
Automatic Interpretation of 
Schlumberger Sounding Curves, 
Using Modified Dar Zarrouk 
Functions

GJEOLOGICA ti SURVEY B It t L E T I N 131J-E





Automatic Interpretation of 
Schlumberger Sounding Curves, 
Using Modified Dar Zarrouk 
Functions
By ADEL A. R. ZOHDY

NEW TECHNIQUES IN D I R E CT - CUR R ENT 
RESISTIVITY EXPLORATION

GEOLOGICAL SURVEY BULLETIN 1313-E

Formulas defining two types of modified Dar ^arrouk curves 
are used to invert Schlumberger sounding curves, using an 
iterative procedure. The number of layers, which is equal to 
the number of points on the inverted curve, is reduced by 
automatically smoothing the corresponding D£ curve

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1975



UNITED STATES DEPARTMENT OF THE INTERIOR 

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY 

Dallas L, Peck, Director

First printing 1975 
Second printing 1983

For sale by the Distribution Branch, U.S. Geological Survey, 
604 South Pickett Street, Alexandria, VA 22304



CONTENTS

	Page 
Abstract __________________________________________ El
Introduction _______________________________________ 2
Earlier developments __________________________________ 3
Outline of method ____________________________________ 6
Construction and inversion of DZ curves ______________________ 7
Modified Dar Zarrouk curves of the L type _____________________ 13
Inversion of MDZ-L curves ______________________________ 14
Modified Dar Zarrouk curves of the T type _____________________ 18
Inversion of MDZ-T curves ______________________________ 20
Inversion of VES curves ________________________________ 21
Inversion of incomplete and (or) distorted VES curves ______________ 26
Automatic smoothing and inversion of DZ curves _________________ 29
Field example ______________________________________ 33
Advantages and limitation of the method ______________________ 36
References cited _____________________________________ 37

ILLUSTRATIONS

Page

FIGURE 1. Two-layer DZ curves _________________________ E8
2. Schematic diagram for construction and inversion of DZ curves 9
3. Schlumberger VES curves and their corresponding DZ curves _ 10
4. Graph showing inversion of an A-type three-layer VES curve _ 11
5. Three-layer VES, DZ, and Hummel curves ____________ 14
6. MDZ-L curves _____________________________ 15
7. MDZ-T curves _____________________________ 19
8. Curves for five iterations in the inversion of an H-type VES curve 24
9. DZ curves for three- and nine-layer models ____________ 25

10-13. Graphs showing:
10. Inversion of an incomplete and distorted VES curve _ _ 28
11. Variation of fitting tolerance as a function of DZ slope 33
12. Automatic interpretation of a field VES curve _____ 34
13. Manual smoothing and inversion of detailed DZ curve

for layering shown in figure 12 ____________ 35

III





NEW TECHNIQUES IN DIRECT-CURRENT RESISTIVITY 
EXPLORATION

AUTOMATIC INTERPRETATION OF
SCHLUMBERGER SOUNDING CURVES,

USING MODIFIED DAR ZARROUK
FUNCTIONS

By ADEL A. R. ZOHDY

ABSTRACT

For horizontally stratified media, Schlumberger VES (vertical electrical sounding) 
curves with slopes of greater than -1 not only resemble but commonly almost coincide 
with their corresponding DZ (Dar Zarrouk) curves. By considering an n-point 
Schlumberger VES curve to be an n-layer DZ curve, and by solving for the layering from 
the DZ curve, we obtain a first approximation to the actual layering in the form of an n- 
layer section. However, the minimum slope for DZ curves is   1, whereas on some VES 
curves negative slopes may be as low as  3; therefore, these VES curves cannot be con­ 
sidered to be a first approximation to their corresponding DZ curves. Formulas are ob­ 
tained for calculating two types of MDZ (modified DZ) curves whose positive and 
negative slopes are not limited to +1 and   1, respectively. Therefore, for any VES curve, 
there exists a corresponding MDZ curve that lies close to it. The automatic interpretation 
is made by an iterative procedure in which, for the first approximation, the observed VES 
curve is assumed to be the sought MDZ curve. This MDZ curve is solved for layer 
thicknesses and resistivities; then, by means of a convolution technique, a VES curve is 
calculated for the obtained layering, and the calculated VES curve is compared with the 
observed one. A second approximation to the sought MDZ curve is obtained by utilizing 
the differences between the observed and calculated VES curves. The iteration is con­ 
tinued until a match, within a prescribed fitting tolerance, is obtained between observed 
and calculated VES curves. The number of layers in the resulting model (detailed 
solution) is always equal to the number of points used to define the observed VES curve. 
Equivalent solutions composed of a fewer number of layers are determined by 
automatically smoothing the DZ curve of the detailed solution and inverting it. Special 
equivalent solutions that are subject to certain geologic or geoelectric constraints can be 
found by manual adjustments of the detailed n-layer DZ curve. Excellent automatic 
matches were obtained when the method was tested with several theoretical VES curves 
and with several hundreds of field VES curves of different forms. The average processing 
time per VES curve (extending over more than three logarithmic cycles) on the IBM 
360/65 computer is about 8 seconds. For distorted and incomplete field curves, the 
average processing time is approximately doubled.

El
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INTRODUCTION

The interpretation of VES (vertical electrical sounding) curves is 
usually made by curve-matching procedures in which albums of 
theoretical curves (Compagnie Generale de Geophysique, 1963; Flathe, 
1963; Orellana and Mooney, 1966; Rijkwaterstaat, 1969) are used in 
conjunction with the auxiliary-point method of partial curve matching 
(Kalenov, 1957; Orellana and Mooney, 1966; Zohdy, 1965). Although 
this method is very educational and significant, it requires a great deal 
of practice, and at times it can be frustrating to the inexperienced in­ 
terpreter. In fact, for geoelectric sections containing layers with small 
effective-relative resistances or small effective-relative conductances 
(Flathe, 1963; Zohdy and Jackson, 1973; Zohdy, 1974a), even the ex­ 
perienced interpreter may find it difficult to obtain satisfactory curve 
matches when he uses the auxiliary-point method. The use of DZ (Dar 
Zarrouk) curves (Maillet, 1947; Orellana, 1963) is valuable in improv­ 
ing the theoretical fit to an observed VES curve (Zohdy, 1974a), es­ 
pecially when the interpretation must be modified so that the in­ 
terpreted geoelectric section would contain a different number of layers 
than the one initially assumed.

The direct interpretation, or inversion, of VES curves into layer 
thicknesses and resistivities has attracted the attention of geophysicists 
for the past 40 years. In late November 1972 the author presented a 
paper on automatic interpretation of Schlumberger sounding curves, 
using modified Dar Zarrouk functions, at the 42d annual international 
meeting of the Society of Exploration Geophysicists in Los Angeles, 
Calif. The present report is based on that talk and describes a fast 
method for the automatic interpretation of Schlumberger-type VES 
curves which are obtained over horizontally stratified, laterally 
homogeneous media. The method is intended for the processing of large 
numbers of VES curves on a digital computer in very short periods of 
time so that the interpreter may have at his disposal a basic solution, 
and simplified solutions, for each observed VES curve. The basic solu­ 
tion also may be modified manually, through the use of DZ curves, to 
obtain electrically equivalent solutions that will fit certain constraints 
on the layering in the survey area. The layering provided by the com­ 
puter, moreover, may be considered as an interpretation made by an in­ 
dependent interpreter whose computations do fit the observed data 
and, therefore, often may point out a certain layering distribution 
which the interpreter may have overlooked.

The method was designed so that positive, realistic, layer resistivities 
and thicknesses are always obtained, even if the VES curve is distorted 
by lateral heterogeneities. For these distorted VES curves, although a 
practically perfect match between observed and calculated curves may 
be impossible (because the solution is based on a horizontally stratified,



INTERPRETATION OF SCHLUMBERGER SOUNDING CURVES E3

laterally homogeneous earth model), the calculated curve will fit the 
observed points as closely as possible, except for those points near the 
distorted segment.

EARLIER DEVELOPMENTS

Several methods have been proposed for the direct interpretation, or 
inversion of VES curves obtained over horizontally stratified, laterally 
homogenous media. Stefanesco and others (1930) derived the integral 
expressions

/  
V(r)= ^ \± +2 \Q(\,k,d)J0(\r)dx] (1)

M r Jo J

=pi | l+2r2

for expressing the potential V(r) and the Schlumberger apparent re­ 
sistivity jos(r) as a function of the Schlumberger electrode spac-, 
ing, r=AB/2; the first-layer resistivity, pi; the Bessel functions, Jo and 
J\\ and the Stefanesco kernel function, Q(X,k,d), which is expressed in 
terms of the layer depths, d\ the resistivity reflection coefficients, k, and 
the integration variable, X. If the TKF (total kernel function), T(X,d,k), 
also known as the Schlichter kernel (Vozoff, 1958), is defined by

; (3) 
then,

e(X,d,fe) = [(T(X,d,fe)/pi)-l]/2. (4)

Substituting equation 4 in equation 1 we get
r°° r °°

V(r) =&? \ i + I T(X' d' k)J0(\r)d\- I J0(Xr)rfx] . (5) 
27r I 1 pl 1 J

But^ according to the Weber-Lipschitz identity (Watson, 1962),
r°°

£ = I «/o(Xr)dX, (6)
 'o 

and therefore (Sunde, 1949) equation 5 reduces to
/»°° 

Vfr)=jL I T(\.d.k)Jn(\r)d\. (7)
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Differentiating equation 7 with respect to r and substituting in the 
equation

a(r)_-&r'SJy. (8)

we get

T(\,d,k)   MXr) - XdX.1'0

With an appropriate change in the variables r and X, the integral in 
equation 9 can be transformed into a convolution integral (Kunetz, 
1966).

Inasmuch as the kernel function, Tor 0, contains all the information 
that is necessary to define the geoelectric section (layer thicknesses and 
resistivities), Schlichter (1933) suggested the following procedure for 
the direct interpretation of resistivity sounding data:
1. Determine the kernel-function curve from the apparent resistivity 
curve,
2. Solve for the layering from the kernel function. 
The value of T(\,d,k) can be expressed in terms of the Schlumberger 
apparent resistivity by applying the inverse Hankel transformation of 
the Fourier-Bessel integral (Watson, 1962) to equation 9 so that

T(\,d,k) = p s(r))dr. (10)
f

 '

The numerical evaluation of T(\,d,k) from equation 10 has been 
studied by several investigators. Strakhov (1966a, 1966b, 1968) derived 
expressions for the calculation of T(\,d,k), and Strakhov and Karelina 
(1969) published coefficients for the transformation of a Schlumberger 
VES curve into its corresponding TKF curve, using convolution. In 
order to make this transformation, using the Strakhov-Karelina coef­ 
ficients, the VES curve must be digitized at the logarithmic electrode- 
spacing interval of (AB/2) i+l/(AB/2)i=e(ln 10/5) =*1.58, which is 
equivalent to five logarithmically equally spaced points per logarithmic 
cycle. The digitized apparent resistivities are convolved with the 
Strakhov-Karelina coefficients to obtain the total-kernel-function 
curve.

Ghosh (197 la) used linear-filter theory to obtain other sets of coef­ 
ficients for transforming Schlumberger and Wenner sounding curves 
into their corresponding TKF curves. Ghosh's coefficients are 
applicable for the logarithmic electrode-spacing interval of 
of (AB/2)i+l/(AB/2)i=e(ln 10/3) -2.15, but, for a greater definition 
of the calculated TKF curve, his coefficients may be convolved with
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two sets of digitized points on the VES curve, which are separated by an 
interval of 1.46, to obtain points on the TKF curve which are separated 
by a factor 1.46 instead of 2.15.

The use of convolution for the calculation of the TKF curve from an 
observed VES curve requires the extrapolation of the VES curve to the 
left of the first and to the right of the last measured points. The values 
of the ordinates of the extrapolated VES points not only will affect the 
values of the calculated TKF curve at the TKF points corresponding to 
the first and last VES points but also will affect the values of several 
successive TKF points to the right and to the left of the first and last 
calculated points, respectively. Furthermore, a distortion over a small 
segment of the VES curve will cause a distortion over a correspondingly 
larger segment on the transformed TKF curve.

Koefoed (1965, 1966, 1968) used the raised kernel function H(\) in­ 
stead of the Stefanesco kernel function 9(A) and subsequently 
(Koefoed, 1970) introduced graphs to accelerate the evaluation of the 
layer thicknesses and resistivities from the raised kernel function H(X). 
Other students of the direct interpretation of resistivity data in the 
kernel domain include Crous (1971), Meinardus (1967, 1970), Onodera 
(1960), Pekeris (1940), and Vozoff (1958).

One of the most attractive features of transforming a VES curve into 
its corresponding TKF curve (and finding the appropriate horizontally 
layered model for which a calculated TKF fits the transformed curve) is 
the ease with which a TKF curve can be calculated using Sunde's, 
Flathe's, or Vanyan's recursion formulas (Sunde, 1949; Flathe, 1955; 
Vanyan and others, 1962; Kunetz, 1966; Meinardus, 1967). Russian 
geophysicists have compiled albums of theoretical TKF curves and 
prepared equivalence nomograms similar to the Pylaev nomograms 
(Bhattacharya and Patra, 1968) for the interpretation of transformed 
TKF curves by the method of curve matching (Shkabarnia and 
Gritsenko, 1971).

Kunetz and Recroi (1970) pointed out some of the limitations of the 
interpretation of VES curves in the kernel domain, such as the risk of 
rapid amplification of errors in the initial data and the possibility, with 
certain techniques, of obtaining solutions that are physically absurd 
(for example, negative resistivities and (or) negative thicknesses). 
Furthermore, because the maximum negative slope for a TKF curve is 
  1, similar to DZ curves, the resolving power of TKF curves for Q-type 
(pi>p2>ps) and certain HK-type (pi>p2<ps>p4) sections is lower than 
the resolving power of the corresponding VES curves; therefore, the 
range of the principle of equivalence, in the kernal domain, is larger 
than it is for VES curves (Strakhov and Karelina, 1969). In other words, 
if two TKF curves seem to coincide (where one curve was obtained by 
the transformation of an observed VES curve and the other was



E6 TECHNIQUES IN DIRECT-CURRENT RESISTIVITY EXPLORATION

calculated for an assumed model), it does not mean, necessarily, that 
their corresponding VES curves will also almost coincide. Therefore, for 
interpretations in the kernel domain, the calculation of the VES curve 
for comparison with the observed VES curve is advisable, especially for 
VES curves with steeply descending branches. In this regard, although 
Kunetz and Recroi based their analysis on the determination and solu­ 
tion of a "nucleus" kernel function, they were the first to show the ap­ 
plicability of their technique by comparing reference or observed VES 
curves with calculated VES curves, and not by comparing kernel func­ 
tion curves.

Kunetz (1966) indicated that it is possible to calculate VES curves by 
convolving the TKF curve with a set of coefficients which he did not 
publish. Ghosh (1971b) published two sets of inverse filter coefficients 
for the calculation of Schlumberger and Wenner VES curves by the 
method of convolution. The convolution technique is the fastest known 
method for the calculation of a VES curve. For example, a VES curve of 
the Schlumberger type, which is defined by 18 points that are dis­ 
tributed over three logarithmic cycles and which corresponds to a sec­ 
tion composed of about 20 layers, can be calculated using the Ghosh 
coefficients in less than about 0.5 second on the IBM 360/65 computer 
(Zohdy, 1974b). With the advent of this technique, one of the most at­ 
tractive features of interpreting VES curves in the kernel domain, 
namely the speed with which a TKF curve can be calculated, was 
rendered less significant.

The use of numerical integration (Meinardus, 1967,1970) yields more 
accurate but slower (by several seconds) computations of VES curves 
than the use of convolution. The numerical integration method, 
however, is at least 10-20 times faster than the methods that are based 
on the summation of a slowly convergent series (Mooney and others, 
1966). Furthermore, both the convolution method and the numerical in­ 
tegration method are not dependent on the condition that the layers in 
the section must be of commensurate thicknesses (thicknesses that are 
whole multiples of a given unit of length).

OUTLINE OF METHOD

The automatic interpretation method presented here is based on in­ 
verting the VES curve without first transforming it into its cor­ 
responding TKF curve. Furthermore, unlike most of the direct in­ 
terpretation methods, the interpreter does not have to make an initial 
assumption on the number of layers or about their resistivities and 
thicknesses. Instead, the VES curve is digitized (at the rate of six points 
per logarithmic cycle), and the number of layers is automatically fixed 
as equal to the number of points on the digitized curve.

For the first approximation, the points on the digitized VES curve are
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considered to be points on a modified Dar Zarrouk (MDZ) curve, which 
is solved for layer thicknesses and resistivities. The TKF curve for this 
layering is calculated by Sunde's recursion formula, and the VES curve 
is calculated by convolution, using Ghosh's coefficients. The calculated 
and observed VES curves are compared, and, through an iterative for­ 
mula, a new MDZ curve is calculated, solved for layering, and a second 
VES curve is calculated. The iteration continues until a fit, within a 
prescribed tolerance, is obtained between observed and calculated VES 
curves. In this procedure the calculation of the VES curve by convolu­ 
tion requires the calculation of the TKF curve at (I/A) values that ex­ 
tend beyond the range of the corresponding (AB/2) values. However, 
because these TKF values are calculated for a given model by a recur­ 
sion formula and are not calculated by the transformation of a VES 
curve, they are all accurately determined over the entire range of (I/A) 
values.

CONSTRUCTION AND INVERSION OF DZ CURVES

DZ curves for n-layer sections are calculated from the parametric 
equations

P m .= 

and

where p m . and Lm . are the DZ resistivity and DZ depth; p; and HI are the
resistivity and thickness of the ith layer; and TI and Si are the 
transverse resistance and longitudinal conductance of the ith layer, 
respectively.

Figure 1 shows a set of two-layer DZ curves calculated for various 
values of M=p2/pi. It is important to note that the maximum positive 
and negative slopes for p2=°° and p2=0 are +1 and  1, respectively. 
Graphical methods were devised by Orellana (1963) and by Zohdy 
(1974a), for the construction of multilayer DZ curves.

The inversion of DZ curves into layer thicknesses and resistivities is 
made using the formulas

'"V ' ~"V-i^-i (13)

L/m- Li m . ,

Pmj
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FIGURE 1.   Two-layer DZ curves for various values of the resistivity ratio p 2 /pi. Dashed 
curves designate the thickness ratio hi/hi, pm, DZ resistivity; Lm, DZ depth; pi and hi, 
first-layer resistivity and thickness.
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Pm;-m/_ 1 'S-l   (14)

The above relationships are schematically summarized in figure 2; 
practical applications of the inversion of DZ curves (pertaining to the 
interpretation of VES curves) were given by Zohdy (1974a).

Figure 3 shows that Schlumberger VES curves on which there are no 
negative slopes of less than or equal to - 1 commonly almost coincide 
with their corresponding DZ curves. If these DZ curves are solved for 
layering, using equations 13 and 14, either by using only the terminal 
DZ points (which mark the end of one layer and the beginning of 
another) or by digitizing the DZ curves so that the terminal points are 
included, we obtain the exact geoelectric sections for which both the DZ 
and VES curves were calculated. Therefore, because of the near coin­ 
cidence of these VES curves with their corresponding DZ curves, a first 
approximation of the actual layering can be obtained by digitizing the 
VES curves, and substituting, in the inversion equations 13 and 14, the

10,000

FIGURE 2.   Schematic diagram of the construction and inversion of DZ curves, hj, layer 
thickness; PJ, layer resistivity; T, transverse resistance; S, longitudinal conductance; 
p m , DZ resistivity; L m , DZ depth.



E10 TECHNIQUES IN DIRECT-CURRENT RESISTIVITY EXPLORATION

1000

.100

o 5
CL ul
UJ CC 10
CD§s
-J Q 
I Z

EXPLANATION

3 10 100 1000 2000 
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FIGURE 3.   Graphs of theoretical Schlumberger VES curves and their corresponding DZ
curves.

values of the electrode spacings, AB/2, for the DZ depths, Lm, and the 
Schlumberger apparent resistivities, ps, for the DZ resistivities, p m, 
respectively.

Figure 4 shows five steps for the successive approximation of a layer­ 
ing for a theoretical VES curve. Step 1 shows the layering, the VES 
curve, and the DZ curve for an A-type section (pi<p2<pa). By digitizing 
the VES curve, as shown in step 2, assuming that the VES curve is a DZ 
curve, and solving for the layering, we obtain the rc-layer section shown 
by the dashed line. This layering serves as a first approximation to the 
true layering. By calculating the TKF curve for the n-layer section from 
Sunde's recursion formula and convolving it with Ghosh's coefficients, 
the VES curve for this layering can be calculated and plotted as shown 
by the dashed curve of VES' in step 3. By knowing the effect of changes
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FIGURE 4.   Graphs showing the inversion of a three-layer VES curve of the A-type by 
iteration through successive approximations of its corresponding DZ curve. Circles on 
VES curve designate first approximation to DZ curve. Arrow heads designate second 
approximation to DZ curve.
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in the form of DZ curves on the form of their corresponding VES curves, 
as they were recently described by Zohdy (1974a) we could have 
predicted the approximate shape of the VES' curve in relation to the 
shape of the reference VES curve by noting the deviations of the or- 
dinates of the reference VES curve from the ordinates of its cor­ 
responding DZ curve.

In order to obtain a second approximation to the layering, we obtain a 
second approximation to the actual DZ curve by utilizing the dif­ 
ferences between the ordinates of the calculated (VES') and reference 
VES curves. As shown in step 4, of figure 4, for points on the calculated 
VES' curve that lie above the reference VES curve, we calculate new 
points (which are depicted by the arrow heads in step 4) which lie below 
the reference VES curve, and conversely. In step 5, the layering ob­ 
tained from the inversion of this second approximation to the DZ curve 
is compared with the layering of the actual three -layer model. The 
calculation of the corresponding VES curve indicated that the two 
geoelectric sections are equivalent in the VES domain (that is, the two 
VES curves practically coincided). Had it been necessary to use several 
successive approximations to the DZ curve, the following iterative 
formula

_ fr°   Pmi (15) 
Pmi+i Psi

would have been used where p m . +1 =the (i+1) DZ resistivity, 
ps =the ordinates of the reference VES curve, p m .= ordinates of the 
DZ resistivity for the ith iteration, and the ps .=ordinate of the ith 
calculated VES curve. 

To summarize, for the first approximation we use

Pm = Pso, (16)

for the second approximation, the iterative equation 15 reduces to

and for the (i+1) to the nth approximation we use equation 15.
The simplicity of the above procedure makes it very attractive for the 

automatic interpretation of VES curves; nevertheless, the procedure 
has two drawbacks. First, it can be applied only to VES curves on which 
there are no negative slopes that are equal to or less than   1, and sec­ 
ond, it cannot be applied to VES curves that have positive slopes that 
are equal to or slightly greater than +1. There are several types of VES 
curves which have steeply descending branches with slopes of less than 
  1, and there are also field VES curves whose slopes may be slightly 
greater than +1 because of measurement errors or lateral in-
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homogeneities. Furthermore, if the coordinates of two successive points 
on a branch of a VES curve, whose slope satisfies the relation   1 > 
slope > +1, are used in equations 13 and 14, infinite or imaginary 
resistivities and thicknesses will be obtained. In order to overcome these 
difficulties we use MDZ (modified Dar Zarrouk) equations.

MODIFIED DAR ZARROUK CURVES OF THE L TYPE

Figure 5 shows a theoretical three-layer VES curve of the H-type 
(pi>p2<ps), its corresponding DZ curve, and the Hummel curve 
(Zohdy, 1965) for the conductive second layer. The steeply descending 
branch of the VES curve occupies an intermediate position between the 
descending DZ and Hummel curves. Therefore, for steeply descending 
branches on VES curves, there are curves, here called modified Dar 
Zarrouk curves of the L type (MDZ-L), which can be calculated from 
the combination of the DZ equations and the Hummel equations and 
which will approximate that steeply descending VES branch and lie 
close to it. Furthermore, when these MDZ-L curves are solved for layer­ 
ing, they will result in a geoelectric section which is equivalent to the 
section for which the VES curve was calculated or observed.

The parametric equations for MDZ-L curves are

PmL =PL
'1 ^ \PLj

and

(18)

^x

where

(19)

j = average longitudinal resistivity, or Hummel resistivity, for 
the layers from 1 to j,

LL . = 2/ii= summation of layer thicknesses, or Hummel depth, to
1 the bottom of the y'th layer, 

X = number that lies in the interval 0<X<1, 
Si = hi/ PI = longitudinal unit conductance of the ith layer, 
TI =hi pi= transverse unit resistance of the ith layer. 

For X=l, equations 18 and 19 reduce to the DZ equations 11 and 12, 
and for X=0 they reduce to the Hummel equations. For values of 
0<X<1, the MDZ-L curves occupy intermediate positions between the 
corresponding Hummel and DZ curves. The upper section of figure 6
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FIGURE 5.   Three-layer VES curve and corresponding DZ curve. Hummel curve is 
drawn for the conductive second layer only. Numbers in bar designate true resistivities 
in ohm-metres.

shows a set of MDZ-L curves computed for p2/pi=0.01 and various 
values of X. The lower section of figure 6 shows a set of MDZ-L curves 
calculated for X=0.5 and various values of the resistivity ratio pt/pi.

INVERSION OF MDZ-L CURVES
The analytical expressions required for calculating the thickness and 

resistivity of a layer represented by two points on an MDZ-L curve are
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FIGURE 6.   Modified DZ curves of the L type. Top graph: MDZ-L curves for constant 
resistivity ratio pa/pi and variable exponent X. Bottom graph: MDZ-L curves for 
constant value of the exponent X=0.5 attd variable resistivity ratio pjp\. 
hi/hi, thickness ratio; pmL, MDZ-L resistivity; LmL , MDZ-L depth.
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derived as follows. Dividing equation 19 by equation 18 we get:

mLj

which indicates that the value of S is preserved on MDZ-L curves (as it 
is preserved on Hummel and on DZ curves), and multiplying equation 
18 by equation 19 we get

h

X

(21)

For 7 = 1 in equations 20 and 21, it can be shown that

=hi, (22)

indicating that the coordinates (LmL , p mL ) of the first point represent 
the thickness and the resistivity of the first layer, respectively. In a 
multilayer section, this first layer may be a fictitious layer that replaces 
all the overlying layers. For 7 =2 in equation 20, it follows, from equation 
22, that

(23)

The thickness of the second layer, hz, can be calculated from equation 
23 if its resistivity, p 2 , has already been determined. The value of p2 is 
calculated as follows. Substituting equations 22 and 23 in equation 21 
for n=2, and simplifying to get

E
-2 

^^7
L

JL
(24)

where
4 and Li+ i=L mi and L m . = abscissas of two successive

H L j+i

/3y and PJ+I = PmL .and PmL .. 
;

points on an MDZ-L curve, 
=ordinates of two successive 

points on an MDZ-L curve,
j+1 j+ -j, 

P2=true resistivity of the second layer.
Equation 24 contains two unknowns: X and p%. In order to solve for pz 
at a given value of 0<X<1 we use the iterative method known as the 
regula falsi method (Grove, 1966; Hildebrand, 1956).



INTERPRETATION OF SCHLUMBERGER SOUNDING CURVES E17

The successful application of the regula falsi method relies on the 
ability of the user to assume two values for p 2 , which, when con­ 
secutively substituted in the left-hand side of equation 24   here 
denoted by/   produce two values for/ with opposite algebraic signs. A 
negative value for / indicates an underestimation of p2, and a positive 
value for / indicates an overestimation. Inasmuch as the resistivities in 
a physically acceptable model must be positive, the value of zero for pi 
must be made to represent an underestimation of the true value of p2. 
Therefore, with X=l (DZ equation) and p2=0 in equation 24, if the 
value of / is positive, then the value of / must be forced to become 
negative by decrementing the value of the exponent X, from 1 to 0. 
With X=0 and P2=0, the value of /will always be negative as it can be 
readily proved from equation 24. As shown by the comparison of figures 
5 and 6, MDZ-L curves for X=0.5 approximate steeply descending 
VES branches better than DZ curves (X=l) or Hummel curves (X=0). 
Therefore, to approximate descending VES branches, the "first" value 
of X is generally taken as 0.6, and, if /is positive, then X is decremented 
by 0.2 (X=0.6, 0.4, 0.2, 0). The first value of X and the rate at which it 
is decremented affect the thicknesses and resistivities of the layers to be 
obtained from the inversion.

By assuming p 2 =Pi+i, a positive value of/, /+, always is obtained 
because, on a descending MDZ-L branch (for any value of 0<X<1), 
the MDZ-L resistivity pi+l always is greater than p2 except at the 
asymptote where fc+i=p2, if #+1=02, then the value of / is zero, 
and the required value of pz is determined.

Having determined the first value for X=X' (where 0<X'<0.6), for 
which /=/_ at P2=P2-=0, and using p 2+=p'j+ i to calculate /=/+ at 
X=X', we use the iterative regula falsi equation to calculate the first 
approximation for pz from

(25)

We substitute pz (1) for p2 in equation 24 to calculate /_ (1), then we 
substitute p2 (1) and /_ (1) for p 2 and f_ in equation 25 to calculate the 
second approximation for pz=pz (2). The iteration is repeated for a 
maximum of 15 times or until

0.98<_£2(iL<l.02. (26) 
P 2fl-D

Having determined the value of p 2 , by the above iterative method we 
can calculate the thickness, hz, from equation 23.

To summarize, for the automatic interpretation of VES curves, 
ascending branches on VES curves are approximated by DZ curves 
and descending branches are approximated by MDZ-L curves. The
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iterative formula 15 is used for calculating the ordinates of the succes­ 
sive DZ and MDZ-L points whose inversions successively approximate 
the required solution.

MODIFIED DAR ZARROUK CURVES OF THE T TYPE

A theoretical VES curve for horizontally stratified, laterally 
homogeneous media may have a rising branch with a slope of +1, which 
reflects the detection of a layer with an infinitely large resistivity; in 
practice, field VES curves may have slopes that are slightly, or 
significantly, greater than +1. Such slopes may be caused by lateral 
heterogeneities (Kalenov, 1957), fences with metal posts, errors in 
measurements, or current leakage (Zohdy, 1968). Furthermore, in 
applying the iterative equation 15 for adjusting the ordinates of DZ and 
MDZ-L curves, it is possible that the slope between two successive 
points may become >1 after several iterations have been made. If the 
ordinates of points on such steeply ascending segments are used in the 
DZ inversion equations, infinite or imaginary resistivities and 
thicknesses will be obtained.

To overcome this problem, we define MDZ-T curves whose 
parametric equations are given by

Pmtj
-  M-"~ Pt'W) '

and
Sh,

(27)

where

(28)

p t .=27yz/i,=average transverse resistivity of the layers from 1 
to;,

Lt .= 2/i t= summation of layer thickness to the bottom of the y'th 
layer,

X=number that lies in the interval 0<X<1.
Equations 27 and 28 are similar to equations 18 and 19 except that ptt 
instead of PL, is used to modify the DZ resistivities and depths. 
Depending on the value of X and on the parameters of the section, the 
corresponding MDZ-T curve can have slopes that are greater than 1. In 
fact, the MDZ-T curves (fig. 7) look almost like a mirror image of 
MDZ-L curves (fig. 6) reflected across the abscissa.
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FIGURE 1.   Modified DZ curves of the T type (MDZ-T). Top graph: MDZ-T curves for 
constant resistivity ratio p2/p\ and variable exponent X. Bottom graph: MDZ-T 
curves for constant value of the exponent X=0.5 and variable resistivity ratio PZ/PI. 
hi/hi, thickness ratio; p mt, MDZ-T resistivity; L mt , MDZ-T depth.
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INVERSION OF MDZ-T CURVES

The equations for the inversion of MDZ-T curves are similar to those 
for the inversion of MDZ-L curves and are derived as follows. Multiply­ 
ing equation 27 by 28 we get

(29)

which indicates that the values of T are preserved on MDZ-T curves. 
Dividing equation 27 by equation 28 we get

j i j_ i *^
P'"" ~" """ (30)

For i = l in equation 27 and 28, it can be shown that

pm =piandL =/iu (31)

and for 7=2 in equation 30, it follows, from equations 29 and 31 that

P2
(32)

substituting equation 31 and 32 in equation 30 for j=2, and simplifying 
we get

ft

-1=0, (33)

where

= L.andLmt m
and -= and

P2=true resistivity of the second layer.
Equation 33 is analogous to equation 24 and can be solved for p 2 , using 
the regula falsi method. For an underestimation of pz we set pz=Pi+i, 
and for an overestimation of p2, we set p2=50/5J+i. The equation is 
tested with p2= 50 p^fi and X=l, 0.9, 0.8, . . . and so on, in search of 
a positive value for the left-hand side, which would indicate that p2=50 
#+! is an overestimation. Then, having guaranteed that the ap­ 
propriate value of X has been determined for a positive value of p 2 , we
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proceed to use the regula falsi method for evaluating p 2 and, hence, hz 
from equation 32.

INVERSION OF VES CURVES

The inversion of a Schlumberger VES curve is made by finding an 
MDZ curve (which may be formed of a combination of DZ, MDZ-L, 
and MDZ-T segments) which lies close to the observed VES curve and 
whose inversion results in a layering for which a calculated VES curve 
practically coincides with the observed VES curve. The slopes at the 
successive points on the digitized VES curve are calculated using the 
formula

SLOPEi+1 =\og JB.. /»../ log Ll+1 Lt , (34)

where L= AS/2 = Schlumberger electrode spacing, and i=l, ... , n. 
Equation 34 assigns the value of the slope between the ith and (i+1) 
point to the (i+1) point. The slope of the first point is assumed to be 
equal to zero. 

There are at least two advantages for the computation of these slopes:
1. If the slope exceeds +1, the computer will print a warning message 
about the distortion of the VES curve, and if the slope exceeds the ar­ 
bitrarily set value of 1.4, then this generally indicates that an error in 
punching or digitizing the data has been made, and the problem is 
automatically rejected by the computer unless it was specifically in­ 
structed to find the best fitting curve regardless of curve distortions.
2. The fitting tolerance, FT, for each point on the observed VES 
curve, is defined in terms of the slope by the formula

FTi=M+N (SLOPEi) 2 , (35)

where M and N are usually taken equal to 5 and 1, respectively. The fit­ 
ting tolerance for the first point is arbitrarily assigned the value of 5. 
Equation 35 allows a larger fitting tolerance for steeply descending 
branches than for moderately descending or ascending branches.

The computer compares the values of the successive ordinates on the 
digitized VES curve and, for each pair of successive points, it 
decides, on the basis of the value of Pm,- +1 /Pmj> whether the DZ, 
MDZ-L, or MDZ-T inversion equations should be used. By applying 
the appropriate inversion formulas, we obtain a geoelectric layering in 
which the number of layers is equal to the number of points on the 
digitized VES curve. The thickness of the last layer is set to equal a very 
large number (9999999).

The TKF curve is calculated for this layering using Sunde's recursion 
formula and a VES curve is calculated by convolution using Ghosh's 
inverse filter coefficients, so that the abscissas of the calcula­ 
ted and observed VES points are the same. The percentage
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difference, PD, between calculated pc , and observed, po, apparent 
resistivity values is calculated from

X100
1 log p0 . 

The sum of the squared residuals (SSQR)

SSQR= 2
i=i

is also calculated.
If the percentage difference for one calculated point exceeds its 

precalculated fitting tolerance, the iterative equation 15 is used to 
calculate the ordinates of a new set of MDZ points. This newly con­ 
structed MDZ curve is inverted, and a second VES curve is calculated. 
If a match between observed and calculated VES curves (within the 
prescribed fitting tolerance for each point) is not obtained after 10 
iterations (using equation 15), or if the sum of the squared residuals in­ 
creases 5 times, instead of decreasing, then the layering solution with 
the least SSQR is saved in the computer.

The failure of the iterative procedure to produce a satisfactory match 
between observed and calculated VES curves indicates one or both of 
the following possibilities:
1. The curve is distorted and therefore it may be impossible to fit every 

point on it with a theoretical curve, which is calculated for 
horizontal layering.

2. The left branch of the curve is incomplete, and (because, in the 
iterative procedure, only the ordinate of the first point is allowed 
to change and not its abscissa) it is impossible to fit the curve with 
a model in which the thickness of the first layer is equal to the 
electrode spacing of the first point. This problem can be solved if 
the thickness of the first layer is forced to become less than the 
abscissa of the first point on the curve.

Therefore, we introduce the concept of the thickness reduction factor 
0<y<l, which is multiplied by the value of the thicknesses h\ and hz 
after their calculation from equations 14, 23, or 32. Thus, for the first set 
of iterations, the value of the thickness reduction factor, y, is set equal 
to unity. If this does not result in a satisfactory match, then, with the 
value of y decreased by an decrement of 0.1, the whole iterative 
procedure is repeated from the start. For each set of iterations, with a 
fixed value of y, the least SSQR obtained is compared with the one ob­ 
tained from the previous set of iterations. If the value of the least SSQR 
for one set of iterations becomes larger than that of the previous set of 
iterations, the automatic inversion procedure is terminated and the 
solution with the least SSQR is printed. The maximum number of
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allowed iterations is set to equal 60 (which implies that the value of y is 
allowed to decrease a maximum of 5 times).

Figure 8 shows the output of five iterations from the first set of 
iterations (in which the value of y is equal to unity) for the automatic 
interpretation of a theoretical three-layer curve of the H type. In step 1 
the sought MDZ curve is approximated by the observed VESo curve 
itself (MDZi = VESo). The inversion of this MDZi curve and subse­ 
quent calculation of the apparent resistivities result in the VESi curve. 
The ordinates of the VES0 and VESi curves are compared and the or- 
dinates of the second approximation (MDZ 2 ) for the MDZ curve are 
calculated from equation 15 which is symbolized differently (from 
equation 15) on the figure (p SQ = VES0 , ps ., = VES,-, p m . = MDZ,-, and 
Pmi + l = MDZ,-+1). The iteration is continued through step 5 where 
the curve of VESs, which is calculated for the layering obtained from 
the inversion of the MDZs curve, practically coincides with the curve of 
VESo. In this example, VESi through VESs were calculated by 
numerical integration rather than by convolution.

The number of layers in the resulting model is equal to the number of 
points on the digitized curve. This model constitutes the detailed solu­ 
tion, which, for the example under consideration, is composed of 15 
layers. In the detailed solution, some successive layers may have almost 
the same resistivity and, therefore, the actual number of layers with 
distinctly different resistivities may be less than the number of points 
on the curve. In this example the number of such distinct layers is nine. 
It is important to realize that had the reference VES curve been 
calculated or observed over these nine layers, then its interpretation, by 
conventional curve-matching methods, would have been made in terms 
of the three-layer model.

Figure 9 shows the DZ curves and the layering distributions for both 
the automatically obtained nine-layer model and the original 
theoretical three-layer model. The resistivities of the infinitely thick 
bottom layers on the two models are different because the last branch 
on the VESo curve is not well developed and was not plotted to the point 
at which it asymptotically would have approached the value of the true 
resistivity of the bottom layer. Nevertheless, this example illustrates 
the fact that the application of the method does not depend on the ex­ 
tension and full development of the last branch on the observed VES 
curve, which is a requirement for the other methods of automatic inter­ 
pretation that use the transformation of VES curves into their cor­ 
responding total-kernel-function curves by convolution (Strakhov and 
Karelina, 1969; Ghosh, 1971a). The development of the first branch on 
the observed VES curve, at least to electrode spacings that are equal to 
or less than the thickness of the first layer, is recommended but not re­ 
quired.
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<1 FIGURE 8.   Curves showing the output of five iterations for the inversion of a theoretical 
three-layer VES curve of the H type. VES0 , reference VES curve or ordinates on VES0 
curve; MDZi to MDZs, successive approximations to ordinates of MDZ curve; VESi to 
VESs, VES curves calculated for the layering obtained from the inversion of 
MDZi to MDZ5 curves, respectively. p MDZ , MDZ resistivity; L MDZ, MDZ depth; ps , 
Schlumberger apparent resistivity; AB/2, Schlumberger electrode spacing.
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FIGURE 9.   Comparison between equivalent DZ curves and equivalent layering for 
reference theoretical three-layer model and automatically obtained nine-layer model.
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INVERSION OF INCOMPLETE AND (OR) 
DISTORTED VES CURVES

Incomplete VES curves are here defined as VES curves on which 
neither the left branch nor the right branch forms asymptotes to the 
first- and last-layer resistivities, respectively. However, a VES curve 
whose right branch rises at an angle of 45° and is defined by at least 
three points extending over about one-third of a logarithmic cycle is 
considered as having a complete terminal branch.

In contrast to other automatic or semiautomatic methods of in­ 
terpretation, the method presented here does not rely on the com­ 
pleteness of the first and terminal branches of the observed curve. The 
problem created by the incompleteness of the left branch is overcome 
by introducing the thickness reduction factor, y, mentioned earlier, and 
the problem of the incompleteness of the right VES branch is simple to 
resolve by using the MDZ method and setting the thickness of the last 
layer equal to a very large number. However, when the right branch on 
the VES curve is incomplete, the automatically interpreted model may 
show a resistivity for the last layer which is different from the resistivity 
anticipated by the interpreter; nevertheless, all the given points on the 
observed curve would be properly fitted. Therefore, if the interpreter 
has any preconceived notions about the resistivity of the last layer, then 
he should extrapolate the terminal branch toward its assumed asymp­ 
tote.

Although the completeness of the first (left) branch is not a require­ 
ment for the applicability of the computer program (Zohdy, 1974c), it 
simplifies the problem, and a few seconds of computer time may be 
saved.

Distorted VES curves are defined here as VES curves whose cur­ 
vature at certain points cannot be fitted with theoretical VES curves 
which are calculated for horizontally stratified media. The distortion on 
a VES curve may be caused by inhomogeneities in the horizontal direc­ 
tion or by errors in measurement or may even be created by errors in 
digitizing the data for an otherwise smooth VES curve. If the distortion 
on a given VES curve is such that the logarithmic slope on the curve at 
any given point exceeds 1.4, then, as mentioned earlier, the computer 
automatically rejects the problem unless it was instructed not to. If, 
however, the distortion on the VES curve is more moderate, then the 
automatic interpretation program will yield a calculated VES curve 
which fits the digitized points in the least-square sense, although not 
necessarily within the prescribed fitting tolerance.

In attempting, even though unsuccessfully, to fit all the given points 
on a distorted VES curve, the detailed layering may contain a 
geologically improbable sequence of thin layers with highly contrasting 
resistivities. Consequently, the calculated VES curve for the
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improbable layering (which fits the distorted VES curve in the least- 
square sense) is considered as a smoothed version of the observed curve 
and is automatically reinterpreted to obtain a more realistic layering.

In the reinterpreted model, the replacement of the sequence of layers 
having highly contrasting resistivities by a sequence of layers having 
more moderately contrasting resistivities shows that the layers with 
highly contrasting resistivities were not only geologically improbable 
but also geoelectrically unnecessary; if their presence was accurately 
reflected on the calculated VES curve before reinterpretation, then, 
most likely, they would have been obtained also in the reinterpreted 
model.

The computer program is written so that if one point on the digitized 
observed VES curve cannot be fitted within the prescribed fitting 
tolerance, then the detailed solution for which 2[logpo   logpj 2 = 
minimum is chosen. The VES curve for this detailed model is 
recalculated, starting at an electrode spacing equal to one-tenth the 
smallest given electrode spacing and, if specified by the user, ending at 
an electrode spacing equal to ten times the largest given electrode spac­ 
ing (thus generating a complete VES curve if the given curve was in­ 
complete as well as distorted). This new VES curve, which is complete 
and smooth, is automatically reinterpreted. The number of layers in the 
detailed model is reduced through the automatic smoothing of the cor­ 
responding DZ curve.

Figure 10 shows an example of the interpretation of an incomplete 
and distorted VES curve. The layering shown in figure 10A contains an 
unrealistic sequence of thin layers, with resistivities ranging from 1.05 
to about 2,600 ohm-metres. These layers were created primarily in at­ 
tempting to fit the incomplete left branch of the curve and the distorted 
segment on the VES curve between the electrode spacing of 100 and 
1,000 m (metres).

Figure 10B shows the DZ curve for the unrealistic detailed model. 
The fundamental DZ points occurring at the DZ depths of about 75, 
110, and 172 m, respectively, cannot be easily smoothed by using the 
automatic procedures to be described later, although they can be 
smoothed manually.

Figure 10C shows the complete VES curve (starting at the electrode 
spacing of AB/2 = 1 m and terminating at AB/2 = 10,000 m calculated 
for the unrealistic detailed model shown in figure WA. This VES curve 
(which now may be considered as the complete and smoothed version of 
the observed curve) was automatically interpreted in terms of the 
realistic detailed layering also shown in figure 10C; the VES curve 
calculated for this layering is shown in the graph with the open circles.

Figure IQD shows the detailed DZ curve for the 25 layers in figure 10C 
and the fundamental DZ points (1-6) which were obtained using the
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automatic-DZ-smoothing subroutine (Zohdy, 1974c). The automatic 
inversion of the smoothed DZ curve resulted in the six-layer model 
shown in figure IQE, where the corresponding six-layer VES curve is 
compared with the original digitized data of the observed curve.

AUTOMATIC SMOOTHING AND INVERSION OF DZ CURVES

The number of layers in the detailed model obtained from the 
automatic interpretation can be reduced automatically so that the 
resulting model will contain only the fundamental layers in the geoelec- 
tric section, and so that the reduced model will be electrically 
equivalent to the detailed model. The number of layers is reduced by 
first calculating the DZ curve for the detailed model, then smoothing it 
numerically and inverting it. The following two methods were devised 
for smoothing the detailed DZ curve.

1. FIRST METHOD

In this first method the fundamental DZ points designating the ter­ 
mination of one fundamental DZ branch and the beginning of another 
are also points on the detailed DZ curve. By successively sub­ 
stituting the coordinates of the first DZ point (Lmi, p mi), which is taken 
as the first fundamental DZ point, and the coordinates of the successive 
points (Lmt , Pmt ), (Lma> Pm3 ),..., (Lmk, Pmk ) in the inversion equa­ 
tion

I /Lmk Pmk Lmi p mi

II Lmk _ Lmi 

* o  , a _.

P2* k =f I  1 2  ^_', (36)

Pmk

we can solve for a succession of second-layer resistivities, p2*. Each time 
a value for p2 * is calculated, we use the equation (Zohdy, 1974a)

(37)

to calculate p m values at the abscissas L m . which lie between L mi 
and Lmk. We calculate the ratio p mc /pm to evaluate the deviations of 
the ordinates on the calculated two-layer DZ curve from the ordin- 
ates (p m) of points on the detailed DZ curve. If, upon using the coor­ 
dinates of the (/+!) point on the detailed DZ curve, the 
ratio Pmc /Pm, for any point between 1 and (7+1), exceeds 1.05 or 
becomes less than 0.95, the (/+!) point is dropped and the coordinates 
of the ith point on the detailed DZ curve are taken as the coordinates of 
the second fundamental DZ point.
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The above procedure is repeated with the last-determined fundamen­ 
tal DZ point taken as the starting point. When tlie nth point on the 
detailed DZ curve has been used, the smoothing procedure is ter­ 
minated, and the coordinates of the fundamental DZ points are used in 
the inversion equations 13 and 14 to calculate the reduced layering.

2. SECOND METHOD

This method is based in part on applying the method of least squares 
to the linear representation of DZ curves, which is a plot of T as a func­ 
tion of S. For a homogeneous and isotropic earth, the curve T=f(S) is a 
straight line. This can be shown by considering the following equations. 
For an inhomogeneous earth,

T= Plhi+p 2h2+. . .+ Pn hn = Pt H, (38) 

S=tll.+JlL+. . .+£s=#, (39)
Pi P2 P n p L

T=ptpLS, (40) 

but, for a homogeneous earth, p t=pi=p, and, therefore,

T= P iS, (41)

which is the equation of a straight line whose slope is equal to the 
square of the resistivity of the medium.

In bilogarithmic presentation the first fundamental DZ branch 
(pm =f(Lm ))is a horizontal line; preferably the smoothing process for 
the first fundamental branch is made by successively averaging the 
ordinates of the successive DZ points on the n-layer DZ curve, using the 
formula

Pm*(D=e , (42)

where
i = l, 2,. .... ^successive number of points,
/= number of averaged points, and
p m *(I) = aver age value of pm in the logarithmic sense. 

The successive deviations

5,(/)=Pm P.*(/) (43)

are calculated, and if with the inclusion of the (/+!) point the value of 
6,(I+1), for any value of l<i</+l, is greater than 1.05 or smaller than 
0.95, the averaging process is terminated, and the value ofpm(I) is taken 
as equal to p\, which is the average true resistivity for the "first" layer.
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In linear presentation of DZ curves, the general equation for the first 
straight line is

Ti=A Ql +A nSi, (44)

where Aoi=0, and An=pi*'2 (see equation 41). Starting at the last point 
that was included in the above logarithmic averaging process, we 
successively use the least-squares equations

2T-SS (45)

(46)

where T= 2T, , S- 2SZ- , and /= number of points used, to compute the 
successive coefficients Ao and A\ of a succession of 
the straight lines:

). (47)

The abscissas (S) and ordinates (T) of the intersections of these 
successive straight lines with the first straight line are calculated 
successively from the equations

S i = A 02(7)-Aoi (48) 
An-Ai 2 (D '

T^Aoi+AnSi. (49)

Equations 48 and 49 are obtained by the simultaneous solution of 
equations 44 and 47 for Ti = T2 and S\ = S2 .

The number of points, /, to be included on any given T=f(S) straight 
line or DZ branch is governed by the following conditions:
1. If, upon the inclusion of (/+!) point for the Jth line, the value of the 

slope (A\j) becomes negative or zero, an imaginary or zero 
resistivity (pf = ^A\j) is obtained and the (/+!) point is dropped.

2. If, upon the inclusion of the (/+!) point on the Jth line, the intersec­ 
tion of the Jth and (J  1) lines occurs at an abscissa value less 
than the abscissa of the point preceding the last point on the (J  1) 
line or greater than the abscissa of the point succeeding the last 
point on the (J-l) line, then the (/+!) point is dropped.

3. If, in condition 2 above 7+1 = 2, then the coordinates T and S of the 
first point on the Jth line (which are also the coordinates of the last 
point that was averaged on the J  1 line) are redefined in terms of 
T and S of the corresponding point on the smoothed (J  1) line. 
This will guarantee that the coordinates of the point of intersec­ 
tion of (J-l) line and the Jth line are the same as the coordinates 
of the last point on the smoothed (J-l) line.
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4. If, upon the inclusion of the (/+ 1) point, the fitting tolerance for any 
point 1 <i<(/+l) is exceeded, then, again, the (/+!) point is 
dropped.

The fitting tolerance (in condition 4) is here defined in terms of the 
slopes, si, of the points on the two-layer DZ curves (bilogarithmic 
presentation) which are used to fit the fundamental segments on the n- 
layer DZ curve. The following equation is used to define the fitting 
tolerance:

, (5Q)

where
a = a number set equal to 2, 4, or 8, 
s,=slope of the ith point on the two layer DZ curve. 

A plot of the function K",=/(SJ) for a = 1.5, 2, 2.5, and 3 is shown in figure 
11 and indicates that the fitting tolerance generally is larger for positive 
values of s,- than for negative values of s ( . This property makes the 
function K suitable for defining the fitting tolerance in accordance with 
the rules governing the equivalence between DZ curves and their cor­ 
responding VES curves (Zohdy, 1974a). Furthermore, the value of K 
is always greater than or equal to 1 for all values of s,- in the range 
  l<Sj<l, which makes it suitable for comparison with the values of 
the deviations

ti(D=Pm/Pmc - (51)

Thus, for each set of points on the T=f(S) line which are fitted by the 
method of least squares, an intercept with the previous straight line is 
determined, and the values of T and S at the intersections are used to 
define the coordinates of p m *=p\*, L^=h\*, from the equations

L

and p2* is calculated from the slope of the second straight line
T*=f(S*).
The values of p m are calculated successively from equations 37 at the
abscissas, Lm, for all the averaged DZ points, and if upon the inclusion 
of the (/+!) point, the deviation <5,(/) for l<i</+l is greater than 
the calculated value of K( or smaller than 1/K{ , the (/+!) point is 
dropped.

The above procedure is successively applied to evaluate the coor­ 
dinates (L m *, p m*) of all the fundamental DZ points on the n-layer DZ 
curve. Then, the inversion equations 13 and 14 are used to determine 
the layer thicknesses and resistivities of the reduced model. The VES
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FIGURE 11.   Graph showing the variation of the fitting tolerance, K, as a function of the 
slope of a point on a DZ curve. Values of a in equation 15 are shown on each curve.

curve for the reduced model is calculated to ascertain the equivalence 
between the calculated and observed models. In the computer program 
the maximum number of layers in the reduced model is set equal to 10. 
Thus, if upon the completion of the smoothing process the resulting 
number of layers is larger than 10, then the constant a in the fitting- 
tolerance function K is increased from 2 to 4, and, if necessary, to 8, and 
the smoothing process is repeated.

FIELD EXAMPLE

Figure 12 shows an example of the results obtained from the 
automatic interpretation of a deep vertical electrical sounding, VES 19, 
obtained by Zohdy and Stanley (1973) on the Snake River plain, Idaho. 
The observed VES curve at the top of the figure was measured with the 
Schlumberger array to electrode spacings of AB/2 = 12,000 feet («3,657 
m) and with the equatorial array to a maximum spacing of about 68,000 
feet («20,726 m). The various segments on the curve were shifted 
downward to conform to the equatorial segment (adjusted curve), and 
the minor cusps, caused by the crossing of the current electrodes over 
lateral heterogeneities, were removed to form the smoothed curve.

As shown in the lower part of the figure, the smoothed curve was
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FIGURE 12.   Results of the automatic interpretation of a deep vertical electrical 
sounding (VES 19) curve obtained on the Snake River Plain, Idaho.

digitized at a logarithmically equal interval, A, which corresponds to 
the rate of 6 points per logarithmic cycle (A = e ln 10/6 ) to facilitate the 
use of the Ghosh convolution coefficients (Ghosh, 1971b). The data 
(which consist of the smallest and largest electrode spacings (AB/2) and 
the values of apparent resistivities at the prescribed digitizing interval) 
were fed into the computer which performed the automatic interpreta­ 
tion and fitted the digitized curve with the calculated VES curve, as 
shown in the lower part of the figure. The detailed solution (27 layers 
corresponding to 27 points on the digitized curve) is also depicted on the 
lower part of the figure.

There are basically five electrical units on the detailed model, as 
evidenced by the five major breaks in the distribution of resistivity with
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depth. The first unit, with an average resistivity of about 30 ohm- 
metres, corresponds to a windblown-soil layer. The second unit, with an 
average resistivity of about 4,000 ohm-metres, represents dry basalts of 
the Snake River Group. The third unit, at a depth of about 
300-400 feet (91.44-121.9 m), is characterized by an average resistivity 
of about 300-400 ohm-metres and is interpreted as basalt saturated 
with fresh water. The fourth layer is characterized by low resistivities 
which range from about 10 ohm-metres to about 100 ohm-metres; most 
likely these resistivities represent sedimentary rocks, which are possibly 
intercalated with ash-flow tuffs, and which extend to a depth of about 
20,000 feet (6,096 m). The fifth electrical unit is the electric basement, 
which has a high resistivity (> 1,000 ohm-metres) and may represent 
Paleozoic rocks of very large thicknesses.

The number of layers in the detailed solution can be reduced either 
automatically (as explained earlier) or manually by plotting the DZ 
curve for the 27 layers, smoothing it, and inverting it. Figure 13 shows 
the 27-layer DZ curve as the dashed curve. A five-layer solution (equa­ 
tions 13 and 14) was obtained by manually selecting the coordinates of 
the DZ points (1, 2, 5, and 6) designated by the open circles and a six- 
layer solution was obtained by manually selecting the coordinates of the

5000

330 780 44 oo Q M

792 1.400 7,300 METRES

10 100 1000 10,000 100,000 
DZ DEPTH (Lm ), INTERPRETED DEPTH {£», IN METRES

FIGURE 13.   Graph showing two equivalent-layering models obtained by manually 
smoothing the DZ curve of the detailed solution (dashed curve) and inverting the 
smoothed DZ curves. Model I is based on the inversion of the DZ points 1, 2, 5, and 6. 
Model II is based on the inversion of the DZ points 1, 2, 3, 4, and 7-
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first two open-circle points (points 1 and 2) and the following three 
solid-circle points (points 3, 4, and 7). Other equivalent models can be 
found by automatically or manually smoothing the DZ curve in dif­ 
ferent ways.

ADVANTAGES AND LIMITATIONS OF THE METHOD

The advantages of the method of automatic interpretation presented 
in this paper are:
1. The average processing time for a VES curve covering three 

logarithmic cycles is about 8 seconds on an IBM 360/65 computer. 
This makes the method very suitable for the processing of large 
numbers of VES curves at considerable savings in time and expen­ 
diture.

2. Only the values of the smallest and largest electrode spacings, and 
the ordinates of the apparent resistivities (which must have been 
digitized at the logarithmic interval of 1.46 along the abscissa) are 
entered into the computer.

3. The method does not rely on the extension of the left and right 
branches of the VES curve to their appropriate asymptotes.

4. Distorted field VES curves can be processed and two sets of solutions 
will result: one based on the inversion of the distorted curve and 
the other based on the inversion of the automatically smoothed 
VES curve.

5. The method is extended through the automatic smoothing of DZ 
curves so that earth models, composed of 10 layers or less, are 
automatically obtainable.

6. The user does not have to make any preliminary guesses at the 
number of layers, their thicknesses, or resistivities.

7. The curve-fitting process is made in the VES curve domain rather 
than in the kernel-function domain. This assures the interpreter of 
obtaining a valid solution which fits the observed data and is 
within the possible equivalence for VES curves rather than the 
wider range of equivalence for TKF curves. 

The limitations of the method primarily lie in the limited accuracy of
computing VES curves by convolution, using Ghosh's inverse filter
coefficients. The calculation of a large variety of VES curves, using
Ghosh's nine coefficients indicated the following:
1. The position of the S line will be shifted to the left by about 6 percent 

if the resistivity of the last layer is assumed to be much greater 
than about 100 times the overlying layer. This is not a serious 
problem because, by assuming the resistivity of the last layer to be 
about 50-100 times the resistivity of the overlying layer, a suf­ 
ficiently long linear segment on the VES curve will be calculated, 
and it will coincide with the true S line within about 1 percent.
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2. For VES curves with steeply descending branches and for which the 
ratio of the minimum apparent resistivity, PSmin> to the maxi­ 
mum apparent resistivity, ps , is less than 0.025, the application

XTlaX

of Ghosh's coefficients will result in inaccurate apparent resist­ 
ivity values for values of p s . which are less than 0.025 ps"mm *max
Consequently, the automatic fitting of such curves may be less 
than satisfactory in the region where p s . <0.025 ps . For thesernin rnflx
curves the validity of the solution should be checked by calculat­ 
ing the VES curve for the obtained model using numerical integra­ 
tion methods.
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