Mineral Resources of the Blue Range Primitive Area Greenlee County, Arizona, and Catron County, New Mexico

By JAMES C. RATTÉ, E. R. LANDIS, and DAVID L. GASKILL, U.S. GEOLOGICAL SURVEY, and R. G. RAABE, U.S. BUREAU OF MINES

With a section on AEROMAGNETIC INTERPRETATION

By GORDON P. EATON, U.S. GEOLOGICAL SURVEY

STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

GEOLOGICAL SURVEY BULLETIN 1261-E

An evaluation of the mineral potential of the area

UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary

GEOLOGICAL SURVEY

William T. Pecora, Director

STUDIES RELATED TO WILDERNESS PRIMITIVE AREAS

Pursuant to the Wilderness Act (Public Law 88-577, Sept. 3, 1964) and the Conference Report on Senate bill 4, 88th Congress, the U.S. Geological Survey and the U.S. Bureau of Mines are making mineral surveys of wilderness and primitive areas. Areas officially designated as "wilderness," "wild," or "canoe" when the act was passed were incorporated into the National Wilderness Preservation System. Areas classed as "'primitive" were not included in the Wilderness System, but the act provided that each primitive area should be studied for its suitability for incorporation into the Wilderness System. The mineral surveys constitute one aspect of the suitability studies. This bulletin reports the results of a mineral survey in the Blue Range primitive area, Greenlee County, Arizona and Catron County, New Mexico. The area discussed in the report includes the Blue Range primitive area as officially designated and also certain additional contiguous areas that have been proposed for consideration for wilderness status. The area that was studied is referred to in this report as the Blue Range primitive area.

This bulletin is one of a series of similar reports on primitive areas.

CONTENTS

Summary	P:
	d mineral resources, by James C. Ratté, E. R. Landis, and
	Gaskill.
	uction
	ocation and general features
	revious geologic studies
	esent studies and acknowledgments
	in the study area
	in the study area
	plcanic sequence
G:	ila Conglomerate
	rficial deposits
	d correlation of map units
	guishing features and chemistry of the volcanic rocks
	ire
	ructural setting
St	ructure in the primitive area
	Volcanic structure
	Faults
	agnetic interpretation, by Gordon P. Eaton
Minera	d resources
M	ethods of investigation
M	etallic mineral resources
	Areas of metallic resource potential
N	onmetallic resources
C	oal, oil, and gas resources
	eothermal energy
Co	onclusions
	appraisal, by R. G. Raabe
	uction
	gations
Conclu	sions
	cited
itelefelices	croed
	ILLUSTRATIONS
	·
_	Pi
PLATE	1. Geologic map of Blue Range primitive area In pock
	2. Sample locality map, Blue Range primitive area In pock
FIGURE	1. Index map showing location of Blue Range primitive area,
	Arizona and New Mexico
	2. Index map showing boundary of Blue Range primitive
	area, boundary of study area, and quadrangle names
	3. View northeast across Blue Range primitive area from
	U.S. Route 666 south of Rose Peak
	4. Physiographic diagram of Blue Range primitive area and
	vicinity
	5. Diagrammatic geologic section in the Blue Range primi-
	tive area

FIGURE	6–11.	Photographs:	Page
		6. Erosional unconformity beneath rhyolite ash-	
		flow sheet	$\mathbf{E}12$
		7. Rhyolite ash-flow breccia on southwest flank of	
		Red Mountain	13
		8. Peralkaline rhyolite ash-flow tuff of basaltic	
		andesite unit beneath beds of Gila Conglom-	
		erate, canyon of lower KP Creek	15
		9. Thin peralkaline tuff layers in lower part of	
		basaltic andesite unit at mouth of Fishhook	
		Creek	15
		10. Possible vent area of peralkaline rhyolite ash-	
		flow tuff in basaltic andesite unit, about 1 mile	
		below mouth of Strayhorse Creek	16
		11. Gila Conglomerate filling channel in peralkaline	
		rhyolite ash-flow tuff on north side of canyon	
		of lower KP Creek	17
	12	Tectonic map of the Blue Range primitive area and	
	12.	vicinity	24
	13.	Photograph of gently dipping beds of epiclastic volcanic	
		rocks in northwest part of primitive area, near Devils	
		Washboard	25
	14	Photograph of ash-flow tuffs and lava flows and intrusive	20
		rhyolite in Red Mountain caldera.	26
	15-20.	Maps of Blue Range primitive area showing localities of	
		rock samples containing—	
		15. Beryllium and (or) tin	34
		16. Molybdenum	35
		17. Lead and (or) zinc	36
		18. Copper	37
		19. Arsenic	38
		20. Mercury	39
	21.	Map of Blue Range primitive area showing areas of	•
		mineral-resource potential	41
	22	Claim map of Blue Range primitive area	45
		cam map or state transe primitive areas	-0
		TABLES	
		IADLES	
			_
			Page
TABLE	1.	. Tertiary volcanic sequence in the Blue Range primitive	
		area	$\mathbf{E}9$
	2-5.	Analyses of samples from the Blue Range primitive area:	
		2. Unaltered rock samples	52
		3. Altered rock samples	58
		4. Stream-sediment samples	64
		5. Panned concentrates of samples	88
	6.	. Chemical analyses, normative minerals, and classification	
		of volcanic rocks	22
	7.	. Average values and range of same major and trace ele-	
		ments in unaltered volcanic rocks	23
	8.	. Semiquantitative spectrographic analysis of thermal-	
		spring water	43

STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

MINERAL RESOURCES OF THE BLUE RANGE PRIMITIVE AREA, GREENLEE COUNTY, ARIZONA AND CATRON COUNTY, NEW MEXICO

By James C. Ratté, E. R. Landis, and David L. Gaskill, U.S. Geological Survey, and R. G. Raabe, U.S. Bureau of Mines

SUMMARY

The Blue Range primitive area comprises about 380 square miles in southeastern Arizona and southwestern New Mexico. Elevations in this mountainous region range from about 4,500 feet at the level of Blue River to nearly 9,400 feet on the high rim west of the river.

Rocks within and adjacent to the primitive area consist entirely of volcanic rocks or clastic sedimentary rocks derived almost entirely from volcanic sources. A thickness of about 5,000 feet of these rocks is exposed. They are mainly Oligocene and late Miocene in age, but some are of Pliocene age or younger. The rocks are highly faulted, and the major faults define sets that trend northeast, northwest, and approximately west. The northeast-trending faults are part of a fault system 15–30 miles wide that extends 70 miles or more from the vicinity of Clifton and Morenci, Ariz., to Apache Creek, N. Mex. This fault system is athwart the prevailing northwest trend of faults and rock units in southeastern Arizona and southwestern New Mexico.

The mineral-resource potential of the area was appraised by means of geologic mapping, geochemical sampling, an aeromagnetic survey, and close examination of all mining claims and areas of mineralized or altered rocks. Approximately 700 stream-sediment samples were taken, including about 60 pan concentrates and 225 samples of unaltered, altered, and mineralized rocks.

No evidence of potential mineral resources was found in more than 90 percent of the primitive area. Hydrothermal alteration and low-level geochemical anomalies in the Red Mountain-Oak Creek and the Squaw Creek-Maple Canyon areas, however, indicate that they may contain ore deposits at greater depth. Of the two, available evidence indicates that the Squaw Creek-Maple Canyon area has the greater mineral potential, particularly for molybdenum and copper. A positive aeromagnetic anomaly near the south edge of the primitive area and in the western part of the Squaw Creek-Maple Canyon area is similar to anomalies in other parts of western United States that are known to be caused by buried intrusive igneous rocks, some of which have ore deposits associated with them. A thorough assessment of the mineral potential at depth in the Squaw Creek-Maple Canyon area would require exploratory drilling that is beyond the scope of this investigation.

The likelihood of mineral-fuel deposits in the area is slight. Presence of materials such as coal, oil, oil shale, or natural gas would depend on the presence of sedimentary rocks of Paleozoic or Mesozoic age beneath the Tertiary volcanic rocks. Although such prevolcanic sedimentary rocks may be present, they are inferred from indirect evidence to be thin, and because coal- or oilbearing rocks are absent in adjacent areas the potential for fossil fuels is considered to be low.

There are no mines in the primitive area and there is no record of mineral production from the area. No patented mining claims are in the area. Several groups of unpatented mining claims exist, but none show more than traces of metallic minerals.

GEOLOGY AND MINERAL RESOURCES

By James C. Ratté, E. R. Landis, and David L. Gaskill

INTRODUCTION

LOCATION AND GENERAL FEATURES

The Blue Range primitive area, which is in the Apache National Forest, comprises about 345 square miles in Greenlee County, Ariz., and approximately 35 square miles in Catron County, N. Mex. (fig. 1). Nearby towns in Arizona are Alpine and Springerville, 15 and 40 miles north, respectively, and Morenci and Clifton, 20 miles south. In New Mexico, Luna is 15 miles north of the primitive area, Reserve 10 miles northeast, and Glenwood 10 miles southeast. The area studied for this report (fig. 2) includes the officially designated Blue Range Primitive Area plus additional areas that may be considered for inclusion in the Wilderness System.

Physical Features

The Blue Range primitive area is in a mountainous region (fig. 3) that includes much of the upper drainage basin of the Blue River, a major tributary of the San Francisco River (fig. 1). The west boundary of the study area is approximately the divide between the Black River, a tributary of Salt River, and Blue River drainages. The New Mexico portion of the area is drained by Pueblo Creek, which also flows to the San Francisco River. Except in these streams and some of the larger secondary streams that head in the high rim west of the Blue River, streamflow is largely intermittent.

As shown in figure 4, the primitive area is divided roughly into four parts by the Blue River, which crudely bisects the area north-south, and by a steep south-facing escarpment, commonly identified as the Mogollon Rim, that projects from west to east across the area north of Red Mountain and along the south flank of Bear Mountain. The north-east quadrant consists of the Bear Mountain-Whiterocks Mountain mass and the northeast-trending Brushy Mountains. The northwest

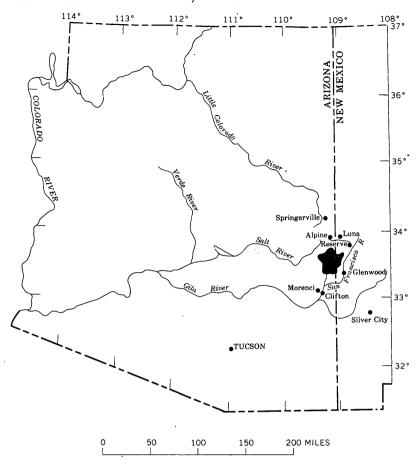


FIGURE 1.—Index map showing location of Blue Range primitive area (black),
Arizona and New Mexico.

quadrant includes the high rim at the east edge of a broad surface that dips gently westward to the Black River. This deeply incised rim overlooks highly dissected slopes west of the Blue River. The southwest quadrant embraces the circular mass that is Red Mountain and the east flanks of Rose Peak; the southeast quadrant includes Alma Mesa and the northwest slopes of Maple Peak. The highest elevation in the area is nearly 9,400 feet, at Blue Lookout west of the Blue River along the east-west escarpment (fig. 4). Rose Peak, Red Mountain, Bear Mountain, Whiterocks Mountain, and Maple Peak all rise above 8,000 feet. The Blue River enters the primitive area at about 5,800 feet elevation and crosses the south boundary at a little less than 4,500 feet; thus the maximum relief from the west rim to the bottom of the canyon is nearly 5,000 feet.

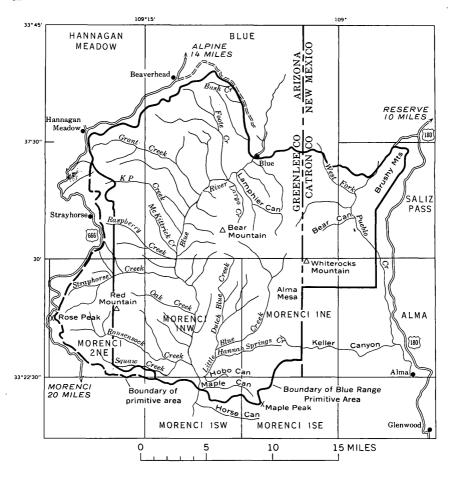


FIGURE 2.—Index map showing boundary of Blue Range primitive area, boundary of study area (not shown where coincident with primitive area boundary), and quadrangle names.

Within the primitive area, the valley of the Blue River ranges from open canyon in much of the stretch north of the major east-west escarpment to steep-walled gorge through large segments to the south. Its walls are cut by scenic tributary canyons, in many of which the streams enter the main canyon over falls several tens of feet high. Perhaps the most spectacular canyons, and certainly the deepest, are those that slice back into the high rim west of the Blue River; these include the canyons of Bush, Foote, Fishhook, Grant, and Steeple Creeks, and biggest of all, the canyon of KP Creek, which is nearly one half of a mile deep north of Blue Lookout. Strayhorse, Oak, Rousensock, and Squaw Creeks have all cut impressive canyons in the southwest part of the area, and Hannah Springs Creek, the Little Blue, and Dutch Blue Creeks, east of the Blue River, flow through narrow defiles hundreds of feet deep in many places.

FIGURE 3.—Blue Range primitive area as viewed northeastward from U.S. Route 666 south of Rose Peak. Red Mountain to left; Whiterocks Mountain on skyline—right center; Mogollon Range in New Mexico on far skyline to right.

FIGURE 4.—Physiographic diagram of Blue Range primitive area and vicinity.

The east-west escarpment is but one of several linear features of somewhat east-west trend that show conspicuously on the physiographic diagram (fig. 4). Also visible in the diagram are strong linear trends oriented northeast, northwest, and north-south, all of which reflect trends in the geologic structure of the area.

Climate and Vegetation

Because of the nearly 5,000-foot range in elevation, climate varies greatly, and plant life shows highly diverse forms from valley bottoms to high rims. The average annual precipitation, from records of the U.S. Weather Bureau for the period 1948–65, is slightly less than 25 inches at Beaverhead Lodge at an elevation of 8,000 feet just outside the northwest corner of the primitive area (fig. 2), and is slightly less than 15 inches at the Fritz Ranch about 4 miles south of the area, along the Blue River. Much of the precipitation falls as snow at the higher elevations and as rain at the lower elevations during the winter months; most of the remainder falls during thunderstorms in the summer. Snow may persist well into May on heavily wooded north slopes at high elevations.

Plant associations representative of the Upper Sonoran, Transition, and Canadian life zones occur within the area. Cottonwood and sycamore mark the flood plains of the major streams, and cactus, mesquite, and associated plants dot the slopes at low elevations, where bare rock generally dominates the scenery. Contrasting markedly with this desert and foothills flora is a thick mixed evergreen forest, which includes pine, spruce, and fir on the high west rim, along the Bear Mountain-Whiterocks Mountain ridge, and at similar elevations elsewhere. Many of the steep slopes at high elevations have a thick cover of oak brush and locust; manzanita is common, particularly where rhyolitic igneous rocks are prevalent.

Archeology

In addition to many scenic physical features, the primitive area is dotted with numerous archeological sites. Petroglyphs are preserved on rocks along the Red Hill Road just west of the Blue River, outside the primitive area; pit houses are abundant on terraces along the Blue River as well as on several flat-topped divides, such as between Alder Peak and U.S. Route 666 at the south edge of the area, and southwest of Saddle Mountain in the northeast part of the area. Small cliff dwellings can be found high in the rhyolite cliffs on south-facing exposures on Red Mountain.

Present-day Human Activities

Narrow areas along the Blue River are occupied by small ranches that depend largely on the bordering primitive area for grazing. Lumber operations are carried on immediately west of the primitive area.

A recreational industry based largely on the hunting of deer, elk, bear, lion, and turkey also contributes to the livelihood of area residents. A U.S. Post Office is maintained at Blue at the north boundary of the area.

PREVIOUS GEOLOGIC STUDIES

Prior geologic work in the study area consists of reconnaissance geologic mapping of the Reserve quadrangle, New Mexico, at a scale of 2 miles equals 1 inch, by Weber and Willard (1959b), and geologic mapping of Greenlee and Graham Counties, Ariz., at a scale of 6 miles equals 1 inch, by Wilson, Moore, and others (1958). Some of the rocks of the study area correlate with rocks in the Alpine-Nutrioso area 10 miles to the north that were described by Wrucke (1961).

PRESENT STUDIES AND ACKNOWLEDGMENTS

The purpose of this minerals survey is to appraise the mineral resources of the primitive area. This study has involved geologic mapping at a compilation scale of 1 mile equals 1 inch (pl. 1), geochemical sampling of rocks and stream sediments (pl. 2; tables 2–5), and an aeromagnetic survey of the area (pl. 1). Thirty-two man-weeks were spent in the field between May 1967 and June 1968; field studies were aided by helicopter transportation during approximately half of the field time.

Our thanks are extended to Charles Pineo and Walter Welton, whose assistance in the field in July and August 1967 consistently exceeded the requirements of a 40-hour week.

We are indebted to Dr. Paul Damon, of the University of Arizona Geochronology Laboratory, for providing radiometric ages on four samples collected jointly during his visit to the study area in October 1967.

Our studies also were aided by discussions with Prof. Wolfgang Elston, University of New Mexico Geology Department, and by field trips conducted by him in areas of New Mexico adjacent to the study area.

We also wish to thank Mr. and Mrs. Bob Birdwell of the 6K6 Ranch, and Mr. Fred Fritz and Mr. George Stacy, both of Clifton, Ariz., for extended courtesies during this investigation.

GEOLOGIC SETTING

Structurally and physiographically, the Blue Range primitive area is within the transition zone between the Colorado Plateaus and the Basin and Range provinces (Wilson and Moore, 1959). It is in a region where the strata are more severely faulted and disturbed than in the

Colorado Plateaus province to the north, and where the mountains are in relative disarray as compared to the linear ranges and intervening basins of the Basin and Range province to the south. However, as the physiographic and structural provinces in Arizona have been more recently defined (Heindl and Lance, 1960, p. 15, 17), the primitive area lies wholly within the Colorado Plateaus province.

All the rocks exposed in the study area are either volcanic rocks or epiclastic volcanic rocks; that is, sedimentary rocks composed of volcanic debris. These rocks are of middle and late Tertiary age and are in the southwest part of the White Mountain and Datil volcanic areas (Cohee, and others, 1961), which cover approximately 20,000 square miles in southwestern New Mexico and eastern Arizona.

The character of the rocks beneath the Tertiary volcanic rocks is pertinent to the economic appraisal of the study area, but direct evidence of the extent and thickness of such rocks is fragmentary. Although Paleozoic and Mesozoic rocks probably were deposited throughout the region, some of these rocks likely were removed by erosion before the Tertiary volcanic rocks accumulated. It is estimated that between two and three thousand feet of Paleozoic and Mesozoic sediments were deposited in the vicinity of the study area (McKee, 1951, pl. 3), and as much as 2,000 feet of Paleozoic rocks may remain beneath the Tertiary volcanics (Kottlowski, 1965, fig. 2). The areal extent of the rocks under the volcanic cover depends largely upon the configuration of the Burro uplift, a northwest-trending late Paleozoic to early Mesozoic uplift (Elston, 1958; Hewitt, 1959), the exposed core of which contains metamorphic and igneous rocks of Precambrian age in southwestern New Mexico. The core of the uplift, as shown by Kottlowski (1963, 1965), projects into the southern part of the study area, thereby presenting the possibility that Tertiary volcanic rocks rest directly on Precambrian rocks in that part of the area.

Rocks of Cambrian, Ordovician, Devonian, and Mississippian age crop out south and southeast of the primitive area near Clifton, Ariz., and Silver City, N. Mex., but these pre-Pennsylvanian rocks are not present in a well 35 miles north of the area (Foster, 1964, p. 13–14). Where present, Pennsylvanian-age rocks are as much as 1,000 feet thick beneath the study area (Kottlowski, 1965, fig. 6), but any Permian rocks or Mesozoic rocks that may have been deposited in this area probably were stripped by erosion before the Tertiary volcanic rocks were deposited (Kottlowski, 1963, p. 78, 85, figs. 17, 18).

In addition to the Paleozoic and Mesozoic rocks exposed in and north of the Clifton-Morenci mining district about 20 miles south of the primitive area (Lindgren, 1905a; Wilson, Moore, and others, 1958), and north of Springerville, about 40 miles north of the area (Wilson, Moore, and others, 1958), several small outcrops of Pennsylvanian

rocks occur less than 20 miles north of the area (Weber and Willard, 1959b; Wrucke, 1961). Some if not all of these small exposures are rafted blocks or inclusions in the Tertiary volcanic rocks. During the present study, limestone boulders were found in lenses of sedimentary conglomerate several tens of feet thick in the northwestern part of the primitive area.

In summary, the meager evidence available suggests that Precambrian rocks may underlie the Tertiary volcanic rocks of the southern part of the area and that elsewhere as much as 2,000 feet of Paleozoic rocks may be present beneath the Tertiary rocks.

ROCKS IN THE STUDY AREA

VOLCANIC SEQUENCE

The rocks of the Blue Range primitive area are shown in stratigraphic sequence in table 1. Some of the rocks represent a somewhat local volcanic accumulation, and only a few rock units extend throughout the area. Each unit is named for the prevalent rock type in the areas where it is shown on the map (pl. 1). Most of the volcanic rock units consist of numerous flows and pyroclastic layers with a considerable range in composition. Some areas of complex structure and (or) heterogeneous rock units can be fully understood only by more detailed mapping. However, the map units shown on plate 1 are believed to be adequate to describe the major aspects of the geology.

Table 1.—Tertiary volcanic sequence in the Blue Range primitive area

Gila Conglomerate		Isotope age (million years)
Erosional unconformity. Basaltic andesite	2 000	23.3 ± 0.7
Quartz latite and rhyolite (south half only) Extrusive-intrusive dome complex; dikes of complex intrude lower lava flows of basaltic andesite, but complex appears to be older than most of basaltic andesite unit.		23. 4 ± 0. 7
Unconformity. Rhyolite tuff (north half only) Welded rhyolite ash-flow tuff sheet interlayered with conglomerate, sandstone, andesitic lava flows, and other rhyolite and quartz latite ash-flow tuffs.	300–1, 000	24. 9±0. 7
Rhyolite of Red Mountain (south half only)	0–1, 700	
Pyroxene-hornblende andesite (south) Epiclastic volcanic rocks (north) Includes some lava flows and nonvolcanic conglomerate containing clasts of fossiliferous limestone and gneissic granite.		37. 4±3. 9

The general relationships between the map units are shown diagrammatically in figure 5, and their distribution is shown on plate 1. The oldest rocks are exposed in the southwestern part of the area, where they consist of about 2,000 feet or more of lava flows, flow breccias, and pyroclastic breccias of pyroxene-hornblende andesite, cut by numerous dikes of the same composition. There is little differential weathering between the dikes and layered rocks, and consequently the dikes are not readily traced across the countryside. Thus, they were noted primarily where they crop out along drains and generally are not shown on the geologic map. The rocks in this unit are believed to form a composite andesitic volcano whose center probably was within the southwestern part of the study area.

In the north half of the area, the andesitic lava flows and breccias gradually give way to epiclastic volcanic sediments that range from laharic and mudflow-type breccias to volcanic conglomerate, sandstone, and siltstone with a maximum thickness of at least 2,000 feet. Excellent exposures of these rocks can be observed along the Red Hill Road, which gets its name from the dominant red color of the matrix of the sedimentary rocks, and along the road east from Blue. Andesitic to dacitic lava flows appear to be interlayered more or less throughout the clastic unit, and are increasingly abundant to the south, although

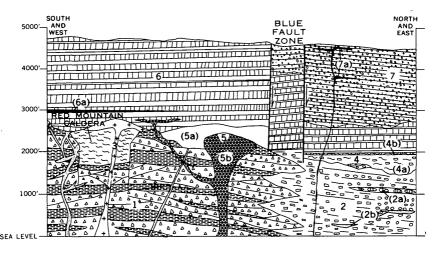


FIGURE 5.—Diagrammatic geologic section in the Blue Range primitive area. 1, Pyroxene-hornblende andesite flows, breccias, and dikes. 2, Epiclastic volcanic rocks; 2a, conglomerate containing limestone and granite gneiss; 2b, interlayered andesitic lava flows. 3, Rhyolite of Red Mountain (ash-flow tuff, lava flows, and intrusive rhyolite). 4, Rhyolite tuff; 4a, ash-flow tuff member; 4b, breccia member. 5, Quartz latite and rhyolite dome complex; 5a, lava facies; 5b, intrusive facies. 6, Basaltic andesite; 6a, peralkaline rhyolite ash-flow tuff. 7, Gila Conglomerate; 7a, interlayered basaltic lava flows. Horizontal scale, arbitrary.

they probably nowhere exceed 5 percent of the unit. The sedimentary materials are largely andesitic to dacitic debris, much of which undoubtedly was derived from the andesitic volcano in the southwestern part of the area.

In the northwestern part of the area, and most readily examined along the Red Hill Road beneath Red Bluff (pl. 1), the sedimentary unit includes about 120 feet of sandy conglomerate characterized by beds that contain as much as 70 percent or more nonvolcanic materials. Well-rounded, mostly subspherical pebbles, cobbles, and boulders as much as 2 feet long include a variety of carbonate rocks and a gneissic biotite granite, along with some other crystalline rocks. These beds, which are near the middle of the sedimentary unit, crop out from the Red Hill Road south to the mouth of the Right Fork of Foote Creek; they also were observed about 5 miles northeast of Red Bluff, outside the primitive area, between Milligan Peak and the Blue River.

Many of the carbonate clasts contain abundant fossils of calcareous algae, and brachiopod and crinoid fragments. Fusulinids from some of the limestone were identified by D. A. Myers of the U.S. Geological Survey, who reported (oral commun., 1967) that they range in age from Middle to Late Pennsylvanian. The large size of some of the limestone clasts, indeed their very presence, indicates a source probably within a few miles of the site of deposition. The nearest present exposures of such rocks are about 12 miles south of the primitive area, near Morenci, Ariz.

The transitional contact between the sedimentary unit and the pyroxene-hornblende andesite unit is arbitrarily drawn north of Strayhorse Creek, west of the Blue fault zone (pl. 1), and on the lower southwest slopes of Bear Mountain east of the Blue River (pl. 1). Lava flows interbedded in the sedimentary unit were mapped only locally, as in the nothwest corner of the area and south of the ridge between Bear and Whiterocks Mountains.

In most places in the north half of the area, the sedimentary unit is overlain unconformably by a rhyolite tuff unit having an aggregate thickness of 300–1,000 feet. It has a lower member, mainly a rhyolite ash-flow sheet, and an upper heterogeneous and poorly defined breccia member that consists of volcanic and fluviatile breccia and some conglomerate and sandstone. Locally, the rocks of the breccia member might better be included in the overlying basaltic andesite unit, and the unconformity at the base of that unit probably is within the breccia member in a number of places. The following description is restricted largely to the ash-flow member, which, in addition to the main rhyolite ash-flow sheet, locally contains conglomerate, sandstone, andesitic flows, and other thin rhyolite and quartz latite ash-flow tuffs. At some

locations, such as west of Saddle Mountain in the northeast part of the study area, gravel and sandstone beds of the ash-flow member were deposited on a rough topography beneath the main rhyolite ash-flow sheet. In most of the area, however, the ash-flow sheet is at the bottom of the rhyolite tuff unit and buries the old surface (fig. 6). In Yam Canyon this surface has a maximum relief of at least several hundred feet and possibly much more.

West of the Blue River, the rhyolite ash-flow sheet ranges in thickness from a few tens of feet to about 200 feet and is overlain by conglomerate and sandstone of the breccia member that is very similar or identical to much of the epiclastic unit beneath the ash-flow sheet, except that in many places it is characteristically buff rather than red. Distinctive white to buff sandstone with sweeping crossbeds is common in the upper member of the rhyolite tuff unit near the Red Hill Road and Castle Rock (pl. 1) and is probably correlative with similar crossbedded sandstone in the Alpine-Nutrioso area, described by Wrucke (1961, p. H17–H19) as having a matrix of zeolite. Platy, porphyritic andesitic flows, which are interlayered with the upper member from Sawed Off Mountain to Raspberry Peak, are mapped separately in that area (pl. 1). East of the Blue River, the rhyolite ash-flow sheet is at least 500 feet thick along Little Blue Creek, in Yam Canyon, and in the Brushy Mountains. North and south from

FIGURE 6.—Erosional unconformity beneath rhyolite ash-flow sheet of rhyolite tuff unit. Relief on buried topography on west side of Yam Canyon is 100–200 feet. Ts, epiclastic volcanic rocks; Tro, rhyolite ash-flow tuff.

Whiterocks Mountain, other rocks are mapped with the ash-flow member, as previously noted, but the rhyolite ash-flow sheet is probably 200–400 feet thick in most places.

In the southwestern part of the primitive area, the rhyolite of Red Mountain is interpreted as filling a 2- to 3-mile-diameter caldera in the older pyroxene-hornblende andesite (pl. 1, fig. 5). The rhyolite includes at least 700 feet of rhyolite ash-flow tuff, overlain and intruded by fine-grained rhyolite lava. The ash-flow tuff is in two main cooling units. The lower one is about 500 feet thick and contains as much as 40-50 percent angular fluidal rhyolite fragments as much as 2 feet in diameter (fig. 7). The upper cooling unit, about 200 feet thick, is similar in composition to the lower one but contains few lithic inclusions. The pseudobedding characteristics evident in figure 7 are an original feature of this ash-flow deposit. Presumably, the breccia layers formed as a result of pulsating explosions that disintegrated a plug or protrusive mass of rhyolite. The rhyolite body just northeast of the main mass on Red Mountain (pl. 1) fills a small vent, but the two other bodies along Oak Creek and the tiny outlier south of Strayhorse Creek are probably remnants of rhyolite lava flows. The main source of the ash flows and lava was the Red Mountain caldera.

The rhyolite ash-flow tuffs of Red Mountain (pl. 1) and the rhyolite ash-flow sheet in the north part of the area (pl. 1) are very similar

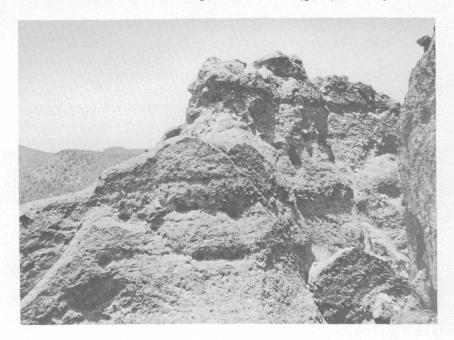


FIGURE 7.—Rhyolite ash-flow breccia on southwest flank of Red Mountain. Largest blocks are 1–2 feet in diameter.

in many respects—both contain small quartz and sanidine (moonstone) phenocrysts and lack appreciable biotite. The rhyolite of Red Mountain is found only south of Strayhorse Creek, and the rhyolite ash-flow sheet of the rhyolite tuff unit is cut off by east-west faults nearly 5 miles north of Strayhorse Creek. As discussed more fully in the section on correlations, the rhyolite ash-flow sheet of the rhyolite tuff unit may have a source different from that of the rhyolite of Red Mountain, although both probably represent the same general period of rhyolite volcanism.

Except for the rhyolite of Red Mountain, whose relationships to younger rocks can only be inferred, the rock units previously described are overlain in many places by the basaltic andesite unit. This unit consists of as much as 2,000 feet of basaltic andesite flows interlayered locally with thin gravel beds and a sheet of distinctive peralkaline rhyolite ash-flow tuff. Typical flows of basaltic andesite are black to dark gray, holocrystalline, a few tens of feet thick, and vesicular to amygdaloidal; they have oxidized flow breccia at the top or bottom or both. Many other flows are lighter gray and appear to be more dacitic or latitic than basaltic. The rocks in this unit commonly contain small altered mafic phenocrysts which give them a red spotted appearance, but they are not highly porphyritic. The upper flows appear to be more mafic, and small fresh yellow olivine crystals are visible in some of them.

The peralkaline ash-flow tuff ranges in thickness from 0 to several hundred feet. The most densely welded section is along lower KP Creek (fig. 8), where the ash-flow tuff is about 300 feet thick. It thins rapidly south and north of KP Creek and breaks up into separate cooling units and lenses of poorly welded pumiceous ash-flow tuff (fig. 9), which pinch out within the basaltic andesite unit or are overlapped by Gila Conglomerate. About 80 feet of partly to densely welded peralkaline rhyolite ash-flow tuff north of Raspberry Creek, about a mile northwest of Crooks Mesa, is the only occurrence of this rock observed west of the Blue fault zone (pl. 1).

East of the Blue River, opposite the mouth of Strayhorse Creek, the peralkaline tuff unit is several hundred feet thick and consists of bedded pumiceous pyroclastic rocks, water-laid volcanic breccia, and other volcanic sediments, and it includes only 10–20 feet of densely welded ash-flow tuff near the top. The thickness and heterogeneity of pyroclastic rocks in this area and the presence of some small dikes suggest that it might be the vent area for the peralkaline ash flows (fig. 10). No other evidence for a vent was found. Other exposures of the peralkaline tuff east of the Blue River are between upper Dutch Blue Creek and Hobo Canyon.

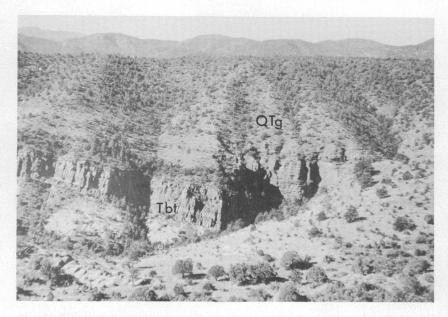


FIGURE 8.—Peralkaline rhyolite ash-flow tuff (Tbt) of basaltic andesite unit unconformably beneath more gently tilted beds of Gila Conglomerate (Qtg). View south across canyon of lower KP Creek.

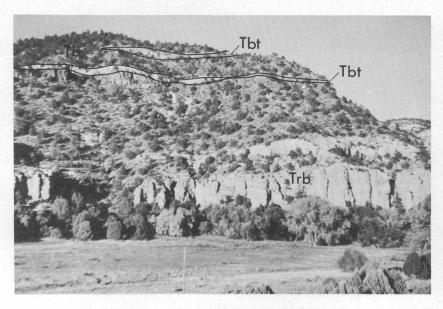


FIGURE 9.—Thin peralkaline tuff layers (Tbt) in lower part of basaltic andesite unit (Tb) at mouth of Fishhook Creek. Remainder of section is breccia member (Trb) of rhyolite tuff unit.

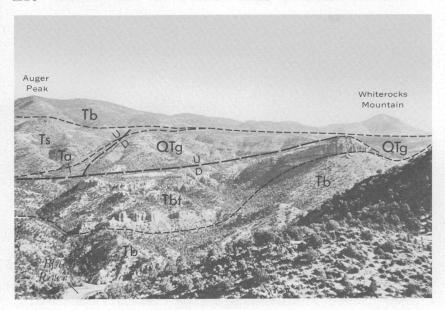


FIGURE 10.—Possible vent area of peralkaline rhyolite ash-flow tuff (Tbt) in basaltic andesite unit (Tb). View northeast from hill west of Blue River about 1 mile below mouth of Strayhorse Creek. Ts, epiclastic volcanic rocks; Qtg, Gila Conglomerate. Heavy lines are faults: U, upthrown side; D, downthrown side.

An extrusive-intrusive dome complex that consists largely of biotiteand hornblende-bearing quartz latite to rhyolite lavas several hundred feet thick occurs mainly near the south boundary of the study area (pl. 1). Smaller bodies of similar rock on the north side of Strayhorse Creek and outside the southwest corner of the primitive area are correlated with them. This unit is shown in the diagrammatic geologic section (fig. 5) as a lava dome in which an intrusive facies, represented mainly by rhyolite vitrophyre along lower Rousensock Creek and possibly by perlitic rocks between Maple and Horse Canyons, was injected into an earlier lava pile. Rhyolite and quartz latite porphyry dikes associated with the dome cut the complex and also the basal flows of the basaltic andesite unit along upper Strayhorse Creek; other contacts between rocks of the complex and adjacent lavas also appear to be intrusive, particularly around Alder Peak and the mountain 11/2 miles east of Alder Peak. Some of the rocks mapped as pyroxene-hornblende andesite adjacent to the dome complex in this area may be part of the basaltic andesite. Elsewhere, as along lower Little Blue Creek and in Hobo Canyon, basaltic andesite overlies the dome complex. Thus, geologic relationships indicate

that the quartz latite and rhyolite dome complex is younger than the earliest flows of the basaltic andesite in some areas, but is older than the earliest basaltic andesite flows in others.

The very shallow depths at which the intrusive vitrophyre along Rousensock Creek was emplaced is shown by a pumice breccia dike that can be traced from the level of the intrusive rocks into bedded pyroclastic deposits in a small saucer-shaped vent north of the creek.

GILA CONGLOMERATE

The Gila Conglomerate rests unconformably on the faulted and eroded older rocks (figs. 8, 11). It fills the lows in a mountainous topography and leaves islands of older rocks, such as the basaltic andesite in the southeastern part of the area (pl. 1). Consequently, its thickness is variable and subject to interpretation, but it is probably 1,100 feet or more along Little Blue Creek, south of Yam Canyon, and probably exceeds 800 feet under Foote Creek Mesa, west of the Blue River.

The unit consists mainly of buff to gray boulder conglomerate, which commonly is locally derived. Where the boulders are dominantly of basaltic andesite or rhyolite ash-flow tuff, the Gila Conglomerate is readily distinguished from the older, predominantly red, and more indurated conglomerate of the epiclastic volcanic rocks. However, where

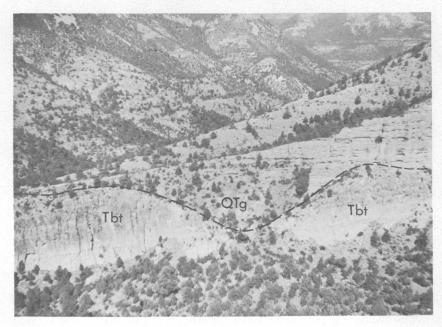


FIGURE 11.—Gila Conglomerate (Qtg) filling channel in peralkaline rhyolite ash-flow tuff (Tbt) on north side of canyon of lower KP Creek.

the Gila Conglomerate includes a more heterogeneous assemblage of rock types, it may be much more difficult to define a contact between the two conglomerates.

Basaltic flows are interlayered with the conglomerate, particularly from Alma Mesa to Cottonwood Creek in the eastern part of the study area, and in the strip of Gila Conglomerate south of the Red Hill Road, where the flows are accompanied by several basaltic dikes. Some basaltic flows and conglomerate that cap ridges in the highly faulted terrane north of Bear Mountain and east of the Blue River may actually be Gila Conglomerate rather than the basaltic andesite shown on plate 1. Quaternary lag gravels and (or) pediment deposits which form mantles tens of feet thick on many of the interfluves underlain by Gila Conglomerate are here included in the Gila.

SURFICIAL DEPOSITS

Surficial deposits shown on plate 1 consist of alluvium along the Blue River and Pueblo Creek and landslide deposits. The two largest landslides cover 5–10 square miles each in the Paradise Park area beneath the northwest rim and along the Blue River on the northwest flank of Bear Mountain. The sliding in both of these areas and in most of the smaller ones is largely the result of the erosion of soft ashflow deposits from under thick accumulations of lava flows.

AGE AND CORRELATION OF MAP UNITS

The volcanic rocks in the Blue Range primitive area are part of a Tertiary volcanic field that covers about 20,000 square miles; the Arizona part of this field is know as the White Mountain volcanic area and the New Mexico part, as the Datil volcanic area (Cohee and others, 1961). The New Mexico part of the primitive area lies in the Reserve quadrangle, where the rhyolite tuff unit and epiclastic volcanic unit of this report were referred to the Datil Formation by Weber and Willard (1959b). The Datil Formation (Winchester, 1920, p. 9) as now shown on the geologic map of New Mexico (Dane and Bachman, 1965) is a widespread volcanic complex that has been described in the region adjacent to the primitive area by Stearns (1962, p. 7-22) and Elston (1968). The name Datil has not been used in this report because of the uncertainty of the relative ages of the volcanic rocks in the primitive area and the type Datil in the Bear Mountains, Socorro County, N. Mex., which has been bracketed in the Oligocene between about 29 and 38 m.y. (million years) (Burke and others, 1963; Weber and Bassett, 1963).

The following four samples of volcanic rocks in the primitive area were collected for potassium-argon age determinations in cooperation

with Dr. Paul Damon, who directed the analytical work in the Geochronology Laboratories at the University of Arizona (Elston and others, 1968). Three of the samples analyzed have isotopic ages near the Oligocene-Miocene boundary and the fourth is late Eocene-early Oligocene. Descriptions, locations, and ages of the samples follow:

- 1. Hornblende from the oldest rock, the pyroxene-hornblende andesite unit along U.S. Route 666 in the southwest corner of the primitive area (BR-89B, pl. 1) has an age of 37.4±3.9 m.y. The calculated age has a high standard deviation caused by a high atmosphericargon correction.
- 2. Sanidine from densely welded ash-flow tuff of the rhyolite tuff unit collected from low cliffs on the east side of the Blue River between Lamphier and S Canyons (BR-85, pl. 1) has an age of 24.9 ± 0.7 m.y.
- 3. Biotite phenocrysts from intrusive (?) perlitic vitrophyre of the quartz latite and rhyolite complex along Rousensock Creek above the mouth of Squaw Creek (BR-109A, pl. 1) have an age of 23.4±0.7 m.y.
- 4. The whole-rock age of olivine basaltic andesite from a road cut at the junction of the Rose Peak lookout road with U.S. Route 666 (BR-89A, pl. 1) is 23.3±0.7 m.y. This rock, though practically holocrystalline, may contain a small amount of glass (<1 percent).

The isotopic ages of these four samples seem to be compatible with our knowledge of the geologic history of the area. They provide the only basis for estimating the length of time represented by the erosional unconformity at the top of the epiclastic volcanic unit. However, the assumption that these four dated samples are representative of the age of all of the rocks included in the map units shown on plate 1 probably is false. Other units, such as the platy andesite flows, which locally define the base of the basaltic andesite unit, probably bridge part of the gap between the youngest and oldest dated rocks.

DISTINGUISHING FEATURES AND CHEMISTRY OF THE VOLCANIC ROCKS

Many of the rocks in the various volcanic units are somewhat similar, but they can generally be distinguished by color and the kinds and abundance of phenocrysts. Most of the rocks in the pyroxene-horn-blende andesite unit contain phenocrysts of both pyroxene and horn-blende, although the phenocrysts may range widely in relative size and abundance. Rocks of the basaltic andesite unit are commonly darker than pyroxene-hornblende andesite, contain less hornblende, and commonly contain olivine. Rocks of the quartz latite and rhyolite complex

are distinguished by light color and the presence of biotite or hornblende or both. Both the rhyolite of Red Mountain and the widespread rhyolite ash-flow sheet of the rhyolite tuff unit contain phenocrysts of quartz and alkali feldspar, the latter commonly of the variety which displays opalescent colors and is called moonstone. Both rock types lack appreciable biotite or other mafic minerals.

It has been suggested in an earlier part of this report that the rhyolite of Red Mountain and the rhyolite ash-flow sheet of the rhyolite tuff unit may have had separate sources. Evidence bearing on this question from the rocks themselves is inconclusive. In the field, the two units appear to contain the same phenocrysts and look virtually identical. However, thin sections of the rocks show that the rhyolite of Red Mountain commonly contains both alkali feldspar and small amounts of plagioclase. In several thin sections of the rhyolite ash-flow sheet, on the other hand, less than six plagioclase crystals and small chips were noted, and some of them were mantled by alkali feldspar as if they might have been foreign to the original magma.

By contrast with the other rhyolite ash-flow tuffs, the peralkaline rhyolite ash-flow tuff that is interlayered in the basaltic andesite unit is practically devoid of phenocrysts, and ash-flow tuff associated with the quartz latite and rhyolite complex is relatively rich in biotite but lacks quartz and alkali feldspar phenocrysts.

Plagioclase phenocrysts are common in many of the rock types, but are particularly abundant in some of the quartz latite and rhyolite flows along Rousensock and Squaw Creeks. Dacitic-andesitic flows, locally distinguished from or included in the basaltic andesite unit, are also plagioclase rich and contain more and generally larger phenocrysts than the flows interlayered in the pyroxene-hornblende andesite and the epiclastic unit.

Several samples of the rhyolite ash-flow sheet of the rhyolite tuff unit have a reverse remanent magnetic polarity, whereas peralkaline rhyolite ash-flow tuff along lower KP Creek and east of the mouth of Strayhorse Creek has normal polarity.

Basaltic flows in Gila Conglomerate in the northeastern part of the primitive area have distinctive glassy plagioclase phenocrysts not found in the basaltic andesite flows from Bear Mountain to Whiterocks Mountain or west of the Blue River. Similar flows, containing glassy plagioclase phenocrysts, that were mapped with the basaltic andesite unit between Bear Mountain and Saddle Mountain also may be in the Gila Conglomerate.

Flows at the base of the basaltic andesite unit near Raspberry Creek and west of the Blue River from HU Bar Ranch to north of Oak Creek are distinctive and were called platy andesite in the field because of

their strong flow structure. These flows, which commonly are reddish brown, appear massive at first glance, but under closer observation iron-stained plagioclase phenocrysts 5–10 mm (millimeters) long may be seen. These flows are typical of neither the basaltic andesite unit, with which they were mapped, nor the underlying pyroxene-horn-blende andesite.

Nine rapid-type chemical analyses showing the major-oxide composition of some of the volcanic rocks and the calculated theoretical mineral compositions or rock norms are shown in table 6. The trace-element composition of the volcanic rocks is shown in table 7. The analyzed rocks have been named by comparing the analyses and norms with average compositions of various rock types presented by Nockolds (1954). The alternative names shown in table 6 correspond to the nomenclature of Rittmann (1952).

The rhyolite of Red Mountain is not represented in the rapid-rock analyses in table 6, but comparison of the average trace-element contents of 16 samples of this rhyolite with 10 samples of the rhyolite ash-flow sheet of the rhyolite tuff unit (table 7) shows that the rhyolite of Red Mountain contains considerably greater amounts of Sn, Sr, Be, Nb, Zr, and Zn, and somewhat less V, Cr, Ba, and Mn than the rhyolite ash-flow sheet. These differences could be evidence of a different origin for the two rhyolite bodies, but may be accounted for partly by the concentration of relatively volatile elements in the Red Mountain vent area.

STRUCTURE

STRUCTURAL SETTING

The Blue Range primitive area lies near the southeastern edge of the Colorado Plateaus structural province where the boundary between that province and the Basin and Range province is obscured by Tertiary volcanic rocks in the White Mountains and Datil Volcanic areas, as shown on the "Tetonic Map of the United States" (Cohee and others 1961). At the north edge of the volcanic areas, nearly horizontal Mesozoic sedimentary rocks pass beneath the volcanic rocks; at the south edge, the volcanic rocks form a mountainous region bordered by somewhat tilted Paleozoic and Mesozoic sedimentary rocks. The region south of the volcanic areas in southeastern Arizona and southwestern New Mexico is characterized by northwest-trending mountain ranges, intervening basins, and associated faults.

Numerous faults in and near the primitive area are shown in figure 12, some of which were mapped during aerial reconnaissance at the time of the aeromagnetic survey. A belt of northeast-trending faults define a graben zone 15–30 miles wide, which crosses the regional northwesterly structural trend (pl. 1). The faults along the front of

Table 6.—Chemical analyses, normative minerals, and classification of volcanic rocks,

Blue Range primitive area

[Analysts: P. L. D. Elmore, L. A. Artis, H. Smith, J. L. Glenn, G. W. Chloe, J. Kelsey, S. D. Botts, J. W. Budinsky, P. J. Aruscavage. Method used was a single solution procedure described by Shapiro (1967, p. 187-191). Sample localities shown on plate 1]

Field No	BR-96A	BR-19A	BR-89A	BR-92	BR-109B	BR-109A	BR-85	BR-1	BR-2
Sample No	1	2	3	4	5	6	7	8	9
		Chemical	analyses,	recalcula	ted waterf	ree			
SiO ₂	48. 4	53.6	55.3	74.5	62. 6	71.5	75. 5	58.7	58. 2
Al ₂ O ₃ Fe ₂ O ₃	$\frac{18.1}{3.2}$	17.3	16.6	$\frac{12.0}{2.8}$	16.5	15.0	12.8	17.4	17.6
FeO	7.6	5.1	3.1	. 52	6.1	1.5 .63	1.2	5. 6	6.3
MgO	7. 0 5. 7	4. 1 5. 1	5. 2 4. 6	$\begin{array}{c} .52 \\ .22 \end{array}$. 45 . 86	. 88	$\substack{.12\\.42}$. 62 3. 6	. 19 2. 7
CaO	9.7	6.2	6.7	. 34	3. 2	1.6	.76	6.2	6.2
Na ₂ O Na ₂ O K ₂ O FiO ₂	3.4	3.7	3.6	4.7	4.0	3.9	3. 4	4.4	4.5
K ₂ O	1.1	2.3	2.3	4.5	4.4	4.3	5. 4	2, 1	2. 9
ΓiO ₂	2. 0	1.6	1 4	. 16	1.2	. 40	. 19	. 92	. 9
PsO5	. 50	. 82	. 81	. 02	. 56	. 21	. 02	. 35	. 3
MnÖ CO ₂	. 10	. 12	. 14	. 09	. 07	. 15	. 12	. 08	. 14
CO2	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.0
Cl	. 036	. 01	. 011	. 009	. 004	. 020	. 002	. 02	.00
F	. 052	. 08	. 082	. 095	. 013	. 037	. 042	. 05	. 04
	,	Water con	tent, repor	ted in ori	ginal analy	rsis			
H ₂ O	0. 16 . 40	1. 0 1. 5	0. 29 . 65	0. 20 . 42	0.77 .83	0. 79 3. 4	0. 37 . 49	1.6 1.4	1.1
Powdered density Bulk density	2. 85 2. 78	$2.79 \\ 2.74$	2.80 2.62	2. 55 1. 97	2. 75 2. 55	2. 45 2. 38	2.65 2.24	2. 68 2. 64	2. 60 2. 20
				Norms					
Quartz		4.9	5. 4	30. 1	16. 6	28. 7	32. 6	8. 9	6.8
Corundum			0. 1	00.1	. 1.0	1.8	02.0	0.0	0.0
Orthoclase	6. 5	13. 3	13. 7	26. 7	25. 8	25. 3	32, 2	12, 2	16. 9
AlbiteAnorthite	28.6	31. 1	30. 6	36. 3	33. 6	32. 6	29. 0	37. 4	38. 1
Anorthite	30. 9	24. 1	22. 3		. 11.4	6. 2	3. 3	21.4	19. 3
Hante	1		- 					· • • • • • • •	
Acmite				. 3. 1					
Diopside		. 8	4.3	.7	2. 2	2. 2	1. 1	- 5.0	5. 5 4. 1
Hypersthene Olivine	1.8 11.2	13. 2	14. 4	. 2	2. 2	2. 2	1. 1	6. 7	4. 1
Magnetite	4.7	7.4	4. 5	1. 5		1.3	. 3		
Hematite			2, 0	7	6. 1	. 5	1.1	5. 6	6. 3
Ilmenite	3.8	3. 1	2, 7	. 3	ĩ, ĩ	.8	. 4	1. 5	. 6
Titanite								3	1. 5
Rutile					6 .		-	- -	
Apatite Fluorite		1.9	1. 9	2	. 1.3 .2	. 5		8	. 8
Sample No. C	lassificatio		*****		Dae	cription			
-	-		141	011. 6		-			
1 Alkali						te. Diabsai			andesine
2, 3 Doreit	ne andesi	ve.	abiauoriu	e, unvine logito flor	, and child	pyroxene. A ic texture,	tiny oliv	ine nhe	noervets
ande		y- D	Unner Ra	snherry (Preek Sam	nle 3 from	Rose Pea	k area	iioci yana
4 Peralk	aline rhy	olite W	elded pers	lkaline r	hvolite ash	flow tuff.	In basalt	ic ande	site unit
			Porous eu section. N	taxitic pu o phenoc	mice fragn	ple 3 from flow tuff. nents have of Blue Ri	spherulit ver below	ic textur	e in thi of Stray
			horse Cree	k.					
5 Dellen latit	ite or qua e.		clase (and	lesine-lab	saltic-andes radorite) i	site unit. G n pilotaxit	lomeropo ic matrix	rphyrit North	ic plagion of HU
6Rhyol	ite	Bi	Bar Ranci lotite quar clase and	tz latite-	rhyolite vii henocrysts.	trophyre, h Rousenso	aving 20- ck Creek	-25 perce	nt oligo mouth o
7 Alkali	rhyolite.	R	Squaw Cr hyolite asl	eek. 1-flow tui	f; 5–10 perc		and alkal	i feldspa	r (moor
8, 9 Doreit	e or trach		Old Blue l	Ranger St	ation.	Basaltic	•		
	esite.			1.	-17	ene phenod	wrata T	4 -13-	of Diles

TABLE 7.—Average values and range of some major and trace elements in unaltered volcanic rocks, as determined by semiguantitative spectro

TABLE 1.— Average values a	מנים זו	ลดีนา	os fo	71. 2011.	grap	ijor and crace etem graphic analyses,	naly	everne 18es, L	ana tanye oj some major ana cace esemens in inanesta vocatuc tocas, as aesemenea oy semiguancimes sp ecito graphic analyses, Blue Range primitive area	ande p	ereu rimi	tive	area	8	83	n and a	347	n n	51	n n	3333	de sa	3	
[>, greater than value shown; N, looked for but not detected; L, detected but below sensitivity limit. Data from table 2]	ater th	an va	lue sho	wn; N	, look	ed for	but n	ot dete	cted; L,	, detecte	d but	belo	w sens	itivit	/ limi	t. Da	ta fro	m table	7]					
		Percent	cent										Parts per million	oer m	illion									
	Mg	Fe	Ca	Ŧ	>	Mo	Sn	ž	Ç	Ba	ß	В	Pb	Mn	Be Nb	1 1	Y Cu		Zr La	a Zn	Sc	ပိ	Hg	
Rhyolite of Red Mountain (16																								
1 1 1	0.21 1.5 L	10 cz cz	0.3 1.5 L	0.1 .3 .03	22X	15 N	282	15 N	20g Z	132 1,000 N	282	457 1	58 100 15	200 2	1 1 1	84.051	100 150 10	20 ×1,0	9000	040 100 N N N	401 A 01 N	Z ₂₀ Z	0.08 13.	
111	3. °6	1.8 3 .5	si; 0.	⊌	865	2,5 Z	ZHZ	1.4 7 L	20.3 Z	213 1,000 70	ZHZ	30 10	50 1, 15	715 2 500 3 150 1	3.5	1282	1,52	15 2 15 L	235 500 100	#8z	N 5.6 N 15 L	6 1.4 C N	8. 1.	
Max Min Min Pyrosen-hornblende andesite	3.1.4 L	4. 2 10 . 5		. 5 1 . 15	57 100 10	Z ₂ H	ZZZ	22 150 L	Z 200 Z	1, 200 2, 000 500	1,000 N	r8&	37 15	500 700 150	Z,2.	182	1002		210	828	222 28 28 2	282 Z	. 55 L	
; ; ;	4 7 .07	9 15 .2	4 7 7 1.5	>1 >1 .07	113 200 15	$z_{\varphi}z$	ZZZ	200 200 2	175 700 L	1, 400 3, 000 30	800 V 200	~2Z	282	614 200 200 2	z~z	~8z	27 64 70 100 L L		184 200 5	28Z	22Z 28 28 27	2 30 X	8. 8.	
1 1 1	7.	9 5	4.1	‡ [™] .5	150 500 10	ZZZ	ZZZ	130 300 10	325 1,500 7	1, 100 1, 500 1,700	1,000 300	rg,4	1. 1.	750 1,500 300	z "z	282	31 68 70 150 20 15		300 150	267	NLN 1538	20 5	85. 1	

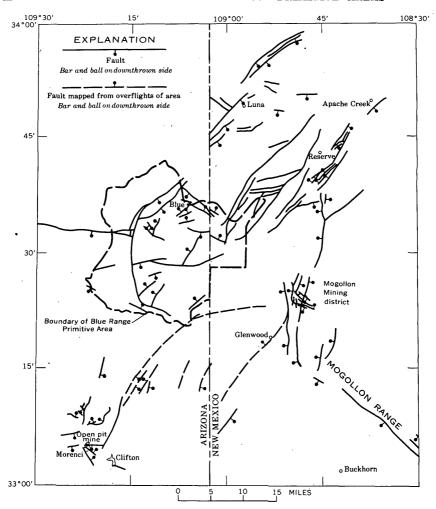


FIGURE 12.—Tectonic map of the Blue Range primitive area and vicinity, Arizona-New Mexico. Sources of data: Weber and Willard (1959a, b), Elston (1960), Wilson, Moore, and other (1958), and Lindgren (1905b).

the Mogollon Range north of Buckhorn (fig. 12), however, are part of a strong set of northwest-trending faults, which includes the Mimbres fault north of Silver City and northwest-trending faults southwest of Buckhorn, that are beyond the area of figure 14.

STRUCTURE IN THE PRIMITIVE AREA

The structural character of the rocks within the Blue Range study area is determined largely by faulting. This is particularly so in the north half of the area, where the quartz and moonstone-bearing rhyolite

ash-flow tuff and the peralkaline rhyolite tuff layers are useful in locating faults and estimating their displacements. In the south half of the area, good marker beds are largely absent, and many more faults may be present than are shown on plate 1, but here the structure also reflects original volcanic forms such as the andesitic composite volcano, in which initial dips of 15°–25° and more are preserved, probably little modified by tectonic tilting. The Red Mountain caldera and the intrusive and extrusive forms of the quartz latite and rhyolite complex are other structural features of the south part of the area.

VOLCANIC STRUCTURE

In the north half of the area, a gentle westward dip prevails over large areas both west (fig. 13) and east of the Blue River, but locally, attitudes are varied and related almost entirely to tilting of large and small faulted blocks.

Contacts between the volcanic formations are generally unconformable as is commonly the rule in a volcanic terrane, but notable erosional breaks were observed only beneath the rhyolite tuff unit and the Gila conglomerate. The unconformity beneath the rhyolite tuff unit in the north half of the primitive area presumably carries through between the basaltic andesite and underlying pyroxene-hornblende andesite in

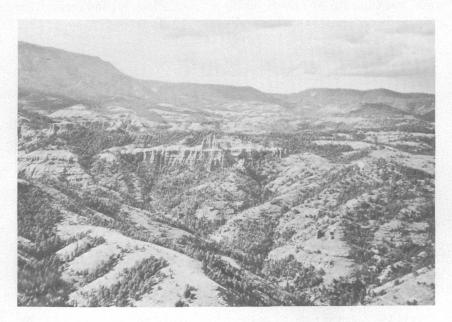


FIGURE 13.—Gently dipping beds of epiclastic volcanic rocks in northwest part of primitive area. View northwestward into head of Fishhook Creek near Devils Washboard (pl. 1).

the south half of the area, where the time break, based on isotopic-age data, is approximately 14 m. y.

The pyroxene-hornblende andesite pile is interpreted as a composite volcano because of the heterogeneity of the volcanic materials, local steep dips that appear unrelated to faulting, and gradational relations with flanking sedimentary deposits of the epiclastic unit. The volcanic material includes lava flows, much flow breccia, some pyroclastic breccia, and numerous dikes of diverse trends.

Adjacent to the andesite north of Strayhorse Creek, the epiclastic unit contains blocks of porphyritic andesite as much as 6 feet in diameter in lahars or mud-flow-type breccias. A few miles south of the primitive area, the andesite unit is overlapped by and (or) faulted against younger rocks, so that its full distribution is unknown. However, an eruptive center or centers was probably within or close to the southwestern part of the primitive area.

The rhyolitic rocks that form Red Mountain fill a subcircular depression, 2–3 miles across, in the older andesites. This depression is interpreted to be a caldera. The contact between the rhyolite and the enclosing andesite dips toward the center of Red Mountain from all sides and shows local relief of at least 700 feet on the caldera walls. However, on the southwest flank of Red Mountain the fact that the ash-flow tuffs dip 10°–15° S. off the mountain (fig. 14) indicates either initial dips within the caldera walls or later tilting.

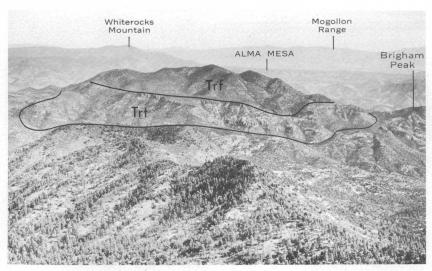


FIGURE 14.—Ash-flow tuffs (Trt) and lava flows and intrusive rhyolite (Trt) in Red Mountain caldera. View eastward from Rose Peak. Pyroxene-hornblende andesite and basaltic andesite in foreground.

The main source of rhyolite was almost certainly in the caldera, to which the ash flows are restricted and where the main mass of rhyolite flows and intrusive rhyolite occurs. The abundance of angular rhyolite blocks in the ash-flow tuffs also is interpreted as indicating proximity of the rocks to their source. The rhyolite that makes up the angular blocks must represent an earlier deposit, probably in part a plug that was shattered by the eruptions that deposited the ash flows now exposed on Red Mountain. Outside the caldera, rhyolite lava filled and overflowed a small vent on the northeast flank of Red Mountain, and the two rhyolite bodies along Oak Creek may be partly intrusive.

The quartz latite and rhyolite complex includes a series of lava domes near the south boundary of the primitive area and a small dome along upper Strayhorse Creek (pl. 1). The domes near the south boundary are grouped around three general centers of eruption: (1) east of the Blue River from Horse Canyon to Little Blue Creek, (2) Rousensock-Squaw Creeks area, and (3) outside the southwest corner of the primitive area. Although the domes consist largely of lava flows, they contain intrusive rocks and some pyroclastic layers. The intrusive rocks comprise: (1) quartz latite and rhyolite dikes that cut hornblende-pyroxene andesite, the lower part of the basaltic andesite unit, and older flows of the dome complex, (2) larger bodies that appear to form intrusive cores in the dome lavas, and (3) bodies that have the form of sills or laccoliths. The extrusive or intrusive form of the rocks is not apparent in many places. Rocks that are texturally similar to lava flows commonly appear to have intrusive contacts.

Rhyolite vitrophyre exposed in the canyon of Rousensock Creek above the mouth of Squaw Creek exemplifies the intrusive core of a dome. Perlitic and lithoidal layers outline flowage folds and show steep and erratic dips within the vitrophyre. The depth of the vitrophyre beneath the surface at the time of intrusion was about 700 feet as shown by a small pyroclastic vent that is part of the complex on the north side of Rousensock Creek, about three-fourths of a mile west of the mouth of Thomas Creek.

FAULTS

Faults in the study area have three dominant trends—northeast, northwest, and approximately west. Some faults, including a significant segment of the Blue fault zone (pl. 1), have a more northerly strike, but this seems to be a subsidiary trend. The faults are steep normal faults that have displacements ranging from a few tens of feet to greater than 1,000 feet. Much of the fault movement preceded deposition of the Gila Conglomerate. The Gila is displaced by many of the faults, but its displacement by some of the major faults appears to be considerably less than the displacement of older units by the

same faults. In many places it is unclear whether the Gila Conglomerate is faulted or whether it merely covers the traces of older faults.

Northeast-trending faults are the most numerous in the study area. Included in this trend are faults of large displacements in the Blue fault zone and others along the Brushy Mountains and east of Whiterocks Mountain. Large displacements have also occurred along west-trending faults such as the Strayhorse fault and the fault south of Bear Mountain and north of Alma Mesa. Most of the faults of large displacement are elements of regional fault systems, but many of the smaller faults probably originated as a result of volcanic activity.

Blue Fault Zone

The Blue fault zone in the north part of the study area is 1-2 miles wide and consists of several northeast-trending strands. Many small faults in the zone are not shown on plate 1. The rhyolite ash-flow sheet of the rhyolite tuff unit is dropped to the east along the zone in two main steps. The first step displaces the ash-flow tuff about 1,800 feet, and the second step, involving several faults, drops the tuff an additional 400-500 feet down to the level of the Blue River. The aggregate displacement of the ash-flow tuff across the Blue fault zone at the north edge of the primitive area is at least 2,200 feet. Southwest of KP Creek, the Blue fault zone bends to a nearly northsouth trace, and from KP Creek to Raspberry Creek the displacement across the fault is probably at least 1,200 feet. South of Raspberry Creek the zone is shown as a single fault on plate 1, and south of Tornado Creek the position of the fault is largely inferred. Near the south boundary of the primitive area, its identity is lost in the quartz latite and rhyolite complex. The arcuate trend of the Blue fault trace in this area would likely be modified by more detailed mapping southeast of Red Mountain and south of the primitive area, but if the correlation of basaltic andesite along the Blue River with the rimforming basaltic andesite in the Rose Peak area is correct, the Blue fault must continue approximately as mapped.

The nearly east-west Strayhorse fault continues west from the study area for at least 15 miles to the Black River (Wilson, Moore, and others, 1958). Our mapping indicates that east of Strayhorse (pl. 1) this fault splits into two faults that continue east to the Blue fault zone. The basal contact of the basaltic andesite is dropped to the south about 1,200 feet across the southern split of the fault. Several east-west faults east of the Blue fault zone could be continuations of the split Strayhorse faults.

An east-west fault that has a displacement comparable to the Strayhorse fault crosses the Blue River north of the mouth of Strayhorse Creek, but if this is a continuation of the Strayhorse fault the Blue fault zone has displaced it several miles in a right lateral direction. No other evidence exists for such displacement. The fault has been mapped from Alma Mesa to the Blue fault. On the south side of Bear Mountain, basaltic andesite has been dropped along the fault down to the Blue River, a displacement of 1,000–2,000 feet. Northwest of Red Mountain, an east-northeast-trending fault could be the same fault. However, the position of the contact between basaltic andesite and pyroxene andesite in this area is so uncertain that even the direction of displacement across the fault is in doubt.

AEROMAGNETIC INTERPRETATION

By Gordon P. Eaton, U.S. Geological Survey

In March 1968 the U.S. Geological Survey flew an aerial magnetic survey of the region between lat 33°15′ and 33°42.3′ N. and long 108°57′ and 109°24.5′ W., which includes the Blue Range primitive area, Arizona and New Mexico. The survey was flown at a barometric elevation of 10,500 feet and a flightline spacing of 1 mile. The magnetic data were compiled at a scale of 1:62,500 and a contour interval of 20 gammas (pl. 1). Correlations between the magnetic data and the bedrock geology are described briefly below. No laboratory measurements or rock magnetic properties were made.

The magnetic map (pl. 1) can be divided into three areas on the basis of different magnetic patterns. The most conspicuous of the three areas is the northwestern third of the map, where anomalies of high amplitude and short wavelength occur. This area is underlain by flows and flow breccias of basaltic andesite, and the east edge of these rocks coincides approximately with the east edge of the area of conspicuous anomalies, the south edge of which is marked by the Strayhorse fault. The anomalies are typical of those associated with nearly flat lying intermediate and mafic volcanic rocks elsewhere in the western United States.

Although flat-lying basaltic andesite continues south of the Strayhorse fault, the magnetic properties of these rocks appear to be different from those to the north, except for a small area near Rose Peak. In general, basaltic andesites at elevations below 7,500 feet are typified by much gentler magnetic relief and fewer local anomalies. This is due in part to their lying farther below the flight datum, but elevation alone is not sufficient to account for the difference, as may be seen from the magnetic field in the area around Bear Mountain. Basaltic andesite occurs there between 6,800 and 8,400 feet elevation, but magnetic variations are slight and their configuration is dissimilar to those north of the Strayhorse fault. These differences may reflect a lower magnetic

susceptibility for the basaltic andesite in the lower part of the stratigraphic section, or they may be a function of the total stratigraphic thickness of these rocks.

The central part of the aeromagnetic map is characterized by a broad, irregular, troughlike, magnetic low that trends westerly across the study area from Alma Mesa to a point 3 miles west of Brigham Peak. The trough crosses outcrops of most of the rock types exposed in the study area, but for the most part it is underlain by pyroxene-hornblende andesite and Gila Conglomerate. Along the Blue River the magnetic intensity is slightly higher over basaltic andesite than it is over adjacent Gila Conglomerate. On the west, the trough appears to end at the outcrop edge of the basaltic andesites of the Rose Peak area, which suggests that the trough is an expression of the relative field strengths associated with the exposed rocks, rather than a reflection of variations in rocks at depth.

Superimposed on this trough are several anomalies of local extent: a magnetic high 2 miles south of Brigham Peak, a broad magnetic low 5.5 miles east-southeast of Brigham Peak, and a more pronounced low, having moderately steep flanks, in the Alma Mesa area. The Alma Mesa low is in an area where the Gila Conglomerate, with some interlayered basalt, is probably at least 1,000 feet thick on the south side of major east- to northeast-trending faults (pl. 1). The rocks beneath the Gila Conglomerate probably include rhyolite tuff and volcaniclastic rocks and possibly basaltic andesite. Although the magnetic low could be due to an abrupt local thickening of Gila Conglomerate, the general configuration of the low suggests that there may be a major change in magnetic properties of the volcanic rocks beneath the conglomerate. Additional geophysical data are required for a more specific interpretation of this anomaly.

Two miles south of Brigham Peak a magnetic high with an amplitude of at least 80 gammas is centered over the axis of the magnetic trough. The area within the 600-gamma contour of this anomaly is underlain by pyroxene-hornblende andesite, which contains several small areas of altered rocks, and the foot of the eastern flank of the anomaly is likewise in an area of altered rock. The altered rocks appear to be andesite but may include quartz latite and rhyolite of the adjacent dome complex (pl. 1). The general configuration of the magnetic anomaly suggests the occurrence, at shallow depth, of a steepwalled body, equidimensional in ground plan. Such a body might represent a conduit from which the andesite was derived or a blind intrusive body of the quartz latite and rhyolite. The attitude of pyroxene-hornblende andesite layers in this area is notably steeper than in most areas, and quartz latitic and andesitic dikes are common within the area of the anomaly.

This anomaly could have economic significance. The igneous rocks with which many metallic ore deposits are associated in the western United States are reflected in magnetic highs bordered by magnetic lows. The highs reflect fresh intrusive rock, and the lows reflect chemically altered rocks in which ferromagnetic minerals have been destroyed, thereby providing a susceptibility contrast with the adjacent unaltered rock.

A magnetic low of 20–30 gammas is centered over Rousensock Creek about 5 miles east of the 80-gamma high (pl. 1). The low is over an area of quartz latite and rhyolite surrounded by pyroxene-horn-blende andesite. Within this area, rhyolite vitrophyre in the canyon of Rousensock Creek is believed to be the intrusive core of a quartz latite and rhyolite dome, and a small pyroclastic vent is present on the north side of Rousensock Creek, west of Thomas Creek. The quartz latite within this low is locally frothy and slightly argillized, and some intensely altered rock is exposed near the west end of this magnetic low.

A positive anomaly in the form of a southwest-plunging nose occurs over the Red Mountain caldera. If the northeast-trending gradient on the side of the magnetic trough in this area were removed, a residual anomaly would remain over the Red Mountain caldera similar to the positive anomaly south of Brigham Peak.

The area north of Alma Mesa and east of Paradise Park displays less magnetic relief than the other two divisions, and it contains no anomalies pertinent to this study.

MINERAL RESOURCES

In this report the term "resources" applies to materials in the ground that are known to be minable now and materials that are likely to become minable in the future. Based on the types of rocks present and the mineral commodities mined in adjacent areas, mineral resources to be looked for in the Blue Range primitive area include: (1) Metallic resources such as gold, silver, and copper, which are mined in the Mogollon district of New Mexico 15 miles east of the primitive area and in the Clifton-Morenci district 20 miles to the south. Molybdenum, lead, zinc, tin, and beryllium also might occur in this geologic setting. (2) Nonmetallic resources such as alunite, clay, fluorite, pumice, perlite, and zeolite. (3) Oil, gas, and coal in pre-Tertiary rocks beneath the volcanic rocks. (4) Geothermal energy. No resources of these or any other mineral commodities were known within the Blue Range primitive area when this investigation began, nor were any discovered during the present investigation. However, a strip along the south part of the primitive area has a greater potential for metallic mineral deposits than do other parts of the area.

METHODS OF INVESTIGATION

The mineral-resource potential of the Blue Range primitive area was investigated by compiling existing geologic data, by mapping geology to determine major structural and lithologic features, and by geochemical sampling and analysis of stream sediments, panned concentrates, and unaltered, altered, and mineralized rocks. About 75 percent of the geochemical samples are of stream sediments from throughout the area and of panned concentrates from the Blue River and the mouths of major tributaries. Most of the samples were analyzed by semiquantitative spectrography for 30 metallic elements and chemically, for mercury, arsenic, and gold (tables 2–5).

The aeromagnetic survey of the study area supplemented the ground studies.

METALLIC MINERAL RESOURCES

Disseminated copper-molybdenum deposits in igneous rocks or combined precious-metal-base-metal veins are the most likely types of metallic mineral deposits to be found in the Blue Range primitive area. Disseminated copper-molybdenum deposits might be of either Late Cretaceous to early Tertiary age like the major disseminated copper deposit and associated veins of the Morenci-Clifton district, 20 miles south of the primitive area, or middle to late Tertiary age and related to the altered rocks in the south part of the primitive area.

Upper Cretaceous to lower Tertiary deposits would be very difficult to find and could underlie the primitive area at depth in one place as well as another. However, the south part of the area is considered more favorable because of its relative proximity to known deposits in the Clifton-Morenci district. The deposits there are in a mineralized monzonite porphyry pluton that has been dated as 55 m.y. old; it is buried beneath a younger volcanic sequence that contains rocks as old as 33 m.v. (Livingston and others, 1968) and that is similar to the volcanic sequence in the primitive area. The monzonite porphyry extends northeast from Morenci 5-10 miles (Lindgren, 1905a) within the belt of northeast-trending faults shown in figure 12. Thus, other plutons of Late Cretaceous to Tertiary age may underlie the middle to upper Tertiary volcanic sequence in the Blue Range primitive area. Extrapolation from the geology of the Clifton quadrangle (Lindgren, 1905a) and the geology of Graham and Greenlee Counties (Wilson, Moore, and others, 1958) indicates that the bottom of the younger volcanic sequence may be less than 3,000 feet below the level of the Blue River at the south edge of the primitive area.

Disseminated copper-molybdenum deposits in middle to upper Tertiary rocks are not known in this region, but they do occur in northern New Mexico and Colorado. For example, at Questa, N. Mex., a dis-

seminated molybdenum deposit has been dated as 22–23 m.y. old (Damon, 1968, p. 53). Vein and contact-metamorphic deposits of middle to late Tertiary age occur in areas somewhat closer to the primitive area, as in the Mogollon district and at Magdalena, N. Mex. (Elston and others, 1968, p. A–IV–14).

As a result of initial field studies the search for metallic mineral resources was concentrated in two large and several smaller areas of hydrothermally altered volcanic rock (pl. 1). One of the larger areas is on Red Mountain and along upper Oak Creek; the other is near the Blue River between Hobo and Maple Canyons. The smaller areas of intense alteration are scattered between Squaw and Rousensock Creeks, mainly west of the trail between the two creeks.

The altered rocks in the Red Mountain-Oak Creek area are mainly rhyolite flows, intrusive rhyolite, and, less commonly, ash-flow tuffs. The alteration is almost certainly related to late vent activity in the rhyolite source area on Red Mountain. Fumarolic activity at the base of rhyolite lava flows probably accounts for the alteration of the rhyolite and underlying andesitic rocks in some areas, such as on the small hilltop south of Strayhorse Creek (pl. 1) and possibly along Oak Creek, although some of the rhyolite here may be intrusive.

In general, the alteration seems to be of the argillic type. Where the alteration is most intense, the original volcanic rocks are changed mostly to clay minerals and silica. Fine-grained pyrite is disseminated in some of the more silicified rocks which occur largely as ribs or pipes along fractures that probably served as channelways for the altering solutions. The localized occurrence and pipelike or craterlike form of several of the smaller areas of altered rocks indicate that the alteration took place in a shallow fumarolic type of volcanic environment.

The most intensely altered rocks in the Red Mountain area are along fractures near the top of Red Mountain, in the small rhyolite vent on the northeast spur of Red Mountain, and in the larger rhyolite body along Oak Creek. The intensely altered rocks are silicified and (or) argillized, but the more widespread alteration is a red hematitic staining. Pyrite was not observed in this area, but alunite was identified in altered rock on the north side of Oak Creek. Fine-grained fluorite occurs locally in openings in some of the flow-banded rhyolite near the top of Red Mountain and in breccia fragments in welded ash-flow tuff. Altered rocks in the Red Mountain-Oak Creek area commonly contain anomalous amounts of beryllium, molybdenum, lead, tin, and zinc (figs. 15, 16, 17) when compared to published estimates of the distribution of these elements in granitic rocks of the earth's crust (Turekian and Wedepohl, 1961, table 2; Shawe and Bernold, 1966). However, by the same comparisons, relatively unaltered samples of the rhyolite of

Red Mountain (table 7) also contain anomalous values of most of these elements. Although somewhat higher values occur in the altered rocks, the anomalies are low level and of the same order of magnitude as in the unaltered rock. The anomalous amounts of these elements are far below ore grade. Neither alunite nor fluorite is present in economically recoverable quantities.

These rhyolites are within the Arizona-New Mexico beryllium belt described by Shawe (1966), where silicic igneous rocks having unusually high beryllium and fluorine contents are common, and where exploration may lead to the discovery of nonpegmatitic beryllium deposits similar to those at Spor Mountain, Utah, according to Shawe

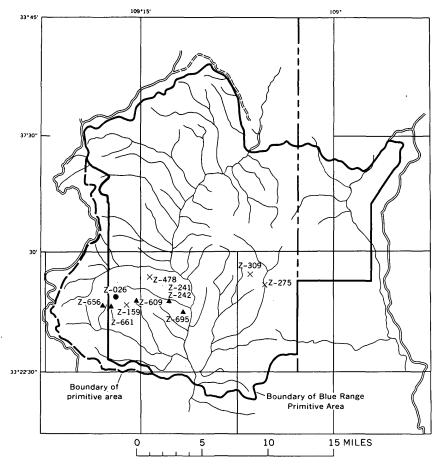


FIGURE 15.—Map of Blue Range primitive area showing localities of rock samples containing 7-15 ppm (parts per million) beryllium and (or) 20 ppm or more tin. ×, 7-15 ppm Be; ●, 20 ppm or more Sn; ▲, 7-15 ppm Be and 20 ppm or more Sn.

(1966, p. C206). However, the Spor Mountain deposits occur in a thick sedimentary formation that consists of reworked rhyolitic rocks containing numerous carbonate pebbles; the permeability of the formation and its high calcium-carbonate content are cited by Shawe as factors possibly controlling the deposition of beryllium minerals. No analogous geologic situation was found in the Blue Range primitive area, where anomalous beryllium concentrations are restricted to trace amounts in rhyolite.

The altered rocks between Hobo and Horse Canyons and those in several smaller areas of intensely altered rocks north of Squaw Creek and beyond the southwest corner of the study area are all believed to be genetically related to the quartz latite and rhyolite dome complex.

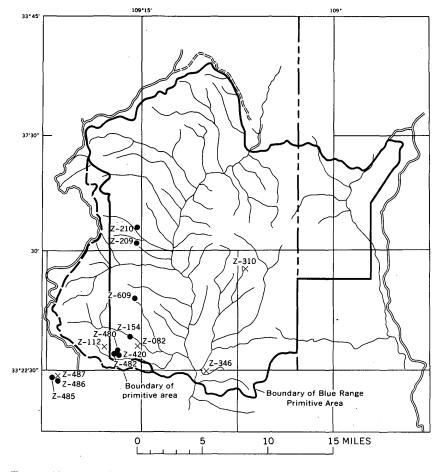


FIGURE 16.—Map of Blue Range primitive area showing localities of rock samples containing 7 ppm or more molybdenum. ×, 7 ppm Mo; ●, 10 ppm or more Mo.

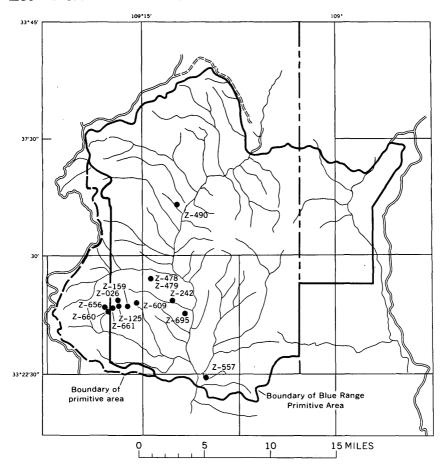


FIGURE 17.—Map of Blue Range primitive area showing localities of rock samples containing 70 ppm or more lead and (or) 200 ppm or more zinc.

Most of the altered rock east of the Blue River is quartz latite or rhyolite, but west of the river andesite is also altered. Commonly, the original rock cannot be determined, and pipelike masses of altered rock in andesite can be interpreted either as small intrusions of quartz latite or rhyolite or as altered andesite that could have formed about intersecting fractures near a fumarolic vent.

The alteration of the rocks in the Hobo Canyon-Squaw Creek area is similar to that in the Red Mountain area, but it is commonly more intense. Pyrite is visible in several areas of silicified and argillized rock. Secondary copper minerals occur in small fractures in intensely altered volcanic rocks along the Blue River at the south edge of the primitive area, where they were pointed out to us by Mr. George Stacy.

According to Stacy (oral commun., 1967), the claims on which these occurrences are located were investigated by geologic, geochemical, and geophysical methods by a major mining company about 1963–64; this investigation resulted in the discovery of a weak to moderate metal anomaly.

The localities of samples that have anomalous amounts of molybdenum, zinc, lead, copper, arsenic, and mercury are shown in figures 16, 17, 18, 19, and 20. The amounts of the elements for particular samples are listed in table 3. These results show that small amounts of several metals were introduced or concentrated in the altered rock, probably during alteration. Although the anomalous-metal values are low and their distribution does not define a precise exploration target,

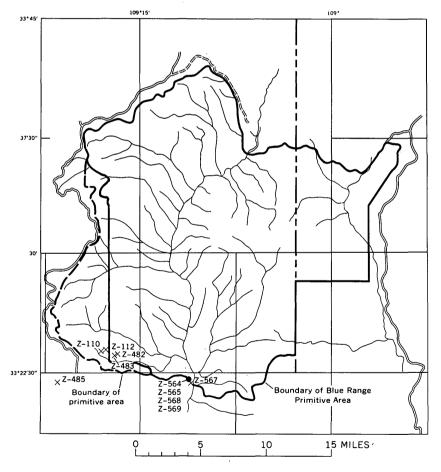


FIGURE 18.—Map of Blue Range primitive area showing localities of rock samples containing 100 ppm or more copper. ×, 100–150 ppm Cu; ●, more than 150 ppm Cu.

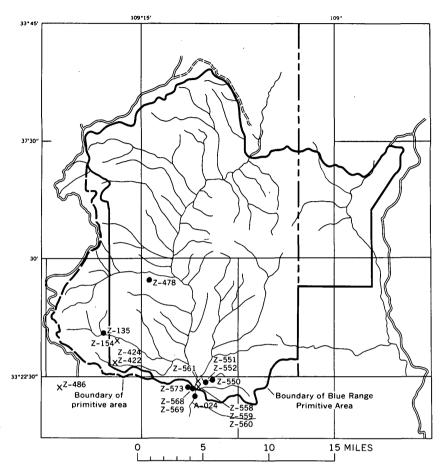


FIGURE 19.—Map of Blue Range primitive area showing localities of rock samples containing more than 10 ppm arsenic. ●, 10-30 ppm As; ×, more than 30 ppm As.

they do suggest the possibility of ore bodies at depth beneath the altered rocks.

In similar altered volcanic rocks on claims near Pine Flat about 3 miles southwest of the study area (pl. 1), Mr. and Mrs. Robert Birdwell report assay values of 0.01 oz (ounces) gold, 0.04 oz silver, and 0.08 percent copper, which are equivalent to about 0.4 ppm gold, 1.7 ppm silver, and 800 ppm copper. Analyses of samples from these and other claims near Pine Flat (pl. 2) obtained during the present study are reported in table 3, Z484 to Z488. These altered and weakly mineralized rocks are also adjacent to a domical body of quartz latite and rhyolite.

In addition to the anomalies related to sizable areas of altered rocks, anomalous values of some elements also were found in samples from

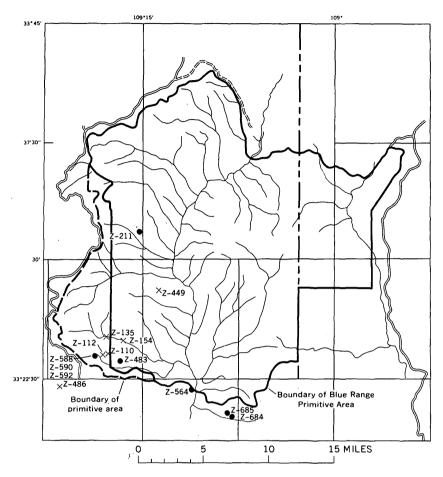


FIGURE 20.—Map of Blue Range primitive area showing localities of rock samples containing 0.5 ppm or more mercury. \times , 0.5–0.9 ppm Hg; \bullet , 1 ppm or more Hg.

several small sheared and brecciated zones, such as those along the forks of Raspberry Creek southwest of Crooks Mesa and on the north side of McKittrick Creek (pl. 1). Quartz and calcite vein material was found locally in the Blue fault zone and along a number of other faults. By far the largest vein found in the primitive area is about 1 mile east of the Blue River along a split of the major east-west fault south of Bear Mountain. The vein, as much as 10 feet wide, consists of brecciated quartz, much of which is chalcedonic or agatelike, and calcite. It can be traced for at least 200 yards. At its east end it forms the footwall(?) of a steeply dipping argillized zone about 50 yards wide. No anomalous-metal values were found in it or in other veins in the primitive area.

Rumored occurrences of copper minerals in the northeast part of the primitive area were not verified. Layers of greenish-blue altered andesitic cobbles and boulders found in the volcanic conglomerate and breccia in this area likely were mistaken for copper-stained material. Celadonite, a blue-green micaceous alteration mineral in igneous rocks, often is mistaken for secondary copper minerals. Pyrite was found in altered volcanic conglomerate in one locality, but neither samples of it nor samples of other similarly altered rock contained significant amounts of metal.

AREAS OF METALLIC RESOURCE POTENTIAL

The two patterned areas in figure 21 are the most likely parts of the Blue Range primitive area to have a metallic resource potential. These areas, the Red Mountain-Oak Creek and Squaw Creek-Maple Canyon areas, also contain most of the altered volcanic rocks found during this study. The Red Mountain-Oak Creek area has a possible resource potential, as indicated by the caldera structure, the presence of former volcanic vents, and the enrichment of altered rhyolitic rocks in beryllium, tin, molybdenum, lead, and zinc. However, a concentration of relatively mobile or volatile elements may be expected near any volcanic center, and nothing approaching commercial concentrations of metals was found in the area.

The area of greatest metallic resource potential, as outlined in figure 21, contains the hydrothermally altered volcanic rocks of the Squaw Creek-Maple Canyon area. Within the altered rocks, small pipes, reefs, and fracture zones that contain silicified and pyritized rock and low-level anomalous concentrations of metal are further guides to possible metallic ore deposits at depth. Further work may disclose specific exploration targets, but it must be emphasized that although altered rocks and favorable structures are widely recognized as guides to ore, they by no means insure its presence.

NONMETALLIC RESOURCES

The only nonmetallic resources of possible economic interest in the Blue Range study area are deposits of perlite and pumice associated with the quartz latite and rhyolite dome complex in the southern part of the area. Light-gray vitrophyre of rhyolitic composition and waxy luster is exposed in the creek bottom for nearly one-fourth of a mile along Rousensock Creek, above the junction with Squaw Creek. The vitrophyre is massive except for bands of pink lithoidal rock and zones of tiny spherulites the size of pinheads. In thin section, the vitrophyre is seen to be microscopically perlitic and to contain about 25 percent phenocrysts, mainly plagioclase and biotite. Chemical analysis shows a water content of 4.2 percent (table 6). This body of glassy

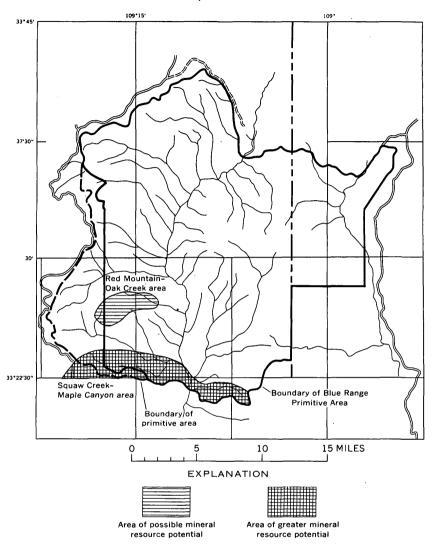


FIGURE 21.—Map of Blue Range primitive area showing areas of mineralresource potential.

perlitic rock is believed to be intrusive into a domal pile of lava flows and is probably much more extensive than shown by present exposures. However, assuming that the vitrophyre is all similar to that which is exposed at the surface, the high phenocryst content along with the presence of spherulites and lithoidal bands make it unsuitable as a source of commercial perlite. Perlite and some pumice occur as layers and small intrusive(?) bodies in the quartz latite and rhyolite complex from Maple Canyon to Horse Canyon (pl. 1), but here, also, poor quality precludes its classification as a perlite or pumice resource.

Zeolite minerals have been reported in the matrix of crossbedded sandstone in the Alpine-Nutrioso area (Wrucke, 1961, p. H17), and they may be present in similar sandstone beds in the northwestern part of the primitive area. However, the zeolite minerals make up only about 25 percent of the rock, according to Wrucke, and hence are far below the purity necessary to be considered as a zeolite resource.

Although clay minerals are abundant locally in the hydrothermally altered rocks, marketable clay is not present in sufficient abundance or purity to be of commercial interest.

COAL, OIL, AND GAS RESOURCES

The mineral-fuel resource potential of the Blue Range primitive area depends entirely on the nature and extent of pre-Tertiary sedimentary rock units that may lie beneath the volcanic rocks. Although coal-bearing rocks of Late Cretaceous age are exposed north, west, and east of the primitive area, the exposures of Upper Cretaceous rocks closest to the area are of the lower non-coal-bearing part of the series. If ever present, the coal-bearing Upper Cretaceous rocks were probably eroded before deposition of the Tertiary volcanic rocks. Upper Cretaceous rocks in the Clifton-Morenci area to the south are not reported to contain coal (Lindgren, 1905b, p. 73, 74). Based on available information, the possibilities for coal of economic value under the primitive area are virtually nil.

Available data indicate only four oil and gas exploration tests drilled in eastern Arizona and western New Mexico within a radius of 35 miles of the primitive area; none of the tests found significant shows of oil or gas. In a recent report on the petroleum possibilities of Catron County, N. Mex., Foster (1964, p. 49) summarized the available information about the area immediately east of the Blue Range study area and concluded that "Southwestern Catron County is quite complex structurally, and also is an area of considerable mineralization associated with faulting. Most of this area is not considered favorable for oil and gas exploration." This conclusion seems to be supported by the evidence for relatively thin Paleozoic and Mesozoic rocks beneath the volcanic rocks of the primitive area and by the extensive faulting and volcanic activity that characterizes it.

An evaluation of the oil-shale resource potential of the fine-grained clastic rocks of New Mexico indicates very little possibility of such resources in the rocks that underlie the Blue Range primitive area (Foster and others, 1966).

GEOTHERMAL ENERGY

In recent years, there has been an increasing interest in geothermalenergy resources, primarily for the generation of electrical power. Such energy resources are associated with volcanic areas. One thermal spring and associated seeps are known in the Blue Range primitive area; these were brought to our attention by Mr. George Stacy of Clifton, Ariz. The spring is located above the mouth of Hannah Springs Creek (pl. 1), where the hot water issues from a fracture trending about N. 25° E. in rocks of the quartz latite and rhyolite dome complex. The water is somewhat warmer than 120°F (49°C), the maximum temperature readable on the thermometer used. A partial analysis of one 250-ml (milliliter) sample of the water is shown in table 8.

A geothermal-energy resource depends on a critical combination of factors involving, in addition to a higher-than-normal heat content in the earth, a suitable heat reservoir which may or may not be accompanied by surface discharge (White, 1965). Therefore, while the hot spring on Hannah Springs Creek does imply a higher-than-normal heat flow in the earth, and possibly could be related to a geothermal-energy reservoir, the spring in itself is not an energy resource, and the geology as known does not indicate the likelihood of a thermal reservoir in this area.

Table 8.—Semiquantitative spectrographic analysis of thermal-spring water near mouth of Hannah Springs Creek, Blue Range primitive area, Arizona

[Analyst: J. M. Motooka. Sample size, 250 milliliters; pH, approximately 8.8; total dissolved solids, about 600 ppm. L indicates element present but below level of sensitivity. Also looked for spectrographically but not detected were Mn, Ag, As, Au, Ba, Be, Bi, Cd, Co, La, Mo, Nb, Ni, Sb, Sc, Sn, W, Y, and Zn. Limits of detection same as in tables 2-5]

T71	Amount	777	Amount
Element	(parts per million)	Element	(percent)
B	10	Fe	L
Cr	20		
Cu	10	Mg	.: L
Pb		S	
Sr	150	Ca	1. 5
V	100		
Zr	L	Ti	005

CONCLUSIONS

Two areas near the south border of the Blue Range primitive area have a greater mineral potential than does the remainder of the proposed wilderness. The more promising of these is the Squaw Creek-Maple Canyon area (fig. 21). The Red Mountain-Oak Creek area contains altered rocks and has weak geochemical anomalies but seems somewhat less promising in mineral potential than the Squaw Creek-Maple Canyon area. A thorough assessment of the mineral potential at depth in the areas would require exploration beyond the scope of this study.

ECONOMIC APPRAISAL

By R. G. RAABE, U.S. Bureau of Mines

INTRODUCTION

In 1967, the U.S. Bureau of Mines made an economic appraisal of the Blue Range primitive area in Apache National Forest, Arizona and New Mexico. Preliminary work consisted of gathering all available mining claim data in and adjacent to the primitive area (fig. 22) through a search of the records of Catron County, N. Mex., and Greenlee County, Ariz. The records of the U.S. Bureau of Land Management for Arizona and New Mexico, U.S. Forest Service, New Mexico State Land Office, and Arizona State Oil and Gas Conservation Commission were also consulted. Individuals employed by the mining industry having knowledge of the mineral potential within the primitive area, claimants available for interview, and a few local residents also contributed information.

INVESTIGATIONS

The Blue Range primitive area encompasses about 380 square miles. For the purpose of this investigation the boundary of the area of study was extended approximately 2 miles beyond the primitive area, thus including about 500 square miles (fig. 22).

Record searches and field examinations disclosed no evidence of mineral or petroleum production within the Blue Range primitive area. There are no federal mineral or petroleum leases within the area and no patented mining claims, although several patented homesteads and numerous unpatented mining claims are in or near the primitive area. The search of records of unpatented mining claims in Greenlee County Court House, Clifton, Ariz., and Catron County Court House, Reserve, N. Mex., disclosed no proof of labor documentation for many of the claims in and near the primitive area.

Eight groups of claims are in or near the primitive area. The group designated "A" in figure 22 consists of 200 contiguous claims as follows:

Claim	Numbers (inclusive)	Claim N	umbers iclusive)
Base Line		Pine Basin	_ 1-30
Hobo	1–54	Pony	_ 1–14
Horse Canyon	1–10	Red Rock	_ 1–21
Maple	1–11	Westside	_ 1-20
Parkey	1–14		

In much of the area covered by the claims, the Tertiary volcanic rocks are noticeably altered to brilliant-red-brown iron oxides. The claimant reported that two drill holes, about 700 and 300 feet deep,

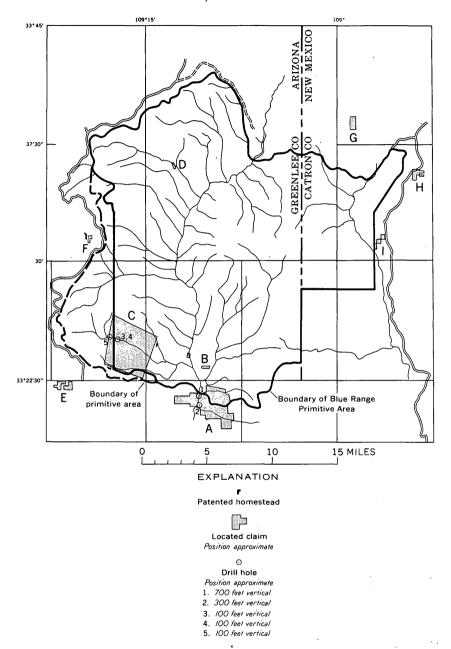


FIGURE 22.—Claim map of Blue Range primitive area, Arizona and New Mexico.

were put down several years ago (fig. 22). No logs of the holes were made and the drill core was not available for inspection. Additional exploration work has been done on this group of mining claims by a large mining company.

The two groups of claims designated "B" in figure 22, just north of group A, are the Bell 1-5 inclusive (northernmost group) and Open Draw 1-4 inclusive. No evidences of mining or mineralization were found on these claims.

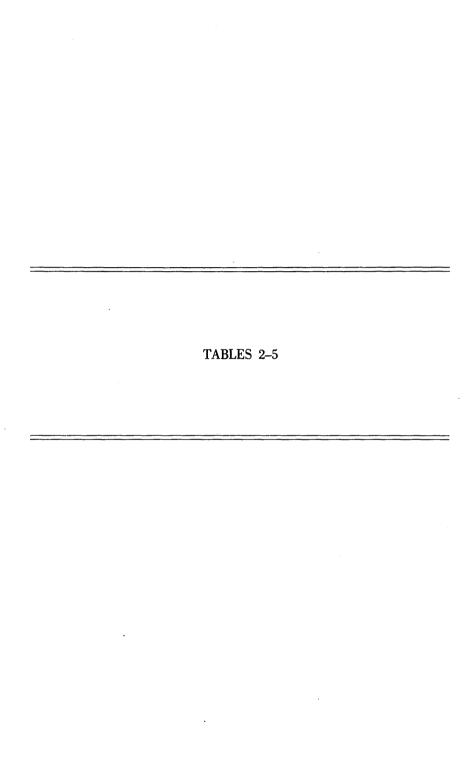
Claim group C (fig. 22) consists of 288 contiguous claims (Blue 1-288 inclusive) which were located by one claimant in the summer of 1968. Three 100 foot vertical holes were drilled along upper Rousensock Creek, south of Brigham Peak, as part of the discovery work on these claims. The drilling sites were visited and the drill core was examined by J. C. Ratté of the U.S. Geological Survey and George Leland of the U.S. Bureau of Mines in the spring of 1969, accompanied by Mr. Grant Godfrey of Safford, Arizona, a representative of the claimant. Two of the drill holes are adjacent to a silicified and pyritized zone in andesitic flow breccia or flow rock about 40 feet wide and trending about N. 75° E. Rock reported to have been blasted from surface outcrops at one of the drill sites shows traces of a light green secondary copper mineral; 1 ppm silver and 700 ppm copper were reported in spectrographic analyses of this rock. The third hole at a locality about one-half of a mile upstream from the first two holes was drilled in bleached and limonite-stained andesitic flow breccia or flow rock containing sparsely disseminated pyrite, which may be related to brecciation along a weak fracture zone that trends about N. 80° E. There does not appear to be any significant mineralization at either of the drilling localities, which were chosen more for their accessibility than as prime exploration targets. No anomalous metal values except those cited above were reported in six samples of altered rock collected at the drill sites. Elsewhere in the area now covered by the claims of group C, field examination in 1967 of preexisting claims did not reveal monumented claim corners or evidence of mining, but several occurrences of rock alteration similar to that in the area of claim group A were noted.

The area covered by the lone claim at site D (fig. 22), Paradise, was investigated, and no corner monuments, discovery cut, or any other evidences of mining were found. Rocks in the general area are devoid of alteration, and no veins or mineralization were seen during the field examination.

In the Grace Birdwell 1-7 inclusive and Roy Grot 1-9 inclusive claims, southwest of and just outside the area of study (area E, fig. 22), some narrow veinlike zones of weak rock alteration in discovery cuts were observed.

Claim groups F (Hillside, White Eagle, Arbie Lee), G (Hidden Horse 1-12 inclusive), H (Olympia 1-13 inclusive), and I (Bristol 1-7 inclusive) are all outside the area of study and were searched without finding alteration, mineralization, claim corners, discovery cuts, or any evidences of mining.

CONCLUSIONS


Investigations of the Blue Range primitive area by the U.S. Bureau of Mines did not disclose any evidence of commercial mineral deposits. Neither were such deposits found as a result of work by the U.S. Geological Survey; consequently, no evaluations of reserves were made. However, the conspicuous rock alteration in the southern part of the primitive area (area A, fig. 22) has attracted prospectors. The altered rocks and the anomalous-metal content reported by the U.S. Geological Survey make the area a likely site for further mineral exploration.

REFERENCES CITED

- Burke, W. H., Kenny, G. S., Otto, J. B., and Walker, R. D., 1963, Potassium-argon dates, Socorro and Sierra Counties, New Mexico, in New Mexico Geol. Soc. Guidebook 14th Field Conf., 1963: New Mexico Bur. Mines and Mineral Resources, p. 224.
- Cohee, G. V., chm., and others, 1961, Tectonic map of the United States, exclusive of Alaska and Hawaii: U.S. Geol. Survey and Am. Assoc. Petroleum Geologists, scale 1: 2,500,000 [1962].
- Damon, P. E., 1968, Potassium-argon dating at Questa, New Mexico, *in* Correlation and chronology of ore deposits and volcanic rocks: Arizona Univ. Ann. Prog. Rept. C00-689-100 to Research Div., U.S. Atomic Energy Comm., 75 p.
- Dane, C. H., and Bachman, G. O., 1965, Geologic map of New Mexico: U.S. Geol. Survey, scale 1:500,000.
- Elston, W. E., 1958, Burro uplift, northeastern limit of sedimentary basin of southwestern New Mexico and southeastern Arizona: Am. Assoc. Petroleum Geologists Bull., v. 42, no. 10, p. 2513–2517.
- ———1960, Reconnaissance geologic map of Virden thirty-minute quadrangle: New Mexico Bur. Mines and Mineral Resources Geol. Map 15.
- ————1968, Terminology and distribution of ash flows of the Mogollon-Silver City-Lordsburg region, New Mexico, *in* Arizona Geol. Soc. Southern Arizona Guidebook 3, 1968: p. 231–240.
- Elston, W. E., Bikerman, Michael, and Damon, P. E., 1968, Significance of new K-Ar dates from southwestern New Mexico, app. A-1V-1 to A-1V-20 in Correlation and chronology of ore deposits and volcanic rocks: Arizona Univ. Ann. Prog. Rept. C00-89-100 to Research Div., U.S. Atomic Energy Comm., 75 p.
- Foster, R. W., 1964, Stratigraphy and petroleum possibilities of Catron County, New Mexico: New Mexico Bur Mines and Mineral Resources Bull. 85, 55 p.
- Foster, R. W., Luce, P. B., Culver, L. G., and Maras, B. B., 1966, Preliminary investigations of the oil shale potential in New Mexico: New Mexico Bur. Mines and Mineral Resources Circ. 87, 22 p.

- Heindl, L. A., and Lance, J. F., 1960, Topographic, physiographic, and structural subdivisions of Arizona: Arizona Geol. Soc. Digest, v. 3, p. 12–18.
- Hewitt, C. H., 1959, Geology and mineral deposits of the northern Big Burro Mountains-Redrock area, Grant County, New Mexico: New Mexico Bur. Mines and Mineral Resources Bull. 60, 151 p.
- Kottlowski, F. E., 1963, Paleozoic and Mesozoic strata of southwestern and southcentral New Mexico: New Mexico Bur. Mines and Mineral Resources Bull. 79, 100 p.
- ———1965, Sedimentary basins of south central and southwestern New Mexico: Am. Assoc. Petroleum Geologists Bull., v. 49, no. 11, p. 2120-2139.
- Lindgren, Waldemar, 1905a, Description of the Clifton quadrangle [Arizona]: U.S. Geol. Survey Geol. Atlas, Folio 129.
- ———— 1905b, The copper deposits of the Clifton-Morenci district, Arizona: U.S. Geol. Survey Prof. Paper 43, 375 p.
- Livingston, D. E., Mauger, R. L., and Damon, P. E., 1968, Geochronology of the emplacement, enrichment, and preservation of Arizona porphyry copper deposit: Econ. Geology, v. 63, no. 1, p. 30-36.
- McKee, E. D., 1951, Sedimentary basins of Arizona and adjoining areas: Geol. Soc. America Bull., v. 62, no. 5, p. 481–505.
- Nockolds, S. R., 1954, Average chemical compositions of some igneous rocks: Geol. Soc. America Bull., v. 65, no. 10, p. 1007–1032.
- Rittmann, A., 1952, Nomenclature of volcanic rocks proposed for the use in the catalogue of volcanoes, and key-tables for the determination of volcanic rocks: Bull. Volcanolog, ser. 2, v. 12, p. 75–102.
- Shapiro, Leonard, 1967, Rapid analysis of rocks and minerals by a single-solution method, in Geological Survey research 1967: U.S. Geol. Survey Prof. Paper 575-B, p. B187-B191.
- Shawe, D. R., 1966, Arizona-New Mexico and Nevada-Utah beryllium belts, in Geological Survey research 1966: U.S. Geol. Survey Prof. Paper 550-C, p. C206-C213.
- Shawe, D. R., and Bernold, Stanley, 1966, Beryllium content of volcanic rocks: U.S. Geol. Survey Bull. 1214-C, C1-C11.
- Stearns, C. E., 1962, Geology of the north half of the Pelona quadrangle, Catron County, New Mexico: New Mexico Bur. Mines and Mineral Resources Bull. 78, 46 p., with map.
- Turekian, K. K., and Wedepohl, K. H., 1961, Distribution of the elements in some major units of the Earth's crust: Geol. Soc. America Bull., v. 72, no. 2, p. 175-191.
- U.S. Weather Bureau, 1948-1965, Climatological data: U.S. Dept. Commerce.
- Weber, R. H., and Bassett, W. A., 1963, K-Ar ages of Tertiary volcanic and intrusive rocks in Socorro, Catron, and Grant Counties, New Mexico, in New Mexico Geol. Soc. Guidebook 14th Field Conf., 1963: New Mexico Bur. Mines and Mineral Resources, p. 220–223.
- Weber, R. H., and Willard, M. E. 1959a, Reconnaissance geologic map of Mogollon thirty-minute quadrangle: New Mexico Bur. Mines and Mineral Resources Geol. Map 10.
- ———— 1959b, Reconnaissance geologic map of Reserve thirty-minute quadrangle: New Mexico Bur. Mines and Mineral Resources Geol. Map 12.
- White, D. E., 1965, Geothermal energy: U.S. Geol. Survey Circ. 519, 17 p.
- Wilson, E. D., and Moore, R. T., 1959, Structure of Basin and Range province in Arizona, in Arizona Geol. Soc. Guidebook 2, 1959: Arizona Geol. Soc. Digest, 2d ann., p. 89-105.

- Wilson, E. D., Moore, R. T, and others, 1958, Geologic map of Graham and Greenlee Counties, Arizona: Tuscon, Arizona Bur. Mines.
- Winchester, D. E., 1920, Geology of Alamosa Creek valley, Socorro County, New Mexico, with special reference to the occurrence of oil and gas: U.S. Geol. Survey Bull. 716-A, p. 1-15.
- Wrucke, C. T., 1961, Paleozoic and Cenozoic rocks in the Alpine-Nutrioso area, Apache County, Arizona: U.S. Geol. Survey Bull. 1121-H, p. H1-H26.

E52 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Table 2.—Analyses of unaltered rocks from the Blue Range

[Numbers in parentheses indicate sensitivity limit of method used. The symbol > indicates that an undeter amount of the element is present below the sensitivity limit; N indicates that the element was looked for D. J. Grimes, Elizabeth Martinez, Elwin Mosier; mercury analyses by W. W. Janes, W. R. Vaughn Campbell, Elizabeth Martinez, R. L. Miller, M. S. Rickard, John Viets. Abbreviations used in table

				Semiq	uantii	tative	spect	rograph	nic anal	yses ∐					
		(per								(ppm)					
Sample	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	V (10)	Mo (5)	Sn (10)	N i (2)	Cr (5)	Ba (10)	Sr (50)	B (10)	РЬ (10)	Mn (10)	8e (1)
				<u> </u>	asalt	flow	in Gil	a Congi	omerate	<u> </u>					
z639	5.0	15.0	5.0	>1.0	50	L	N	70	70	500	500	10	N	700	N
				Qua	rtz 1	atite	-rhyoli	te dome	e comple	e <u>x</u>					
z553 <u>3</u> / z593 <u>3</u> /	.1	.5	.3	1	15	N	N	L(5)	L	500	N	20	20	150	L
2593 3/	.3 1	.7	1	.15	10	N N	N N	L	L N	500	100	L	15 30	500 700	2 1
z603 – z611	.03	3 5	1.5	.3	20 70	N N	N N	L 15	70	700 2,000	150 1,000	L L	20	300	Ĺ
Z625	3	5	3	.7	50	N	N	100	100	1,000	700	ī	30	500	Ĺ
z626	2	7	3	.7	70	L	N	150	200	2,000	700	15	50	700	L
z628	3	.7	2	• 7	70	5	N	7	7	1,500	300	20	50	300	. !
z629 z640	.7	10 3	3 .7	.7	50 50	N N	N N	5 L	5 L	1,500 700	300 100	10 15	20 70	700 500	L 1.5
Z641	1	5	1 ,	.5	50	5	N	Ĺ	ī	1,500	150	20	70	700	1.5
Z642	.7	3	.5	.5	70	N	N	L	L	1,000	L	10	50	700	1
Z643	1.5	5	3	• 7	100	N	N	15	30	1,500	1,000	L	50	300	1.5
z644 z669	1.5	3	2 1.5	.3	70 20	N	N N	50 10	70	1,000	500 500	L	30 30	500 500	L 1
Z670	3	7	3	.3 .7	100	N N	N	70	30	1,500	700	L	20	500	່ ເ
z671	1.5	3	1.5	.3	70	N	N	5	L	1,500	700	10	30	700	1.5
Z672	1.5	3	. 1.5	. 2	70	N	N	5	L	1,500	500	10	30	300	L
z673 z679 4/	.7 2	5 2	2 7	.5 .3	100	N	N N	10	20	700	300	L	20	700	1
z679 <i>\u2</i> z683	2	3	1.5	.3	30 50	7 N	N	7 5	L	700 1,000	200 300	30 L	70 30	500 500	1.5 1
			[Loc l	ludes and	loci + i		altic a			hu ne t-a	alabl				
7021 2 5		10													
Z031 3,5 Z032 3,5	13 15	10 10	2	!	500 300	N N	N N	150 150	500 300	700 700	500 700	10 L	10 L	700 1,000	N N
Z072 3/	1	3	1.5	.7	30	5	N	, JO	15	1,000	300	20	10	300	ï
$Z219 \ \overline{3}, 5$	/ 5	10	5	>1	300	N	N	300	500	1,000	700	L	30	1,000	L
z598	7	10	7	>	70	N	N	300	700	1,500	700	L	30	500	N
Z605 Z615	1.5 1	10 7	1.5	1 ' >1	70 100	N	N	L	. 7	1,000	300	10	30	300	L
Z616 *	3	7	3	ار 7.7	100	N N	N N	150 70	150 70	1,000	500 500	10 20	15 30	1,000 700	N L
Z617	2	1Ó	3	ι΄,	100	N	N	150	200	1,000	700	15	50	1,500	Ĺ
Z619	3	7	7	>1	100	N	N	150	700	1,000	700	10	30	700	L
Z621 *	2	7	3	7	100	N	N	_7	N	700	300	10	20	700	L
Z622 * Z623	2 7	7 15	3 5	>i 	70 150	N N	N	70 150	70 150	1,000	500 700	20 15	30 15	700 1,000	L N
Z624	7	10	7	.7	150	N	N	150	500	1,500	700	15	20	700	Ĺ
Z633	•7	5	1.5	1	70	N	N	N	7	1,000	300	30	30	500	1.5
z634	7_	10	5	.7	150	N	N	150	1,500	1,500	700	L	L	500	L
z635 z637	1.5 7	1.5 15	1.5 7	.15	70 300	5 L	N N	5 100	70	700 300	1,000 500	L 15	50	300	3 N
Z647	í	7	1.5	.15	70	N	N	20	15	1,000	1,000	15 L	L 20	1,500 300	3
z648	3	7	5	.7	150	N	N	150	150	1,000	1,000	ĩ	20	700	Ĺ
Z649	5	5	3	.5	100	N	N	150	300	1,500	700	L	20	700	L
Z650 Z651	3	7 5	3	.7 .7	100	N N	N N	150 70	150 70	1,000	700 1,000	.L L	20 20	500 700	L 1
z678	3	7	5	• 7	150	N	N	150	150	1,000	700	Ĺ	15	700	L
A247	7	15	7	>1	150	N	N	150	500	1,500	700	L	30	700	N

If Also looked for spectrographically, but not found except as noted were: Au(10), Sb(200), W(50), Bi(10), Cd(20), and Ag(0.5).

^{3/} As detected but less than 10 ppm.

^{5/} Au detected but less than .02 ppm.

primitive area, Greenlee County, Ariz., and Catron County, N. Mex.

mined amount of the element is present above the number shown; L indicates that an undetermined but not found. Analysts: semiquantitative spectrographic analyses by K. J. Curry, Arnold Farley, Jr., arsenic analyses by C. O. Hershey, Gary Dounay, K. R. Murphy, T. M. Stein; gold analyses by W. L. alt., altered; amygdal., amygdaloidal; bio., biotite; hbld., hornblende; pyrox., pyroxene]

				ntitative lysesCor (ppr	ntinued		С		Chemi analy (ppm)	cal ses <u>2/</u> Map	
Sample	Nb (10)	Y (5)	Cu (2)	Žr (10)	La (20)	Zn (200)	Sc (5)	Co (5)		Coordinate (pl.2)	Sample description
				<u>B</u>	asalt	flow in	Gila (onglo	merate	1	
z639	30	30	70	150	L	N	30	50	L	K-9	Olivine-pyroxene.
				Quai	rtz lat	ite-rhy	olite	dome	comple	×	
Z 553	10	10	5	200	20	N	N	N	.02	m-6	Banded felsite.
Z593	10	15	3	150	20	N	5	5	.15	K-2	Dike, biotite.
Z603	15	20	2	200	50	N	5	N	.01	K-2	Do.
Z611	L	15	15	150	50	N	20	10	.04	1-2	Hornblende-biotite.
Z625	10	15	30	150	30	N	15	7	.03	K - 7	Biotite-quartz.
z626	15	20	70	200	30	N	15	10	.01	κ - 6	Pyroxene > biotite.
z628	30	50	30	500	70	N	15	7	.10	K-3	Plagioclase porphyry.
Z629	15	30	30	300	30	N	20	7	L	K-4	Biotite-hornblende.
Z640	20	30	30	200	20	N	7	L	.01	L-1	Vitrophyre, biotite.
Z641	20	- 70	20	300	30	N	10	L	L	K-1	Biotite.
Z642	20	50	20	300	30	N	7	L	.02	K-1	Felsite, biotite.
z643	20	50	20	300	50	N	15	5	.09	K-1	Biotite.
z644	10	10	15	100	20	N	10	5	.14	H-2	Dike, hbld-bio.
z669	10	20	30	200	30	N	7	5	.01	L-5	Biotite.
2670	L	30	50	150	30	N	15	20	.08	L-5	Hornblende.
z671	L	15	10	150	30	N	5	5	.04	L-4	Glassy, biotite.
Z672	Ł	10	15	150	30	N	5	L	.04	L-4	Do.
z673	15	30	10	200	30	N	15	10	.10	L-4	Hornblende > biotite.
z679	15	20	20	150	30	N	L	L	.01	M-8	Perlite.
z683	L	15	10	150	30	N	5	L	.04	м-8	Hornblende.
			[lnc	ludae and	ositic.	Basalti			aabad	by asteris	L1
						-uacitic				by asteris	K)
Z031	L	20	30	200	20	L	15	30	.01	F-3	Olivine.
Z032	L	30	30	200	20	L	20	50	.05	F-3	Olivine(?).
2072	15	15	30	300	50	N	10	20	.02	J-6	Platy andesite.
2219	N	20	50	200	30	. L	30	50	L	F-7	Olivine-pyroxene.
2598	15	30	70	200	70	N	15	20	L	J-1	
Z605	20	20	20	300	50	N	20	5	.05	J-6	Platy andesite.
Z615	15	30	50	150	30	N	15	20	L	F-7	Olivine-pyroxene.
2616	10	20	30	150	20	N	15	15	L	н-8	Hornblende > pyroxene.
z617 z619	15 15	30 30	100 100	200 150	50 30	N N	20 15	15 15	L	H-10 G-10	Olivine. Pyroxene-olivine(?).
-				-	-		-	-	_		, , ,
Z621	15	30	30	150	30	N	15	10	L	G-9	Hornblende-pyroxene.
Z622	15 15	50	30	300	50	N	20	10	.02	н-8	Hbld. > bio. > pyroxene.
z623 z624	15	30 30	150 150	300 150	50 50	N N	20	20	.02	L-8 K-8	Olivinė.
z633	30	30	15	300	30	N N	15 15	15 5	L.	1-4	Olivine(?) amygdal. Platy andesite.
Z634	10	50	100	150	L	N	20	20	.08	G-3	Pyroxene-alt. hbld.
Z635	30	70	15	200	20	N	L	N N	.02	J-1	Rhyolite tuff.
Z637	30	70	150	150	L	· N	30 .	70		D-10	Olivine(?).
Z647	15	15	10	100	30	N	5	N	14	1-1	Bedded rhyolite tuff.
z648	Ĺ	30	70	150	30	N	20	15	.18	i - i	social injuries carri
z649	Ĺ	20	70	150	30	N	15	10	.06	1-1	Vitrophyre, pyroxene.
Z650	ī	20	50	150	30	N	15	10	.10	i-i	Amygdaloidal.
Z651	Ĺ	20	70	150	30	Ň	15	7	.04	i – i	
z678	L	30	50	200	50	N	15	20	.04	M-8	Olivine.
A247	15	50	100	300	70	N	30	20	.02	B-5	Olivine(?).

²j As(10) and Au(.02) determined chemically but not found except as noted.

⁴/ Bi detected but less than 10 ppm.

E54 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Table 2.—Analyses of unaltered rocks from the Blue Range primitive

				Semi	quanti	tative	spect	rograph	ic ana	lyses <u></u>					
C1-	Mg	Fe	Ca (OF)	Ti	V (10)	Mo	Sn (10)	Ni (2)	Cr (E)	(ppm) 8a (10)	Sr (50)	B (10)	Pb (10)	Mn (10)	Be
Sample	(.02)	(.05)	(.05)	(.002)	(10)	(5)	(10)	(2)	(5)	(10)	(50)	(10)	(10)	(10)	(1)
			[Incl	udes and				eConti ows indi		by aste	risk]				
A249 A253	7.0 1.5	15.0 15	5.0 3	>1.0 I	150 10	N N	N N	150 10	500 5	1,500 700	1,000 700	L 15	20 20	700 700	N N
				Rh	yolite	of R	ed Mour	tain/	sh flo)WS					
Z601	.15	5	.05	.15	10	10	30	L	L	20	L	20	70	300	7
Z607	.05	5 3	.15	.15	10 70	10 N	30 20	L 5	L N	70 70	N	15 30	100 50	300 300	7 7
z652 z653	.15 .15	3	.07 L	.15	10	N	30	5	N	50	N	10	70	300	5
z657	.07	3	.15	٠١ ً	10	N	20 .	L	L	30	N	L	50	300	7
z658 z659 <u>4,6</u> /	.2	3 3	.07	.07 .07	15 L	N N	20 20	L	L L	30 30	N N	10 10	70 70	300 300	7 5
	-	-		te of Re		tain-	-Lava 1	flows ar	nd intr	usive r	hyolite				-
Z027 <u>5,</u> 7/	L	3	.1	.05	N	N	20	5	L	N	N	20	50	300	5
Z599	.07	3	-15	.03	L	N	30	L	N	20	L	15	70	300	5
z610 z654	1.5	3 · 5	1.5	.3 .3	50 30	N 15	N N	15 L	30 L	700 1,000	700 200	L L	15 20	300 500	1 L
Z655	.15	2	.5	.07	10	10	10	Ľ	ī	100	N	50	30	500	3
z662	L	3	L	.03	L	N	20	L	L	N	N	L	50	200	5
z663 8j z664 4j	.05 .03	3 2	.05 .07	.05	L L	N N	20 20	L	L L	L N	N N	15 15	70 100	200 300	5 5
A060 3,5	L	3	.07	.03	N	N	20	ī	ĩ	ï	N	20	50	300	5
					Rh	yolit	e ash-1	flow she	et						
z238 <u>3,5</u> /	.5	2	.3	.2	15	L	L	.7	7	150	L(100)	15	50	700	3
z514 <u>3</u> / z596	.1 .7	.5 3	.07 .3	.1 .2	10 70	N N	N N	L(5) L	N 5	70 300	N L	10 30	15 70	200 1,500	2
Z613	3	1.5	.07	.15	15	N	N	7	N	150	N	10	30	500	1
Z700 <u>2</u> /	.3	3	. 15	. 15	20	7	L	L	L	100	N	15	30	300	1.5
Z236 A250	.2	.5 2	.1 .2	.1 .3	50 30	N 7	N N	L L	20 7	1,000 70	N L	15 15	20 70	3,000 150	2
A251	.7	2	.3	.2	70	N	N	Ĺ	Ĺ	70 70	Ĺ	15	70	200	3
A252 A254	.3	1.5 2	.3	.3	30 20	7 7	N N	L	L	70 150	L L	20 20	70 70	300 300	3
, .	•,	-	• • •	.,				ide ande		.,,,	٦.		, •	300	,
Z109 3,5/	1.5	3	2	.5	70	L	N	20	15	700	1,500	L	10	300	,
Z257 3/	.07	.2	1.5	.07	15	N	N	2	7	30	N	N	N	200	L N
z595 z597	3 7	15 15	7 7	1 >1	150 100	N	N N	70 200	30 700	1,500 300	700 700	L	30 L	700 500	N N
Z602	3	15	3	.5	50	N	N	7	20	1,500	700	10	20	500	N
Z604	7	7	5	1 _	70	N	N	150	70	1,500	100	L	30	700	L
z606 z608	7 7	3 7	1.5 5	•7 •7	30 100	5 N	N N	70	70	1,500 1,500	200 700	L	30 20	200	1 L
Z612	3	7	3	1	100	N	N	100	150	1,000	700	L	20	500	N
Z618	5	10	5	>1	100	N	N	200	500	1,000	500	L	10	700	L
z630 <i>9j</i> z631	.2 5	7 7	5 5	•7 •7	70 100	N N	N N	70 70	70 100	700 1,000	700 700	L	30 30	700 700	L
Z632	2	7	3	.7	70	N	N	70	150	1,500	700	L	30	500	L
z635 z638	3 2	15 7	3 1.5	1 •7	150 150	N N	N N	100 30	70 70	2,000 1,500	1,000 500	10 10	30 70	500 300	L
Z645	3	5	3	.7	150	N	N	70	150	1,500	500	L	20	300	2
Z646 Z668	3	7	3	۰7	100	N	N N	150 150	200 700	1,500	700	Ĺ	15	500	L
Z682	3	7	3 3	1	150 15	N N	N	30	10	3,000 1,000	1,000 700	L	30 15	500 700	L
A020 <u>3,5</u> /	2	7	2	-7	200	N	N	70	70	1,000	700	L	10	700	L

^{6/ 1.5} ppm Ag.

^{8/} Ag detected but less than 0.5 ppm.

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO

area, Greenlee County, Ariz., and Catron County, N. Mex.—Continued

			ě	uantitativ nalysesC (pp	ontinue m)	d			Chemi analy (ppm)	ses 2/ Map	
Sample	NЬ (10)	Y (5)	Cu (2)	Zr (10)	La (20)	Zn (200)	Sc (5)	Co (5)	Hg (.01)	Coordinate (pl. 2)	Sample description
			[In	cludes and		ic ande dacitic				oy asteris	k]
A249 A253	10 10	70 30	50 30	200 150	50 30	N N	30 30	20 20	0.01 L	C-3 F-9	Olivine. Plagioclase porphyry.
				Rhy	olite	of Red	Mounta	inA	sh flow	<u>vs</u>	
Z601 Z607 Z652 Z653 Z657	100 70 50 30 50	100 100 150 150 150	3 7 10 10	>1,000 >1,000 1,000 1,000 >1,000	N 100 50 30 70	300 300 300 300 N	L 10 L L 5	N N N N	.03 .06 .08	J-2 1-2 J-2 J-2 J-2	Densely weided. Do. Do. Partially welded. Bedded tuff.
z658 z659	50 30	100 150	20 5	>1,000 >1,000	30 50	700 500	7 7	N N	.04	J-2 J-2	Cognate(?) inclusion. Densely welded.
			Rhyo	lite of Red	Mount	ainLa	va flo	ws an	d intro	sive rhyo	lite
Z027 Z599 Z610 Z654 Z655	50 100 15 20 20	100 100 10 30 30	5 L 15 15	1,000 >1,000 150 150	100 30 L 50 20	300 N N N	L 10 10	N N 5 L N	.06 L L .08	I-3 I-3 H-2 J-2 J-2	Contains fluorite. Intrusive(?). Flow banded, vent. Dike, crystalline. Dike, vitrophyre.
Z662 Z663 Z664 A060	30 50 50 50	30 100 100 100	10 7 30 5	300 500 500 1,000	10 30 30 50	500 300 300 200	L 5 L N	N N N	.12 .13 .06 .07	1-3 L-5 L-5 1-3	Flow banded. Intrusive(?). Do. Do.
					Rhyc	olite as	h-flo	w shee	et		
Z238 Z514 Z596 Z613 Z700	15 20 30 30 20	70 50 70 30 70	7 L 15 2 10	200 150 300 200 200	30 N 70 30 70	N N N L	L 7 L 5	7 N N N	.07 .01 .12 .03 .16	H-8 C-14 F-5 F-4 H-8	Densely welded. Do. Do. Do.
Z236 A250 A251 A252 A254	15 50 30 30 30	20 100 100 100 100	2 15 10 15	100 300 200 200 500	20 70 50 50 100	N N N N	L 7 7 5	7 N N N	.14 .08 .01 L	0-8 C-5 C-6 D-10 D-10	Do. Densely welded. Do. Do.
					Pyroxer	e-hornt	lende	ande	site		
Z109 Z257 Z595 Z597 Z602	L N L 15 L	L 30 30 20	100 L 50 70 30	100 15 150 200 150	L N 20 N 30	N N N N	7 N 20 20	10 N 20 30 10	.11 .06 .01 L	K-2 G-9 H-5 F-5 K-2	Dike. Pyroxene. Hornblende(?) > pyroxene. Dike, hornblende.
z604 z606 z608 z612 z618	10 20 10 10 20	30 20 20 20 20	100 5 30 15 100	150 150 150 150	30 30 70 20 30	N N N N	15 10 15 5 20	10 L 15 15 20	.02 .03 L .02 L	1-6 J-2 J-2 H-3 H-9	Hornblende > pyroxene. Hornblende-biotite. Hornblende. Pyroxene-hornblende. Dike.
Z630 Z631 Z632 Z635 Z638	L L 10 15	15 20 15 70 70	50 100 100 100 70	150 150 200 200 200	30 30 30 50 30	N N N N	15 15 15 15	15 15 10 20 10	.02 L .09 L .01	J-4 H-4 L-2 I-5 H-5	Pyroxene-carbonate. Hornblende > pyroxene. Do. Hornblende. Hornblende > pyroxene.
Z645 Z646 Z668 Z682 A020	L L L L	10 10 30 20 15	70 30 100 30 30	200 150 200 150 150	20 30 20 20	N N N N	20 15 20 15 10	10 15 20 20 20	.10 .04 .08 .03	1-1 1-1 L-5 M-8 L-6	Biotite, pyroxene. Biotite-pyroxene. Pyroxene. Hornblende > pyroxene.

<u>7</u>/ 10 ppm As.

⁹/ .02 ppm Au.

E56 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Table 2.—Analyses of unaltered rocks from the Blue Range primitive

				Semi	quantii	ative	spect	rograph	ic ana	Iyses リ					
		(per	cent)							(mqq)					
Sample	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	V (10)	Mo (5)	\$n (10)	N i (2)	C r (5)	Ba (10)	Sr (50)	B (10)	РЬ (10)	Mn (10)	Be (1)
				Pyro	xene-h	ornbl	ende ai	ndes i te	Conti	nued					
A021 3,5/	2.0	10.0	2.0	0.5	150	N	N	50	100	1,000	700	L	10	700	L
A248	5	7	3	>i	100	N	N	150	300	1,000	1,000	L	50	300	Ĺ
A255	.5	5	3	-7	70	N	N	70	70	1,000	700	10	30	500	L
A256	2	10	5	1	200	N	N	100	70	1,000	700	L	30	700	N

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO

area, Greenlee County, Ariz., and Catron County, N. Mex.—Continued

				antitative nalyses(ppr	Continu		ic		hemie naly: (ppm)	ses <u>2</u> /	
	Nb	Y	Cu	Zr	La	Zn	Sc	Co	Hg	Coordinate	
Sample	(10)	(5)	(2)	(10)	(20)	(200)	(5)	(5)	(.oi)	(p1.2)	Sample description
<u> </u>		· \2./									
<u> </u>		_\				rnblend					
A021	L	20	70								Pyroxene = hornblende.
A021 A248	L L	20 15		Pyrox	kene-ho	rnblend	e ande	site-	Cont	inued	
A021	L L L		70	<u>Pyrox</u> 150	kene-ho	rnblend N	e ande	site	Cont	inued L-6	Pyroxene = hornblende.

STUDIES RELATED TO WILDERNESS-PRIMITIVE AREAS

Table 3.—Analyses of altered rock samples from the Blue Range

[Numbers in parentheses indicate sensitivity limit of method used. The symbol > indicates that an amount of the element is present below the sensitivity limit; N indicates that the element was looked D. J. Grimes, R. T. Hopkins, Jr., Elizabeth Martinez, Elwin Mosier, G. W. Sears, Jr., K. C. Watts; Stein, A. J. Toevs; gold analyses by W. L. Campbell, Elizabeth Martinez, R. L. Miller, M. S. Rickard, calcite; fa., fault; FeOst, iron oxide stained; fract., fracture; gn., green; MnOst, manganese oxide stained,

				Semi qua	intita	tive	spec t	rograpi	nic ana	alyses <u>l</u>					
							(ppm)								
Sample	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	V (10)	Mo (5)	\$n (10)	N i	Cr (5)	Ba (10)	\$r (50)	B (10)	РЬ (10)	Mn (10)	8é (1)
	<u></u>							rocks							
Z005 Z026 Z035 Z037 Z062	0.5 .02 1 .5	2.0 10 7 3	3.0 .05 1.5 .5	0.15 .05 .5 .5	30 10 200 150 50	N N N N	N 20 N N	20 L(5) 20 20 70	5 10 50 150	200 50 500 500 200	N 700 500 300	10 15 L 10 10	N 100 10 10 L	300 1,500 300 200 300	N 3 N N
Z077 Z082 Z085 Z090 Z100	1.5 .07 .3 .15	1 10 1 1	1.5 .1 1.5 20 1.5	.3 .05 .3 .02	15 50 30 15 50	L 7 N N	N L N N	2 5 N N 2	N N N N	700 100 300 15 1,000	700 50 100 2,000 300	15 L 30 L	30 N L N 10	300 30 300 1,500 100	L 5 L N
Z110 Z111 Z112 Z125 Z135	.03 L .02 .05	3 5 7 3 1.5	.07 L .07 L	.05 .5 .2	50 50 50 10 50	L 7 5 L	N L L L	7 N L 7 7	15 10 10 L L	5,000 500 500 70 200	1,000 500 300 N 50	15 10 L L	L L 15 L	150 15 30 30 150	L L 3 1
z154 2/ z159 z208 3/ z209 2/ z210 2/	.2 .05 .15 .7 .5	1.5 1.5 5 5	1.5 .1 .3 .5	.2 .07 .5 1	30 N 100 200 200	10 N L 15 20	N L N N	10 7 7 10 7	10 L 50 150 100	500 15 300 700 300	2,000 3,000 1,500	10 20 30 20	15 30 30 50 30	300 300 150 100 30	3 15 L 1 L
Z211 Z214 Z240 Z241 Z242	.7 3 .02 .03 .07	5 10 .3 5	3 5 .15 .1	.5 .7 .03 .07	70 300 15 50 50	5 N N L 5	N N 15 L 20	7 100 N 7 7	100 300 10 20 20	1,000 1,000 150 150	5,000 5,000 100 100 300	L 15 L 10	15 10 20 30 70	20 700 150 300 150	L 3 10 7
z243 z275 z309 z310 <u>2</u> / z346	.05 1.5 .2	.5 3 5 1.5	.2 2 1 .15	.07 .3 .3 .2	100 100	N N N 7 7	15 N N L	L(5) 10 70 7 10	7 20 70 5 100	1,000 1,000 150 100	N 1,000 200 150 1,000	70 10 15 15	50 30 15 50 10	150 1,500 3,000 100 30	2 7 7 2 L
Z347 Z394 Z401 Z407 Z417	.5 .2 1.5 .2 .3	5 3 7 1 3	.2 .3 5 .5	.5 .2 .5 .5	20 20 70 30 70	L N N L	N N N N	5 10 20 2 50	15 N 15 30	150 1,000 1,500 1,500 500	300 100 1,000 3,000 500	10 L 10 15 N	15 30 20 50 N	30 200 100 50 300	L N L L
Z418 Z419 Z420 Z421 Z422	.03 .15 .03 .05	.7 3 7 1	.15 .7 .1 .07	.3 .5 .5 .015	70 100 100 70 20	N N 15 L N	N N N N	N 15 5 N N	5 15 7 15 7	300 300 500 500 70	150 2,000 300 200 200	L 70 15 30	30 10 10 50 N	30 700 30 30 30	L N L L
Z423 Z424 Z425 Z449 Z460	.02 .05 .03 .7	3 15 3 	.07 .07 .07 10	.02 .03 .7 .5	10 150 10 100 150	N N 5 N	N N N N	N N 7 20 100	L 20 70 20	200 100 300 1,000	70 70 N 1,000 2,000	10 20 L L	N N 20 20	20 30 1,000 500 200	L N 1
Z474 Z476 Z478 Z479 Z480 4	1 2 3 2 N		5 3 .5 L	.1 .1 .1	50 150 30 L 70	N L L N 10	N N N N	5 200 5 2 L	N 300 N N	300 1,000 300 10 1,000	200 1,500 N N	L 10 10 L	10 15 70 50 30	700 1,000 >5,000 200 10	L 10 5 L

 $_{\rm I/}$ Also looked for spectrographically but not found except as noted: Au(10), As(200), Sb(100), W(50), Bi(10), Cd(20) and Ag(0.5).

^{2/} Ag detected but less than 0.5 ppm.

primitive area, Greenlee County, Ariz., and Catron County, N. Mex.

undetermined amount of the element is present above the number shown; L indicates that an undetermined for but not found. Analysts: semiquantitative spectrographic analyses by K. J. Curry, Arnold Farley, Jr., mercury analyses by W. W. Janes; arsenic analyses by Gary Dounay, C. O. Hershey, K. R. Murphy, T. M. T. A. Roemer, John Viets. Abbreviations used in table: alt, altered; and., andesite; brec., breccia; cal., NW, northwest; porph., porphyry; qtz., quartz; rhy., rhyolite; sil., silicified; stnd., stained]

		Ser	niquantit analy	ative s sesCo (ppm	ntinu		c			emica alyse: (ppm)		Мар	
Sample	Nb (10)	Y (5)	Cu (2)	Zr (10)	La (20)	Zn (200)	Sc (5)	Co (5)	Hg (.01)	As	Au (oordina (pl. 1)	
		(2)			<u> </u>				Conti			.,	
Z481	15	20	50	500	50	N	10	N	.13	L	.02	K-3	Silicified; limonitic.
z482 z483	10 L	30 10	150 150	700 500	50 N	N N	10 L	L 5	.04 11	10 L	N N	K-3 K-3	Limonite in fract. Quartz-pyrite.
z484	Ĺ	10	10	150	30	N	7	Ń	.16	10	N	L-1	Silicified; pyrite.
2485	Ĺ	10	100	200	20	N	5	N	16	10	.02	L-1	Limonite-hematite.
486	L	10	50	100	N	N	5	N	.60	· 40	N	L-1	Limonite in fract.
487	L	10	10	300	50	N	7	N	. 26	10	N	L-1	Hematitic.
488	L	L	15	150	20	N	7	N	.22	L	N	L-1	Silicified; pyrite.
489	70	70	3	700	N	N	N	N	.10	10	N	1-4	Altered andesite.
490	L	L	20	100	L	N	5	5	.04	10	N	G-5	Sil. fault? brec.
2493	L	5	20	150	20	N	10	5	.16	L	N	G-3	Silicified; hematite.
494	Ļ	7	.5	150	20	N	10	N	.06 .04	10	N	G-3 H-4	Quartz, hematite?
2495 2496	L N	L	10 2	100 L	20 N	N N	5 N	L	.04	10 N	N N	1-6	Sil. fault brec. Quartz-calcite vein.
2497	N	Ĺ	3	10	N	N	N	5	.08	N	N	н-6	Calcite-quartz vein.
498	30	20	3	500	L	N	L	N	.02	N	N	н-6	Quartz breccia vein.
499	70	30	2	700	N	N	5	Ë	.07	N	N	н-6	Quartz vein.
2532	L	7	10	100	20	N	5	7	.04	N	N	1-5	Quartz-calcite vein.
533	N	Ĺ	L	L	L	N	N	N	.02	N	N	1-5	Do.
2535	L	5	30	50	L	N	10	5	.04	10	N	L-6	Silicified brec. pipe.
2536	L	N	20	30	L	N	7	L	.08	10	N	L-6	Do.
z538	N	L	3	50	N	N	N	5	.03	N	N	L-6	Quartz vein.
550	L	L	5	50	L	N	5	L	.01	30	N	L-6 L-6	Altered latite-rhy.
1551 1552	L 10	5 L	5 5	150 100	20 20	N	7 5	L N	.01 .02	30 20	N N	L-6	Silicified-opalized.
2554	10	N	3	100	N	N	L	L	.06	L	N	M-7	Sil. latite-rhyolite.
2557	Ĺ	Ë	30	100	N	N	ī	ũ	.04	10	N	L-6	FeOst fracture.
558	L	5	30	30	20	N	7	10	.01	40	N	L-6	Green stained rock.
559	N	N	20	20	N	N	5	N	-05	70	N	L-6	Limonite on fract.
2560	L	5	50	100	L	N	7	10	L	20	N	L-6	Green stained rock.
2561	10	5	30	150	L	N	5	5	.02	40	N	L-6	MnOst? rock.
2562	L	L	30	70	N	N	7	5	.02	N	N.	L-6	Hematitic.
2563	L	15	20	100	L	N	10	7	.03	10	N'	M-6	Fault gouge.
2564 2565	L	5 30	3,000 500	70 150	L	N N	7 15	5 15	2.3 .02	L N	N N	L-6 ' L-6	Chrysocolla?, fract. Yellow stnd., porous.
				-		N					IN		
2566	10	5	30	100	L	N	15	5	.20	10	N	L-6	6-8' Sil. chip sample.
2567	10	5	100	100	N	N N	10	.5	.19	10 30	.02	L-6	Grab off muck pile.
2568 2569	L	L	500 500	100 100	N N	N N	5 15	30 7	.01	30	.02 N	L-6 L-6	MnOst, gn. stnd. rock. Secondary Cu, fract.
2570	Ĺ	N	30	70	N	N	7	5	L	10	N	L-6	Brecciated porphyry.
2571	L	15	15	100	N	N	10	7	.01	N	N	L-6	Slightly alt. brec.
2572	Ē	5	Ĺ	L	N	N	N	N	L	N	N	L-6	Vein(?) quartz.
573	L	10	10	100	L	N	7	7	.01	20	N	L-6	Slightly alt. porph.
2574	L	15	15	150	20	N	10	10	.03	L	N	L-6	Limonite stnd. andesite.
2577	10	15	3	150	L	N	10	10	.02	N	N	L-5	gn. stnd. andesite.
582	10	10	5	100	L	N	7	.7	.07	10	N	M-6	Hematitic fa gouge.
583	Ļ	15	5	150	N	N	20	15	.03	L	N	M-6	Fault breccia.
2586 2587	L	7 5	7 3	100 100	L N	N N	7 N	L N	.45 .07	10 . L	N N	K-2 K-2	Blue-gn. veinlets, and. Silicified.
2588	ī	L	3	70	N	N	N	N	1.07	N	N	K-2	Silicified, pyrite.
٥٥ر	_	-	ر	70	14	14	IX	14	•	14	14	11-2	Jinicinieu, pyrite.

^{6/ 10} ppm Bi(10).

^{7/ .7} ppm Ag(0.5).

³⁵⁴⁻⁸²⁸ O - 69 - 5

E60 studies related to wilderness—primitive areas

Table 3.—Analyses of altered rock samples from the Blue Range primitive

				ative sp sesCon	tinued	aphic		•	ana	mical lyses (ppm)		Мар	
	Nb	Υ.	Cu	Zr	La	Žn	Sc	Co	Hg	As		oordinat	
amp l e	e(10)	(5)	(2)	(10)	(20)	(200)	(5)	(5)	(.01)	(10)	(.02)	(pl. 1)	Sample description
							<u>A</u>		rocks				
005	L 50	N 200	10 10	30 >1,000	N N	N 200	5 5	5 N		L 10	L L	G-5 1-3	Gn. stnd. qtz., and brec FeOst fract. in rhy.
1035	L	200	- 30	150	20	200 N	10	10		L	Ĺ	K-2	Gn. stnd. flow brec.
2037	ī	10	20	150	N	N	10	5		10	Ē	K-2	Fract. zone in andesite.
062	Ĺ	15	20	50	Ń	N	5	20	.04	L	. N	1-6	Calcite in andesite brec
077	L	15	30	70	N	N	N	7	.03	L	N	K-4	Bleached rhylatite.
082	10	5	30	20	N	N	N	N	.06	L	N	K-4	Limonitic float.
2085	L	7	L	100	20	N	5	10	.09	L	N	L-3	Limonite stnd. andesite.
2090 2100	N 10	N 7	L 20	N 50	N 30	. N	N 7	N N	.12 .13	. L 10	N N	L-3 L-3	Calcite in andesite dike
110	L	L	100	70	L	N	5	N	.70	.Ł	N	K-2	Silicified pyrite.
111	L	Ĺ	15	50	. <u>L</u>	N	L	N	.14	Ĺ	N	K-2	Yellow, silicified.
1112	L	L	150	- 70	L	N	5	N	.50	L	N	K-2	Altered, NW fract.
1125	30	30	3	500	20	300	Ĺ	N	.07	L	N	1-3	FeOst fract.
135	L	L	30	30	N	N	5	N	.70	30	.1	J-2	Qtz. in FeOst andesite.
154	L	5	20	70	20	L	5	15	.80	60	.2	K-3	Shear zone.
159 208	50	200 7	L 20	1,000	70 30	300 N	L 10	N 5	.08	10	.02 N	1-3 G-4	Silicified rhy, vent.
209	L N	10	30	300 300	50	N N	20	5	.00 L	L 10	N	G-3	FeOst brec. zone.
210	Ľ	5	20	200	30	N	15	N	.08	L	N	G-3	Do.
211	L	5	10	200	20	N	7	N	1	L	N	G-3	Do.
2214	N	20	15	150	30	N	30	20	.28	L	N	J-6	Altered andesite.
240 241	70 50	70 70	10	700	20 L	N	L	10	.12	L	N N	1-5	Argillized rhyolite. Silicified rhyolite.
242	200	200	7 10	500 1,000	70	N	L	7 10	.12	L	N	1-5 1-5	Altered rhyolite.
243	100	70	10	700	50	N	L	10	.08	L	N	1-5	Silicified rhyolite.
275	30	70	20	300	70	N	7	L	.28	L	N	1-8	Quartz in fault zone.
309	L	30	15	200	30	N	15	20	.19	L	N	н-8	Fault gouge.
2310 2346	50 L	50 N	2 20	300 150	70 L(50)	N N	L 15	L N	.09 .07	L L	N	н-8 L-6	Fault zone. Alt. latitic porphyry.
347	10	N	20	300	L(50)	N	5	N	.05	L	N	L-6	Opaline rock.
394	L	10	10	300	L(50)	N	Ń	N	.06	ī	N	K-5	Altered rhyolite.
2401	L	20	20	100	50	N	10	10	.03	Ļ	N	K-4	
407	10	10	20	150	30	N	7	N	.8	L	N	L-5	Altered latite.
417	L	10	30	70	L	N	7	20	.12	L	N	K-3	Sil., argillized.
418	L	15	30	100	20	N	7	N	L	L	N	K-3	Do.
2419	L	10	30	150	20	N	15	30	L	·L	N	K-3	Do.
2420 2421	10 10	10 10	30 30	150 200	30 70	N	10 7	5 N	.04 .04	L 10	N N	K-3 K-3	Do.
422	L	N	5	200 L	N N	N	Ń	N	.04	20	N	K-3	Heavy, yellow.
2423	L	L	L	10	N	N	N	N	.04	10	N	K-3	Porous, yellow.
2424	L	N	10	15	20	N	N	N	.08	200	N	K-3	Limonitic.
1425	20	5	30	300	20	N	L	L	.4	10	N	K-3	Silicified; pyritic.
2449 2460	10	20 20	15 30	300 150	30 50	N N	7 20	· 5 N	.80 .08	L	N N	1-4 F-4	Callimonite brec. Altered flow base.
2474	N	L .	50	100	N	N		5			 N	F-3	
2476	10	30	70	200	50	N N	5 30	50	.03	L	N N	1-3	Qtz. in fault breccia. Andesite brec., limonite
2478	70	200	30	700	50	500	N	N	.20	20	.02	H-4	Alt. rhy. flow base.
2479	100	100	50	700	50	200	ï	N	.02	Ľ	N	H-4	Silicified rhyolite.
2480	15	30	30	500	70	N	10	N	.06	L	N	K-3	Silicified; limonitic.

^{3/ 0.5} ppm Ag.

^{4/ 15} ppm Bi(10).

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO

area, Greenlee County, Ariz., and Catron County, N. Mex.—Continued

				Semiqu	antita	tive	spect	rograp	hic ana	alyses <u>l</u>					
Sample	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	V (10)	Mo (5)	Sn (10)	N i (2)	Cr (5)	Ba (10)	Sr (50)	B (10)	РЬ (10)	Mn (10)	Be (1)
					Alt	ered	rocks	Cont	inued						
Z481 Z482 Z483 Z484 Z485 5/	0.02 .07 L .05 L		0.07 .1 .1 .05 L	0.5 .7 .7 .5	70 100 30 100 150	N 10 N L	N N N N	L 5 L N	N N N N	1,000 1,000 1,000 500 1,000	700 700 N 500 700	L 20 L 15	50 30 N 15 100	10 20 20 20 10	L L 1 1
z486 6/ z487 z488 z489 z490	N L .02 .1 .07	2 L	N L .02 .07	.2 .7 .5 .07	200 100 100 20 70	20 7 N 5	N N N 15 N	N N L N 5	N N N 5	1,000 2,000 1,000 30 300	700 700 500 N 700	. 20 L L 30 15	30 50 20 50 20	15 10 15 20 20	L L 5 L
Z493 Z494 Z495 Z496 Z497	.1 .3 .1 .15	2 1.5 .2 .5	.07 1.5 .3 10	.3 .2 .05	100 20 50 L 20	5 L 5 N	N N N N	L L L	70 50 15 L L	700 700 150 100 200	2,000 3,000 500 N 300	L L N	20 10 15 L	50 L 30 15 2,000	L N N N
z498 z499 z532 z533 z535	.02 .03 .2 .2 .05	.15 .2 1 .5 1.5	.5 15 .3	.07 .2 .2 .01	10 50 10 70	N N N L	N N N N	L 30 L 5	L 7 50 L 15	50 150 300 150 500	N 200 500 700	N N 10 N 10	N N L . Ł	70 50 150 3,000 150	N N L L
z536 z538 z550 z551 z552	L .2 .05 .05	2 1.5 1	.1 7 .2 .07	.2 .05 .2 .2	50 10 70 50 30	N 5 L	N N N	L 5 L L	5 7 30 20 10	300 200 500 300 500	300 100 500 500 300	L N 10 10 20	L 20 15	10 200 20 10 10	N N N N
z554 z557 5/ z558 z559 z560	.05 .07 .1 L	1 2 .7 2 i	.05 .1 .07 .05	.5 .2 .2 .1	20 50 50 150 70	N L 5 L	N N N N	L 10 5	15 10 L 50 5	300 300 300 500 500	N 300 700 700 500	N 15 10 15 L	N 150 20 L 10	70 50 70 20 50	N L N L
z561 ⁵ / z562 z563 z564 ⁷ / z565	.1 .03 1 .2 .2	2 1.5 1.5 .5	.1 .07 3 .07	.3 .3 .2 .5	200 100 70 50 70	5 L N N	L N N N	L 50 L 50	200 300 200 7 10	500 1,000 500 700 300	700 500 300 500 500	10 L L L	15 10 10 10	70 L 70 L L	N N L L
z566 <i>2/</i> z567 z568 z569 z570	.07 .2 .1 L	1 1.5 2 1	.07 .05 .3 .5	.3 .5 .5 .3	100 100 200 150 70	N L L N	N N N N	L 7 20 10 L	10 5 5 7 7	700 300 150 500 500	700 200 N 500 500	L 10 10 L N	L N L 10	10 L 100 50 L	N L L N
Z571 Z572 Z573 Z574 Z577	.7 .15 .2 .7	1.5 .5 1 1.5	1.5 7 .3 .1	.3 .05 .3 .5	70 10 50 100 100	. L N L L	N N N N	30 10 20 30 10	50 5 20 50 L	500 2 00 200 700 300	500 N 300 700 500	L L 20 L L	10 N L 10 L	200 100 50 150 300	L N L
z582 <u>5/</u> z583 z586 z587 z588	.5 1 .2 L L	2 1 1.5 .7	.3 2 .05 .03 .03	.3 .3 .1	100 50 70 15 L	L N L N	N N N N	20 100 15 L L	30 150 50 5 L	500 500 500 700 500	200 300 300 500 N	L 10 L 20 L	10 L L L	150 500 30 10 20	L N L N

 $[\]underline{5}$ / Bi detected but less than 10 ppm.

E62 studies related to wilderness—primitive areas

Table 3.—Analyses of altered rock samples from the Blue Range primitive

Semiquantitative spectrographic analyses <u>l</u> J (ppm)															
Sample	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	V (10)	Mo (5)	Sn (10)	N i (2)	Cr (5)	Ba (10)	Sr (50)	B (10)	Pb (10)	Mn (10)	Be (1)
					Alte	ered	rocks-	-Conti	nued						
z589	L	1.0	0.07	0.3	20	N	N.	L	7	700	200	10	N	10	N
Z590	L	1	.03	.2	20	N	N	5	7	300	300	L	L	20	N
Z591	.03	1.5	.05	.3	50	N	N	5	10	500	700	15	L	L	N
Z592	L	1	L	.2	50	N	N	L	20	700	500	10	L	L	L
z609	.07	3	.15	.07	10	10	30	10	L	L	N	15	50	300	7
Z614	1.5	.2	.7	.07	70	N	N	L	20	300	200	10	30	10	2
z656	1.5	7	.05	.07	15	L	20	L	L	70	N	70	70	200	7
2660	L.	1.5	L	.03	Ĺ	N	15	Ĺ	L	N	N	L	15	50	5
z661 <i>≧/</i>	Ł	1	.05	.05	L	N	20	L	L	N	N	L	70	100	7
z674	.5	3	1	.3	50	N	N	Ĺ	Ĺ	1,000	300	Ĺ	30	150	Ĺ
z684	.03	3	.07	.7	100	N	N	5	15	1,500	500	L	10	10	L
z685	.03	2	.1	•7	70	5	N	5	30	1,500	300	20	L	20	L
z695	.03	2	L	.03	10	N	20	7	10	30	N	10	70	150	7
A022 5/	.5	.3	.5	•5	100	N	N	15	100	500	700	15	50	1,000	L
A023	L	.05	.05	.3	200	N	N	L	100	300	500	N	15	L	N
4024	L	15	.05	.3	500	N	N	L	70	500	500	L	20	10	N
A025	Ĺ	15	.1	.1	10	N	N	L	Ļ	150	200	L	15	N	N
4079	.5	10	1	.3	150	N	N	20	50	1,000	500	10	10	200	N
4082	L	10	L	.2	20	N	N	L	5	100	500	L	N	10	N
A104	.7	3	3	.2	100	N	N	5	7	700	500		15	700	N
A105	.7	7	3	.3	150	N	N	7	15	3,000	1,000		10	500	N
A237	.7	2	1.5	.3	70	N	N	50	500	200	100	L	L	300	Ļ
A244	.15	.5	1.5	.05	10	N	N	N	50	30	200	N	N	200	N
4245	1.5	2	2	.3	30	N	N	5	7	1,000	1,500	N	L	700	L
A246	1.5	5	1.5	.5	70	N	N	15	10	1,000	1,500	L	10	700	N

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO

area, Greenlee County, Ariz., and Catron County, N. Mex.-Continued

				itative s lysesCo (ppm	ntinu		ic			emica alyse (ppm)		Map	
	Nb	Υ.	Cu	Zr	La	Zn	Şc	Ço	Hg	As		Coordinat	
Sample	e(10)	(5)	(2)	(10)	(20)	(200)	(5)	(5)	(.01)	(10)	(.02)	(pl. 1)	Sample description
						<u>A1</u>	tered	rock	<u>s</u> Conti	nued			
z589	10	L	10	150	N	N	L	N	.07	N	N	K-2	Silicified, limonite.
Z590	Ł	10	10	100	N	N	L	L	8.05	L	N	K-2	Silicified, pyrite.
Z591	L	7	15	100	L	N	5	N	.15	Ļ	N	K-2	Argillized.
Z592	L	Ĺ	10	150	N	N	5	N	2.7	N	N	K-2	Silicified, pyrite.
z609	50	70	10	>1,000	L	300	10	N	.04	N	N	1-4	Silicified vent rhy.
Z614	30	30	2	200	20	N	15	N	L	N	N	1-4	Alunite?
Z656	50	150	7	>1,000	Ĺ	300	7	N	.06	N	N	J-2	Hematitic rhyolite.
z660	30	150	15	1,000	N	500	6	N	.20	N	N	J-3	Do.
z661	50	150	10	>1,000	N	700	5	N	.02	N	N	J-3	Do.
Z674	10	20	15	150	30	N	7	N	.14	N	N	L-3	Latitic dike qtzpy.
z684	L	15	30	150	30	N	15	N	2.20	N	N	M-7	Argillic, pyritic.
z685	L	Ĺ	7	150	L	N	10	N	>10	N	N	M-7	Edge of alt. rhy. dike.
Z695	50	100	7	1,000	30	200	Ł	N	.08	N	N	J-5	Silicified rhy. float.
A022	L	10	50	<50	20	N	10	10	.14	L	N	M-6	Altered colluvium.
A023	Ļ	L	10	50	N	N	L	L	.04	10	Ĺ	M-6	Argillized.
A024	Ļ	N	15	100	N	N	10	N	.04	20	L	m-6	Hematitic stnd.
A025	L	N	10	100	N	N	5	, N	.06	10	L	m-6	Opaline.
A079	L	10	20	150	N	N	10	5				K-2	Altered andesite.
A082	L	N	30	100	N	N	10	N				K-2	Altered float.
A104	N	15	15	70	N	N		5	.06		N	0-5	Green breccia; pyrite.
A105	N	20	30	100	N	N		10	.03		N	D-5	Gnblack stnd. brec.
A237	L	15	5	100	L	N	20	10	.03	L	N	B-7	Gn. stnd. conglomerate.
A244	N	N	L	L	N	N	N	L	.03	N	N	B-7	Calcite from fault.
A245	L	20	10	150	30	N	5	10	.02	N	N	B-6	Gn. stnd. conglomerate.
A246	L	20	50	150	30	N	10	20	.02	N	N	B-6	Do.

E64 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Table 4.—Analyses of stream-sediment samples from the Blue Range

[Numbers in parentheses indicate sensitivity limit of method used. The symbol > indicates that an unde amount of the element is present below the sensitivity limit: N indicates that the element was looked Martinez, D. J. Grimes, K. J. Curry, K. C. Watts; Mercury analyses by W. W. James, and S. L. Noble; Elizabeth Martinez, W. L. Campbell, T. A. Roemer, M. S. Rickard, R. L. Miller]

ZO11 2 5 2 .5 100 N 70 100 700 700 10 10 ZO13 2 5 5 1 200 N 50 100 1,000 1,000 15 20 ZO14 2 5 5 1 200 N 70 150 1,500 1,000 10 20 ZO15 1.5 7 1.5 .5 200 N 50 150 500 500 L 15 ZO18 1.5 5 2 .2 100 N 50 500 700 L 15 ZO20 2 7 3 .5 150 N 70 500 1,000 700 10 15 ZO20 2 7 3 1 200 N 100 300 1,500 1,000 10 20 10 20 1 200					,	yses J	c Anal	ographi	Spectr	ntitative	Semiquar							
Sample																		
2001	Mn (10)														Sample			
2006 2 5 3 .5 200 N 50 70 1,500 1,000 10 50 2008 1.5 7 3 1 200 N 70 150 1,500 2,000 30 50 2011 2 5 2 .5 100 N 70 100 700 700 10 10 10								iments	eam_sed	<u>Str</u>								
2008 1,5 7 3 1 200 N 70 150 1,500 20 30 20 30 2009 2 7 5 1 300 N 150 500 2,000 2,000 30 50 20 200 30 50 20 2000 30 50 10 1,500 2,000 30 50 10 </td <td>1,000</td> <td></td> <td></td> <td>700</td> <td></td> <td></td> <td>150</td> <td>70</td> <td>N</td> <td>200</td> <td>1.0</td> <td></td> <td></td> <td></td> <td>Z001</td>	1,000			700			150	70	N	200	1.0				Z001			
2009 2 7 5 1 300 N 150 500 2,000 2,000 30 50 2 2011 2 5 2 .5 100 N 70 100 700 700 10 10 2013 2 5 5 1 200 N 50 150 1,500 1,000 10 20 2014 2 5 5 1 200 N 70 150 1,500 1,000 10 20 2015 1,5 7 1,5 .5 200 N 50 150 500 500 L 15 2018 1,5 5 2 .2 100 N 50 150 500 500 L 15 2020 2 7 3 1 200 N 100 300 1,500 1,000 10 20 2023 <	1,500											3						
Z011	1,500 >5,000																	
2014	1,000																	
2015	2,000											5						
Z018	1,500																	
Z020 2 7 3 .5 150 N 70 500 1,000 700 30 30 Z022 3 7 3 1 200 N 100 300 1,500 1,000 10 20 Z023 2 7 2 .5 150 N 50 100 700 1,000 10 20 Z024 3 7 2 1 200 N 300 500 1,000 700 15 30 Z025 2 5 2 .5 200 N 150 500 1,000 700 10 30 Z028 2 7 2 1 200 N 150 500 1,000 700 10 30 Z029 2 7 1 .3 100 N 70 300 700 700 L 30 Z030 1.5 <td< td=""><td>700 700</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	700 700																	
2023 2 7 2 .5 150 N 50 100 700 1,000 10 20 2024 3 7 2 1 200 N 300 500 1,500 700 15 30 2025 2 5 2 .5 200 N 150 500 1,000 700 10 30 2028 2 7 1 .3 100 N 70 300 700 700 L 30 2030 1.5 5 1.5 .3 100 N 70 300 700 700 L 30 203 1.5 7 2 .3 150 N 100 300 700 700 10 20 15 2034 2 7 1.5 .3 150 N 100 300 700 700 10 20 2034 2 7 1.5 <t< td=""><td>1,000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1,000																	
2024 3 7 2 1 200 N 300 500 1,500 700 15 30 2025 2 5 2 .5 200 N 150 500 1,000 700 10 30 2028 2 7 2 1 200 N 150 500 1,000 500 10 30 2029 2 7 1 .3 100 N 70 300 700 700 L 30 2030 1.5 5 1.5 .3 100 N 70 200 700 500 20 15 2033 1.5 7 2 .3 150 N 100 300 700 700 10 20 2034 2 7 1.5 .3 150 N 100 300 700 700 10 15 2036 1.5 <	1,000																	
2025 2 5 2 .5 200 N 150 500 1,000 700 10 30 2028 2 7 2 1 200 N 150 500 1,000 700 10 30 2029 2 7 1 .3 100 N 70 200 700 500 20 15 2030 1.5 5 1.5 .3 100 N 70 200 700 500 20 15 2033 1.5 7 2 .3 150 N 100 300 700 700 10 20 2034 2 7 1.5 .3 150 N 100 300 700 700 10 15 2036 1.5 7 1.5 .5 200 N 70 100 500 700 L 15 2039 1.5	1,000					700												
Z028 2 7 2 1 200 N 150 500 1,000 500 10 30 Z029 2 7 1 .3 100 N 70 300 700 700 L 30 Z030 1.5 5 1.5 .3 100 N 70 200 700 500 20 15 Z033 1.5 7 2 .3 150 N 100 300 700 700 10 20 Z034 2 7 1.5 .3 150 N 100 300 700 700 10 20 Z036 1.5 7 1.5 .5 200 N 70 100 700 1,000 10 20 Z038 1.5 7 1 .3 200 N 70 100 500 700 L 15 Z039 1.5	700					1,000												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	700																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	500																	
2034 2 7 1.5 .3 150 N 100 300 700 700 10 15 2036 1.5 7 1.5 .5 200 N 70 100 700 1,000 10 20 2038 1.5 7 1 .3 200 N 70 100 500 700 L 15 2039 1.5 5 1.5 .3 100 N 70 150 500 500 10 15 2040 .7 2 1.5 .3 50 L 30 70 700 700 L 10 2041 .7 1.5 1.5 .3 50 L 50 50 1000 700 L 10	500 700												5					
2036 1.5 7 1.5 .5 200 N 70 100 700 1,000 10 20 2038 1.5 7 1 .3 200 N 70 100 500 700 L 15 2039 1.5 5 1.5 .3 100 N 70 150 500 500 10 15 2040 .7 2 1.5 .3 50 L 30 70 700 700 L 10 2041 2 .7 1.5 1.5 .3 50 L 50 50 1,000 700 L 10	1,000																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,000								N									
z040 .7 2 1.5 .3 50 L 30 70 700 700 L 10 z041 ½ .7 1.5 1.5 .3 50 L 50 50 1,000 700 L 10	700																	
z041 ⅔ .7 1.5 1.5 .3 50 L 50 50 1,000 700 L 10	500																	
	300 300																	
2045 1 2 1.5 .5 50 L 70 100 700 700 L 10	300										.5			1'				
Z050 2 1.5 1.5 .3 30 L 70 300 500 300 10 20	300								L									
Z051	300																	
Z054	300 300																	
Z058 2 2 2 .7 50 L 70 100 700 500 10 15	300																	
Z060 1.5 2 3 .7 50 L 30 70 700 700 L 10	300	10	L	700		700	70	30	L	50				1.5	Z060			
Z063 2 2 2 .5 30 L 50 100 500 500 10 20	300										٠ <u>5</u>							
Z065 2 3 3 .5 50 L 50 150 700 500 15 20 Z067 2 2 2 .5 50 L 70 100 500 300 10 L	300 300										.5							
zo69 2 3 1.57 50 L 100 70 700 300 10 30	300										7							
Z071 2 3 3 .7 30 L 50 10 700 500 10 10	300								L									
Z073	300 300																	
Z074	300																	
Z076 2 2 1.5 .5 30 L 30 20 700 700 15 20	300																	
Z078 1.5 2 2 .5 70 L 50 30 500 700 L 15	300																	
Z079 1.5 3 3 .3 50 N 30 50 1,000 1,000 L N	300																	
Z080 .5 1.5 1 .7 50 N 20 20 700 300 L L Z081 .7 2 1.5 .3 50 N 30 30 500 700 L 10	300 300													.7				
Z083 .3 1.5 1 1 70 N 5 15 700 150 10 10	300																	
Z084 .5 1 2 .7 50 N 10 20 700 200 10 15	300	15												.5				
z086 .7 2 1.5 .3 50 N 15 30 1,000 700 10 15 z087 .2 2 1 .7 50 N N L 700 150 10 10	300																	
Z087 .2 2 1 .7 50 N N L 700 150 10 10 Z088 1 3 1 .7 70 N 15 30 1,000 500 L 10																		
Z089 .3 2 1 .7 50 N N L 1,000 300 10 20	300 300	'n	1	500		1.000	50	15	N	70	.7	1	3	1	ZUOO			

 $^{^{1}/}$ Also looked for spectrographically but not found in any sample except as noted: Au(10), As(200), Sb(100), Sn(10), Ag(0.5), Zn(200), Cd(20), W(50) for most samples, but W(20) for Z001 to A039, A001 to A084, and A257, 258.

 $[\]underline{3}\!\!/$ Ag detected but less than 0.5 ppm; Sn detected but less than 10 ppm.

primitive area, Greenlee County, Ariz., and Catron County, N. Mex.

termined amount of the element is present above the number shown; L indicates that an undetermined for but not found. Analysts: semiquantitative spectrographic analyses by Arnold Farley, Jr., Elizabeth arsenic analyses by Z. C. Stephenson, Gary Dounay, K. R. Murphy, A. J. Toevs; gold analyses by

				Semi quant	titative	Spectro	ographi	c Anal	yses ∐							
			cent)			(ppm) V Mo Ni Cr Ba Sr B Pb Mn										
Sample	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	(10)	(5)	(2)	(5)	(10)	(100)	(10)	(10)	Mn (10)			
				<u> </u>	Stream s	ediment:	<u>s</u> Cont	inued								
Z091	1.0	2.0	1.5	0.5	70	N	30	70	700	700	L	15	300			
Z092	-7	2	1 1.5	.3 .7	50	N N	20 20	50 30	700	500 1,000	L	15 L	300 300			
Z093 Z094	.7 1	3	1.5	.5	50 70	N N	20	30	1,000	700	30	10	300			
Z095	•7	2	1.5	.7	70	N	50	30	1,000	700	15	Ĺ	300			
Z096	.7	1.5	1.5	.7	70	N	20	20	300	300	15	20	200			
Z097 Z098	1	3 3	1.5 2	•7	70 70	L	70 50	300 100	700 700	1,000 1,000	L 10	L 10	300 500			
Z090 Z099	.7	2	1.5	.7 .7	70 70	L N	30	30	1,000	500	10	10	200			
Z101	.7	2	i	.3	50	N	30	30	500	500	Ľ	10	300			
Z102	.7	3	1	.5 .5	70	L	30	50	700	700	L	L	300			
Z103	1	2	1.5	٠5	70	L	50	20	700	700	L	L	300			
Z104 Z105]]	3 3	1.5 1.5	.5 .5 .7	70 70	L	30 30	30 30	700 700	1,000 1,000	L L	10 15	300 300			
Z106	i	5	1.5	.7	70	ĩ	50	50	700	1,000	ĭ	Ĺ	300			
Z107	.7	3	1.5	.7	70	L	30	30	700	1,000	L	L	300			
Z108 Z113	, • 7	3 5	1.5	.7	50	L	50	30	700	700	L	L 10	300			
Z113	1.5	3	1.5	.5 .5	70 70	L	50 50	30 30	700 1,000	1,500 1,000	L L	L	700 500			
Z115	i	3	1.5	.3	70	Ĺ	30	30	500	1,500	Ĺ	10	300			
Z116	1.5	3	1	.3	70	L	30	30	500	300	Ļ	10	300			
Z117 Z118	1.5 I	5 3	2 1.5	.5 .3	70 50	L	30 30	50 30	700 300	1,000 700	L	10	500 300			
Z119	i.5	<u>3</u> .	1.5	.7	70	Ĺ	50	30	700	1,000	ī	10	300			
Z120	1.5	3	1.5	.5	50	L	50	30	700	1,000	L	L	300			
Z121	1.5	3	1.5	.5	50	L	50	30	1,000	1,000	Ļ	10	300			
Z122 Z123 .	1.5	3	1.5	.5 .5	70 70	L	50 30	50 30	700 700	1,000 700	L	10 10	300 300			
Z124 4	.5	1.5	•7	.3	30	ũ	30	30	300	200	ī	10	300			
Z127	1	3	1.5	.7	50	L	30	70	700	700	L	10	300			
Z128	1.5	3	1	•7	70 50	Ļ	30	50	700	1,000	Ļ	10	300			
Z129 Z130	1.5	3 3	2 1.5	•7 •7	50 50	L	30 30	70 50	700 700	700 500	L	10 L	300 300			
Z131	1	3	1.5	•7	70	ĩ	30	30	500	500	ī	15	300			
Z132	1	3	1.5	.7	50	L	30	30	500	1,000	L	15	300			
Z133 Z134	1.5	3 3	1.5	• 7	50 50	L	50 30	30 30	700 500	700 700	L 10	15 15	500 300			
Z136	i	3	1.5	•7 •7	50	L	30	30	500	700	L	15	300			
Z137	1	2	1.5	.7	30	L	30	50	500	700	L	15	300			
Z138	1	2	1.5	.7	. 50	L	30	30	700	700	L	10	300			
Z139 Z140	1.5 1	3	1.5	.7 .7	50 50	L	30 30	30 50	500 500	700 700	L L	10 L	500 300			
Z141	i	3	1.5	.7	30	Ĺ	50	30	500	500	10	15	500			
Z142	1	3	1.5	•7	30	Ĺ	30	30	700	700	L	15	500			
Z143	1	3	1.5	.7	30	L	30	50	500	700	L	15	500			
Z144 Z145	1	3 3	1.5	.7 .7	50 50	L	. 30 30	30 30	500 500	700 700	L L	10 10	500 500			
Z146	i	3	1.5	.7	50	Ĺ	50	50	500	500	10	10	500			
Z147	1	3	1.5	•7	50	L	30	30	500	500	10	20	500			
Z148	1	2	1	.3	70	L	30	50	1,000	1,000	L	15	300			
Z149 Z150	1 1.5	2 3	1 1.5	5 .5	30 30	L L	50 50	30 50	1,000	700 1,000	L	15 L	500 300			
Z151	1.5	3	1.5	.5	30	ī	30	50	1,500	7 0 0	Ĺ	10	500			
Z152	1.5	3	2	.5	30	L	50	100	700	700	Ŀ	L	300			
Z153	1.5	3	2	.5	30	L	30	30	1,000	1,500	L	L	300			

⁴ Zn detected but less than 200 ppm.

E66 studies related to wilderness—primitive areas

Table 4.—Analyses of stream-sediment samples from the Blue Range primitive

	Semiquantitative Spectrographic Analyses ly													
		(pe	rcent)						(р	pm)				
Sample	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	V (10)	Mo (5)	N i (2)	Cr (5)	Ba (10)	Sr (100)	B (10)	РЬ (10)	Mn (10)	
Stream sedimentsContinued														
Z155 Z156 Z157 Z158 Z160 5/	1.5 1.5 1.5 1	2.0 3 3 2 1.5	2.0 1.5 1 1	0.3 .7 .5 .3	30 30 30 30 30	L L L	15 30 30 30	30 30 30 30 30	1,000 1,000 1,000 700 1,000	700 1,000 1,000 1,000 700	L L L	L 15 10	500 500 500 200 300	
Z161 Z162 Z163 Z164 Z165	1 1 1 1	1.5 2 3 2 1.5	1 1 1 1 2	.2 .5 .5 .5	30 30 30 30 30	L L L L	30 50 50 30 20	30 30 100 50 30	500 1,000 700 500 500	700 500 1,000 500 700	i L. L L	L L L L	300 500 500 500 300	
Z166 Z167 Z168 Z169 Z170	1 1 1 1	1.5 2 2 2 2	1.5	.7 .7 .7 .5	30 30 30 30 30	L L L L	50 30 30 30 30	50 100 100 150 150	700 700 700 700 700 700	700 700 300 700 700	L L 10 L	L 10 10	500 300 500 500 500	
Z171 Z172 Z173 Z174 Z175	1 1.5 1.5 1.5	5 3 5 3	3 2 1.5 2	.7 .7 .7 .7	50 70 70 70 70	L L L	70 100 100 70 70	300 300 300 200 300	1,500 1,000 2,000 1,000 1,000	700 500 1,000 700 700	10 L L L	և և և և	1,500 1,500 1,000 700 500	
Z176 Z177 Z178 Z179 Z180	1.5 1.5 1.5 1.5	3 5 5	2 2 2 2 1.5	.7 .7 .7 .7	70 70 70 70 50	L L L	50 30 70 70 50	70 50 150 200 30	1,000 1,500 1,500 1,500 1,000	700 1,000 1,000 700 700	և Լ Լ	L 15 L L	700 700 700 500 700	
Z181 Z182 Z183 Z184 Z185	1 1.5 1.5 1.5	3 3 3 3	1.5 1.5 1.5 1.5	.7 .7 .7 .7	70 70 70 70 70	L L L	30 70 70 70 70	30 100 200 150 200	1,000 1,000 1,000 1,000 1,000	700 1,000 700 1,000 200	L L L	10 L 10 L	700 700 700 700 700	
Z186 Z187 Z188 Z189 Z190	1.5 1.5 1.5 1.5	3 3 3 3	1.5 1.5 1 2 2	.7 .7 .7 .7	70 70 70 70 70	և և և և	70 70 70 100 70	150 150 30 200 70	1,000 1,000 1,000 1,000 1,000	300 700 700 1,000	L L L L	15 L L L	700 700 700 700 700 700	
Z191 Z192 Z193 Z194 Z195	1.5 1.5 1.5 1.5	3 5 5 2 3	2 2 2 1.5 2	.5 .7 .7 I	70 70 70 50 50	և և և և	30 70 70 70 70	70 200 300 300 300	1,000 1,000 1,000 1,000 700	1,000 1,000 1,000 700 1,000	L L L L	L L L 10 L	500 700 700 500 500	
Z196 Z197 Z198 Z199 Z200	1.5 2 1.5 1.5	3 3 3 3	2 1.5 1.5 1.5	.7 .3 .5 .7	70 70 70 70 70	ւ ւ ւ	70 50 70 50 70	200 30 300 70 200	1,000 700 700 700 700	1,000 1,000 1,000 700 1,000	և Լ Լ Լ	L L 10 L	300 300 500 700 300	
Z201 Z202 Z203 Z204 Z205	1.5 1 1.5 1.5	3 3 3 3	1 1.5 2 2 2	.7 .7 .7 .7	70 70 70 70 70	L L L	50 50 50 70 70	30 50 30 100 150	700 700 1,000 1,000	1,000 1,000 1,000 1,000 1,500	i L L L	L L L 15	300 300 300 300 300	
Z206 6/ Z207 7/ Z212 Z213 Z215	5 3 3 2 3	10 10 7 10	7 5 2 2 3	.7 .7 .7	200 200 100 200 200	N N N N 20	150 100 300 70 150	500 300 300 150 300	1,000 1,000 700 700 1,000	1,500 1,000 700 500 500	10 L 15 20 L	30 30 20 30 30	1,500 700 1,000 700 1,000	

⁵J Sn detected but less than 10 ppm.

^{6/ 0.7} ppm Ag.

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO

				Semiquan	titative	Spectr	ographi	c Anal	yses]				
			cent)						· (pp				
Sample	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	V (10)	Mo (5)	Ni (2)	Cr (5)	Ba (10)	Sr (100)	B (10)	РЬ (10)	Mn (10)
					Stream s	ediment	<u>s</u> Cont	tinued					
Z216 o.	3.0	10	5.0	0.7	200	N	100	300	1,500	500	15	30	1,500
Z217 8/	3 5	10 10	2	.7 >I	200	L N	100	150	1,000	500	100	30	1,000
Z218 Z220	3	10	3	1	200 300	N N	200 150	500 300	1,500 1,000	700 500	30 10	70 30	1,500 700
Z221	ž	10	3	i	200	N	100	150	700	500	15	50	700
z222 🏽	1.5	10	1.5	1	150	N	70	150	700	300	20	70	1,000
Z223 Z224	3	10 15	2 5	1 > !	200 300	N N	100 100	150 300	700	300 700	L	10 30	1,000
Z224 Z225	3	15	.3	1	300	N	100	200	1,000 700	700 500	15 10	30 20	1,000 1,000
Z226	2	ió	1.5	i	200	N	70	150	700	500	10	30	1,000
Z227	3	10	1.5	1	300	N	100	150	700	700	10	30	1,000
Z228	2	10	2	1	300	N	70	100	700	700	10	30	700
Z229	2	7	1.5	.7	100	L	100	150	700	700	20	30	700
Z230 <u>10</u> / Z231	2	10 10	3 2	.7 .7	200 150	N N	70 100	100 200	1,000 700	1,000 700	10 10	30 30	1,500 1,000
	-											-	-
Z232	3	10	1.5	.7	200	N	100	200	700	700	L	30	1,000
Z233 Z234	2 1.5	7 7	1.5	.5 .5	100 70	N L	70 30	150 70	700 500	500 150	L 10	20 50	1,000
Z235 9/	2	10	2	.7	150	5	150	300	700	300	L	20	1,500
Z236	· ī.5	10	1.5	.7	150	Ĺ	100	300	700	500	15	30	1,000
Z237	1.5	10	1.5	1	200	N	100	300	1,000	500	15	50	3,000
Z244	2	.7	1 _	.5	100	N	70	150	700	500	15	30	1,000
Z245 Z246	1 .7	3 5	. 7 . 7	.3	50 70	N 15	15 20	30 70	200 300	100 100	15	70	1,000
Z247	2 ,	7	2 ,	.3 .5	150	N	70	150	700	700	30 10	70 20	2,000 2,000
Z248	2	7	1.5	.5	200	N	70	100	700	700	10	30	2,000
Z249	1.5	5	1.5	.3	150	N	30	50	500	500	10	20	2,000
Z250	2	7	2	.3	200	L	50	50	300	700	L	10	7,000
Z251 Z252	1.5	5 7	1.5	.3	100	N	50	70	300	500	10	30	300
				.3	150	N	50	70	300	700	L	10	100
Z253 Z254 10/	3	7	2	.5	70	N	30	20	200	500	L	L	500
Z254 <u>10</u> / Z255	3 2	7 7	2	.5 .5	100 100	N N	30 30	30 20	300 300	500 700	L 10	10 15	500 700
Z256	3	7	2	.5	100	N	30	30	500	700	L	20	1,000
Z258	.7	5	ī.5	.3	70	N	10	15	500	700	N	15	500
Z259	.7	3	1.5	.5	150	N	20	30	300	500	N	10	500
Z260	.7	3	2 1	.3	100	N	10	10	500	500	N	L	700
Z261 Z262	.5 .3	3	i	.3 .5	70 70	N N	7 7	10 15	300 300	300 200	N 10	10 15	500 700
Z263	.3	ž	i	.3	70	N	ś	7	300	200	Ĺ	15	700
Z264	.7	3	1.5	.3	70	N	7	20	300	700	N	L	500
Z265	1 _	3	1.5	• 7	70	N	10	20	500	700	N	L	700
Z266 Z267	.7	3	1.5	.5	70	N	7	15	300	700	N	L	700
Z268	.7	3	1.5 1.5	.3 .3	70 70	N N	7 7	15 20	500 500	700 700	N N	L L	700 700
Z269	.7	2	1.5	.3	50	N	7	15	500	300	N	L	1,000
Z271	3	10	5	.1	300	N	50	30	1,000	500	20	20	700
Z272	1.5	. 7	2	1	200	N	70	50	700	300	20	20	1,000
Z273 Z274	3	15 15	3	 >	150	N	50	10	500	300	20	15	700
·	•			• •	150	N	30	30	1,000	300	20	15	1,500
Z276 Z277	3 1.5	15 15	3 7	>1 >1	150 100	N N	70 50	70 50	1,000 1,000	500 500	30 20	15 20	1,500 1,000
Z278	2	15	5	i	150	N	70	70	1,000	500	30	20	1,000
2279	2	15	3	1	100	N	70	200	1,000	300	50	20	1,500
Z280	2	15	5	>1	200	N	70	150	1,000	300	20	15	1,000

^{8/} Zn detected but less than 200 ppm; Sn detected but less than 10 ppm.

^{9/} Sn detected but less than 10 ppm.

E68 studies related to wilderness—primitive areas

Table 4.—Analyses of stream-sediment samples from the Blue Range primitive

				Semiquan	titative	Spectro	ographi	c Anal	yses <u>l</u>				
			rcent)						(pr	om)			
Samp1e	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	V (10)	Mo (5)	N i (2)	Cr (5)	Ba (10)	Sr (100)	B (10)	РЬ (10)	Mn (10)
					Stream s	ed iment:	<u>s</u> Con t	inued					
Z281	2.0	15	7.0	>1.0	150	N	70	150	1,500	700	30	30	1,000
Z282	3	15	7	>1	150	N	70	200	1,000	700	30	20	1,000
Z283 Z284	3 2	15 15	7 7	>l 	200 150	N N	70 70	150 500	1,000 1,000	700 700	20 20	20 20	2,000 1,500
Z285	3	>20	7	>1	150	N	150	70	1,500	300	30	15	3,000
z286	1.5	10	7	1	150	N	50	70	1,000	300	20	10	1,000
Z287	2	15	5	1	150	N	50	200	1,500	500	20	15	1,500
Z288 Z289	3	15	7 5	1	150	N N	70	70 70	1,000	500 500	20 20	10 10	1,000
Z290	2 2	10 10	3	i	150 150	N	70 70	150	1,000 1,000	500	20	15	1,000
Z291	3	15	5	1	150	N	70	100	1,000	500	20	15	1,000
Z292	2	10	3	i	150	N	70	70	1,000	500	20	15	1,000
Z293	2	20	5	>1	150	N	70	200	1,500	500	30	15	1,500
Z294 Z295	2	5 7	2 5	.7	150 150	N N	70 70	150 200	700 1,000	700 1,000	15 20	30 30	700 700
				'					•				
Z296	2	5	3	٠7	100	15	70	100	1,000	1,000	20	30	700
Z297 Z298	2 1.5	5	2 3	i	100 150	N N	70 70	200 150	700 1,000	700 700	15 15	30 30	700 700
Z299	3	5 7	5	i	150	ï	150	300	1,000	1,000	iś	30	1,000
Z300	3	7	5	1	200	N	100	200	1,000	1,500	15	30	1,000
Z301	2	7	2	.7	200	7	70	100	700	700	10	30	1,000
Z302	2	7	3	1	200	N	70	150	700	1,000	15	30	1,500
Z303 Z304	2	5 5	2	1	200 200	N N	100 150	200 300	700 1,000	700 700	15 15	20 30	700 700
Z305	1.5	5	2	.7	70	N	70	200	1,000	700	Ĺ	30	700
Z306	2	5 5	3	1	150	N	70	150	1,000	700	10	20	700
Z307	2	5	2	1	100	N	70	150	700	700	10	30	1,000
Z308 Z311	2	5 7	5 3	1	200 200	N N	70 100	150 200	1,000	700 1,000	30 15	20 30	700 1,000
Z312	1.5	7	2	i	200	N	100	200	1,000	1,500	30	30	1,000
Z313	2	5	3	1	150	N	70	200	1,000	1,500	20	30	1,500
Z314	2	5	3	1	150	N	70	200	1,000	1,500	20	30	1,000
Z315 Z316	3 2	10 5	3 3	>1	200 100	N N	150 50	700 200	700 700	700 700	30 15	20 30	1,500 700
Z317	2	7	3	.7 .7	150	N	150	200	1,000	1,000	15	30	1,000
Z318	2	7	5	. 1	200	N	150	300	1,000	1,500	10	30	1,500
Z319	2	5	3	• 7	100	N .	150	100	1,000	1,000	10	30	1,000
Z320	2	5	3	.5	100	N	150	150	700	700	15	30	700
Z322 Z323	2	10 10	3 2	>l 1	200 200	N N	150 150	500 200	1,000	1,000 700	10 10	30 30	700 1,000
				·			-		-			-	
Z324 Z325	2	5 5	1.5	.3 .7	70 100	N N	200 500	300 500	700 1,000	700 700	L	20 30	1,000 1,000
Z326	2	Ś	2	.7	150	N	100	100	1,000	1,000	15	30	1,000
Z327	2	5	2	.5	150	N	100	150	1,000	700	L	30	1,000
Z328	2 -	5	3	.7	200	N	150	150	1,500	1,500	15	30	1,500
Z329	2 2	5	1.5	•7	100	N	100	100	700	700	L	30	1,000
Z330 Z331	1.5	5	2	•5 •7	100	N N	150 100	100	1,000	700 700	10 L	30 20	1,000 1,000
Z332	2	5	1.5	.5	100	N	150	150	700	700	Ĺ	10	1,000
Z333	2	5	2	.5	100	N	150	300	700	700	15	30	1,000
Z334	. 2	5	3	.5	100	N	150	150	1,000	1,000	10	20	1,000
Z 335 Z336	2	5	1.5	.5 .7	100 150	N N	150 150	150 300	700 700	700 700	L 10	20 30	700 1,000
Z337	1.5	5	1.5	.3	100	N	100	70	500	500	L	20	700
z338	2	5	3	.7	100	7	150	300	700	700	Ĺ	20	1,000
Z339	2 .	5	2	.7	200	N	150	150	700	700	L	15	1,000
Z340*	2	5	5	1	70	N	200	300	700	1,000	10	-30	1,500
Z341 Z342	3	3 7	2 5	.3 .1	200 200	N L	70 150	150 500	500 1,000	700 1,000	20 50	20 20	700 1,000
Z342 Z343	2	7	3	.7	200	N	150	500	1,000	700	20	20	1,000
-		-	-	•									

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO

				Semiquan	titative	Spectr	ographi	ic Anal	lyses <u>l</u>				
	Mg	Fe	Ca Ca	Ti	V	Мо	Ni	Cr	Ba	pm) Sr	В	РЬ	Mn
Sample	(.02)	(.05)	(.05)	(.002)	(10)	(5)	(2)	(5)	(10)	(100)	(10)	(10)	(10)
				:	tream s	ediment	<u>s</u> Con1	inued					
Z344	2.0	. 5	5.0	0.5	200	L	70	150	700	1,000	10	50	1,000
z345 z348	2 2	10 10	.1	.5 .5	100 100	·L	100 200	200	1,000	500 200	20 10	15 L	500 500
Z349	2	10	.2	•5	100	ĭ	200	300	1,000	200	10	ī	500
Z350	t	10	.2	•5	100	L	100	200	1,000	300	10	L	500
Z351	1	10	.2	•5	50	L	50	100	1,000	300	10	L	500
Z352 Z353	1	10 10	.2	•5 •5	100	L	70 100	100 300	1,000	300 500	10 10	10 10	500 500
Z354	2	10	.2	.5	100	Ĺ	200	200	1,000	500	10	10	500
Z355	1	10	.2	•5	100	L	100	100	1,000	200	10	10	500
Z356	2	10	.2	•5	100	L	100	200	1,000	300	10	10	500
Z357	1	10	.2	•5 •5	100	L	100	200	1,000	300	10	15	500
z 358 z 359	1 2	10 10	2 2	.5 .5	100 100	L	100 200	150 200	1,000	100 300	10 10	10 10	500 500
Z360	ī	10	2	•5	100	i.	100	100	1,000	300	10	10	500
z361	1	10	2	_	100	L	100	100	1,000	300	10	L	500
Z362	i	10	2	•5 •5 •5	100	ĭ	100	200	1.000	200	20	10	500
Z363	1	10	2	•5	100	L	100	200	1,000	300	10	10	500
Z364 Z365	1	10 10	2	•5 •5	100 100	L	100 100	200 200	1,000	300 300	10 10	L 10	500 500
									-	-			-
Z366 Z367	1 2	10 10	2 2	•5 •5	200 100	L	100 150	200 200	1,000 1,000	100 300	10 10	L 10	500 500
z368	ī	10	3	.2	100	ī	100	200	2,000	300	10	10	500
Z369 Z370	1	10 10	2	.1 .2	70	L	100	100 200	2,000	100	10	50	200
23/0					70	L	200		2,000	200	10	20	500
Z371 Z372	1	10 10	2 2	.2	70	L	100 200	200 200	2,000	300 500	10 10	20 20	500 500
Z372 Z373	i	10	2	•2	70 70	L	100	200	2,000	300	10	10	500
Z374	1	10	2	.2	70	L	100	100	2,000	300	L	10	500
Z375	1	10	2	.2	200	L	100	200	2,000	300	10	20	500
Z376	ļ	10	2	.2	200	L	100	100	2,000	300	10	10	500
Z377 Z378	1 2	10 10	2 2	.2 .2	200 100	L L	100 200	100	2,000	300 300	10 10	20 10	200 200
Z379	2	10	2	.5	100	ī	200	500	2,000	300	10	20	500
Z380	2	10	2	.1	100	L	100	200	2,000	300	10	30	500
Z381	1	10	2	.2	100	L	100	200	2,000	300	10	20	500
Z382 Z383	1	10 10	2 2	•5 •2	100 100	L L	200 100	500 300	2,000	300 300	10 10	10 10	500 500
Z384	i	10	2	.2	100	Ĺ	100	300	2,000	300	10	10	500
z 385	1	10	2	.2	100	L	200	300	2,000	300	10	20	200
z386	1	10	2	.2	100	L	100	200	2,000	300	10	10	200
z 387 z 388	1	10 10	2 2	•2	100	Ļ	100	200	2,000	300	10	20	500
Z389	i	10	2	.2	100 100	L	100	200 70	2,000 2,000	300 300	L L	20 20	200 200
Z390	1	10	2	.2	100	Ĺ	100	50	1,000	300	Ĺ	10	200
Z391	2	10	1	•5	100	N	70	100	1,000	700	L	10	500
Z392	2	10	1 .	•5 •5	100	N	70	100	1,000	1,000	Ļ	10	500
Z393 Z395	2	7 2	i	•5	100 50	N N	70 30	100 50	1,000 700	1,500	L L	10 50	500 500
Z396	2	10	2	•7	70	N	50	100	1,000	2,000	Ĺ	50	700
Z397	3	7	2	•7	- 100	N	50	70	1,500	1,500	L	30	700
Z398	2	7 5	1.5	•5 •5	150	N	50	70	1,000	1,500	L	20	700
Z399 Z400	2	10	1 1.5	.5	70 100	N N	30 70	50 100	1,000 1,500	1,000 1,500	10 L	30 30	1,000 700
Z402	2	7	1.5	.5	70	N	15	N	1,500	700	10	70	2,000
Z403	2	10	1.5	.5	100	N	70	70	1,000	2,000	L	30	700
Z404	1.5	10	1	•5 •7	70	N	-50	50	1,500	1,500	L	20	700
z405 z406	2	10 10	1 1.5	•7 •3	100 100	N N	50 70	70 70	1,500	2,000 2,000	L L	20 20	700 700
Z408	ī.5	10	1.5	.5	100	N	30	50	1,000	2,000	10	30	1,000

E70 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Table 4.—Analyses of stream-sediment samples from the Blue Range primitive

				Sem i quan	titative	Spectr	ograph	ic Anal	lyses <u>l</u>				
			rcent)							рт)			
Sample	Mg (.02	Fe) (.05)	Ca (.05)	Ti (.002)	V (10)	Mo (5)	Ni (2)	Cr (5)	Ba (10)	Sr (100)	B (10)	Pb (10)	Mn (10)
				:	Stream s	ediment	<u>s</u> Con	tinued					
z409	1.0	10.0	1.5	0.5	100	N	30	50	1,000	2,000	10	20	500
Z410	1	7	2	•3	70	N	30	30	1,500	1,500	10	20	500
Z411 Z412	5 1	7 5	3	•3 •5	70 70	N N	300 20	1,000	2,000 1,500	1,500 1,000	20 10	50 30	700 500
Z413	2	7	1.5	.5	100	N	150	200	2,000	1,500	Ĺ	30	1,000
Z414	2	7	1.5	•3	100	N	30	50	1,000	1,000	L	30	700
Z415	1.5	10	1.5	•5	100	N	50	100	1,500	1,500	10	30	700
Z416 Z426	2 •7	10 15	2 1	•5 >l	150 200	N L	70 30	70 30	1,500 3,000	1,500 300	L 30	30 30	1,000 1,500
Z427	2	3	2	•7	150	N	70	100	700	1,000	10	30	1,000
Z428	•7	3	1	1	100	N	20	20	300	200	20	15	1,000
z429 z430	1.5	10 20	2 2	1 >l	150 500	N L	30 100	70 300	700 700	700 300	10 15	20 10	1,500 2,000
Z431	٠,7	15	1	>	200	- 1	70	100	500	300	10	10	1,000
Z432	1.5	7	2	•7	100	N	30	30	700	. 700	15	15	1,000
Z433	2	10	1.5	•5	150	N	50	50	1,000	1,000	N	30	700
Z434 Z435	2	10 10	1.5	•5 •5	150 200	N N	70 70	100 100	1,000	1,500 1,000	10 L	20 30	700 1,000
Z436	3	10	1.5	•5	150	N	100	150	1,000	3,000	Ĺ	20	700
Z437	2	10	1.5	•5	100	N	70	100	1,500	2,000	L	50	700
Z438	2	10	1.5	•5	150	N	50	100	1,000	1,500	L	30	700
Z439 Z440	2	10 10	1.5 2	•5 •7	70 100	N N	50 30	100 50	2,000 1,500	2,000 1,500	L 10	30 20	700 700
Z441	2	10	ī	• 5	100	N	50	50	1,000	2,000	Ľ	15	500
Z442	2	15	1.5	•7	150	N	150	500	1,500	2,000	L	20	700
Z443 Z444	2	10	1	•5	70	N	100	200	1,000	700	L	L	300
Z444 Z445	2	10 15	2 2	•5 •7	200 150	N N	100 50	200 30	1,500 1,000	2,000 1,000	L L	15 20	1,000 1,000
Z446	2	15	ī.5	•7	200	N	70	200	1,000	700	ī	15	700
Z447	3	10	1.5	•7	150	N	200	300	1,500	700	L	15	700
Z448	3	10	1.5	•7	150	N	70	200	1,500	2,000	Ļ	30	700
Z451 Z452	2 3	5 10	1 2	•5 •7	70 200	N N	30 100	50 200	500 1,500	700 3,000	Ĺ	L 30	500 1,000
Z453	3	10	3	•7	150	N	50	100	1,000	2,000	ì	30	1,000
Z454	3	10	2	•7	150	N	70	100	1,000	2,000	L	30	1,000
Z455	2	. 7	2	•5	150	N	100	100	1,500	2,000	L	20	700
Z456 Z457	2 1.5	5 7	.2	•7 •5	200 100	L N	100	300 150	1,000	1,500 1,000	L	20 20	700 500
Z458	3	15	2	•7	100	N	100	200	1,500 1,000	2,000	L	20	700
z459	. 3	15	1.5	•7	100	N	50	70	1,500	1,500	Ĺ	30	700
Z461	2	10	2	1.5	100	N	70	150	1,000	2,000	10	30	700
Z462 Z463	2	5 10	1.5 2	•5 1•5	100 150	N N	150 100	200 150	1,000	700 1,500	10 10	20 50	700 1,000
Z464	2	3	2	i • 7	150	N	100	200	1,000	2,000	Ĺ	20	500
Z465	2	10	1.5	•5	150	N	100	150	1,500	1,500	L	20	1,000
z466 z467	2	10	1.5	1.5	100	N	50	70	1,000	1,000	Ļ	20	700
z468	2 1•5	5 5	1.5	•5 •5	100 100	N N	100 50	300 70	1,000 1,000	1,500 700	L	20 15	1,000 700
Z469	2	3	1.5	•5	100	N	50	70	1,000	1,000	L	20	700
Z470	1.5	5	1.5	•5	150	N	70	70	1,500	1,500	L	50	700
Z471 Z472	2	3 7	1.5	•5	100 150	N N	30 150	70 150	1,000	1,000	10	20 30	500 700
Z473	3	5	1.5	•5 •5	150	N	100	200	1,500 1,500	2,000	L L	30	700
Z475	2	3	1.5	•5	100	N	50	50	1,000	700	L	20	500
Z477	1		1	•7	100	N	50	70	500	200	L	10	500
Z491	1	1.5	1	•3	70	L	30	15	500	300	Ļ	L	300
Z492 Z500	۱ .5	1.5	1.5 1	•5 •3	70 70	L	100	150 15	700 500	500 300	L 10	10 15	500 700
Z501	.5	1.5	i	•5	50	Ĺ	10	15	300	200	15	15	700
Z502	1	2	1	٠ĺ	100	Ĺ	30	20	300	200	10	Ĺ	700

				Semiquan	titative	Spectr	ographi	c Anal	_				
Sample	Mg (.02)	Fe (.05)	cent) Ca (.05)	Ti (.002)	V (10)	Mo (5)	Ni (2)	Cr (5)	Ba (10)	pm) Sr (100)	B (10)	Pb (10)	Mn (10)
3 amp r e	(.02)	_(.02)	(.05)		Stream s					(100)			(101_
Z503	1.0	2.0	1.5	0.3	50		<u>.s</u> com	10	500	500	L	10	300
Z504	•5	1.5	1	•5	70	L	20	20	300	200	10	15	500
Z505 Z506	1	2 2	2 1.5	.5 .5 .5	100 100	L	20 20	30 20	700 500	500 500	10 10	L L	700 500
Z507	٠.5	1.5	1	•3	50	N	30	50	300	300	15	10	500
z508	1	1.5	1.5	•3	70	Ŀ	15	7	500	500	L	10	500
Z509 Z510	۱ •5	1.5	1.5 1	.5 .2	70 30	N L	15 10	10	300 300	500 300	Ļ	10 10	500 200
Z511	•5	i.5	i	.3	50	N	10	7 7	200	300	L L	Ĺ	200
Z512	1	1.5	1.5	•3	50	L	10	10	500	300	10	L	500
Z513	. • 5	1	.5	•3	30	L	.5	.7	200	500	10	10	500
Z515 Z516	۱ •5	2 1.5	1.5	•7 •3	70 50	L	10 7	10 10	500 300	200 500	15 10	10 L	500 500
Z517	1	2	1.5	•3	70	L	7	10	500	500	10	L	700
Z518	1	1.5	1.5	•5	70	N	7	7	300	300	L	L	500
Z519	1.5	1.5	2	•5	70	Ļ	10	5	500	700	L	L	700
Z520 Z521	٠.5	1.5 1	1.5 1	.5 .3	100 70	L	20 15	100 30	500 300	300 300	10 10	10 L	700 500
Z522	1.5	2	2	•5	100	N	150	500	500	500	Ĺ	L	500
Z523	.5	1.5	1.5	•3	70	N	20	50	300	300	L	10	500
Z524 Z525	•5 •7	1.5	2 2	.2 .2	50 50	N	20 20	30 100	500 500	300 300	10 L	10 10	500 700
Z526	•7	2	2	•3	70	N	20	50	700	300	10	15	500
z527 z528	•7 •5	2	1.5	•5	70 100	N N	30 20	150 100	500 500	500 300	10	10	500
				•5					-	-	15	15	700
Z529 Z531	.5 .7	1.5	1 1.5	•3 •5	70 70	N N	30 30	50 100	300 700	300 300	20 15	10 10	500 500
Z537	1	1.5	1.5	•3	70	N	50	50	700	500	ió	10	300
Z541 Z542	1 1	2 2	2 2	•5 •5	70 70	N N	50 50	300 500	700 700	500 500	L	10 L	500 500
Z543	1	2	2	•5	70	N	50	300	700	500	10	10	500
Z544	1	1.5	2	•5 •5	70	Ļ	100	200	700	700	10	10	500
Z545 Z546	.7 1.5	1.5 2	1.5 3	•5 •5	70 100	L N	20 100	50 300	500 700	300 700	20 L	10 L	100 300
Z547	1.5	2	2	•5	100	N	100	500	700	700	Ĺ	10	500
Z548	5	1.5	1.5	•3	70	N	50	50	700	700	10	20	300
Z549 Z555	1 1.5	2 2	2 1.5	•5 •5	100 100	N N	100 100	200 200	700 700	700 500	10 10	10 10	500 500
Z556	1.5	2	2	•5	100	N	150	300	700	700	L	L	500
Z578	1	2	1	•3	70	N	50	50	500	500	10	15	500
Z579 Z580	1 •7	2 1	1.5	•5 •3	70 70	N N	70 50	70 50	500 500	500 500	10 10	10 10	300 500
z581	1	1.5	2	•5	70	N	50	50	700	500	10	10	500
z680 z681	3	10 7	5 3	1	150 150	N N	70 70	150 100	1,000	1,000 700	L L	30 30	1,000 1,000
z686	1.5	7	1.5	1	100	N	70	150	700	700	10	30	700
Z687	2	15	3	>i	300	N	150	300	1,000	700	15	30	700
z688 z689	3	7 7	3 .	•7	100	N	70	150	1,000	700	L	30	700
Z690	3 3	10	3	·7	100 200	N N	70 70	200 300	1,000 1,000	700 1,000	15 15	30 30	700 1,000
z691	3	7	3	•7	100	N	100	300	1,500	700	10	30	1,000
z692 z694	2 5	15 7	3	1 1	150 150	N N	100 150	300 500	1,500	1,000 500	20	20 30	1,000
Z696	5	10	2	i	150	N N	200	500	1,000	300	15 L	20	1,000 1,000
Z697	3	10	2	1	150	N	200	700	700	500	Ĺ	20	1,000
Z698	2	10	3	1	150	N	100	200	700	700	15	20	1,000
Z699 A001 11/	3 2	10 5	3 1	1 •3	150 100	N	150 150	300 300	1,000 700	700 500	15 50	30 30	1,500 700
A003 12/	1	7	1.5	•5	200	N	70	150	500	300	10	20	1,000
A005	1.5	5	1	•5	70	14	100	200	700	300	15	20	1,000

11/ 0.7 ppm Ag

E72 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Table 4.—Analyses of stream-sediment samples from the Blue Range primitive

				Semi quant	itative	Spectr	ographi	c Anal	yses <u>l</u>				
			cent)	- Ti						pm)			
Sample	Mg (.02)	Fe (.05)	Ca (.05)	(.002)	(10)	Mo (5)	Ni (2)	Cr (5)	Ba (10)	Sr (100)	(10)	РЬ (10)	Mn (10)
				9	tream s	ediment	<u>s</u> Cont	inued					
A006 Z009 A010	2.0 1.5 2	7.0 5 5	1.0 1 1.5	0.5 .3 .5	100 100 200	N N N	70 70 50	100 100 100	1,000 700 500	500 500 300	15 L 10	50 30 30	700 1,000 1,000
A011 A012	3 1	5 3	1.5	•5 •3	70 100	N N	150 50	200 70	700 700	500 700	L	15 20	1,000 700
A013 A016	1	3	1.5	•3	150 100	N N	50 50	100 50	500 500	500 500	10 L	20 15	700 1,000
A017 A019 A026	1.5 1.5 1.5	3 5 5	1.5 1.5 1.5	.3 .3	100 200 70	N N N	50 50 70	150 70 100	500 500 700	300 500 700	10 L	20 15 15	1,000 700 500
A028 A031 A033	1.5 2 2	3 5 5	1.5 2 2	.3 .5 .3	70 100 150	N N N	50 70 70	20 150 100	500 1,000 1,000	500 700 700	L 15 10	20 20 20	700 1,000 1,000
A035 A036	2 2	5	1.5	.3 .5	100 150	N N	70 70 70	200 150	700 1,000	500 700	L 50	10 20	1,000
A038 A040 A041	2 1.5 1.5	3 3	2 1.5 .5	.3 .3 .2	100 70 30	N N N	50 30 30	70 70 50	700 500 200	500 500 N	10 L L	20 15 30	1,000 700 1,000
A043 A045	1.5	5	1.5	.3	100 50	N N	50 50	70 70	300 700	500 700	10	20 20	700 700 700
A047 A049 A051	1.5 1.5 1.5	3 3 3	.7	.2 .3 .3	100 100 100	N N	30 50 50	50 150 100	300 500 500	500 500 500	10 10 15	15 20 20	500 500 700
A053 A055	1.5	5	i I	.3	100	N N	50 50	150	700 700	300 700	20 20	30 30	700 700
A057 A058 A059 <u>13</u> /	2 1.5 2	5 5 3	1.5 1.5 1	.3 .3	100 100 50	N N N	100 700 150	500 150 500	1,000 1,000 700	700 500 200	15 10 30	30 30 20	700 700 500
A062 A063	1.5	5	1.5	.3	150 100	N N	50 150	100 500	300 1,000	300 300	10	30 15	700 700
A064 13/ A065 A067	2 2 2	5 3 5	1.5 1.5 1.5	•5 •3 •3	150 100 200	N N N	100 70 100	500 200 300	500 700 1,000	300 500 500	50 20 20	20 20 20	700 500 1,000
A068 A069	2 1.5	5	1.5	•5	200 200	N N	100	300 300	1,000	700 500	15 50	15 30	700
A070 A071 A072	1.5 1 1	3 3 5	1 1 2	.3	200 150 200	N N N	70 50 100	100 100 500	700 700 1,000	700 700 300	L 10 20	30 20 30	1,000 200 500
A073 A074	1.5	5	1.5	•5 •5 •3	200 200	N N	100 50	500 70	700 700	500 1,000	10 L	20 20	500 500
A075 A076 A077	3 2 2	7 5 7	3 5 3	. 1 . 5 . 1	200 100 200	N N N	70 50 50	150 50 70	1,500 1,500 1,000	2,000 2,000 1,500	30 20 15	30 30 20	1,000 1,000 1,000
A078 A080	2	, 7 5	5 2	.1	100	N ·	70 70	200 200	1,500	1,500	10	20 20	1,000
A081 A083 A084	1 2	7 7	.5 3	1 1	200 200	N N	50 70	70 150	1,000	700 1,000	50 20	20 30	1,000
A085 A086	.7	3 2	1.5	•5 •3	70 70	N N	10 30	30 100	500 300	500 300	N N	L L	500 300
A087 A088 A089	•2 •5 •7	.7 1.5 2	.5 .5	.1 .3 .3	30 50 70	N N N	20 30 7	30 50 7	150 300 300	100 150 700	N N N	N 10 L	150 300 300
A090 A091	.7 .7	2	1.5	.5 .7	100 150	N N	7 10	15 30	500 300	700 700	N N	10	700 700

^{13/} Ag detected but less than 0.5 ppm.

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO

area, Greenlee County, Ariz., and Catron County, N. Mex.—Continued

		•	_	Semiquan	titative	Spectr	ographi	c Analy	yses <u>l</u>				
	Mg	Fe	cent)	Ti	V	Мо	Ni	Cr	Ba (pr	Sr	В	Pb	Mn
Sample	(.02)	(.05)	(.05)	(.002)	(10)	(5)	(2)	(5)	(10)	(100)	(10)	(10)	(10)
				1	Stream s	ediment	<u>s</u> Cont	inued					
A092	0.7	3.0	1.5	0.5	70	N	7	20	500	1,000	N	L	500
A093 A094	.7 .7	2 3	1.5	•3 •7	70 70	N N	30 70	70 150	500 500	500 500	N N	L	500 700
A095	•7	3	1.5	•5	100	N	.10	30	500	500	N	L	500
A096	1	3	2	.5	70	N	7	20	500	700	N	L	700
A097	1	2	1.5	.2	70	N	5	15	300	300	N	L	300
A098 A099	•7	3 [°]	1.5 2	.3 .5	70 70	N N	20 20	30 70	500 500	700 700	N N	10 L	700 700
A100	-7	3	2	•7	70	N	20	70	500	700	N	N	500
A101	•7	2	1.5	.3	70	N	15	30	500	500	L	20	500
A102	1_	3	2	.7	70	N,	70	150	700	700	N	Ł	500
A103 A106	.7 .5	3 1.5	1	1 •5	70 50	N N	100 30	200 150	700 500	300 150	N N	10 L	500 300
A107	.3	1.5	•7	-3	30	N	20	70	300	70	N	Ĺ	300
A108	1.5	5	3	•5	100	N	70	300	700	700	15	10	1,000
A109	1	3	1.5	.3	70	N	50	70	300	300	10	20	500
A110 A111	1 1.5	3 3	2 3	.5 •7	70 100	N N	70 70	200 300	500 700	700 1,000	15 15	10 10	1,500 700
A112	1.5	3	1.5	•5	70	N	70	300	500	700	20	10	500
A113	1	3	2	.5	100	N	30	100	500	500	15	L	500
A114	.7	3	1.5	-3	70	N	50	100	300	300	10	15	500
A115 A117	1	3	1.5	•3 •5	70 70	N N	50 70	70 100	500 500	500 700	10 15	20 15	700 500
A118	•7	3	2	•5	70	N	30	70	500	700	15	10	500
A119	•7	3	1.5	•5	70	N	50	150	300	200	15	20	500
A120	1.5	3	1.5	.3	100	N	30	100	700	300	10	15	1,000
A121 A122	i	3	2	.5 .3	70 70	N N	50 50	100 70	500 300	700 300	15 10	15 L	300 200
A123	1	3	2	•5 •7	70	N	70	150	500	700	15	10	1,000
A124	1	3	2	•/	70	N	70	150	500	700	15	10	700
A125 A126	.7 1	1.5	1.5	.3 .3	70	N	30	30	500	200	15	L	300
A126 A127	i	2	2 2	.5	70 70	N N	30 70	30 70	300 500	300 300	15 15	15 L	500 500
A128	1	5	2	. • 7	100	L	30	50	500	700	15	15	700
A129	1	10.	3	ı	150	N	50	50	500	500	15	L	700
A130 <u>14</u> / A131	1	5	2	•5	70	N	30	30	500	700	15	10	500
A132	i	5 3	2 1.5	•7 •7	100 100	N N	30 30	30 70	500 300	700 500	15 15	10 10	500 500
A133 A134	1	5 5	2	•5	100 100	N	20 20	30 20	500	700	10	10	500
-	,		-	•5	100	L	20	20	500	700	10	15	1,000
A137 A138	•7 •7	3	3	.5 .3	70 70	L N	15 15	15 15	500 300	500 700	10 N	15 15	700 500
A139	.7	3	1.5	•5	70	N	30	20	300	700	N	15	500
A140 A141	•7 •7	5 3	1.5	.5 .5	70 70	N N	30 20	20 20	500 300	700 700	L L	L 10	700 700
	-					•				•			
A142 A143	1	3 5	2	.7 .7	100 150	N N	30 50	15 70	300 500	700 700	L 15	10 15	1,000
A144	-7	3	1.5	•7	100	N	20	30	500	700	N	N	700
A145 A146	•7 •7	2	1.5	•3 •5	70 70	N N	10	7 7	300 700	500 700	N N	N L	500 1,000
A147													
A148	•7 •7	3 2	1.5	•5 •3	100 70	N N	15 15	15 7	500 500	700 500	N N	L L	700 500
A149	.5	5	1.5	>1	300	N	50	100	300	300	10	N	1,000
A151 A152	•7	3 7	1.5	.5 >l	70 200	N N	20 70	20 150	500 700	700 150	N 10	N 15	500 700
			-						•				
A153 A154	٠7	3 3	2 2	•7 •5	70 70	N N	20 70	30 100	500 500	700 700	N N	L L	700 700
A155	• 7	3	2	•5	70	N	70	100	500	500	N	L	700
A156 A157	•7 •7	7 3	2 1.5	1 •7	200 70	N N	70 50	150 100	700 500	300 500	10 N	N L	700 700
	.,	-		.,	, -	••	,-		,,,,	200		-	, 00

14/ 1.5 ppm Ag.

E74 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Table 4.—Analyses of stream-sediment samples from the Blue Range primitive

				Semiquant	titative	Spectr	ographi	c Anal	yses <u>l</u>				
	Mg	Fe	cent) Ca	Ti Ti		Мо	Ni	Cr	Ba (pr	Sr	В	Pb	Mn
Sample	(.02)	(.05)	(.05)	(.002)	(10)	(5)	(2)	(5)	(10)	(100)	(10)	(10)	(10)
				_	tream s	ediment		inued					
A158 A159	0.7 .7	1.0	2.0	0.3 .5	50 70	N N	30 30	100	500 500	700 700	10 L	10 10	500 500
A160	.5	2	1	.3	70	N	7	15	500	300	N	L	300
A161 A162	.7 .3	3 2	1.5 1	.5 .3	70 70	N N	10 7	30 30	500 300	300 200	L N	L N	700 500
A163	.5	2	1.5	.3	70	N	. 7	20	500	300	N	10	500
A164 A165	.7 .5	2	1.5	.3	70 50	N N	15 10	20 15	300 300	300 300	N N	N 10	300 300
A166 A167	.7	3	2 1.5	.3	70 70	N N	15 10	15 15	300 700	700 300	N N	10 10	700 700
A168	.3	2	1	.3	50	N	7	20	500	200	N	10	700
A169	1	3	1.5	.3	70	N	10	10	500	500	N	10	700
A170 A171	•7 1	3	1.5 2	.3 .5	70 70	N N	15 15	15 20	500 300	500 700	N N	10 L	700 500
A172	1.5	3	2	.5	70	N	20	10	500	700	N	Ĺ	700
A173 A174	1.5	3 3	2 2	.5 .3	70 70	N N	7 7	5 5	300 500	500 700	N	10	1,000
A175	1.5	3	2	.7	100	N	20	20	500	700	N N	L	700 700
A176 A177	1.5 I	3 3	1.5	.3 .7	70 100	N N	20 30	15 20	500 500	700 700	N N	L	700 700
A178	.7	3	1.5	.5	70	N	10	10	300	300	N	N	700
A179 A180	•7 •7	2	1	.3	70 70	N N	20 50	30 70	500 300	300 300	N N	L 15	700 700
A181 A182	.5	1.5	1	.3	70 70	N N	30 70	30 70	300 300	300 300	L N	io	700 500
A183	1	3	1.5	.5	70	N	50	100	300	300	. "	Ĺ	700
A184	1	:3	1.5	•5	70	N	70	100	300	500	N	L	700
A185 A186	1.5	3	1.5 2	.3	70 70	N N	70 30	70 30	300 700	300 1,000	L N	L	1,000 700
A187	1	3	1.5	•3	70	N	30	30	500	500	N	15	1,000
A188 A189	.7 .7	3	1.5	.3	70 70	N N	30 50	50 30	300 300	700 700	L	15 20	1,000
A190	.7	2	1.5	.5	70	L	30	50	300	500	N	15	1,000
A191 A193	1	3 3	2 2	.3 .7	70 100	N N	30 50	70 70	300 500	700 700	L N	70 15	1,000 1,000
A194	1	3	1.5	.5	100	N	70	50	300	700	L	10	1,000
A195 A196	.7	3	1.5	.5	70 70	N N	30 70	30 100	300 500	700	N	20	700
A198	i.5	10	3	.3 .5	100	N	70	70	1,000	700 500	N 10	10 20	1,000
A199	1.5	7	3	.7	150	N	70	70	1,000	300	30	20	1,000
A200 A201	1.5	5 3	3	.7 .7	100 100	N N	50 70	30 50	700 700	300 300	20 20	15 15	700 1,000
A202	2	7	3	>1	150	N	100	100	1,000	300	20	15	1,000
A203 A204	2 1.5	5 10	3 3	>l •7	150 100	N N	100 100	70 70	700 1,000	300 500	30 30	15 15	1,000 700
A205	2	15	5	>1	100	N	150	150	700	500	30	15	1,000
A206 A207	1.5	15 10	•7 3	>1 .7	150 100	N	150 200	300 70	1,500 700	150 700	50 30	20 20	3,000 1,500
A208 A209 15/	3	15 15	5	>i ' >l '	150	N N	100	70 100	700 1,000	300 500	20 20	20 15	1,000
A210	3	15	5	.7	150	N	100	50	700	700	15	15	1,000
A211	1.5	15	3	ı	100	N	70	100	1,000	500	15	15	1,000
A212 A213	1.5 3	15 15	2 5	۱ ۰7	100 100	N N	100 50	50 70	700 700	500 300	20 30	15 15	1,500 1,500
A214	2	15	3	.7	100	N	70	70	700	500	20	10	1,000

<u>15</u>/ 2 ppm Ag.

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO area, Greenlee County, Ariz., and Catron County, N. Mex.—Continued

			cent)							pm)			
Sample	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	V (10)	Mo (5)	N i (2)	Cr (5)	8a (10)	\$r (100)	8 (10)	РЬ (10)	Mn (10)
				9	tream se	ediment	<u>s</u> Cont	inued					
A215	2.0	15.0	3.0	0.7	100	N	70	70	700	500	20	20	1,000
A216	2	15	5	1	150	N	70	50	700	500	10	15	3,000
A217	2	15	5	•7	150	N	15	50	700	500	10	10	1,000
A218	1.5	15	7	•7	150	N	15	50	700	500	10	15	1,000
A219	2	15	7	•7	150	N	15	50	1,000	500	30	15	1,500
A220	2	15	3	.7	100	N	30	70	700	500	30	20	1,000
A221	2	15	3	.7	100	N	30	150	700	500	30	15	1,000
A222	2	15	3	.7	100	N	20	70	700	500	20	15	1,000
A223	3	15	5	>l	300	N	70	50	700	150	20	15	1,000
A224	2	5	2	•7	200	N	20	100	1,000	1,000	L	30	700
A225	1	10	1.5	.5	150	N	20	50	1,000	1,000	L	20	700
A226	2	5	1.5	.5	150	N	20	30	1,000	1,000	L	30	700
A227	2	7	1.5	.7	150	N	30	70	1,500	2,000	L	20	700
A228	1.5	7	1.5	-5	100	N	20	20	700	1,000	L	15	700
A229	2	10	1.5	-7	200	N	30	100	1,000	1,000	L	20	1,000
A230	2	5	1	.3	70	N	100	200	700	700	L	20	500
A231	1.5	7	1.5	.5	70	N	100	150	1,000	500	L	30	700
A232	3	10	2	.7	150	N	150	300	1,500	1,500	L	20	1,000
A233	1	1.5	2	.5	50	N	100	150	500	500	10	10	500
A234	1	1.5	2	.3	70	N	30	30	500	500	10	10	500
A235	.7	2	3	.7	100	L	20	50	700	500	10	10	1,000
A238	•7	1	1.5	.2	30	N	7	L	300	500	L	L	300
A239	1	1.5	2	.3	70	L	15	15	500	500	L.	L	500
A240	1	1	2	.3	70	N	10	10	500	700	L	10	500
A241	1	1.5	2	.5	70	N	15	30	500	700	10	L	500
A242	.7	1.5	3	.5	70	N	15	7	700	700	10	10	>5,000
A243	•7	1.5	2	.3	70	N	20	70	500	500	10	10	500
A257	3	7	3	1	100	N	100	200	1,000	1,000	N	30	700
4258	2	15	3	>1	150	N	150	300	1 500	700	10	3.0	700

E76 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Table 4.—Analyses of stream-sediment samples from the Blue Range primitive

		:	Semiqu		itive sp	ectrogr	aphic			Chemi	cal anal	yses 2j	
				•	(ppm)						(ppm)		Map
Sample	Bi (10)	Be (1)	Nb (10)	Y (5)	Cu (2)	Zr (10)	La (20)	Sc (5)	Co (5)	Hg (.02)	As (10)	Au (.02)	Coordinate (plate 2)
<u> </u>							eam sedi				_ 		
Z001	, L	L	10	30	50	200	N	20	50	0.26	L	L	н-5
Z006	Ĺ	Ĺ	- 10	15	30	200	N	20	20	.22	Ĺ	Ĺ	G-5
Z008	L	1	10	20	30	200	N	20	30	.05	L	L	G-5
Z009 Z011	L	l L	15 10	20 15	50 20	200 150	N N	30 15	50 20	.22 .10	L	i. L	·G-5 F-5
2011			10	,,	20	1,00	.,	,,	20	.10		L	(-)
2013	L	L	10	15	30	150	N	30	30	.05	Ļ	N	F-5
Z014 Z015	L L	L L	10 10	20 20	30 20	200 150	N N	20 15	30 20	.04 .03	L	L L	E-6 D-6
2018	Ĺ	ī	10	30	20	150	N	10	15	.14	Ĺ	Ĺ	D-7
Z020	Ĺ	1.5	15	50	20	200	N	20	20	.09	Ĺ	L	D-8
Z022	L	1	10	30	30	200	N	30	20	.15	L	L	1-2
Z023	L	L	L	20	30	150	N	20	20	.15	L	L	1-2
Z024 Z025	L	l L	15 L	30 10	50 50	200 150	N N	30 15	50 20	.15	L	L	- -
2028	Ĺ	ī	10	30	30	150	N	20	30	.04	Ĺ	Ĺ	F-2
2029	L	1	L	20	30	150	N	20	20	.40	L	L	F-2
2030	L	Ĺ	L	15	20	100	N	15	20	.10	ũ	L	F-3
2033 2034	L	L	10	20	30	150	N	15	20	.15	Ļ	Ļ	F-3
2036	L	L	10 L	20 30	20 30	150 200	N N	20 20	20 20	.40 .09	L L	L N	F-3 K-2
:038	L	L	L	15	30	100	N	20	30	.05	L	N	K-2
2039	L	L	10	20	20	100	N	10	20	.03	L	L	D-8
2040 2041	N N	L I	L	15 15	30 50	70 100	30 30	7 7	20 20	.50	 L	 N	н-5
2045	N	2	10	15	30	70	20	. 7	20	.06	٠Ľ	N	н - 5 н - 6
2050 .	N	1	L	15	30	70	N	10	20	.05	L	N	н-6
Z051	N	L	L	10	30	50	N	7	20	.04	L	N	н-6
2054 2056	N N	L L	L 10	15 10	30 30	70 70	30 20	7 7	N 15	.04 .05	L L	N N	1-6 1-6
2058	N	ī	10	10	50	100	50	10	10	.03	ĭ	N	1-6
2060	N	L	N	15	30	70	N	7	20	.06	L	N	1-6
2063	N	L.	L	. 5	30	70	N	7	10	.05	L	N	J-6
1065 1067	N N	L	L	15 10	50 30	70 100	N 20	7 7	15 15	L(.01) .05	L	N	J-6
:069	N	Ĺ	Ĺ	15	30	70	30	10	15	.05	L L	N N	J - 6 J-6
:071	N	L	L	15	30	70	30	10	20	.05	L	N	J - 6
073	N	1	L	10	30	50	20	7	15	.02	ĩ	N.	J-4
2074	N	Ļ	L	10	30	50	20	7	10	.04	L	N	J-4
:075 :076	N N	Ĺ	L	15 15	30 50	70 70	30 20	7 7	10 20	.02	L	N N	K-4 K-4
2078	N	L	L	5	30	50	L	7	20	.03	L	N	K-4
2079	N	Ĺ	Ĺ	L	30	30	N	7	15	.04	Ĺ	N	K-3
080	N	L	L	5	20	70	L	7	10	.04	L	. N	K-4
2081 2083	N N	L L	L 10	L 7	30 20	50 150	N 30	7 7	20 15	.06 .04	L L	N N(.04)	K-4 K-3
zo84	N	1	L	7	30	100	30	7	10	.05	L	N	L-3
2086	N	Ĺ	Ĺ	5	30	70	20	7	10	.04	į	Ň	L-3
Z087	N	L	L	7	3	70	30	7	N	.10	L	N	L-3
2088 2089	N N	L 1.5	L	5 5	30 15	70 100	30 30	7 7	20 10	.07 24.0	L L	N N	L-3 K-3

^{2/} Sensitivity limit for gold is 0.02 ppm for normal 10 gram sample. Where insufficient sample was available, the sensitivity limit ranges up to 0.1 ppm as shown in parentheses for individual samples.

area, Greenlee County, Ariz., and Catron County, N. Mex.—Continued

			Semiqu	antit	ative s	pectrogr intinued	aphic			Chemi	cal anal	yses 2j	
					(ppm)						(ppm)		Map
Sample	Bi (10)	Be (1)	Nb (10)	Y (5)	Cu (2)	Zr (10)	La (20)	\$c (5)	Co (5)	Hg (.02)	As (10)	Au (.02)	Coordinate (plate 2
						Stream s	ediment	<u>s</u> Cont	inued				
091	N	L	L	L	30	70	20	10	20	.15	L	N	L-3
092	N	L	L	5 5	30	50	20	10	30	.18	Ŀ	N	K-3
093 094	N N	L L	L	5	30 50	50 70	20 30	10 10	30 30	.10 .05	L L	N N(.04)	K-3 K-2
095	N	ī	Ĺ	5	30	50	30	10	30	.08	ĭ	N (104)	J-1
096	N	L	L	L	30	50	20	10	20	. 24	L	N	J-1
097	N	L	L	5	30	50	N	10	30	.16	L	N	J-1
098	N	L	L	5	50	70 100	30	10	30	.10	L	N N	J-1
099 101	N N	1.5 L	10 L	5 L	30 70	70	30 L	10 7	20 30	.05 .22	Ĺ	N N	J-5 K-2
102	N	L	L	5	70	50	L	7	30	.08	L	N(.04)	K-2
103	N	Ĺ	Ū	Ĺ	70	70	Ĺ	7	30	.05	Ľ.	N N	K-3
104	N	L	L	L	70	70	L	7	30	.40	L	N(.04)	K-2
105	N	L	L	Ļ	100	70	20	7	50	.14	L	N	K-2
106	N	L	L	L	70	70	L	7	20	-05	L	N	K-2
107	N	L	L	L	70	70	20	7	30	.10	L	N	K-2
108	N	L	Ļ	Ļ	100	70	20	,7	20	.07	Ŀ	N	K-2
113 114	N N	L	L	L	70 70	70 70	30 20	15 7	30 20	.03 .07	L	N N	J-2 J-2
115	N	ī	Ĺ	ï	70	70	L	10	20	.07	Ĺ	N	J-2
116	N	L	L	5	70	70	L	10	20	.09	L	N	J-2
117	N	L	L	5	100	70	30	10	20	.05	L	N	J-2
118 119	N	L L	L	5 5	70 70	70 70	L	7 7	20 20	.06 .03	L L	N N	J-2 J-2
120	N	Ĺ	Ĺ	Ĺ	70	70	L	7	20	.08	ì	N(.04)	J-2
121	N	1	L	5	100	70	L	7	20	.06	L	N	J-2
122	N	Ļ	L	5	70	50	L	7	20	.05	L	N	J-2
123	N	L	L	5	70	50	L	7	15	.07	L	N	J-2
124 127	N N	5 L	15 L	20 10	15 30	300 150	L	7 7	15 20	.09 .07	L L	N N	J-2 J-3
128	N	N	L	7	30	70	L	7	20	.04	L	N	J-3
129	N	N	Ĺ	7	30	50	ī	ΙÓ	20	.05	ī	N N	J-3
130	N	N	L	7	30	70	L	10	20	.04	L	N	J-3
131	N	N	L	5	30	70	N	10	20	.06	L	N	K-3
132	N	L	L	5	30	70	L	7	20	.03	L	N	J-2
133	N	L	L	5	50	70	N	10	20	.03	L	N	J-2
134 136	N	· L	L	5 L	50 50	70 70	N N	10 ·7	20 20	.05 .06	L L	N N	J-2 J-3
137	N	i,	٠	Ĺ	50	50	N	7	20	.05	Ĺ	N	J-3
138	N	ĭ	ĭ	Ĺ	50	50	N	7	20	.04	ĩ	N	J-3
139	N	L	L	L	50	70	N	7	20	.03	N	N	J-3
140	N	Ļ	Ļ	L	50	70	N	7	20	.05	Ļ	N N (ob)	J-3
141 142	N N	L	L	L	50 50	70 50	20 N	7 7	20 20	.05 .05	L	N(.04) N(.04)	J-3 J-3
143	N	Ĺ	Ĺ	Ĺ	50	70	N	7	20	.12	ŗ	N (104)	J-3
144	N	L	L	10	50	70	N	7 7	20	.08	L	N	K-3
145	N	L	L	7	30	70	N	7	20	.06	L	N	K-3
146	L	L	Ļ	5	50	70	N	7 7	20	.03	Ļ	N	K-3
147 148	N N	L	L	5 7	50 30	70 70	N 30	10	20 20	.03 .03	L L	N N	K-3 K-3
149	N	L	L	7	50	50	30	10	20	.05	L	N	J-3
150	N	L	L	7	30	70	20	10	20	.03	L	N	K-3
151	N	L	L	7	30	100	30	10	20	.03	L	N(.04)	K+3
152 153	N	L	L L	7 7	30 30	70 70	30 30	10 7	15 15	.09 .05	L	N N(.04)	K-3 J-3

E78 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Table 4.—Analyses of stream-sediment samples from the Blue Range primitive

			Semiqu	antita	tive s	oectrogra ntinued	aphic			Chemi	cal analy	yses 2/	
					(ppm)	itinueu					(ppm)		Map
ample	Bi (10)	Ве (1)	Nb (10)	Y (5)	Cu (2)	Zr (10)	La (20)	Sc (5)	Co (5)	Hg (.02)	As (10)	Au (•02)	Coordinate (plate 2)
						Stream s	ediment	<u>s</u> Cont	inued				
Z155	N	L	L	7	50	70	. 30	7	15	.05	L	N	K-3
Z 1 5 6	N	Ļ	L	7	50	70	30	10	15	.04	L	· N	K-3
Z157 Z158	N N	Ĺ	L L	7 7	50 50	70 70	20 L	10 7	15 10	.05 .10	L L	N N	K-3
160	N	ĭ	Ĺ	7	50	70	30	7	15	.09	Ĺ	N	K-3 H-2
161	N	L	L	5	30	50	20	7	15	.04	L	N	H-2
.162 :163	N N	1	L L	7	30 50	70 70	30 20	7 7	20 15	.09 .08	Ļ	N	H-2 H-2
164	N	L	Ĺ	7 7	50	70	20	7	15	.12	L	N N	H-2
165	N	Ĺ	Ľ	5	30	70	20	7	ió	.07	ĩ	N	H-2
166	N	Ļ	L	7	50	70	20	10	15	.15	L	N	H-2
167 168	N	L L	L	7 7	30 50	70 70	20 20	7 10	15 15	.10 .06	L L	N N	H-2 H-2
169	N	2	Ĺ	7	100	70	20	7	15	.20	Ĺ	N	H-2
170	N	ĩ	ī	7	70	70	20	7	15	.05	ĩ	N	H-1
171	N	1	Ļ	10	30	70	30	10	20	.04	Ļ	N	H-1
172 173	N N	1	L	10 7	70 70	70 100	50 30	10 7	20 20	.04 .07	L L	N N(.04)	H-1 H-1
174	Ň	i	Ĺ	10	50	70	20	7	20	.15	Ŀ	N (104)	1-2
175	N	1	ī	7	50	50	20	7	20	.06	Ĺ	N	i -2
176 177	N N	L L	L L	7	50 50	70 70	20 20	7	20 20	.07	Ļ	N(.04)	1-2
178	N	ī	Ŀ	7 7	50	100	20	7 7	20	.05 .05	L	N N	I - 2 I - 2
179	N	Ĺ	ī	7	50	70	Ľ	7	20	.06	ī	N	i - 2
180	N	1	L	10	50	50	Ĺ	7	20	.06	Ĺ	N	1-2
181 182	N N	l L	L	7 7	30 50	70 70	20 30	7 7	20 20	.09 .10	L L	N N	H-2 H-2
183	N	Ĺ	Ĺ	ś	30	70	30	7	20	.07	Ĺ	N	H-2
184	N	L	Ĺ	10	50	70	50	7	20	.08	ī	N	H-2
185	N	L	L	7	30	70	30	7	20	.12	L	N	H-2
186 187	N N	L L	L L	7 7	50 50	70 70	30 20	7 7	20 20	.08 .08	L L	N N	H-2 H-2
188	N	Ĺ	Ĺ	ś	30	70	20 .	7	20	.04	Ĺ	N	H-2
189	N	Ĺ	ũ	.7	50	70	30	7	20	.05	ī	N.	H-2
190	N	Ļ	L	7	30	70	30	7	20	.06	L	N	H-2
191 192	N N	L L	L	5 7	50 50	70 70	50	7	20 20	.05	Ļ	N	H-3
193	N	Ĺ	į	10	50	70 70	50 50	7 7	20	.05	L	N N	н - 3 н - 3
194	N	ũ	ī	7	20	70	30	7	20	.06	Ĺ	N	н-3
195	N	L	L	7	30	70	30	10	20	.09	ĩ	N	н-3
196 197	N N	L L	L	7 7	30 20	70 70	30 N	7 10	20 20	.05	L L	N N	H-3
108	N	Ĺ	ĭ	7	30	70	20	10	20	.02	Ĺ	N N	н-3 н-3
199	N	Ĺ	ũ	7	30	70	20	10	20	.03	ĭ	N	н-3
200	N	L	L	7	30	70	20	10	20	.06	L	N	н-3
201 202	N N	L N	L L	5 7	30 30	70 70	20 30	7 10	15 20	.04 .06	N N	N N	H-3 G-4
203	N	ï	ī	7	30	70	30	7	20	.07	N	N	G-4
204	N	L	L	7	30	70	30	7	20	.08	N	N	G-4
205	N	L	L	7	30	70	30	7	20	.06	L	N	G-4
206 207	N N	l L	15 N	30 20	50 30	200 200	50 30	30 30	50 50	.08 .06	L	N N	G-3 G-3
212	N	ī	10	20	50	200	50	20	30	.05	Ĺ	N	F-4
213	N	1.5	10	30	20	200	50	30	20	.05	Ē	N	F-4
41)		L	L	30	30	200	30	20	30	.04	L	N	J-5

^{7/} Ag detected but less than 0.5 ppm

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO

			Semiqu	antita analys	itive spector (ppm)	pectrogra	aphic			Chem	ical analy (ppm)	ses 2j	Мар
Sample	Bi (10)	Ве (1)	Nb (10)	Y (5)	Cu (2)	Zr (10)	La (20)	Sc (5)	Co (5)	Hg (.02)	As (10)	Au (.02)	Coordinate (plate 2)
					i	Stream s	ediment	<u>s</u> Con t	inued				
Z216 Z217 Z218 Z220 Z221	N N N N	2 5 5 1.5 2	10 30 50 20 20	70 50 70 50 50	30 30 70 30 30	500 300 500 300 200	50 30 70 50 30	20 15 30 20 15	20 20 50 30 20	.08 .07 .06 .05	i. L L	N N N N	J-5 1-5 1-5 1-5
7222 7223 7224 7225 7226	N N N N	5 1.5 1.5 3	100 L 20 L 20	100 20 50 15 50	20 30 50 30 20	700 150 200 150 200	50 30 30 20 30	15 20 30 20 10	20 20 30 20 15	.08 .05 .05 .03 .04	լ Լ Լ	N N N N	1-5 1-5 1-5 1-5
Z227 Z228 Z229 Z239 Z231	N N N N	1.5 1.5 5 1.5	N N 30 L 10	20 30 70 30 50	30 30 30 70 30	200 150 300 200 200	30 50 50 50 30	20 15 10 20 20	20 20 30 70 30	.05 .04 .06 .09	L L L 10	N N N N	1-5 1-5 1-5 1-4 1-4
Z232 Z233 Z234 Z235 Z236	N N N N	L 1.5 7 1.5 L	L 70 15 L	15 20 100 30 20	50 30 20 30 30	150 200 700 200 200	30 50 50 70 30	30 15 7 30 30	50 30 20 30 30	.09 .09 .08 .16 .06	L L L	N N N N	1-4 1-4 1-3 1-3 H-8
Z237 Z244 Z245 Z246 Z247	N N N N	1.5 1.5 2 3 L	10 15 10 15 L	30 30 50 70 20	50 20 15 15 30	200 200 150 300 200	50 30 20 50 30	30 15 7 7 30	50 20 15 15 30	.07 .05 .20 .20	L L L	N N N N	н-8 н-8 н-8 н-9 н-9
Z248 Z249 Z250 Z251 Z252	N N N N	L 1.5 L 1.5 L	L 10 L 10 L	20 30 15 30 20	30 20 30 20 30	150 200 100 200 150	20 30 L 30 20	30 20 30 15 30	30 20 30 20 30	.06 .09 .05 .08	L L L	N N N N	н-9 н-9 н-9 н-9
Z253 Z254 Z255 Z256 Z258	N N N N	N L I N	L L L N	15 15 20 30 15	30 30 30 30 30	100 100 150 150 70	N L 20 30 L	15 15 20 15 10	30 20 30 15	.05 .04 .06 .05	L L L L(.1)	N N N N	H-9 H-9 G-9 G-9 E-12
Z259 Z260 Z261 Z262 Z263	N N N N	N N N 1	N N 10 N	10 15 10 15 15	30 30 30 30 20	50 70 50 70 70	N N N N	10 7 7 5 5	20 20 20 15 10	.06 .04 .20 .05	L(.1) L(.1) L(.1) L(.1) L(.1)	N N N N	E-12 E-12 E-12 E-12 E-12
2264 2265 2266 2267 2268	N N N	N N N N	N N N	15 15 15 15	30 30 20 30 30	70 70 70 70 70	N N N N	7 10 7 7 7	20 30 20 20 20	.06 .06 .08 .05	L(.1) L(.1) L(.1) L(.1) L(.1)	N N N N	E-12 E-11 E-12 F-11 F-12
2269 2271 2272 2273 2274	N N N N	N 1 1.5 1 L	N 15 15 15	10 30 30 30 30	30 700 30 30 30	70 150 150 200 150	N 20 20 30 30	7 20 20 20 20	15 20 20 20 20 30	.05 .19 .09 .06	L(.1) L L L	N N N N	F-12 F-11 F-11 F-11
2276 2277 2278 2279 2280	N N N N	L 5 3 7 1	20 30 20 30 30	50 70 30 30 70	30 20 30 30 50	100 200 200 300 300	20 50 50 50 70	15 10 15 10	20 15 15 15 20	.05 .03 .05 .08	L L L L	N N N N	1-8 J-8 J-8 J-8

^{10/} Ag detected but less than 0.5 ppm.

E80 studies related to wilderness—primitive areas

Table 4.—Analyses of stream-sediment samples from the Blue Range primitive

				antita analys		ectrogra tinued	aphic			Chemi	cal analy	ses 2j	Мар
amp1e	Bi (10)	Be (1)	Nb (10)	Y (5)	Cu (2)	Zr (10)	La (20)	Sc (5)	Co (5)	Hg (.02)	As (10)	Au (.02)	Coordinate (plate 2)
_						Stream :	sediment	<u>s</u> Con	tinued				
Z28 I	N	2	30	70	50	300	50	15	15	.05	L	N	J-8
Z282 Z283	N N	3 2	30 30	70 70	50 30	200 300	50 50	15 15	20 20	.05	L	N	J-8 J-8
z 284	N	2	30	50	30	300	50	15	20	.04	L	N	J-8
2285	N	L	30	50	30	. 500	50	20	50	.04	L	N	J - 8
2286	N	3	20	50	70	300	50	10	15	.04	Ł	N	K-8
2287 2288	N N	3 5	20 20	50 50	70 100	300 300	50 50	10 10	15 20	.04	L	N N	κ-8 I-7
289	N	5	20	50	100	300	50	10	15	.06	Ĺ	N	1-7
2290	N	7	30	30	20	300	50	10	15	.08	Ĺ	N	1-7
2291	N	3	20	30	30	300	50	15	15	.04	L	N	1-7
Z292 Z293	N N	3 3	20 20	30 30	30 50	300 300	50 50	10 15	15 20	.07 .05	L L	N N	1-7 1-7
294	N	1.5	20	30	30	200	20	15	20	.09	Ĺ	N	1-8
295	N	1.5	20	50	30	300	30	20	30	.09	L	N	1-7
2296	N	1.5	15	20	30	200	20	15	20		L	N	1-7
Z297 Z298	N N	1.5	15 10	30 30	30 30	300 200	30 30	15 20	20 30	.07 .04	L L	N N	1 - 7 1 - 8
2299	N	Ĺ	15	30	50	300	30	30	30	.05	. Ľ	N	1-8
2300	N	1.5	L	30	50	200	30	30	30	.08	L	N	н-8
2301	N	!	L	15	30	150	20	15	20	.09	L	N	н-8
Z302 Z303	N N	L L	L 10	15 20	30 20	150 200	20 20	20 20	30 30	.03	L L	N N	H-7 I-7
304	N	1.5	15	30	30	300	30	20	30	.05	ĩ	N	1-7
305	N	1.5	20	30	20	300	20	10	15	.06	L	N	1-8
2306 2307	N N	1.5	10	30 30	15 20	200 200	20 20	15 15	20 20	.03	Ļ	N	ı -8 ı -8
2308	N N	1.5	10. L	30	30	200	30	20	20	.07	L L	N N	1-8
Z311	N	2	15	20	30	150	20	L	30	.12	L	N	H-7
2312	N	L	15	30	50	300	20	L	30	.08	L	N	L-8
2313 2314	N N	1.5	15 20	20 20	30 30	300 200	50 50	L	30 20	.09 .04	L	N N	к-8 к-8
2315	N	Ĺ	20	15	50	200	20	30	50	.05	Ĺ	N	K-8
2316 2317	N N	1.5	20 15	20 70 ·	20 20	200 300	20	15 20	15	.06	L	N	ĸ-8
							70		30	.07	L	N	к-8
z318 z319	N N	1.5	L 10	30 30	20 20	200 300	70 50	30 20	30 20	.06 .04	L L	N N	к-8 к-8
2320	N	1.5	L	30	15	500	30	15	20	.03	Ĺ	N	ĸ-8
2322 2323	N N	L 1	15 10	50 30	30 30	500 200	50 30	30 30	50 50	.05 .04	L	N N	к-8 к-8
				-					•				
2324 2325	N N	l L	L	20 20	30 50	100 200	30 30	15 30	30 50	.04	L L	N N	L-8 L-8
326	N	1.5	L	30	30	200	50	20	20	.05	L	N	ĸ-8
2327 2328	N N	L 3	L 10	30 70	20 20	200 500	30 70	20 30	20 30	.06 .05	L	N N	к-8 к-8
				, -				•		.0,			
:329 :330	N	1	10 10	30 50	15 20	200 300	30 30	10 15	15 20	.05	Ĺ	N N	к-8 к <i>-</i> 8
2331	N	1	L	30	10	150	30	15	15	.05	L	N	κ - 8
332 333	N N	1	10 L	20 30	20 20	200 200	50 30	20 15	20 15	.22	L L	N N(.04)	к-8 к-8
	N		L	30	15	200	30	20	30				
:334 :335	N	1.5 1	10	50 50	20	200	30 30	20	30 15	.03	L L	N N	K-7 K-7
2336	N	1.5	10	20	20	150	50	20	20	-05	L	N	K-7
337 338	N N	1	L 10	30 30	15 20	150 200	20 30	10 20	15 20	.08 .06	L L	N N	к-7 к-6
339	N	L	L	30	15	200	20	15	15	.05	L	N	к-6
340	N	1	10	50	20	300	30	20	20	.07	Ĺ	N	K-6
341 342	N N	1 1.5	10 L	30 30	20 50	200 300	30 70	15 30	30 50	.07 .09	L	N N	к-6 к-6
343	N	2	10	20	50 50	200	30	30	70	.09	L	N N	к-6 L-6

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO

area, Greenlee County, Ariz., and Catron County, N. Mex.-Continued

			Semiqu	antit analy	ative s sesCo (ppm)	pectrog ntinued	raphic			Chem	ical analy (ppm)	rses <u>2</u> /	Мар
Sample	Bi (10)	Be (1)	Nb (10)	Y (5)	Cu (2)	Zr (10)	La (20)	\$c (5)	Co (5)	Hg (.02)	As (10)	Au (.02)	Coordinate (plate 2)
						Stream :	sediment	sCon	inued				
z344 z345 z348 z349 z350	N N N N	2 L L L	15 15 L L	50 20 20 20 20	20 50 50 50 20	300 150 150 150 150	70 L(50) L(50) L(50) L(50)	20 15 15 15	30 15 20 20 15	.06 .05 .06 .06	L L L	N N N N	L-6 L-6 L-6 L-7
2351 2352 2353 2354 2355	N N N N	և և և	L L L	30 20 30 30 20	20 20 50 20 50	150 150 150 150 150	L(50) L(50) L(50) L(50) L(50)	10 15 15	10 15 20 20 20	.05 .04 .06	ն (((N N .02 .02 N	L-7 L-7 L-7 H-7 H-7
z356 z357 z358 z359 z360	N N N N	L L L	L L L	15 15 15 15	50 50 20 20 20	150 150 150 150 150	L(50) L(50) L(50) L(50) L(50)	15 15 20 15	20 20 15 20 20	.06 .05 .05 .06	և Լ Լ Լ	N N N	H-6 H-6 H-7 H-7
z361 z362 z363 z364 z365	N N N N	L L L	L L L	15 50 50 50	50 50 20 50 20	150 150 150 150 150	L(50) L(50) L(50) L(50) L(50)	15 30 15	20 15 20 15 15	.03 .06 .05 .04	և Լ Լ	N N N N	G-6 K-6 K-6 K-7
Z366 Z367 Z368 Z369 Z370	N N N N	L 1 5	L L L 15 L	30 20 30 50 15	20 20 20 20 20	150 150 200 1,000 300	L(50) L(50) L(50) L(50) L(50)	10 10 10 5	10 20 15 10 5	.05 .06 .05 .09	և և և և	N N N N	K-7 K-7 K-7 K-7
Z371 Z372 Z373 Z374 Z375	N N N N	1 1 1 L 2	L .	15 10 20 30	20 20 20 20 20	300 200 200 200 300	L(50) L(50) L(50) L(50) L(50)	10 20 20 15 20	20 15 20 15 20	.05 .05 .05 .04	L L L L	N N N N	J-7 J-7 J-6 J-7 J-7
z376 z377 z378 z379 z380	N N N N	2 2 1 2 1	15 L 15 L	30 70 30 70 20	20 20 20 20 20 20	300 500 300 300 200	L(50) L(50) L(50) L(50) L(50)	20 20 15 30 20	20 15 20 50 20	.05 .08 .04 .03	L L L	N N N N	J-7 J-7 1-7 1-7
z 381 z 382 z 383 z 384 z 385	N N N N	N 1 2 2	L L L	15 15 30 30 30	20 20 20 20 20 20	500 200 300 300 300	L(50) L(50) L(50) L(50) L(50)	10 20 10 10	20 20 20 20 20	.03 .04 .04 .06	L L L	N N N N	I -7 K-7 K-7 J-7 J-7
z 386 z 387 z 388 z 389 z 390	N N N	2 2 1 1	L L L	30 50 20 15	20 20 20 20 20 20	300 500 300 150	L(50) L(50) L(50) L(50) L(50)	15 10 10 20 10	15 15 20 20 20	.06 .03 .08 .05 .06	L L L	N N N N	J-7 J-7 K-6 K-5 K-5
z 391 z 392 z 393 z 395 z 396	N N N N	1 N L N	L L L	10 10 10 15	20 20 20 30 70	200 200 200 150 150	L(50) L(50) L(50) 30 20	10 10 10 10	20 20 20 15 15	.04 .02 .06 .07	L L L 10	N N N N	K-5 K-5 K-5 K-5 K-5
2397 2398 2399 2400 2402	N N N N	L L L L	L L L	20 20 20 20 20 30	50 50 50 70 30	100 150 150 100 200	20 30 30 L 50	15 15 15 15	15 15 15 20 10	.08 .07 .05 .04 .03	L L L	N N N N	K-5 K-5 K-4 K-4
2403 2404 2405 2406 2408	N N N N	L N L	L L 10 10	15 15 15 20 15	70 50 30 50 20	150 150 100 150 150	20 20 30 30 20	20 10 15 20 15	20 15 15 20 15	.02 .03 .05 .03	լ Լ Լ	N N N N	K-4 K-4 K-4 K-4 L-4

E82 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Table 4.—Analyses of stream-sediment samples from the Blue Range primitive

			Semiqu	antit analy	ative sp sesCon (ppm)	pectrogra ntinued	aphic			Chemi	cal anal	yses 2 <i>j</i>	Мар
Sample	Bi (10)	Be (1)	Nb (10)	Y (5)	Cu (2)	Žr (10)	La (20)	Sc (5)	Co (5)	Hg (.02)	As (10)	Au (.02)	Coordinate (plate 2)
						Stream s	ediment:	sCont	inued				
Z409 Z410 Z411 Z412 Z413	N N N N	N L L L	L L 10	20 20 30 15 20	20 30 100 30 50	150 150 150 200	20 30 50 50	15 10 30 10	15 10 20 10 20	.06 .05 .03 .04	L L L	N N(.04) N N N	L-4 L-5 L-5 L-5 L-5
Z414 Z415 Z416 Z426 Z427	N N N N	N L N I L	L L L 20 L	20 15 20 20	30 50 70 50	150 100 150 300	50 30 30 50 30	15 15 20 15	15 20 30 50	.05 .05 .06 L	- L L L	N N N N	L-5 L-5 L-5 K-3 K-3
Z428 Z429 Z430 Z431 Z432	N N N N	L N N	15 15 L 20 L	15 15 15 15	30 30 50 30 30	200 150 70 300 150	20 30 30 20 30	10 15 30 20	20 50 100 100 20	.04 .03 .10 .21	10 L L L	N N N N	K-3 K-3 K-3 K-4 K-4
Z433 Z434 Z435 Z436 Z437	N N N N	N 1.5 L N L	L 10 10 10	15 30 20 20 15	70 50 70 70 50	100 150 150 150 150	30 50 20 20 30	15 15 15 15	30 20 20 30 20	.02 .06 .04 .03	L L L	N N N N	J-4 J-4 J-4 J-4 K-5
Z438 Z439 Z440 Z441 Z442	N N N	L 1.5 N N	L 10 L 10 L	20 20 30 10	50 70 50 70 100	200 150 200 100 100	30 30 50 20 30	10 10 10 15	15 15 10 15 20	.03 .02 .03 .06	L L L	N N N N	K-5 K-5 K-5 K-4 H-5
Z443 Z444 Z445 Z446 Z447	N N N N	N L L L	L L L 10	10 20 15 15	30 70 100 30 100	100 200 150 150 150	L 50 20 30 30	7 15 10 10	15 50 20 15 20	.13 .08 .08 .18	L L L	N N N N	H - 4 H - 4 H - 4 H - 4 H - 4
z448 z451 z452 z453 z454	N N N N	L N L L	L L L	20 10 20 20 30	70 30 100 50 70	100 70 150 200 200	50 L 50 30	15 5 20 20 20	20 15 50 50 50	.08 .03 .15 .10	L L L	N N N N	H - 4 H - 4 H - 4 H - 4 H - 4
z455 z456 z457 z458 z459	N N N	L L L	10 10 10 10	20 20 20 20 15	70 100 70 50 70	200 150 200 200 150	50 20 30 20 L	15 20 10 15	30 20 30 30 30	.07 .09 .04 .07	L L L	N N N N	H-4 H-4 H-4 H-3
Z461 Z462 Z463 Z464 Z465	N N N N	L 1 L L	10 10 10 10	15 30 20 20 20	70 50 100 50 100	200 200 200 150 200	50 70 70 50 50	15 15 20 20 15	30 20 50 20 50	.08 .04 .06 .08	L L L	N N N N	F-4 G-4 G-4 G-4
z466 z467 z468 z469 z470	N N N N	L N L L	10 L L 10 L	15 20 15 15	50 30 30 50 70	200 150 150 150 150	50 30 20 20 20	10 15 10 10	30 50 15 15 30	.05 .05 .06 .09	L L L	N · N N N	G-4 F-4 F-4 F-4
2471 2472 2473 2475 2477	N L N N	L N L	L 10 L L	15 20 20 15 15	50 70 70 70 10	150 200 150 150 150	30 50 30 20 30	10 15 15 10	15 30 50 15	.05 .08 .08 .03	L L L	N N N N	F-4 F-4 F-3 H-5
Z491 Z492 Z500 Z501 Z502	N N N N	L 1.5 1 L	L 10 10 15 20	10 15 30 50 20	10 15 10 7 20	100 100 150 150 150	L L 20 20	7 10 7 7 15	10 10 15 15	.70 .07 .05 .05	N L N L	N N N N(.04)	H-5 G-5 E-12 E-12 E-12

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO area, Greenlee County, Ariz., and Catron County, N. Mex.—Continued

			Semiqu	antiti analy:	ative sp sesCor (ppm)	pectrogra	aphic			Chemi	ical anal	yses 2/	Мар
Sample	Bi (10)	Be (1)	Nb (10)	Y (5)	Cu (2)	Zr (10)	La (20)	Sc (5)	Co (5)	Hg (.02)	As (10)	Au (.02)	Coordinate (plate 2)
					9	tream s	ediment	sCont	inued		_		
Z503 Z504 Z505 Z506 Z507	N N N	L L L L	10 15 10 L 10	15 30 20 15 20	15 7 15 15	100 150 200 150 150	L N N	10 7 15 10 7	10 20 30 20 50	.07 .05 .04 .04	L N 10 N L	N N N N	E-12 E-12 E-12 E-12 E-12
Z508 Z509 Z510 Z511 Z512	N N N N	L L N L	L 10 L L 10	15 15 10 10 15	10 10 5 3 5	100 100 70 70 100	L N L N	15 10 7 7 10	7 10 7 7 7	.03 .03 .04 .03	N N N N	N N N(.03) N N	E-12 D-12 D-12 C-14 C-14
Z513 Z515 Z516 Z517 Z518	N L L N	1 L L L	10 10 L L	20 50 15 15	5 15 5 5 7	100 150 100 100 100	L 20 L N	7 10 5 10 7	5 10 7 7 7	.03 .02 .02 .03 .03	N N N N	N N N N	C-14 C-14 G-12 G-12 F-12
Z519 Z520 Z521 Z522 Z523	N N N N	L 1 1 L L	L 15 15 10	15 20 20 15 20	10 10 7 20 7	100 150 150 150 100	N 20 20 N N	15 10 7 20 7	10 10 7 30 10	.03 .04 .03 .01	L 10 L N N	N N N N	F-12 H-11 H-11 H-12 H-12
Z524 Z525 Z526 Z527 Z528	N N N	L L L	L L 10 15	15 20 20 15 30	3 3 5 5	100 100 150 100 200	N N N N 30	7 7 7 10 10	7 7 10 10 20	<.01 .02 .02 .05 <.01	L 10 L L 10	N N N N	H-12 H-12 1-12 1-12 K-10
Z529 Z531 Z537 Z541 Z542	N N N N	L L L	10 10 L L	15 15 10 15 15	7 7 15 20 20	100 100 100 150 150	20 20 L 20 20	7 10 10 15	10 20 20 20 20	.03 .02 .03 .02	N 10 L N N	N N(.04) N N N	L-10 K-11 L-6 L-7 L-7
Z543 Z544 Z545 Z546 Z547	N N N N	L L L L	10 10 L	15 15 15 15 20	20 10 15 15 20	150 150 150 150 150	20 L L 30 20	15 20 15 20 20	20 20 7 20 20	.02 .03 .02 .02	L N 10 N	N N N N(.04) N	L-7 L-6 L-6 L-6 L-6
z548 z549 z555 z556 z578	N N N N	 	L 10 L 10	15 15 15 15 20	20 20 15 15	150 150 150 150 150	20 20 20 20 30	10 15 15 20 10	10 30 20 20 10	.02 .02 .02 .03	20 N N N	N N N N(.04) N	L-6 L-6 L-8 L-8 J-5
z579 z580 z581 z680 z681	N N N L	1.5 L L N	10 10 10 L L	20 15 15 20 15	15 10 15 50 50	.200 150 150 150 150	30 N N 30 L	10 15 15 15	10 10 10 20 10	.03 .02 .02 .02 .04	N N L L	N N N .02	J-4 J-4 J-5 M-8 M-8
z686 z687 z688 z689 z690	և Լ Լ	N N N I	10 L L 10 L	15 30 20 20 20	50 70 70 70 70	150 150 150 150 150	20 20 20 50 30	15 15 15 15	20 20 15 15	.03 .08 .04 .10	L L L N	N .02 .02 .02 N	M-7 M-7 M-7 M-7 M-7
z691 z692 z694 z696 z697	L L L L	N N I N	10 L 15 10	20 20 30 20 20	70 70 100 70 70	150 150 200 200 150	30 30 70 20 30	15 15 15 20 15	30 15 10 10	.06 .03 .06 .06	N N N N	N .03 .02 N	M-7 M-6 J-5 J-5 J-5
Z698 Z699 A001 A003 A005	L N N	N N I L	L 10 10 L L	20 30 50 30 20	70 70 30 20 30	150 200 200 150 300	30 30 50 N	20 20 20 15 20	10 10 30 20 30	.05 .18 .26 .12	N N L L	N N L L	H-8 H-8 J-6 J-6 J-6

^{12/} In detected but less than 200 ppm.

E84 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Table 4.—Analyses of stream-sediment samples from the Blue Range primitive

0006 0009 010 011 012	Bi (10) N N N N N N	Be (1)	Nb (10)	Y (5) 50 15 20	30	Zr (10) tream se	La (20)	Sc (5)	Co (5)	Hg (.02)	(ppm) As (10)	Au (.02)	Map Coordinate (plate 2)
006 009 010 011 012	N N N N N	L L L	L L L	15	30	tream se	diments						
.009 .010 .011 .012 .013	N N N N N	L L L	L L L	15	30			Cont	inued				
.010 .011 .012 .013	N N N N	L	L L	15		300	20	20	30	.40	L	L	J-6
011 012 013 016	N N N N	L	L	20	20	150	20	15	20	.06	L	N	K-5
012 013 016	N N N	L			20	150	L	15	20	.21	L	L	K-6
013 016	N N		L	30 20	30 20	200 200	N 20	20 15	30 15	.04 .03	L L	L L	к-6 к-5
016	N N		10	20	20	150			15	25		u/ 1\	
	N	ũ	10 L	20 15	30 20	150 100	L .	15 10	15 15	.35 .06	L L	N(.1) N	к-6 к-5
		Ĺ	10	30	15	200	N	15.	20	.09	Ĺ	Ë	Ĺ-6
019		ũ	Ĺ	30	15	150	N	15	20	.12	ī	Ē	Ī-6
026	N	Ĺ	Ĺ	20	20	150	50	20	20	.10	L	L	H-5
028	N	L	L	15	20	100	N	10	15	.11	L	L	н-5
031	N	L	L	20	30	150	N	20	20	.11	L	L	H-5
033	N	L	L	20	20	200	20	20	20	.03	L	L	G-5
035	N	L	L	20	20	150	N	20	20	.06		L	G-5
036	N	L	L	20	30	150	N	20	20	.40	L	L	F - 5
038	N	L	L	30	20	150	20	15	20	.17	. L	L	E-5
040	N	L	L	20	20	150	N	15	15	.08	L	L	E-6
041	N	3	15	50	. 7	200	N	. 5	15	.10	L	L	F-5
043 045	N N	L L	L L	20 20	15 20	100 150	N 20	10 30	20 20	.13	L L	L L	E-6 E-6
047 049	N N	L N	L	20 15	20 20	150 100	N N	15 20	15 20	.06 .12	L L	L	E-7
051	N.	2	10	30	30	150	20	30	20	.07	i	Ĺ	D-7 D-7
053	N	2	10	70	20	200	N	30	20	.07	ũ	ī	D-8
055	N	1.5	10	50	20	150	N	20	20	.10	Ĺ	Ĺ	D-8
057	N	1	L	15	30	100	N	50	30	.06	L	L	1-2
058	N	1 .	L	15	30	150	N	50	30	.14	L	L	1-1
059	N	L	L	10	30	100	N	20	30	.10	L	L	1-1
062 063	N N	15 N	10 L	30 10	20 20	150 150	N N	30 20	20 50	.08 .26	L L	L	J-2 F-2
064	N	L	L	. 10	30	150	20	30	30	.30	L	L	F-2
065 067 ·	N ·	N 1	L 10	10 20	20 20	100 150	20 N	20 50	20 30	.80 .12	L L	L	F-3
068 -	N	i	15	20	20	150	50	50	20	.10	. [L L	F-3 F-3
69	N	1.5	10	15	20	150	20	50	30	:14	Ĺ	Ĺ	F-3
070	N	L	L	15	20	100	N	30	30	.04	L	L	F-3
71	N	Ĺ	ī	10	15	150	20	20	15	.46	ī	ī	F-3
072	N	L	10	15	20	200	N	50	30	.35	Ĺ	Ĺ	F-2
73	N	N	L	15	20	150	20	50	30	1.20	L	L	F-2
074	N	N	L	10	20	100	N	30	30	.14	L	L	K-1
75	L	1	10	20	50	200	N	30	50,	.06	L	L	K-1
76	L	1	10	20	50	200	N	20	30	.10	Ļ	N	K-1
)77 178	L N	L L	L	15 15	50	150 150	N	20	30	.12	Ļ	. N	V - 2
078 080	L	Ĺ	L	20	30 30	150	N N	20 20	30 20	.12 .06	L	N	K-2 K-2
181	L	N	L	15	30	150	N	15	15	.12	L.	Ł	K-2
083										.34	Ĺ	Ň	K-2
084	Ł	L	L	20	50	200	N	30	50	. 14	ī	ï	K-2
085 086	N N	N N	N N	10 10	30 30	70 70	N 20	7	15 15	.04	L L	N N	в-5 А-6
								•	-				
087 088	N N	N N	N N	5 15	20 20	30 70	N N	L 5	L 10	.28 .06	L L	N(.1) N	B-5 B-5
089	N	N	N	10	30	70	N	7	15	.01	ī	N	A-6
090 091	N N	N N	N N	15 15	30 50	70 70	N N	7 7	20 50	.03	L L	N N	A-7 A-7

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO

			Semi qu		ative sp sesCor (ppm)	ectrogr itinued	aphic			Chem	ical analy	rses 21	Мар
Samp1e	Bi (10)	Be (1)	Nb (10)	Y (5)	Cu (2)	Zr (10)	La (20)	Sc (5)	Co (5)	Hg (.02)	As (10)	Au (,02)	Coordinate (plate 2)
					s	tream s	ediments	Cont					
A092 A093 A094 A095 A096	N N N N	N N N N	N N N N	15 10 15 10	30 30 30 30 30	100 70 70 70 70	N N 20 N	7 5 10 7 7	30 20 30 15	.02 .03 .06 .03	L L L	N N N N	A-7 B-5 C-5 C-5 D-5
A097 A098 A099 A100 A101	N N N N	N N N N	N N N N	10 15 15 15	30 30 30 30 30	70 70 70 70 70	N N N N	7 7 7 7	10 20 30 20 20	.01 .03 .04 .03	L L L	N N N N	0-5 0-5 0-5 0-5 0-5
A102 A103 A106 A107 A108	N N N N	N N N N	N L N N L	10 15 10 10	50 50 30 30 70	70 100 70 70 100	L N N 20	10 10 7 5	30 70 10 7 30	.05 .03 .04	L L L L	N N N N	C-4 C-4 C-3 C-3 C-3
A109 A110 A111 A112 A113	N N N N	L L L	L N N L	15 15 15 15	30 30 50 30 30	70 70 70 100 100	30 20 20 L L	10 15 15 15	15 30 30 20 20	.01 .03 .03 .12 .04	L L L	N N N N(.1)	C-3 C-3 C-3 D-4 D-4
A114 A115 A117 A118 A119	N N N N	L 1 L	L N N L	15 10 15 15	30 30 70 30 30	70 70 70 100 100	և և և 20	7 10 15 15	15 20 20 20 20	.07 .04 .04 .03	լ Լ Լ Լ	N N N N	D-4 D-4 D-4 D-5 E-5
A120 A121 A122 A123 A124	N N N N	L L L	L L L 10	15 10 15 15	30 30 30 50 30	150 150 100 100 150	20 L L 20 L	10 10 10 10	20 20 10 30 20	.06 .04 .02 .07 .08	լ Լ Լ Լ	N N N N	E-5 E-5 E-5 F-5 E-4
A125 A126 A127 A128 A129	N N N N	i i L i	L L 10 10	10 15 15 15 20	30 30 30 30 30	100 70 100 100 150	L L 20 L L	7 15 10 15 15	7 10 15 20 30	.20 .07 .06 .03	L L L L	N N N N	E-4 E-4 E-4 B-6 B-6
A130 A131 A132 A133 A134	N N N N	L L L	10 L L L	15 15 15 15	30 30 30 30 30	100 70 70 100 100	L N N L	15 10 10 10	20 20 20 20 20	.03 .02 .01 .03	L L L L	N N N N	B-6 B-6 B-6 C-6 C-7
A137 A138 A139 A140 A141	N N N N	L L L L	L L L	15 10 15 15	30 30 30 30 30	100 100 100 100 150	L N L 20 L	10 10 7 10 7	20 20 20 20 20	.02 .03 .02 .03	լ Լ Լ Լ	N N N N	B-6 B-6 B-6 B-6
A142 A143 A144 A145 A146	N N N N	L N N	L N N	15 15 10 15	30 50 30 30 30	100 150 70 70 70	20 L N N	10 15 7 7	30 50 30 20 30	.01 .02 .02 .03 .03	L L L L	N N N N	B-6 B-6 B-7 C-6
A147 A148 A149 A151 A152	N N N N	N N N	N N N N	15 15 7 15 30	30 30 50 30 30	70 70 70 70 70 150	L N N N	7 7 10 10	30 30 200 20 70	.03 .04 .05 .03	L L L L	N N N N	C-6 C-6 D-6 C-6 A-7
A153 A154 A155 A156 A157	N N N N	N N N N	N L N L	10 10 10 50 15	30 30 30 30 30	70 70 70 300 100	N N N N	7 7 7 10 7	20 20 20 50 20	.03 .03 .03 .02	L L L L	N N N N	8-7 8-7 8-7 C-7 C-7

Table 4.—Analyses of stream-sediment samples from the Blue Range primitive

			Semiqu			pectrogr ntinued	aphic			Chemi	cal analy (ppm)	ses <u>2</u> /	Мар
Sample	Bi (10)	Be (1)	Nb (10)	Y (5)	Cu (2)	Zr (10)	La (20)	Sc (5)	Co (5)	Hg (.02)	As (10)	Au (.02)	Coordinate (plate 2)
						tream se	diments	Cont	inued				
A158 A159 A160 A161 A162	N N N N	L L L	10 10 N N	15 15 10 15 7	5 5 20 30 30	100 100 70 70 70	N L L L	10 15 5 7 7	10 10 10 15 7	0.04 .02 .05 .05	10 N L L	0.02 N N N	C-8 C-8 D-10 D-10 D-10
A164 A164 A165 A166 A167	N N N N	L N N N	N N N	10 15 10 10	30 30 30 30 50	70 70 70 70 70	L N N N	7 5 7 5 7	10 20 15 30 20	L(.01) .03 .01 .02 .03	L L L L	N N N N	D-11 D-11 E-11 E-11
A168 A169 A170 A171 A172	N N N N	N N N N	N N N N	10 15 15 10 15	20 30 50 30 50	70 100 70 70 100	N N N N	5 7 7 7 7	10 20 20 30 30	.03 .05 .05 .05	և Լ Լ Լ	N N N N	D-10 E-10 E-10 E-10 E-10
A173 A174 A175 A176 A177	N N N N	N N N N	N N N N	15 15 15 15	50 30 50 30 30	100 70 100 100 70	N N N N	7 7 10 7 10	20 30 30 30 30	.05 .02 .07 .06	L L L	N N N N	E-11 E-11 E-11 E-11
A178 A179 A180 A181 A182	N N N N	N 1 1.5 1.5	N L L N	15 50 30 20 15	30 30 30 30 30	70 70 150 70 70	N L 20 20 L	7 7 7 7	20 15 15 15	.07 .05 .09 .09	L L L	N N N	E-11 D-10 D-10 D-9
A183 A184 A185 A186 A187	N N N N	1 L L N L	L L N N	15 15 30 7 10	30 30 30 30 50	100 70 300 50 70	N L N N	10 7 15 7 7	30 30 50 30 20	.06 .04 .08 .08	և և և և	N N N N	D-9 D-9 D-9 F-9
A188 A189 A190 A191 A193	N N N N	1 1 2 1.5 N	L L L	15 15 15 15	30 70 30 70 50	70 70 70 70 70	20 L 20 L N	7 7 7 7	20 30 20 20 50	.08 .06 .07 .06 .06	և և և և	N N N .02	E-9 E-9 E-9 E-9
A194 A195 A196 A198 A199	N N N N	L N L 1.5	N N 15	15 15 10 20 30	50 30 50 30 30	70 70 70 100 200	N N SO 30	7 7 10 20 20	30 30 30 50 50	.08 .06 .07 .07	լ Լ Լ Լ	.02 .02 N N	F-8 F-8 E-8 E-7
A200 A201 A202 A203 A204	N N N N	2 3 1.5 1.5	15 15 20 15 15	20 20 30 30 30	20 30 20 30 30	100 150 150 200 150	30 30 30 30 30	20 20 20 15 15	30 30 50 50 50	.06 .08 .04 .09	և և և և	N N N .02 N	D-7 D-8 D-8 D-8 D-8
A205 A206 A207 A208 A209	N N N N	1.5 3 1 1	15 20 10 10	30 50 15 15 30	30 50 30 30 30	150 300 200 200 200	30 70 50 30 30	15 15 15 15	50 70 50 50 70	.05 .11 .04 .05	լ Լ Լ	.02 N N .02 N	D-8 F-7 F-7 E-7
A210 A211 A212 A213 A214	N N N N	1 1 1 1	10 15 10 10	30 20 20 20 20	20 30 30 30 20	200 200 200 200 200	50 50 30 30 30	15 15 15 15	50 50 70 70 50	.03 .06 .04 .03	լ Լ Լ Լ	N N N N	E-7 E-6 E-6 E-6 E-6

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO E87

area, Greenlee County, Ariz., and Catron County, N. Mex.—Continued

			Sem i qu		sesCor	ectrogr ntinued	aphic			Chemi	cal analy	ses <u>2</u> /	W
	Bi	Ве	Nb	Y	(ppm) Cu	Zr	La	Sc	Co	Hg	(ppm) As	Au	Map Coordinate
Sample	(10)	(1)	(10)	(5)	(2)	(10)	(20)	(5)	(5)	(.02)	(10)	(.02)	(plate 2)
					9	tream s	ediments	Cont	inued				
A215	N	2	15	20	50	200	30	15	70	.04	L	.02	E-6
A216	N	1.5	15	20	50	200	30	15	50	.02	L	N	A-7
A217	N	1	15	20	30	200	30	15	50	.04	L	N	A-7
A218	N	3	15	20	30	200	30	15	30	.03	L	N	B-7
A219	N	1.5	15	20	30	200	30	15	30	.04	L	N	B-7
A220	N	1.5	15	30	30	200	30	15	50	.03	L	N	D-8
A221	N	1.5	15	20	30	200	20	15	50	.04	L	N	E-8
A222	N	1.5	15	20	30	300	L	15	50	.03	L	N	E-8
A223	N	L	15	15	150	70	30	5	70	.03	Ĺ	N	E-11
A224	N	L	10	20	50	150	30	15	15	.03	Ł	N	c-6
A225	N	N	10	20	50	100	20	10	15	.02	L	N	c-6
A226	N	L	10	20	50	150	20	10	15	.01	L	.02	c-6
A227	N	N	10	20	50	150	20	10	15	.02	Ĺ	N	D-6
A228	N	N	10	15	50	100	20	7	15	.02	L	N	c-6
A229	N	N	10	15	50	150	20	10	70	.02	L	N	C-6
A230	N	L	L	15	70	100	20	7	15	•05	L	N	E-2
A231	N	L	10	20	50	150	50	10	15	.40	L	N	E-3
A232	N	L	10	30	100	200	50	20	70	-07	L	N	E-3
A233	N	L	10	20	5	100	N	15	15	.01	N	N	B-7
A234	N	L	L	15	7	150	70	15	15	.02	L	N	. в-8
A235	N	L	10	20	7	150	N	15	20	.05	N	N	B-7
A238	N	L	L	15	5	200	N	10	7	.04	L	N	D-7
A239	N	L	L	15	7	100	L	15	15	L(.01)	L	N	C-7
A240	N	L	L	15	7	150	N	10	7	.03	N	N	c-6
A241	N	L	L	15	5	100	N	15	10	.03	L	N	C-7
A242	N	L	L	15	5	200	N	15	50	.03	N	N	D - 5
A243	N	L	L	15	7	150	N	10	10	-04	N	N	E-12
A257	L	N	10	20	30	150	30	15	20	.05	N	.08	1-7
A258	Ł	N	L	30	50	200	30	20	30	-02	N	N	1-7

Table 5.—Analyses of pan-concentrate samples from the Blue Range

Numbers in parentheses indicate sensitivity limit of method used. The symbol > indicates that an amount of the element is present below the sensitivity limit; N indicates that the element was I oked J. M. Motooka, Elizabeth Martinez; mercury analyses by W. W. Janes, S. L. Noble; arsensic analyses R. L. Miller, M. S. Rickard, T. A. Roemer, R. B. Tripp]

				Semiquan	titative s	pectro	graphic	analyses	ע				
			cent)						(ppm)				
Sample	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	V (10)	N i (2)	Cr (5)	Ba (10)	Sr (100)	B (10)	РЬ (10)	Mn (10)	Be (1)
					Pan_c	oncent	rates						
Z002	2.0	>20.0	0.5	>1.0	>1,000	300	700	100	N	N	10	2,000	N
Z003	2	>20	• 7	>1	>1,000	300	1,000	100	N	N	Ļ	2,000	N
Z004 Z007	1.5 3	>20 >20	.5 1.5	> >	>1,000 >1,000	150 300	1,000 1,000	100 150	N N	N	L 10	2,000	N
Z010	3.	>20	i	>1	>1,000	500	1,500	300	Ñ	N	10	2,000	N
Z012	5	20	1.5	>1	>1,000	300	1,000	300	N	N	15	2,000	N
Z016 Z017	1	20 20	٠7	>l >l	>1,000 >1,000	150 300	700 700	150 100	N N	N	15 L	1,500 1,500	N N
Z017 Z019	3	>20	٠.7	>1	>1,000	500	700	150	N	N	Ĺ	2,000	N
Z021	2	>20	٠7	>1	>1,000	200	700	300	N	N	10	2,000	N
zo42 3∕ zo43	•7	2 15	1.5	.3 >l	50 300	30	70	700 300	700	L	10	300	L
Z043 Z044	•7 •5	15	٠,7	>1	500	70 70	300 300	150	150 50	N 20	10 L	700 1,000	N N
zo46 <i>3/</i>	1.5	1.5	1	.3	30	50	30	300	300	Ĺ	Ĺ	300	N
Z047	1	7	3	.7	150	70	300	500	700	N	L	1,000	1
zo48	- 7	20	.7	>1	300	100	700	150	70	15	N	1,000	N
Z049 Z052	.7 1.5	10 15	2	.7 >1	150 200	50 100	70 1,500	500 300	300 200	20 15	L	1,000 1,500	. N
Z055	1	7	3	.7	150	100	300	700	500	Ĺ	N	1,000	N
Z057	.7	15	ł	>1	300	100	700	300	100	15	N	1,000	N
Z059 Z061	•7	7 15	2 1	l >l	150 300	70 100	200 700	500 200	300 200	L	N	700	N
Z064	.7 .7	10	1.5	î	200	100	300	700	300	L 10	N 15	1,000	N N
Z066	•5	7	1	1	150	30	200	300	300	N	N	700	N
Z068	.7	20	1	>1	500	150	500	300	150	20	N	1,000	N
Z070 Z270	ا .5	15 20	2 .7	>l >l	300 700	150 70	1,000 300	500 100	300 50	10 20	L	1,000	N
Z534	1.5	10	2 ,	.5	100	100	50	1,000	1,000	20	50	1,000	2
Z539 4/ Z540 4/	. 2	2	1.5	.3	100	70	70	700	700	15	20	1,000	L
z540 ≝	1	2	2	.3	100	100	200	500	500	L	15	700	L
z575 z576	2 1	1.5 2	1.5	•3 •2	70 70	70 30	100 70	500 500	500 700	10 10	15 15	500 1,000	1 L
z584	.7	15	í	.5	200	50	150	1,000	700	15	20	500	N
Z585	1.5	3	2	.5	100	100	150	200	300	10	15	1,000	1
Z594	L	5	.07	•5	100	20	50	2,000	700	20	L	20	N
z665 5/ z666 6/	.7 2	15	1	1 -	300	50	100	200	N	10	70	1,000	2
2667	3	15 10	2	•7 •5	300 300	150 150	200 300	200 150	100 100	10 L	20 10	700 700	L N
z675	1.5	15	2	>1	300	100	150	300	L	ī	10	1,000	N
z676 ∄	1	20	1	>1	300	100	100	300	N	15	L	1,000	N
z677 []] / z693	1.5 2	15 10	1.5	1 .5	300 300	150 150	150 200	500 300	100 200	10 L	L 10	700 1,000	N N
A002	2	20	ĺ	 >l	>1,000	150	700	150	200 N	N	30	2,000	N
A004	2	20	-5	>l	>1,000	200	700	100	N	L	10	1,500	Ν.
A007	2	20	.5	>1	>1,000	200	1,000	150	N	L	L	1,500	N
A008 A014	1.5	20 20	.7 .5	>l >l	>1,000 >1,000	150 150	700 500	150 50	N N	N N	20 L	1,500 1,500	N N
A015	2	20	1	>i	>1,000	150	500	150	N	N	Ĺ	1,500	N
810A	5	15	1.5	>1	>1,000	200	1,000	100	, N	N	L	1,500	N
A027	3	20	•7	1	>1,000	200	1,000	200	N	N	20	1,000	N

 $[\]frac{1}{2}$ Also looked for spectrographically but not found except as noted were: Au(IO), As(200), Sb(100), W(50), Mo(5), Sn(10), Bi(10), Cd(20), and Ag(0.5).

 $[\]underline{3}$ / Mo detected but less than 5 ppm.

^{5/ 15} ppm Sn.

^{7/} Sn detected, but less than 10 ppm.

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO E89

primitive area, Greenlee County, Ariz., and Catron County, N. Mex.

undetermined amount of the element is present above the number shown; L indicates that an undetermined for but not found. Analysts: semiquantitative spectrographic analyses by D. J. Grimes, R. T. Hopkins, Jr., by Gary Dounay, M. J. Horodyski, K. R. Murphy; gold analyses by W. L. Campbell, R. W. Leinz,

			Semiqua ar	antitative nalysesCo	ntinued	graphic			Chem	ical anal	yses <u>2</u> /	
	Nb		Cu	(ppm Žr)	Zn	Sc	Co	Hg	(ppm) As	Au	Map Coordinate
Sample	(10)	(5)	(2)	(10)	(20)	(200)	(5)	(5)	(.02)	(10)	(.02)	(plate 2)
					Pan	concent	rates					
Z002	L	30	150	>1,000	L	300	30	100	0.09	N	N	H-5
Z003	10	30	150	1,000	L	300	30	150	.30	N	N(.1)	H-5
Z004 Z007	10 . N	30 20	150 150	700 300	20 L	200 300	20 20	100	.15	N L	N(.04) N(.2)	H-5 G - 5
Z010	Ë	15	150	300	ĭ	300	20	150	.17	Ĺ	N(.1)	G-5
Z012	L	30	150	200	L	200	30	150	.60	L	N(.2)	F-5
Z016	N	15	150	200	L	500	20	100	.09	L	N(.1)	D-6
Z017 Z019	L	15 50	100 150	150 300	L	200 300	20 30	150 200	2 .11	N N	N(.04) N	E-7 D-7
Z021	10	100	150	>1,000	100	500	30	150	.03	20	N	D-8
Z042	L	15	30	70	30	N	7	20	.1	L(.1)	N	н-5
Z043 Z044	N N	30	30	300	N	N	15	70	.08	L(.1)	N(.04)	H-5
Z044 Z046	N L	30 10	30 30	300 50	N N	N N	15 7	150 20	.04	L(.1) L	N N	н - 5 н-5
Z047	N	20	30	200	N	N	10	30	.04	L(.I)	N	н-6
z048	N	70	30	300	N	N	20	200	L	L(.1)	N	H-5
Z049	N	15	30	200	N	N	10	30	.06	L(.1)	N	н-6
Z052 Z055	N N	15 15	30 30	300 150	N 30	N N	30 15	70 50	.04 L	L(.1)	N N	н-6 1 - 6
Z057	N	20	30	200	N	N	20	150	.06	L(.Ī)	Ň	1-6
Z059	N	15	30	200	20	N	15	30	L	L	N	1-6
Z061	N	20	30	150	N	N	15	150	L	Ļ	N	1-6
Z064 Z066	N N	15 10	30 30	150 100	N N	N N	15 15	70 20	.06 L	L	N N	J-6 J - 6
Z068	N	50	50	300	N	N	30	150	.04	ĩ	N	J-6
2070	N	20	50	300	N	N	15	100	.06	L	N(.04)	J-6
Z270	N	70	30	200	L	N	20	200	.21	L	N	F-12
Z534 Z539	20 10	70 15	50 30	500 150	70 20	N N	15 7	N 20	.09 .02	L N	N N	1-5 L-6
z540	10	15	20	150	N	N	30	30	.01	N	N	L-6
Z575	10	15	10	200	30	N	7	15	.02	L	N	L-6
2576	10	15	20	150	N	. N	10	15	.02	10	N	M-6
Z584 Z585	10 15	15 30	50 20	200 300	30 N	N N	10 20	15 20	.10 .05	.1 L	.05 N	м-6 м-6
z594	Ĺ	20	70	150	20	N	7	N	.65	ī	N	K-2
Z665	100	100	30	>1,000	100	300	15	20	.4	Ł	N(.1)	J-2
z666 z667	30	30	30	700	20	N	30	30	.22	N	N	J-2
Z675	15 30	30 20	30 30	200 200	N L	N N	30 30	30 50	.12 .2	N N	N N	J-3 L-4
z676	30	20	30	300	N	N .	30	70	.4	N	N	L-3
z677	20	15	30	150	N	N	30	50	.26	N	N	K-3
Z693 A002	L	15 30	30 70	70 150	N 30	N 500	30 30	50	.1 .85	N	N	M-6
A002 A004	Ĺ	50 50	100	500	20	300	30	150 150	.28	N 10	L N(.03)	J-6 J-6
A007	ĩ	30	100	300	20	300	20	150	.26	N	N (103)	J-6
A008	N	20	100	150	30	500	20	150	.35	N	N	K-5
A014 A015	L	30 20	100 150	>1,000 200	20 20	300 300	20 30	100	.26 .22	L	.1	K-6
A018	Ĺ	50 50	70	300	30	200	50 50	70 100	.26	10 10	N(.1) N(.4)	K-5 L - 6
	ī	10	150	100	20	200	20	70	.21	10	N(.4)	H-5

^{2/} Sensitivity limit for gold is 0.02 ppm for normal 10 gram sample. Where insufficient sample was available, the sensitivity limit ranges up to 0.1 ppm.

^{4/} Mo detected but less than 5 ppm; Bi detected but less than 10 ppm.

^{6/ 10} ppm Sn.

E90 studies related to wilderness—primitive areas

Table 5.—Analyses of pan-concentrate samples from the Blue Range primitive

		(ре	rcent)						ppm)				
Sample	Mg (.02)	Fe (.05)	Ca (.05)	Ti (.002)	V (10)	Ni (2)	Cr (5)	Ba (10)	\$r (100)	B (10)	РЬ (10)	Mn (10)	Be (1)
					Pan concen	trates	Continu	ed					
A029	2.0	20.0	0.7	>1.0	>1,000	150	500	200	N	N	50	1,500	N
A032	3	20	1	1	>1,000	150	1,000	150	N	N	10	1,000	N
A034	5	15	1	>l	>1,000	150	700	150	N	N	L	1,000	N
A037	3	15	1	>1	>1,000	150	1,000	150	N	N	L	1,000	N
A039	1.5	20	.3	>1	>1,000	100	500	150	N	N	10	1,000	N
A042	2	20	•7	>1	>1,000	100	700	200	N	N	70	1,500	L
A044	3	15	2	1	1,000	200	500	150	N	N	L	1,000	N
A046	3	>20	1	>1	>1,000	500	1,000	150	N	N	L	2,000	N
A050	1.5	>20	.5	>1	>1,000	150	700	100	N	N	L	2,000	N
A052	3	>20	.7	>1	>1,000	500	1,500	100	N	N	L	2,000	N
A054	3	>20	1	>1	>1,000	500	2,000	200	N	N	20	3,000	N
A056	3	20	1.5	>1	>1,000	300	1,000	200	N	N	L	2,000	N

BLUE RANGE PRIMITIVE AREA, ARIZONA AND NEW MEXICO E91

Sample	Semiquantitative spectrographic analysesContinued (ppm)								Chemical analyses <u>2</u> / (ppm) Map			
	Nb (10)	Y (5)	Cu (2)	Zr (10)	La (20)	Zn (200)	Sc (5)	. Co	Hg (.02)	As (10)	Au (.02)	Coordinate (plate 2)
				P	an conc	entrates						
A029	L	20	150	200	20	300	15	50	.06	L	N(0.1)	н-5
A032	N	20	150	150	L.	L	20	100	.40	10	N(.4)	H-5
A034	N	20	150	100	L	L	20	. 100	.07	N	N(.1)	G-5
A037	N	30	150	300	L	L	30	100	.14	40	N(.1)	F-5
A039	L	15	150	200	L	200	20	200	.18	N	N	E-6
A042	20	150	150	>1,000	50	300	20	100	.75	N	N(I)	F-5
A044	N	20	150	150	Ĺ	Ĺ	30	150	.14	N	N(.1)	E-6
A046	L	30	150	200	L	300	30	150	.19	L	N(.4)	E-6
A050	L	30	150	300	L	300	20	100	.06	L	N(.1)	D-7
A052	L	100	150	300	L	300	30	150	.04	L	N(.4)	D-7
A054	L	200	150	>1,000	L	300	20	200	.18	N	N(.01)	D-8
A056	L	100	150	500	20	500	30	100	.11	L	N(.8)	D-8

U.S. GOVERNMENT PRINTING OFFICE: 1969 O-354-828