface is —0.65. We select 8*=60°
and from plates 1 and 2 obtain: ,

Ag(32°,5=0.06) >Ag,>Ag*(60°,s=0.23)

—0.54>Aq,>—0.61. (100)
From figure 16 it is known that:
Ag,=Ag,=0.015. (101)

Adding equation 101 to inequality 100 and subtracting 0.01 (an
upper limit to the interaction) from the right-hand side yields:

—0.525>Aq(x) >—0.605. (102)

This is to be compared with the exact result, —0.58 (eq 96a), and the
Jefireys approximation, —0.675 (eq 96b).

The bracketing procedure has been somewhat belabored for pur-
poses of illustration, but in practice the calculation is much simpler.
The upper part of the right-hand relief (h,) has an average slope of
about 45°. Approximating h, by the equivalent 45° slope, %, we
obtain directly from figure 16:

Agy=Agy +D(45°, —0.69)=—0.69-+0.11=—0.58. (103)
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Adding Ag, (eq. 101) and subtracting 0.005 for interaction yields:
Ag(2) =—0.57, (104)

which agrees well with the exact result (eq. 96a). It is seen from figure
16 that if 60° had been chosen instead of 45°, for the approximating
equivalent slope, the corresponding result would have been 3 percent

lower; a 30° equivalent slope would have made it only 3 percent
higher.

VARIATION OF THE TOPOGRAPHIC ANOMALY
WITH DEPTH

To this point the discussion has been concerned only with the flux
of heat across the surface and therefore has focused only on the
limiting value of the thermal gradient at zero depth (2=0). Even in
oceanic measurements of geothermal flux, however, temperature
gradients are determined from observations to finite depths (1-10 m).
It is necessary to determine the conditions under which topographic
anomalies computed for the surface can be applied to gradients
determined beneath it without appreciable error, that is, conditions
under which the gradient anomaly may be treated as superficial.

It is probably worth noting at the outset that inasmuch as the
temperature satisfies Laplace’s equation, and the solid surface is
isothermal, the second derivative of temperature must vanish in
every direction at the surface, wherever the surface has a continuous
tangent. Hence:

_ 00 GFog

0_5—22 =I—{a—z’ Z——O, (105)

and, in general, the heat flow is not changing with depth immediately
below the surface. At reentrant corners where the surface heat flow
is infinite, the vertical gradient of heat flow is negatively infinite
so that finite heat flow occurs at finite depths.

To investigate depth variations of heat flow analytically we rewrite
equation 17 in the form of equation 24.

ag(ao )= [ %‘Lﬂ () da, (106)
where: X= x—;xo
o ()= (1078)

(1+x77%?
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3,5
‘I)(X) =1_;§+§"‘* * %) X>1 (107b)

==+ 3x e X< <1 (107¢)

Equation 106 is an exact expression for the effect of any two-
dimensional topographic surface, h(z), on the vertical gradient at
the point (zy,2). Although e(z) is unknown, its physical interpretation
is clear; it is the mean anomalous gradient in the relief at z.

Inspection of the form of the function @ (fig. 21) and equation 106
points up a fundamental problem of attempting regionally meaningful
measurements of thermal gradient at or near the surface. The function
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Figure 21.—The factors ® and ¥ for depth dependence of the integrand in ex-
pressions for the gradient anomaly.
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@ greatly diminishes effects of topographic features whose horizontal
distance from the station, (z— ), is not large relative to the depth of
observation, that is, relief for which x is not large. It is these features
specifically that can have a very great effect on the gradient at the
surface because of the inverse square growth of the fraction in the
integrand of equation 106. As z approaches the surface & approaches
unity for all z, and very small features very close to the station can
have very large effects on the gradients. We shall investigate these
effects.

For the general topography illustrated in figure 22, equation 106
can be rewritten:

“h(z)[1+e] 1 ("=2h(2)[1+e]
2 (@—20)° q)de % (x—- )?

3 [ o 1 [ Aot v 109)

(z—x)* wJe (2—20)

The points z; (fig. 22) are selected in such a way that h(z) does not
change sign in any subinterval.

Inasmuch as the topographic anomaly cannot reverse the sign of
the gradient, (1+4e¢) is positive over any finite interval. Therefore, the
fractions in the integrands of equation 108 do not change sign, and
the mean value theorem can be applied to each integral.

Ag(a, z)=l<§1fz h(@)[1+e] ;. +H-J‘ h@)1tel .. S

Ag (o, Z)— Bdr4 4 x

(—x)? (2—o)
1— h(fﬂ)[H—e] 2 h(z) [1+e]
J‘ dx + <I>2f1 ($_%)2 dz‘i"***} (109)
where:
512‘1’6(1), xt>§i>Xi-ly
B =3(X}), Xi- >X>X],
and:
th_lm,-:ng
h(x)

F1cure 22.—General two-dimensional relief, h(z), and the notation for equation 108.
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The barred x’s are the ones that give the appropriate mean value
of ®in each integral.

The form of ¢(z) in each interval of equation 109 depends upon the
form of h(x) in every other interval because of interaction between the
topographic elements. Hence a single term of equation 109 cannot be
identified with the complete effect of topography in its interval
unless the interval contains all the nonvanishing topography. Some
special cases of equation 109 will be discussed.

CASE 1, ALL TOPOGRAPHY OF ONE SIGN: GENERAL
(h(z) 2 00rh(z) <0, ©x>2>—w)

In this case equation 109 can be written:

Aq(zs, z)=1—1§ :%;ﬂ da. (110)

The integral is an exact expression for the topographic anomaly at
the surface. By equation 107a, |&|<1, and hence:

|ag(zo, 0)|>|Ag(@, 2)|, 2>>0. (111)

Inequality 111 can be stated as a theorem: If the topographic
relief is of one sign at the station (X,), then the heat-flow anomaly caused
by this relief at (xo, z) attains its greatest magnitude at the surface z=0.

The theorem applies to the Jeffreys approximation as well as to
the exact result. However, it does not apply in general to the dis-
crepancy (D(x,,2)) between the two, as e¢(x) can change sign where
h(x) does not. Hence, it is quite possible for the error in the Jeffreys
approximation to be greater at depth than at the surface. It can be
shown that the theorem applies also to the transient case if the change
of h(x) with time is of the same sign as b (or is zero).

All the topography nonnegative (h(z)=>0) could correspond to a
station at the edge of a plane or beyond the toe of a scarp or a range
of ridges. It could also represent a station in a thinly sedimented
depression on a rocky ocean bottom. All the topography nonpositive
may represent a station near the edge of a plateau or shelf, or perhaps
one on the crest of ripple marks.

CASE 2, RELIEF VANISHES NEAR THE STATION AND IS OF
ONE SIGN ELSEWHERE
(M) =0, 1 >a>xi; h(z) 20 or h(z) <0, 2>z, 2<21)

In this case:

1= (e hll+el , 1= (4hll+e]
Ag(an, ) =1 2, f e R L e )
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Exclusive of the ®’s, the right side of equation 112 represents the
exact effect of the topography on heat flow at (zy, 0) even though
the complete effects of each of the two elements of the topography
cannot be identified individually with each of the terms. Without
loss of generality we assume that the relief on positive z is not farther
from 2z, than that on negative z, that is:

X=<X; (113)
If the depth, z, of the observation point is less than the distance
|2;— x| to the nearest relief:
1>@;, #>8(0)>0, X,>1, (114)
and from equation 112:

IAQ(IO; 0)‘>IAQ($0, Z)I>¢(X1)!AQ(1?0, O)I)
or:

Ag(zo, 2)
Ag(zo, 0)><I>(xl), (115)

In oceanic applications the gradient is often determined from the
difference in two measured temperatures; one taken near the sea
bottom, and the other at some finite depth (z) beneath it. Similarly,
on the continents, the mean gradient is sometimes estimated from
the differences between the local mean air temperature and the
temperature at the bottom of a borehole. The departure of the mean
gradient (or mean heat flow), determined in this way, from the
regional value will be referred to as Ag(z,, 2).

Bq(en, 2)= [ aq(an, 2"

e (e [ (25 i e

Imposing conditions 113 and 114 we can write:

o {7 e ) e

Hence:

Aq(2, 2)

Az 0) —2370 5/ (xy), (116)
where ¥(X)= Xf 1T 2,ds X|:2 tan~ 1——71(] (117a)

_2 7—1;+ sxxX>1. (117b)

2 1
- x2+5 x“
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The function ¥ is illustrated by the dashed curve in figure 21.

Thus, for any topographic configuration A(z), of one sign, whose
distance from the station |z;—z,| exceeds the depth of measurement
(2), we have:

1. The ratio of the gradient anomaly at depth z to that at the surface
. [1:1—-3:0| . .
is greater than & — (inequality 115).

2. The ratio of the anomaly in the mean gradient (between the sur-
face and depth 2) to the gradient anomaly at the surface is greater

than \Il('xl—;xol) (inequality 116 and eq 117a, b).

If 2z is 10 percent of the distance from the toe (or brink) of the
nearest relief (x;=10), the topographic anomaly at depth z differs by
less than 3 percent from the value at the surface, and the mean value
of the anomaly from the surface to depth z is within 0.7 percent of
the surface value. If z is 20 percent of the distance to the nearest
relief (x;=>5), the gradient anomaly varies between the surface and
depth 2z by less than 11 percent, but its mean differs from the surface
value by less than 2.6 percent. The function & falls rapidly for x<<56
and hence there is no assurance that the surface correction is a good
approximation to the correction applicable at depth z for relief at a
distance less than four or five times the depth. However, when x; is
only 2, the function ¥ is still 0.86, and hence the mean gradient
anomaly in (0, 2) can be represented reasonably well by the surface
correction for relief that extends as close to the station as twice the
depth.

CASE 2, RELIEF NEAR THE STATION IS OF ONE SIGN AND IT
VANISHES ELSEWHERE (h(z) >0 or h(z) <0, 2,<z<z}; h(z) =0, 2>a, 2<z")

In thiS case:
’1 h[1+e] Iz 118
(33 11?0)2 ( )

AQ(Q:O’ Z)-— @
Dencting by |®,| the greatest value of |®| in (x;,2;) we obtain:

Ag (xl)y Z)
8q (a0, 0) /%l (119)

Without loss of generality, we assume that the most distant relief
occurs at x;. If (2,—x¢) is more than 1.23z then it is seen from figure 21

that:
|| =B(%,)>0.125, %, >1.23. (120)
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The effect of relief extending outward to five times the depth (x,=5)
cannot exceed 88 percent of the surface value (fig. 21). At a depth
equal to half the maximum distance to the relief (x;=2), the topo-
graphic correction cannot exceed 48 percent of the surface value.
Those parts of the relief whose horizontal distance from the station

is less than the depth cause gradient anomalies of sign opposite that
of the surface value. Integration over the changing sign of & will
generally result in much more rapid depth decay of the close-in topo-
graphic anomaly than is indicated in the limits imposed by inequality
120. Consider, for example, the case in which the effective relief
(h[1+4¢)), equation 118, decreases in proportion to the square of its
distance as the station is approached. If x,=—z,=22, integration of
equation 106 yields.:

Ag(xo, 2) _

2q(zo, 0) =0.09.

This 9 percent is to be compared with the 48 percent given by in-
equality 120. If more relief occurs closer to the station, the reduction
of the anomaly with depth is even greater. If A(14¢) is uniform
from [z|=2z to |z|=0.1z, the anomaly at depth is only 3 percent of
the value applicable at the surface (and of opposite sign). Thus, the
effect of relief extending outward a distance 2z from the station can
generally be expected to be an order of magnitude less at depth z than
at the surface.

If x,<<0.577, then it is again true that |®,|=|®(x;)| and inequality
119 can be written (equation 107):

‘AQ(%, 2 G —3X1+ 4 4 4, %<<0.577. (121)

AQ(‘”O: 0)

Thus, at depths an order of magnitude greater than the width of a
close-in feature of one sign, the topographic anomaly is reduced at
least two orders of magnitude (and changed in sign).

CASE 4, TOPOGRAPHY OF BOTH SIGNS: GENERAL

If h(z) is composed of m positive parts in the intervals («,z.41),0=1,
2, 3, * * *m, and n negative parts in the intervals (z,2,41), j=1, 2,
3 * * * pn, then equation 109 can be written:

1 () [1+e] L= J"f*‘ h(z)[1+e]

1m — z 1
Ag (%o, 2)—; ;‘I’iﬁi (T—20) dx+;j_;l¢>j . W dz,

(122)

where the integration is performed in the direction of positive z. As
before, if the #’s were set equal to unity, the series would give the



TOPOGRAPHY AND SUPERFICIAL THERMAL GRADIENTS E71

exact value of Aq(z,,0). However, unlike the former cases, Aq(z,z)
cannot now be expressed simply in terms of Aq(x,,0) and bracketing
values of ®, because the theorem stated from 111 no longer applies.
For example, if the positive terms in equation 122 (the ‘‘i-terms”)
represent a very large feature far from the station, and the negative
terms, a very small feature close to the station, they might cancel at
the surface to give Ag(x,,0)=0. As z increased, the influence of the
negative terms (®;, eq 122) would diminish very rapidly and Aq(zo,2)
would become strongly positive.

If the interaction between the positive and negative elements of
the topography is neglected, the anomaly at any depth can be esti-
mated by considering the effects of each separately.

CASE 5, VARIATION OF THE FLATTENING ERROR WITH DEPTH

In the previous section it was shown that if the topography was
gently sloping and smooth in the vicinity of a heat-flow station,
in the sense that the surface and the heat flow through it could be
represented by a few terms of Maclaurin’s series, then the topographic
anomaly at the surface could be computed by flattening the slope
in the vicinity of the station. By introducing the factor ® into the
integrands of equation 87 it can be shown that the individual terms
of the flattening error (eq 91) would be smaller in magnitude at 22>0
than at the surface. If the interval is flattened for a distance /2
that exceeds five times the depth of the observation, the variation
with depth of the last four integrals of equation 91 will generally be
small.

DISCUSSION

Tt is now possible to return to the problem posed at the beginning
of this section and define “superficial gradient” in terms of the top-
ographic relief. We can refer to a gradient measurement at (or to)
any depth A as superficial if the applicable topographic anomaly is
approximated well by the value applicable at the surface. If we now
denote by z, the horizontal distance from the station to the nearest
point of the relief (flattened by the method of p. E56-E59 if necessary),
then if the relief is of one sign, (a) gradient measurements at depth A

are superficial if l‘—<0.2 and (b) measurements of mean gradient

n

between 0 and A are superficial if ——<0 5. If z, represents the distance
to the farthest point of the relief, then (c) a gradient measurement at A

is not superficial if z—Z,O.5. These criteria are based upon the per-
7

centage variation of the topographic anomaly with depth, and they
are independent of the height () of the topographic relief. In this
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sense, the results (tables 1, 2) apply to depths (A) of 2 or 3 meters
at distances (z,) of only 5-10 meters from the toe or brink, even
though ,the height of the slope (H) might be several kilometers. It

has been shown that where i—f is large, the Jeffreys approximation

might not be valid. Therefore it is worth distinguishing between
two cases: (1) A small, H large and (2) 2 small, H not large.
Z, T T, Z,

The validity of the superficial correction is assured by the first
condition in each case. In the second case the Jeffreys approximation
will also apply, whereas in the first it might not. Most geothermal
observations in boreholes on the continents extend to a depth, A,
of the same order of magnitude as the topographic relief, H, even in
rugged terrain. Hence, where the first condition is met, such observa-
tions will fall in case 2 and the Jeffreys approximation will usually
apply to them. In geothermal observations at sea, however, the mea-
surement depth X is normally only a few meters, and this may be less
than the distance to nearby relief and very small relative to its height
(H) (case I). As an extreme example of case I, consider the gradient
anomaly at the tip of a 2-meter probe 20 meters from a cliff 2 kilo-
meters high. Its value would be within 3 percent of the anomaly at
the surface, that is, within 3 percent of 2.6Q (table 1) or about 0.08Q.
The error .in the average gradient from neglecting this difference
would be less than 1% percent of @. In this extreme example the error
in applying the exact solution, valid at the surface, would be less by
a factor of 2,000 than the error in applying the Jeffreys approximation
with depth considered. As an illustration of case 2, steady-state
topographic corrections throughout a 1,000-foot borehole can be
computed from solutions valid at the surface if the (two-dimensional)
topographic relief is more than a few thousand feet from the station.
Under such circumstances the Jeffreys approximation and the exact
solution would give comparable results unless the relief were very
great. The topographic anomaly in the upper hundred feet of the hole
could, of course, be considered superficial for relief extending to within
a few hundred feet. For relief of one sign at any distance, the surface
correction will provide an upper limit.

Although not directly amenable to treatment by present methods,

cases other than the superficial ones (2 small) should be mentioned in
passing. It is seen from equation 106 and figure 21 that topographic ele-

ments for which 2%1 have little or no direct effect on the gradient at

depth zirrespective of their height. Features for which $<1 contribute
to the topographic anomaly approximately as their height times the in-
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verse square of the measurement depth. If their height does not exceed
the depth (the situation in all but the most rugged topography) their
contribution is not large and can probably be estimated by the Jeffreys
method. Large-scale topographic features that approach the station
to within a fraction of the measurement depth cannot be treated gen-
erally with results for the superficial case although these results
often provide useful limits. In such cases the doublet (or dipole)
method of Jaeger and Sass (1963) might be used if a satisfactory repre-
sentation of the surface can be obtained without an unwarranted
effort. The depth variation (important to these cases) of the topo-
graphic anomaly can then be computed directly.

OCEAN-BOTTOM GRADIENT MEASUREMENTS

In oceanic geothermal studies the relief near a station is unknown
because of limitations in present-day echo-sounding techniques. Even
if the bottom were a horizontal plane, the echogram would generally
be uncertain by a few meters at abyssal depths because of limits of
instrumental precision, uncertainties in the sound velocity, and verti-
cal movements of the ship on the open sea (Luskin and others, 1954;
Krause and Menard, 1965; Heezen and others, 1959). If the sea bottom
were irregular, uncertainties of elevation could be two orders of
magnitude greater because the source of the echo is indeterminate
within a circle of finite radius beneath the sonic source. For most in-
struments currently in use, the diameter of the circle is of the same
order of magnitude as the water depth (kilometers) and reflections
from positive features, generally not beneath the ship, tend to domi-
nate the echogram (Krause, 1962). The net result is that the echogram
generally yields a smoothed representation of the sea floor; if bold
small-scale features exist, they are subdued or masked completely.

For example, it can be shown that the maximum relief, d, indicated
by first arrivals on an echogram from parallel ridges separated by a
distance, w, is given approximately by:

2

dzngEp %SO.I, (123)
where E is the water depth. Thus features a few 10’s of meters wide in
water a few kilometers deep would be masked; their indicated relief
would be only a few centimeters. An echogram relief of 1 meter would
be indicated in 4 kilometers of water by ridges 180 meters apart; the
actual relief could be 10-100 times as great. Such a feature would
subtend an angle of less than 3° at the source, and probably would not
be resolved even by high resolution techniques (Cohen, 1959).

We shall neglect topographic variations in the direction normal to
the echo traverse, and investigate the magnitude of the topographic
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disturbance that could be caused by undetected relief. (This problem
has been considered from a slightly different point of view in a recent
paper by Birch, 1967.)

If the change in elevation of the bottom is uncertain by 8k, then
uncertainties in sea-bottom relief at distances beyond néh from the
station could result in uncertainties in the topographic correction of
roughly 2A¢(n), where Aq represents the anomaly due to a plane slope
at n=r or n=s depending upon the sign of the error. (Such a slope
may be viewed as the equivalent slope of very general configurations.)
The factor 2 takes care of the case in which the error, 84, is of the same
sign on both sides of the station; where n is small the interaction should
be considered (eq. 44, 46). As this is the worst case for the present
discussion it will not be necessary to consider relief of both signs.
From tables 1 and 2 it is seen that undetected relief at distances be-
yond 58k could cause uncertainties of 10 percent or so for positive
relief, and 15 percent for negative relief. The uncertainty could be
twice as great (20 or 30 percent) for n=2. Strictly speaking, these
errors apply to the anomaly at the surface, z=0. However, it follows
from equation 116 that if néh>>2\, the correction applicable to the
mean gradient between z=0 and z=\ must be close to the surface
value (within 86 percent).

Very small amounts of undetected relief very close to the station
can cause large anomalies in the surface gradient, but these decrease
rapidly with depth. It has been shown that the change in the topo-
graphic anomaly over the depth A will be of.the same general magni-
tude as the anomaly applicable at the surface if the relief is within
2\ of the station and is all of one sign. Hence, if the temperature
profile in 0<2<{\ is linear, it can be reasonably assumed that signifi-
cant relief does not occur on such a scale. If it is not, the mean gradient
in (O,\) can contain an error from such relief equal to a substantial
fraction of the observed change in gradient with depth.

If we rely upon curvature of the temperature profile as an indicator
of undetected relief out to a distance 2\, and apply the analysis of
the preceding paragraph for relief beyond néh, then all relief can be
accounted for if:

A= oh. (124)
Thus, if the probe length, \, is approximately equal to 6k (case n=2),
the anomaly due to undetected (two-dimensional) relief could be
roughly 20 percent plus a sizable fraction (¥o—%) of the observed
change in heat flow over the length of the probe. For probes a few
meters long the required 6% (~2 m) is probably approached by modern
sounding techniques only where the sea bottom appears almost
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featureless in the echogram. For irregular sea bottoms where 8k can
be several 10’s of meters, equation 124 requires values of n» on the
order of 0.1 for probes a few meters long. Under these conditions
undetected relief could easily cause errors of 50 or 100 percent (tables
1, 2 and eq 44 and 46). Such large errors from undetectable relief
will often, but not always, be accompanied by a marked variation
in the heat flow with depth, and curvature will flag the data as
suspect. However, it is seen from tables 1 and 2 that if \ is 2 meters
and the relief is beyond 10 meters (5\) with an angle of 15° and a
height of a few 10’s of meters, errors of 35-50 percent could occur
with no detectable curvature in the temperature profile. It should
be noted that these are the errors that could remain after the observ-
able relief was corrected for. The corresponding three-dimensional
results (with radial symmetry) might be greater by a factor of about
1%. It is seen from equation 124 that one cannot be confident
undetectable relief is causing errors less than 10 or 15 percent unless
the probe length, A, is at least 2% times the uncertainty in local
relief (case n=>5) and the curvature of the temperature profile is
negligible.

Although errors such as these may not be common, the possibility
of their occurrence cannot be generally discarded until more is learned
of the microrelief of the sea floor. These uncertainties are alleviated
somewhat by bottom photography, and the situation will no doubt
improve with the further development of high resolution sounding
techniques (Cohen, 1959). The results emphasize the desirability of
using longer thermal probes (such as the 10-m device developed at
Lamont Geol. Observatory) and for using several temperature sensors
to detect curvature. If we discarded oceanic heat-flow data for which
it could not be established that the curvature was less than 50 percent,
we would probably be left with less than half of the world’s heat-flow
observations. At present, the best assurance against undetected
topographic disturbances is probably the agreement of closely spaced
measurements (Reitzel, 1963; Lachenbruch and Marshall, 1966).

It has been pointed out (Lachenbruch and Marshall, 1966; Langseth
and others, 1966) that lateral heat flow from small-scale roughness
can result in a systematic decrease in the mean regional gradient.
Where such roughness has a wave length less than the probe length,
A, these effects can probably be identified as surficial ones if several
temperature sensors are employed.

TIME DEPENDENCE AND OTHER EFFECTS

It has been pointed out by Birch (1950) that the finite times
elapsed during and since the evolution of topography can have
appreciable effects on the geothermal terrain correction. He presented

298-334 0—69——6
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a comprehensive theory, based on the Jeffreys approximation, to
account for the disturbance to temperature at any depth beneath
a general topographic surface in terms of rates of uplift and erosion.
The two-dimensional case of Birch’s theory was simplified by Clark
(1957). The present paper concerns corrections to superficial gradient
measurements. As we have seen, this is primarily a problem of ac-
counting for close-in topography which can probably be considered
to be in thermal equilibrium in most cases. However, an approximate
theory of the transient effect will be considered to place the foregoing
discussion in a time context. Where detailed transient corrections
for distant topography seem warranted, the theory of Birch should
be used.

The effects of any slope (positive or negative) are identified with
the effects of its equivalent cliff. The cliff, at a distance z from the
station, is assumed to have evolved instantaneously at time {=0, and
from that time onward its effect on the reference-plane temperature
is taken as the value given by the Jeffreys approximation. The ap-
proach to equilibrium of the surface heat-flow anomaly at z is described
by (Lachenbruch, 1957, eq. 14 replacing z with —x):

Ag(z, t) . x

A——q(x, oo)——"/;r Zede’ (125)
where o represents thermal diffusivity. Selected results from equation
125 are presented in table 6 for unconsolidated sediments (a=0.0025
cm?*sec™!) and rock (a=0.0125 cm%ec™!). For topographic features
whose height and distance is small relative to the sediment thickness,
the value for sediment is probably more realistic. Larger, more
distant features are probably represented better by the column
headed ‘“‘Rock”.

TaBLE 6.—Time, in years, for indicated percent approach cf surface heat flow to
equilibrium after generation of a cliff at distance x

90 percent 50 percent 10 percent Ag for 1-km cliff, {=c

Distance z (km)
Rock Sediment Rock Sediment Rock Sediment ﬂ(=+9)0° ﬁ(=-9())°
z=T z=3

............... 1.8X102  9.0X102 26

- 5.2 0.7 .
O TR 1.8X10¢  9.0X10¢ 5. 2X102 2.6X10° 68 . 4X102 +.86 —.92
-~ 45X105  2.3X106 1.3X10¢ 6.5X10¢ 1.7X108 8.6X108  +.32 —. 64
.- 1L.8X108  9.0X106 5 2X104 2.6X10°  6.8X10° 3.4X10¢ +.20 —.41
- .- 4.5X107  2.3X108 1.3X108 6.5X108 1, 7X10% 8.5X105 +.05 —.08
S .- L8X108  9.1X108 5 2X108 2.6X107 6. 8X105 3.4X108  +.03 —
................. 4.5X10°  2.3X101 1.3X108 6.5X108  1.7X107 8.5X107 +. 006 —. 006

From the second line of table 6 it is seen that an open pit or mine
dump made in this century would not affect the surface heat flow in
a borehole only 100 meters away. By inequality 111, the result applies
to gradients throughout the borehole. Fairly uniform relief, ap-
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proaching to within about 1 kilometer of the station, can be described
by the equilibrium theory if it has not changed much since early
Pliocene time if the sediments are thick, or early Pleistocene if they
are thin. The latter alternative would apply, for example, to the
walls of an oceanic trench for stations on the floor. A substantial
fraction of the effect of slopes forming 10 million years ago would be
felt at stations 5 or 10 kilometers away. It is seen from the last column
of table 6 that effects of such slopes would generally be small.

The results of the previous section are based on the assumption that
the earth’s thermal properties are uniform. Over much of the ocean
basins a layer of unconsolidated sediments about 1-kilometer thick
overlies more consolidated material of contrasting properties. Where
the topographic features are composed of unconsolidated sediments
and their distance from the station is not large relative to the thickness
of the sedimentary layer, the homogeneous model probably
applies reasonably well. Where the sedimentary layer is thin relative
to the relief, the homogeneous model should again be applicable.
Lateral inhomogeneities in thermal properties can cause appreciable
heat-flow anomalies, and they must be considered separately (Von
Herzen and Uyeda, 1963; Lachenbruch and Marshall, 1966). One
such problem is considered briefly below.

For convenience it has been assumed that the topographic surface
is isothermal. If the temperature of the surface decreases linearly with
elevation with gradient, G’, then the topographic anomaly would be
given by:

-G’
G

Ag. (126)

For terrain above sea level, approximations to G’ are found to range
from about 3° to 9°C per kilometer, and this value is often 10-50
percent of &. Such values of G’ result in substantial reductions of the
topographic anomaly. At abyssal depths in the ocean we normally
have G’/G~107%, as G’ is of the order of the adiabatic gradient in sea
water, and the assumption that the surface is isothermal is realistic.

BURIED BEDROCK SLOPE

Equation 126 suggests an additional application of the results
for plane slopes. Suppose a bedrock surface dips under sedimentary
material of conductivity K, and there is no topographic expression
at the surface, as illustrated in figure 23. If the conductivity of the
rock is K, then the gradient @, in the sediment at points distant from
the slope is:
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i/////////"%>

K

F1aure 23.—Model of the downfaulted bedrock pediment.

As an approximation, we assume that the gradient G; obtains through-
out the sediment above the bedrock surface. Replacing ¢’ by G in
equation 126 yields:

Ao, 8)2(1— 75 ) Aa(ao, B, (127)

where Ag, is the heat-flow anomaly caused by the buried bedrock
topography at points on the surface behind the brink (fig. 23, AB)
and at the buried interface (fig. 23, BCD).

If the conductivity of the bedrock is approximately twice that of
the sediment (a common situation), the lower curves in figure 3 give
the negative of the anomaly along AB (fig. 23), and the upper curves
of figure 3 give the negative of the anomaly along the interface CD
(fig. 23).

This model describes a common situation in the Basin and Range
province of the Western United States, where bedrock pediment sur-
faces are downfaulted on the basin side and the depression is subse-
quently filled with alluvium. The results are useful in the interpreta-
tion of geothermal data from boreholes in such areas.

SUMMARY

The effect of topographic relief on heat flux through the surface
can be determined exactly for a semi-infinite medium bounded by a
plane slope (two horizontal half planes joined by an inclined plane
segment) where the vertical heat flow is uniform at great depth, and
the surface temperature varies linearly with elevation. Analytical
results are given for vertical flux across both the horizontal and

sloping portions of the surface for slope angles of ;—:’, n an even integer

greater than or equal to 2 (eq 12 and 14) and for n=3 (eq 13). They
form the basis for graphs and charts that yield results for all slope
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™
2
of Castoldi (1952) who considered the vertical cliff, n=2. These
results can be used in various ways to estimate the effect of topographic
relief on heat flow across the earth’s surface. They may be most
useful in oceanic geothermal studies where the gradient measurement
is often superficial, and the temperature condition on the solid surface
is generally satisfied rather well. The simplicity of the geometric
model is both a weakness and a strength in such applications. It is
a weakness because there are no such slopes on the earth’s surface.
It is a strength because the two parameters, slope angle (8) and slope
height (H), are so easily visualized and represented graphically that
models which bracket or approximate real topography can be identified
quickly.

Certain results of interest in geothermal studies generally follow
directly from the exact solutions. If a plane slope can be drawn in
such a way that it is tangent to the real topographic surface at the
station and not below it elsewhere, then the exact solution for that
plane slope gives an upper limit to the topographic anomaly at the
station. Similarly, a plane slope tangent to the real surface at the
station, and not above it elsewhere, yields a lower limit to the anomaly.
The limits imposed by such geometric bracketing can be read directly
from graphs (figs. 3, 4; pl. 1). The method provides rapid means of
establishing whether or not more elaborate topographic corrections
are needed. Thus, it follows from the case 8=90° (tables 1 and 2)
that any two-dimensional topographic feature whose height is less
than 10 percent of its distance from the station has little effect on
the gradient at the surface. (By inequality 111 its effect is negligible
at all depths.) The exact results can sometimes- be applied directly
to eliminate topographic effects as an explanation of anomalous
heat-flow results. For example, a heat flow four times the regional
average, such as some reported from oceanic rises, could be caused
by a vertical cliff 1 kilometer high only if the station were less than
7 meters from its foot (table 1). Such a topographic setting could
hardly go undetected. The same anomaly at the surface could, of
course, be caused by a 100-meter cliff 70 centimeters from the station
or a 10-meter cliff 7 centimeters from the station, but it would not
persist to depths on the order of 1 meter.

From the exact solution for flux through a plane slope it is possible
to derive expressions for upper and lower limits to the topographic
anomaly on the flat surface between two plane slopes of any height
or slope angle. There are three cases: the plane valley, the plane
ridge, and the plane bench. In the plane valley (inequality 44) the
station lies on the horizontal surface between two plane slopes rising

angles between 0 and ~. The solution is a generalization of the work
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above the station (such slopes are called positive). In the plane ridge,
the station lies on the horizontal surface between two negative plane
slopes (inequality 46). The plane bench represents a station on the
horizontal surface between plane slopes of opposite sign (inequality
49a, b). For both the valley and the ridge, a lower limit to the topo-
graphic anomaly is obtained by adding the individual anomalies
caused by each slope, that is, by neglecting the interaction. Both the
upper and lower limit for the bench contain interaction terms. As
the slopes become smaller or farther apart, so that the effect of each
on the other decreases, the bracketing intervals diminish, and the
sum of the independent anomalies from each slope becomes a good
approximation in all three cases. The parameters in the inequalities
44, 46, and 49a, b can be obtained directly from plate 1 or tables 1
and 2. By geometric bracketing the results can be used to obtain
limits to the topographic anomaly for stations on horizontal surfaces
in real valleys, ridges, or benches. Thus, the topographic anomaly in
the center of an oceanic trench 2 kilometers deep and 2 kilometers
wide at the bottom and that has irregular walls sloping generally
between 5° and 9° (Fisher and Hess, 1963) is between 18 and 29
percent (table 1 and inequality 44).

Although the immediate results of the exact solution for a plane
slope can be useful, their application is limited by (1) the fact that
geometric bracketing often yields bracketing intervals too wide to be
helpful, (2) most of the generalizations apply to stations on geo-
metrically horizontal surfaces, rare in nature, and (3) the solution
gives no information about the variations of the topographic anomaly
with depth. ‘

These limitations can be relaxed with the aid of the approximate
solution of Jeffreys (1938) for the surface heat-flow anomaly A¢’(x,),
at the station z, caused by two-dimensional topographic relief, A(z).

= h(x)
o =) dx. (128)

Ag' (@)=

The solution is based on the widely used simplification, in which the
irregular topographic surface is replaced by a horizontal plane through
the station. On this reference plane the temperature is assumed to
vary as Gh(z), where @ represents the regional thermal gradient and
h(x,) is taken as zero. The advantage of the approximation lies in the
fact that it is linear in the sense that the effects of individual topo-
graphic elements can be superimposed to obtain the total effect of
the relief. The result is only an approximation because it fails to
account for the effects on vertical gradient of lateral heat loss through
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the sloping surfaces. The expression (128) can be made exact with the
following modification:

Aq(aco)=1lr fj: %‘_i%‘;-ﬁﬁl de, (129)

where e(z) is an unknown function whose value at each point depends
upon h(z) at all points. Physically it represents the mean gradient
anomaly in A(x) at x; its value is generally greater than —1.

At any point z, on the horizontal portions of a plane slope, there
is a family of plane slopes of equal height that will yield the same
linear approximation to the topographic anomaly, A¢’(z,); the steeper
ones will terminate farther from the station, the flatter ones closer
to it. We refer to such slopes as equivalent at z,. Each member of a
family of equivalent plane slopes will yield a different value for the
exact anomaly, Ag(z,). By equations 128 and 129 the difference will
correspond to differences in the quantity:

1t he
) o (x—xo)zdx'

However, ¢ is a strongly decreasing function of distance from the toe.
Therefore, for positive A, the steeper equivalent slopes should generally
yield smaller anomalies because, for them, % is smaller and farther
from the station where e is large, and it is larger and closer to the
station where ¢ is small. A similar argument applies for negative h.
It has been demonstrated numerically (fig. 14-16 and tables 4, 5)
that in any family of equivalent plane slopes the topographic anomaly
does, indeed, decrease with increasing slope angle except for points
very close to the brink of steep slopes. There the heat flow is nearly
zero and small effects of higher order, relating to differences in the ¢’s
can dominate. Such departures are small and generally unimportant.

This relation suggests a more refined method of bracketing. To
generalize the plane slope, and still restrict the discussion to related
slopelike forms, we define a slope form as two horizontal half planes
joined by a general (two-dimensional) surface whose highest point is
the intersection’ with the upper half-plane (the brink), and whose
lowest point is the intersection with the lower half-plane (the toe).
At any point, z,, on the horizontal portion of a slope form (excluding
the toe and brink) there is a family of equivalent plane slopes. In this
family there are some members, h*(x), so steep that they cross the
given slope at only one point, falling below it near the toe and above
it near the brink. There are other members, A(z), so flat that they
cross it only once and lie above it near the toe and below it near the
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brink. It is shown (inequality 71) that we can generally expect the
exact topographic anomaly from a slope form to be greater than that
caused by the steeper equivalent plane slopes (h*(x)) and less than
that caused by the flatter equivalent plane slopes (h(z)). The result
can be visualized intuitively by noting that the difference between
each bracketing plane slope and the given slope is one positive and
one negative topographic region. If the gradients in each were uni-
form, their effects on reference-plane temperature would cancel at x,
because of equivalence. However, because the gradient is generally
greater near the toe, the difference takes the sign of the region there;
positive for A and negative for A*. The justification of the bracketing
inequality 71 involves neglecting certain higher order effects asso-
ciated with differences in the ¢’s. The effects are probably unimportant
in geothermal applications; but the matter may deserve further study.

Bracketing the effects of a general slope form with equivalent plane
slopes can be accomplished quickly in two or three steps by deter-
mining Ag¢’(x,) from plate 2 and then using plate 1 or figures 15 or
16. A very good approximation to the effects of a general slope form
can usually be obtained by selecting an equivalent plane slope to
approximate rather than to bracket.

A positive slope form for which it is possible to draw a flatter
equivalent plane slope, 4, through the toe is called “concave at the
toe”’; a negative one for which A can be drawn through the brink is
called ‘“‘convex at the brink.” Such slopes can be replaced by their
equivalent cliffs with very small (negative) error as long as their
height does not exceed their distance from the station.

Consideration of equivalent slopes yields some conditions for
validity of the Jeffreys approximation at the surface. For example,
the Jeffreys method can be used with negligible error for positive
slope forms, concave at the toe, whose height does not exceed 20
times the distance from the station and whose maximum slope angle
is less than 30°. This rule includes cases with positive anomalies
ranging up to 65 percent. The approximation applies also to negative
slope forms inclined less than 45° if they are convex at the brink
and their height is less than three times their distance from the
station. Virtually any slope of one sign can be represented by the
Jeffreys method as long as it does not produce an anomaly exceeding
10 or 15 percent.

Although the slope form is rather general, its application to real
topography is limited by the fact that the sloping parts are of finite
width and the station must lie on a horizontal surface, though it
may be arbitrarily close to the sloping portions. Virtually all heat-
flow stations lie on surfaces that depart from a horizontal plane,
but the curvature and slope can often be considered to be very small,
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especially for stations on the ocean floor. If the real surface, A(z),
is gently sloping and smooth over an interval of width [, centered at
the station, then the error arising from neglecting its slope and
curvature is equation 90:
&’h | dhdg
LGt ]

The result is obtained by flattening the region ! by replacing the
real slope by a horizontal surface through the station (o), and ad-
justing the remainder of the relief upward or downward to eliminate
discontinuities at z=uwxy+//2. The result accounts for the reaction
of the local relief to the distant relief which can be substantial, but
it neglects the higher order effect of the reaction of the distant relief
to the subdued local relief. It is seen that the anomaly caused by
gentle local relief is independent of the absolute heat flow if the
curvature is negligible, and independent of the lateral heat-flow
gradient if the slope is negligible. Generally, flattening errors will
not exceed a few percent if the slope at the station is less than 4° or
5° and the change in slope angle over the distance I does not exceed
2° or 3° (see eq 91). After flattening, the station will often lie on the
horizontal surface between two slope forms (the valley, ridge, or
bench), one of which can commonly be neglected.

Some knowledge of the variation of the topographic anomaly with
depth is extremely important in the application of the foregoing
results. Fortunately it is possible to modify the Jeffreys approxima-
tion for the topographic anomaly as a function of depth, just as
equation 128 was modified to obtain equation 129, that is, by intro-
ducing e(z) into the integrand to make it an exact expression. Thus,
equation 106 describes exactly the topographic anomaly due to any
two-dimensional topographic surface as a function of depth and
horizontal position. Even though e(2) is unknown, many useful
results can be obtained.

If the effective topography is all of one sign (for example, if the
station is at the edge of an abyssal plane or shelf or in the trough
or ridge of ripple marks), the topographic anomaly at any station, ,
attains its greatest magnitude at the surface z=0 (inequality 111).

The result applies also to the transient case if the direction of
vertical movement was of the same sign as the relief during topo-
graphic evolution. The result does not apply to the error in the
Jeffreys approximation, and hence the error does not, in general,
attain its greatest magnitude at the surface.

Limits to the percentage variation of the topographic anomaly with
depth can be expressed in terms of horizontal distance to the edge of
a (two-dimensional) topographic feature, without reference to its
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height. The gradient anomaly at depth \ is approximated well by
the value applicable at the surface if the relief is of one sign and is
farther from the station than 5\. The mean gradient anomaly in
the depth interval (0,\) can be approximated by the surface value for
relief of one sign approaching to within 2\. (The same statements
apply to relief of both signs in the sense that the error is generally
a small percentage of the sum of the magnitudes of the individual
contributions of the positive and negative portions.) Under these
conditions the gradient anomaly is said to be superficial and the
exact results for plane slopes can be applied to them. (For example,
tables 1 and 2 apply to depths of 2 or 3 meters at distances of only
5 or 10 meters from the toe or brink, even though the height of the
slope may be measured in kilometers.) Where the height of the relief
is large relative to its distance from the station, the Jeffreys approxi-
mation cannot be applied to superficial gradients with confidence,
whereas the present method can. Whether or not the Jeffreys approxi-
mation applies, the present method can yield rapid estimates for
two-dimensional superficial cases. The effect on the gradient at depth
A, of relief lying entirely within a horizontal distance 2), is generally
an order of magnitude less than its effect at the surface. Unless the
height is greater than A, the Jeffreys approximation will probably
apply. Large-scale features extending to within 2)\ of the station
cannot be treated directly by the present methods although useful
limits can sometimes be obtained.

Oceanic geothermal measurements can contain errors greater than
10 percent from undetected relief unless the probe is at least 2%
times as long as the uncertainty in local elevations and the curvature
of the temperature profile is negligible. If the probe length is equal
to the uncertainty in local relief, an individual measurement can
contain errors on the order of 20 percent plus a substantial fraction
of the change in gradient over the length of the probe. Changes in
local elevations determined over an irregular sea bottom by modern
sounding techniques can be uncertain by 10’s or even 100’s of meters.
This undetected relief can cause gradient errors of 50-100 percent in
measurements to depths of a few meters. Such measurements will
often, but not always, be flagged as suspect by marked variation in
the heat flow with depth. The occurrence of sea-bottom relief on a
scale important for geothermal measurements is largely unknown.
At present the best assurance against undetected topographic anom-
alies is the agreement of closely spaced observations.

The major problem in estimating the topographic disturbance to
superficial gradients is to account for the close-in features. Inasmuch
as they have short time constants, the steady-state theory is probably
applicable in most cases (table 6). The small effects of topographic
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evolution of distant features can be treated adequately with existing
methods (Birch, 1950).
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