Mineral Resources of the Ventana Primitive Area Monterey County, California

By ROBERT C. PEARSON and PHILIP T. HAYES, U.S. Geological Survey, and PAUL V. FILLO, U.S. Bureau of Mines

STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

GEOLOGICAL SURVEY BULLETIN 1261-B

An evaluation of the mineral potential of the area

UNITED STATES GOVERNMENT PRINTING OFFICE. WASHINGTON: 1967

UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary

GEOLOGICAL SURVEY

William T. Pecora, Director

Washington, D.C. 20402

For sale by the Superintendent of Documents, U.S. Government Printing Office

.

STUDIES RELATED TO WILDERNESS PRIMITIVE AREAS

Pursuant to the Wilderness Act (Public Law 88-577, Sept. 3, 1964) and the Conference Report on Senate bill 4, 88th Congress, the U.S. Geological Survey and the U.S. Bureau of Mines are making mineral surveys of wilderness and primitive areas. Areas officially designated as "wilderness," "wild," or "canoe" when the act was passed were incorporated into the National Wilderness Preservation System. Areas classed as "primitive" were not included in the Wilderness System, but the act provided that each primitive area should be studied for its suitability for incorporation into the Wilderness System. The mineral surveys constitute one aspect of the suitability studies. This bulletin reports the results of a mineral survey in the Ventana primitive area, California. The area discussed in the report corresponds to the area under consideration for wilderness status. It is not identical with the Ventana Primitive Area as defined because modifications of the boundary have been proposed for the area to be considered for wilderness status. The area that was studied is referred to in this report as the Ventana primitive area.

This bulletin is one of a series of similar reports on primitive areas.

CONTENTS

Summanur
Summary
Geology and mineral resources, by Robert C. Pearson and Philip T.
Hayes
Introduction
Location and geography
Previous work
Present work and acknowledgments
Geology
Geologic setting
Rocks of the Sur Series of Trask
Intrusive rocks
Sedimentary rocks
Structure
Mineral Resources
Setting
Methods of evaluation
Evaluation of metallic minerals
Limestone (marble)
Oil and gas
Economic appraisal, by Paul V. Fillo
Introduction
Mining claims
Conclusions
References cited

ILLUSTRATIONS

			Lage
Plate		Geologic map of the Ventana primitive area, California. In Map of the Ventana primitive area showing sample localities	-
		and geologic traverses In	pocket
		Index map showing location of Ventana primitive area Photograph of—	B 3
2	υ.	2. Northwest-trending ridges of Santa Lucia Range	4
		3. Ventana Double Cone	-
		4. Ridge west of Ventana Double Cone	
		5. Logwood Ridge	12
		V	

۰.

CONTENTS

TABLES

	Page
TABLE 1. Analyses of samples from the Ventana primitive area, Mont-	
erey County, Calif	B16
2. Partial analyses of marble samples	40

STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

MINERAL RESOURCES OF THE VENTANA PRIMITIVE AREA, MONTEREY COUNTY, CALIFORNIA

By ROBERT C. PEARSON and PHILIP T. HAYES, U.S. Geological Survey, and PAUL V. FILLO, U.S. Bureau of Mines

SUMMARY

A minerals survey of the Ventana primitive area was made by the U.S. Geological Survey during the summer of 1966, and the area was visited again briefly in January 1967 by Geological Survey and U.S. Bureau of Mines personnel. The area includes about 185 square miles in a rugged part of the California Coast Range southeast of Monterey. It is formed largely of metamorphic rocks of probable Paleozoic age which have been intruded by a wide variety of plutonic rocks of Jurassic to Cretaceous age. The crystalline rocks are locally overlain by sedimentary rocks ranging in age from Late Cretaceous to early Miocene. All the rocks have been broken by faults many of which have a northwest trend.

Geologic examination along several hundred miles of foot traverse and semiquantitative spectrographic and chemical analyses of more than 500 samples of stream sediments and bedrock did not indicate any mineral deposits of economic significance. Stream-sediment samples were collected from many points along all the major drainage courses and from most of their tributaries. Samples also were taken of all the major and most of the minor varieties of bedrock in the area and included much altered rock from fault zones and elsewhere. A few of the samples contained traces of copper, lead, zinc, and molybdenum in amounts that seemed to be anomalously high, although below ore grade. Some of these localities were revisited and sampled extensively in January 1967. Most of the relatively high values are from samples of weathered sulfide-bearing gneiss or of stream sediments derived from areas where such rock is abundant. These rocks are not considered to be of economic value.

No mineral deposits were known previously in the Ventana primitive area and none were discovered during this investigation. In the surrounding region, large mercury deposits and less important deposits of chromite, manganese, and asbestos are known, but they all occur in a rock formation that is not in the primitive area. Similarly, oil, gas, and diatomite produced in nearby areas are in rocks younger than any in the primitive area. Rocks similar to some in the primitive area contain small copper deposits in nearby localities, but only traces of copper were found within the primitive area. Lenses of marble having a composition suitable for a source of lime are present in small bodies, mostly in rugged terrane remote from transportation. Larger and much more accessible bodies of marble are available immediately west of the area, but these have not been commercially exploited to date.

GEOLOGY AND MINERAL RESOURCES

By ROBERT C. PEARSON and PHILIP T. HAYES U.S. Geological Survey

INTRODUCTION

LOCATION AND GEOGRAPHY

The Ventana primitive area in Los Padres National Forest includes about 185 square miles of the Northern Santa Lucia Range, Monterey County, Calif. (fig. 1). The area is about 27 miles long and 4 to 9 miles wide.

The Ventana primitive area is an anachronism in mid-20th-century California. It is only a few hours drive from two major metropolitan areas, and it is almost within sight of two of the most heavily traveled highways in the State. The scenic coast highway (California Highway 1) parallels the primitive area at a distance of 2 to 5 miles, and U.S. Highway 101 lies in the Salinas River valley to the northeast. Thousands of people drive within 15 miles of the area each day, but despite its proximity to civilization, only a few hundred people penetrate more than a mile into it each year.

The primitive area through much of its length is only 2 to 5 miles from the coast—its southwest boundary coincides with the crest of the coast ridge 3,000 to 4,000 feet above the ocean. The northwest-trending Santa Lucia Range rises abruptly from the rugged and scenic Pacific coast and is flanked 25 miles to the northeast by the broad flat Salinas River valley. The range ends on the northwest at Monterey Bay, about 10 miles from the primitive area.

The area is drained by four major streams: the Big Sur and Little Sur Rivers to the southwest; the Carmel River to the northwest; and the Arroyo Seco, a tributary to the Salinas River, to the northeast. The topography of the area is influenced by the northwest-trending geologic structure, and many of the streams follow valleys thus oriented (fig. 2).

The southeastern part of the area is accessible by way of the Arroyo Seco Road from the Salinas River valley to Arroyo Seco Guard Station. From this point the Indians Road, a graded public road, parallels part of the southeast boundary of the area at a distance of about 1 mile. A U.S. Forest Service limited-access road from Posts on California Highway 1 coincides with the primitive area boundary about 8 miles along its southwestern edge. The private roads to Tassajara Hot Springs and to The Caves approach to within 1 mile of the eastern part of the primitive area. A public road to Bottchers Gap comes to

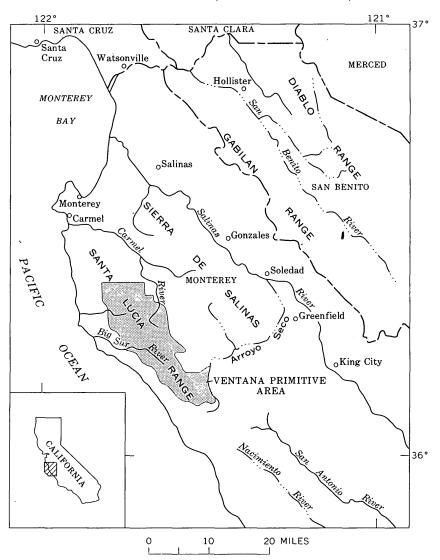


FIGURE 1.—Index map showing location of Ventana primitive area.

within 1 mile of the northwestern part. Several other private roads approach the periphery of the northern third of the area. Travel within the area is by foot or horseback on a very good network of U.S. Forest Service trails.

Topographically the area is characterized by steep-sided sharpcrested ridges separated by V-shaped youthful valleys. Over much of their length the streams flow on bedrock or a veneer of boulders; alluvial deposits along their courses are small or absent. Many of the

264-034 0-67-2

B4 STUDIES RELATED TO WILDERNESS-PRIMITIVE AREAS

streams occupy narrow canyons with vertical walls; waterfalls are common, and deep pools occupy the valley floor from wall to wall in places. Elevations range from about 600 feet where the Big Sur River leaves the area to 4,965 feet on South Ventana Cone.

Virtually the entire area is covered by timber or brush (fig. 3). Along the Big Sur and Little Sur Rivers beautiful stands of redwood occur as far as 6 miles from the coast and at elevations up to about 2,000 feet. Some of the slopes and ridgetops are fairly open live oak and madrona forest and here and there are virgin stands of

FIGURE 2.—View up the North and South Forks of the Big Sur River from Ventana Double Cone showing the northwest-trending ridges that form this part of the Santa Lucia Range. Beyond limits of primitive area is Junipero Serra Peak, highest in the range, in distance at left. Southwest boundary of primitive area lies along skyline ridge at right.

FIGURE 3.—Aerial view of Ventana Double Cone from southeast. Brush-covered slopes like this are typical of much of the primitive area.

THE VENTANA PRIMITIVE AREA, MONTEREY COUNTY, CALIF. B5

ponderosa pine. Most of the area, however, is mantled by dense chaparral. The climate is mild throughout the area, but precipitation, which falls mainly from December to April, ranges widely from more than 100 inches a year along the coast ridge to only about 20 inches a few miles farther inland. At Cold Spring Camp, only a few hundred feet outside the primitive area near the head of Logwood Creek, precipitation of 161 inches recorded in the 12-month period from July 1940 to June 1941 is the greatest recorded in California (Waananen and Bean, 1966, p. 457). Snow occasionally falls on the higher peaks. Coastal fog and cool sea breezes frequently penetrate up the major valleys but rarely top the ridges, so most of the area is hot and dry in summer.

PREVIOUS WORK

The geology of the Ventana primitive area was fairly well known prior to the present investigation. Reports by Trask (1926), Reiche (1937), and Fiedler (1944) describe the rocks and structure and include geologic maps at a scale of about 1 mile per inch that cover all of the primitive area except about 1 square mile of the southeasternmost tip. The geology of that square mile has been studied by Compton (1966) and his coworkers as part of the geologic mapping of the Junipero Serra quadrangle. Earlier reconnaissance studies of the region and detailed studies in nearby areas were cited by these workers. Investigations dealing with stratigraphy of the Tertiary rocks and petrology of some of the crystalline rocks have been described by Dickinson (1965) and Compton (1960a). The geology of the northern part of the primitive area has recently been mapped in detail by Robert A. Wiebe as part of a Ph.D. dissertation at Stanford University. This report has not yet been published and was not available to the writers; however, Mr. Wiebe was very helpful in discussing the geology of this area with us.

PRESENT WORK AND ACKNOWLEDGMENTS

The writers, with the assistance of Robert W. Sullivan, spent about 2 months in the primitive area from July to September 1966 and examined the rocks for evidence of mineralization, checked existing geologic maps, and systematically sampled rocks and stream sediments. The fieldwork was performed by foot traverse along the existing trails, most stream courses, tractor trails along many ridgetops, and, in places, cross country. Some traverses were made into the area from various points on the periphery, others from camps within the area, and still others by means of helicopter. The area was revisited for a week in January 1967 to reinvestigate certain parts as a result of analytical tests on previously taken samples.

Analytical tests for mercury were made on most of the samples in a mobile field laboratory by Robert Hanson and Roger Miller, U.S. Geological Survey. The other analyses were made in Geological Survey laboratories in Denver, Colo., and in Washington, D.C.

Fieldwork in the primitive area was greatly facilitated by Mr. Alex Campbell, District Ranger, U.S. Forest Service, and members of his staff, particularly Mr. Doug McChesney, whose detailed knowledge of the area was invaluable, and Emil Pozzi, William Clark, and M. H. Netland, who provided horse-packing services and other assistance. A helicopter under contract to the Forest Service and based at the Arroyo Seco Guard Station was used for field transport and we are indebted to Mr. Fred Dearing, its capable pilot. Mr. Frisby at Pico Blanco Boy Scout Camp and numerous property owners kindly permitted access to the area over private roads and trails.

GEOLOGY

GEOLOGIC SETTING

The northern Santa Lucia Range is part of a northwest-trending block of crystalline rocks about 40 miles wide and more than 300 miles long. The crystalline block is bounded on the northeast by the San Andreas fault, some 30 miles northeast of the primitive area, and on the southwest by the Sur-Nacimiento fault, which skirts the coast and passes out to sea west of the area. Sedimentary and associated igneous rocks of the Franciscan Formation of Jurassic and Cretaceous age have been faulted against the crystalline block on both the northeast and southwest sides. These Franciscan rocks are not present within the block. Throughout its length, the crystalline block is discontinuously covered by a blanket of unmetamorphosed sedimentary rocks of Late Cretaceous and Tertiary age.

The primitive area lies within one of the largest areas of exposure of the pre-Upper Cretaceous or crystalline rocks. In this vicinity (pl. 1) these rocks consist of an older group of metamorphosed sedimentary and possibly volcanic rocks and a younger group of plutonic igneous rocks that intruded the metamorphic rocks.

Unmetamorphosed sedimentary rocks cover the crystalline rocks of large areas in the general region but are present in only about 10 percent of the primitive area, mainly in the southern part. These strata were deposited on the crystalline rocks after uplift and much erosion. Those immediately overlying the older rocks differ in age from place to place. Thus, during much of the last hundred million years the area of the northern Santa Lucia Range has been alternately above and below sea level, at times being eroded and at times receiving sediment. During the last 10 million years the range was uplifted to approximately its present height of up to 5,000 feet. This uplift took place by arching and by movement along many faults. During and since this uplift the sedimentary rocks have been eroded from much of the area, and they are now preserved only as down-faulted blocks and thin fault slices.

ROCKS OF THE SUR SERIES OF TRASK

The oldest rocks in the primitive area are a diverse group of metamorphic rocks called the Sur Series by Trask (1926). They form the bedrock in more than half the area. These rocks tend to be deeply weathered and poorly exposed except along perennial streams where erosion has kept pace with weathering.

The metamorphic terrane consists of a series of sedimentary and possibly volcanic rocks that have been metamorphosed to gneisses and schists of various types. The most abundant are quartz-rich gneisses that contain variable amounts of feldspar and biotite. Throughout the area these are interlayered with biotite schist, amphibolite, marble, and calc-silicate gneiss. To some extent all the gneisses and schists are gradational with one another. Nearly all the metamorphic rocks have a conspicuous foliation. The strong layering in the better exposures is indicative of the original sedimentary bedding.

The quartzose gneisses range from quartzite to biotite-quartz gneiss, quartz-feldspar gneiss, and biotite-quartz-feldspar gneiss. Locally, they also contain garnet, sillimanite, hornblende, graphite, or sulfide minerals. Light-colored quartzose gneisses, particularly quartz-feldspar gneiss, are characteristic of the southwestern part of the primitive area; in the central and northeastern parts of the area the gneisses are generally a darker gray because of a greater biotite content. Some of the quartz-feldspar gneisses may have been derived from igneous rocks as suggested by Reiche (1937, p 119). Quartzite containing very small amounts of other minerals forms lenticles and layers as much as a few inches thick in most of the quartz-feldspar gneiss, but in the biotitic gneisses it forms discrete beds several feet thick and locally is the principal component of sequences up to several hundred feed thick, as in upper Redwood Creek, North Fork Big Sur River, and along the Arroyo Seco.

Mica-rich schist occurs widely in thin discontinuous layers in the gneisses and in places forms units 100 feet or more thick, as along the North Fork of Big Sur River south of Cienega Creek. The schist commonly contains sillimanite and garnet.

Dark green to black, foliated to massive amphibolite is also widespread as generally concordant layers from a few inches to many

٢

B8 STUDIES RELATED TO WILDERNESS-PRIMITIVE AREAS

tens of feet thick. It consists of hornblende and plagioclase and subordinate biotite and pyroxene. Amphibolite is the dominant metamorphic rock of large areas along Zigzag Creek.

Marble and calc-silicate gneiss form pods and discontinuous layers throughout the metamorphic sequence but are most abundant along the southwestern edge of the primitive area. The largest bodies of relatively pure marble are shown separately on plate 1. The marble is more resistant to weathering than any other rock in the area, and consequently it generally forms prominent outcrops and is recognizable from a distance even where the brush is thick. Bodies of marble range from about 1 foot thick and a few feet long to about 100 feet thick and more than 1.000 feet long. The marble is generally white and finely to coarsely crystalline; most of it contains some crystalline graphite. The marble is generally associated with calc-silicate gneiss, and the two grade into one another. The most conspicuous minerals of the calcsilicate gneiss include wollastonite, diopside, garnet, scapolite, and amphibole. Layered sequences of calc-silicate gneiss tend to be thicker and more continuous than the associated marble; in Redwood Creek and North Fork Big Sur River they attain a thickness of several hundred feet.

Rocks of the Sur Series of Trask (1926) originally were sandy, muddy, and limy sediments that probably were many thousand feet in thickness. They probably included some interbedded basaltic lava flows. The age of these sediments is not known but is generally thought to be Paleozoic or even Precambrian. The sediments were folded, metamorphosed to gneisses and schists, and intruded by igneous rocks in middle to late Mesozoic time.

INTRUSIVE ROCKS

Plutons with a wide range of composition have intruded the metamorphic rocks throughout the primitive area. The bodies range from irregular veinlets less than 1 inch in thickness to stocks many square miles in area. Only the larger bodies are shown on plate 1. The larger bodies are more resistant to erosion than the surrounding gneisses and schists, hence they tend to form the highest peaks and ridges. No extensive hypogene alteration associated with the igneous rocks was noted.

Nearly every outcrop of metamorphic rocks is cut by small bodies of light-colored intrusive rock that includes granite pegmatite, alaskite, and luecotonalite and consists mainly of quartz and feldspars and commonly some biotite and garnet. The larger plutons are mostly quartz diorite and granodiorite although quartz monzonite, granite, diorite, and gabbro are also present. The largest area of plutonic rock

THE VENTANA PRIMITIVE AREA, MONTEREY COUNTY, CALIF. B9

extends from the vicinity of Ventana Cone northwestward to beyond the primitive area boundary. It is mainly gray gneissic even-grained biotite-hornblende quartz diorite to granodiorite. Although the rock is fairly homogeneous over large areas, parts of it, especially near its borders, are more potassic. More than one pluton may be present. An elliptical pluton between Skinner and Pine Creeks (Little Sur River tributary) is a distinctive porphyritic quartz monzonite with pink potassium feldspar phenocrysts and occasional garnet. Similar rock is also present along the Carmel River near the mouth of Miller Fork and in Pine Creek (Carmel River tributary).

The plutons in the southeastern half of the primitive area are smaller and more nonhomogeneous than those to the northwest. They are pegmatoid in part, contain less hornblende and more potassium feldspar, and include abundant septa of metamorphic rocks. As these features are characteristic of the border zones of the quartz diorite and granodiorite plutons farther northwest (fig. 4), those in the southeast may be the roof parts of plutons not yet eroded as deeply.

Gabbro and diorite form a nonhomogeneous pluton exposed along the Carmel River southwest of Pine Valley. The rocks are fine to medium grained, dark gray to black, and foliated to massive. A finegrained dark gray weakly foliated rock specimen examined microscopically consists of hornblende and labradorite. Smaller bodies of

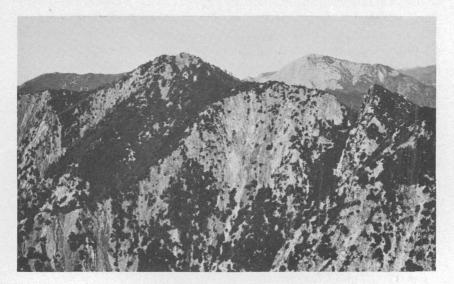


FIGURE 4.—View west from Ventana Double Cone toward rugged ridge of granitic rocks and septa of metamorphic rocks. Post Summit on primitive area boundary is in distance at left. Pico Blanco, in distance at right, is beyond limits of primitive area.

B10 STUDIES RELATED TO WILDERNESS-PRIMITIVE AREAS

similar mafic rocks are also common along the Carmel River for a few miles farther downstream.

SEDIMENTARY ROCKS

Sedimentary rocks of Late Cretaceous and Tertiary age lie on the older crystalline rocks in the southern part of the primitive area and are locally preserved in down-dropped wedges along faults in the northern part. Locally, as in the Church Creek area (Dickinson, 1965), these rocks have been studied in some detail, the sequence subdivided, and several stratigraphic names assigned. Such local stratigraphic studies and the identification of diagnostic fossils have established the age and conditions of deposition in some places. The picture is incomplete, however, and in this report only a general description of the rocks and their depositional history is given.

The oldest and most widespread of the sedimentary rocks is a sequence of interbedded conglomerate, sandstone, siltstone, and claystone in the southern part of the area. These rocks were studied by Reliche (1937) and fossils collected by him indicate a Late Cretaceous age. Reiche estimated the maximum thickness of the sequence to be 6,000 feet. Nearly everywhere in the primitive area the Upper Cretaceous rocks are strongly faulted and only at a few places are depositional contacts with the older rocks exposed at the surface. Commonly the basal beds are pebble and cobble conglomerates that have an indurated sandy matrix. Similar beds and lenses recur at numerous places throughout the section. Bedding in the conglomerate is generally well defined. The pebbles and cobbles are well rounded and are mainly composed of granitic rocks, porphyry, quartzite, chert, and metamorphic rocks. The granitic and metamorphic rocks could have been locally derived, and the chert may have come from the Franciscan Formation. The most conspicuous of the sedimentary rocks are resistant massively bedded medium- to coarse-grained feldspathic sand'stone, which weathers buff to light brown. Finer grained and more poorly sorted sandstone is also common. Many of the sandstones are pebbly. Probably the most abundant rocks in the sedimentary sequence are sandy siltstone, siltstone, mudstone, and claystone, that vary from medium to dark gray to greenish gray. These rocks are relatively nonresistant and not well exposed. Many of the siltstones and claystones contain abundant nodular concretions, some of which have formed around fossil plant fragments.

Strata of Paleocene, Eocene, and Oligocene age have been identified in the southeastern part of the primitive area (Compton, 1957), on the ridge north of Higgins Creek (Reiche, 1937, p. 144), and along Tassajara and Church Creeks (Dickinson, 1965). Lithologically, these strata are very similar to those of Late Cretaceous age described in the preceding paragraph, and they have been distinguished chiefly on the basis of their fossil content. The Paleocene rocks lie with apparent conformity on Upper Cretaceous rocks except along the Willow Creek fault, where they lie directly on the crystalline rocks. Along the Church Creek fault sedimentary rocks of middle to late Eocene age rest directly on the crystallines. Strata of Oligocene age overlie the Eocene rocks in the Church Creek area, and very locally in the extreme southeastern part of the area lower Miocene sedimentary rocks unconformably overlie older Tertiary strata.

Some of the thin wedges of sedimentary rocks along faults in the northern part of the area have not been definitely correlated with other rocks in the vicinity and their age is uncertain.

STRUCTURE

The structure of the metamorphic rocks is poorly known, but on the basis of scattered observation the rocks probably are folded strongly rather than being a faulted homoclinal sequence as suggested by Trask (1926, p. 127) and Reiche (1937, p. 156). Fiedler (1944, p. 184–185) considered the likelihood that the metamorphic rocks are folded. Although the dominant strike is northwesterly and the dip north-easterly, abrupt changes in attitude are common in some areas. Minor folds and well-developed mineral lineation also suggest that the sequence is strongly folded.

The sedimentary rocks in the primitive area have been moderately deformed by faulting. No folds of more than local importance have been recognized, and Reiche (1937, p. 156–157) suggests that the synclinal nature of some fault blocks is caused by drag along the faults. The sedimentary rocks have been strongly folded where they are more extensively exposed in areas bordering the primitive area. In the Junipero Serra quadrangle southeast of the primitive area, Compton (1960b, 1966) concluded that the crystalline core of the Santa Lucia Range was folded along with the overlying sedimentary rocks and that these folds were then cut by high-angle faults during Pliocene and Pleistocene uplift of the range. It seems likely, therefore, that the homoclinal fault blocks within the primitive area are the faulted remnants of folds.

The principal faults recognized within the primitive area trend northwest, parallel to the major structural elements of the region. They all seem to dip steeply, but the only one for which the dip is established is the Church Creek reverse fault (pl. 1), which was determined by Dickinson (1965) to dip 50° -80° NE. The much faulted area of sedimentary rocks in the southern part of the area

264-034 0-67-3

B12 STUDIES RELATED TO WILDERNESS-PRIMITIVE AREAS

is basically a northwest-trending graben complicated by minor faults striking in diverse directions. One of these is the east-northeast-trending Willow Creek fault which, according to Dickinson (1965), underwent movement at least twice during the Tertiary.

The relative fault movement appears to be vertical. However, in this region of large scale strike-slip faulting, lateral movement on some of the faults in the primitive area is a possibility. The San Andreas fault to the northeast and the Sur-Nacimiento fault (Hill and Dibblee, 1953) 1 to 2 miles southwest of the primitive area probably have large lateral displacement, and Durham (1965) has presented evidence for 11 miles of strike-slip movement on a fault trending toward the primitive area from the southeast.

Most of the faults mapped in the primitive area have been recognized because they cut sedimentary rocks (fig. 5); many others probably exist in the metamorphic rocks. Fiedler (1944, p. 185) traced a few faults through the metamorphic rocks, "but only with the expenditure of much time and effort, and only where the faults had first been recognized in some sedimentary area."

The few faults that have been observed vary widely in the amount of deformation along them. The Church Creek and Miller Creek faults northeast of the primitive area are described by Dickinson (1965,

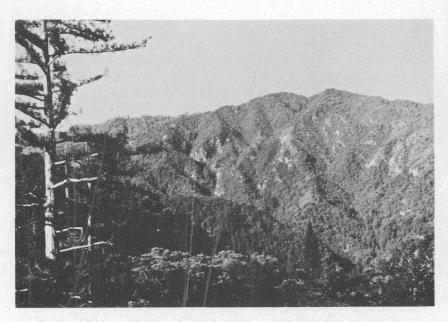


FIGURE 5.—Logwood Ridge viewed from northeast across junction of North and South Forks of Big Sur River. Left half of ridge top consists of Upper Cretaceous conglomerate in fault contact with Sur Series of Trask (1926) on right.

p. 40) as gouge zones that are less than a foot thick and have some shearing and gouge seams extending from 5 to 100 feet into the walls. Fiedler (1944, p. 231) described 150 feet of crushed and broken rock along the Palo Colorado fault (Redwood fault of Fiedler). The writer observed some fracturing near the larger faults, numerous narrow gouge seams and crushed zones in the metamorphic and granitic rocks, and one 25-foot-thick intensely sheared zone at the head of Skinner Creek. No evidence of mineralization was seen in any of these sheared rocks.

MINERAL RESOURCES

SETTING

Mineral resources have been exploited extensively in the southern Coast Ranges of California but none are known in the Ventana primitive area. Except for a trace of lead and zinc at one locality, no mineralization was noted along any of the faults, shear zones, or fractures that were examined, nor was any indication of significant metallic mineral deposits seen in any of the rocks or soils that were examined. Sediment samples were taken from the principal streams and tributaries that drain the area, and samples of bedrock units and altered rock were taken from fault zones and elsewhere. While a few contained traces of metals in anomalous amounts, all were below ore grade and none were indicative of significant deposits. No mineral production is known from any of the mining claims or prospects in the primitive area. It is unlikely that commercial quantities of oil and gas underlie the area.

Numerous mineral commodities have been obtained from various geologic environments in the Coast Ranges. The largest mercury mine in the United States lies about 50 miles north of the area, and the second largest is 50 miles east of the area. Smaller mercury mines lie a few tens of miles to the southeast. Oil and gas fields occupy sizable parts of the Coast Ranges from the latitude of Monterey Bay south to the Los Angeles area. Other mineral commodities known in the general region are diatomite, limestone, dolomite, manganese, chromite, and asbestos. Many of these mineral commodities, however, are in a geologic setting that differs markedly from that in the primitive area. Most mineral commodities are localized in certain kinds of geologic environments, as in rocks of a particular type or age, or in certain geologic structures. Where the localizing geologic factors are absent, the likelihood of finding deposits of a particular commodity is slight.

For example, the nearest producing oil field, the Salinas Valley field, lies about 10 miles east of the primitive area. As in most fields in the southern Coast Ranges, the oil is obtained from strata of middle to late Miocene age. Strata of this age are absent from the primitive area. Diatomite has also been produced mainly from strata of late Miocene age. Similarly, the mercury, chromite, manganese, and asbestos in the Coast Ranges have been found mostly in rocks of the Franciscan Formation or in associated intrusive rocks, mainly serpentinite. The Franciscan Formation is not present in the primitive area.

In the Coast Ranges mineral commodities that have been extracted from or are known in rocks similar to those of the primitive area are limestone, dolomite, and copper. In terms of past production dolomite is the most important of these. The largest dolomite quarries in California are in the northern Gabilan Range about 40 miles northeast of the primitive area (Jenkins, 1950). These bodies of dolomite are isolated remnants of metamorphic rocks that were intruded by granitic rocks; these metamorphic rocks have been correlated with the Sur Series of Trask (1926) exposed in the primitive area.

Limestone recrystallized to marble is present in sizable deposits in the narrow strip between the primitive area and the coast. To date these have been exploited on only a small scale.

Several occurrences of copper are known in the Gabilan and Santa Lucia Ranges outside the primitive area, but production from them has been negligible. The nearest of these to the primitive area and the only one known in the Santa Lucia Range is the Trampa Canyon prospect located about 4 miles east of the northeast corner of the primitive area. Fiedler (1944, p. 247) states that some ore has been mined from the prospect and that operations closed down about 1931. The property has been explored by several pits and adits whose small size indicates that if any ore was shipped the tonnage must have been very small. At the Trampa Canyon prospect the copper minerals are in tactite formed from marble at the contact with granodiorite. Though not well exposed, the body of tactite appears to be small and the copper content is low. Samples collected from the Trampa Canyon area were analysed spectrographically and chemically; the results are shown in table 1. Contacts of marble against granitic rocks, similar to the Trampa Canyon prospect, are present in the primitive area, but only very small amounts of tactite and mere traces of copper were seen along them.

Uranium, molybdenum, and mercury prospects exist in the vicinity of the primitive area but no significant deposits are known. Claims have been staked for the uranium in the Chews Ridge and Arroyo Seco areas, 1 to 3 miles east of the primitive area. However, the radioactivity is probably caused by the thorium content of the accessory monazite in granitic and metamorphic rocks (California Division of Mines, unpub. data). Molybdenite and possibly a trace of powellite have been reported in garnet-rich tactite from the vicinity of Jackhammer Spring on the Indians Road (California Division of Mines, unpub. data). Fiedler (1944, p. 248) reports a mercury prospect in silica-carbonate rock along the Blue Rock fault about 2 miles north of the primitive area.

The only mining claims known in the primitive area are on the east side of Island Mountain, which lies north of Big Sur River. Reiche (1937, p. 162) reports that prospecting was done in this area in the early 1930's in a "pyritized and hydrothermally altered shear-zone" along Big Sur River. According to Reiche, silver values reported in early assays from the zone were not confirmed by later assays. A prospect pit has been reported in this vicinity, but was not found by the writers during a traverse of Big Sur River. A gold prospect in pegmatite along the Little Sur River is mentioned by Fiedler (1944, p. 247), who states that the workings have been "blown up" and that no mineralized rock or ore was found at the site. The exact location is not described by Fiedler and was not found in this investigation. The only evidence of prospecting noted in the present survey is a small gravity concentrating rig and a small amount of digging in pegmatite on the east bank of the Arrovo Seco just outside the primitive area. This site is at the foot of a poor trail from Jackhammer Spring on the Indians Road. The work was done in the last few years. The pagmatite is not visibly mineralized; samples from it (table 1, samples P151a, P151b, and P151c) and from other pegmatites in the primitive area show no unusual concentrations of gold or other metals.

METHODS OF EVALUATION

The Ventana primitive area was investigated by visual examination of the rocks and by geochemical sampling. Foot traverses were made through as much of the area as was practicable (pl. 2). Samples of fine-grained stream sediments were collected near the mouths of most tributaries and at intervals of a mile or two along the trunk streams (pl. 2), and the pebble and boulder fraction was searched carefully for fragments of altered or mineralized rock. All the major rock types in the area were sampled in fresh or unaltered form, and samples were also taken of all rocks that showed evidence of alteration.

Most of the rock and stream-sediment samples were analyzed chemically and spectrographically for selected elements (table 1). Mercury and gold were determined by atomic absorption techniques. Samples were scanned with an ultraviolet lamp in search for fluorescent tungsten minerals; none were found. ٢

TABLE 1.—Analyses of samples from the

[Parts per million, ppm; citrate

	Semiquantitative spectrographic analyses (ppm) Sample Ti Mn Ag Ba Be Zr Co Cr Cu La B Mo Ga Nb Sc Ni Pb Sr																	
Sample	Ti	Mn	Ag	Ba	Ве	Zr	Co	Cr	Cu	La	В	Мо	Ga	Nb	Sc	Ni	Ръ	Sr
							Metam	orphic	rocks									
P1 P2 P14 P18 P30	2,000 200 10,000 2,000 1,500	500 100 2,000 70 300	ななな	500 70 100 100 1,000	4 4 4	 	10 <3 30 <3	70 20 30 10 10	50 7 70 7 20	<30 30		3 5 7 7 7 7 7 7 7 7 7 7 7		10 <10 10 <10 <10		20 <3 30 5 10	15 <10 <10 <10 <10	100 3,000 300 20 200
P33 P37 P38 P39 P51	7,000 700 15,000 3,000 3,000	1,000 50 1,000 150 300	ユ	1,500 150 200 500 70	なる	 100	30 3 50 15 <5	70 5 700 30 20	20 7 70 50 20	<30 <30 30 30 20	 <10	80000	 <10	<10 <10 15 10		30 3 200 20 5	<10 <10 <10 <10 <10 <10	100 20 300 50 <50
P61 P92 P97 P98 P105	5,000 700 10,000 1,500 150	300 300 200 700 70	<.5 <.5 <.5 <.5 <.5	100 70 1,000 20 1,000	⊲ ⊲	150 30 100 <10 <10	5 <5 10 50 <5	100 50 50 1,500 5	100 7 30 30 2	<20 70 <20	100 <10 <10 <10 100	ß ß	10 <10 50 15 <10		20	30 30 7 100 3	15 10 20 <10 <10	1,000 700 500 200 300
Р133 Р153 Р154 Р188ъ Р194	200 10,000 7,000 7,000 7,000	700 2,000 300 1,500 700	<.5 <.5 <.5 <.5 <.5	<10 150 >5,000 70 1,000	<1	<10 200 300 50 300	100 100 5 100 10	3,000 200 150 700 70	70 20	30 ⊲20	15 <10 <10 10 <10	8 8 8 8 8 8	<10 30 20 .20 20		15	5,000 50 30 100 7	<10 <10 20 <10 15	<50 200 300 300 1,000
P217 P219 P221 P223 P227	5,000 1,000 >10,000 150 5,000	1,000 70 2,000 1,500 3,000	<.5 <.5 <.5 <.5 <.5	700 1,000 700 <10 70		100 150 300 <10 150	50 <5 30 70 5	150 20 300 2,000 50	50 30 50 10 3	70 20 50 20 20	10 <10 <10 <10 10	AAAAA	70 <10 30 20		30 <5 30 7 7	50 7 70 1,500 30	20 20 20 <10 <10	70 50 500 <50 70
P232 P234 P235 P268 P273	7,000 1,000 1,500 5,000 5,000	200 700 50 200 100	<.55 <.55 <.55 <.55	1,500 70 300 50 500	2 1 1 7 7 7	500 70 200 150 200	10 5 <5 <5 <5	70 150 20 200 200	30 7 30 70 100	150 20 ≪20 20 20	10 <10	<2	30 10 <10 <10 <10		7 7 <5 5 10	70 30 7 20 20	20 10 20 <10 <10	300 5,000 <50 50 100
Р275 Р276ь Р277а Н32 Н42а	7,000 5,000 5,000 >10,000 300	100 200 150 1,500 10	<.5 <.5 <.5 <.5 > > >	150	₽₽₽₽	100 150 200 100 15	<5 <5 70 <5	200 100 100 700 30	100	30 20 100 20 20	10 10 10	200 <2	15 <10 10 20 <10		20 15 20 30 <5	10 300 100 70 2	<10 <10 10	1,000 50 200 300 1,500
н46 н71 н72 н78 н135ъ	500 2,000 5,000 5,000 500	70 300 300 1,500 50	<.5 <.5 <.5 <.5 <.5	1,000 1,500 300 10 70	1 1 1 1	50 300 150 100 700	<5 <50 100 <5	5 7 30 150 10	7 30 5	20	<10 <10 <10	A A A A A	20 15 10 10 <10		<5 <5 7 50 15	5 2 7 200 3	30 30 15 <10 <10	700 500 150 500 <50
							Intru	sive ro	cks									
P6 P15a P15b P15c P34	3,000 5,000 10,000 10,000 200		<1	1,500 700 700 700 200	1.5 1 1 1 1	150 200	5 15 30 50 3	7 50 100 150 7	5 15 30 70 7	70 30 90 90 30 30	<10 <10	0 0 0 0 0 0	20 20		10 15	<3 15 30 30 7	15 <10 15 20 <10	500 300 300 300 70
P42 P43 P45 P488	10,000 1,500 10,000 79	700 100 1,000 20	<.5 <.1 <.5 «,5 «]	200 150 1,500 1,600 70	<1 1,5 1	30 50 150 150	50 70 \$5 20 \$3	500 1,000 <5 70 1				68868	30 10 30 30	⊲ 	20	30 150 2 7 <3	15 50	1,500 200 1,000 1,000 <5
8485 882 894 895 8100	50 3,000 ≪20	20 150 300	<1 <.1 <.5 <.5	300 1,000 1,500 3,000 <10	2 1	300 200 70 <10	<3 15 10 <5 100	1 70 50 7 3,000	7 15 10 30 2	70 70	<30 <30 <10 15	8 8 2 2 2 2	15 15 20 <10	<10 7 10 		<3 <30 <30 7 3,000	<10 15 30 50 <10	30 500 500 2,000 <50

.

.

Ventana primitive area, Monterey County, Calif.

soluble heavy metals test, cxHM]

	Semi			ve spect		.c		emical alyses		
		ana (ppm		Contin	(percent	.)		(ppm)		
Ŝamplė	V	Y	Zn	Fe	Mg	Ca	Hg	Au	cxHM	Sample description
						Metamo	orphic r	ocks		
Р1 Р2 Р14 Р18 Р30	150 10 500 20 30	<10 50 <10	<200 <200 <200 <200 <200	3.0 .3 >10 1 1.5	1.5 .3 5 .3 1	0.7 >10 7 .15 1	0.025 <.010 .030 .015 <.010	<0.1 <.1 <.1 <.1 <.1		Graphitic schist. Graphitic marble. Amphibolite. Cordierite(?)-bearing gneiss. Quartz-feldspar gneiss.
P33 P37 P38 P39 P51	300 .10 500 70 20	<10 30 10	<200 <200 <200 <200 <200 <200	7 7 7 3 2	3 15 7 1 .2	7 . 07 7 . 15 . 7	<.010 <.010 .025 <.010 .150	<1 <1 <1 <1 <1		Amphibolite. Quartzite. Amphibolite. Migmatitic mica schist. Quartzite.
P61 P92 P97 P98 P105	50 100 50 100 50	7 20 7	<pre><200</pre> <200<200<200<200<200	3 1 7 5 .1	2 5 2 7 7	10 >20 3 10 >20	.130 .010 <.010 .030 .030	<.1 <.1 <.1 <.1		Calc-silicate gneiss. Graphttic marble. Biotite-quartz-feldspar gneiss: Amphibolite. Graphttic marble, float.
Р133 Р153 Р154 Р188b Р194	15 200 150 200 100	20 20 15	<200 <200 <200 <200 <200	7 15 5 10 7	10 7 3 5 3	.5 15 1 10 10	.070 .100 .060 <.010 .080	<.1 <.1 <.1 .2 <.1		Mafic dike. Biotite amphibolite. Biotite-quartz-feldspar gneiss. Amphibolite. Biotite-hornblende orthogneiss.
P217 P219 P221 P223 P227	50 15 100 15 70	<5 20 7	<pre><200</pre> <200<200<200<200<200	7 1 10 3 7	2 .5 10 10 1.5	.3 .3 7 7 15	.030 .020 .070 <.010 .020	<.1 .2 <1 <1 <1	 	Garnet-sillimanite schist. Quartzite. Garnet mica schist. Calc-silicate rock. Garnet diopside rock, float.
P232 P234 P235 P268 P273	70 20 10 300 200	7 5 20		5 3 1.5 5 3	2 1.5 .7 1 1	3 ≫20 .1 2 1.5	.320 <.010 .010 	<.1 .2 .3 		Biotite-quartz-feldspar gneiss. Calc-silicate rock. Quartzite. Sulfidic graphitic gneiss. Do.
Р275 Р276ь Р277а Н32 Н42а	5,000 500 500 150 10	20 20 10	<pre><200 300 <200 <200 <200 <200 </pre>	2 5 5 10 .5	.5 .5 1 5 3	2 2 10 >20	 <. 010 . 030	 .2 <.1	44 	Do. Do. Biotite amphibolite. Graphitic marble.
н46 н71 н72 н78 н135ъ	10 15 30 150 10	7 15 30	4200 4500 4500 4500 4500	.7 2 3 10 .7	.5 .7 1 5 .2	2 1 1.5 10 .07	.080 .080 .020 .020 .150	<.1 <.1 <.1 <.1 <.1		Quartz-feldspar schist. Feldspathic quartzite. Do. Amphibolite. Quartzite.
						Intru	sive ro	cks		
P6 P15a P15b P15c P34	70 200 150 150 <7	30 15 10	<pre>\$200 \$200 \$200 \$200 \$200 \$200 \$200</pre>	2 5 10 7 2	•7 1•5 3 2 •3	1 3.0 1.5 1.5 .3	.015 <.010 .020 .020 <.010	<.1 .5 <.1 <.1 <.1		Porphyritic quartz monzonite. Foliated quartz diorite. Do. Do. Leucogranite.
Р42 Р43 Р45 Р47 Р482	150 100 10 70 ≷7	10 7 15	<200 <100 <200 <200 <200	7 7 . 02	7 -3 3 .01	15 2 7 .015	. 030 . 050 . 080	<.1 <.1 <.1 <.1		Hornblende diorite. Hornblendite. Graphic pegmatite. Granodiorite. Quartz core of pegmatite.
P48b P82 P94 P95 P100	<7 70 20 15	30 30 5	<200 <100 <100 <200 <200	.03 1.5 7	.01 .7 10	.1 .7 .05	. 040 . 170	<.1 <.1 .1		Do. Granodiorite. Quartz diorite. Pegmatoid quartz monzonite. Serpentinite.

..

TABLE 1.—Analyses of samples from the Ventana [Parts per million, ppm; citrate

	Semiquantitative spectrographic analyses (ppm) Sample Ti Mn Ag Ba Be Zr Co Cr Cu La B Mo Ga Nb Sc Ni Pb Sr																	
Sample	Ti	Min	Ag	Ba	Ве	Zr	Co	Cr	Cu	La	В	Мо	Ga	Nb	Sc	Ni	РЪ	Sr
				_		Intrus	ive	rocksCor	ntinu	ed								
P129 P134 P135 P144 P1518	100 10,000 1,000	300 300 150	<0.5 <.5 <.1 <.1 <.5	1,500 500 1,000 100 1,000	<1.5 1.5 (1) 1	10 100 300 10 20	<5 20 10 50 <5	<5 20 30 100 5	7 7 70 15	150 70 <30	<10 <10 <30 <30 <10	0 0 A	15 30 15 15 20	7	<5 15 15 50 <5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	70 <10 20 10	150 300 500 300 700
P151b P151c P186 P222 P290	700 300 70 1,000	200 100 2,000 200	<.5 <.5 <.1 <.5	200 1,000 1,000 1,500 200	3 1 1 4 4	70 50 150 150 <10	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<5 15 20 <3 70	20 50 30 2 5	20 20 30	<10 <10 <10 <30 <10	0 A A	15 30 15 15 <10		10	3 20 <30 15	50 150 70 70 <10	200 700 300 200 1,000
Н4 Н5 Н6 Н7 Н14а	300 10,000 7,000 >10,000 1,500	150 700 700 1,500 1,000	<.5 <.5 <.5 <.5 <.5	700 1,500 100 1,500 20	2 2	20 150 200 100 10	<5 20 7 70 100	70 100 30 20 3,000	7 30 30	50	<10 <10 <10	A A A	10 20 20 20 <10		<5 15 15 30 15	30 5 5 7 700	15	300 1,500 300 2,000 <50
н23 н24 н28 н385 н39	100 500 5,000 150	2,000 70 100 300	<.5 <.5 <.5 <.5 <.1	20 >5,000 2,000 <10 1,500	1 3	<10 70 300 <10 200	100 <5 <5 70 3	>5,000 150 ·<5 3,000 7	2 5 20 10 3	100 70 <20	<10 10	A A A	<10 20 30 <10 15		<5 5 <5	3,000 7 3 3,000 <30	<10 70 30 <10 30	50 1,500 500 100 300
н40 н49 н54 н58 н69	150 200 2,000 150 5,000	100 150 150 500 1,000	<.5 <.5 <.5 <.5 <.5	150 500 700 <10 500	1 3 1 4 1	<10 >1,000 20 <10 150	<5 <5 <5 100 50	5 15 5 2,000 50	30 7 7 15	20 50 <20	<10 <10 <10 <10 70 √10	A A A	<10 15 15 <10 20		<5 <5 5 7 30	3 3 3,000 10	15 10 70 <10 10	50 500 300 <50 700
H76 H77 H135a H138 H139	150 300 100	700 1,000 1,500	<.1 <.5 <.1 <.5 <.5	1,500 10 150 <10 700		150 <10 20 <10 30	20	<3 3,000 500 3,000 <5	, 7 15 50 50		<30 <10 <30 <10 <10	ልፊል	10 <10 15 <10 20	5 3 1	5 7 30 7 5	<30 2,000 100 3,000 3	50 <10 10 <10 50	300 <50 200 <50 300
H147 H159 H161 H162 H173	700 300 3,000 300 1,500	150 300 1,500 70 300	<.5 <.5 <.5 <.5 <.5	300 <10 15 700 150		15 <10 15 100 70	<5 150 150 <5 10	<5. 3,000 3,000 <5 20	7 7 150 20 70	Q0 Q0 Q0 30	io	QAA	30 50 <10 15 15		50	20 3,000 300 3 15	150 <10 <10 70 30	150 <50 50 300 300
H174 H180 H185	300 1,500	300 300	<.5 <.5 <.1	150 700 1,500	1 2 2	70 300 200	<5 <5 ⊲	<5 5 5	30 20 5	30	<10 10 <30	2	15 30 20		<5 7 5	2 2 <30	50 30 20	100 100 150
					_		dime	ntary roc	ks	-	-	-			-	-		
Р23 Р24 Р25 Р26а Р26b	3,000 2,000 3,000 2,000 3,000	500 500 1,000 500 500	4 4 4	500 500 500 700 500	2 <1 1.5 1.5 1.5	 	15 7 20 7 7	150 50 100 50 50	70 7 50 7 10	50 50 30		<u>۵۵۵۵۵</u>		10 10 10		70 20 70 20 30	15 10 15 10 10	150 100 150 200 200
P90 P125 P174 P185 P191a	3,000 5,000 1,000 1,500 300	300 300 300 150 150	<⊥ <.5 <.5 <.5 <.5	700 1,500 1,000 300 700	<1	100 30 100 70	10 7 <5 <5 <5	50 150 150 15 5	30 20 3 50 30	50 20	<10 <10 <10	βß	30 <10 10 <10		10 5 <5	15 7 3 9 5	10 20 10 30 20	200 1,500 700 ~50 50
P192 P242 H18a H18b H26	7,000 7,000 500 1,000 3,000	150 150 200 500	<1	1,000 700 2,000 700 500	<1	200 150 	7 5 3 15	150 70 5 10 150	30 20 10 10 30	50 <30		<3				20 20 <3 3 50	50 50 10 10 <10	300 150 150 100 100

primitive area, Monterey County, Calif.-Continued

soluble heavy metals test, cxHM]

	Semiquantitative spectrographic analysesContinued (ppm) Chemical analyses (ppm) V Y Zn Fe Mg Ca Hg Au c								
Sample	v	Y Zn	Fe			J		exEM	Sample description
				-	Intrus1	e rocks.	-Cont:	inued	
P129	10	7 <200	1	.15		0.010	<0.1		Pegmatite.
P134 P135	70 70	15 <200 30 <100	10	2	2	. 020	<.1		Quartz diorite. Granodiorite.
P144	500	15 <100							Hornblende gabbro.
P151a	10	7 <200	.7	.7	1	.620	<.1		Pegmatite.
P151b	10	10 <200	1.5	.7	1	.230	<.1		Pegmatite.
P151c P186	10 10	15 <200 5 <200	1 2	•5 •5	2 1	.120 .040	<.1 <.1		Do. Garnetiferous alaskite.
P222	<1	15 <100							Pegmatoid granite.
P290	30	10 <200	1.5	1	10				Green-stained granite.
H4	<10	<5 <200	1	.7	1 ·	.120	<.1		Biotite quartz monzonite.
Н5	70	15 <200	7	3	10	.030	.2		Granodiorite.
н6 н7	50 150	15 <200 15 <200	5 10	1.5 7	3 15	.020 .100	<.1 <.1		Foliated granodiorite. Gabbro.
H14a	30	5 200	15	10	ĩ	. 040	<.1		Peridotite.
H23	20	<5 <200	.7	10	.2	.200	<.1		Serpentinite, float.
н24	10	7 <200	.5	-0.7	2	.010	.1		Pegmatite, float.
н28	20	10 <200	3	<u>_</u> .7		. 020	<.1		Leucogranite.
н38ь н39	<10 10	<5 <200 10 <100	3	7	15 	. 070	<.1		Serpentinite, float. Biotite granite.
				15	•	<.010	<.1		Pegmatite.
н40 н49	<10 <10	7 <200 10 300	.15 .7	.15 .5	.2 1	. 010	<1		Do.
н54	15	70 <200	2	.7	1	<.010	<.1		Do.
н58 н69	15 150	<5 <200 5 <200	7 10	10 3	2 7	.030 .010	<.1 <.1		Serpentinite. Quartz diorite.
		-	10	2					
н76 н77	7 30	30 <1.00 <5 <200	7	10	2	.010	<.1		Garnetiferous biotite granite. Peridotite.
H135a	100	15 <100					~-		Gabbro.
H138	15 <10	15 <200 30 <200	10 1.5	10 .15	15 .7	.070 .070	<.1 <.1		Peridotite. Granite.
H139	(10	30 ~200	1.7	.19			~.1		
8147	<10	7 <200	.7	.7	.7	. 050	<.1 <.1		Pegmatite. Serpentinite.
H159 H161	15 70	<5 <200 7 <200	10 15	>10 10	.07 15	.100	.2		Peridotite.
1162	<10	5 <200	1	.2	.7	.020	<.1		Pegmatite.
1173	30	30 <200	3	2	5	.100	<.1		Pegmatite, float.
н174	<10	15 <200	1	. 15	.7	.010	• 3		Pegmatite.
1180	10	15 <200 20 <100	3	.7	1	. 050	.5		Granodiorite. Quartz monzonite.
1185	<1	20 <100							quartz monzonite.
					Sed	imentary	rocks		
P23	150	30 <200	5	2	.7	.015	<.1		Gray sandy siltstone.
P24	30	15 <200	2	.7	.1	. 015	<.1		Sandstone. Do.
P25 P26a	150 70	30 <200 20 <200	5 3	1.5 1.5	.5 .5	.025 <.010	<.1 <.1		Do. Conglomerate matrix.
Р26ъ	100	15 <200	š	2	.5	<.010	<.1		Do.
P90	100	15 <200	3	1.5	- 3		<.1		Do.
P125	50	20 <200	5 3	2	5	. 030	<.1		Do.
P174 P185	10	7 <200 <5 <200		7	20 .15	.050 <.010	<.1 <.1		Do. Sandstone.
P185 P191a	15 10	5 <200	1.5 .7	.1 .15	. 07	<.010	<.1		Do.
P192	150	15 <200	7	2	1	.100	<.1		Light-gray siltstone.
P192 P242	150 70	15 <200	5	2	. 7	. 050	<.1		Gray claystone.
H18a	15	<10 <200	.7	•7	.1	,	<.1		Sandstone.
н18ь	15 150	10 <200 20 <200	1 5	.5	.2 .7		<.1 <.1		Conglomerate matrix. Do.

TABLE 1.—Analyses of samples from the Ventana

[Parts per million, ppm; citrate

	Semiquantitative spectrographic analyses (ppm) Sample Ti Mn Ag Ba Be Zr Co Cr Cu La B Mo Ga Nb Sc Ni Pb Sr																	
Sample	Ti	Mn	Ag	Ba	Be	Zr	Co	Cr	Cu	La	В	Мо	Ga	Nb	Sc	Ni	Pb	Sr
					S	ediment	ary	rocksCo	ntinu	∋d								
н27 H31 H61 H62 H63	1,000 2,000 >10,000 7,000 7,000	1,500 300 300 1,000 300	<0.5 <1 <.5 <.5 <.5	1,500 1,000 700 1,500 1,000	<1 2	300 300 150 100	50 10 <5 15 10	300 50 30 150 500		50 <30 150 30 50			30 15 20 30	10	30 15 15 20	70 15 30 70	30 10 20 30 20	700 100 150 300 1,000
н66 н68 н80 н95 н116	>10,000 7,000 3,000 7,000 5,000	1,500 1,500 150 300 100	<.5 <.5 <.5 <.5 <.5	1,000 2,000 1,500 1,500 3,000		100 70 150 150 70	20 <5 <5 5 <5	150 100 15 150 5	70 30 5 30 7	30 70 30	<10 <10 <10 <10 <10 <10	000	20 30 10 30 20		20 15 7 15 <5	30 7 8 7 8 7 8	15 50 30 20 50	900 700 300 300 1,000
H126 H148 H150 H151 H168	7,000 5,000 10,000 5,000 5,000	300 300 2,000 150 100	<.5 <.5 <.5 <.5	1,500 1,500 700 1,500 200	5 5 5 5	300 50 150 100 200	5 <5 70 <5 <5	30 15 50 10 50	50 50 30 30	50	<10 30 <10	βß	30 15 30 15 10		10 7 15 <5 7	3 5 70 2 20	20 20 30 20 15	300 300 300 150 <50
						4	lter	ed rocks										
Р3а Р3b Р5 Р7 Р12b	1,500 1,500 3,000 1,000 5,000	150 200 700 150 300	신 신 신	1,000 150 1,000 700 500	1.5 1 1 <1		3 <25 5 ♥	30 20 50 3 7 0	20 3 30 50 70	30 50 30		500 MP		<10 <10 <10 30		7 19 19 19 19 19 19 19	10 10 10 30 <10	200 30 500 200 200
P16a P16b P17 P19 P21b	500 5,000 3,000 5,000 1,500	30 500 1,000 300 700	<.5 <1 <1	20 100 30 2,000 100	↓ 1.5 1.5 1.5	1,000	150 <5 ř 10 15	3 100 30 150 30	1,500 10 50 50 150	150 30 70	<10	<3 5	10	10	10	200 5 20 30 30	<10 15 30 <10	20 1,000 70 200 30
P21c P22a P22b P28 P29	5,000 1,000 2,000 700 700	150 300 300 100 15	<1 <1	1,500 70 30 100 200	<1 <1 <1		735 5 15	2 20 30 10 15	50 10 10 7 300	30 30 30 <30	 	400000		10 <10 10 <10 <10		<3 7 10 3 15	20 <10 <10 <10 <10	200 100 150 10 7
P32 P35 P46 P50 P52a	5,000 1,500 10,000 700 1,500	500 200 1,500 700 300	<1 <.5 <1	700 2,000 1,500 200 1,000		100	15 <3 15 15 <3	150 7 70 30 2	70 3 7 150 3	50 30 <30	<10	<5	50 	10 <10 <10 <10	20	50 <3 7 30 <3	10 20 30 15 10	500 300 1,000 30 150
Р52Ъ Р54 Рб0 Р78Ъ Р78с	5,000 5,000 5,000 1,000 1,000	1,000 1,500 1,000 500 150	<1 <1 <1	500 200 700 1,000 1,500	1 <1 1.5 <1		10 10 10 3 3	15 300 100 1	7 7 50 5 7	150 <30				<10 10 30 <10 <10		<3 15 10 <3 <3	10 <10 10 10	20 100 200 70 150
Р78d Р83 Р84 Р85a Р85b	3,000 50 3,000 3,000 2,000	700 150 3,000 500 300	<1 <.5 <1	1,000 15 200 2,000 2,000	1.5 <1 1.5 1.5	100	3 <3 <5 15 15	1. 3 70 100 50	5 2 30 15 50 300	<30 70 70	15	00800	 10 	15 <10 30 <10	15	<3 <3 7 30 20	<10 <10 30 <10 <10	300
Р85с Р85d Р87а Р87ь Р87с	5,000 7,000 >10,000 >10,000 3,000	1,500 1,000 3,000 3,000 300	<1 <.5 <.5	300 1,000 300 1,500 500	<⊐ 3 2 1 1	150 150		100 50 1,500 2,000 30		30	50 150	6880 u	20 20	<10	30 50	15 10 100 150 20	<10 <10 20 <10 15	200
P87d P88 P89 P91 P96	10,000 >10,000 7,000 10,000 3,000	700 2,000 1,000 300 500	<.5 <1 <.5	150 300 150 500 500	<1	150 500	50 100 15 30 15	70 20 15 150 20	70 300 20 70 300	100 70 50	10	08080	20	<10 30 <10	30 11 15	30 30 10 30 5	<10 <10 <10 30 <10	1,500 150 150

primitive area, Monterey County, Calif.-Continued

soluble heavy metals test, cxHM]

	Semi			ve spect	trograph nued (percen		an	emical alyses (ppm)		
Sample	٧	Y	Zn	Fe	Mg	Ca	Hg	Au	схНМ	Sample description
						Sediment	tary roc	<u>ks</u> Cor	ntinued	
H27 H31 H61 H62 H63	150 100 20 30 70	15 < 15 <	200 200 200 200 200	10 3 3 3 7	5 1.5 2.3	7 .15 15 .7 5	0.140 .125 < 010 .080	<0.1 <.1 <.1 <.1 <.1		Siltstone. Conglomerate matrix. Do. Arkosic sandstone. Nodular shale.
н 66 н68 н80 н95 н116	100 50 20 70 15	15 < 15 <	(200 (200	7 3 1.5 5 1	3 1.5 1.5 2	7 7 15 1.5 1	.030 .090 <.010 .350 .110	<.1 <.1 <.1 <.1 <.1	 	Graywacke. Arkose. Sandstone. Do. Do.
H126 H148 H150 H151 H168	50 30 70 20 30	10 « 30 «	200	7 3 7 2 2	1.5 .7 2 .5 .7	.7 1 1.5 .5 .05	.030 .200 .200 .060 <.010	<.1 <.1 <.1 <.1 <.1	·	Conglomerate matrix. Sandstone. Argillaceous siltstone. Conglomerate matrix. Do.
						Į	Altered	rocks		
P3a P3b P5 P7 P12b	30 20 200 70 150	15 < 20 < 30 < 20 < 30 <	200 200 200	1.5 1.0. 5.0 7 >10	.3 .15 2.0 .3 1.5	1.0 .3 >10 .3 1.0	. 030 . 030 . 030 . 030	<.1 <.1 <.1 <.1 <.1		FeO-stained granite, float. Do. Pyritic quartzite, float. Limonite from fracture. Altered rock, float.
P16a P16b P17 P19 P21b	<7 15 30 200 50	<10 < 30 < 30 < 20 < 70 <	200 200 200	>10 3 3 7 7	.019 2 .7 1.5 .7	5 .7 20 1 .5 .1	.050 <.010 .015 .025 .025	<.1 <.1 <.1 <.1	 	Pyritic calc-silicate. Do. FeO-stained quartzite. Sheared granitic rock. Altered rock float.
P21c P22a P22b P28 P29	150 30 30 15 70	20 < 10 < 20 < <10 <	200 200 200	5 1.5 2 .7 >10	.5 .7 1.5 .07 .01	1 >10 >10 .05 .02	.060 <.010 <.010 .015 .025	<.1 <.1 <.1 <.1	 	Altered granitic rock. Calc-silicate rock. Do. Quartz vein. Limonite from quartz vein.
P32 P35 P46 P50 P52a	150 30 150 20 20	20 < 15 < 10 < 10 <	200 200 200	5 2 10 >10 3	2 .7 5.15 .5	7 -3 7 -2 -7	.030 .015 <.010	<.1 <.1 <.1 <.1 <.1		Sulfide-bearing gneiss float. FeO-stained granite, float. Sheared granitic rock. Limonite, joints in quartzite. Brown fault breccia.
Р52b Р54 Рб0 Р78b Р78c	100 100 150 15 10	50 < 20 30 < 10 <	200 200 200	5 >10 7 5 2	1.5 2 2 .2 .2	2 1.5 .2 .3	 	<.1 <.1 <.1 <.1 <.1		Gray fault breccia. Limonite, joints in granite. Garnet-biotite gneiss. Altered rock, float. Do.
P78d P83 P84 P85a P85b	20 <7 20 150 100	70 < <10 < 15 < 20 < 15 <	200 200 200	7 2 7 7 7		.7 >10 >20 .3 .3	. 060	<.1 <.1 <.1 <.1 <.1	 	Do. Silica-carbonate rock, float. Calcite veinlets in mudstone. FeO-stained float. Do.
P85c P85d P87a P87b P87c	200 150 200 150 200	20 < 70 < 20 < 15 <	200 200 200	>10 7 15 15 5	1.5 2 3 7 1.5	1 3 15 15 .1	. 120	<.1 <.1 <.1 <.1 <.1	 	Do. Do. Brown sandstone, float. Amphibolite, float. Mineralized rock, float.
P87d P88 P89 P91 P96	500 200 200 70 100	30 < 15 < 20 < 20 <	200 200 200	>10 15 7 5 5	.5 5 1 1.5 1.5	2 15 .5. 10 .5	1.500	<.1 .1 <.1 <.1 <.1	 	Sandstone, float. Calc-silicate rock, float. Altered rock, float. Calc-silicate gneiss, float. Gouge.

TABLE 1.—Analyses of samples from the Ventana

[Parts per million, ppm; citrate

	Semiquantitative spectrographic analyses (ppm) pple Ti Mn Ag Ba Be Zr Co Cr Cu La B Mo Ga Nb Sc Ni Pb Sr:																	
Sample	Ti	Mn	Ag	Ba	Ве	Zr	Co	Cr	Cu	La	B	Мо	Ga	Nb	Sc	Ni	РЪ	Sr:
						Alte	red r	ocksCor	tinue	đ								
P99 P101a P101b P102b P103b	700 7,000 3,000 3,000 5,000	70 150 150 100 300	<1.5 <.5 <.5 <.5	70 3,000 70 1,500 2,000	<1 1 2 1	300 200 200 200	<5 <5	15 70 15 <5 50	20 30 15 20 10	<20 50		<2	15 <10 20 50		15 5 <5 7	<3 7 20 5 7	<10 100 10 20 20	10 70 <50 300 500
P104 P106 P110a P110b P110c	1,000 2,000 7,000 1,000 700	70 150 300 30 100		700 700 1,500 >5,000 >5,000	2 2 2 1 2 1 2 1 1	300 70 70 30 30	<5 20 <5	30 5 100 20 30	10 30 100 50 20	20 20 <20		<2 30 7	15 10 30 20		30 <5	5 30 3 20	30 50 20 30 50	50 100 500 1,500 30
P117b P118b P121a P121b P121c	10,000 >10,000 3,000 >10,000 7,000	300 300 100 300 300	<.5 <.5 <.5 <.5 <.5	70 1,500 300 1,500 1,500	1.5 <1 2 1 1	150 300 200 300 300	70 <5 <5	150 1,000 20 70 100	30 50 150 150 5	70 30 20	70 70	<2	20 70 15 50 20			30 150 2 7 30	15 20 50 30 30	300 2,000 150 150 300
P122 P123 P124 P126 P127	10,000 300 7,000 1,500 1,500	300 3,000 150 100 500	.55 <.55 <.55 555	2,000 50 300 500 200	2 1 2 1 1	500 10 100 50 70	<5 10 <5	150 15 30 15 15	70 5 50 7 100	20 20 20	<10	A A A	20		<5	30 3 7 7 5	50 50 50 20 300	300 700 70 50 <50
P128 P130 P131 P132 P136	3,000 10,000 200 3,000 10,000	300 1,500 150 1,000 300	<.5 .7 <.5 <.5 <.5	200 1,500 2,000 >5,000 700	1 2 1 3 1	70 300 10 70 200	50 <5 10	30 • 300 15 150 30	100		<10 10	Q Q	10 30 <10 10 30		10	7 70 15 70 7	30 15 10 20 15	100 150 200 150 300
P137 P138 P139 P140a P140b	10,000 10,000 >10,000 >10,000 >10,000	300 300 1,000 1,000 1,000	<.5 <.5 <.5 <.5	1,500 1,000 700 700 150	2 2 1 2 1	200 150 300 700 100	15 5 30	70 70 30 200 20	7 20 5 30 3	20 70 20	10 15	AAA	30 70 30 70 30			7 10 3 70 7	30 20 <10 15 10	300 300 300 500 150
Р142 Р147а Р147b Р148 Р149а	1,500 >10,000 1,000 10,000 7,000	150 1,500 100 700 500	<.5 <.5 <.5 <.5 <.5	700 500 1,500 1,000 3,000	7 2 1 1	70 100 50 300 150	70 <5 5	15 20 5 150 100	70 30 7 70 20	20 <20 50	$\langle i0$	Q Q Q	30 70 20 30 30		5 30 <5 20 15	7 5 3 5 15	70 30 50 30 30	70 300 300 100 1,000
P149b P149c <u>1</u> P150a P150b P152	2,000 / 10,000 / 3,000 >10,000 10,000	300 500 150 1,500 300	<.5 <.5 <.5 <.5 <.5	3,000 1,500 3,000 300 1,500	1 2 2 1 2 2 1	150 300 300 20 150	5 <5 70	70 5 20 150	7 10 100 15 20	20 30 30 20	<1.0	QNQ	20 30 20 20 30		15 <5 30	7 8 8 7 7 7 7	30 15	500 1,500 500 700 1,500
P161 P162a P162b P163a P163b	5,000 7,000 >10,000 30 300	100 70 1,500 150 700	3 <.5 <.5 <.5 <.5	1,000 500 10,000 10 150	1 2 3 1 1	100 150 200 <10 15	<5 30 <5	30 100 200 <5 15	30 70	30 ⊲20	150 10	Q Q	20 30 30 <10 <10		20 30	2 7 70 2 7	70 70 30 <10 10	150 100 200 <50 <50
P163c P164a P164b P164c2 P165	10,000 1,000 / 10,000 5,000 1,500	150 700 · 70 150 100	2 <.5 <.5 <.5	5,000 70 1,500 700 700	1 2 1 2 1	150 30 300 150 50	<5 <5	150 20 100 70 10	50 70	<20 30	10 <10	Q 5 2	15 <10 20 20 <10		15 5 15 10 <5	7 10 25 5	150 10 300 700 15	150 <50 100 100 <50

 $\rm l/$ Sample P150a contains 150 ppm W. All other samples contain less than 50 ppm W.

primitive area, Monterey County, Calif.-Continued

soluble heavy metals test, cxHM]

			lyses-	-Contin	rographi ued (percent	1	ane	mical lyses opm)		
Sample	V	Y	Zn	Fe	Mg	Ca	Hg	Au	схНМ	Sample description
				- 140- 441 H	Alt	ered ro	ocksCo	ntinue	1 ·	
P99 P101a P101b P102b P103b	50 200 15 10 30	15 10 5	<200 <200 <200 <200 <200	>10 5 3 3 5	0.07 •7 •7 •2 2	0.1 .2 .1 .3 1.5	0.020 .020 .010 .050	<0.1 <.1 .3 .2 <.1		 Altered rock. Altered fault breccia. Do. FeO-stained aplite, float. Fault breccia.
P104 P106 P110a P110b P110c	30 30 300 100 1,00	10 7 15 5	<200	ר. ז. ז ז ז	- .5 .3 2 .5 .7	.3 .3 7 .7 .7	.050 <.010 .020 .020 .020	<.1 <.1 <.1 <.1 .4		FeO-stained sandstone, float. Sandstone. Altered rock, float. Do. Do.
P117b P118b P121a P121b P121c	100 150 30 70 30	20 10 10	<200 <200 <200 <200 <200	10 10 7 20 5	2 3.7 2 2	5 15 1 1 1.5	.040 .030 .125 .050 .020	.4 <.1 .3 <.1 <.1	 	FeO-stained mica schist, float. Altered rock, float. Do. Do. Do.
P122 P123 P124 P126 P127	100 10 30 15 20	5 5 <5	<200 <200 <200 <200 <200 <200	5 7 5 1.5	2 7 .7 .3 .7	15 15 .2 .1 1	.050 .040 .020 .020 <.010	<.1 <.1 <.1 <.1 <.1	 	Quartzite. FeO-stained carbonate rock. Sandstone. Quartz vein. Do.
P128 P130 P131 P132 P136	30 150 30 500 50	15 7 150	<200 <200 <200 500 200	3 7.7 5 7	1 3 7 10 2	1.5 7 20 10 1.5	.110 .030 .010 .060 .020	<.1 <.1 <.1 .1 <.1	 	Silicified mudstone. Sheared gneiss. Silicated darble. Mica-rich soil. Chloritic(?) fracture filling.
Р137 Р138 Р139 Р140а Р140ь	70 70 50 100 200	15 10 20	<200 <200 <200 <200 <200 <200	7 7 15 10	3 3 3 3 3	1 1.5 1 10 7	.100 .100 .040 .190 .360	<.1 <.1 <.1 <.1 <.1		Gouge. Do. Do. Sheared rock from fault. Do.
Р142 Р147а Р147b Р148 Р149а	300 300 20 50 70	7 30	200 <200 <200 <200 <200 <200	15 15 3 7 3	.2 3 .5 3 1.5	.7 10 .3 .7 2	2.000 .030 .030 .150 .060	.2 <.1 <.1 <.1 <.1	 	Limonite fracture filling. Altered rock, float. Do. FeO-stained schist, float. Altered rock, float.
P149b P149c P150a P150b P152	50 70 15 300 70	10 <5 20	<200 <200 <200 <200 <200 <200	2 10 7 15 7	.7 3 1 5 3	1 3 1.5 15 1.5	.010 .310 .130 .050 .010	<.1 <.1 <.1 <.1 <.1	 	Do. Do. Granitic rock Amphibolite. FeO-stained gneiss.
P161 P162a P162b P163a P163b	700 100 150 15 10	30 15 <5	<200 <200 <200 <200 <200 <200	7 7 10 .5 1.5	.3 1.5 3 10 1.5	.15 .5 2 .3 .3	.030 .120 .080 .010 .040	<.1 .1 <.1 <.1 <.1	 	FeO-stained graphitic schist. Brecciated shale. Brecciated gneiss. FeO-stained marble. Silicated marble.
P163c P164a P164b P164c P165	200 20 100 50 30	10 15 10	<200 <200 <200 <200 <200 <200	3 3 5 .7	.7 3 .7 .7 .3	.3 1.5 .15 .1 .07	.210 .080 .100 .160 .120	.3 <.1 <.1 <.1 <.1	 	Do. Fyritic gneiss. Do. Quartz vein.

 $2\!/$ Sample Pl64c contains 300 ppm As. All other samples contain less than 200 ppm As.

TABLE 1.—Analyses of samples from the Ventana

[Parts per million, ppm; citrate

					Se	emiquan	an	alyses	rogra	phic					Semiquantitative spectrographic analyses (ppm) Sample Ti Mn Ag Ba Be Zr Co Cr Cu La B Mo Ga Nb Sc Ni Pb Sr														
Sample	Ti	Mn	Ag	Ba	Ве	Źr	Co	Cr	Cu	La	в	Mo	Ga	NЪ	Sc	Ni	РЪ	Sr											
						Alter	red r	ocksCont	inue	1																			
P166 P167 P168 P169 P170a	1,000 10,000 500 1,000 300	>5,000 300 70 1,500 500	Ø.5 <.5 <.5 <.5	200 1,500 1,500 150 300	1 1 1 3 1	50 150 100 50 100	57555	15 150 15 15 15 7	30 7 20	& & & & & & & & & & & & & & & & & & &	<10	AAA	<10 15		7 20 <5 5 5	10 7 20 7 7	50 <10 70 15 15	<50 50 300 <50 <50											
Р170b Р170c Р171 Р172 Р173	7,000 700 1,000 700 500	3,000 200 50 70 1,000	<.5 <.5 <.5 <.5	700 1,500 1,500 1,500 70	1 1 2 2	300 30 50 50 10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 15 20 7 20				B A A	20 \10 10 20 10		10 <5 <5 7	30 5 2 3 15	10 10 100 100 10	<50 <50 100 <50											
P184 P189 P191b P193 P198a	7,000 1,500 300 100 1,000	150 150 1,500 300 1,000	<.5 <.5 <.5 <.5	1,000 700 300 70 1,000	3 2 1.5 5 2	700 50 70 ⊲10 70	50500	70 20 10 <5 20	50 30	100 20 20 20 20 30	<10 10	8 V 8	30 20 <10 15 15		<5 5	20 5 5 3 10	50 50 20 20 20	300 150 <50 300 300											
P1986 P198c P199 P200 P206	10,000 700 >10,000 7,000 300	1,000 300 150 300 300	<.5 <.5 <.5 <.5 <.5	150 2,000 300 1,500 200	3 1 <1 1.5 2	300 70 1,000 500 30	15 <5 15 5 5	100 30 150 10 7	200 30	50 <20 100 200 <20	30 <10	AAA	30 10 50 30 √10		20 <5 30 7 5	30 5 30 2 5	30 50 10 30 √10	300 300 150 1,000 <50											
P208 P216b P218 P220 P224	700 2,000 2,000 1,500 3,000	300 300 5,000 70 1,000	<.5 <.5 <.5 <.5 <.5	150 500 70 1,000 70	1 <1	<10 70 70 70 70	575 502 20	5 150 30 50 1,500	50 3 100 200 300	50 <20 30	<10 10 15	2	<10 15 <10 15 30		5 10 7 5 30	3 20 50 3 50	10 30 <10 15 10	<50 700 <50 150 150											
P225 P250 P251 P255 P262	7,000 5,000 10,000 3,000 300	1,500 3,000 150 200 3,000	<.5 <.5 <.5 <.5	200 100 200 30 300	2 3 √ 5 1	100 70 70 70 300	15 20 10 5 5	300 100 700 150 5	50 50 50 30 30	50	20 <10 <10	Q	20 20 30 30 30		15 15 15 7 30	30 50 30 20 ₽	30 <10 30 15 20	700 300 300 150 300											
Р263 Н2Ъ Н8 Н9 Н13	7,000 5,000 1,000 1,500 3,000	300 1,000 150 150 700	4 4	150 1,000 150 500 1,000	<1 1.5	150 	<5 20 ママ マ 10	700 300 20 50 150		<30 <30 <30		10 <3		0000 0000 0000		30 70 3 15 30	30 10 <10 <10 <10	100 500 30 100 200											
H14b H14c H21 H22 H29	5,000 1,500 1,000 5,000 2,000	1,500 300 3,000 3,000 200	<1	100 30 500 200 500	⊥ ⊲ 3	30 10 	150 70 <3 150 3	>5,000 >5,000 70 200 70	150		15	0-0688	20 20 	<10 15		100 1,500 10 150 20	40 40 40 00 00 00 00 00 00 00 00 00 00 0	300 50 70 20 100											
н33 Н34 Н35 Н41 Н44	500 100 1,500 5,000 >10,000	30 20 >5,000 500 300	⊲ ⊲.5 <.5 <.5	300 300 70 700 3,000	<1 2 2	 150 70 150	33775 775	2 1.5 200 50 150	10 15 300 50 70	<30 20	50 15	Q Q 10 Q	 15 20 30		20 15	<3 <3 20 30 5	10 15 <10 20 50	20 50 <50 70 2,000											
Н45 н47 Н48а Н50 н64	7,000 7,000 >10,000 >10,000 2,000	70 1,500 300 1,500 200	<.5 <.5 <.5 <.5 <.5	1,500 100 500 500 20	Δυνυ	150 200 100 300 150		300 150 200 150 20	70 30 30 200 200	50 (2) 70	15 15	00	70 20 30 30 40		30 30	3 70 30 70 2	<10	1,500 700 1,500 100 <50											
н65 н67 ₃ / н703/ н73 н74	700 3,000 150 3,000 150	300 500 3,000 1,500 300	<.5 <.5 <.5 <.5 <.5	2,000 2,000 30 700 <10	1 1 3 4	100 150 10 150 <10	7	30 10 <5 150 >5,000	7 200	20 <20	<10 10 15	AAA	10 20 70 30 70		5 <5 20	7 5 22 30 5,000	20 70 20 30 <10	200 500 200 200 <50											

 $\underline{3}/$ Sample H70 contains 70 ppm Sn. All other samples contain less than 10 ppm Sn.

primitive area, Monterey County, Calif.-Continued

soluble heavy metals test, cxHM]

P167 10 P168 1 P169 5 P170a 1 P170b 3 P170c 2 P171 7 P172 1 P173 7 P184 10 P193b 1 P193c 1 P200c 1 P205c 1 P208 1	30 10 50 15 70 15 70 10 10 10 10 10 10 10 10 10 1	10 5 5 5 5 5 5 5 5 5 5 7 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 5 5 7 5 7 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	Zn 200 200 200 200 200 200 200 20	Fe 5 5 1 3 .7 5 1 7 1.5 3 10 3	Mg 0.15 .7 .15 .7 .1 1 .2 .5 .7 1.5	Ca 1tered 0.7 .7 .07 .15 .2 .07 .3	Hg <u>rocks</u> 0.400 .500 .220 .200 .020 .020 .030 .020 .220		nued 	Pegmatite.
P167 10 P168 11 P169 12 P169 13 P170a 1 P170b 3 P170c 2 P171 7 P172 1 P173 7 P189 3 P191b 1 P193b 1 P198e 1 P198e 1 P198c 1 P198c 1 P198c 1 P198c 1 P198c 1 P199c 1 P198c 1 P200c 1 P200c 1 P208 1	00 10 50 15 30 70 15 70 00 10 10 10 10 10 10 10 10 1	10 5 5 5 5 5 5 5 5 5 5 7 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 5 5 7 5 7 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	400 400	5 1 3.7 5 1 7.5 3	0.15 .7 .15 .7 .1 .1 .2 .2 .5 .7	0.7 .7 .7 .07 .15 .2 .07 .3	0.400 .500 .220 .200 .020 .020 .030 .020	<0.1 <.1 .4 .1 <.1 <.1		Granitic rock. Pegmatite. Quartz veinlet. Silicified gneiss.
P167 10 P168 11 P169 12 P169 13 P170a 1 P170b 3 P170c 2 P171 7 P172 1 P173 7 P189 3 P191b 1 P193b 1 P198e 1 P198e 1 P198c 1 P198c 1 P198c 1 P198c 1 P198c 1 P199c 1 P198c 1 P200c 1 P200c 1 P208 1	00 10 50 15 30 70 15 70 00 10 10 10 10 10 10 10 10 1	10 5 5 5 5 5 5 5 5 5 5 7 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 5 5 7 5 7 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	400 400	5 1 3.7 5 1 7.5 3	.7 .15 .7 .1 .1 .2 .2 .5 .7	.7 .7 .07 .15 .2 .07 .3	.500 .220 .200 .020 .020	<.1 .4 .1 <.1		Granitic rock. Pegmatite. Quartz veinlet. Silicified gneiss.
P168 1 P169 5 P170a 1 P170c 2 P170c 2 P170c 2 P171 7 P189 3 P1930 1 P198 1 P198b 10 P198c 1 P198c 1 P198c 1 P198c 1 P198c 1 P198c 1 P200 1 P2006 1 P208 1	10 50 15 30 20 70 15 70 00 30 10 10 10	<pre>\$55557 50557 50557</pre>	400 400	1 3 .7 5 1 7 1.5 3	.15 .7 .1 .2 .2 .5 .7	.7 2 .07 .15 .2 .07 .3	.220 .200 .020 .030 .020	.4 .1 <1 <1		Pegmatite. Quartz veinlet. Silicified gneiss.
P169 5 P170a 1 P170b 3 P170c 2 P170 7 P172 1 P173 7 P189 3 P191b 1 P193a 1 P198b 10 P198c 1 P198c 1 P198c 1 P199c 10 P200 1 P200 1 P208 1	50 15 30 20 70 15 70 20 30 10 10 10 10	55 55557 50557	<pre><200 <200 <200 <200 <200 <200 <200 <200</pre>	3 .7 5 1 7 1.5 3	.7 .1 .2 .2 .5 .7	2 .07 .15 .2 .07 .3	.200 .020 .030 .020	.1 <.1 <.1		Quartz veinlet. Silicified gneiss.
P170b 3 P170c 2 P171 7 P172 1 P173 7 P189 3 P198 1 P198a 1 P198b 10 P198c 1 P198c 1 P199c 1 P199c 1 P199c 1 P199c 1 P199c 1 P199c 1 P200c 1 P200c 1 P200g 1	30 20 70 15 70 15 70 20 20 20 20 20 20 20 20 20 20 20 20 20	5 5 5 5 5 7 50 5 5 7 50 5 5 7	<pre></pre>	5 1 7 1.5 3	1 .2 .2 .5 .7	.15 .2 .07 .3	.030 .020	<.1		
P170c 2: P171 7 P172 1 P173 7 P184 10 P1930 1 P1930 1 P198a 10 P198b 10 P198b 10 P199c 1 P198c 1 P199c 1 P2006 1 P206 1 P208 1	20 70 15 70 00 30 10 10	5 5 5 7 50 5 5 7 50 5 7	<pre><200 <200 <200 <200 <200 <200 <200 <200</pre>	1 7 1.5 3	.2 .2 .5 .7	.2 .07 .3	.020			
P171 7 P172 1 P173 7 P184 10 P189 3 P191 1 P193 1 P198a 1 P198b 10 P198c 1 P198c 1 P199 10 P290 1 P200 1 P208 1	70 15 70 00 30 10 10	5 7 50 50 5 7 7	<pre><200 <200 <200 <200 <200 <200 </pre>	7 1.5 3 10	.2 .5 .7	.07 .3		.2		Silicified gneiss.
P172 1 P173 7 P184 10 P189 3 P191b 1 P1938 1 P1948 10 P1958 1 P1968 1 P1980 10 P1980 1 P1990 10 P2000 1 P2005 1 P208 1	15 70 30 10 10 10	5 7 50 55 5 7	<200 <200 <200 <200	1.5 3 10	.5 .7	• 3		~ 1		Do. Do.
P173 7 P184 10 P189 3 P191b 1 P193b 1 P198a 1 P198b 10 P198b 1 P198b 1 P198b 1 P199b 1 P199c 1 P199c 1 P200 1 P206 1 P208 1	70 30 10 10 10	7 50 55 5 7	<200 <200 <200	3 10	.7		.130	<.1 <.1		Do. Sheared argillized pegmatite.
P189 3 P191b 1 P193 1 P193 1 P198a 10 P198b 10 P198b 1 P198b 1 P199b 1 P199c 1 P200 1 P206 1 P208 1	30 10 10 10	<5 5 7	<200		1 5	•5	.200	<.1		Limonite-quartz rock.
P191b I P193 1 P198a 1 P198b 10 P198c 1 P198c 1 P1998c 1 P1998c 1 P1998c 1 P200 1 P206 1 P208 1	10 10 10	<5 5 7	<200	3	1.7	1	. 050	.1		FeO-stained sandstone.
P193 1 P198a 1 P198b 10 P198c 1 P198c 1 P199 10 P200 1 P206 1 P208 1	10 10 00	7	<200	5	۰7	1	.130	<.1		Pyritic quartzite, float.
P198a 1 P198b 10 P198c 1 P198c 1 P199 10 P200 1 P206 1 P208 1	10			7	.2	.15	<.010	<.1		Limonitic fracture filling.
P198b 10 P198c 1 P199c 10 P200 1 P206 1 P206 1 P208 1	00		<200 <200	1 3	.2 1.5	1.5 7	<.010 <.010	<.1 <.1		Argillized aplite. Fault breccia.
P198c 1 P199 10 P200 1 P206 1 P208 1		20		7						
P199 10 P200 1 P206 1 P208 1			<200 ≪200	1	3 .7	1.5 2	.200	<.1 <.1		Do. Do.
P206 1 P208 1			<200	15	3	ī.5	.300	<.1		Limonitic fracture coatings
P208 1	15		<200	5	1	2	.070	<.1		Sheared pegmatite.
	15	7	<200	5	.3	.5	<.010	<.1		Calcareous quartzite.
	15		<200	3	1	3	.210	<.1		FeO-stained pegmatite, float.
P216b 3 P218 15	30		<200 <200	5 15	3 1,5	>20 •7	.050	<.1 <.1		Amphibolite. Fault breccia.
P220 30			<200	10	.5	.3	. 050	<.1		Migmatitic mica schist.
P224 10	00	7	<200	15	10	10	<.010	<.1		Limonitic calc-silicate rock.
	20		<200	3	3	20	<.010	<.1		Do.
	50		<200	10	3 _	10	.200	<.1		Fracture fillings in paragneiss, float.
	50		<200 <200	7 3	.7 .7	15 20	<.010 <.010	<.1 <.1		Calc-silicate rock.
		200		7	7	5	.030	<.1		Argillized granite.
P263 30	00	30	<200	3	3	7	.060	.2		Gray gouge.
Н2ъ 30			<200	7	1	2	.015	<.1		FeO-stained schist, float.
н8 2 н9 20		<10	<200 <200	1.5 5	.5	.1 .7		<.1 <.1		Limonite fault gouge. Do.
H13 15			~200	7	.7 1.5	1		<.1		FeO-stained schist, float.
н14ь 15		10	<200	10		15	.020	<.1		
	70		200	15	10 7	3	1.480	<.1		Weathered peridotite. Deeply weathered peridotite.
H21 30	00	20	<200	>10	۰7	۰5		<.1		Fracture filling in peridotite, float.
H22 20 H29 5	00 50	700 20	200 <200	>10 3	1.5 1	.1 .05		<.1 <.1		Fracture filling in schist. Limonitic fault gouge.
н33 1 н34 <		<10 <10		5 .1	.02 .03	.02 .03		<.1 <.1		Do. Quartz vein.
H35 30	00		<200	15	3	2	. 070	<.1		FeO-stained schist.
	30		<200	10	1	.2	.200	<.1		Limonitic fault gouge.
H44 10	00	20	<200	7	3	15	.020	<.1		Limonitic schist.
	30		<200	15	3	3	<.010	<.1		Do.
H47 10 H48a 10			<200 <200	10 10	2 7	10 >20	.020 .030	<.1 <.1		Altered rock. Limonitic calc-silicate rock.
H50 10			<200	10	3	10	.030	.2		Limonitic schist.
	30		<200	2	۰،7	7	. 020	<.1		Quartz vein.
H65 10			<200	.7	• 3	1.5	.040	<,1		Do.
	15		<200	3	• 7	1.5	.020	<.1		Do.
H70 1 H73 7	L5 70	15	<200 <200	15 7	1.5 3	>20	.070	<.1 .2		Do. Fault breccia.
H74 1		<5		15	3 10	.7 .05	.020 .290	<.1		Serpentine in fault.

TABLE 1.-Analyses of samples from the Ventana [Parts per million, ppm; citrate

					Sem	iquant	a	ive spect nalyses (ppm)	rogra	hic								
Sample	Ti	Min	Ag	Ba	Be	Zr	Со	Cr	Cu	La	в	Мо	Ga	Nb	Sc	Ni	РЪ	Sr
						Alter	red r	ocksCo	ntinue	1								
H83 H86 H87 H98 H103	300 >10,000 2,000 3,000 5,000	300 500 150 100 1,000	<0.5 <.5 <.5 <.5 <.5	1,000 500 1,500 3,000 300	1 2 1 <1 1	700 300 20 70 70	<5 20 7 <5 7	7 70 10 5 70	150		15 <10 <10	Ø Ø	10 50 30 30 30		30 5 5	8 97 7 8 29 7 8 20	30	70 500 1,000 1,500 1,000
H166 H118 H127 H134 H137	7;000 10;000 700 200 30	300 2,000 300 70 70	<.5 <.5 2 <.5 <.5	1,000 1,500 700 70 20	1 7 2 1	300 300 <10 <10 <10	5 70 <5 <5 <5	100 150 5 150 <5	20 20 1,000	100 50 20 20 20	10 <10 100	ß ß ß	30 50 30 30 30			10 30 5 30 2	30 50 3,000 <10 <10	1,000 500 500 <50 <50
H140 H149 H152 H163 H175	150 30 5,000 10,000 700	5,000 50 150 700 ≥5,000	≪.5 <.5 < <.5 < <.5	300 <10 700 1,500 70	1 1 3 2 3	10 <10 150 200 50	<5 <5 50 5	5 50 500 30	5 50 100	00 00 00 70 00 00 00 00 00	<10 150 10	<2	20 <10 70 50 15		<5 10	3 3 5 30 3	70 10 10 30 <10	100 <50 70 300 <50
H176	10,000	500	<:5	30	<1	30	15	. 700		200	15	<2	30		30	50	15	100
								g deposi	_									
P116 P177 P190 P117 P267a	150 500 9,660 700 <10	15 300 300 200 100	<.5 <.5 <.5 <.5 <.5	30 150 1,000 150 70	<1 1	<10 10 100 30 <10	ゆいゆう	<5 150 20 <5	8 3 10 2 5	20	<10 <10	B B B	<10 10		5 7 <5	♥ 15 7 3 15	<10 10 20 <10 <10	1,000 300 300 500 <50
	Stream sediments																	
РЗ Р4 Рб Р8 Р9	2,000 3,000 1,500 5,000 3,000	300 300 200 700 500	<1 <1 <1	700 700 1,000 1,000 1,000	1 1.5 1 1	 	7 10 3 15 10	70 100 30 100 100	7 7 50 30	30 50 30 30 50		00000		<10 <10 <10 <10		20 20 10 50 50	10 10 15 10 15	500 500 200 200 200
P10 P11 P12a P13 P20	3,000 3,000 3,000 2,000 2,000	200 500 500 300 300	<1 ଏ ଏ	1,500 1,000 1,000 700 700	1 1 1 1	22 22 -2 	5. 7 10 3 7	70 30 50 20 20	7 10 10 7 7 7	30 30 30 30 30 30		\$\$\$\$\$\$\$	••	<10 10 10 <10 <10		15 15 15 10	10 10 10 10	300 200 300 200 200
P21a P31 P36 P40 P41	3,000 3,000 7,000 3,000 10,000	700 3,000 700 700 700	4 4 4	700 500 500 700 700	<1	300	7 15 20 15 50	30 70 100 70 150	, 7 20 70 30 30	30 70 30 70 70		<3 <3	 30	i0 <10 10 10	 	19 20 70 30 20	10 <10 <10 10 15	200 200 200 200 700
Р44 Р55 Р56 Р57 Р58	3,000 3,000 10,000 7,000 5,000	300 700 1,500 1,000 500	<1 <.5 <.5	700 500 500 700 500	<1 3 1	300 300	7 10 20 10 15	50 50 200, 70 150	30 7	30 <30 70 70 <30	 10 <10	βÿ	 30 30	<10	 30 20	5 10 30 10 70	10 <10 15 15 <10	300 150 300 200 150
P 59 P62 P63 P64 P78a	5,000 3,000 1,500 1,500 5,000	500 300 200 150 500	বা বা বা	300 500 700 700 700	<1	300 	<5 7 5 3 10	<5 30 30 50 30	15	50 <30 <30 <30 30	<10	\$ \$ \$		<10 <10		15 10 10 7	20 10 10 10 <10	70 150 100 100 200
P85ê P86 P93 P102a P103a	3;000 3,000 2,000 10;000 10,000	700 300 300 300 300	₹i.	500 700 760 760 500		300 300	15 10 10 7 10	70 70 50 100 100	7	50 <30 50 100 50	<10 <10	300		10 <10 <10	 15	20 15 15 20 15	<10 <10 10 15 20	200 150 150 200 150

.

primitive area, Monterey County, Calif .--- Continued

soluble heavy metals test, cxHM]

		ه ۲۹)	malyses m)	Contin	ectrographic Chemical analyses (percent) (ppm) Mg Ca Hg Au cxHM									
Sample	V	Y	Zn	Fe			1			Sample description				
_					-		rocks							
н83 н86 н87 н98 н103	10 100 15 15 300	50 20 5 <5 20	<200 <200 <200 <200 <200	2 10 3 5 10	0.15 3.7 1 7	1 7 2 2 15	0.060 .090 .050 .010 .050	<0.1 <.1 <.1 <.1 <.1		Fault gouge. Limonitic fault gouge. Vein material. Fracture filling in granite. Fracture filling in amphibolite.				
H106 H118 H127 H134 H137	70 150 15 200 700	10 10 10 15	<200 <200 1,500 700 500	7 7 20 >20	3 5 .02 <.02	7 3 5 .07 .1	.030 .280 .020 .090 .080	<.1 <.1 <.1 <.1 <.1		Altered rock, float. Fault breccia. Vein material. Limonitic amphibolite. Do.				
H140 H149 H152 H163 H175	10 10 70 100 100	50 5 10 30 15	<200 <200 200 <200 <200	3 20 10 15	.2 .05 .7 3 .15	.2 .15 .3 1 .5	.010 .050 .040 .080 .150	<.1 <.1 <.1 <.1 <.1		Quartz vein. Do. Limonitic silistone. FeO-stained amphibolite. Do.				
н176	150	20	<200	10	5	3	. 050	<.1		Limonitic gouge.				
Bpring deposits														
P116 P177 P190 Y117 P267a	10 30 30 15	<5 5 10 5 10	<200 <200 <200 <200 500	.05 3 1 10	7 5 1 1 .05	>20 >20 15 20 1.5	.110 .060 .080 <.010	<.1 <.1 <.1 <.1	*	Travertine. Do. Do: Do. Iron hydroxides.				
	Stream andiments													
Р3 Р4 Р6 Р8 Р9	70 100 50 150 100	15 15 10 20 15	<200 <200 <200 <200 <200	2 3 2 5 3	1.5 .7 2 1.5	1.5 3 1 3 3	.015 <.010 .025 <.010 .015	< 1 < 1 < 1 < 1 < 1	1,5 5 26	Stream Sediment. Do. Do. Do. Do. Do.				
P10 P11 P12a P13 P20	70 70 100 50 50	15 15 20 15 15	\$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200	3 3 1 2	1 1.5 1.5 .7 .7	2 .7 1 1.5 1.5	<.010 .015 <.010 <.010 .015	<.1 <.1 <.1 <.1	.5 1 3 1 .5	Do. Do. Do. Do. Do.				
P21a P31 P36 P40 P41	70 100 20 150 70	15 100 30 20 30	<200 <200 <200 <200 <200	3 7 5 7 7	1 1.5 3 1.5 3	1 1 3 1 3	<.010 <.010 <.010 .080	<.1 <.1 <.1 <.1 <.1	<.5 1 .5 2 2	Do. Do. Do. Do. Do.				
Р44 Р55 Р56 Р57 Р58	70 100 100 30 100	15 20 30 50 30	<200 <200 <200 <200 <200	3 5 7 7 5	1.5 1.5 3 2 2	1.5 1.5 3 1.5 1.5	. 180 . 060	<.1 <.1 <.1 <.1 <.1	.5 1 3 1 2	Do. Do. Do. Do.				
P59 P62 P63 P64 P78a	15 70 30 30 100	30 15 10 <10 15	<200 <200 <200 <200 <200	7 3 2 5	•7 1 •5 •5 1•5	1 1 .7 .5 1.5	. 030 	<.1 <.1 <.1 <.1 <.1	3 1 2.5 1 1	Do. Do. Do. Do. Do.				
P85e P86 P93 P102a P103a	150 150 100 70 50	20 20 20 10 15	<200 <200 <200 <200 <200	7 5 5 7 7	2 1.5 1.5 2 2	2 .7 .5 1.5 1.5	. 100 . 040	<.1 <.1 <.1 <.1 <.1	1 1 3 2	Do. Do. Do. Do.				

TABLE 1.—Analyses of samples from the Ventana

[Parts per million, ppm; citrate

					1	Semiquan	ana	lve spect alyses opm)	rograj	phic								
Sample	Ti	Mn	Ag	Ba	Be	Zr	Co	Cr	Cu	Le	В	Mo	Ga	Nb	Sc	Ni	РЪ	Sr
						Stream a	sedime	entsCon	tinued	1								
P108 P109 P1104 P111 P112	10,000 10,000 10,000 10,000 >10,000	700 1,500 1,500 1,500 1,500	<0.5 <.5 <.5 <.5 <.5	700 150 2,000 700 700	2 1 2 2 1	300 500 200 500 500	15 30 30 20 70	100 150 300 150 200	10 15 30 7 10	70 70	10 <10 10 10 <10	AAA	15 20 30 20 30		30 20 30	20 30 70 7 20	15 10 30 10 10	200 200 500 300 700
P113 P114 P115 P117a P118a	10,000 10,000 >10,000 10,000 10,000	300 1,500 1,500 1,500 2,000	<.5 <.5 <.5 <.5 <.5	300 700 700 700 700		300 100 300 300 300	15 70 70 30 70	100 200 150 150 150	7 10 20 20 50	100 30 20 100 70	15		30 20 30 30 20		20 30 30 30 30	15 30 20 50 70	15 10 15 15 15	300 700 500 300 300
P121d P141 P143 P145 P146	>10,000 7,000 7,000 10,000 10,000	2,000 700 1,000 3,000 1,000	<.5 <.5 <.5 <.5 <.5	1,000 300 150 700 700	1 1 2 1 2	300 200 200 500 200	50 7 20 70 50	200 100 150 500 700	30 15 30 30 30	70	<10	βŊ	20 10 20 30 30		30 7 15 30 30	30 7 70 100 30	15 115 15 10 30	500 200 150 300 500
P155 P156 P157 P158 P159	10,000 10,000 >10,000 10,000 7,000	1,500 500 1,500 300 200	<.5 <.5 <.5 <.5 <.5	700 1,000 700 1,500 1,500	1 2 1 1 2	300 300 700 100 500	30 20 70 5 <5	100 150 200 70 7	7 10 20 7 7	30 50 70	40 40 40 40 40 40 40 40 40 40 40 40 40 4	A A A	30 15 30 15 10		20 15 30 10 7	15 15 30 2 €2		300 300 700 1,500 1,000
P160 P175 P176 P178 P179	5,000 10,000 10,000 7,000 7,000	300 300 1,000 700 500	<.5 <.5 <.5 <.5 <.5	500 1,500 700 500 700	1 2 2 2 2	70 200 150 100 300	<5 5 10 7 30	15 100 70 70 150	30 30 30 20 70	100	100	ß ß ß	20 15 30 30 30		5 15 15 20 20	3 15 30 30 70	50 20 20 30 30	700 300 100 150 300
P180 P181 P182 P183 P187	10,000 7,000 7,000 7,000 10,000	300 300 300 300 1,500	<.5 <.5 <.5 <.5 <.5	1,000 700 700 300 500	1 1 3 √	150 300 200 150 500	7 7 15 5 70	500 150 100 50 300	30 20 70 30 30	50 50 30 30 150	30 70 30	<u> </u>	30 30 30 20 20		20 15 15 10 30	30 30 30 30 70	20 20 30 20 10	500 300 150 100 500
P195 P197 P201 P202 P203	10,000 10,000 10,000 >10,000 5,000	2,000 1,500 1,000 1,500 1,000	<.5 <.5 <.5 <.5 <.5	150 700 200 200 500	33223	200 150 700 700 100	50 50 50 30	500 300 150 300 70	70 50 30 70 30	50 70 100 30 30	15 10 10 10 <10	AAA	30 20 30 30 20			70 70 70 70 30	10 30 20 15 15	150 500 200 200 300
P204 P205 P207 P209 P210	7,000 10,000 10,000 10,000 10,000	1,500 1,500 1,500 1,500 1,000	1.5 <.5 <.5 <.5 <.5	300 700 300 300 1,000	√1 2 2 1	70 70 300 500 200	50 50 30 50 20	700 300 150 500 500	30 70 30 70 50		10 <10 10 10 <10	ß ß ß	15 20 15 20 15		30 20 30 30 15	300 50 70 100 70	10 50 15 15 15	200 700 100 150 300
P211 P212 P213 P214 P215	7,000 5,000 7,000 7,000 10,000	1,500 1,500 300 700 2,000	<.5 <.5 <.5 <.5 <.5	500 500 1,500 700 500	22212	500 300 100 200 500	30 15 50 50 50	150 100 200 200 150	30 30 30 50 50	150 70 50 30 70	<10		30 <10 30 30 30			50 30 70 100 70	15 10 30 20 20	500 100 300 300 300
P216a P226 P228 P229 P230	5,000 10,000 >10,000 10,000 10,000	2,000 2,000 3,000 1,000 1,000	<.5 <.5 <.5 <.5 <.5	1,000 700 700 700 700	√2 2 2 2 2	150 700 700 300 300	15 30 50 50 50	150 300 300 500 200		70 100 200 70 150	10 20 30 15 15	<u> </u>	30 30 30 30 30 30		30 30 50 20 30	30 70 70 70 70	20 30 20 15 20	500 300 300 300 300
P231 P233 P237 P238 r239	7,000 10,000 7,000 7,000 2,000	3,000 2,000 700 1,000 500	<.5 < 5 <.5 <.5 <.5	700 300 500 1,000 500	2 1 3 2 1	500 300 500 300 100	70 50 20 30 20	500 150 150 150 150	30 70 50 70 30	100 100 50 50 50	10	ß ß	30 20 20 30 30		50 30 15 20 20	70 30 50 30 30	10 20 20 20 3 0	300 200 150 500 , 3 0

١

primitive area, Monterey County, Calif.-Continued

soluble heavy metals test, cxHM]

	Semiquantitative spectrographic analysesContinued (ppm) (percent)				ana	mical lyses ppm)					
Sample	v	Y	Zn	Fe	Mġ	Ca	Hg	Au	c xHM	Sample description	
						Str	eam sedi	ments-	-Conțir	nnèq	
P108 P109 P110d P111 P112	50 150 100 70 150	20 20 20	<200 <200 <200 <200 <200	5 10 7 7 7	1.5 3 3 3 3	1.5 5 2 5 5	0.240 .180 .050 .280 .040	<0.1 <.1 .1 .1 <,1	9 22 32 2 2	Stream sediment. Do. Do. ´ Do. ´ Do.	
P113 P114 P115 P117a P118a	70 100 150 100 100	15 20 20	<200 <200 <200 <200 <200 <200	5 7 15 7 10	2 5 3 3	2 7 7 3 7	.070 .220 .080 .040 .130	<.1 <.1 <.1 <.1 <.1	2.5 2 1 4 11	Do. Do. Do. Do.	
P121d P141 P143 P145 P146	100 50 70 150 100	15 20 70	<pre><200</pre> <pre><200</pre> <pre><200</pre> <pre><200</pre> <pre><200</pre> <pre><200</pre> <pre></pre>	10 3 7 10 7	3 1.5 3 5 5	7 1.5 2 7 3	.200 .210 .120 .050 .070	<.1 <.1 <.1 .2 <.1	1 3 2 1 1	Do. Do. Do. Do. Do.	
P155 P156 P157 P158 P159	70 70 150 50 30	20 30 15	<200 <200 <200 <200 <200	7 7 10 5 3	3 5 3 1.5	3 2 7 7 7	.140 .040 .040 .210 .110	<.1 .2 <.1 <.1 <.1	3 2 2 .5 2	Do. Do. Do. Do. Do,	
P160 P175 P176 P178 P179	30 50 70 70 100	20 20 30	<200 <200 <200 <200 <200	3 5 7 5 7	1 3 2 2 3	2 1.5 1 .7 1.5	<.010 .080 .020 <.010 .070	<.1 <.1 <.1 <.1 <.1	.5 .5 3 1 2	Do. Do. Do. Do.	
P180 P181 P182 P183 P187	70 70 70 70 150	20 20 15	<200 <200 <200 <200 <200	.5 7 5 5 7	3 2 1.5 3	1.5 1.5 .7 .7 3	.220 .050 .090 .120 .030	<.1 <.1 <.1 <.1 <.1	3 2 1 2 1	ро. До. До. До. До.	
P195 P197 P201 P202 P203	150 70 70 1 50 50	15 20 3 0	<pre>\$\$00 \$\$00 \$\$00 \$\$00 \$\$00</pre>	10 7 7 10 5	5 3 3 2	3 2 3 1.5	.070 <.010 .130 .140 .130	.2 <.1 .2 <.1 .2	2 1 2 2 3	Do. Do. Do. Do.	
P204 P205 P207 P209 P210	100 100 100 150 100	30 30 70	<pre>4300</pre> 4300 4300 4300 4300 4300 4300	7 7 7 7 7	7 3 3 5	10 7 2 2 7	.060 .050 .090 .120 .080	<.1 <.1 <.1 .1 <.1	3 1 4 3 3	Do. Do. Do. Do.	
P211 .P212 F213 F214 P215	100 70 70 100 50	30 20 20	<200 <200 <200 <200 <200 <200 <200	10 7 7 7 7	3 2 3 3 3	3 1.5 2 1.5	.040 .100 .060 .140 .140	<.1 <.1 .1 <.1 .1	4 7 3 2 2	Do. Do. Do. Do.	
P216a P226 P228 P229 P2 30	50 150 100 70 70	30 100 20	<200 <200 <200 <200	7 15 15 7 7	5 3 5 3 3	7 2 3 1.5 1.5	.030 .050 .040 .090 <.010	<.1 <.1 <.1 <.1 <.1	1 2 1 2	Do. Do. Do. Do.	
P231 P233 P237 P238 P239	70 100 70 70 70	50 30 20	<200 <200 <200 <200	7 10 7 7 7	3 2 3 3	1.5 5 1.5 5 7	<.010 .060 .040 .030 .090	<.1 <.1 <.1 <.1 <.1	2 2 1 2 .5	Do. Do. Do. Do. Do.	

TABLE 1.—Analyses of samples from the Ventana

[Parts per million, ppm; citrate

					Sen	liquant	ana	lve spectr alyses opm)	ograp	hic							
Sample	Ti	Mn	Ag	Ba	Ве	Zr	Co	Cr	Cu	La	в	Мо	Ga	No Sc	Ni	Ръ	Sr
					St	ream s	edime	ntsCont	inued								
Р240 Р243 Р24ба Р24бь Р247	10,000	1,500 1,000	<0.5 <.5 <.5 <.5 <.5	500 500 300 500 500	2 2 1.5 2 5	300 150 500 300 300	50 50 15 20 15	200 150 100 200 100	30 7		10 30 <10 <10 <10 <10	Ø Ø	30 30 30 20 30	30 15 20 20 10	50 30 15 30 30	15 20 15 10 20	300 150 150 300 100
P248a P248b P249a P249b P257a	10,000 10,000 10,000 10,000 >10,000	1,500 500 700	<.5 <.5 <.5 <.5 <.5	1,000 500 500 500 1,000	2 1 3 2	300 150 300 300 700	50 50 30 10 30	300 300 150 70 300	30	100 70 100 50 70	20 - 10 - 10 - 20 -	ß ß ß	30 30 20 10 50	30 30 30 15 30	50 30 30 20 30	30 15 10 10 30	300 300 500 200 500
Р257Ъ Р258 Р259а_4/ Р259Ъ Р259Ъ Р260	10,000 2,000 >10,000 >10,000 >10,000	1,500	<.5 <.5 <.5 <.5 <.5	700 1,500 300 700 700	2 3 1 1	500 700 500 300 300	15 <5 30 7 15	100 7 100 30 70	30 15 500 5 20	70 100 20 70 30		2	30 30 30 10 30	20 10 15 20 30	30 20 7 20	10 30 10 10 15	300 150 300 300 300
Р261a Р261b Р267b Р269 Р270	>10,000 7,000 	700 1,000	<.5 <.5 	700 500 	<1 3 	700 200 	15 5 	150 30 	10 15 	50 100 		881	30 30 	30 10 	50 15 	<10 20	500 100
Р271 Р272 Р274 Р276 Р277ъ		 	 	 	 		 	 			 	 				 	
P278 P279a P280a P280b P281a	 		 	 			 	 						 			
P281b P282 P283 P284a P284b		 	 	 			 	 	 							 	
Р285a Р285b Р286 Р287 Р288	 	 	 			 		 	 		·	'				 	
P289a P289b P291 P292 H1	 2,000	 500		 3,000 ·		 	 7	 50	 20	 <30			 			 <10	;;; ;;; ;;00;;
H2a H3 H10 H11 H12	3,000 3,000 2,000 1,500 2,000	500 1,000 200 150 300	4 4 4 4	1,000 700 1,000 1,000	<1		10 15 7 3 7	30 70 20 30 30		70 50 30 <30 150		3	•	10 (10 (10 (10 (10	15 30 3 10 10	<10 10 <10 10 10	500 200 500 200 200
н15 н16 н17 н19 н20	2,000 1,500 2,000 1,500 1,500	300 200 500 200 500	4 7 7	1,000	<1 1.5		7 7 7 5 5	50 100 30 20 50	30	30 <30 30 <30 30	« «	3	•	<10 <10 <10 <10 <10	15 20 15 10 15	,0 10 10 10 10	150 150 150 150 150
н25 н36	1,500 3,000	300 300	<1 <.5	700 1,500	<1 2	 70	10 5	70 50	20 20	< 3 0 20	<10		20	<10 7	20 ;	10 50 1	200 L,000

 $\underline{4}/$ Chemical analyses of sample P259a give Cu 15 ppm, Pb <25 ppm, and Zn 38 ppm.

,

э

primitive area, Monterey County, Calif.-Continued

soluble heavy metals test, cxHM]

	Semiq	uantitati analyse (ppm)		trographi inued (percen		Chemical analyses (ppm)			
Sample	v	Y Zn	Fe	Mg	Ca	Hg	Au	сxHM	Sample description
					Str	eam sedi	ments.	-Conti	nued
P240	100	30 <20		3	3	0.050	<0.1	2	Stream sediment.
Р243 Р246а	100 70	30 <200 30 <200		3 3	1.5 3	.030 .160	<.1 <.1	1 2	Do. Do.
р246ъ	100	20 <20	7	3	3	.040	<.1	2	Do.
P247	50	70 <20	7	2	1.5	.260	<.1	3	Do.
Р248a Р248ъ	150 100	50 <20		5	5	. 120	<.1	2.5	Do.
P2400 P249a	100	30 <200 30 <200		3 3	5	.040 .170	<.1 <.1	2 1	Do. Do.
P249b	70	20 <20	5	2	2	.140	<.1	4	Do.
P257a	150	30 <20	0 10	7	15	.040	<,1	.1	Do.
Р257ъ Р258	70 15	30 <200 150 <200		3 • 7	2 1	.090	<.1 <.1	3 3	Do. Do.
P259a	70	20 <20		3	3	.040	<.1		Do.
Р259Ъ	70	20 <200) 5	3	10	.020	<.1	2	Do.
P260	150	20 <200) 10	3	7	.120	<.1	2	Do.
P261a P261b	150 30	30 <200 30 <200		3	7	.080	<.1	2	Do.
Р2616 Р267ь	30	30 <200		1.5	1.5	. 100	<.1	3 <.5	Do. Do.
P269								<.5	Do.
P270								<.5	Do.
P271								<.5	Do.
P272 P274								<.5 <.5	Do. Do.
P276								2	20.
Р277ь				•	'			<.5	Do.
P278								<.5 <.5	Do.
P279a P280a								<.5 <.5	Do. Do.
P280b								<.5	Do.
P281a								<.5	Do. ·
Р281ь								<.5	Do.
P282 P283						·		<.5 <.5	Do. Do.
P284a								<.5	Do.
Р284ъ								<.5	Do.
P285a								3	Do.
Р285ъ Р286								2 3	Do. Do.
P287								4	Do.
P288			•					1	Do.
P289a P289b								<.5	Do.
P2096 P291								1 2	Do. Do.
P292								3	Do.
Hl	100	15 <200) 3	1.5	7	<.010	<.1	3	Do.
H2a	100	20 <200		1.5	3	.015	<.1	2.5	Do.
Н3 Н10	70 70	50 <200 10 <200		1.5 1	1 1.5	. 015	<.1 <.1	5 1	Do. Do.
H11	30	10 <200) 2	.7	• 5		<.1	2	Do.
H12	70	15 <200) 3	l	.7		<.1	۰5	Do.
H15	100	20 <200		1	.7		<.1	2	Do.
н16 н17	50 70	10 <200 15 <200		1.5 1	•5 •5		<.1 <.1	5 2	Do. Do.
H19	50	10 <200	3	.7	• 3		<.1	1	Do.
H20	70	15 <200		1	1.5		<.1	l.	Do.
H25	70	20 <200		1.5	1		<.1	2	Do.
н36	30	10 <200	3	1.5	2	. 170	<.1	1	Do.

.

 TABLE 1.—Analyses of samples from the Ventana
 [Parts per million, ppm; citrate

					, 5	Semiquant	an	ive spectr alyses ppm)	ograp	hic								
Sample	Ti	Min	Ag	Ba	Be	Zr	Co	Cr	Cu	La	В	Мо	Ga	NЪ	Sc	Ni	РЪ	Sr
						Stream	sedin	entsCont	inue	1								
H37 H38a H51 H52 H53	2,000 2,000 >10,000 10,000 10,000	200 200 1,000 1,000 1,000	<1 <1 <.5 <.5 <.5	700 700 700 1,000 1,500	NNNAA	 300 100 300	5 7 50 30 50	15 15 200 100 200	7 7 70 30 30	70 <30 70 20 100	15 <10	<u>666000</u>	 50 30 30		 30 20 30	3 50 30 70	<10 <10 20 15 30	200 300 300 700 500
н55 ₅ / 11562/ 1157 1159 1160	>10,000 7,000 10,000 10,000 10,000	2,000 1,500 1,500 2,000 1,000	<.5 <.5 <.5 <.5 <.5	1,000 700 1,000 1,500 1,000	A o A o o	300 300 300 150 300	70 30 70 10 10	150 150 100 150 150	50 30 50 20 50	50	15 15 <10 20 <10	βß	30 30 20 15 30		15 15	50 50 50 30 30	10 200 20 15 30	500 300 300 300 500
H81 H82 H85 H88 H89	7,000 10,000 10,000 7,000 10,000	500 1,000 1,000 700 700	<.5 <.5 <.5 <.5 <.5	1,000 700 300 1,000 500	2 3 1 2 2	700 300 300 150 70	10 15 30 50 30	150 100 150 300 100	10 70 30 30 10	100 70 70 50 70	10 <10 20	<2	20 30 30 20 30		15 15 20 20 30	50 50 30 300 300	30 30 20 30 15	150 200 300 500 300
H90 H91 H92 H93 H94	10,000 7,000 >10,000 10,000 10,000	1,500 300 1,000 1,000 1,000	<.5 <.5 <.5 <.5 <.5	1,000 300 500 500 300	1 3 1 2 1	150 70 100 70 150	15 10 70 70 50	100 50 150 300 200	7 30 7 15 20			<2	30 20 30 20 30		30	7 20 30 30	20 30 10 10	700 300 700 500 300
H96 H97 H99 H100 H101	10,000 10,000 10,000 10,000 7,000	1,000 1,500 1,000 1,000 1,000	<.5 <.5 <.5 <.5 <.5	1,000 700 500 700 700	2 2 2 1 2 1	300 100 200 200 150	30 50 50 50 30	150 200 150 200 100	30 10 7 10 30	70 70 100 150 50	10 <10	ß ß	30 30 20 30 30		30 30 30 30 20	30 30 30 30 50	20 10 15 20 15	700 300 300 700 150
H102 H104 H105 H107 H108	7,000 10,000 7,000 10,000 10,000	1,000 700 1,500 1,500 1,000	<.5 <.5 <.5 <.5 <.5	1,000 700 1,000 700 1,500	1 1 2 1	70 200 300 500 300	15 50 30 50 20	200 200 150 150 150	70 .20	100		βß	20 30 30 30 20		30 20 30	20 70 30 70 30	15 10 20 15 15	1,000 300 300 200 300
H109 H110 H111 H112 H113	10,000 >10,000 10,000 10,000 10,000	500 1,000 500 1,000 1,500	<.5 <.5 <.5 <.5 <.5	700 700 1,000 500 700	1 3 1 2 2	200 >1,000 700 700 500	10 70 50 15 20	150 500 300 150 150	30 7	70 150 50 100 200	<10 <10	ର ର ର	15 20 20 15 30		20	30 50 100 7 10	15 <10 10 10 15	300 1,000 700 300 500
H114 H115 H119 H120 H121	10,000 10,000 3,000 7,000 7,000	1,000 700 300 1,000 300	<.5 <.5 1.5 <.5 <.5	500 700 700 >5,000 300	2 1 3 2	700 300 300 300 200	20 20 <5 20 5	150 150 30 150 50	5 15 30 50 50	150 150 50 100 30	<10 30 70		20 30 20 20 30		30 20 7 20 10		10 15 20 50 30	300 500 70 300 150
H122 H123 H124 H125 H128	10,000 5,000 7,000 7,000 7,000	500 700 700 700 300	<.5 <.5 <.5 <.5 <.5	1,000 500 700 1,000 700	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 200 70 300 150	30 5 20 10 20	100 70 100 150 100	30 10 30 50 30	30 50 50 200 30	20 15 20	8 8 8 8 8 8 8	20 15 30 30 30		15 7 20 15 15	30 20 30 30 30	20 20 15 50 20	200 200 300 300 200
H129 H130 H133 H133 H141	5,000 5,000 7,000 3,000 7,000	200 300 700 300 1,000	<.5 <.5 <.5 <.5 <.5	700 1,000 700 300 150	3 3 <1 1	150 200 150 100 70	5 15 20 5 30	70 150 150 100 150	30 30 50 7 30	100	70 70 <10 <10 <10	ABA	30 30 20 <10 15		15 20 15 7 15	30 30 30 20 70	30 30 10 15	100 200 700 700 300

5/ Chemical analyses of sample H56 give Cu 15 ppm, Pb 25 ppm, and Zn <25 ppm.

,

primitive area, Monterey County, Calif.-Continued

soluble heavy metals test, cxHM]

. •

ļ

	Semiç		nalyses	e spectr sConti			Chemical analyses (ppm)			
Sample	V	Y	Zn	Fe	Mg	Ca	Hg	Au	схНМ	Sample description
						Sti	eam sedi	ments	Contin	ued
H37 H38a H51 H52 H53	50 50 150 70 100	10 20 15	<200 <200 <200 <200 <200	2 3 15 7 7	1 5 3 3	1.5 1.5 5 3 2	0.040 .200 .150	<0.1 <.1 <.1 <.1 <.1	3	Stream sediment. Do. Do. Do. Do.
н55 н56 н57 н59 н60	100 70 100 100 70	30 15 15	<200 <200 <200 <200 <200	10 7 10 7 7	3 3 3 3 3	5 3 7 5	.020 .200 .090 .220 .180	<.1 .3 <.1 <.1 <.1	2 3 5 2	Do. Do. Do. Do.
H81 H82 H85 H88 H89	50 70 150 100 100	30 30 20	<200 <200 <200 <200 <200 <200	5 7 7 .7 7	2 3 3 3 3	1.5 1.5 3 3 3	.280 .240 .080 .120 .040	<.1 <.1 <.2 .2 <.1	2.5 2 2.5 1	Do. Do. Do. Do.
н90 н91 н92 н93 н94	100 30 150 100 150	10 20 20	<200 <200 <200 <200 <200	7 7 10 10	3 1.5 5 5 5	7 2 3 5 7	. 140 . 200 . 090 . 030 . 050	<.1 <.1 <.1 <.1 <.1	1 2 2 2 2	Do. Do. Do. Do.
H96 H97 H99 H100 H101	150 100 100 100 100	30 30 20	<200 <200 <200 <200 <200	7 7 7 7 7 7	3 5 3 5 3	5 5 1.5 5 1.5	.050 .100 .140 .180 .030	<.1 <.1 <.1 <.1 <.1	3 1 3 1 3	Do. Do. Do. Do.
H102 H104 H105 H107 H108	50 100 100 70 70	30 30 30	<200 <200 <200 <200 <200	5 10 7 7 5	3 5 3 3	3 5 2 2	<.010 .030 .180 .210 .090	<.1 <.1 <.1 <.1 <.1	2 27 2 3 1	Do. Do. Do. Do.
H109 H110 H111 H112 H113	70 100 150 70 150	50 20 20	<200 <200 <200 <200 <200 <200	7 10 7 7 7	3 7 3 3 3	1.0 7 3 3 7	.290 .140 .100 .040 .030	<.1 <.1 <.1 <.1 <.1	3 2 3 2 3	Do. Do. Do. Do.
H114 H115 H119 H120 H121	100 150 30 100 50	70 15 30	<200 <200 <200 <200 <200 <200	7 10 3 7 7	3 1 2 1.5	3 5 2 .7	.050 .120 .100 <.010 .070	.1 .2 <.1 <.1 <.1	2 2 3 3	Do. Do. Do. Do.
H122 H123 H124 H125 H128	70 70 70 70 70	20 20 20	<200 <200 <200 <200 <200 <200	5 3 5 7	1.5 1.5 3 2 3	1 3 1.5 2 7	.140 .090 .080 .050 <.010	<.1 <.1 <.1 <.1	1 2.5 1 2.5 1	Do. Do. Do. Do.
H129 H130 H131 H133 H141	70 70 50 30 100	30 15 5	<200 <200 <200 <200 <200	5 5 7 2 7	1.5 2 3 2 3	.7 1.5 3 20 2	.030 .010 .170 .030 .170	<,1 <,1 <,1 <,1 <,1	3 2.5 3 1 2	Do. Do. Do. Do.

•

 TABLE 1.—Analyses of samples from the Ventana
 [Parts per million, ppm; citrate

¢

					Se	miquan	ar	live specialyses (ppm)	trogra	pnic	•							
Sample	Ti	Min	Ag	Ba	Ве	Zr	Co	Cr	Cu	La	В	Мо	Gal	NЪ	Sc	Ni	РЪ	Sr
					s	tream s	edim	entsCo	ntinue	1								
H142	10,000	1,000	<0.5	1,000	1	300	30	150	30	20	<10	0	30		20	50	20	700
H143	10,000	1,000	<.5	300	2	200	70	300	70		<10		30		30	70	15	200
H144	7,000	500	<.5	1,000	3	200	20	100	30	20	50	$\langle 2 \rangle$	30		15	30	, 30	300
H145	>10,000	1,500	<.5	200		300	50	500	30	30	<10	<2	15		30	70/	<10	150
н14б	>10,000	700	<.5	150	<1	500	30	30	20	100	20	Q	20		30	1	10	150
H153	>10,000	1,500	<.5	700	<1	300	30	70	70	70		2	30		30	30	20	200
H154	7,000	300	<.5	1,000	1	300	5	150	20	70		2	20		15	30	30	300
H155	10,000	1,500	<.5	200	1	200	20	70	30	50		8	20		20	30	20 10	150
H156 H157	10,000	2,000	<.5 <.5	500 200	1	200 300	50 20	150 7Q	30	150 30		Ø Ø	30 20		30 20	30 20	15	300 200
	,		-			•			-	-		_						
н158	7,000	700	<.5	150	1	200	50	200	30	30			20		20	70	20	300
H166	5,000	1,500	<.5	300	2	150	15	70	30 50	50 70			20		20 20	30	20	150 200
H169 H170	7,000 10,000	1,500 1,500	<.5 <.5	500 300	3 1	200 100	70 30	700 • 300	30			8 8	30 20		30	300 70	15 10	300
H171	10,000	1,500	<.5	300	î	200	70	300	30	70		ð	30		30	70	10	300
H172	7,000	1,500	<.5	700	ı	200	50	700	20	70	10	Q	•30		30	70	10	300
H177	10,000	300	<.5	700	2	300	5	30	5	<20	<10	<2	10		10	7	10	200
H178	7,000	500	<.5	700	1.5	200	5	30	7				15		15	7	10	150
H179 H181	10,000	1,500	<.5	700	2	300 500	15 20	150	30			2	15		15	15	15	300
	>10,000	1,500	<.5	700	2		20	300	30	50	30	Q	30		30	70	15	300
H182 ⁶ /	>10,000	1,000	<.5	700	5	1,000	20	300	20	50	10	2	30		30	30	150	300
		Samp]	es fr	om Tram	npa Ca	nyon co	pper	prospec	t, nor	theat	st of	ſpı	imit	ive	are	a		
P65	5,000	300	<.5	700	2	200	<5	7	10	<20	<10	<2	20		5	5	15	700
P66 P671/	7,000	500	<.5	500	2	200	5	10		150			30		.7	3	15	700
	10,000	500	<.5	1,500	1	70	7	20		150			30			7		1,500
P68	5,000	200	<.5	700	3	700	<5	5		<20			15		7	~		1,500
P69	5,000	300	<.5	500	2	. 100	<5	5	10	20	20	~2	. 20		7	7	15	70
P70 ⁸ /		>5,000	<.5	<10		100	<5	20	1,500				15		<5	<2	<10	<50
P718/	150	3,000	<.5	20		<10	<5	-5		<20					<5	3	10	- 500
	200	700	5	<10		30	7	5	5,000			Q	20		<5	Ś	<10	<50
P73 P74	150 100	1,500 700	<.5 <.5	<10 20		10 <10	<5 <5	<5 <5	1,500	.≪20 ≪20			30		<5	ŝ	<10	<50
	, TOO	100	``)	20	1	~10	5	~>	30	<20	<10	\$	10		<5	2	10	500
P75 ^{8/}		>5,000	5	30	2		150	5	≥5,000				30		<5 <5	ς β	⊲10	<50 100
P76	2,000	300	<.5	70	1	500	<5	.7	-	20							30	
P77	7,000	300	<.5	300	3	500	15	30	30	30	<10	<2	20		15	10	20	300

6/ Chemical analyses of sample H182 give Cu 15 ppm, Pb <25 ppm, and Zn 25 ppm.

[]/ Sample P67 contains 10 ppm Bi. All other samples contain less than 10 ppm Bi.

primitive area, Monterey County, Calif.-Continued

soluble heavy metals test, cxHM]

i.

١

	Semio	Semiquantitative spectrographic analysesContinued (ppm) (percent)				Chem anal (pp	yses			
Sample	v	Y	Zn	Fe	Mg	Ca	Hg	Au	cxHM	Sample description
					5	Stream se	diments-	-Conti	nued	
H142	200	50	<200	7	3	5	0.080	<0.1	1	Stream sediment.
н143	100		<200	•7	5	3	.200	<.1	1	Do.
н144	100		<200	7	3	1.5	. 070	.2	2	Do.
H145	100		<200	10	5	7	. 160	<.1	3	Do.
н146	200	20	<200	10	3	1.5	.040	<.1	2	Do.
н153	100		<200	7	3	1.5	.220	.2	2.5	Do.
H154	70		<200	7	3	1.5	.080	<.1	1	Do.
H155	50		<200	10	2	1.5	.070	<.1	1	Do.
H156	70		<200	7	3	1.5	. 050	<.1	1	Do.
H157	70	20	<200	7	2	1.5	.100	<.1	T	Do.
H158	70	15	<200	10	3	3	.040	<.1	2	Do.
н166	30	50	<200	10	1.5	1	.060	<.1	1	Do.
н169	100		<200	7	5	2	. 200	<.1	3	Do.
Н170	100		<200	7	3	5	.110	<.1	5	Do.
H171	100	30	<200	10	7	1,0	. 030	<.1	2	Do.
H172	100		<200	10	5	3	. 080	<.1	1	Do.
H177	70		<200	5	1.5	5	.230	<.1	4	Do.
H178	50		<200	5	1.5	1.5	. 180	<.1	2	Do.
H179 H181	100 150		<200 <200	7 10	3 7	3 7	.110	<.1 <.1	3	Do. Do.
1101	1)0	20	~200	10	1	(.000	<.I	2	50.
H185	150	20	<200	10	5	10	. 030	<.1		Do.
		Sa	mples	from	frampa (Canyon co	pper pros	spect,	northe	ast of primitive area
P65	30		<200	3	.7	1.5	.020	<.1		Granitic rock.
P66	30		<200	3	1	2	.020	<.1		Do.
P67	50		<200	7	2	2	<.010	<.1		Do.
P68	20		<200	3	.7	2	.040	<.1		Do.
р69	30	15	<200	3	1.5	.7	.030	.2		Do.
P70	20	5	500	20	3	20	.010	<.1		Garnet-rich skarn.
P71	10		<200	2	3	,>20	. 020	<.1		Calcite, trace of malachite.
P72.	<10	5	200	20	2	7	.460	<.1		Oxidized skarn.
P73 P74	<10 <10	5	300 :		1.5	2	. 050	<.1		Oxidized skarn.
* [4	-10	< 7	<200	.2	.7	>20	.040	.2		Calcite.
P75	20	50	300	15	.1	15	.040	• 3		Limonitic skarn.
P76	30		<200	1.5	.7	3	.040	<.1		Brown carbonate rock.
P77	50	15	<200	7	3	2	.200	<.1		Stream sediment.

8/ Samples P70 and P72 contain 150 ppm Sn; P75 contains 200 ppm Sn. All other samples contain less than 10 ppm Sn.

B36 STUDIES RELATED TO WILDERNESS-PRIMITIVE AREAS

EVALUATION OF METALLIC MINERALS

Visual examination of rocks and soils failed to reveal the presence of metallic mineral deposits. Faults, shear zones, and fractures were examined carefully but, except for a trace of lead and zinc at one locality, no mineralization was noted along them. Hydrothermal alteration, a common clue to mineralization, appears to be restricted to thin zones along fractures and faults: no evidence of accompanying metal deposition was seen. Many of the rocks, and especially the metamorphic rocks, are weathered to a friable aggregate of mineral grains stained by limonite as a result of the breakdown of iron-bearing silicate and oxide minerals. Many of the samples described as "altered rocks" in table 1 are weathered rocks of this type. Most of the faults are younger than the main igneous episode, and thus they were not present to act as passageways for any ore-forming fluids that may have been associated with the igneous rocks. The only veins observed are quartz veins up to about 1 foot thick that cut Upper Cretaceous sedimentary rocks: no ore minerals were found in these veins.

Locally, the metamorphic rocks, especially the quartz-rich varieties, contain scattered grains of iron sulfide accompanied by graphite, but no ore minerals were seen in these rocks. A rusty gossanlike weathered crust generally distinguishes the sulfidic gneisses. The sulfides are thought to be syngenetic, that is, they represent original sulfurous sedimentary beds, most of which were carbonaceous as well. Black shales typically have these characteristics and upon metamorphism could yield gneisses containing graphite and sulfide minerals.

The calc-silicate gneisses resemble tactites in mineralogy, but unlike tactites have no close spatial relation to igneous contacts, and they seem to be of regional metamorphic origin. The calc-silicate gneisses contain sporadically distributed sulfide minerals that probably are recrystallization products of the original sedimentary rocks, but small amounts of copper in some samples suggest the possibility of minor epigenitic mineralization, as in the following discussion.

The lack of visual indications of ore deposits is corroborated by the analytical data for 515 samples shown in table 1. The analytical results indicate that with a few exceptions, most of the samples contain only normal metal content and none of them contain metal in quantities approaching ore grade.

Analyses of fresh rocks show a wide range in the content of some metals, the quantity depending to a large degree on the rock types. Some of the intrusive and metamorphic rocks, and the hornblenderich rocks in particular, contain as much as 200 ppm (parts per million) copper, and ultramafic intrusive rocks contain up to several tenths of a percent nickel and chromium. Such concentrations however, are not unusual for rocks of this type. It is unlikely that they are indicative of economically important concentrations. Comparable concentrations of copper, nickel, and chromium have been reported in amphibolite from Montana by Becraft and others (1966, p. B16, B17).

Gold and mercury analyses of all samples indicate no unusual or economically interesting concentrations of these elements.

Although the analyses of most samples listed in table 1 as "Altered rocks" obviously reflect the composition of the parent rock, a few may have been slightly enriched in metals, especially copper, lead, or zinc. Sample P16a is a sulfide-bearing calc-silicate rock from North Fork Little Sur River that was determined spectrographically to contain 1,500 ppm copper. Similar rock was resampled from the same locality, but the second sample contained only 10 ppm copper, which is indicative of the sporadic copper distribution. No copper minerals were visible at the site. Sample P88 contains 300 ppm copper and microscopically visible chalcopyrite. This sample was collected from a small boulder of amphibolite from Logwood Creek; its source is not known as only the one boulder could be found. Several other samples (P198b, H35, H134, H175) of sulfide-bearing amphibolite and other iron-rich metamorphic rocks were collected that give somewhat higher than average values for copper or zinc.

A sample of brecciated pegmatite from a fault in the "Coast Ridge fault zone" of Reiche (1937, p. 152) contained 1,500 ppm zinc and 3,000 ppm lead, the highest concentrations of lead and zinc found in the area. The zinc silicate calamine was identified in the sample but no lead mineral could be found. Neither the sample nor the other rocks in the vicinity show any obvious mineralization. The metals may be in the small amount of gouge along the fault, or they could have been in primary accessory minerals of the pegmatite. Sediment samples from streams that drain across this fault and other nearby faults are not unusually high in metals (see samples H123, H124, H125, H128, H129, P178 and P179).

The stream-sediment samples in general contain only small quantities of metals. Most of them contain 10 to 70 ppm copper and lead and less than 200 ppm zinc, the lower limit of detection by spectrographic analysis. Three samples, however, gave anomalously high spectrographic values: P259a, 500 ppm copper; H56, 200 ppm lead; and H182, 150 ppm lead. By colorimetric analysis, the three samples gave much lower results, in parts per million: P259a—copper 15, lead <25, zinc 38; H56—copper 15, lead 25, zinc <25; H182 copper 15, lead <25, zinc 25.

B38 STUDIES RELATED TO WILDERNESS-PRIMITIVE AREAS

The citrate soluble heavy metals test (cxHM in table 1) was performed on stream sediments to determine the quantity of weakly held metals (copper, lead, and zinc) that have been deposited on the mineral grains from stream water. It is one means of tracing these metals to a source upstream. The results of the heavy metals test (table 1) on 186 stream-sediment samples contain four values greater than 7 ppm. By comparison with the other samples, these four appear to be anomalously high. The localities were revisited and resampled. Sample P110d (32 ppm cxHM) comes from a west tributary of Lion Creek, which flows approximately on the trace of the Redwood fault. This is the same general area of the mining claims near Island Mountain. Presumably the area was prospected when these claims were staked, but no discoveries are known. Three float pebbles of altered rock (P110a, P110b, P110c) were collected at the same locality, but spectrographic analyses did not disclose anomalous metal values in them. No evidence of mineralization along the Redwood fault was noted by us or by Fiedler (1944).

A resampling of the Lion Creek tributary failed to produce streamsediment samples containing high cxHM values (samples P276a, P277b, P278, P289a, P289b, and P291). Bedrock samples (P275, P276b, and P277a) of sulfide-bearing gneiss collected along the stream did, however, suggest that the gneiss was the source of the metal in the original stream sample. The sulfide-bearing gneiss occurs in numerous layers and lenses along the stream. Spectrographic analyses show that it is slightly high in zinc and copper, and notably high in molybdenum and vanadium.

An anomalous sample (H104) containing 27 ppm cxHM was collected from the mouth of an intermittant stream draining into the Carmel River off the east side of Elephant Mountain, but a resampling of the stream sediments failed to duplicate the initial high cxHM value. As in the Lion Creek area, sulfide-bearing gneisses are present along the lower half mile of the stream. Spectrographic analyses of the gneisses (samples P268 and P273) show slightly high copper contents of 70 and 100 ppm, and an iron-rich spring deposit (sample P267a) contains 500 ppm zinc.

Stream-sediment samples P108 from South Fork Little Sur River and P118a from Doolans Hole Creek containing 9 and 11 ppm cxHM, respectively, are slightly higher than normal. These samples were collected on nearly opposite sides of the divide at the head of Doolans Hole Creek. An altered float pebble (P118b) from Doolans Hole Creek did not contain anomalously high quantities of copper, lead, or zinc. Two samples (P101a and P101b) of altered rock from the drainage divide likewise show only average amounts of metals in the spectro-

THE VENTANA PRIMITIVE AREA, MONTEREY COUNTY, CALIF. B39

graphic analyses. Additional stream-sediment samples from these areas contain average cxHM values. Although no rocks were found in the drainage area represented by these samples that may have contributed to the cxHM values of samples P108 and P118a, it is likely that sulfide-bearing gneisses are present and are the source.

The metal content of some of the sulfide- and graphite-bearing gneisses is comparable to many unmetamorphosed carbonaceous sedimentary rocks (Davidson and Lakin, 1961, 1962; Vine, 1966), and the gross chemistry of the gneisses suggests that they were derived from such sedimentary rocks. Davidson and Lakin (1961) concluded that because of their metal concentrations, some black shales will become ores in the future. Similarly, it is possible that the metalliferous gneisses of the Ventana primitive area might one day be ore, but their grade, in the hundredths of a percent, is presently below ore grade.

LIMESTONE (MARBLE)

Discontinuous layers and pods of recrystallized limestone are widespread in the metamorphic rocks in the primitive area. The layers and pods are small, very difficult to reach, and of variable quality, and there is little likelihood that they could be exploited economically in the foreseeable future. Much larger bodies occur in the same geologic environment 1 to 3 miles west and southwest of the primitive area. These bodies, which have been quarried on a very small scale in the past, are nearer California Highway 1 and hence are more easily accessible and could be mined more cheaply than those in the area.

The largest limestone bodies in the primitive area lie on or near the southwest boundary, in particular on the ridge known as Cabezo Prieto north of Big Sur River. A few others of comparable size are known in the vicinity of Redwood Creek and Lost Valley Creek. The largest bodies found are shown on plate 1; numerous smaller bodies scattered widely through the metamorphic rock are not shown. The many bodies west and southwest of the primitive area that are shown on plate 1 are taken from maps by Trask (1926) and Reiche (1937). Although bedrock outcrop is poor in some parts of the area, it is doubtful that marble bodies larger than those shown on plate 1 are present.

The composition of the marble ranges widely as indicated by the partial analyses in table 2. In general the purer marbles were sampled. Some of the analyzed samples are single specimens chosen to represent a body or part of a body, and others are composite samples collected by taking a chip every 2 to 3 feet across the outcrop. The analyses show that several of the marbles are high in CaO and that if the marble deposits were present in larger quantities they would be satisfactory for most uses. The "remainder" in the analyses consists mostly of SiO_2 ; 1 percent or less of crystalline graphite is present in most samples.

Sample	Sample type	P2O5	CaO	MgO	Fe2O3	Al ₂ O ₃	CO2	Re- mainder
P107 P119 P120 P236 P241	88888	0.06 .12 .09 .05 .03	55. 2 55. 3 54. 0 30. 7 54. 4	0.48 .36 .26 2.08 .39	0.14 .11 .12 2.72 .22	0.55 .97 1.29 1.84 .69	42. 5 42. 4 43. 0 20. 3 42. 0	1. 07 . 74 1. 24 42. 31 2. 27
P245a P245b P245c P245c P252 P254	s s s C C	. 10 . 12 . 16 . 19 . 15	54.6 54.4 56.4 46.4 42.4	1.04 .58 .41 .58 2.02	. 16 . 15 . 15 3. 52 4. 64	. 78 . 60 1. 20 2. 21 4. 6	43. 4 43. 3 42. 9 36. 2 29. 9	.85 10.9 16.29
P264 P265 P266 H42b H48b	00000	. 15 . 10 . 10 . 11 . 11	50. 2 53. 8 52. 7 50. 2 49. 3	3.28 .38 1.80 1.76 1.14	. 11 . 14 . 26 3. 52 3. 68	. 97 . 60 . 69 2. 07 2. 76	41, 7 42, 8 42, 1 39, 2 36, 1	3. 59 2. 18 2. 35 3. 14 6. 92
H160. H164 H165 H167	s Cs C	. 06 . 06 . 04 . 10	49. 8 15. 0 42. 6 33. 7	.58 1.00 .80 3.20	2, 72 3, 52 2, 40 3, 52	3. 22 10. 6 3. 50 4. 83	39.3 8.68 31.1 7.72	4. 32 61. 14 19. 56 46. 93

TABLE 2.—Partial analyses of marble samples

[Sample type: S, selected specimen; C, chip sample. Results in percent. Total iron as Fe₂O₃. Remainder, probably mostly SiO₂ not analyzed. P₂O₅ determined by volumetric method by G. D. Shipley; CaO, MgO, and Fe₂O₃, determined by atomic absorbtion method by W. D. Goss; Al₂O₃ determined by gasometric method by D. L. Kouba]

One of the larger and most accessible of the high-calcium marble bodies forms the top of Marble Peak. Though not completely exposed, it is probably about 1,000 feet long, less than 500 feet wide, and 150 feet thick at its thickest part. Marble Peak is on a poor road about 12 miles from California Highway 1 and about 45 miles from the nearest railhead at Monterey. A few other bodies, such as the one in Doolans Hole Creek, are similar in size but are more remote and in very rugged terrain.

OIL AND GAS

It is very unlikely that commercial quantities of oil and gas underlie the primitive area. The possibilities are virtually nonexistent wherever pre-Cretaceous crystalline rocks crop out at the surface as they do in a major part of the primitive area. The narrow and isolated bands of sedimintary rock preserved along the Church Creek and Palo Colorado faults also offer virtually no possibility of oil or gas traps. An area of a few square miles south of Lost Valley is underlain by Cretaceous and younger rocks and cannot be dismissed as readily but, nevertheless, offers little promise. Here, there are rocks that could conceivably act as oil and gas reservoir rocks but they are in a very unfavorable structural and topographic position. Several oil fields are present along the Salinas River valley about 20 to 30 miles east and southeast of the primitive area. Wells in these fields apparently all produce

THE VENTANA PRIMITIVE AREA, MONTEREY COUNTY, CALIF. B41

from rocks of middle and late Miocene age. Only older rocks are known in the primitive area.

ECONOMIC APPRAISAL

By PAUL V. FILLO, U.S. Bureau of Mines

INTRODUCTION

Investigations of mineral occurrence and economic potential in the Ventana primitive area by the U.S. Bureau of Mines consisted of searching the mineral claim location and assessment records in the Monterey County recorder's office and the mineral production records in the Federal files. In addition, a helicopter, under contract to the U.S. Geological Survey, was used to make an air reconnaissance of the area and to drop and pick up field personnel, who conducted examinations on the ground. These on-site inspections of potential mineralized areas were made jointly by Robert C. Pearson, U.S. Geological Survey, and Paul V. Fillo, U.S. Bureau of Mines. The U.S. Forest Service provided information on claims filed before 1938 in and near the primitive area.

MINING CLAIMS

The Monterey County records disclosed two lode claims in the Ventana primitive area in sec. 23, T. 19 S., R. 2 E., and 18 placer claims, all in T. 19 S., R 2 E., Mount Diablo base and meridian. These lode and placer claims were located in the fall of 1931. The descriptions of these claims, given in the location notices, were vague and the workings could not be recognized because of dense vegetation covering the area.

No record of mineral production from the Ventana primitive area was found in the Federal files. No current assessment work was recorded in the county records and no Federal oil and gas leasing activity had been established in the primitive area.

CONCLUSIONS

Investigation of the Ventana primitive area by the Bureau of Mines did not disclose any exploitable mineral occurrences, and none were found as a result of the Geological Survey field examination.

REFERENCES CITED

- Becraft, G. E., Calkins, J. A., Pattee, E. C., Weldin, R. D., Roche, J. M., 1966, Mineral Resources of the Spanish Peaks Primitive Area, Montana: U.S. Geol. Survey Bull. 1230–B, 45 p.
- Compton, R. R., 1957, New Paleocene formation in the central Coast Ranges, California [abs.]: Geol. Soc. America Bull., v. 68, no. 12, pt. 2, p. 1820–1821.
- Compton, R. R., 1960a, Charnockitic rocks of Santa Lucia Range, California: Am. Jour. Sci., v. 258, no. 9, p. 609-636.
- Compton, R. R., 1960b, Relations of major folds and reverse faults in Santa Lucia Range, California [abs.]: Geol. Soc. America Bull., v. 71, no. 12, pt. 2, p. 2054.
- Compton, R. R., 1966, Analyses of Pliocene-Pleistocene deformation and stresses in northern Santa Lucia Range, California: Geol. Soc. America Bull., v. 77, no. 12, p. 1361–1380.
- Davidson, D. F., and Lakin, H. W., 1961, Metal content of some black shales of the western United States, in Short papers in the geologic and hydrologic sciences: U.S. Geol. Prof. Paper 424–C, p. C329–C331.
- ——, 1962, Metal content of some black shales of the western conterminous United States—Part 2, *in* Short papers in geology and hydrology: U.S. Geol. Survey Prof. Paper 450–C, p. C74.
- Dickinson, W. R., 1965, Tertiary stratigraphy of the Church Creek area, Monterey County, California, *in* Short contributions to California geology: California Div. Mines Spec. Rept. 86, p. 25–44.
- Durham, D. L., 1965, Evidence of large strike-slip displacement along a fault in the southern Salinas Valley, California: U.S. Geol. Survey Prof. Paper 525-D, p. D106-D111.
- Fiedler, W. M., 1944, Geology of the Jamesburg quadrangle, Monterey County, California : California Jour. Mines and Geology, v. 40, no. 2, p. 177–250.
- Jenkins, O. P., 1950, Annual report of the State Mineralogist, Chief of the Division of Mines, for the 100th fiscal year, July 1, 1948 to June 30, 1949: California Jour. Mines and Geology, v. 46, no. 1, p. 143–184.
- Hill, M. L., and Dibble, T. W., Jr., 1953, San Andreas, Garlock, and Big Pine faults, California—a study of the character, history, and tectonic significance of their displacements: Geol. Soc. America Bull., v. 64, no. 4, p. 443–458.
- Reiche, Parry, 1937, Geology of the Lucia quadrangle, California : California Univ. Dept. Geol. Sci. Bull., v. 24, no. 7, p. 115–168.
- Trask, P. D., 1926, Geology of the Point Sur quadrangle, California : California Univ. Dept. Geol. Sci. Bull., v. 16, no. 6, p. 119–186.
- Vine, James D., 1966, Element distribution in some shelf and eugeosynclinal black shales : U.S. Geol. Survey Bull. 1214–E, 31 p.
- Waananen, A. O., and Bean, R. T., 1966, Water resource appraisal, in Mineral and water resources of California, Part 2 of report of U.S. Geological Survey prepared in collaboration with the California Department of Water Resources: U.S. 89th Cong., 2d sess., Senate Comm. on Interior and Insular Affairs, p. 451-513.