Massive Sulfide Deposits
Near Shellabarger Pass,
Southern Alaska Range,
Alaska

GEOLOGICAL SURVEY BULLETIN 1342
Massive Sulfide Deposits Near Shellabarger Pass, Southern Alaska Range, Alaska

By BRUCE L. REED and G. DONALD EBERLEIN

G E O L O G I C A L S U R V E Y B U L L E T I N 1 3 4 2

A description and discussion of copper-and zinc-bearing sulfide deposits in eugeosynclinal sedimentary and mafic volcanic rocks

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1972
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Geology</td>
<td>2</td>
</tr>
<tr>
<td>Bedded rocks</td>
<td>5</td>
</tr>
<tr>
<td>Chert unit</td>
<td>5</td>
</tr>
<tr>
<td>Dolomite-chert unit</td>
<td>5</td>
</tr>
<tr>
<td>Siltstone-shale-chert unit</td>
<td>6</td>
</tr>
<tr>
<td>Volcanic graywacke</td>
<td>9</td>
</tr>
<tr>
<td>Basaltic aquagene tuff and breccia</td>
<td>10</td>
</tr>
<tr>
<td>Sedimentary breccia and conglomerate</td>
<td>13</td>
</tr>
<tr>
<td>Igneous rocks</td>
<td>14</td>
</tr>
<tr>
<td>Structure</td>
<td>16</td>
</tr>
<tr>
<td>Southwest area</td>
<td>17</td>
</tr>
<tr>
<td>Northeast area</td>
<td>19</td>
</tr>
<tr>
<td>Mineral deposits</td>
<td>20</td>
</tr>
<tr>
<td>Massive sulfide deposits</td>
<td>21</td>
</tr>
<tr>
<td>Upper sulfide body</td>
<td>21</td>
</tr>
<tr>
<td>Middle sulfide bodies</td>
<td>24</td>
</tr>
<tr>
<td>Lower sulfide body</td>
<td>28</td>
</tr>
<tr>
<td>Replacement of carbonate-rich beds</td>
<td>28</td>
</tr>
<tr>
<td>Fracture fillings in chert and siltstone</td>
<td>31</td>
</tr>
<tr>
<td>Other occurrences</td>
<td>31</td>
</tr>
<tr>
<td>Mineralogy and paragenesis</td>
<td>33</td>
</tr>
<tr>
<td>Origin</td>
<td>41</td>
</tr>
<tr>
<td>Suggestions for prospecting</td>
<td>44</td>
</tr>
<tr>
<td>References cited</td>
<td>45</td>
</tr>
</tbody>
</table>

ILLUSTRATIONS

PLATE 1. Geologic map and sections of massive sulfide deposits near Shellabarger Pass, southern Alaska Range. In pocket

FIGURE 1. Index map showing location of massive sulfide deposits north of Shellabarger Pass. 3

2–13. Photographs:

2. Oblique aerial view of massive sulfide deposits beside small unnamed glacier.
3. Thin- to medium-bedded dolomite-chert unit.
4. Chert-shale subunit showing thin- to medium-bedded chert with thin shale partings.
5. Polished slab of thinly laminated to thin-bedded calcareous siltstone and sandy siltstone of the chert-shale subunit.
Figures 2-13. Photographs—Continued

6. Aquagene tuff overlain by basalt and underlain by chert-shale subunit 11
7. Slabbed sections of basaltic aquagene tuff showing intraformational clasts of chert, basalt, and siltstone in a matrix of comminuted chloritic volcanic detritus and sparry calcite cement .. 12
8. Sedimentary breccia exposed in the core of syncline in southwest part of mapped area 13
9. Poorly developed pillow in sheared basalt 15
10. Southwest limb of major syncline cut by northeast-dipping faults 18
11. Northeast limb of major syncline formed by massive aquagene tuff and underlying chert and shale ... 19
12. View looking southwest at upper sulfide body which forms trough of a minor syncline ... 22
13. Polished slab showing breccia texture locally developed in the upper sulfide body 23
14. Geologic sketch map of middle sulfide bodies showing sample locations 26

15-16. Photographs:
15. Slab of banded massive sulfides from middle sulfide body showing angular to subangular fragments of pyrite and marcasite 27
16. Lower sulfide body as exposed in late August 1969 .. 30

17-23. Photomicrographs:
17. Typical wacke texture with angular pyrite and marcasite grains in a fine-grained matrix of pyrite, marcasite, gangue, and sphalerite ... 36
18. Fractures in pyrite filled with chalcopyrite and carbonate gangue 36
19. Pyrite and marcasite veined by marcasite 37
20. Part of pyrite grain with irregular patches of chalcopyrite and sphalerite 38
21. Grain and sphalerite surrounded by calcite 38
22. Mutual boundary relation between pyrrhotite and chalcopyrite, which are interstitial to marcasite grains .. 40
23. Interstitial filling of sphalerite, galena, pyrite, and gangue ... 41

Tables

Table 1. Visually estimated modes of extrusive basalt 16
2-5. Analyses of samples:
2. From upper sulfide body 25
Tables 2-5. Analyses of samples—Continued

3. From middle sulfide body and adjacent deposits and lower sulfide body 29
4. From sulfide replacements in carbonate beds and from fracture fillings in chert and siltstone 32
5. From other mineral occurrences 34
ABSTRACT

Copper- and zinc-bearing sulfide deposits near Shellabarger Pass occur mainly as replacement bodies in a north-trending structural trough of marine sedimentary and mafic volcanic rocks of probable Triassic and (or) Jurassic age. The lower part of the sequence is interbedded chert, dolomite, siltstone, shale, volcanic graywacke, basaltic aquagene tuff, sedimentary breccia, and conglomerate. These rocks are overlain by submarine basaltic pillow flows and subordinate interbedded agglomerate, flow breccia, and tuff. This eugeosynclinal assemblage is believed to rest unconformably upon sedimentary rocks of Paleozoic age.

The sulfide deposits are localized in the lower part of the eugeosynclinal sequence near the keel of the structural trough in sedimentary rocks of favorable lithology and texture. Many deposits also appear to be structurally controlled by subsidiary northwest-trending shear and fracture zones considered part of a larger northwest-striking lineament. The deposits are of three general types: (1) lenticular massive sulfide bodies, (2) sulfide minerals that replace carbonate-rich beds, and (3) fracture fillings, mainly in chert and siltstone. Types 2 and 3 are of relatively minor importance.

Mineralogically, the deposits consist of a very fine grained mixture made of, in order of decreasing abundance, pyrite, marcasite, sphalerite, chalcopyrite, galena, and pyrrhotite. Sphalerite, chalcopyrite, and galena together rarely constitute more than 15 percent of the total sulfide minerals. The gangue minerals are siderite, calcite, quartz, and dolomite. During the first phase of mineralization, favorable host rocks were replaced by pyrite, which locally is altered to marcasite. The resulting replacement texture strikingly resembles that of certain impure sandstones (wackes) in the lower part of the eugeosynclinal sequence. Subsequent fracturing created open spaces that became depositional sites for copper-, silver-, and zinc-bearing minerals and facilitated their replacing early pyrite and marcasite.

The tenor of the massive sulfide bodies averages between 1 and 1.5 percent copper, 0.8 and 1.7 percent zinc, 0.9 and 2.4 ounces per ton silver, and less than 0.5 percent lead. There is a rough direct variation of silver content with lead.

The probable source of the metals was the eugeosynclinal sedimentary and volcanic rocks. Specific controls of the deposits included adequate ground preparation and favorable compositions and permeabilities of host rocks. Fault and shear zones served as feeder channels for mineralizing fluids.

INTRODUCTION

Massive fine-grained copper and zinc-bearing pyritiferous sulfide deposits occur north of Shellabarger Pass in the southern
Alaska Range. Although the deposits may not be commercially exploitable at present, they are considered to be of special significance because such deposits have not previously been known in this little-prospected part of the Alaska Range and they have many similarities with economically important massive sulfide deposits elsewhere in the world. It is hoped that the geologic descriptions and guidelines presented in this report will contribute to the discovery of nearby additional sulfide bodies and stimulate a regional search for new occurrences.

The deposits were discovered in 1967; but because of inclement weather, they could not be examined in detail then. In 1968 the authors spent 10 days sampling and mapping the deposits; they examined them again briefly in late August of 1969 when the snow had melted, better exposing the rocks.

The deposits are in a remote part of the Alaska Range, 2 miles north of Shellabarger Pass, approximately 35 miles east of Farewell and 130 miles northwest of Anchorage (fig. 1). The exposed deposits are between 4,450 and 4,650 feet altitude on the west edge of a small north-flowing glacier (fig. 2) in the SE1/4 NW1/4 sec. 35, T. 29 N., R. 19 W., Talkeetna C-6 quadrangle. There are no roads or trails in the area. The deposits are best reached by helicopter, although ski-equipped aircraft can land on the glacier adjacent to the deposits when snow conditions are suitable. Properly equipped aircraft can also land in the broad valley at the headwaters of the Dillinger River. The Federal Aviation Agency maintains a 5,000-foot gravel runway at Farewell. The nearest major source of fuel and supplies is Anchorage.

The deposits are in rugged terrain with a relief of 3,500-4,000 feet. Alpine glaciers are abundant in the nearby higher mountains, which rise to an elevation of 6,700 feet. Alluvial deposits mantle the broad valley floors; talus covers the lower parts of steep valley walls. There is virtually no vegetative cover near the deposits.

Geologic maps are not available for this part of the Alaska Range. The only published geologic information on the area is an open-file report giving results of reconnaissance stream-sediment sampling (Reed and Elliott, 1968). The authors acknowledge helpful discussions about the geology of the deposits with James McDougall and Stanley Charteris, of Falconbridge Nickel Mines, Ltd.

GEOLOGY

The Shellabarger sulfide deposits occur near the core of a north-trending synclinorial structural trough composed of a eu-
FIGURE 1.—Index map showing location of massive sulfide deposits near Shellabarger Pass. Heavy line is the approximate contact between the mafic volcanic flows and underlying eugeosynclinal sedimentary rocks (M. B. Estlund, oral commun., 1970).
geosynclinal sequence of marine sedimentary rocks and mafic volcanic rocks believed to be several thousand feet thick. The lower part of the sequence is chert and dolomite, chert, shale, and siltstone, volcanic graywacke, aquagene tuff and breccia, and sedimentary breccia and conglomerate. These rocks are overlain by at least 2,000 feet of basaltic pillow flows which form the central part of the structural trough (fig. 1); outside the mapped area (M. B. Estlund, oral commun., 1970), pillow basalts are locally interbedded with the underlying eugeosynclinal sedimentary rocks. The sulfide deposits are localized within a zone of prominent northwest-trending faults and shear zones that may belong to a larger, northwest-striking structural lineament that transects the trough.

Our reconnaissance and that of M. B. Estlund (written commun., 1970) indicate that these eugeosynclinal rocks rest unconformably (?) upon a “basement” of interbedded green to gray chert, medium- to dark-gray limestone, thin-bedded tan-weathering quartzose sandstone with interbedded siltstone and chert-pebble conglomerate, dolomitic calcarenite, and polymictic conglomerate.
Fossil corals, cephalopods, and brachiopods collected from a thin unit of the gray limestone at Shellabarger Pass are considered to be of Late Devonian age (C. W. Merriam, written commun., 1970).

No identifiable fossils were found in the eugeosynclinal assemblage that contains the sulfide deposits. However, the apparent discordance between these rocks and underlying Paleozoic units, which are markedly different in composition and origin, and their lithologic similarity with parts of other eugeosynclinal sequences in the same province, although many miles distant, suggests that they are of Mesozoic age, probably Triassic and (or) Jurassic.

BEDDED ROCKS

The mapped bedrock units (pl. 1) are described in apparent stratigraphic succession from oldest to youngest.

Chert unit

A sequence of brittle dark-gray thin- to medium-bedded practically carbonate-free chert with an exposed thickness of about 100 feet is probably the oldest stratigraphic unit mapped. The lowermost exposed chert beds are in fault contact with compact gray medium- to thin-bedded siltstone. The chert grades upward into the dolomite-chert unit through a stratigraphic interval of about 10 feet. Individual chert beds range from 4 to 10 inches in thickness and are broken into blocks and slabs along transverse steeply dipping joints.

Very fine-grained pyrite, clearly discernible under the hand lens, is abundantly disseminated throughout the rock and may reflect a euxinic depositional environment. Later primary chalcopyrite and pyrite and secondary malachite and azurite locally coat joint and bedding-plane surfaces.

Dolomite-chert unit

More than 200 feet of unfossiliferous thin- to medium-bedded light-yellowish- to orange-brown-weathering dolomite with thin interbeds of medium-gray chert is exposed in the northern part of the mapped area (fig. 3). The ratio of dolomite to chert ranges from about 3:2 in the uppermost exposed beds to approximately 3:7 at the bottom of the unit near its transitional contact with the underlying chert unit.

Thin veinlets and scattered disseminations of pyrite, chalcopyrite, and sphalerite, together with secondary malachite and azur-
Figure 3.—Thin- to medium-bedded dolomite-chert unit. Ratio of dolomite (lighter beds) to chert is about 3:2. View northwest.

ite, occur throughout the chert and dolomite, but they are most abundant in the southernmost exposures of the unit.

The typical dolomite consists of anhedral, nearly equant interlocking dolomite grains that have an average diameter of 0.20 mm (millimeter) and scattered small blebs of microcrystalline quartz that rarely exceed 1 percent of the rock’s volume. Although X-ray diffraction analysis of one dolomite sample revealed no calcite, field tests with cold dilute HCl indicate that calcite is locally present in significant amounts. Much of the dolomite occurs as a breccia of coarsely crystalline angular carbonate fragments up to several inches in maximum diameter in a finer grained dolomite cement and transected by postbrecciation veinlets of quartz and chalcedonic silica. Although some of the brecciation clearly is related to tectonic crushing and shattering, fabric relations and chemical considerations favor an essentially penecontemporaneous origin for most of the fragmentation and the replacement of original limestone with little or no change in volume.

Siltstone-shale-chert unit

Siltstone, shale, and chert, locally calcareous and (or) tuffaceous, are important host rocks for the sulfide deposits. For field
mapping, we recognize three principal subunits on the basis of relative abundance of the main lithic end members; a chert-shale subunit; a shale-chert-siltstone subunit; and a siltstone subunit. The chert-shale subunit is composed of dark-gray medium to very thin bedded chert interbedded with dark-gray shale and subordinate siltstone (fig. 4) that makes up 10–60 percent of the unit. Thin interbeds of siltstone and sandy siltstone generally do not exceed 20 percent of the nonchert fraction. Some carbonate minerals, mainly dolomite, invariably are present and tend to be preferentially concentrated in the silty beds. Locally, however, the carbonate minerals are concentrated in thin interbeds and lenses. One sample of chert contains numerous carbonate-rich spheroidal masses that have an average diameter of 1 mm. Microscopic studies reveal crystalline aggregates of calcite set in a micro- to cryptocrystalline groundmass of chalcedonic silica and clay-size particles. These masses are believed to be microconcretions rather than oolites. A nonfissile variant of the chert-shale subunit (fig. 5) is indurated, very thinly interbedded (down to a fraction of a centimeter) siliceous and calcareous claystone, sandy siltstone, and

![Image of a hammer on a rock](image-url)
FIGURE 5.—Polished slab of thinly laminated to thin-bedded calcareous siltstone and sandy siltstone of the chert-shale subunit. Sulfide minerals (light) have selectively replaced carbonate-rich laminae. Note exotic fragment of intraformational chert that has not been replaced by sulfide minerals.

Chert. The bands in the rock strongly resemble varves. Contacts between individual beds generally are sharp and commonly show scour-and-fill structures. Some laminae show internal or graded bedding.
The nonfissile chert and shale evidently were significant in localizing the sulfide minerals. Microscopic study of thin and polished sections of the representative sample illustrated in figure 5 suggests that sulfide-bearing solutions entered the host rock through small premineral fractures, selectively replacing chemically favorable carbonate-rich laminae. The relations also suggest that the greater porosity and permeability of certain beds may have controlled sulfide mineral deposition. Figure 5 also illustrates the differential compaction of underlying laminae and depositional thinning over an exotic fragment of intraformational chert.

With an increase in siltstone and a corresponding decrease in chert, the chert-shale subunit grades into a shale-chert-siltstone subunit. Rocks of this subunit contain 30–60 percent shale, 10–35 percent chert, and 10–35 percent siltstone. The shale and siltstone are medium to dark gray and are thickly laminated to thin bedded. The chert is dark gray and occurs as thin beds or lenses. Calcareous phases are locally developed. The presence of aquagene tuff lenses, together with identifiable tuffaceous constituents in the siltstone, suggests a close stratigraphic relation with the basaltic aquagene tuff and breccia unit described below.

The siltstone subunit is compact, light to medium gray, thinly to thickly laminated, and has the general appearance of the banded mudstones commonly identified with molasse assemblages. Lenses and interbeds of chert and shale constitute less than a third of the rock by volume. Some detrital tuffaceous material is generally present.

Volcanic graywacke

The volcanic graywacke rocks are well exposed on the lower bluff south of the massive sulfide bodies, where they are typically massive compact marine volcaniclastics that weather medium dark gray to olive gray and have a greenish chloritic sheen on sheared surfaces. The volcanic constituents are generally 75 percent or more of these rocks by volume.

Fine- to medium-grained graywacke predominates, but beds of loosely packed conglomerate and breccia with angular fragments up to several inches in maximum diameter also occur locally. Fracturing of the fragments has occurred through rather than around the grains.

Petrographically, the graywacke has the fabric of a microbreccia composed predominantly of angular, rather poorly sized, moderately closely packed basaltic mineral and rock fragments
SULFIDE DEPOSITS, SHELLABARGER PASS, ALASKA

set in a chloritic “paste.” The fabric has a striking resemblance to the wacke texture of the middle sulfide body, suggesting that the volcanic graywacke may have locally been a host for massive sulfide replacement. Mineral fragments in the volcanic graywacke include relatively fresh calcic plagioclase and clinopyroxene identical to those of the basaltic flows and intrusives. The lithic volcanic fragments, on the other hand, tend to be altered and appear to be derived from finer grained trachytic variants of the basaltic suite. Included among the minor lithic constituents are shards of devitrified basaltic glass and angular clasts of siliceous siltstone and chert. Dolomitic carbonate is widespread, mainly as matrix cement and late veinlets, less commonly as angular detrital grains.

The textural and structural characteristics of the volcanic graywacke strongly indicate a high energy, tectonically active marine depositional environment and relatively short distances of transport by bottom currents. The high proportion of tuffaceous detritus, including altered shards, further implies contemporaneous submarine basaltic volcanism. Although the precise stratigraphic position of the unit could not be ascertained from observed field relations, the textural and compositional features suggest close ties in space and in time with the basaltic aquagene tuff and breccia unit as well as with the basaltic flows and related intrusive rocks.

Basaltic aquagene tuff and breccia

In the upper bluff area in the southwest part of the area of plate 1, thin beds and lenses of calcareous basaltic aquagene vitric tuff and breccia are interbedded with basaltic flows, tuffaceous facies of the shale-siltstone-chert unit and locally underlie the sedimentary breccia and conglomerate unit and basalt (pl. 1, fig. 6). The tuff is massive and constitutes 25 percent or more of poorly sorted, angular, sand- to granule-size dark-green to black fragments of basaltic glass set in a matrix of comminuted chloritic volcanic detritus and sparry calcite cement. Its other clastic components are mainly of intraformational origin and include, in order of decreasing relative abundance, basalt of several textural varieties, medium-dark-gray siliceous siltstone and chert, limestone, microscopically identifiable fossil fragments, and grains of plagioclase, clinopyroxene, and rare rounded quartz. The largest clasts are somewhat better rounded and tend to be scattered throughout the rock in untouching relation to neighboring fragments of comparable size (fig. 7). With an increase in the number
of angular pebble-size clasts, the rock grades into breccia with an aquagene tuff matrix.

Petrographic studies show that the vitric fragments range from about 0.10 to 4.00 mm maximum diameter and are highly angular; some retain their original shardlike shapes. Commonly the vitric clasts are molded around grains of other composition and appear to be welded together. Most of the "glass" is palest greenish yellow and in different stages of devitrification and alteration to a poorly crystalline montmorillonoid clay mineral and (or) chlorite of uncertain specific composition. Some samples contain rare vitric fragments that appear to be completely isotropic. In plane-polarized light, such fragments commonly have a deep red-brown color due to clouding by ferric iron oxide crystallites. In addition to an impalpable chloritic mesostasis and carbonate cement, an amorphous greenish material ("chlorophaeite") with a refractive index of 1.58 occurs locally in interfragment areas. Disseminated pyrite is abundant throughout and is probably mostly indigenous.

The aquagene tuff and breccia are probably products of submarine volcanism in a relatively high-energy environment in which calcium carbonate was being precipitated or transported as a mud at the time of eruption and deposition. According to
Carlisle (1963), the formation of the angular vitric clasts and shards may be the result of autocomminution upon quenching. As indicated by the poor size sorting and the tendency of some nonvitric clasts, including quartz and chert, to be rather well
rounded, transport by high-energy bottom currents and (or) slumping must have occurred at some time during the deposition of the unit. However, the high angularity of the vitric fragments suggests they formed in situ or were carried very short distances with the other clastic components.

Sedimentary breccia and conglomerate

The youngest sedimentary unit believed present in the area mapped is sedimentary breccia and conglomerate, exposed in the bluff above the upper massive sulfide body in the core of a syncline (pl. 1, section A-A'). Breccia predominates and typically consists of a rather chaotic polymictic assemblage of angular to subangular megaclasts in the cobble-to-boulder size range loosely packed in an equally poorly sized greenish-gray calcareous graywacke matrix (fig. 8). With increasing roundness of the larger clasts, the rock becomes more conglomeratic. This is commonly accompanied by an increase in the abundance of megaclasts. However, as the volume of matrix always exceeds that of the megaclasts, the rock has a disrupted framework. Internal primary

![Figure 8](image-url)
structural features indicative of bedding generally are absent. Fractures, some surfaces of which are coated with thin films of chlorite, tend to break around rather than through the clasts.

The most abundant megaclasts are of intraformational origin and include medium- to dark-gray chert, altered basalt of several textural varieties, tuffaceous graywacke, and medium- to light-gray fine-grained limestone. No granitoid igneous rock components were observed. In comparison with the other clasts, the limestone clasts are notably the largest and usually are highly angular. Exotic blocks of limestone as large as 3 feet in greatest dimension were observed.

The source of the limestone detritus, which rarely exceeds 10 percent of the rock by volume, is not known. The limestone differs lithologically from the dolomitic sequence exposed in the northern part of the mapped area. It may be correlative with massively bedded limestone of Late Devonian age exposed approximately 1 mile to the east and near Shellabarger Pass, about 2 miles to the southeast and south (C. W. Merriam, written commun., 1970).

The thickness and extent of the breccia and conglomerate unit are not known. As much as 75 feet of breccia and conglomeratic breccia is exposed in a syncline (pl. 1, section A–A’), but the upper contact has been removed by erosion.

The textural and structural features of the unit, together with the predominance of intraformational detritus, suggest an origin by mass transport—probably by slumping and sliding that attended submarine volcanism near a cliffed headland or ocean-bottom escarpment. A unit deposited in the manner postulated could vary in thickness considerably, be of restricted distribution, and have distal facies transitional with the aquagene tuff and breccia and volcanic graywacke units.

IGNEOUS ROCKS

Basaltic flows with subordinate interstratified agglomerate, flow breccia, and tuff overlie and are interbedded with the upper part of the marine sedimentary sequence. In fresh exposures the basalt is dark greenish to olive gray and compact and contains phenocrysts of plagioclase as large as 5 mm in maximum dimension in a fine-grained groundmass. In the upper bluff area the original primary features of the basalt have been mostly obliterated by crushing and shearing, and the rocks have a greasy, serpentinized appearance. Pillow structures generally are only vaguely developed (fig. 9), but well-defined pillows to 2 feet in
FIGURE 9.—Poorly developed pillow in sheared basalt. The outcrop is in the southwest part of the map area crossed by section A–A’ (pl. 1).

diameter are preserved in exposures of relatively flat-lying flows vertically above the sulfide deposits 800 feet to the west.

The extrusive basalt is typically porphyritic, with glomeroporphyritic clots and phenocrysts of normally zoned calcic plagioclase and rare clinopyroxene set in an intersertal to intergranular groundmass of calcic plagioclase microlites, granular clinopyroxene, and minor relict glass that is devitrified and deuterically altered to chlorite, “chlorophaeite,” and montmorillinitoid clay of undetermined composition. The plagioclase is typically labradorite, but species as calcic as bytownite have been reported (S. N. Charteris, oral commun., 1969). The groundmass feldspar microlites have either a diabasic or trachytic arrangement, depending upon their response to flowage. The clinopyroxene is a nonpigeonitic, nontitaniferous variety. Several specimens examined contain rounded patches and aggregates of crysotile, saponite(?), and delessitic chlorite that suggest the former presence of olivine in amounts up to about 8 percent by volume. Visual estimates of the observed abundance ranges of principal mineral constituents are given in table 1.

Although tholeiitic basalts tend not to be porphyritic, these rocks are tholeiitic on a modal basis, in accordance with the definition of Kennedy (1931, 1933), as broadened by Tilley (1950)
Table 1.—Visually estimated modes of extrusive basalt

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Volume (percent)</th>
<th>Average grain size (mm)</th>
<th>Maximum grain size (mm)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>45–65</td>
<td>0.15–3.0</td>
<td>0.75–2.5</td>
<td>An05–75; mostly labradorite; in part saussuritized and replaced by carbonate minerals; forms phenocrysts and groundmass microlites.</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>10–35</td>
<td>.1 – .2</td>
<td>.6 – .8</td>
<td>(+)2V generally within range 45°–60°; subordinate as phenocrysts.</td>
</tr>
<tr>
<td>Serpentine minerals, “chloro-phaesite,” chlorite and sapo- nite (?)</td>
<td>8–20</td>
<td>.1 – .2</td>
<td>.1 – .4</td>
<td>Mainly late deuteric alteration products of former glass, but in part believed to represent former olivine to 8 percent total rock volume.</td>
</tr>
<tr>
<td>Carbonate mineral(s)</td>
<td>0–15</td>
<td>.1 – .2</td>
<td>.7 – 2.0</td>
<td>Includes disseminated sulfide minerals.</td>
</tr>
<tr>
<td>Opaques</td>
<td>3–10</td>
<td>.1 – .2</td>
<td>.3 – .5</td>
<td>In part after ilmenite.</td>
</tr>
<tr>
<td>Sphene+leucoxene</td>
<td>0–5</td>
<td>.1 – .2</td>
<td>.3 – .5</td>
<td>Late residuum; locally as veinlets.</td>
</tr>
<tr>
<td>Quartz</td>
<td>0–3</td>
<td>.1 – .2</td>
<td>.3 – .5</td>
<td></td>
</tr>
</tbody>
</table>

and Kuno (1960). They also have many petrographic characteristics of calc-alkali basalts (Wilkinson, 1967). Without bulk chemical analyses, it is inadvisable to attempt a more refined classification of these basalts because cooling history can effect similar modal assemblages from melts of differing basaltic composition.

Several small basaltic dikes, sills, and irregular discordant intrusive bodies are exposed on the hillside near the sulfide deposits. Like their extrusive counterparts, these basalts characteristically contain glomeroporphyritic clots and phenocrysts of labradorite in a groundmass dominated by lathlike labradorite and equant clinopyroxene microlites. The hypabyssal intrusive rocks, however, generally have a finer grained groundmass and a somewhat higher proportion of quartz and chalcedony in the mesostasis. They tend to be more intensely altered, especially with respect to replacement of the feldspar by carbonate.

The basaltic intrusive rocks and the flows are related, as indicated by their striking petrographic similarity and their close field relations in space and time.

STRUCTURE

The Shellabarger deposits lie within a north-trending structural trough composed of a thick sequence of eugeosynclinal sedimentary and volcanic rocks. Mafic volcanic rocks, mainly submarine flows, form the core of the trough (fig. 1). The deposits are east of the mafic volcanic rocks within a zone characterized by promi-
nent northwest-striking faults and shear zones that probably are part of a larger northwest-striking linear feature that transects the trough.

Within the area of the deposits, the rocks are complexly folded and faulted. Faults and shear zones, many of which cut bedding planes at low angles, and the lack of a well-defined stratigraphic sequence make the interpretation of structural features difficult. Moreover, parts of the steep to vertical cliff along the bluff in the southwest part of the area shown on plate 1 could not be examined, and the cross sections (pl. 1) are therefore only diagrammatic representations of the structural features. Nevertheless, two different structural styles are evident on the geologic map (pl. 1).

To the southwest the main structural feature is a faulted, northwest-trending syncline that is locally overturned to the northeast and cut by crossfaults and shear zones. The area to the east and northeast is structurally characterized by northwest-trending, nearly vertical fault blocks and slivers within which the bedding in general dips steeply to the northeast. A zone of dislocation is inferred to be between these two areas because of their differing structural styles. This zone lies beneath the small snowfield north and east of the prominent massive sulfide body (herein termed the "upper sulfide body") at an altitude of 4,600 feet, and probably extends southward below the base of the bluff to the south edge of the map at an altitude of about 4,575 feet (see section A-A′, pl. 1).

The structural features of the area to the southwest and the area to the northeast will be discussed separately.

Southwest area

The dominant structural feature in the northern half of this area is an asymmetric syncline that has a core of sedimentary breccia. The trace of the axial plane strikes about N. 35° W., and the axial plane dips about 30° SW. The southwest limb of the syncline is nearly vertical and locally is overturned to the northeast. The northeast limb dips gently to the southwest (sections A-A′, B-B′, pl. 1). Smaller folds (minor folds) which plunge N. 45°-65° W. at 20°-25° are superimposed on the northeast limb of the major fold. These minor folds may be open and plunge gently to the northwest, as shown at the north end of the diagram of insert A, plate 1, or they may be disharmonic and tightly compressed, as shown by the contorted bedded chert and aquagene tuff at the northern end of the syncline next to the glacier. The
upper sulfide body is within the trough of one of the minor open folds. The axis of this minor fold plunges N. 65° W. at about 20°. It is not known whether these minor folds represent dis-harmonic folding during the same general period of deformation which produced the major syncline, or are part of a later deformation, coeval, perhaps, with formation of the zone of northwest faulting.

The southern part of the major syncline is offset slightly to the east by a fault that trends northeastward. About 40 feet south of this fault, sedimentary breccia, exposed in the center of the syncline, and the underlying aquagene tuff and chert-shale units are truncated by a fault that strikes northwest. South of the latter fault, the gross structural features remain the same as north of the fault (section C–C'), but extrusive (?) basalt is exposed in the keel of the syncline. In detail, however, these relations are considerably more complex as a result of movement and crumpling related to numerous shears that dip northeastward at gentle to moderate angles. Figure 10 illustrates the juxtaposition of lithologic units on the southwest limb of the main syncline as exposed at the south end of the prominent bluff.

Figure 10.—Southwest limb of the major syncline cut by northeast-dipping faults. The limb of the syncline is composed of chert and shale (cs), aquagene tuff (t), and basalt (b). Basalt also forms the keel of the syncline. The exposure in foreground is approximately 60 feet high and is 40 feet south of section C–C' (pl. 1). View north.
Folds and faults also disrupt the northeast limb of the major syncline. Chert and shale, which underlie the aquagene tuff, are infolded and faulted upward to the southwest, forming the core of a minor anticline which is intensely sheared and contains many inconsistent folds. This feature is in part inferred, for the rocks on the steep east-facing bluff could not be examined everywhere. At the base of the bluff the underlying chert and shale are well exposed below the aquagene tuff and also form the core of the minor anticline (fig. 11).

Figure 11.—Northeast limb of major syncline formed by massive aquagene tuff (t) and underlying chert and shale (cs). The chert and shale form a minor anticline which is sheared and faulted upward to the southwest (toward the upper left-hand corner of the photograph). Axial plane of minor anticline lies to the right of area shown in photograph. This exposure is about 50 feet north of section line C–C'. View west.

The major syncline is thought to extend northwestward beneath the glacier at least as far as its projected intersection with the continuation of the south shear zone (pl. 1).

Northeast area

Faults rather than folds are the dominant structural features in the area to the north of the south shear zone, although minor drag folds are present locally. In this area, the bedded rocks strike northwest and dip northeastward at steep to moderate
angles (section D–D', pl. 1.). Small basalt dikes and sills, possible feeders for the overlying basalts, intrude the bedded rocks. The bedded rocks and the associated basaltic intrusives are broken up into fault blocks by numerous northwest-striking, steeply dipping faults and shear zones thought to be part of a larger northwest-trending zone of dislocation that transects the east limb of the major regional structural trough.

Because many faults and shear zones parallel the bedding and there is no well-defined stratigraphic sequence containing reliable marker units, the amount of displacement is not known. Left-lateral movement for some faults is indicated by drag folds; a vertical component of movement is suggested for some of the blocks by slickensided fault surfaces. The steepening in dip to the northeast of the sills in section A–A' (pl. 1) may be due to drag in which this block has moved upward relative to the adjacent blocks. The shale is intensely sheared adjacent to faults, whereas the chert and siltstone have yielded by brittle failure.

Most of the faults and shear zones are considered older than the sulfide deposits, because sulfide minerals occur at many places along these structural features and because there is little slickensiding of the sulfide deposits. However, movement after deposition of sulfide minerals is postulated for some faults: for example, the fault adjacent to sample locality 21 (pl. 1), where the sulfide deposits are soft and “punky,” suggests brecciation after sulfide mineralization. Small shear zones with minor breccia crosscut some of the massive sulfide bodies, and sulfide minerals locally fill fractures in the chert and siltstone. The south shear zone is of particular economic importance, as it controls the location of the middle and lower massive sulfide bodies and is believed to have been a feeder channel for mineralizing fluids.

MINERAL DEPOSITS

Three types of mineral deposits occur within the mapped area: (1) massive sulfide deposits, (2) sulfide minerals that replace carbonate-rich lenses and laminae, and (3) sulfide minerals that fill fractures in chert and siltstone. Types 2 and 3 appear to be of minor importance. All three types of deposits are spatially related to faults or shear zones and occur within sedimentary rocks that dominate the lower part of the eugeosynclinal sequence. The sulfide minerals are chiefly pyrite and marcasite, with lesser amounts of sphalerite, chalcopyrite, and galena. The average tenor of the massive sulfide bodies is about 1 to 1.5 percent copper, 0.8 to 1.7 percent zinc, 0.9 to 2.4 ounces of silver per ton,
and less than 0.5 percent lead. Gold content varies from 0.0006 to 0.15 oz per ton.

MASSIVE SULFIDE DEPOSITS

The massive sulfide bodies offer the greatest economic potential for the area. Three are exposed in the mapped area: (1) one at altitudes near 4,600 feet in the trough of a minor syncline; (2) one between altitudes of 4,500 and 4,550 feet, and (3) one at an altitude near 4,475 feet. The middle and lower sulfide bodies occur as isolated lenses or groups of lenses along the steeply dipping, northwest-striking south shear zone. This zone is thought to bifurcate above the middle sulfide body and form the north and south boundaries of the upper sulfide body. It is inferred that it represents the main feeder channel for the exposed massive sulfide deposits.

The sulfide bodies have smooth contacts, are lens shaped, and are parallel to the bedding of the enclosing rocks. Country rock adjoining the sulfide lenses generally is barren but locally contains disseminated sulfide minerals within a few feet of the contact. Small shear zones leading from a lens also may contain disseminated sulfide minerals within a few feet of the main body. As exposed, the bodies range from a few inches to slightly more than 100 feet in greatest dimension.

The bodies in general consist of more than 60 percent sulfide minerals, in order of decreasing abundance, pyrite, marcasite, sphalerite, chalcopyrite, galena, and pyrrhotite. Trace amounts of arsenopyrite also have been identified and probably account for the unusually high arsenic content of some samples. The gangue minerals are siderite, calcite, quartz, and dolomite. The deposits are a fine-grained mixture of these minerals, and in some places they show a crude banding up to a few millimeters thick that parallels the bedding of the enclosing rocks. In places the textures of the sulfide bodies strikingly resemble those of the volcanic graywacke, sandstone, and aquagene tuff (figs. 15, 18).

Upper sulfide body

The upper sulfide body appears lenticular in plan and section and forms the keel of a minor syncline superimposed on the northeast limb of an asymmetric syncline. When this body was mapped in July 1968, it was exposed over a distance of about 90 feet; the north end was covered by snow (insert A, pl. 1). In late August 1969, the snow had melted considerably, and the exposure was slightly more than 100 feet long (fig. 12), but the
Figure 12.—View looking southwest at upper sulfide body (USB), which forms the trough of a minor syncline. The sulfide body plunges to the northwest (to the right, beneath the upper cliff) at about 20°. Dashed line is approximate location of gouge zone at south end of body.

North end was still covered by snow, and its suspected continuation northward beneath the snow to the south shear zone could not be proved. The south end is bounded by a gouge zone a few inches to 2 feet wide. The gouge, as well as the chert and shale that overlie the upper sulfide body, may have controlled the deposition of the sulfide minerals by serving as a relatively impermeable barrier to mineralizing solutions inferred to have migrated laterally from the south shear zone toward the keel of the minor syncline along favorable beds. Small fractures with no apparent offset and with gouge zones less than 2 inches thick cut the body.

The maximum exposed thickness near the center of the body is 17 feet. The base is not exposed, but a maximum possible thickness, assuming there is a zone of dislocation below the body (section A–A’), is about 25 feet. This thickening toward the center of the body could be due to flowage of a thinner replaced bed toward the axis of the minor syncline.

On fresh surfaces the upper sulfide body is typically massive, brassy yellow, very fine grained, and notably lacks discrete macroscopic ore and gangue mineral grains. Locally, however, the texture is that of a breccia in which pyrite and marcasite form angular to subangular fragments 1–15 mm in diameter embedded
in a matrix of dark-gray carbonate and minor quartz (fig. 13). The close resemblance of this texture to that of the aquagene tuff (fig. 7) suggests that it may represent a partially replaced tuff-aceous unit.

The plunge of the sulfide body is about 20° NW. If the sulfide body has selectively replaced a favorable host along the trough of

![Polished slab showing breccia texture locally developed in the upper sulfide body. Clasts of marcasite and pyrite (light and medium gray) lie in a matrix (dark gray) of carbonate minerals. Note the somewhat similar texture of the aquagene tuff (fig. 7).](image)

FIGURE 13. Polished slab showing breccia texture locally developed in the upper sulfide body. Clasts of marcasite and pyrite (light and medium gray) lie in a matrix (dark gray) of carbonate minerals. Note the somewhat similar texture of the aquagene tuff (fig. 7).*
a minor syncline, its continuation downplunge would appear to be limited because the limb of the major syncline on which the minor fold is located reverses dip about 300 feet southwest of the outcrop (section A–A’, pl. 1). If, however, extensive replacement has occurred in a westward direction along the keel of the syncline and onto its southwest limb, the sulfide body should crop out beneath the surficial deposits approximately 200 feet west of section line A–A’. Of potential significance is the finding of two massive sulfide boulders 3–4 feet in diameter in the moraine on the south side of the glacier west of the sedimentary breccia. These boulders could be derived from a continuation of the upper sulfide body that crops out on the west limb of the syncline as suggested above or derived from sulfide bodies located along the south shear zone that may extend northwestward beneath the glacier.

Four chip samples and three grab samples were collected across the upper sulfide body (table 2). The location of these samples is shown on the longitudinal sketch in insert A of plate 1. The chip samples show a range in distribution of copper and zinc from 1.1 to 1.3 and 1.1 to 1.7 percent, respectively, and an average silver content of 1.55 oz per ton.

Middle sulfide bodies

The middle sulfide bodies consist of several small, apparently discontinuous sulfide lenses and masses along the south shear zone between 4,500 and 4,550 feet altitude (pl. 1). The largest body is lens shaped in plan view and is exposed for 50 linear feet and a vertical distance of about 20 feet (fig. 14). The long dimension of the lens strikes N. 80° W. This body dips steeply to the north, tapers to the east and west, and probably pinches out within a depth of 50–75 feet. The walls of the lens are smooth and parallel the bedding of the enclosing rocks. Sheared shale on the south side of the lens contains disseminated sulfide minerals which grade outward from the lens into barren country rock. The lens has well-defined banding on its north edge, manifested by both the size and the concentration of sulfide mineral particles. Larger fragments (1–8 mm) are angular, suggesting replacement of original sedimentary rock fragments (fig. 15). In polished section, the largest fragments are pyrite and marcasite in a poorly sized matrix of finer grained pyrite and marcasite grains, carbonate, and other sulfide minerals. Specimens of banded massive sulfide minerals, cut perpendicular to the banding, show textures suggestive of relict graded bedding and scour-and-fill features (fig. 15).
Table 2.—Analyses of samples from upper sulfide body

(Location of samples shown on pl. 1. Unless noted, chip samples are the sample type. First number is length of chip in feet; second number, interval between chips in feet; that is 17-1 is a 17-foot chip sample with chips collected at 1-foot intervals. Symbols used: >, greater than; N, detected; L, present but below determination limit or below value shown; H, interference.)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lab. No.</th>
<th>Field No.</th>
<th>Au (oz per ton)</th>
<th>Ag (percent)</th>
<th>Cu (percent)</th>
<th>Pb (parts per million)</th>
<th>Zn (parts per million)</th>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGC195</td>
<td>68AR143</td>
<td>0.0263</td>
<td>1.64</td>
<td>1.2</td>
<td>0.09</td>
<td>1.1</td>
<td>1000 L L 200 17-1</td>
</tr>
<tr>
<td>2</td>
<td>197</td>
<td>144</td>
<td>0.0350</td>
<td>2.10</td>
<td>1.3</td>
<td>0.1</td>
<td>1.3</td>
<td>1500 20 20 300 15-1</td>
</tr>
<tr>
<td>3</td>
<td>198</td>
<td>145</td>
<td>0.0239</td>
<td>1.11</td>
<td>1.1</td>
<td>0.05</td>
<td>1.7</td>
<td>2000 20 30 150 9-1</td>
</tr>
<tr>
<td>4</td>
<td>194</td>
<td>142</td>
<td>0.0148</td>
<td>1.34</td>
<td>1.1</td>
<td>0.08</td>
<td>1.7</td>
<td>1000 20 70 200 9-1</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>147</td>
<td>0.1022</td>
<td>1.03</td>
<td>0.6</td>
<td>0.5</td>
<td>0.9</td>
<td>>10000 N N 1000 Grab</td>
</tr>
<tr>
<td>6</td>
<td>199</td>
<td>146</td>
<td>0.0234</td>
<td>1.03</td>
<td>1.3</td>
<td>0.06</td>
<td>0.8</td>
<td>1500 20 N 200 Grab</td>
</tr>
<tr>
<td>7</td>
<td>222</td>
<td>158</td>
<td>0.0117</td>
<td>1.11</td>
<td>1.3</td>
<td>0.06</td>
<td>0.7</td>
<td>5000 H N 200 Grab</td>
</tr>
</tbody>
</table>

Au: HBr digestion; M.I.B.K. extraction; determination by atomic absorption; sensitivity=0.02 ppm (0.0006 oz per ton); range/(report interval)=0.02-1 ppm (0.02 ppm), 0.1-1.0 ppm/(0.05 ppm), 1-100 ppm/(1 ppm); R. L. Miller and W. R. Vaughn, analysts.

Ag: fire assay with 150 mg Ag control added; acid digestion of bead; determination by atomic absorption; sensitivity=0.2 ppm (0.006 oz per ton); range/(report interval)=0.2-1 ppm/(0.2 ppm), 1.0-10 ppm/(0.5 ppm), 10-100 ppm/(1.0 ppm), 100-10,000 ppm/(10 ppm); R. R. Carlson and Z. C. Stephenson, analysts.

Cu and Zn: assay by total digestion in HF, HNO₃ and CH₃COClO₃; determination by atomic absorption; sensitivity=50 ppm; range/(report interval)=50-1,000 ppm/(10 ppm), 1,000-10,000 ppm/(100 ppm), 10,000±ppm/(1,000 ppm); J. B. McHugh, analyst.

Pb: assay by total digestion in HF, HNO₃ and CH₃COClO₃; determination by atomic absorption; sensitivity=5 ppm; range/(report interval)=5-10 ppm/(5 ppm), 10-1,000 ppm/(10 ppm), 1,000-10,000 ppm/(100 ppm), 10,000±ppm/(1,000 ppm); J. B. McHugh, analyst.

As, Bi, Cd, Sb: by semiquantitative spectrographic analysis; results are reported in parts per million to nearest number in the series 0.5, 0.7, 1.0, 1.5, 3.0, 5, 7, 10, 15, and so on; precision of reported value is approximately +100 percent or −50 percent; limits of detection (ppm): As=200, Bi=10, Cd=20, Sb=100; K. J. Curry, analyst.
FIGURE 14.—Geologic sketch map of middle sulfide bodies, showing sample locations.
Smaller sulfide bodies crop out a few feet east of the main lens (fig. 14). These masses are not well enough exposed to deter-
mine their overall shape but are thought to be replacement bodies within the same shear zone.

Analyses given in table 3 for two chip and three grab samples from the middle sulfide body show that the copper, zinc, lead, and silver values for the chip samples are roughly comparable to those obtained for the upper sulfide body. As is common, the amount of cadmium tends to vary directly with that of zinc. The low silver content of grab samples 10 and 11 is paralleled by a correspondingly low lead content. The gold content of 0.15 oz per ton for sample 13 is the highest gold value reported for any of the massive sulfide deposits.

Lower sulfide body

The lower sulfide body is surrounded by talus and snow, and its configuration and geologic relations cannot be accurately ascertained. However, it lies on the projected strike of the south shear zone and probably is a lens localized within or adjacent to the shear zone. A small septum of siltstone containing disseminated sulfide minerals occurs within the body.

When the deposits were examined in 1968, about 35 feet of the lower body was exposed in a north-south direction and at a small outcrop surrounded by snow about 15 feet south of the main exposure (as mapped on pl. 1). When the area was reexamined in 1969, the snow had melted and a continuous massive sulfide body was exposed for about 75 feet (fig. 16). The maximum height of the body exposed above the snow was about 12 feet, and an additional 15 feet was exposed below the snow where the ice had melted away from the cliff (this detail is not shown on pl. 1).

Analyses are given in table 3 of chip samples taken along the 35-foot exposure shown on the map. The samples were collected from south to north. There is an apparent consistent range in copper values of 1.0 to 1.7 percent across the body. As in the upper and middle sulfide bodies, the silver content is low and tends to vary directly with lead. Both metals are less abundant at the south end of the exposure. Sample 15c, however, illustrates several exceptions to the general direct variation of silver to lead.

REPLACEMENT OF CARBONATE-RICH BEDS

Sulfide minerals replace carbonate-rich beds in the chert-shale subunit exposed in the central part of the mapped area between 4,500 and 4,600 feet altitude (pl. 1). The bedded rocks dip to the northeast and form a block bounded on the southwest and north-
Table 3.—Analyses of samples from middle sulfide body and adjacent deposits and lower sulfide body

[Location of samples 8-14 shown in fig. 14, samples 15a-g in fig. 16. Unless noted, chip samples are the sample type. First number is length of chip in feet; second number, interval between chips in feet; that is, 17-1 is a 17-foot chip sample with chips collected at 1-foot intervals. Symbols used: >, greater than; N, detected; L, present but below determination limit or below value shown; H, interference.]

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lab. No.</th>
<th>Field No.</th>
<th>Au (oz per ton)</th>
<th>Ag (ppm)</th>
<th>Cu (percent)</th>
<th>Pb (percent)</th>
<th>Zn (parts per million)</th>
<th>As (parts per million)</th>
<th>Bi (parts per million)</th>
<th>Cd (parts per million)</th>
<th>Sb (parts per million)</th>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>AGC179</td>
<td>69AR116</td>
<td>0.0555</td>
<td>1.61</td>
<td>1.9</td>
<td>0.085</td>
<td>2.0</td>
<td>1,500</td>
<td>20</td>
<td>70</td>
<td>150</td>
<td>11-1</td>
</tr>
<tr>
<td>9</td>
<td>183</td>
<td>120</td>
<td>0.8696</td>
<td>1.93</td>
<td>0.79</td>
<td>0.32</td>
<td>1.1</td>
<td>700</td>
<td>L</td>
<td>30</td>
<td>200</td>
<td>15-1</td>
</tr>
<tr>
<td>10</td>
<td>181</td>
<td>118</td>
<td>0.8800</td>
<td>1.2</td>
<td>2.0</td>
<td><0.0005</td>
<td>0.17</td>
<td>18</td>
<td>L</td>
<td>20</td>
<td>N</td>
<td>150 Grab</td>
</tr>
<tr>
<td>11</td>
<td>180</td>
<td>117</td>
<td>0.0585</td>
<td>2.0</td>
<td>0.89</td>
<td>0.005</td>
<td>3.7</td>
<td>1,000</td>
<td>L</td>
<td>200</td>
<td>L</td>
<td>Grab</td>
</tr>
<tr>
<td>12</td>
<td>182</td>
<td>119</td>
<td>0.0613</td>
<td>6.42</td>
<td>1.3</td>
<td>0.46</td>
<td>1.6</td>
<td>700</td>
<td>10</td>
<td>L</td>
<td>1,500</td>
<td>Grab</td>
</tr>
<tr>
<td>13</td>
<td>184</td>
<td>121</td>
<td>0.1450</td>
<td>3.50</td>
<td>3.8</td>
<td>0.979</td>
<td>1.7</td>
<td>700</td>
<td>70</td>
<td>30</td>
<td>150</td>
<td>Grab</td>
</tr>
<tr>
<td>14</td>
<td>225</td>
<td>161</td>
<td>0.0877</td>
<td>1.58</td>
<td>0.92</td>
<td>0.055</td>
<td>0.8</td>
<td>700</td>
<td>N</td>
<td>30</td>
<td>200</td>
<td>17-1</td>
</tr>
</tbody>
</table>

Middle sulfide body

Lower sulfide body

Au: HBr digestion; M.I.B.K. extraction; determination by atomic absorption; sensitivity = 0.02 ppm (0.0006 oz per ton); range/report interval = 0.02-1 ppm (0.02 ppm), 0.1-1 ppm (0.05 ppm), 1-100 ppm (1 ppm); R. L. Miller and W. R. Vaughn, analysts.

Ag: fire assay with 150 mg Ag control added; acid digestion of bead; determination by atomic absorption; sensitivity = 0.2 ppm (0.006 oz per ton); range/report interval = 0.2-1 ppm (0.2 ppm), 1.0-10 ppm (0.5 ppm), 10-100 ppm (1 ppm), 100-1,000 ppm (10 ppm); R. R. Carlson and Z. C. Stephenson, analysts.

Cu and Zn: assay by total digestion in HF, HNO₃, and CH₂ClO₃; determination by atomic absorption; sensitivity = 50 ppm; range/report interval = 50-1,000 ppm (10 ppm), 1,000-10,000 ppm (100 ppm), 10,000+ ppm (1,000 ppm); J. B. McHugh, analyst.

Pb: assay by total digestion in HF, HNO₃, and CH₂ClO₃; determination by atomic absorption; sensitivity = 5 ppm; range/report interval = 5-10 ppm (5 ppm), 10-100 ppm (10 ppm), 100-1,000 ppm (100 ppm), 1,000-10,000 ppm (1000 ppm), 10,000+ ppm (1,000 ppm); J. B. McHugh, analyst.

As, Bi, Cd, Sb: by semiquantitative spectrographic analysis in which results are reported in parts per million to nearest number in the series 0.5, 0.7, 1.0, 1.5, 3.0, 5, 7, 10, 15, and so on; precision of reported value is approximately +100 percent or -50 percent; limits of detection (ppm): As = 200, Bi = 10, Cd = 20, Sb = 100; K. J. Curry, analyst.
east by steeply dipping faults that strike northwest (sections $A-A'$, $D-D'$, pl. 1). The block contains many small shears and faults, and the more competent chert and siltstone locally are intensely fractured.

The southwest part of the fault block is underlain by thinly laminated to thin-bedded calcareous siltstone that contains lenses and beds of limestone and has an exposed thickness of about 25 feet. Sulfide minerals have replaced the carbonate-rich lenses and laminae (samples 16–18, pl. 1, table 4), but the total volume replacement probably does not exceed 10 percent. The thickness of an individual replacement zone is in proportion to the thicknesses of the original carbonate-rich units. These thicknesses range from a millimeter, within which several laminae may be only a few percent of the total rock thickness (fig. 5), to beds up to 2 feet thick that pinch out within a few feet along strike. Such examples of selective and incomplete replacement extend even to the fabric level of the host rocks. Silt-size quartz grains and clasts of chert notably have been unaffected by the mineralizing solutions (fig. 5), and many sulfide lenses contain vestigial embayed calcite or dolomite.
The siltstone is cut by numerous fractures and small faults, many of which are filled by sulfide minerals. This suggests that mineralizing fluids migrated along the fractures and then outward to replace carbonate-rich lenses and laminae. Perhaps the most important aspect of the deposits is that they represent bedding replacement of chemically favorable units. If these carbonate units are abundant elsewhere in the chert-shale unit and are favorably situated adjacent to feeder channels, then they could be of economic significance.

Two composite chip samples (samples 19 and 20, table 4) were collected across a carbonate-cemented breccia that is irregularly distributed (possibly intertonguing) on the east end of the chert-shale block. Small fragments of chert are cemented by dark-gray carbonate that contains irregular seams and disseminations of sulfide minerals that replace the carbonate.

A prominent fault near the location of sample 21 (pl. 1) has produced $21\frac{1}{2}$ feet of gouge in the chert-shale unit. The gouge contains disseminated sulfide minerals, and a 2-foot-thick limestone bed on the southwest side of the fault is partially replaced by sulfide minerals.

FRACTURE FILLINGS IN CHERT AND SILTSTONE

Within the chert-shale block that contains the replacement deposits are local areas of intensely crushed, compact siltstone and chert. Fractures within these units are in places filled with sulfide minerals. The fractures range in width from a millimeter to about 30 centimeters, are of irregular shape, and pinch out within a few inches. The mineralized fractures are adjacent to faults or shear zones and are best exposed in the chert-shale unit southeast of section A–A’ (pl. 1). The total volume of sulfide minerals in such fractures is small; but in contrast to the massive sulfide deposits and replacement beds in which chalcopyrite is only rarely visible in hand specimens, the fracture fillings contain notable amounts of visible chalcopyrite. The gold, silver, copper, lead, and zinc content of the single sample collected (sample 22, table 4) is notably higher than that of the massive sulfide deposits.

OTHER OCCURRENCES

Other mineral occurrences of interest within the area mapped are located on the continuation of known mineral-bearing faults or shear zones, and some may be peripheral to unexposed massive sulfide bodies. Two small massive sulfide lenses are enclosed by sheared siltstone in the south shear zone between 4,600 and 4,650
TABLE 4.—Analyses of samples from sulfide replacements in carbonate beds and from fracture fillings in chert and siltstone

(Location of samples shown on pl. 1. Symbols used: >, greater than; N, detected; L, present but below determination limit or below value shown)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lab. No.</th>
<th>Field No.</th>
<th>Au (oz per ton)</th>
<th>Ag (percent)</th>
<th>Pb (percent)</th>
<th>Zn (percent)</th>
<th>As (parts per million)</th>
<th>Bi (parts per million)</th>
<th>Cd (parts per million)</th>
<th>Sb (parts per million)</th>
<th>Sample type</th>
<th>Sample description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>AGC234</td>
<td>68AR164</td>
<td>0.0292</td>
<td>1.23</td>
<td>0.59</td>
<td>0.07</td>
<td>1.7</td>
<td>3,000</td>
<td>L 150</td>
<td>150</td>
<td>Grab</td>
<td>3- to 5-in.-thick lens-shaped bed replaced by sulfide minerals.</td>
</tr>
<tr>
<td>17</td>
<td>240</td>
<td>171</td>
<td>0.0058</td>
<td>1.08</td>
<td>.49</td>
<td>.18</td>
<td>1.8</td>
<td>1,500</td>
<td>L 70</td>
<td>150</td>
<td>Grab</td>
<td>Siltstone with 0.1- to 0.5-in. thick laminae replaced by sulfide minerals.</td>
</tr>
<tr>
<td>18</td>
<td>241</td>
<td>172</td>
<td>0.0087</td>
<td>1.81</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
<td>1,000</td>
<td>L 20</td>
<td>200</td>
<td>Grab</td>
<td>2- to 10-in. lens-shaped carbonate bed replaced by sulfide minerals.</td>
</tr>
<tr>
<td>19</td>
<td>242</td>
<td>173</td>
<td>0.0496</td>
<td>0.93</td>
<td>2.3</td>
<td>0.40</td>
<td>2.3</td>
<td>2,000</td>
<td>L 300</td>
<td>100</td>
<td>6 in. Composite Chip</td>
<td>Disseminated sulfides in carbonate-cemented breccia.</td>
</tr>
<tr>
<td>20</td>
<td>243</td>
<td>174</td>
<td>0.0175</td>
<td>1.05</td>
<td>1.2</td>
<td>0.02</td>
<td>5.3</td>
<td>>10,000</td>
<td>L 300</td>
<td>150</td>
<td>8 in. Composite Chip</td>
<td>Do.</td>
</tr>
<tr>
<td>21</td>
<td>244</td>
<td>175</td>
<td>0.0321</td>
<td>8.47</td>
<td>1.1</td>
<td>.50</td>
<td>2.9</td>
<td>700</td>
<td>30</td>
<td>70</td>
<td>Composite Chip Grab</td>
<td>2-ft-thick sulfide lens replacing limestone.</td>
</tr>
<tr>
<td>22</td>
<td>235</td>
<td>165</td>
<td>0.438</td>
<td>14.89</td>
<td>13.0</td>
<td>1.3</td>
<td>9.3</td>
<td>N</td>
<td>70</td>
<td>500</td>
<td>Selected Sulfide minerals filling 3-in. fracture in siltstone.</td>
<td></td>
</tr>
</tbody>
</table>

Au: HBr digestion; M.I.B.K. extraction; determination by atomic absorption; sensitivity=0.02 ppm (0.0006 oz per ton); range/(report interval)=0.02-1 ppm/(0.02 ppm), 0.1-1.0 ppm/(0.05 ppm), 1-100 ppm/(1 ppm); R. L. Miller and W. R. Vaughn, analysts.
Ag: fire assay with 150 mg Ag control added; acid digestion of bead; determination by atomic absorption; sensitivity=0.2 ppm (0.006 oz per ton); range/(report interval)=0.2-1 ppm/(0.2 ppm), 1.0-10 ppm/(0.5 ppm), 10-100 ppm/(1.0 ppm), 100-1,000 ppm/(10 ppm); R. R. Carlson and Z. C. Stephenson, analysts.
Cu and Zn: assay by total digestion in HF, HNO₃ and CH₃COClO₂; determination by atomic absorption; sensitivity=50 ppm range/(report interval)=50-1,000 (10 ppm), 1,000-10,000 ppm/(100 ppm), 10,000 ppm/(1,000 ppm); J. B. McHugh, analyst.
Pb: assay by total digestion in HF, HNO₃ and CH₃COClO₂; determination by atomic absorption; sensitivity=5 ppm range/(report interval)=5-10 ppm/(5 ppm), 10-1,000 ppm/(10 ppm), 1,000-10,000 ppm/(100 ppm), 10,000 ppm/(1,000 ppm); J. B. McHugh, analyst.
As, Bi, Cd, Sb: by semiquantitative spectrographic analysis; results are reported in parts per million to nearest number in the series 0.5, 0.7, 1.0, 1.5, 3.0, 5.0, 7.0, 10, 15, and so on; precision of reported value is approximately ±100 percent or ±50 percent; limits of detection (ppm): As=200, Bi=10, Cd =20, Sb=100; K. J. Curry, analyst.
feet altitude (samples 23–24, table 5, pl. 1). The lenses are partially covered by snow, have a maximum exposed length of 5 feet, and are aligned parallel to the bedding of the enclosing rocks.

A shear zone in the chert-shale subunit exposed in the southern part of the mapped area contains heavily disseminated sulfide minerals. The zone is 15–20 feet wide, strikes northwest parallel to the bedding, and has a nearly vertical dip. It is marked by a pronounced dark-reddish-brown limonitic color produced by hydrous iron oxide minerals.

Talus on bedrock at the top of the south end of the cliff forms a gossan cemented by iron oxide minerals (sample 28, table 5). Sample 25 (table 5), collected from gouge in a shear zone that roughly parallels the south shear zone, has a relatively high copper content in association with low zinc, lead, and arsenic values. This probably indicates postmineral granulation of chalcopyrite-rich veinlets and disseminations in the host rock rather than proximity to a massive sulfide body or that the shear zone was an auxiliary channelway for mineralizing solutions.

Dolomite exposed in the north part of the mapped area contains rare malachite and azurite staining on joint and bedding surfaces (sample 27, table 5) and a few fractures filled with pyrite, chalcopyrite, and rare sphalerite.

On the west side of the main north-flowing glacier approximately 1,200 feet south of the mapped area, a small exposure of massive sulfides 1–2 feet thick occurs in a chert and tuff unit (S. N. Charteris, written commun., 1968).

MINERALOGY AND PARAGENESIS

Study of the minerals was limited to examining polished sections from the midle and upper sulfide bodies and examining single samples from the sulfide lenses and fracture fillings in the chert-shale unit. The mineralogy is not complex, and the same ore minerals occur in varying amounts in each deposit.

From examination of polished sections, the massive sulfide deposits contain, in order of relative abundance, pyrite, marcasite, sphalerite, chalcopyrite, galena, and pyrrhotite. Sphalerite is partly altered to hemimorphite near the surface. Small (<0.05 mm) euhedral grains, tentatively identified as arsenopyrite, were seen in only one polished section, but the arsenic content of some samples (in excess of 1 percent As) suggests that arsenopyrite may be more abundant locally. Although small amounts of gold and silver are present (tables 2–4), no gold or silver minerals were recognized. The massive sulfide deposits contain from 60
TABLE 5.—Analyses of samples from other mineral occurrences

(Location of samples shown on pl. 1. Unless noted, chip samples are the sample type. Symbols used: >, greater than; N, detected; L, present but below determination limit or below value shown; H, interference)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lab. No.</th>
<th>Field No.</th>
<th>Au (oz per ton)</th>
<th>Ag (> per cent)</th>
<th>Cu (percent)</th>
<th>Pb</th>
<th>Zn (parts per million)</th>
<th>As</th>
<th>Bi</th>
<th>Cd</th>
<th>Sb</th>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>AGC215</td>
<td>63AR153</td>
<td>0.0058</td>
<td>6.42</td>
<td>0.74</td>
<td>2.0</td>
<td>6.3</td>
<td>3.000</td>
<td>N</td>
<td>100</td>
<td>700</td>
<td>Grab, massive sulfide minerals</td>
</tr>
<tr>
<td>24</td>
<td>218</td>
<td>155</td>
<td>0.0058</td>
<td>1.17</td>
<td>0.60</td>
<td>0.90</td>
<td>1.7</td>
<td>1.500</td>
<td>N</td>
<td>50</td>
<td>700</td>
<td>Do.</td>
</tr>
<tr>
<td>25</td>
<td>250</td>
<td>200</td>
<td>0.0222</td>
<td>1.69</td>
<td>1.9</td>
<td>0.12</td>
<td>0.25</td>
<td>N</td>
<td>70</td>
<td>N</td>
<td>L</td>
<td>Grab, gouge zone</td>
</tr>
<tr>
<td>26</td>
<td>251</td>
<td>201</td>
<td>0.0017</td>
<td>1.20</td>
<td>0.09</td>
<td><0.0005</td>
<td>0.017</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Grab, iron-oxide-stained chert and shale.</td>
</tr>
<tr>
<td>27</td>
<td>254</td>
<td>178</td>
<td>0.0006</td>
<td>0.41</td>
<td>0.85</td>
<td>0.12</td>
<td>0.020</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Selected, malachite-stained dolomite</td>
</tr>
<tr>
<td>28</td>
<td>224</td>
<td>160</td>
<td>0.0029</td>
<td>1.11</td>
<td>0.09</td>
<td>0.19</td>
<td>0.057</td>
<td>1.500</td>
<td>N</td>
<td>N</td>
<td>150</td>
<td>Grab, talus cemented by iron oxide minerals</td>
</tr>
</tbody>
</table>

Au: HMr digestion; M.I.B.K. extraction; determination by atomic absorption; sensitivity = 0.02 ppm (0.0006 oz per ton); range/(report interval) = 0.02-1 ppm/(0.02 ppm), 0.1-1.0 ppm/(0.05 ppm), 1-100 ppm/(1 ppm); R. L. Miller and W. R. Vaughan, analysts.

Ag: fire assay with 150 mg Ag control added; acid digestion of bead; determination by atomic absorption; sensitivity = 0.2 ppm (0.006 oz per ton); range/(report interval) = 0.2-1 ppm/(0.2 ppm), 1.0-10 ppm/(0.5 ppm), 10-100 ppm/(1.0 ppm), 100-1,000 ppm/(10 ppm); R. R. Carlson and Z. C. Stephenson, analysts.

Cu and Zn: assay by total digestion in HF, HNO₃ and H₂OClO₃; determination by atomic absorption; sensitivity = 50 ppm range/(report interval) = 50-1,000 ppm/(5 ppm), 1,000-10,000 ppm/(10 ppm), 10,000+ ppm/(1,000 ppm); J. B. McHugh, analyst.

Pb: assay by total digestion in HF, HNO₃ and H₂OClO₃; determination by atomic absorption; sensitivity = 5 ppm; range/(report interval) = 5-10 ppm/(5 ppm), 10-100 ppm/(10 ppm), 100-1,000 ppm/(100 ppm), 1,000+ ppm/(1,000 ppm); J. B. McHugh, analyst.

As, Bi, Cd, Sb: by semiquantitative spectrographic analysis; results are reported in parts per million to nearest number in the series 0.5, 0.7, 1.0, 1.5, 3.0, 5, 7, 10, 15, and so on; precision of reported value is approximately +100 percent or -50 percent; limits of detection (ppm): As = 200, Bi = 10, Cd = 50, Sb = 100; K. J. Curry, analyst.
to 95 percent sulfide minerals. Sphalerite, chalcopyrite, and galena together rarely constitute more than 15 percent of the total sulfides. Megascopically, the massive sulfide deposits are very fine grained, and chalcopyrite and sphalerite generally are discernible only by careful examination with a hand lens. Galena is visible only in polished section.

Gangue occurs chiefly as microscopic fillings interstitial to larger pyrite grains. Irregular veinlets and clots of medium- to dark-gray gangue up to 2 mm in diameter are not uncommon, however. The gangue consists chiefly of carbonate minerals and sparse quartz. Siderite is the most abundant carbonate mineral, but most specimens contain some calcite, disclosed by a slight effervescence when patches of gangue are treated with cold dilute hydrochloric acid. A minor amount of dolomite, identified by X-ray diffraction, is also present in some samples.

Pyrite is the oldest and by far the most abundant sulfide mineral in the massive sulfide deposits. It occurs as irregular, angular to subangular, closely packed grains which generally range between 0.07–0.5 mm in greatest dimension. Smaller pyrite grains are somewhat euhedral, but euhedral pyrite cubes are common only where pyrite is enclosed by gangue minerals or by later sulfide minerals. Most polished sections show a typical wacke texture in which unsorted angular to subangular grains of pyrite 0.05–3 mm in greatest dimension are in a matrix of finer grained pyrite, gangue, and other sulfide minerals (fig. 17). Such textures are thought to represent replacement of poorly-sized volcanic sandstone or possibly a tuff. Margins of the pyrite grains may be partly replaced and embayed by marcasite, sphalerite, chalcopyrite, and galena. Minor fracturing of the sulfide bodies followed pyrite deposition, locally resulting in brecciation and marginal granulation of the larger grains, with small fractures localizing later gangue and sulfide minerals (fig. 18).

Marcasite is present in most of the polished sections examined and may constitute as much as 40 percent of the sulfide minerals. It most commonly occurs as marginal embayments and as irregular patches in pyrite, suggesting perhaps that pyrite has locally altered to marcasite. In polished section marcasite commonly is pitted and contains inclusions of gangue. However, it may also take a smooth polish like pyrite and can be distinguished from pyrite only by its strong anisotropism. Marcasite, like pyrite, locally has fractures filled by later sulfide minerals and is replaced by the later sulfide minerals. In one polished section, however, marcasite veins pyrite and also appears to replace and vein
FIGURE 17.—Photomicrograph showing typical wacke texture with angular pyrite (py) and marcasite (mr) grains in a fine-grained matrix of pyrite, marcasite, gangue (black), and sphalerite (sp).

FIGURE 18.—Photomicrograph showing fractures in pyrite (py) filled with chalcopyrite (cp) and carbonate gangue (black). Pyrite is locally replaced by chalcopyrite.
sphalerite and chalcopyrite (fig. 19), indicating that marcasite deposition either continued as an overlapping phase of sulfide deposition following pyrite or was a recurring sulfide phase.

Sphalerite characteristically occurs as an interstitial filling around larger pyrite grains, where it replaces a thin selvage of gangue minerals and smaller pyrite grains. It also corrodes the larger pyrite grains and may occur as small irregular patches in pyrite (fig. 20). Sphalerite patches rarely exceed 0.3 mm in diameter. It is thought to be older than chalcopyrite but may be in part contemporaneous.

Wherever sphalerite is abundant it contains a myriad of chalcopyrite blebs that may show a geometric pattern exsolved along crystallographic directions in the sphalerite (fig. 21). These intergrowths of chalcopyrite in sphalerite can be explained by exsolution or simultaneous deposition of both minerals. (Edwards, 1960, p. 99). The shape and distribution of chalcopyrite blebs in sphalerite may, however, be quite variable even in the same specimen, and some textures suggest that chalcopyrite may not be entirely the result of exsolution but may in part represent an early stage of replacement of sphalerite by chalcopyrite. Sphalerite and chalcopyrite also occur together as small blebs in pyrite. In the chert-shale subunit, where fractures are filled with sulfide

![Figure 19](image_url)

Figure 19.—Photomicrograph showing pyrite and marcasite (py-mr) veined by marcasite (mr). Marcasite veins and appears to replace both chalcopyrite (cp) and sphalerite (sp).
FIGURE 20.—Photomicrograph showing part of pyrite grain (py) with irregular patches of chalcopyrite (cp) and sphalerite (sp). Sphalerite locally contains blebs of chalcopyrite.

FIGURE 21.—Photomicrograph showing grain of sphalerite (medium gray) surrounded by calcite (dark gray). Sphalerite contains oriented intergrowths of chalcopyrite (cp, white), suggesting that the chalcopyrite has in part formed along crystallographic directions in the sphalerite.
minerals, sphalerite is veined by chalcopyrite. Thus, although chalcopyrite locally is younger than sphalerite, there appears to be some overlap in the deposition of the two minerals.

Chalcopyrite is present in varying amounts in all the massive sulfide bodies, but it rarely exceeds about 8 percent of the total sulfide minerals. It commonly occurs as small irregular patches in pyrite (fig. 20), as fracture fillings (where it is accompanied by carbonate gangue) in pyrite (fig. 18) and marcasite, as small embayments on the borders of larger pyrite grains, and interstitial to larger pyrite grains, replacing matrix pyrite and gangue minerals. The largest area of chalcopyrite seen in polished sections of the massive sulfide bodies was 0.4 mm in maximum length; the average dimension, however, is estimated to be between 0.02–0.1 mm. Veinlets of chalcopyrite range between 0.005–0.25 mm in width. Chalcopyrite replaces calcite preferentially to other carbonate minerals and quartz.

Pyrrhotite is a rare mineral in the massive sulfide deposits; it was seen in only two polished sections. It occurs interstitial to larger pyrite and marcasite grains and as small patches and veins in pyrite and marcasite. It generally is associated with chalcopyrite; the two minerals have mutual boundaries (fig. 22) and may have crystallized simultaneously.

Galena is a minor constituent of the deposits and generally is discernible only by careful examination of polished sections. Galena occurs preferentially in interstices between pyrite grains up to 1 mm in diameter, where it replaces smaller pyrite grains and gangue minerals. In the massive sulfide deposits, areas of galena rarely exceed 0.10 mm in diameter. Where sphalerite is abundant, there is an increase in galena content. The galena occurs as irregular patches, veinlets, and corroding embayments in sphalerite (fig. 23). A depositional sequence for galena and chalcopyrite could not be established. Where the two minerals occur together, they have mutual boundaries; blebs of chalcopyrite occur in galena and blebs of galena occur in chalcopyrite, suggesting that their crystallization may be virtually contemporaneous. Both galena and chalcopyrite vein sphalerite. Irregular patches of calcite and quartz and small veinlets of calcite and minor quartz cut the massive sulfide deposits and appear to represent a final stage of mineralization.

The silver content of the massive sulfide deposits ranges from 0.2 to 6.72 ounces per ton, and in a general way, varies directly with the lead content. There are, however, departures from the general silver-lead trend, and the analyses show that the deposits contain
more than 1 percent arsenic, as much as 1500 ppm antimony, and as much as 70 ppm bismuth. No silver minerals were seen in polished sections. If separate silver-bearing mineral phases are present they must be restricted to a size range below the limit of resolution of conventional reflected light microscopy. The silver-lead trend suggests that some of the silver may be in solid solution in galena, but without analyses of the separate ore minerals no definite statement can be made on the distribution of the silver.

In summary, although overlaps in sulfide mineral deposition occurred, there were periods in which deposition of one or more sulfide minerals predominated. Widespread pyrite replacement was the first phase of mineralization. Locally, pyrite appears to be altered to marcasite. A minor period of fracturing following pyritization locally fractured the pyrite-marcasite grains. These fractures are filled by the later sulfide and gangue minerals. Sphalerite and chalcopyrite were deposited simultaneously, but chalcopyrite probably continued as an overlapping phase with galena deposition, as both minerals transect and replace sphalerite. The later sulfide minerals show a preference for occurring
Figure 23.—Photomicrograph showing interstitial filling of sphalerite (sp), galena (ga), pyrite (py), and gangue (black). Entire photograph is of interstitial area between large pyrite grains, as much as 1 mm in diameter, which lie outside the field of view. Sphalerite and galena appear to replace pyrite, and galena veins sphalerite. Interstitial to larger pyrite grains, and they replace smaller grains of pyrite and gangue. A phase of marcasite deposition occurred after sphalerite and chalcopyrite deposition, for it veins and replaces both minerals. Gangue also accompanied later sulfide deposition.

Origin

Recent reports on massive sulfide deposits have reemphasized their worldwide association with volcanic rocks, particularly with eugeosynclinal volcanic and associated sedimentary rocks that accumulate in a submarine environment (Anderson, 1969, Wilson, 1967, Kinkel, 1966). The deposits at Shellbarger Pass fit into this general picture, but the actual source of the metals is not completely understood. Our brief study of the deposits precluded precise determination of the genesis of the metals; but to provide guides to further exploration for similar deposits in this part of Alaska, we summarize the geologic controls of the deposits and suggest possible alternative hypotheses as to their origin.

Three principal facts result from our studies: (1) some of
the sulfide deposits show compelling evidence for replacement origin; (2) sedimentary and associated volcanic rocks were hosts for the sulfide deposits; and (3) shear or fault zones provided channels for mineralizing solutions and favorable structural settings for massive sulfide deposits.

The sulfide laminae and lenses which contain relict clots of corroded calcite and stringers of unreplaced quartz appear to be valid replacement bodies. A replacement origin for the middle sulfide body is strongly indicated by (1) sulfide banding parallel to bedding of enclosing rocks and which may represent replaced original sedimentary structures; (2) the decrease in concentration of disseminated sulfide minerals in the enclosing sheared shale away from the sulfide body; (3) the relict poorly-sized wacke texture defined by angular pyrite-marcasite grains in a matrix of finer grained angular pyrite-marcasite grains, gangue, and sulfide minerals; and (4) the paragenetic sequence of sulfide mineral deposition. The close similarities in texture between the breccia of the upper sulfide body and the aquagene tuff suggest that the sulfide mass may represent a partially replaced tuffaceous bed. A coarse sedimentary tuff could presumably have had sufficient permeability to allow migration of metal-bearing fluid, during either diagenesis or orogenesis, resulting in sulfide mineral deposition. It is difficult to explain the selective replacement of clasts, and Clark (1968) has proposed another hypothesis for the genesis of the Kuroko deposits of Japan: that the deposits represent pyroclastic accumulation of sulfide fragments blown to their deposition sites by volcanic explosions.

As there is no geologic evidence for subjacent granitic rocks in the immediate area, it is difficult to appeal to the traditional buried granitic source for hydrothermal mineralizing solutions to replace chemically favorable rocks along favorable structures. Rather, it seems that the volcanic and sedimentary rocks of the eugeosyncline were the source of the metals and mineralizing fluids. Such a source is appealing because many large deposits of sulfur and iron sulfides are directly associated with volcanic processes. Examples are the deposits of Japan (Japan Geological Survey, 1960, p. 167), Taiwan (Tan, 1959), and Cyprus (Hutchinson, 1965). According to the source-bed concept for the formation of massive sulfide deposits, syngenetic beds of iron sulfide were deposited under near-surface conditions by a volcanic exhalative process, and during diagenesis the iron sulfide crystallized to pyrite. It is believed that water trapped in the sedimentary and volcanic rocks and heated by increased heat flow carried
trace amounts of base and precious metals, which partly replaced the pyrite to form chalcopyrite, sphalerite, and galena. Later orogenesis may have mobilized these sulfide bodies to migrate to more favorable structural settings. The later mechanism, however, does not appear valid for the massive sulfide bodies that possess delicately replaced sedimentary features. In all probability such features would be destroyed, even by limited mechanical migration. On the other hand, the massive sulfide bodies may represent early replacement features subsequently faulted to their present structural setting. This does not invalidate a postulated replacement origin of the body; it merely requires that replacement precede deformation.

Another mechanism which could provide mineralizing fluids would involve sea water, rich in alkali chlorides, trapped in pore spaces of the eugeosynclinal rocks. An increase in temperature and pressure during orogenesis or volcanism would cause the water to migrate to areas of lower pressure such as faults, shear zones, or areas of fractured rock. (The presence of disseminated sulfide minerals along many of the shear zones and faults and the general absence of tectonic brecciation and slickensiding of the massive sulfide deposits in these zones indicate that they predate the sulfide deposits.) During migration, these hydrous fluids could leach base and precious metals and sulfur from the enclosing rocks. The shear zones and faults would serve as channels and, where favorable rocks were present, loci for the deposition of sulfide minerals. Favorable host rocks adjacent to these channels, such as the carbonate-rich sandstone laminae and lenses in the chert-shale unit, would also serve as deposition sites.

An appealing feature of this hypothesis is that there is a large volume of eugeosynclinal sediments and volcanic rocks as a potential source. Semiquantitative spectrographic analyses show that four samples of unmineralized basalt and two samples from diabase dikes contain 200–300 ppm copper, about two to three times the normal abundance of copper in basalt (Turekian and Wedepohl, 1961). The lead and zinc content of the samples is below the limit of detectibility (7 and 100 ppm, respectively) for this spectrographic method, but these detectibility limits are close to the average abundance of these elements in basalt. However, much additional work on the geochemistry of the eugeosynclinal sediments and volcanics, both in and near the deposits, is necessary to determine whether there was depletion of metals from these rocks in amounts sufficient to form the deposits.

In summary, there is convincing evidence that the massive
SULFIDE DEPOSITS, SHELLABARGER PASS, ALASKA

Sulfide deposits were formed by replacement of favorable rock units within the eugeosynclinal sequence. The authors favor the concept that the source of the metals and sulfur was the eugeosynclinal sedimentary and volcanic rocks themselves. Specific controls of the deposits appear to be both chemical and structural. Permeable fault and shear zones were feeder channels for mineralizing fluids. Chemical differences in rocks within or adjacent to the shear or fault zones, as well as differences in rock permeability, probably primarily controlled the formation of the massive sulfide deposits. Calcareous rocks and poorly-sized, probably volcanic, sandstones appear to be particularly favorable hosts. Rocks adjacent to feeder channels and that were sufficiently brittle to fracture locally were hosts for sulfide deposition.

SUGGESTIONS FOR PROSPECTING

The presence of massive sulfide deposits 1,200 feet south of the mapped area and boulders of massive sulfides in glacial moraines west of the upper sulfide body suggest that other massive sulfide bodies probably occur within a few hundred feet of the surface in the area immediately surrounding the known deposits. They are most likely to be either at depth or along the strike of the faults and shear zones that contain the known deposits or show that they have been channels for mineralizing solutions. The shear zone that contains heavily disseminated sulfide minerals (sample 25) and the area upslope from the iron oxide-cemented talus (sample 28) appear to be favorable areas for exploration (plate 1). Extensive surface examination of these features is precluded by talus, snow, and glaciers. However, massive sulfide bodies are good conductors, and geophysical exploration using electrical methods should be successful in locating any concealed deposits. As terrain west of the deposits is extremely rugged, geophysical exploration there is best done by helicopter.

Regional prospecting should initially be concentrated along the contact of the basaltic flows with the underlying sedimentary units (fig. 1). Particular attention should be paid to any structural disruptions along this contact, particularly where there are tuffs, volcanic sandstones, and carbonate rocks. If the faults and shear zones in the mapped area are on a larger northwest-trending linear feature, the area defined by the extension of the lineament on the west side of the mafic volcanic flows merits examination.

The massive sulfide bodies are marked by a yellow-brown to chocolate-brown gossan. Associated shear zones are characterized
by limonite staining caused by alteration of disseminated pyrite. Areas of similar staining should be investigated, again with close examination of any associated shear zones.

Regional geologic maps are not available for this part of the Alaska Range. Judging from the results of our brief reconnaissance, however, the authors suggest that regional exploration for similar geologic environments be conducted east and northeast within the Alaska Range in the direction of Mount McKinley. It should be easy to identify thick sequences of submarine volcanic flows from the air, as this area is one of high relief and good exposures.

REFERENCES CITED
