Neogene Marine Mollusks of the Pacific Coast of North America: An Annotated Bibliography, 1797–1969

By WARREN O. ADDICOTT

GEOLOGICAL SURVEY BULLETIN 1362

A compilation of reports for the period 1797–1969 dealing with marine mollusks of Miocene and Pliocene age

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973
CONTENTS

Abstract. ... 1
Introduction. ... 1
Acknowledgments .. 2
Scope and criteria for inclusion 2
Geographic coverage .. 3
Stratigraphic considerations 3
Annotations .. 4
Style of entries ... 5
Indexing ... 5
Trends in Neogene molluscan paleontology 5
Bibliography .. 9
Index ... 167

ILLUSTRATIONS

Figure 1. Map showing generalized outlines of some marine Neogene depositional basins

2. Graph showing trends in the systematic description and illustration of Neogene mollusks.
NEOGENE MARINE MOLLUSKS OF THE PACIFIC COAST OF NORTH AMERICA: AN ANNOTATED BIBLIOGRAPHY

By Warren O. Addicott

ABSTRACT

Reports dealing with marine mollusks of Neogene (Miocene and Pliocene) age from the Pacific and Arctic coasts of North America are listed alphabetically by author and year of publication. This compilation covers the period 1797-1969. Geographic coverage is from the west coast of Central America to, and including, Arctic Alaska with comprehensive coverage from the west coast of Mexico northward. Each citation is accompanied by a brief annotation indicating the nature of information on Neogene mollusks and is referenced in a subject index, generally under two or more headings. Systematic description of Neogene mollusks and the utilization of paleontologic data in other geological reports have gone through a number of rather closely related cycles during the past 125 years. During the 5-year period 1965-69 both kinds of publications reached alltime highs.

INTRODUCTION

This bibliography includes reports dealing with marine molluscan fossils of Neogene (Miocene and Pliocene) age from the Pacific coast of North America and the Arctic coast of Alaska published prior to 1970. The citations are listed alphabetically by author. Each entry is accompanied by a brief annotation intended to indicate the nature of information on marine mollusks. There is a subject index in which almost all of the reports are listed under a geographic and a topical heading; some of the comprehensive reports are indexed under as many as eight headings.

Reports containing illustrations of fossils or systematic descriptions of new taxa are indicated by setting the author's names in capital letters; those in which only previously described fossils are illustrated are also indicated by capital letters but are accompanied by an asterisk following the year of publication. Lower case type is used for all other entries.

Although there are a number of bibliographies that deal with Tertiary stratigraphy and paleontology of individual States, no attempt
has been made to bring together reports on Neogene mollusks since Dall's (1909c) post-Eocene bibliography for the northwest coast of North America. This report differs from these earlier, less comprehensive bibliographies in including annotations and in having a subject index.

This bibliography is intended, in part, to complement two systematic catalogs of Tertiary mollusks of the Pacific Coast States: Keen and Bentzon's (1944) checklist of Tertiary marine mollusks from California and Weaver's (1942) illustrated catalog of Tertiary marine invertebrates from Oregon and Washington. Although these reports are about 30 years old, a significant proportion of the systematic description of Neogene marine mollusks had been accomplished by the early 1940's. Both of these reports also contain comprehensive bibliographies although Keen and Bentzon's (1944) is limited to reports in which Tertiary mollusks are illustrated or are newly described.

ACKNOWLEDGMENTS

Many people have cooperated and have provided assistance in the preparation of this bibliography. The project was initially suggested by Dwight W. Taylor, San Diego Museum of Natural History, in 1966, in connection with a review of the status of knowledge on malacology in western North America. The early stages of assembling bibliographic citations were aided by Helen E. Bailey, formerly research librarian for the U.S. Geological Survey in Menlo Park. Ellen J. Moore, U.S. Geological Survey, and Wendell P. Woodring, Smithsonian Institution, furnished an unpublished chronological list of papers dealing with Tertiary invertebrate paleontology and stratigraphy of the Pacific Coast States through 1960. William Sanders and Ann H. Schwabecher, research librarians, U.S. Geological Survey, have provided assistance in securing bibliographic materials. Some 40 paleontologists and geologists, actively working Pacific coast Tertiary problems, have kindly reviewed lists of their reports for accuracy and completeness. Finally, Rose M. Trombley has contributed significantly to the preparation of the report, particularly in the preparation of the subject index.

SCOPE AND CRITERIA FOR INCLUSION

It is intended to include all reports, including abstracts, published prior to 1970 containing information on Neogene mollusks in this bibliography. The minimum criterion for inclusion is that molluscan fossils of Miocene or Pliocene age be mentioned in a report. Records of marine "fossils" in early reports, for example, have been taken to
indicate that marine mollusks may have been found. Most of these early records have been supplemented by subsequent faunal documentation but a few still stand as the only indication that marine mollusks of late Tertiary age may be present in areas that have as yet not received intensive geological study.

Foreign journals and paleontological reports in which molluscan taxa from other parts of the Pacific Ocean basin, or other oceans, have been compared with Pacific coast Neogene species have not been thoroughly searched, nor have trade journals dealing with the petroleum industry in California. Unpublished theses are not cited, but publications in which they are listed are included.

During the 1920's and 1930's many abstracts of papers presented at the Geological Society of America's regional and national meetings were published in the Pan-American Geologist in addition to customary publication in the Bulletin of the Geological Society of America. Frequently, the abstract appeared first in the Pan-American Geologist, but some abstracts are not identical with the official version in the Bulletin of the Geological Society of America and presumably were not submitted to the Pan-American Geologist for publication by the authors. Accordingly, citations to abstracts published in the Pan-American Geologist are not included in the bibliography. There are, however, a few full-length reports appearing in the Pan-American Geologist and nowhere else, such as Carson (1925a) and Howe (1926), and these are included herein.

GEOGRAPHIC COVERAGE

The area covered by the bibliography is from the Pacific coast of Central America to and including the Arctic coast of Alaska. Coverage is intended to be comprehensive from the west coast of Mexico northward. Many of the reports dealing with Neogene mollusks from the Pacific coast of other Central American countries are, however, included.

STRATIGRAPHIC CONSIDERATIONS

Use of Miocene and Pliocene in this report is with reference to the provincial molluscan standard (Weaver and others, 1944) as subsequently modified by Durham (1954).

Because the recognition of European series and epoch boundaries along the Pacific coast continues to be controversial, many of the reports dealing with late Oligocene faunas in the sense of Weaver and others (1944) and Durham (1954) are included in this report. As recognized herein, the Oligocene-Miocene boundary in the Pacific
coast provincial molluscan chronology is placed at the base of the "Vaqueros Stage" of Weaver and others (1944) in California and northwestern Baja California and at or near the middle of the "Blakeley Stage" of Oregon, Washington, Canada, and southeastern Alaska. The "Blakeley" and "Vaqueros" are considered to be in part time-equivalent, according to evidence presented by Vanderhoof (1942) and Addicott (1967b). This boundary corresponds to the boundary between the lower and upper parts of the Zemorrian Stage (Kleinpell, 1938) of the provincial benthonic foraminiferal standard. It should be noted that the Oligocene-Miocene boundary is placed somewhat higher in the provincial microfaunal sequences by specialists in Foraminifera—usually in the lower part of the overlying Saucesian Stage.

The Pliocene-Pleistocene boundary is drawn at the base of the Lomita Marl of the Los Angeles basin, California, and correlative stratal units in California following Woodring (1952). This boundary is based upon significant faunal extinctions and the modern aspect of what are considered to be early Pleistocene molluscan faunas, as explained by Woodring. As in the case of the Oligocene-Miocene boundary, there are indications based upon plantktonic foraminiferal correlations that the boundary may not correspond to the European sections and should be placed considerably higher in the Pacific coast provincial section (W. A. Berggren, Nature, v. 224, no. 5224, p. 1072-1085, 1969).

ANNOTATIONS

All entries are annotated so as to indicate the nature of the data on Neogene mollusks. However, in some of the more comprehensive reports, it has not been possible to summarize all the significant data and conclusions. Although some of the abstracts of papers delivered at scientific meetings are later superseded by definitive published reports, many are not. Some reports were published several years after the abstract and may not present the same conclusions as the abstract. Moreover, it is sometimes difficult to identify an abstract with subsequently published reports by the same author. For these reasons, abstracts included in the bibliography are accompanied by annotations.

The use of formational nomenclature in the annotations is in the sense of the individual authors and does not imply formal acceptance by the U.S. Geological Survey. Brackets are commonly utilized to indicate current formational nomenclature or age assignment.
STYLE OF ENTRIES

Papers in which Neogene mollusks are illustrated or are described as new are indicated by setting the author's names in capital letters; if the capitalized names are followed by an asterisk (*) the report contains illustrations of fossil mollusks but does not contain descriptions of new taxa. The author's names in all other reports are set in lowercase type.

INDEXING

Where possible, reports have been indexed under two first-order terms—one geographic, the other topical. The more comprehensive reports have as many as eight entries in the subject index. An effort has been made to key as many reports as possible to Neogene depositional basins of the Pacific Coast States through the use of third-order geographic index terms. These informally named basins are shown in figure 1.

The style of the subject index is patterned after the "Bibliography of North American Geology," with the addition of a few first- and second-order paleontologic terms designed to suit the needs of this bibliography. These terms should be self explanatory, with the possible exception of "Faunal records." This term is used for reports that merely record the occurrence of Miocene or Pliocene mollusks or that list only one or two species.

TRENDS IN NEOGENE MOLLUSCAN PALEONTOLOGY

A graph has been prepared to summarize trends in the systematic description and illustration of Neogene mollusks from the Pacific coast of North America as well as to depict the utilization of data on Neogene mollusks in other reports pertaining to this area (fig. 2). In this graph, reports in which new species are described or in which Neogene mollusks are illustrated are shown by vertical bars; reports incorporating information on Neogene mollusks are indicated by a solid line. Abstracts are indicated by a dashed line. The tabulation is by 5-year periods starting in 1840 and ending in 1969.

A similar tabulation of reports illustrating marine Tertiary mollusks from California was presented by Keen and Bentson (1944, fig. 2) and subsequently commented upon by Keen (1968).

The initial description of Neogene mollusks of the Pacific Coast States took place during the late 1840's and the 1850's as a consequence of exploration of the Pacific margin of the United States. Much of this work was tied to the railroad surveys in the Pacific area. Nearly all of the descriptive paleontologic work during this period was done by T. A. Conrad. Additional description of
Figure 1.—Generalized outlines of some marine Neogene depositional basins of the Pacific Coast States.
Tertiary mollusks from California was completed by W. M. Gabb for the California Geological Survey in the 1860's.

During the last three decades of the 1800's, descriptive paleontologic studies reached a very low ebb, but toward the end of the period, paleontological support of heightened geological exploration of the California Coast Ranges and Alaska is evident from an increase in the number of reports containing paleontologic data (fig. 2).

A second, more refined phase of descriptive work got underway in the early 1900's, when the U.S. Geological Survey became more actively involved in geologic mapping of the Coast Ranges of California and Oregon. The peak in the number of descriptive paleontologic reports during the period 1905-09 reflects, in large part, the work of Ralph Arnold in California and, to a lesser extent, work on
Pacific coast and Alaskan Neogene Faunas by W. H. Dall. It was during this period and the following decade that invertebrate paleontology became one of the most important disciplines in the geological departments of the University of California, Berkeley, and Stanford University (Merriam, 1921). Although the level of paleontologic publication reached a plateau during the 15 years ending in 1924, possibly reflecting the effects of World War I, many important descriptive studies came out during this period. They were, in large part, the work of B. L. Clark, W. H. Dall, and C. E. Weaver, in addition to some of Clark's students at the University of California, Berkeley. Many, if not most, of the reports dealing with Neogene mollusks that were issued during this 15-year period can be ascribed, as previously indicated, to the training of many invertebrate paleontologists by J. P. Smith at Stanford University and by J. C. Merriam and B. L. Clark at the University of California.

The sharp increase in paleontologic studies, and in the utilization of paleontologic data in geological reports, beginning in the mid-1920's (fig. 2) was the result of heightened exploration for organic fuel resources along the Pacific coast, particularly in central and southern California. This period carried through into the mid-1940's with a slight decline during the late 1930's. The dip in the period 1935–39 probably can be ascribed to two factors—the economic depression in the United States and the gradual changeover from utilization of larger invertebrate fossils to Foraminifera in age determination and correlation in petroleum exploration. Continuation of this trend and the effects of World War II may have been responsible for the decline in publications dealing with Neogene mollusks during the late 1940's. A significant number of the systematic reports issued during the period 1930–49 were written by U. S. Grant, G D. Hanna, L. G. Hertlein, and W. P. Woodring.

A gradual increase in the rate of publication took place during the 1950's, followed by a greatly accelerated effort during the past decade, when the numbers of both systematic and of general reports reached alltime highs. This dramatic rise during the 10-year period ending in 1969 seems to be an index of the increasingly important role that molluscan paleontology is playing in deciphering earth history. In addition to some of the more classical approaches that have been significantly refined through recent work, such as systematic description of faunas, paleontologic correlation, and biostratigraphy, molluscan paleontology is being increasingly employed in deciphering paleoclimatic history, structural evolution of ocean basin margins, and in paleoenvironmental analysis of depositional basins. The surprisingly large number of recent reports incorporating data on
molluscan paleontology is also related to the training of molluscan specialists at most of the larger universities on the Pacific coast during the past decade.

BIBLIOGRAPHY

Mollusks, including *Pecten healeyi* and *Area multicostata* var. *camulosensis*, from northwestern Orange County, Calif., are considered to be middle Pliocene.

Elk River Beds of Diller (1902) of late Pliocene or early Pleistocene age characterized by very abundant *Psephidia* are distinguished from overlying upper Pleistocene terrace deposits carrying a different molluscan fauna.

Nassarius [Schizopyga] californianus is a small, high-spired species characteristic of Pliocene strata in northwestern Santa Clara County. Seven late Tertiary and (or) Quaternary *Nassariidae* have been confused with this species.

Twenty-seven early to late Miocene mollusks from the Kern River area, northeast of Bakersfield, are figured. A stratigraphic range chart includes several important Miocene mollusks from this area. Twenty-nine middle Miocene mollusks from the northern Tejon Hills are listed.

Two species of *Nassarius* occur at or near the type locality of *N. [Schizopyga] californianus* in the northern part of Santa Clara County, Calif. A small, slender species is believed to represent *N. californianus*. A rounded, low-spired species is *N. grammatus*.

Fossil *Nassariidae* gastropods from the Pacific coast are figured and classified in three subgenera: *Catilon* n. subgenus, *Demondia* n. name, and *Caesia*. Included are keys for recognition of species of each subgenus. Two new species are described: *N. salinusensis* and *N. smooti*. A phylogenetic chart for species of *Caesia* is included.

A specimen of *Macoma brota lipara* reworked from the Purisima Formation (Pliocene) into upper Pleistocene terrace deposits at Santa Cruz, Calif., is figured.

Nine new gastropods and four pelecypods are described and figured from formations of late Oligocene to early Pliocene age. A correlation chart of Neogene formations of coastal Oregon [Newport embayment] and southwestern Washington is included.

A newly reported occurrence of *Turritella inezana* Conrad near Point Arena, Mendocino County, west of the San Andreas fault, in relationship to occurrences of this species on the east side of the fault, suggests a minimum of 120 miles of post-early Miocene right-lateral slip.

ADDICOTT, W. O., 1967c* Age of the Skooner Gulch Formation, Mendocino County, California: U.S. Geol. Survey Bull. 1254–C, p. C1–C11, 4 figs.

Three mollusks from near Point Arena, Calif., including *Turritella inezana forma hoffmani*, are figured. Included are a geologic sketch map with localities, data on associated benthonic foraminifers, and a marine vertebrate. The small molluscan assemblage is suggestive of subtropical marine climate at this latitude during the early Miocene.

Includes four paleogeographic maps showing distribution of middle Oligocene and early to late Miocene shorelines in central California. Also shown are the location and relative size of molluscan faunal assemblages for each of these intervals. A correlation chart shows the relationship of provincial megafaunal "stages" and microfaunal stages. Faunal correlations tend to support paleogeographic matches across fault suggesting large cumulative right-lateral offsets ranging from 190 miles for Oligocene strata to about 80 miles for late Miocene strata.
BIBLIOGRAPHY

A discussion of molluscan zoogeography in the middle latitudes of the northeastern Pacific Ocean and inferred climatic changes in the shallow-water, nearshore marine environment indicating a Miocene warming trend.

An assemblage of 39 mollusks occurs in the Merced (?) Formation of northern Santa Clara County. A shallow-water depositional environment in uppermost part of inner sublittoral zone and water conditions somewhat warmer than occur at this latitude today are inferred.

A faunal assemblage of 39 mollusks occurs in exposures of Pliocene sandstone mapped as the Merced (?) Formation in northernmost Santa Clara County east of the San Andreas fault. Most of the species are illustrated and discussed in an abridged systematic section. The assemblages are indicative of shallow-water, level-bottom depositional site high in the inner sublittoral zone. Anadara s.s. and Cancellaria s.s. suggest shallow-water climate somewhat warmer than occurs at this latitude today.

Analysis of molluscan genera in Oligocene to Pliocene faunas of the eastern North Pacific indicates a middle Oligocene climatic deterioration followed by warming that culminated during the middle Miocene. The analysis is based on cumulative percentages of warm-water genera in faunas of several Tertiary basins and upon tracing northern limits of certain warm-water genera from the Oligocene to the Pliocene.

À résumé of current research and recent publications on fossil marine mollusks of the eastern North Pacific Ocean. Mailing addresses of molluscan specialists are included.

Mollusks of tropical affinities occurring in upper Miocene strata near Bakersfield, Calif., suggest a marine climate warmer than existed in the San Luis Obispo area, 100 miles to the west. A late Miocene temperature regime analogous to that of the present-day outer coast of southwestern Baja California, Mexico, is indicated.

The Miocene and Pliocene marine sequence of the Coalinga region, California, is divided into eight faunizones (A–H) based upon stratigraphic occurrences of more than 300 taxa of larger invertebrates, mostly mollusks.

Upper Miocene silicified sand and mud-filled burrows attributed to Chaceia occur in the Pismo Formation near Huasna, San Luis Obispo County.

Bryozoan encrusted fragments of a pectinid, Pseudochama exogyra, and undetermined gastropods are described from the Santa Margarita Formation.

A late Miocene record of Swiftopecten from the Santa Margarita Formation near Coalinga, Calif., is reported. Twelve other mollusks occurring with this pectinid are listed.

Five species of boring pelecypods from the Pacific coast Tertiary are reviewed. New species of Platydodon and Penitella are described from the San Ramon Formation of the San Francisco Bay area and a new species of Platydodon is described from the upper Miocene San Pablo Group of the same area.

Presents molluscan evidence suggesting that a faunal break in the upper part of his Santa Margarita Formation is of series-epoch magnitude and can be taken as the provincial Miocene-Pliocene boundary. Ten mollusks are listed from the upper part of the Santa Margarita Formation; four from the lower part.

Miocene assemblages from localities on Reef Ridge and on Coalinga Anticline in the San Joaquin basin, California, are listed; Mya fujiei MacNeil is figured.

A comprehensive biostratigraphic treatment of Miocene and Pliocene faunas of the Coalinga and Reef Ridge areas of the San Joaquin basin. Faunal assemblages are arranged into eight faunizones and 16 zonules. Many of the mollusks are figured, 16 new molluscan taxa are named and described. Most of the formations were deposited in depths of between 10 and 100 fathoms. The invertebrate faunas indicate a gradual and continuous cooling from tropical conditions during the middle Miocene to temperate conditions during the late Pliocene. Fossil localities are shown on geologic maps.

Upper Miocene strata at Boleo and at Santa Rosalia, Baja California, contain a molluscan fauna that is correlative with the fauna of the Carrizo Creek Beds in southeastern California; five species from these beds are listed. Marine Pliocene strata occur near Tijuana and on Cedros Island, Baja California; three pectinids from Cedros Island are listed.

The Imperial Formation (Pliocene) near Painted Hill includes fossiliferous coquinalike beds.

Lists two mollusks from the Vaqueros Formation and one from the Purisima Formation. Refers to work by A. M. Keen on collections made by the author, and earlier investigators, from the Purisima Formation that number more than 80 taxa. The list is contained in the author's Ph. D. dissertation at the University of California, Berkeley.

Illustrate exposures of fossil conglomerate in Empire formation including photography of a chain of Crepidula. Stratigraphic work on the Pliocene Empire and Port Orford Formations is reviewed.

A useful, well-indexed compilation including several reports on Neogene mollusks.

Includes a review of Neogene paleontology and stratigraphy of Baja California, the Peninsular Ranges, and the Transverse Ranges. The Imperial Formation of southeastern California is most nearly comparable with the San Diego Formation of southwestern California coast; its age may be early Pleistocene. *Ostrea-Anomia* assemblages of the Palm Springs Formation of southeastern California are considered middle Pleistocene on basis of associated mammals.

Post-Miocene faunas [molluscan?] occur on the lowest two or three terraces of northern Baja California at elevations of 200 meters or less. The highest (oldest) faunas include species and genera with nonoverlapping modern bathymetric and geographic ranges. The faunas from the lowest terraces are more compatible with modern assemblages.

Late Cenozoic faunas from Moonstone Beach, near Trinidad, Calif. and near Cape Blanco, Oreg., numbering approximately 100 and 80 species, respectively, are reported. The Moonstone Beach assemblage characterized by a *Balanus, Mytilus*, and *Polytropa* association is the older of the two.

Figures a specimen of *Turritella temblorensis* from the middle Miocene Topanga Formation, southern California.

Provides stratigraphic framework for paleontologic report on Miocene and Pliocene mollusks of Gulf of California by Durham (1950b) in same volume. Included are geologic maps of islands showing fossil localities. A few characteristic mollusks are mentioned in stratigraphic descriptions.

A few “marker fossils”, mostly pectinids, for members of the Temblor Formation, Monterey Shale, and Etchegoin Formation are listed in a composite stratigraphic column.

*** “The sandy beds at the base of the series [Miocene] contain fossil invertebrates, among which the characteristic forms are *Amuseum, Pecten crassicaudo, Pecten discus* Conrad, *Scutella brevierianus* Gabb, *Leda* sp. *Cardium, Terebratella* (Laqueus), etc. In some districts, as in the vicinity of Temblor, Kern County, there is more shale and sandstone below the beds characterized by these fossils.”
BIBLIOGRAPHY

The initial account of Neogene formations and mollusks of the western margin of the San Joaquin basin. Describes and illustrates 23 new species of Miocene and Pliocene mollusks from the San Joaquin basin, mostly middle Miocene species from the Kern River area. Describes new formations from the southern Diablo Range and Temblor Range; includes several lists of mollusks from these formations. Also lists 15 species of middle (?) Miocene mollusks from Carisa Ranch, San Juan River, west of the San Andreas fault. Forty-six mollusks are listed from the Kern River area including 14 newly described species.

Lists mollusks from the Temblor, Coalinga [Santa Margarita], and Etchegoin Formations of the Diablo and Temblor Ranges; there is a section on correlation of these strata with other areas in California.

The definitive report on Miocene strata of the Kern River area. Includes faunal list of mollusks from his zones A, B, and C. A “Neocene” correlation chart for the Coalinga, San Luis Obispo, Salinas Valley, Santa Cruz, and Mount Diablo areas shows some characteristic mollusks. The Vaqueros Formation of the outer Coast Range is believed to be a facies of the Temblor Formation of interior areas. Anderson disagrees with J. C. Merriam’s view that the Vaqueros and Temblor can be differentiated.

A few Colombian Miocene species are compared with late Tertiary mollusks from California.

Short bibliographic accounts of several early paleontologists who worked on California fossils.

A general review of Miocene stratigraphy of the central California Coast Ranges with description of Miocene strata of the San Juan district [northern part of the La Panza Range]. Include lists of Miocene mollusks from the San Juan area, Kern River area, and Los Vaqueros Valley. List a small assemblage from the Santa Margarita Formation of the San Juan district. New species of Miocene mollusks are described from the Kern River area and the San Juan district, California, and various localities in northwestern Oregon and western Washington.

Reports Turritella ocoyana, Pecten propatulus, and Pecten andersoni as characteristic of lower Miocene sandstone and shale. Ostrea titan occurs in "middle Miocene" deposits overlying the Big Blue Formation.

Lists six mollusks from exposures of white sand [Santa Margarita Formation] at the western edge of Tejon Hills. Included are Ostrea titan and Pecten crassicardo.

Typical Vaqueros [Temblor of later usage] fossils occur in or above beds included in the Big Blue Serpintinous Member of the Vaqueros Formation. Turritella ocoyana and Tivela inezana are reported from a measured section of the Vaqueros [Temblor] Formation in the Vallecitos. Ostrea titan is reported from undifferentiated Miocene near Tesla [Cierbo Formation of later usage]. The Santa Margarita Formation contains abundant mollusks, including oysters, north of Coalinga. Pecten peckhani, Nucula, and Dosinia are recorded from undifferentiated Tertiary rocks underlying the San Pablo Formation in sec. 7, T. 7 S., R. 8 E.

Localities containing Miocene and Pliocene mollusks are noted in the road log.

Anonymous, 1924, Informe sobre la exploracion geologica de Baja California, por la Marland Oil Company de Mexico: Boletin del Petroleo, v. 17, no. 6, p. 417–453; v. 18, no. 1, p. 14–53.

Includes a very brief resume of Tertiary stratigraphy (p. 43) in which marine rocks of Miocene and Pliocene age are described. These formations are reported to contain abundant, unstudied faunas.

Lists 10 mollusks from Estrella Valley at Panza [San Luis Obispo County] identified by T. A. Conrad. Several collections of Miocene mollusks from the Santa Ynez Mountains are also listed. A few mollusks from the Santa Lucia Range are listed.

Antisell, Thomas, 1856b (1857), Geological report, in U.S. War Dept., 1855–1860, Reports of explorations and surveys to ascertain the most practical and economical route for a railroad from the Mississippi River to the Pacific Ocean ***: v. 7, pt. 2, 204 p., 14 pls.

Fossiliferous strata of the southern part of the California Coast Ranges can be correlated by similar species of mollusks. Miocene and Pliocene
mollusks occur in many areas along the route of the expedition: Pajaro Valley, Salinas Valley, San Antonio Hills, La Panza Range, Santa Margarita Valley, San Luis Obispo, Santa Ynez Mountains, and San Fernando Pass. Molluscan species or genera from each area are listed in the text. Paleontologic description of these mollusks by T. A. Conrad are included.

A preliminary account of the Mesozoic and Neogene stratigraphy of the foothill area near Stanford University. *Ostrea titan* is recorded from the ridge overlooking Stevens Creek and Portola Valley [Vaqueros Formation]. *Pecten peckhami* is recorded from Miocene shales. Fossiliferous sandstone of Pliocene age occurs in the vicinity of Felt Lake.

The first bibliography of geological reports on Washington includes a few reports dealing with Neogene mollusks.

This report deals with the systematic paleontology of the prolific Pleistocene molluscan faunas of the San Pedro area. It includes a correlation chart of Pliocene and Pleistocene formations of California. There is a brief discussion of the San Diego Pliocene. Late Pliocene climate [early Pleistocene, for the most part] was cooler than today. Faunal migration from Japan to Pacific Coast of North America occurred during the late Tertiary; many of the species common to these areas are cited.

Arnold, Ralph, 1904, Faunal relations of the Carrizo Creek beds of California: Science, n.s., v. 19, no. 482, p. 503.

The molluscan fauna indicates a Miocene age, shallow water conditions, and close relationship to modern fauna of the Gulf of California.

Pliocene rocks containing boulders of fossiliferous Miocene rock occur from Clallam Bay to the mouth of Hoko River.

Lists five faunal assemblages from the Clallam Formation, one of which is from near Cape Flattery, west of its type section. Also lists 22 mollusks from the Quinault [Quinault] Formation from the mouth of Quinault River. These are correlated with the Purisima Formation of central California and are considered to be of early Pliocene age.

Sets up the first Tertiary chronology for California, recognizing Oligocene in California for the first time and establishing three divisions of the Miocene and two of the Pliocene. These divisions are typified by Forma-
tions with designated type localities, characteristic pectinids, complete faunal lists with other characteristic mollusks, and lists of known occurrences throughout the state. [Arnold's usage of formations was in the sense of our present stages.] Most descriptions of pectinids include listing of associated molluscan assemblages. The report includes an index map showing principal occurrences of fossiliferous localities and a range chart of the pectinids.

Includes illustrations of characteristic Miocene and Pliocene mollusks from southern California; most, if not all, are from previous publications by Arnold.

ARNOLD, RALPH, 1907b*, Geology and oil resources of the Summerland district, Santa Barbara County, California: U.S. Geol. Survey Bull. 321, p. 1-93, figs. 1-3, pls. 1-17 (pls. 9-17 are of Tertiary fossils).

Lists three species from the Monterey Formation; includes an illustration of *Pecten pecchami*. Many early Pleistocene mollusks from the Santa Barbara Formation are illustrated.

Lists two assemblages from the Puente Sandstone, an assemblage from the type Topanga Formation of the Santa Monica Mountains, a small assemblage from the Fernando Formation of downtown Los Angeles and mollusks identified by J. G. Cooper (in Watts, 1897) from four localities in the Fernando Formation of downtown Los Angeles. Many of these Miocene and Pliocene mollusks are illustrated in an accompanying paper by Arnold.

Describes and illustrates three new species from the lower Miocene Vaqueros Formation and 10 new species from the Pliocene Fernando Formation. Illustrates many other characteristic mollusks from these formations and lists Vaqueros mollusks from the western part of the Santa Ynez Range (20 taxa) and Fernando mollusks from the Santa Maria basin (105 taxa).

Describes and illustrates nine new species from the type area of the Topanga Formation of the Santa Monica Mountains listing 25 other species that occur at the same locality; seven new mollusks from the Fernando Formation at Elsmere Canyon, Los Angeles County, are described and illustrated and 26 mollusks associated with them are listed; two new
species are described from Pliocene exposures in downtown Los Angeles and 15 mollusks associated with them are listed; five mollusks from Pliocene exposures at Témescal Canyon are also listed.

Arnold, Ralph, 1908a, Description of a new brittle star from the upper Miocene of the Santa Cruz Mountains, California: U.S. Natl. Mus. Proc., v. 34, no. 1620, p. 403-406, pl. 40.

Records *Pecten crassicardao* from the upper part of Santa Margarita Formation in the Santa Cruz Mountains.

Describes and illustrates five new species from the Miocene Vaqueros Formation and lists 32 additional mollusks [jumped early and middle Miocene of later usage]; two new species from the Monterey Formation and 12 associated species; lists one species from the Santa Margarita Formation; three new species and 20 associated species from the "Purisima Formation" [actually middle Miocene] near Stanford University; two new mollusks and 35 associated taxa from the lower part of the Purisima Formation; one new species and 54 associated species from the upper part of the Purisima; and one new species and 26 associated mollusks from the Merced Formation.

A résumé of paleogeographic and tectonic history of Tertiary depositional basins from northwest Mexico to Canada with incidental commentary on climatic change. Includes a series of paleogeographic maps of the Oligocene, early Miocene, late Miocene and Pliocene; probably the first for the Pacific coast. Eocene climate was subtropical to tropical; Oligocene transitional. Miocene climate was warm temperate—warmer than today at the same latitude. Marine climate became sub-boreal during the later part of the Pliocene.

Lists 45 mollusks from the Vaqueros [Temblor] Formation including 10 new taxa; 11 species of mollusks from the Santa Margarita Formation; 47 species from the Jacalitos Formation including eight new taxa; 89 mollusks from the Etchegoin Formation including 16 new taxa. Three faunal zones are recognized in the Vaqueros Formation; three in the Jacalitos Formation; and four in the Etchegoin Formation. The Vaqueros is assigned to the early Miocene because of faunal similarity to the early Miocene of the Atlantic Coast States and relative position in the geologic column of Pacific coast. The Etchegoin is assigned to the Miocene on basis of Lyellian correlation—65 percent of the species are extinct—and also because of relative position in an assumed 25,000-foot Tertiary section (7,000-10,000 ft below the top).

ARNOLD, RALPH, and ANDERSON, ROBERT, 1907a*, Geology and oil resources of the Santa Maria oil district, Santa Barbara County, California: U.S. Geol. Survey Bull. 322, 161 p., 26 pls.
List 21 mollusks from localities in the Vaqueros Formation and more than 100 from the Fernando Formation. Many of these are figured.

Fossils [mostly mollusks] occur in the Vaqueros Formation, sparingly in the Monterey Shale, and at four horizons in the Fernando Formation. The lowest horizon in the Fernando is considered to be late Miocene; the other three, Pliocene.

Assemblage zones in Miocene and Pliocene formations are described; characteristic mollusks are noted in the text and in descriptions of columnar sections.

The definitive description of the geology and paleontology of Neogene formations of the Coalinga district (Coalinga anticline, Kreyenhagen Hills, Reef Ridge, Kettleman Hills, and outlying areas). Biostratigraphic units, lists and illustrations of fossils, and locality descriptions were previously published by Arnold (1909, U.S. Geol. Survey Bull. 306).

An account of the Pleistocene stratigraphy of the San Pedro area. Molluscan faunas of a few Pliocene and upper Miocene formations are briefly reviewed: San Diego Formation, Merced Formation, Santa Barbara Formation, and San Pablo Group. A few mollusks are listed from the San Diego Formation.

Marine mollusks from near Magdalena Bay collected by Arnold Helm, and assigned by him to his Purissima Nueva Formation, are conspecific, in part, with mollusks from the Apalachicola fauna of the Caribbean. The strata are of Miocene age; five conspecific mollusks are listed.

The first detailed Tertiary chronology for Pacific Northwest States. Describes a series of eight Oligocene to Pliocene formations from Oregon and Washington listing characteristic faunas from each based on extensive collections made by Hannibal. Usage of these is more nearly in a time-stratigraphic than a rock-stratigraphic sense. The sequence is comparable to that presently recognized with exception that their Sooke and Seattle Formations are placed too low in the column. Recognized faunas of Sooke and Twin River as being the coolest of the Eocene to Miocene succession.
Lists faunas from the type Monterey and type Merced Formations in California. Divides the type Astoria Formation into the Seattle and Monterey Formations.

List a few mollusks from exposures of the Vaqueros [Temblor] Formation and the Monterey Shale in the Temblor Range.

Includes bibliography of earlier paleontologic work in the California Coast Ranges. Lists mollusks from his Pescadero sandstones and shales (in part early Miocene), Monterey Series, and Merced Series (including separate lists for Purisima Formation of later usage from Point Montara to Capitola—50 spp.; lower part of the type Merced—30 spp.; uppermost part of the type Merced—30 spp.; and a mixture of middle Miocene and early Pliocene mollusks from near Stanford University). Also lists Pliocene mollusks from the eastern part of the Ventura basin; early Pleistocene mollusks (105 spp.) from San Pedro. Recognizes the warm aspect of the lower part of type Merced and cooler aspect of the upper part.

Lists three spp. from his Pescadero Series (Turritella hoffmanni, Ostrea titan, and Lyropecten estrellanus) and four mollusks from his Monterey Series. Includes a broad discussion of Pliocene faunas of Santa Cruz Mountains, a list of species from the lower part of the Merced, and a discussion of percentages of extinct species.

Lists an assemblage of five mollusks of middle Miocene age from the Temblor Formation near Tumey Gulch on the west side of the San Joaquin Valley.

Reports Mulinia densata from cores of the Etchegoin Formation in columnar section.

Includes discussion of correlation and age determination of fossils from the Unga Formation (Unga Island and Popof Island) including Mytilus middendorffi. Dall's list of mollusks from the Stepovak Series of Palache (1904) [Dall, 1904] is listed, again as Eocene, and included in Atwood's Kenai Formation. MacNeil and others (1961) later assigned these strata to the Oligocene Acila shumardi zone.
Auger, Irving V., 1920, Resume of oil well operations in Imperial Valley [California]: California Oil Fields, v. 5, no. 10, p. 5–9.

Oysters flourished in the Imperial basin during the Miocene.

List 14 mollusks from the Vaqueros Formation, 35 from the Rincon Formation, and five from the Monterey Formation. The molluscan assemblages represent inner shelf environments and, in the case of the Vaqueros and Rincon Formations, subtropical or tropical marine climate. The relationship of the “Vaqueros” and “Transition Stages” to the Zemorrian and Saucesian Stages of the microfaunal chronology is treated in considerable detail.

Ayars, R. N., 1939, Williamson area of the Lost Hills oil field [California]: California Oil Fields, v. 24, no. 3, p. 78–90.

Pecten oweni occurs in a gray, fine-grained sand at the top of the Etchegoin Formation (“*Pecten oweni* water sand”). *Mulinia* occurs in the Universal Consolidated Oil Co. well Helm no. 1, 4 miles southeast of the field.

A *Cryptomya* bed equivalent to the Fourth *Mya* zone of the San Joaquin Clay is the highest molluscan marker bed in wells. *Mulinia densata*, marker for the top of the Pliocene Etchegoin Formation, was cored in all wells. The Etchegoin includes a *Mulinia* green shale, *Bittium* blue shale, and a 4-foot-thick oil sand containing *Pecten oweni* and *Arca trilineata*. *Pecten peaehani* occurs in the upper Miocene Belridge Diatomite in the *Uvigerina A* zone.

Lists 12 mollusks from localities in the Pliocene St. George Formation.

Porcupine fish in the California middle Miocene indicate warm-water conditions comparable to those inferred from studies of marine invertebrates [mollusks].

Bailey, T. L., 1952a, Summerland area, in Redwine, L. E., Chairman, and others, Cenozoic correlation section paralleling north and south margins [of the] western Ventura basin from Point Conception to Ventura and Channel Islands, California: Am. Assoc. Petroleum Geologists, Subcommittee on the Cenozoic of the Geologic Names and Correlations Committee, 2 sheets.

Pecten sespeensis var. *hydei* is reported from the Vaqueros Formation.

Bailey, T. L., 1952b, Ventura River area, in Redwine, L. E., Chairman, and others, Cenozoic correlation section paralleling north and south margins [of the] western Ventura basin from Point Conception to Ventura and

Lists a few mollusks from the *Pecten hemphilli* zone of the Pico Formation (late Pliocene). *Pecten orissicardo, P. andersoni, Arca sp.,* and *Turritella ooyana* are reported from the Monterey Shale. *Turritella inezana* and *Pecten magnolia* occur in the lower part of the Rincon Shale.

Fossiliferous concretions occur in a blue-gray argillaceous sand at the top of the newly described Port Oxford Formation. A "loose gray sand" regarded as equivalent to the upper Pleistocene terrace deposits at Cape Blanco overlies this bed.

Includes line drawings of molluscan genera from Miocene beds at Coos Bay, the Astoria Formation, the Empire Formation, and the Port Orford Formation. Some of the more common occurrences of megafossils in Miocene and Pliocene formations of coastal Oregon are noted.

Fossils occurring as beach drift near the mouth of the Coquille River near Bandon, Oreg., are presumed to be of Pliocene age. Fossiliferous "late" [middle] Miocene strata occur between Floras Lake and Blacklock Point and south of Cape Blanco, Curry County, Oreg.

Miocene mollusks including *Dosinia* have been dredged from the channel at Coos Bay. Limited exposures of these strata have been recently found at Coos Bay. Fossils similar to those from the Pliocene Empire Formation occur on the beach at the mouth of Coquille River; correlative strata are found at China Creek three miles south of Bandon.

Mytilus middendorffi Grewingk and *Venus securis* Shumard are reported from the Empire Formation about 1 mile southeast of Cape Blanco. *Clementia subdiaphana* Carpenter occurs in the overlying Port Orford Formation.

The Poul Creek Formation of Oligocene and Miocene age contains faunas of temperate or subtropical aspect. The overlying Yakataga Formation of Miocene and Pliocene age contains mostly cool or cold water molluscan faunas. The appearance of a left-coiling planktonic foraminifer in the Yakataga Formation is taken as indicative of the initiation of glaciation during the late Miocene (about 13 million years ago).

Mollusk fragments are common in the lower sandstone of the Vaqueros Formation.

List four mollusks from the Vaqueros Formation of the San Emigdio foothills.

List four molluscan zones in the San Joaquin Clay: a lowermost Mya zone, a “Natica”-Mya zone, a Pecten coalingaensis zone, and an uppermost Mya zone. Characteristic mollusks are listed in a stratigraphic description of the type section of the San Joaquin Clay. The distribution of these zones in the southern San Joaquin Valley and marine paleotemperatures suggested by the fauna of the Etchegoin and the San Joaquin are discussed.

List mollusk assemblages from the basal McLure Shale in Jacalitos Creek, Henny’s “Santa Margarita” fauna from Waltham Creek, and early Pliocene assemblages (14 taxa) overlying the Reef Ridge Shale in Alcalde Canyon. Five mollusks are reported from cores of the Reef Ridge Shale.

Pecten estrellanus Conrad and Ostrea titan Conrad occur in the Santa Margarita formation near Crocker Springs in the southern part of the Temblor Range, Kern County, Calif.

The top of the first Mya zone occurs at the San Joaquin-Tulare Formation contact.

Barrett, E. C., 1967, Baja California II, 1535-1964, a bibliography of historical, geographical and scientific literature relating to the peninsula of Baja California and to the Adjacent Islands in the Gulf of California and the Pacific Ocean ***: Los Angeles, Calif., Westernlore Press, 250 p.

Includes a number of references to reports containing information on late Cenozoic mollusks. Some of these include brief annotations.

Records mollusks identified by F. S. MacNeil from St. Paul and St. George Islands. The largest assemblage includes nine mollusks. MacNeil regarded the collections, from four different localities, as of about the
same age and "probably of early Pleistocene or, at the earliest, late Pliocenic age."

Two new species of *Bittium* are described from the Pliocene of the Santa Maria basin, California.

Previously described Miocene species of *Odostomia, Cerithiopsis, Pyramidella, Eulima,* and *Syrnola* are reviewed. Describes *Turbonilla hemphilli* from a Pliocene well at San Diego, Calif.

Illustrates one species each of *Melanella* and *Niso* from middle Miocene strata near Bakersfield, Calif.

Bibliographic listing of Dall's 1,607 published reports and articles includes many dealing with Neogene mollusks of the Pacific coast. A brief account of Dall's work on Tertiary fossils of the northwest coast of North America is included.

Mollusks are listed from Arroyo San Angel, 4 kilometers south of San Ignacio, Arroyo Patrocinio, Arroyo Guajademi, Arroyo Purisima, Arroyo San Ramundo, Arroyo Tiebre, Elephant Mesa, and Bahia Tortuga. All localities are shown on the geologic map; several of the faunal lists are from Hertlein and Jordan (1927).

Basic foraminiferal correlation chart for Miocene and Pliocene formations of the San Joaquin basin and central California Coast Ranges. Two mollusk "zones" in the Pliocene are shown.

Pecten and *Ostrea* occur in upper Tertiary strata in the New Almaden mining district, Santa Clara County, Calif.

This is a useful, well-indexed reference to geologic and paleontologic reports up to 1936. A list of new species of mollusks described from Washington during this period (p. 129–136) is included.

Figures *Exilia* n. sp. D from near the mouth of Twin River, Wash., presumably from the upper part of the Twin River Formation and of early Miocene age [*Echinophoria apta* zone of Durham (1944)].

Marine mollusks occur in a 2,265-foot sedimentary section of Miocene age.

List 17 mollusks from the Lower Conglomerate of the “Vaqueros Formation,” 27 from the volcanic arenite of the “Vaqueros Sandstone,” five from the San Onofre Breccia, and one from the Monterey Formation. Inner shelf bathymetric environments are postulated for the Vaqueros assemblages in addition to a slight warming trend during deposition of the Vaqueros based on foraminiferal and molluscan data. Cooler conditions are postulated during deposition of the Rincon Formation but warming to subtropical conditions is suggested by analysis of the fauna of the overlying San Onofre Breccia.

A résumé of Tertiary occurrences of chitons including two from the lower Miocene and five from the Pliocene. A new genus and new species, *Oligochiton lioplax*, from the Sooke Formation, British Columbia, is described and illustrated.

Turritella nova occurs in the lower part of the Etchegoin Formation. The uppermost occurrence of *Mulinia [Pseudocardium] densata* is used to determine the top of the Etchegoin Formation. Typical mollusks in the lower part of the formation are: *Nassarius californianus*, *Pecten oweni* [*Patinopecten lohri*], and *Turritella nova*. *Calyptraea filosa*, *Area trilineata*, *Mya [Cryptomya] quadrata*, and *Mulinia densata* are common in the upper part. *Mya japonica* is reported from the San Joaquin Formation.

A zoogeographic boundary between Miocene mollusks of the “Astoria Subprovince” and the “Temblor Subprovince” occurs in the southern part
of the Diablo Range south of the Vallecitos area. The "Astoria Subprovince" is typified by "Pecten" propatulus. During the Saucesian and the Relizian stages benthonic Foraminifera of this region fall into the same faunal subprovince though the equivalent inshore molluscan faunas differ at least subprovincially. *Turritella inezana* and *T. ocoyana* occur together in the lower part of the Saucesian microfaunal stage. *Turritella ocoyana* does not range downward into the Zemorian Stage. Both of these turritellids are invaders from the Caribbean.

Includes a brief commentary on the fossil mollusks identified by T. A. Conrad. Reviews some of the principal Miocene and Pliocene localities discovered during the railroad surveys: Ocoya Creek, Carrizo Creek, San Diego, San Fernando Pass, Monterey, and Benicia.

According to Vogdes (1896) Tertiary fossils are recorded from the vicinity of Monterey and San Diego.

Description of itinerary includes records of fossils, mostly by generic name or as “fossils,” from many localities along the route. Some of these are Mount Diablo, Monterey, Ocoya (Poso) Creek, San Fernando Pass, Carrizo Creek (Imperial County), San Diego, and Santa Barbara. Many of the species named by Conrad are listed.

Initial notice of fossiliferous beds along Osborne Wash, Ariz., that were later referred to the Bouse Formation by Metzger (1968). Mollusks include *Bittium* and a probable young *Corbicula*.

New records of *Turritella ocoyana* along the west side of the San Joaquin Valley are related to the middle Miocene-late Miocene boundary and vertebrate-bearing beds. A correlation chart shows the relationship of vertebrate faunas to the California Miocene sequence.

Reports *Mya* from cores of the San Joaquin Clay, *Mulinia densata* from the top of the Etchegoin Formation (used to determine contact between these formations), and a *Pecten-Mytilus* fossil bed in the San Joaquin
Clay. Older mollusk-designated sand units are compared with modern stratigraphic names.

Lists four Miocene species of *Pandora* from California and Alaska.

Thyasira disjuncta ranges from Pliocene to Holocene in the Eastern Pacific. It is a larger, more quadrate species than *T. bisecta* which occurs in strata of Oligocene and Miocene age.

Pandora glacialis Leach occurs in the Pliocene Pico Formation near Ventura, Calif.

An alphabetic arrangement of all generic, subgeneric, and specific names introduced by Dall with bibliographic citations. Included in the 5,302 molluscan names are many Miocene and Pliocene taxa from the Pacific Coast States and Alaska.

Lists two small molluscan assemblages of middle Miocene age and three of late Miocene age from stratigraphic units in the northernmost part of the Santa Lucia Mountains. Identifications are mostly by L. G. Hertlein.

A few mollusks of Miocene and Pliocene age are listed.

Bowers, Stephen, 1890a, Orange County [California]: California Mining Bur., Tenth Ann. Rept. State Mineralogist, p. 399-409.

Lyropecten, and other Neogene fossils, occur near Alisos Creek in the Santa Ana Mountains.

An assemblage of about 20 mollusks from calcareous sandstone about 400 feet thick on Pine Mountain is listed. The assemblage appears to be of late Miocene age although species that are now regarded as of early Miocene and of Pliocene age are included in the list.

According to Mendenhall (1910), Bowers secured fossil collections from Carizzo Creek and Black Mountains and submitted them to J. C. Merriam, Ralph Arnold, and T. W. Vaughan for identification.

Records *Pecten sanctaecruzensis* from the lower part of the Vaqueros Formation in the Santa Cruz Mountains.

Pecten andersoni occurs in the lower Miocene Vaqueros Sandstone.

Notes tropical aspect of molluscan assemblages from the Imperial Formation considered to be of middle Miocene age. Less than one-fourth of the species are still living. Many of the species occur in middle Miocene formations of tropical America.

Clementia pertenuis and *Miltha sanctaecruzensis* occur in the upper part of Miocene sands at Reef Ridge [basal conglomerate of the McClure Shale]. *Turritella ocoyana* occurs in reef beds on Reef Ridge.

Mollusks are of rare occurrence in the siliceous rocks of the Monterey Formation. Small species of *Arca* and of Pectinidae are the only common mollusks. The fauna suggests relatively deep and cool water.

Fossils [in large part mollusks] occur abundantly in the Miocene Vaqueros Formation and in rocks of Pliocene age.

Includes lists of mollusks from Miocene and Pliocene formations of Santa Cruz quadrangle, all from an earlier publication by Arnold in 1908. Several mollusks from the Vaqueros Formation, Monterey Shale, Purisima Formation (?) barnacle beds [middle Miocene east of San Andreas fault], and the Purisima and Merced Formations are illustrated; practically all of these were previously figured by Arnold in 1908.

Lists 21 species of mollusks from his Temblor Formation (identifications by W. H. Corey). Corey suggests that *Pecten vanveleckii* may range above his Vaqueros Formation ["Stage"]. Four characteristic Vaqueros mollusks from exposures of the Vaqueros Formation on Santa Rosa Island are illustrated.

Lists 11 species from the Vaqueros Formation and eight from the Temblor Formation (identifications by W. H. Corey). *Pecten cf. peckhami* occurs in the Monterey Shale.

Very poorly preserved casts of pelecypods from the San Pablo Formation resemble *Spisula* according to J. W. Durham.

Includes a brief review of localities and areas from which Miocene and Pliocene marine fossils have been reported.

A marine transgression occurred along the Pacific coast of Alaska during the Miocene but did not extend north of Bristol Bay. Pliocene marine invertebrates occur in ancient beach deposits of Pliocene or Pleistocene age near Nome.

Pecten andersoni and oysters have been recovered from cores of their Kettleman sand (Escudo Formation) in wells at Pyramid Hills oil field. These mollusks also occur in surface exposures of this formation at nearby Wagonwheel Mountain.

A few mollusk localities in Skonun Formation at Masset Sound, Watun Creek, and Skonun Point are listed. F. J. E. Wagner believes that the assemblage is Miocene. Pollen specialists compare it with the Sooke Formation but also indicate late Miocene or early Pliocene affinities.

Small pelecypods in limestone exposed in the Palo Verde Mountains [later mapped as basal part of Bouse Formation by Metzer (1968)] may indicate an extension of the Gulf of California during the later Tertiary.

Fossils collected from the upper member of the Twin River Formation, chiefly mollusks, are considered to be of late Oligocene or early Miocene age. Mollusks are relatively abundant in this member.

Marine mollusks from the upper part of the Twin River Formation are considered to be of late Oligocene or early Miocene age by Ellen J. Trumbull. Two assemblages of mollusks from localities included in the upper part of the Twin River Formation by these authors were correlated with the middle Miocene Temblor Formation of California by Durham (1944).

A valuable source of geographic and bathymetric range data for modern mollusks of the eastern North Pacific for use in paleoecologic and zoogeographic studies.

The tellizone of *Pecten sanctaecruzensis* in the Santa Cruz Mountains is restricted to the Vaqueros Formation. The type locality of *Fusus sanctae-crusis* Arnold also occurs in the Vaqueros Formation.

Includes lists of Miocene fossils from near Port Moller, a late Oligocene or early Miocene assemblage from the Fox Bay-Boulder Bay area, and a Pliocene or Pleistocene assemblage from Herendeen Bay. His newly named Bear Lake Formation of middle and late Miocene age includes "large fossiliferous banks in which the shell matter may constitute a third of the rock" (p. 91). The lower part of the formation is characterized by specimens of *Mytilus middendorfii*; it is mapped as the Unga Conglomerate Member. *M. middendorfii* also occurs at Cape Alaskin and on the eastern shore of Kodiak Island. List of Tertiary mollusks identified by F. S. MacNeil are included in Appendix C (p. 221-228). Sixty-eight species ranging from Eocene to Pliocene are recorded; most of the collections are of Oligocene age.

Sandstone overlying Monterey Shale beds in the New Almaden quadrangle northeast of the San Andreas fault contains fragments of *Ostrea titan* and other fossils that suggest a late Miocene age.

Buwalda, J. P., 1913, Faunal zones of the San Pablo formation east of Walnut Creek, near Mount Diablo, California [abs.]: Geol. Soc. America Bull., v. 24, p. 130.

The abstract is: "Discussion of a measured section of the San Pablo formation on the western side of the Mount Diablo anticline, with the results of a study of the [molluscan] faunal zones."

A marine formation of late Miocene or early Pliocene age crops out in the Indio Hills, Riverside County. The fauna is similar to the living fauna of the Gulf of California.

Pecten healeyi occurs at the top of the Foxen Formation. *Pecten ander­soni* has been recovered from cores of the "oil sand zone" of the Monterey Formation (middle Miocene).

Mollusks from Narrow Point, Kodiak Island, identified by W. P. Wood­ring (USGS loc. 13372) are considered to be of Miocene or Pliocene age. Ten taxa including *Mytilus middendorffi* are listed.

Lists nine mollusks of late Pliocene age from a new locality in the Merced Formation about 7 miles west-northwest of Santa Rosa. Identifications are by L. G. Hertlein who correlates the assemblage with the lower part of the type Merced Formation. Most of the fossil localities in the Merced Formation of this area are near the base of the formation. The fossils are also found in well cores.

Carlson, Stanley, Dibblee, T. W., Jr., Ryan, Ben, Jr., and Schwade, I. T., 1951, Cuyama Valley [California], in Soc. Econ. Paleontologists and Mineralo­gists, Annual Field Trip, 1951: 6 p.

Characteristic mollusks from the upper Miocene Santa Margarita For­mation and sandy beds in the underlying middle Miocene Monterey Shale are listed by Dibblee.

Lists characteristic mollusks from five "formations" of Pliocene age that are thought to represent successive faunal zones: Etchegoin sandstones, Fernando shaly sandstones, San Diego clays, Ventura sands, and Santa Barbara marls. The faunas are regarded as showing a more or less pro­gressive cooling during the Pliocene, the Santa Barbara faunal assem­blages being the coolest.

Describes and illustrates three new Pliocene gastropods.

Describes and illustrates 14 new species of mollusks from the Pliocene of California. Included are lists of mollusks associated with the new spe­cies at their type localities. Most of the new species are from the Santa Maria basin.

Reports *Ostrea howelli* from near the top of the lower Miocene Vaqueros Formation at Casitas Lake, Santa Barbara County, Calif.

Molluscan fossils occur in Miocene and Pliocene formations (Vaqueros and Pico Formations) near Ventura, Calif. *Turritella ocoyana* is reported from the upper part of the Vaqueros Formation.

Spisula voyi (Gabb) from Pliocene strata near Bear River, Humboldt County, Calif., is included as synonym of *S. polynyma*.

The first occurrence of "true marine fossils" (including the *Mulinia* bed) is at the San Joaquin Clay-Etchegoin contact.

Lists two middle Miocene mollusks from Blake's Ocoya Creek locality (Conrad, 1855), four early Miocene mollusks from Pyramid Hill, five from the Barker's Ranch (middle Miocene) area, and three from Sharktooth Hill (middle Miocene).

A 2- to 3-foot bed lying unconformably above Miocene diatomaceous siltstone contains abundant specimens of a small *Pecten* and a few small *Ostrea*. It is referred to the basal San Joaquin *Pecten eldridgei* zone (Pliocene).

Contains a map of exposures of Sooke and Carmanah Formations along southwest coast of Vancouver Island. There is a section on age of formations but with no fossil names.

Lists mollusks from the Sooke and Carmanah Formations from near Sooke northwest to the vicinity of Clo-oose (identifications by C. E. Weaver). Weaver correlated the Sooke with the Clallam Formation of the northern Olympic Peninsula.

Clark, Alex, 1937, Notes on Conrad's Miocene species from "Ocoya" Creek, Kern County [California] [abs.]: Geol. Soc. America Proc. 1936, p. 386-387.
Discovered Conrad's original Poso Creek [Ocoya Creek] locality from which *Turritella ocoyana* and other middle Miocene mollusks were described. Indicates some taxonomic revisions based upon restudy of material from this locality.

Lists 18 mollusks from his Upper Monterey Series, 44 species from the lower division of his San Pablo Series, and 21 species from the upper division of his San Pablo Series.

A fauna of 60 species of marine invertebrates [mostly mollusks] occurs in this formation. Twenty species have been collected from the underlying Monterey Series.

The fauna of the San Pablo is of Miocene age; it consists of about 150 species [mostly mollusks] that are divided into two faunal zones bearing the names of echinoids.

Clark, B. L., 1914b, Fauna of the *Scutella breweriana* zone of the upper Monterey Series [California] [abs.] : Geol. Soc. America Bull., v. 25, p. 151.

About 60 species of invertebrates [mostly mollusks] occur in this zone. The fauna is distinct from that of the *Agasoma gravida* zone below and the fauna of the San Pablo Series above.

Describes and illustrates about 70 new molluscan taxa from the San Pablo Group (Cierbo and Neroly Formations of later usage). Regarded faunas as indicative of warm temperate conditions similar to those in the northernmost part of the present-day Californian molluscan province. Includes a faunal list, locality descriptions, stratigraphic descriptions of important sections, and descriptions of two faunal zones, both bearing the names of echinoids. Lists species limited to each of the two zones.

Defines the *Anadara montereyana* zone which is as old as the *Turritella ocoyana* zone of southern California. Lists nine mollusks from this zone and 86 molluscan taxa from the underlying *Agasoma gravida* zone which is regarded as older than the *T. inesiana* zone of southern California.

Clark, B. L., 1916, Note on the marine Tertiary faunas of the Tejon Hills section, in Merriam, J. C., Mammalian remains from the Chanac formation of the Tejon Hills, California : California Univ. Pubs., Dept. Geology Bull., v. 10, no. 8, p. 115.

Lists characteristic mollusks from upper Miocene exposures at Comanche Point.

The Astoria Formation of Oregon is considered equivalent to the Clallam Formation of northwestern Washington and is considered by Clark to be coeval with his Agasoma gravidum zone of the Mount Diablo area, the San Lorenzo Formation of the Santa Cruz Mountains, and the Kreyenhagen Shale, all in California.

Definitive report on the San Ramon Sandstone of the Mount Diablo area. This formation, characterized by mollusks referred to as the Agasoma gravidum fauna, is separated from the overlying Sobrante Sandstone of Lawson (1914) on the basis of an unconformity in the upper part of the formation. The San Ramon fauna is described and illustrated. It is correlated with other late Oligocene and (or) early Miocene faunas along the Pacific coast.

A correlation chart of the Pacific coast contains nine columns for California and one for Oregon and Washington. A few characteristic or stratigraphically restricted mollusks are shown for some of the marine formations. Latitudinal temperature gradients that were developed by the late Tertiary, and the isolated nature of depositional basins, complicate Neogene correlations along the Pacific coast.

Seven subdivisions [time-stratigraphic] of the California Neogene are recognized and used on a chart showing formations and principal faunal elements for nine areas in California. The correlation of these units, their paleogeography, and their inferred climatic significance are discussed; paleogeographic maps showing the distribution of each of these are included. Progress in molluscan correlation has been hampered by poor preservation of material, geographic isolation of faunas, and latitudinal temperature differentiation that became very pronounced following the middle Miocene.

Mesodesma pacifica Hall and Ambrose from the Monterey Group near Sunol, Calif., is included with the newly described Myadesma dalli from the Sooke Formation of British Columbia in this new genus. Both species are illustrated.

Principally a summary of work on molluscan faunas of the Paleogene in California, Oregon, and Washington. There was very little research in
progress on Miocene and Pliocene faunas; the only work noted being that of W. S. W. Kew on the Miocene and Pliocene of southern California.

A review and systematic description of Oligocene and some early Miocene pelecypods, principally from Oregon and Washington. A few new species are described from the uppermost part of the Twin River Formation of northwestern Washington, the Scappoose Formation of northwestern Oregon, lower or middle Miocene beds of coastal Oregon, and the San Ramon Formation of central California. Lists of mollusks at the type localities of each of these new species are included.

A review of Tertiary faunas listing characteristic species from several Miocene and Pliocene "horizons" or "formations." Illustrates previously described Miocene and Pliocene mollusks.

Recognizes 42 molluscan taxa, including 24 newly described species or subspecies, from rock units of late Oligocene to middle Miocene age. The combined fauna is correlated with the Blakeley "horizon" ["Stage"] of western Washington and the fauna of the Sooke Formation of Vancouver Island. Water temperatures are inferred to have been cool temperate and similar to modern conditions in this area. Evidence for late Oligocene age of the San Ramon Formation of California is discussed.

The molluscan fauna of the Yakataga Formation is considered to be of late Oligocene age and is correlated with the faunas of the Blakeley Formation and San Ramon Formation of the Pacific Coast States. Some paleontologists consider these faunas to be of early Miocene age.

Proposes the name King City Formation for marine strata exposed southeast of King City, Monterey County, Calif., that overlie basement rocks and underlie the Pancho Rico Formation. This unit is characterized by a mollusk-echinoid faunal assemblage referred to as the Astrodapsis antisellii zone.

A discussion of Tertiary correlation with reference to a few mollusk and echinoid zones. A correlation chart of Coast Range Tertiary formations is included.

The younger of two Oligocene faunal units, that of the Seattle Group, is more closely related to the older Oligocene faunal unit (the San Lorenzo Group) than to early Miocene faunas.

Clark, B. L., and Arnold, Ralph, 1918b, Marine Oligocene of the west coast of North America: Geol. Soc. America Bull., v. 29, p. 297–308.

The youngest of three faunal zones included in the Oligocene of Washington, the *Acila gettysburgensis* zone, represents temperate marine climate, as does the oldest zone, the *Agasoma acuminata* zone of the Sooke Formation. The latter zone is now considered to be of probable early Miocene age; the former at least in part of early Miocene age (Weaver and others, 1944). Differentiation of climatic zones along the Pacific coast began during the Oligocene. A paleogeographic map of the early and middle Miocene of California (“Monterey”) is included.

The definitive study of the molluscan fauna of the Sooke Formation based upon all significant collections made as of that date. Sixty-six mollusks are recognized of which 45 are newly described. The fauna represents temperate climatic conditions along a strand line with the influence of brackish water in at least a few of the fossiliferous localities. The formation is considered to be of late Oligocene or early Miocene age, coeval with the *Acila gettysburgensis* zone of Oregon and Washington.

The Vaqueros should be correlated with the European Burdigalian Stage because specific and generic composition are similar (list Aquitanian to Helvetian analogs of four Vaqueros species). *Turritella ocoyana* is represented by analogous species in South America which are of Miocene age. Faunal migrations occurred from Europe to the Americas, American occurrences are, therefore, at least as young if not younger than European occurrences.

The Santa Margarita Formation of the Scotts Valley area includes mollusk assemblages that, together with foraminiferal and land-mammal control, suggest that the Miocene-Pliocene boundary occurs within this formation.

Paleontologic evidence indicates that the Mindego volcanics west of the San Andreas fault and the Page Mill Basalt east of the fault are not, as
previously held, contemporaneous. An early Miocene assemblage, including four listed species, directly overlies the Mindo volcanics; a middle Miocene assemblage includes *Turritella ocoyana* and a "typical Temblor ['Temblor Stage'] fauna" overlies and is interbedded with the Page Mill Basalt.

Ostrea vaqueroensis and *Pecten magnolia* are reported from localities in their "Aqua Sandstone", a sandstone within the upper part of their Santos Shale, documenting the occurrence of lower Miocene ["Vaqueros Stage"] strata along the west side of the San Joaquin basin.

Ostrea, Corbicula?, Natica, and Pecten (determined by F. E. Turner) occur in strata assigned to the Miocene by Clark. *Desmostylus* also occurs in this unit and is believed to be of middle Miocene age according to VanderHoof (1937). Oysters are reported by Diller (1902) from strata that overly serpentine in this area.

A discussion of the paleogeography of the Panama-Costa Rica area including his Bolivar seaway and Tehuantepec Portal (open until the Pliocene). Caribbean affinities of Pacific coast faunas appear in the early Miocene and persist until middle Pliocene according to Clark.

Two species of *Macoma* migrated through the Bering Straits during the late Tertiary and Quaternary (*M. obliqua* and *M. praetenuis*).

Macoma incongrua von Martens (1865) of the eastern North Pacific is conspecific with *M. obliqua* (Sowerby, 1817), reported from the Coralline Crag of England. Eastern Pacific specimens previously identified as *M. incongrua* differ significantly from modern specimens of this species from Japan, the type locality. There are a few comments on Neogene migrations of *Macoma* from the Pacific to the Atlantic.

Two genera of Marginellinae are recorded from formations of Pliocene age in the low latitudes of the eastern Pacific.

BIBLIOGRAPHY

Includes the initial report of marine fossils of presumed late Tertiary age from the northern part of Adak Island.

The oldest fossiliferous sedimentary rocks of Tertiary age in this region occur on Adak Island on the east side of "Mount Adagdak" and on Amchitka Island about 2½ miles west of East Cape.

Sandstone containing abundant fragments of marine fossils is considered to be of late Tertiary age because of the similarity of the fossil fragments to modern beach drift.

The Bering Straits opened briefly during the late Miocene and again near the end of the Pliocene according to evidence of migrations of marine invertebrates (reference not seen).

Lists Pliocene mollusks from localities in basal conglomerate of the Fernando Formation in Cat Canyon area and 21 mollusks from a railroad cut half a mile north of Schuman (identifications by H. H. Dievendorff).

Fourteen species of mollusks from the Astoria Formation are described and illustrated by line drawings. The fossils are considered to be of Miocene age.

A brief description and illustration, by line drawings, of 33 new species of mollusks from the Astoria Formation near Astoria, Oreg. Notations on measurements and morphology of these specimens are added in brackets by Dana.

Describes Gnathodon lecontei presumably from the Imperial Formation of Carrizo Creek, southeastern California.

Describes *Ostrea titan* from near San Luis Obispo, Calif. Proposed the new genus *Scaphothaerus* based upon *Lutraria nuttalii*.

Lists four species of mollusks from "Miocene" deposits at Santa Barbara [Santa Barbara Formation of late Pliocene to early Pleistocene age].

Describes 12 new mollusks from Miocene strata northeast of Bakersfield, Calif., four from Pliocene strata at Carrizo Creek in southeast California, four from Miocene rocks in Monterey County, Calif., and one from an unspecified locality [Miocene?] presumably in the San Joaquin Valley. Several Eocene species from the San Diego area were believed by Conrad to be of Miocene age.

First illustration of species described by Conrad in 1855. Includes 12 new species and five genera from the Ocoya Creek locality in Kern County, four from the Pliocene strata of Carrizo Creek in Imperial County, four from Miocene rocks of Monterey County, and one species from Tulare Valley. Includes catalog of 59 marine mollusks named by Conrad from California Cenozoic deposits; a few are from Eocene strata in the San Diego area, others are from Pleistocene strata at San Pedro and Santa Barbara.

Describes new species of Miocene mollusks and figures 16 mollusks described, but not illustrated, in earlier publications.

Describes 22 new species of late Cenozoic mollusks from California, two of which may have been collected from Pleistocene strata at Santa Barbara, Calif.

Describes and illustrates new species from the Miocene and Pliocene of California; illustrates several previously described, but unillustrated, species.

The genus Lyropecten is represented by three species on the Pacific coast: L. estrellanus, L. crassicardo, described in this report, and L. volaeformis, a new name for Pallium estrellanum Conrad (Pacific Railroad Reports, v. 7, p. 191).

Proposes the new genus Priscofusus for six Neogene species from the Pacific coast. Assigns specific names to mollusks figured, but not named, in his 1849 report. Assigns mollusks from the Astoria Formation to the Eocene.

Assigns the Astoria Formation of Oregon to the Eocene on the basis of his identification of an Aturia from the formation as the European Eocene species A. ziczac.

Assigns mollusks from the Astoria Formation of Oregon (Conrad, 1848, 1849) to the Eocene.

A generalized account of Miocene paleogeography of California in which it is maintained that most of the Coast Ranges south of San Francisco were under water during this epoch. Ostrea titan found in the Colorado River basin at an elevation of 1,000 feet is believed to indicate marine conditions during the Miocene at that time. Most of northern California was emergent during the Miocene.

Lists Cenozoic fossils from California with geologic range and geographical distribution. Many of the fossils are recorded for the first time from certain areas.

COOPER, J. G., 1894, Catalogue of Californian fossils, parts 2-5: California Mining Bur. Bull. 4, 65 p., 6 pls. [Plates reprinted by Yates, 1903, Southern California Acad. Sci. Bull., v. 2, no. 4, (pls. 1-4); no. 6 (pl. 5); no. 7 (pl. 6).
Includes a 17-page bibliography of "fossil mollusca" [actually a list composed almost exclusively of reports on living mollusks]. Report includes supplementary list to his earlier catalog (1888). Describes and illustrates two new Miocene gastropods from Kern County, Calif., and illustrates four previously unfigured Miocene pelecypods from California.

In discussing unpublished notes of Prof. Thomas Condon, indicates argillaceous shales that contain invertebrate fossils (Astoria Formation) make up much of the Coast Range. Above it are extensive beds rich in mollusks that he named "Solen beds."

"The Vaqueros has a large fauna containing many new species, several of which are quite common. Some forms are apparently directly ancestral to Temblor species."

"Field work has also brought out some interesting facts concerning stratigraphic relationships of the Vaqueros formation in this region."

Fossil mollusks of late Miocene age have been recovered from cores in the Venice and Del Rey oil fields.

Lists Mytilus cf. M. matthewsoni Gabb, Ostrea sp., Pecten raymondi brionianus Trask, Pecten crassicardio var., and Cymbulina inornata (Gabb) from the schist-bearing sand and conglomerate of late Miocene age that unconformably overlie schist basement in three wells.

Includes a series of five paleogeographic maps of the Neogene based upon informal megafaunal time-stratigraphic units named "Vaqueronian," "Temblorian," "Montereyian," "Margaritian," and "Pliocene" that show shorelines, land areas, and areas of coarse clastic deposition. The stratigraphic range of formations is depicted on a stratigraphic chart which also shows the relative distribution of sea and land areas in southern California during the Neogene.

Cornwall, I. E., 19222, Some notes on the Sooke Formation, Vancouver Island, British Columbia: Canadian Field-Naturalist, v. 36, no. 7, p. 121-123.

A few previously described mollusks from the Sooke Formation, including fresh or brackish water taxa and fully marine taxa, are listed. Two of Clark and Arnold's (1923) new species are listed: Cerithidea nevocombei and Goniobasis sookensis.

Barnacles in the Sooke Formation occur with Cyrena and Ostrea suggesting brackish water conditions.

Shell fragments [presumably mollusks] are common in the Santa Margarita Formation at Kern Bluff field.

Includes several records of Pacific coast Miocene and Pliocene gastropods and initial designation of type species for certain Pacific coast genera.

Twenty-five mollusks from the basal sedimentary strata on St. George Island are indicative of assignment to the Beringian marine transgression which is of late Pliocene or early Pleistocene age. The mollusks were identified by F. S. MacNeil; a few are mentioned in MacNeil's discussion. The Beringian strata are covered by volcanic flow rock dated at about 2.1 m.y.

It is not until the Burdigalian Stage in Europe that pectinids reach the size of Vaqueros species such as Pecten magnolia, P. miguelensis, P. bowersi, and P. perrini. Pecten vanvleclci seems to be an Amussiopecten; the earliest occurrence of the genus is in the upper Aquitanian of Europe. Ostrea vespertina locli is very similar to the Burdigalian O. verleti from the Mediterranean. The Turritella fauna of the Vaqueros does not support an Oligocene age. The general aspect of the fauna is Neogene, although the evidence is not very strong.

Pseudamussium pedroanum (Trask) occurs in Miocene? shale that is unconformably overlain by Pleistocene strata.

Lists five mollusks from the Temblor Formation including Bruclarkia oregonensis and Patinopecten propatulus. Three species are listed from the Briones Formation: P. propatulus, Spisula selbyensis?, and Tivela merriami?.

A doubtfully identified fragment of *Pecten andersoni* is reported from a core recovered from the Monterey Shale.

Eleven mollusks from the Santa Margarita Formation northeast of the San Andreas fault identified by W. H. Corey are very similar to assemblages from the northern Tejon Hills in the southeastern part of the San Joaquin Valley.

The lowermost 2,000 ft of his Ridge Basin Group are marine and contain mollusks [not listed] of late Miocene age.

Turritella inezana is reported from the Vaqueros Formation.

Disarticulated valves of *Macoma* sp. and *Semele* sp., about 2 cm in diameter, occur with two preferred orientations: (1) imbricated with concave sides upward in a massive sandstone and (2) with concave sides downward in laminated sandstone.

Large oysters indiscriminately identified as *Ostrea titan* represent two or three different species based upon details of internal morphology.

The definitive stratigraphic study of the marine Tertiary of the northern Santa Cruz Mountains. List four species characteristic of the lower Miocene Vaqueros Formation, six species from the lower Miocene Mindego Formation, one from the Monterey Formation, and 65 from the Pliocene Purisima Formation. The Purisima Formation is subdivided into five members; many mollusks from it are illustrated. The Pliocene mollusks suggest deposition in relatively shallow water: 10-50 fathoms.

Include a stratigraphic column of Miocene formations of type Temblor Formation, type Monterey Formation, North Beldridge area, Lost Hills
area and Kettleman Hills area; the three latter being well sections. *Pecten andersoni*, *Turritella ocyana*, *Turritella* sp., and *Ostrea* sp. occur in subsurface units of middle Miocene age.

Lists six mollusks from his Phacoides sandstone, three from his Carneros Sandstone, and two from his upper Temblor Sandstone ("Button beds") on Chico Martinez Creek.

Cushman, J. A., and Laiming, Boris, 1931, Miocene foraminifera from Los Sauces Creek, Ventura County, California: Jour. Paleontology, v. 5, no. 2, p. 79-120.

Turritella inezana Conrad was recovered from a core taken at 5,543 ft in the General Petroleum Corp. well Kerwin no. 1 (sec. 5, T. 30 S., R. 29 E.) in the Edison oil field. The identification was by W. H. Corey. *Turritella ocyana* is reported from a 4,000-foot sequence of Miocene strata at Goat Spring (secs. 32 and 33, T. 12 N., R. 27 W., San Luis Obispo County.

List 35 species of mollusks from Vaqueros Formation localities of the South Oak Ridge area identified by W. H. Corey. A map and columnar section show the occurrence of six molluscan zones (named by Corey) in 1,470-foot section of Vaqueros Formation. A foraminiferal assemblage in middle of section seems to be of late Zemorrian age, comparable to the lower part of the Rincon Shale.

DALL, W. H., 1874, Notes on some Tertiary fossils from the California coast, with a list of the species obtained from a well at San Diego, Calif., with descriptions of two new species: California Acad. Sci. Proc., v. 5, p. 296-299.

Lists an assemblage of 69 megafossils from a well drilled in Balboa Park, "the San Diego well," considered to be of Pliocene age. Describes *Chrysodomus diegoensis*.

Lists 114 Pliocene and Pleistocene mollusks from localities at San Diego and at Santa Barbara, the latter being of probable early Pleistocene age. Species from the San Diego well are indicated separately. Six new species of Pliocene age are described from exposures at Pacific Beach, San Diego.

Pliocene and Pleistocene fossil assemblages from the San Diego peninsula and from the mainland are listed separately, supplementing the earlier list in which the assemblages were lumped (Dall, 1879a). Thirteen species of Pliocene age are recorded from Pacific Beach.

Brown sandstone along the coast of Alaska contains extinct fossils (Crepidula, Mytilus, and Ostrea) which are comparable to Miocene mollusks from California. One deposits on St. Paul Island may be younger than these.

DALL, W. H., 1890, Conchological notes from Oregon: Nautilus, v. 4, no. 8, p. 87–89.

Marine fossils in Pliocene beds at Shoalwater Bay, Wash., conformably underlying Quaternary strata include Buccinum cyaneum and other northern forms indicating cooler climate than at present. Mytilus condoni is described as a new species characterized by a few, strong, divaricating ridges extending from about the middle of the valve toward the posterior extremity.

An assemblage of 46 mollusks from the "Astoria group" of Alaska is correlated with sandstones and shales at Astoria, Oreg. Alaskan Miocene water temperatures were warmer than at present. The fossils are from Lituya Bay, the Alaska Peninsula, and the Aleutian chain. A cool water Pliocene fauna occurs at Shoalwater Bay, Wash.; Pliocene fossils are recorded from the St. Elias Alps, southeast Alaska.

The initial recognition of Oligocene strata on the Pacific coast. Most of the Astoria Formation and the Tunnel Point Sandstone of Oregon coast were included in the Oligocene.

Lists 35 mollusks collected by Stanley-Brown from "horizontal layers of a hard claystone" on St. Paul Island. The list is derived mainly from Dall (1896). Fragments of bivalves (Sasicava?) are reported to have been collected on Bering Island of the Commander Islands by Stejneger.

Contains descriptions of a few new species from California and Washington. Illustrations and incidental taxonomic observations on other Pacific coast species are also included. Includes a review of Pacific coast pectinids.

Describes Lima hamlmi from Pliocene rocks exposed in the Third Street Tunnel, Los Angeles [Calif.].

Discusses Miocene and Pliocene records of two species of *Thyasira* from California.

Six new species of Miocene mollusks from Unga Island are described and illustrated. Thirty-one Miocene mollusks are recorded from Unga Island and Popof Island. These assemblages are correlated with the Miocene fauna from Astoria, Oreg. Mollusks from the Stepovak Series of Palache (1904) considered to be of Eocene age are now considered to belong to the Oligocene *Aella shumardi* zone (MacNeil and others, 1961). Thirty-two taxa, including 10 newly described mollusks from the Upper Beds, are recorded.

DALL, W. H., 1907a, Notes on some upper Cretaceous Volutidae with descriptions of new species and a revision of the groups to which they belong: Smithsonian Misc. Colln., v. 50, pt. 1, no. 1704, 23 p.

Contains a discussion of *Volutoderma indurata* (Conrad) from the Astoria Formation and initial description of the Pliocene species *Hiopleiona oregonensis* Dall, both from coastal Oregon.

Pecten liocius is described from marine gravel believed to be of Pliocene age from near Nome. A few associated mollusks suggest water temperatures warmer than occur at this latitude today.

Four species of *Epitonium*, including *E. atwoodii* n. sp., are recorded from upper Tertiary strata of the Alaska Peninsula and Shumagin Islands, Alaska.

Gabb's paleontologic studies and fieldwork in California are described.

An important reference on systematic paleontology of the middle Miocene Astoria Formation and the Pliocene Empire Formation. There are many descriptions of new Pliocene species from the collection of B. H. Camman. Two cancellariids of Pliocene age from California are described. There is a useful bibliography of reports on post-Eocene mollusks of the Pacific coast (25 p.) and reprinted descriptions of new species from several earlier reports on Pacific coast mollusks, mostly by T. A. Conrad.

Dall, W. H., 1909c, Material toward a bibliography of publications on the post-Eocene marine mollusks of the northwest coast of America, 1865–1908, Appendix 18, *in* Dall, W. H., Contributions to the Tertiary

Includes bibliographic citations to reports dealing with Miocene and Pliocene Mollusks.

Four Miocene and Pliocene species of *Thracia* have been described from the Pacific coast.

Alectrid grammatas is described from Pleistocene exposures [Pliocene] at Santa Barbara, Calif.

Exilia is represented in the Pliocene of California.

Forty-four mollusks of Pliocene age are identified from localities at Tolstoi Point, St. Paul Island, and Tolstoi Point, St. George Island.

Includes lists of Pliocene and Pleistocene mollusks from 22 localities, mostly from near Nome but with a few from the Arctic coast. Fifteen new species of mollusks are described and illustrated. A few previously described mollusks are also illustrated. A "more free connection probably existed in Pliocene time between the North Atlantic and the Bering Sea regions" (p. 25). Miocene climate was much cooler than during the Eocene. During the Pliocene the climate seems to have become more moderate judging by the marine fauna.

A very useful résumé of original bibliographic citations and geographic-range data for the modern molluscan fauna of the Pacific coast. There are excellent line drawings of many species that have pre-Quaternary records. Trans-Arctic migration of Pacific and Atlantic mollusks occurred during late Tertiary periods of warmer marine climate than today. Several mollusks from the Bering Sea are found as fossils in the Pliocene of Nantucket and Iceland.

Pecten hallae and *P. ryhtidus* are described from a buried Pliocene-beach deposit near Nome. These and five other mollusks suggest a warmer-marine climate than occurs in this area today.
BIBLIOGRAPHY

A critical commentary upon report by Reagan (1909) on mollusks of the Clallam and Quillayute Formations of the Olympic Peninsula. Many of Reagan's specific determinations and generic assignments were changed or corrected.

Lima hamlini from 'Pliocene clays of Los Angeles' [Calif.] is figured.

Includes a review of paleontologic studies on the Tertiary of the Pacific coast with stratigraphic data. There are a few lists of fossils including a list of 46 mollusks from the "Astoria group" of Alaska (based on 12 localities). An index map shows the known distribution of Neogene formations in Alaska.

Shale near Astoria, Oreg., contains many kinds of mollusks that are regarded by T. A. Conrad as of Miocene age. Three species, Nuovula divaricata, Lucina acutilineata, and Natica saxea, closely resemble Miocene species from the Northern Atlantic.

Darton, N. H., 1921, Geologic reconnaissance in Baja California: Jour. Geology, v. 29, p. 720-748.

Lists fossils characteristic of the California Miocene from localities in the vicinity of San Ignacio and La Purisima, Baja California. Included are Pecten crassicardo and Turritella ocoyana. Monterey beds 500 ft thick contain the above species; overlying yellow beds of the same thickness contain fossils that suggest a late Miocene age.

Postulates migration of marine invertebrates from the North Pacific through the Arctic into the North Atlantic during the late Miocene or early Pliocene based on Acila, Searlesia, Cochliodesma, Pholadidea, Mya, and other mollusks. These genera appear in the Pliocene or Quaternary of the British Isles but have pre-Pliocene records in the North Pacific.

A few molluscan genera of modern aspect in Oligocene faunas of the North Pacific suggest that certain formations such as the San Ramon might be better dated as Miocene. Climatic zones were well established along the Pacific coast by the early Miocene. Many new warm-water species, probably of Caribbean-Mediterranean derivation, appear in the fauna of the Vaqueros Formation. There is an increase in taxonomic diversity of mollusks during the middle Miocene. Late Miocene and early Pliocene
faunal migration from the North Pacific into the Atlantic probably followed a route along the Arctic coast of North America; at least one species of mollusk may have migrated in the opposite direction—from Western Europe to Japan. Temperature contrasts between molluscan faunas along the Pacific coast are much greater during the Pliocene than during earlier periods.

Reference is made to some Neogene species from the Pacific Coast of North America. Two Miocene gastropods from the Pacific coast, *Moloposphorus* and *Brucelkia*, are figured. Volume II was issued prior to volume I.

About 60 species of mollusks of late Pliocene age occur in collections from the Pico Formation at the north edge of the Whittier Hills.

Tellina tenuistriata is described as a new species from the “Lower Temblor” near the headwaters of the San Antonio River, Monterey County, Calif.

Lists Miocene mollusks from near Skon-un Point identified by J. F. Whi-teaves.

“Marine Miocene fossils” occur on Atka Island. “Upper Miocene (Astoria Group of Dall)” and “post-Pliocene” fossils occur on St. Paul Island.

The mollusks from the upper Miocene Modelo Formation identified by J. W. Durham are recorded.

Fragments of *Ostrea* sp. occur near the base of the Vaqueros Formation.

The Yakataga Formation contains mollusks suggesting deposition under cool conditions; marine tillities occur well below mollusks of late Miocene age in this formation. Marine tillities on Middleton Island are of late Pliocene and early to middle Pleistocene age based on their molluscan faunas. Molluscan assemblages underlying the Miocene marine tillities suggest subtropical and temperate climates.

Lists nine mollusks from the Vaqueros Formation, five from the Transquillon Formation, and 12 from the Careaga Sand. Includes a correlation chart of molluscan zones and stages and foraminiferal stages.

Dibblee, T. W., Jr., 1952, Point Conception northeastward, in Redwine, L. E., chm., and others, Cenozoic correlation section paralleling north and south margins [of the] western Ventura basin from Point Conception to Ventura and Channel Islands, California: Am. Assoc. Petroleum Geologists, Subcommittee on the Cenozoic of the Geologic Names and Correlations Committee, 2 sheets.

Pecten magnolia occurs in the Vaqueros Formation.

Pecten andersoni occurs in the middle Miocene, *Pecten estrellanus* and *Ostrea tita* occur in the upper Miocene “Santa Margarita” [Formation].

Lists assemblages of five mollusks each from the Miocene Vaqueros and Temblor Formations. Other mollusks are recorded from the Pliocene Careaga Sandstone and “Pico” Formation, as well as from the Pliocene and Pleistocene Santa Barbara Formation.

An unnamed sandstone overlying the Page Mill Basalt contains molluscan assemblages indicative of middle Miocene age near Stanford University and late(?) Miocene age near Stevens Creek. The Merced (?) Formation contains abundant shallow water molluscan fossils near Felt Lake.

Early Miocene mollusks occur in the Cajon Pass area at the eastern edge of the San Gabriel Mountains. Late Miocene mollusks occur in the Quail Lake Formation at the western edge of Antelope Valley.

The Bena Formation, a dominantly terrestrial unit, contains a few indeterminate marine pelecypods. The formation grades laterally into the Olcese Sand and is, therefore, considered to be of middle Miocene age.

Lists eight mollusks from the *Turritella inezana* zone and 24 species from the *Turritella ocyana* zone.

The Pliocene fauna of Carrizo Creek, Imperial County, Calif., is related to molluscan faunas of the Atlantic Ocean. A late Tertiary assemblage (four species of probable Miocene age) from Magdalena Bay, Baja California, suggests a seaway across Panama because all of the taxa are conspecific with Atlantic mollusks.

Lists characteristic species from the *Acila gettysburgensis* zone (from Weaver, 1916). This zone represents a cooling of marine climate perhaps related to opening of the Bering Straits.

Mollusks collected by Kew, Buwalda, and English confirm earlier conclusions by T. W. Vaughan, based upon corals, that the fauna has strong Caribbean affinities. Many species are identical to species characteristic of the Miocene Gatun Formation of Panama.

Two brackish water mollusks occur in his Petaluma Formation. Lists 38 mollusks from localities in the Merced Formation, most of them from the Freestone and Wilson Ranch localities.

A review of Tertiary occurrences of phosphatic pebbles and nodules, most of which are of middle Miocene age. All occurrences are correlated with the provincial benthonic foraminiferal chronology; a few with the molluscan sequence. Some of the Pliocene occurrences are phosphatized internal molds of marine mollusks.

Lists 24 mollusks from a lower sandstone member of the Temblor Formation; identifications are by A. M. Keen.

Pecten andersoni occurs in Miocene sandstone near Parkfield.

Four middle Miocene mollusks and one Pliocene mollusk are recorded in a stratigraphic column for the Table Mountain-Turkey Flat area.

Seven mollusks are recorded from the Vaqueros Formation, four from the Monterey Formation, and seven from the Santa Margarita Formation.

A few mollusks are reported from Miocene Formations exposed in the upper Sespe Creek area: Vaqueros Formation, Monterey Formation, Santa Margarita Formation.

Miocene and Pliocene fossil localities along the Oregon coast are shown on an index map. Molluscan assemblages are recorded from many areas: Oligocene [Miocene, Astoria Formation] from Short Beach, Clatsop County and near the mouth of Tillamook River, Miocene [Astoria and Scappoose Formations] from northwestern Oregon, and Miocene [Pliocene, Empire Beds] from Coos Bay.

The Empire Formation contains numerous marine fossils characteristic of the Miocene. It extends from Coos Bay southward to beyond Seven Devils in a narrow coastal strip. The overlying fossiliferous strata exposed at Fossil Rock are considered to be Pleistocene by W. H. Dall.

Miocene and Pliocene fossiliferous strata occur at Cape Blanco, Oreg. Pliocene mollusks, identified by W. H. Dall, are recorded from Crescent City, 13 miles east of Crescent City [Wymer Beds], Mad River, and Eel River. Miocene oysters are reported from Salt Creek near Round Valley, Calif. (T. 21 N., R. 13 W.). Shows a "Neocene" shoreline in northwest California and southwest Oregon.

Fossils are very abundant in the Empire Formation which is considered by W. H. Dall to be of Miocene age.

A review of geological studies in and near Astoria, Oreg., including a list of fossil localities keyed to an index map showing present and past street names in Astoria. Thirty-four localities are listed together with comments on their present condition.

A series of three Mya zones occurs in the "San Joaquin clays."

Lyropecten, Rapana vaquerosensis, and Turritella inezana occur in cobble conglomerate unconformably overlying lower Tertiary strata in the southwestern part of Santa Cruz Island.

Fragments of Pecten magnolia and Turritella inezana have been recovered from cores of the Vaqueros Formation.

Sandy limestone beds in the lower Miocene Vaqueros Formation contain numerous oyster shells.

Dott, R. H., Jr., 1962, Geology of the Cape Blanco area, southwest Oregon: Ore Bin, v. 24, no. 8, p. 121-133.

Three mollusks of probable Miocene age [Pliocene] occur in poorly consolidated sandstone exposed along the coast 1/2 miles southeast of Port Orford.

Middle Miocene mollusks occur in a 1,500-foot section of unnamed sandstone below the upper Triple Basalt. The mollusks are correlated with nonmarine vertebrates occurring in this section.

The upper part of the Unalaska Formation is believed to be of early Miocene age based upon the remains of a desmostylid and specimens of Mya cf. M. truncata.

The Pliocene origin of Macoma climata n. sp. and isolation, at that time, from M. calcarea are discussed. The genus Macoma probably originated in the North Pacific basin; M. calcarea has a longer geologic record in the Pacific than in the Atlantic.

Nine mollusks are recorded from an unnamed Pliocene formation [later included in Pancho Rico Formation]; identifications are by E. J. Moore.

Six mollusks are recorded from an unnamed Pliocene formation [later included in Pancho Rico Formation]; identifications are by E. J. Moore.

Late Miocene and early Pliocene megafossil localities are shown on a geologic map of part of the Bradley and Adelaida quadrangles, San Luis Obispo County.

Lyropecten magnolia occurs in the Vaqueros Formation. Twenty-three mollusks are listed from an unnamed Pliocene formation [Pancho Rico Formation].

Lists two mollusks from the Monterey Shale and 66 mollusks from the lower Pliocene Pancho Rico Formation.

Late Miocene marine mollusks occur in the Santa Margarita Formation; early Pliocene marine mollusks occur in the Pancho Rico Formation.

Seven molluscan taxa are recorded from the Vaqueros Formation, five from the Santa Margarita Formation, and 28 from the Pancho Rico Formation; identifications are by W. O. Addicott.

The upper Miocene Santa Margarita Formation in the southern Salinas Valley area is characterized by the giant oyster Crassostrea titan. The overlying Pancho Rico Formation contains a large molluscan fauna of early Pliocene age. Ten mollusks that are characteristic of the California Pliocene are listed from the Pancho Rico.

An early Pliocene molluscan fauna of about 120 taxa consists largely of species not previously reported from the Salinas Valley area. Many of the mollusks are illustrated; a few are undescribed. Shallow-water assemblages indicate marine climate warmer than occurs at this latitude today. Fossil localities are listed and are shown on a generalized geologic map. Eight mollusks are listed from exposures of the underlying upper Miocene Santa Margarita Formation in Vineyard Canyon.

Molluscan assemblages are recorded from the Topanga Formation, the lower member of the Fernando Formation, and the upper member of the Fernando Formation.

DURHAM, J. W., 1937, Gastropods of the family Epitoniidae from Mesozoic and Cenozoic rocks of the West Coast of North America, including one new species by F. E. Turner and one by R. A. Bramkamp: Jour. Paleontology, v. 11, no. 6, p. 479-512, pls. 56-57.

Description and classification of about 30 epitoniids of Miocene and Pliocene age from Mexico to Alaska. Included are eight newly described taxa. A chart shows the stratigraphic occurrence of species; a key to epitoniid genera and subgenera is included.

Restudy of molluscan species in the fauna of the Sooke Formation, Vancouver Island, British Columbia (lat 48.5° N.), considered by Clark and Arnold (1923) to be analogous to living species, suggests latitudinal equivalence to molluscan assemblages now living in the latitude of San Francisco, California (lat 38° N.). The analysis was based on the median-of-midpoints method of Keen (1937).

Echinophoria apta occurs consistently above _E. rex_ in the upper part of the Twin River Formation. The uppermost part of the Twin River Formation containing _E. apta_ is younger than the fauna of the type Blakeley Formation near Seattle. "_Galeodea petrosa_ is not related to _E. apta_ and _E. rex_.

Arca sisquocensis Reinhart, var. occurs in an unnamed formation of "late Pliocene or Pleistocene" age at Little River Beach State Park (Moonstone Beach), Humboldt County, Calif.

The definitive report on Oligocene and lower Miocene biostratigraphy of western Washington. Lists 19 "Miocene" fossils from the Clallam Formation and about 40 species each from his _Echinophoria apta_ zone in the upper part of the Twin River Formation and from rocks near Seattle correlated with the Sooke Formation. Describes four new molluscan taxa from lower Miocene formations. Included are a stratigraphic column, geologic sketch maps, and a chart showing generalized phylogenies of stratigraphically important molluscan genera.

The Modelo (?) Formation of Kew in the eastern Ventura basin, California, includes many mollusks indicative of late Miocene age and of correla-
tion with the Cierbo and Neroly Formations of the Mount Diablo area of central California. Eleven mollusks are recorded from this formation.

The Mint Canyon vertebrate fauna is pre-upper Neroly in terms of the Pacific coast molluscan chronology. The Clarendonian Age of the vertebrate scale includes the Briones, Cierbo, and Neroly ["Stages"] of the molluscan chronology.

The definitive analysis of Cenozoic marine climate of the Pacific coast. During the Miocene and the Pliocene the marine climate was significantly warmer than today according to analysis of shallow water mollusks and corals. Marine climate cooled gradually during the Neogene, possibly with minor oscillations.

Catalog of Pliocene and Pleistocene mollusks collected during the E. W. Scripps 1940 Cruise in the Gulf of California. Many new species are described and illustrated. There is an extensive discussion of the origin and modern affinities of the Gulf of California molluscan province. The age of the Imperial Formation (and San Marcos Formation) is revised from early Miocene to early Pliocene. Faunal units in the Gulf are correlated with fossiliferous sections from Southern California, the outer coast of Baja California, Colorado Desert, Panama, and Ecuador.

An unconformity within the Empire Formation of Diller (1903) separates a fauna containing *Mytilus middendorffi* and other mollusks of middle Miocene age from an overlying fauna containing mollusks characteristic of the type Empire Formation of early Pliocene age. Five middle Miocene mollusks are listed.

Includes a correlation chart of nine important sequences in southern California based upon the marine megafaunal chronology, and a chart showing correlation of the mammalian, megafaunal, and microfaunal sequences of the Pacific coast by J. W. Durham, R. M. Kleinpell, and D. E. Savage. A paleobathymetric curve for the Los Angeles basin depicts a middle Miocene-early Pleistocene cycle with depths of about 4,000 feet attained during the early part of the Pliocene. A paleotemperature curve shows progressive climatic cooling during the Cenozoic interrupted by a late Pliocene warm pulse and several oscillations during the Pleistocene.

Vaquerosella coreyi Durham, a newly described echinoid from the Temblor Formation at Reef Ridge, Calif., occurs with mollusks of middle Miocene age including Turritella ocoyana and Aequipecten andersoni. According to L. G. Hertlein the fauna [mollusks] of Tertiary mudstone and sandstone exposed at Lituya Bay, southeastern Alaska, is correlative with the Empire Formation of southwestern Oregon. The fauna lived in a shallow water environment, mostly less than 50 fathoms deep under climatic conditions similar to those now prevailing along the Oregon and Washington coast.

Dosinia first appears on the Pacific coast in rocks of Oligocene age [Acula shumardi zone]. The initial occurrence of this pelecypod is not, therefore, indicative of Miocene age as held by some paleontologists.

During the Tertiary the limits of the marine tropical zone, as defined by warm-water marine faunas, were much closer to the poles than today. The tropical zone extended above the middle latitudes during the early Cenozoic but retreated toward its present limits during the later part of the Cenozoic.

A review of Paleogene and Neogene marine climate of the northeastern Pacific Ocean based, in large part, on inferences from marine mollusks (Durham, 1950). .

The interior of Dosinia matheusoni, an early Miocene species from the San Ramon Formation, is figured and compared with a new species of early Oligocene age from the Kirker Formation.

West American megaflaunal "stages" are correlated with the provincial microfaunal sequence and with European stages.

The provincial aspect of California Cenozoic molluscan faunas is tabulated, epoch by epoch, showing that very few, if any, Miocene and Pliocene species have been recorded from other provinces (11 out of 300 for the Pliocene; none out of 370 for the Miocene). The Bering Strait opened during the Pliocene; the Panama-Costa Rican portal was open until the middle Miocene.

The oldest Miocene deposits, from near La Purisima, contain a *Turritella* allied to *T. hamiltonensis* suggesting correlation with the *Echinocephoria apta* zone of Washington. Rocks correlated with the lower Miocene Vaqueros and middle Miocene Temblor Formations of Southern California occur in the southern part of the peninsula, as do rocks of late Miocene age. Pliocene rocks occur at many places along both coasts. Provincialism in molluscan faunas accelerated during the Neogene owing to closing of Pacific-Caribbean connections. Paleogeographic maps showing the maximum extent of Miocene and Pliocene seas are included, as is a useful bibliography.

Molluscan faunas of Miocene age from near Santa Lucrecia are of Caribbean affinities and not at all similar to Pacific faunas of Miocene age suggesting that no isthmus existed in this area during the Miocene as had been postulated by others.

A molluscan assemblage with *Spisula cf. S. catilliformis*, *S. albaria*, *Tellina oregonensis*, and *Pecten sespeensis* occurs near Butte and Abiqua creeks about 30 miles south of Portland. The fauna is considered to be equivalent to the Vaqueros Formation of California.

Continental vertebrate occurrences in California are correlated with the marine megafaunal sequence. There is a chart showing the relationship of key vertebrate-bearing sequences to marine strata. Terrestrial vertebrate, marine megafaunal, and marine microfaunal sequences for the Pacific coast are also correlated with European stages.

The earliest migrations through the Bering Straits may have taken place during the late Miocene or earliest Pliocene. Many more invertebrates of Pacific origin have reached the Atlantic by this route than have entered the Pacific from the Atlantic.

List 69 mollusks of Pacific origin that have entered the Arctic-Atlantic area perhaps owing to the prevailing eastward currents in the Arctic Ocean. Fourteen mollusks are considered to have entered the Pacific from the Atlantic Ocean. The earliest migration is thought to have taken place in the late Miocene or earliest Pliocene based upon five molluscan genera. Many Pacific species had reached the Atlantic by the late Pliocene. More
migrations occurred during the Pleistocene. The seaways may have opened and closed during the late Miocene to Holocene but molluscan data do not permit dating of such events.

A critique of Hall's (1960) late Miocene paleotemperature report in which it is contended that certain data were overlooked or incorrectly interpreted.

Twenty-three mollusks from the Poronai Formation of Hokkaido are very similar to species from the “Blakeley Stage” of Oregon, Washington, and Alaska, suggesting age equivalence. Ten pairs of most similar Japanese and west American species are listed. The Poronai Formation is shown to be equivalent to Poul Creek Formation, Blakeley Formation, and Yaquina Formation in a correlation chart.

The Clarendonian Age of the vertebrate sequence is equivalent to the “Santa Margarita stage” based on the close association of late Miocene marine mollusks with continental vertebrates at Comanche Point in the San Joaquin basin and at Cammatta Ranch near Paso Robles. A few mollusks are listed from each locality.

Specimens of Pationopecten lohri and Opalia varicostata, and other unlisted mollusks, occur about 100 ft above a locality in the type section of the Jacalitos Formation in which the two echinoids indicated in the title were found.

Occurrences of “Teredo sp.” from Miocene formations on the Pacific coast are reviewed.

A brief discussion of Foraminifera and a few mollusks from formations in Panama that are considered, by the authors, to be correlative with the Aquitanian Stage of Europe and of Miocene age.

Includes a list of six mollusks from the Vaqueros Formation of the San Joaquin Hills identified by Ralph Arnold and 13 mollusks from the lower part of the Fernando Group identified by P. P. Goudkoff.

A faunal assemblage of 27 molluscan taxa occurs in "Pliocene horizon MF7" of the Fernando Group of the western Ventura basin (identified by A. J. Tieje). Thirty-six percent of the species are considered to be extinct whereas less than 12 percent of the species in a "Pliocene-Pleistocene transition zone" of the Saugus Formation are extinct. This change takes place within 40 ft of strata in a conformable sequence.

A series of eight paleographic maps of California Neogene and Quaternary is presented.

Three Miocene and two Pliocene mega-invertebrate stages, and several index species of mollusks, are correlated with some of the principal, continental vertebrate faunas from California. The California Miocene is characterized by the abundance and taxonomic diversity of species of Lyrópe<£ten; the European analog Gigantopecten marks the base of the Miocene in Europe. Pliocene mollusks record a transition from warm-temperate climate at the outset of the epoch to cool temperate at the close.

Stratigraphic descriptions of Miocene formations include mention of a few characteristic mollusks.

Columnar sections of the Cuyama Valley and the Caliente Range show occurrence of characteristic mollusks in the Vaqueros, Temblor, and Monterey "stages."

Initial biostratigraphic study of Caliente Range and Cuyama Valley areas with lists of Miocene faunas (Vaqueros, Temblor, and Santa Margarita Formations). Several mollusks are illustrated; 10 new mollusks are described and illustrated. Several Vaqueros and Temblor zones are indicated on stratigraphic columns for the Caliente Range; other zones are shown for the Santa Margarita [Briones, Cierbo, Neroly] on the south side of Cuyama Valley. Paleogeographic maps, both detailed and regional, are also included. Successive cooling of marine climate from tropical conditions during the Vaqueros to subtropical conditions during the Temblor and even cooler climate during the Monterey is postulated.

Pholad borings occur in upper Miocene or lower Pliocene breccia in the San Joaquin Hills and in lower Pliocene strata in the Santa Monica Mountains.

Casts of Macoma kerica and Cryptomya are recorded from his Etchegoin Claystone Member.

Some Miocene "fossil markers" [mollusks] are indicated in a correlation chart of Los Angeles basin oil fields.

Pecten sanctaecruzensis occurs with Ohlamys perrini and Dosinia margaritana at a locality near The Indians, Monterey County, Calif.

Reports cited in this publication are arranged alphabetically by author. This is a comprehensive bibliography covering publications issued prior to 1942.

Ehlen, Judi, 1967, Geology of State Parks near Arago, Coos County, Oregon: Ore Bin, v. 29, no. 4, p. 61-82.

An unnamed concretionary, fossiliferous sandstone of Miocene age has been found by John Armentrout near Sitka Dock in Coos Bay. It contains the same middle Miocene molluscan fauna initially recorded by James (1950) from nearby dredgings. Four mollusks characteristic of the Pliocene Empire Formation are listed.

According to Dall and Harris (1892), Eichwald referred all of Grewingk's (1850) Tertiary species to the Cretaceous. Many of these species are of Miocene age.

A late Tertiary connection between the Atlantic and North Pacific Oceans had a profound influence on the invertebrate fauna of the North Atlantic. Six mollusks that were restricted to either the North Atlantic or North Pacific during the late Tertiary but which are now found living only in the opposite ocean basin are listed.

Reports one pectinid from the Miocene Puente Formation and 38 species from the Pliocene Fernando Formation.

Lists molluscan assemblages from the Miocene Vaqueros and Pliocene Fernando Formations in the Santa Clara Valley.

Includes four papers, two by Eldridge—on the Santa Clara Valley and Puente Hills—and two by Arnold—on the Los Angeles oil district and on characteristics fossils of the southern California area; Miocene and Pliocene mollusks are figured or listed in each report.

According to Dall (1899) the occurrence of fossil mollusks in limestone and argillite at Black Bluff, St. Paul Island, is noted. According to Earth (1956, p. 155) the fossil shells collected by Elliott during the period 1872-74 were also referred to in later general accounts of Alaska published by Elliott in 1887 and in 1895.

Lucina (Phacoides) acutilineatus occurs in the Phacoides Sandstone. A few Miocene mollusks are listed on a generalized stratigraphic column for the Carneros Creek-Chico Martinez Creek area.

Pliocene mollusks identified by W. H. Dall (1874) from the San Diego well are re-listed. Mollusks recovered from several other wells at San Diego are also listed.

Cadulus (Platyschides?) addicotti n. sp. is described from the middle Miocene of the Kern River area, California. Siphonodentalium arcticus (Dall) from the Pliocene Carter Creek Beds near Camden Bay, Arctic Alaska, is reviewed.

Miocene species of Dentalium from the Astoria Formation, their systematic position and stratigraphic occurrences, are discussed.

Vasum pufferi n. sp. occurs in the Pliocene Imperial Formation, Carrizo Mountain, Imperial County, Calif. It was originally identified as *V. caes-tum* Broderip by Hanna (1926). The Cenozoic history of *Vasum* is reviewed.

Niso? antiselli, a Miocene species from central California, is excluded from *Niso* (*Niso*) because of the lack of a nisoid umbilicus.

Pliocene fossils including *Patinopecten healyi* occur near the mouth of a ravine half a mile inland from the United States-Mexican border. This is the San Diego Formation “border locality” of later workers.

Ten mollusks of Pliocene age are recorded from exposures 20 to 30 ft thick underlying a Pleistocene marine terrace. The assemblage is compared with Pliocene mollusks from Turtle Bay and elsewhere along the coast of northwestern Baja California (Hertlein and Allison, 1959).

Mollusks from about 20 localities of Pliocene age on islands in the Gulf of California are recorded. Several Pliocene mollusks are illustrated and treated systematically. *Gyrineum (Bechtelia)* n. subgen. is proposed for a group of west American bursids ranging in age from Eocene to Pleistocene. All of the Pliocene and Pleistocene mollusks are combined into a systematic list in which geologic and geographic occurrences are indicated.

Mytilus californianus and a *Pecten* similar to *P. cerrosensis* occur in the “mesa sandstones” near San Quintin; these may be of Miocene age.

A review of *Ficus, Trophosyon*, and *Agasoma* [including *Bruclarxia* of later usage]. Fourteen taxa, two of which are newly described, are treated systematically; most of these are illustrated.

Seven new species of Pliocene mollusks, mostly from the Eismere Canyon locality, are described. Lists 72 molluscan taxa from localities of early Pliocene age in Elsmere Canyon, Pico Canyon, and Holser Canyon. Faunas from the Ventura area, to the west, are of late Pliocene age.

Lists four mollusks from the Vaqueros Formation near Santa Barbara Canyon, nine from the Vaqueros Formation southeast of Caliente Mountain, six from the Monterey Group (middle Miocene) from south of Cuyama Valley, and seven from the Whiterock Bluff Shale Member of Santa Margarita Formation.

The Santa Margarita Formation has a small fauna in which *Ostrea titan* and *Pecten estrellanus* are characteristic species.

The basal part of the Vaqueros Formation (Temblor Formation of Anderson, 1905) contains abundant, well-preserved megafossils, particularly near Carneros Springs and Media Agua Creek. The basal beds contain oysters north of Bitterwater Creek. A fossiliferous reef occurs at the base of the Miocene on the east side of Cedar Canyon near its mouth [Agua Sandstone of later usage]. *Turritella ocoyana* occurs 300 ft above the base of the Vaqueros Sandstone near the head of Antelope Valley.

Miocene mollusks from the Vaqueros Formation (four) and the Topanga Formation (14) are listed. The best Topanga locality is on the west side of the small anticline south of El Modena. Marine fossils occur at several localities in a zone about 3,000 ft above the base of the Pliocene Fernando Formation; 38 species of mollusks are recorded from localities near Brea and Olinda canyons.

Two new species, *Nucula ermani* Girard and *Cardium aleuticum* Girard, are described from tuffaceous strata cropping out on Atka Island in the Aleutian chain.

A few mollusks are recorded from the Vaqueros Formation (presumably from Loel and Corey, 1932), the lower sandstone member of the Monterey Formation (presumably from Hudson and Craig, 1929), the Pico Formation, and the Santa Barbara Formation.

The definitive report on the molluscan paleontology and stratigraphy of the Astoria Formation of the Grays Harbor area, Washington. Seventy-seven species of mollusks are listed, including 14 newly described taxa. Two new species are described from the upper Miocene Montesano Formation. The Astoria fauna is considered to be of middle Miocene age because 17 percent of the species are still living and because of faunal similarity to the Temblor Formation of California.

Late Miocene silicified burrows from San Luis Obispo County, Calif., believed to have been made by *Chaceia* by Adegoke (1966b) more likely were constructed by *Nettastomella rostrata*.

Burrow shape may be used in estimating rock hardness at the time of boring. Miocene burrows in siliceous and cherty mudstone (Adegoke, 1966) were formed when the rock was relatively soft.

Fairbanks, H. W., 1893a, Geology of San Diego; also portions of Orange and San Bernardino Counties [California]: California Mining Bur., 11th Rept. State Mineralogist, p. 76-120.

Four miles below Carrizo Station strata of shells including pectens and oysters of Miocene age cap the soft clay hills.

"The mesas along the eastern side of the [San Diego] bay on which the city is situated are filled with Pliocene fossils; the strata being separated from the Chico-Tejon by a small nonconformity" (p. 477).

Ostrea titan is abundant in sandstones south of Santa Margarita; it also occurs near La Panza.

Miocene strata are the most extensive of all formations of the southern Coast Ranges; they are characterized by the giant oyster, *Ostrea titan*.

Sandstones on the south side of Pine Mountain, Ventura County, Calif., have yielded [late] Miocene fossils including *Pecten discus* and *Ostrea titan*; 4 miles down the same canyon Bowers (1890) listed 25 species from the same stratum. A Miocene pectinid and ostreid occur on the south side of the "Cuyamas Range." Other mollusks of Miocene age occur near the old mission on Santa Ynez River, Santa Barbara County, in the north fork of Arroyo Atascadero near Templeton (*Pecten peckhami*) and near Arroyo Grande (three species of mollusks including *Area microdonta*).

Pecten peckhami occurs in Miocene bituminous shales.

Fairbanks, H. W., 1898, Geology of a portion of the southern Coast Ranges [California]: Jour. Geology, v. 6, no. 6, p. 551-576.

Mollusk borings occur in boulders of "Monterey series" in the basal part of the San Pablo Formation. A fauna from this formation is briefly noted but no fossils are listed.
Ostrea titan is an abundant and characteristic mollusk in the Santa Margarita Formation of the Salinas Valley. Exposures of the Vaqueros Formation are usually fossiliferous.

Sandstone beds in the Lambert Shale in the upper San Lorenzo River drainage contain a Turritella inezana and Pecten magnolia faunal assemblage. Neritic mollusks occur in the Vaqueros Formation in the Bear Creek-Brown School area.

The Etchegoin Formation is defined as "that portion of the Pliocene below the top of the Mulinia densata zone and above the originally defined Jacalitos formation."

Turritella ocoyana and Anadara n. sp. (identified by B. L. Clark) are among 19 larger invertebrates previously identified from the Vaqueros-Temblor Sandstone of this area in an unpublished M.A. thesis by C. L. Herold, Univ. of California, Berkeley. Several other new species may be present. Several other mollusks are listed from the Monterey Formation and from the upper Miocene San Pablo Formation.

Tresus pajaroanus (Conrad) was recovered from an excavation for U.S. Interstate Route 405 (San Diego Freeway) in Long Beach, Calif. Identification of this species, and other unspecified mollusks, by G. P. Kanakoff indicates a Pliocene age.

Turritella ocoyana (identified by H. G. Schenck) is reported from the southwest part of the San Benito-Waltham Canyon trough on the east side of Priest Valley suggesting a "Temblor" age.

Nine mollusks of early Pliocene age are recorded from a locality in the Pancho Rico Formation about 1 mile east of San Lucas (identifications by W. O. Addicott).

A few mollusks from Miocene and Pliocene formations of the southwest part of the San Joaquin Valley (Temblor Range) are listed.

Mollusca and Foraminifera have been used in making age determinations from rock samples obtained from the continental shelf and slope off Oregon. The rocks recovered range from late Miocene to perhaps Pleistocene in age.

Late Tertiary (possibly Miocene and Pliocene) mollusks from Kanaga and Tanaga Islands identified by F. S. MacNeil are recorded.

Five pelecypods from the Pliocene San Diego Formation are illustrated.

Taxonomic, distributional, and stratigraphic notes on seven species of Miocene mollusks based on records from the Sierra Madre Mountains, Santa Barbara County, Calif., are presented.

Six species from Miocene [?early Pleistocene] strata at Santa Barbara, Calif., are described.

An important systematic report in which about 40 new species of Miocene and Pliocene mollusks from various localities in California and Baja California are described. A few new genera and subgenera are proposed. Some of the new species from the Miocene south of Martinez and near Walnut Creek may be of late Oligocene age. A few previously described species are also illustrated.

This is a continuation of descriptions in Gabb (1866).

A systematic list of the known Tertiary and Quaternary species from California and Baja California together with geologic range and taxonomic notes for a few of the species is presented.

Pecten (Olamys) multirugosus var. crassiplicatus is described from the California Miocene.

Different species are recognized from middle Miocene strata of California and Washington. Undescribed species occur in the upper Miocene and the lower Pliocene strata of California.

A marked break in the molluscan faunal record defines the boundary between the Tertiary and the Quaternary. The break is the result of climatic cooling associated with the onset of glaciation. Alternating cool-water and warm-water faunas in the California Pleistocene permit recognition of the major glacial epochs in the marine sequence.

Marine mollusks collected by Dr. Ernesto Angermann from indurated sandstone about 600 meters above sea level are considered to be old beach deposits. These are from near Cacachilas. Two small areas of Tertiary sedimentary rocks are mapped on Ceralbo Island and on the east coast between Point Arena and Point Pescaderos.

The Merced Formation contains abundant molds of marine mollusks.
An upper *Mulinia* zone occurs at a depth of about 4,000 ft in wells.

Several small assemblages of marine mollusks from the Etchegoin Formation along the southwest side of the San Joaquin Valley, mainly from well cores, are recorded. The northermost assemblage is from Lost Hills. Fossiliferous surface exposures occur along the West Side Highway near McKittrick oil field, on Muddy or Los Lobos Creek, and in the McKittrick oil field. Pliocene fossils occur in strata overlying Santa Margarita Formation west of Fellows.

A stratigraphic column for the Coalinga-Kettleman Hills and McKittrick-Midway-San Emigdio areas indicates the position of molluscan zones in the Etchegoin and San Joaquin Formations. The uppermost of three zones (lithologic zones) in the Temlor Formation at Reef Ridge is characterized by *Pecten andersoni*.

Lists 49 mollusks from the type Merced Formation—middle Pliocene to lower Pleistocene. The Purisima Formation at Pillar Point, to the south, is of middle Pliocene age; 31 species of mollusks are listed from it. Includes a systematic section in which one new pelecypod is described, a columnar section, and geologic maps with fossil localities.

A small fossil assemblage in this newly described formation suggests a "Miocene (Astoria?) age."

Includes subsurface records of mollusks from wells in the Kettleman Hills area (lower Pliocene and middle Miocene). Two faunas are recognized in the Jacalitos Formation. An informal sandstone unit in the lower part of the Monterey Formation is referred to as the *Pecten andersoni* sand. In addition to abundant specimens of the pectinid there are fragmentary oysters and a few *Turritella ocyana*. This sand occurs within the *Valvulineria californica* zone.

Pecten andersoni is recorded from the Main sand (Miocene) of the Kettleman Hills oil field.
BIBLIOGRAPHY

Pecten andersoni is reported from the Main sand [Temblor Formation] in Kettleman Hills. The Pacific coast correlation chart of Weaver and others (1944) is reprinted in part [standard sections and four San Joaquin Valley columns].

Marine molluscan evidence suggests that the upper part of the Twin River Formation is of early Miocene age. Mollusks from the overlying Clallam Formation are correlated with the middle Miocene Astoria Formation.

A few Miocene and Pliocene mollusks from California and Washington are figured. Included is a short bibliographic list of reports dealing with Tertiary larger invertebrates from California and Alaska, as well as one for Mexico and central America.

Taxonomic revision of a Miocene mytilid from California.

Searlesia first appeared during the Oligocene in the Northern Pacific; it reached the Atlantic during the Pliocene by way of the Arctic Ocean.

The single most important systematic report pertaining to the Pliocene molluscan faunas of the Pacific coast. Includes a comprehensive systematic catalog of California Pliocene and Pleistocene mollusks and a thorough review of stratigraphic and geographic distribution of species. Many species are illustrated. Twenty-six new species, mostly from the Neogene, are described. There are many notes pertaining to Miocene mollusks; a few species are illustrated. Include a correlation chart and an extended discussion of molluscan biostratigraphy of California Pliocene basins.

Several records of important Miocene and Pliocene mollusks occurring with echinoids are scattered throughout the systematic section.

Pecten bellus and _Chlamys opuntia_ occur in the Santa Barbara Formation; both are extinct and are considered to be indicative of Pliocene age.

Neptunea (Sulcosiphon) *eatoni* n. sp. is described from middle Miocene rocks in the Caliente Range, San Luis Obispo County, Calif.

Pecten (Pecten) *juanensis* is described from the Neroly Formation (upper Miocene).

One specimen from Cape Seniavin, Alaska Peninsula, is described and illustrated. Grewingk’s original illustrations of this species are refigured.

An important report on living pectinids of the eastern Pacific. Geologic ranges for those species that also occur as fossils are listed.

“Fragmentary and poorly preserved megafossils were collected [from the Topanga Formation] from a number of places southwest of State Highway 71 along the Metropolitan Water District pipe line, but they could be dated only as Miocene” (p. 31).

Contains the first notice of marine fossils on Maria Madre Island.

Contains the first record of fossil invertebrates from the Gulf of California region.

GREWINGK, CONSTANTIN, 1850, Beitrag zur Kenntniss der orographischen und geognostischen Beschaffenheit der Nord-West Kîste Amerikas mit den anliegenden Inseln: Verhandlungen der Russisch-Kaiserlichen Mineralogischen Gesellschaft zu St. Petersburg, 1848-1849, p. 76-324, pls. 1-7 [pls. 4-7 are of fossils].

Some new species of Tertiary mollusks from Alaska are described.

Seventeen species of molluscs are recorded from localities near Carballo on the Pacific coast. One of these, *Mactra macescens* var. *elongata* is figured and described as new. The faunal assemblage is correlated with the fauna of the Gatun Formation of Panama; this is a northwest extension of that fauna along the Pacific coast. Two Pacific pectinids identified from highland areas of Costa Rica indicate that there was a connection between the Atlantic and Pacific during the Miocene.

Three mollusks from an exposure of the upper Miocene Santa Margarita Formation near the junction of State Route 178 and San Juan River are listed.

The "Turritella ocyana" fauna occurs in exposures of middle Miocene strata on Poso Creek and near mouth of Cottonwood Creek.

List 37 species from the Vaqueros Formation, 13 species from the Monterey Shale, and 62 species from the Purisima Formation.

Hagg, R., 1924, Stangenaskraniets skalbank: Geol. Föreningens Förh., v. 46, no. 5. Stockholm [reference from Soot-Ryen (1932)].

According to Soot-Ryen (1932) a few mollusks that are first recorded from upper Miocene or lower Pliocene deposits in the North Pacific-Bering Straits region and subsequently appear in upper Pliocene or Quaternary deposits in the North Atlantic are listed.

A specimen of Pholadomya occurs with a Temblor [middle Miocene] fauna near Bakersfield, Calif.

The distribution and faunal associations of Miocene and Pliocene species of Ceratostoma indicate that the genus has gradually adapted from a warm or warm-temperate environment to its modern distribution in much cooler water environments. The described species of Ceratostoma fall into two groups, one living in warmer waters (12°-19°C), the other in cooler water (2°-15°C).

The distribution of late Miocene molluscan provinces and minimum shallow-water isotherms inferred from these associations suggest post-late Miocene lateral slip of from 50 to 150 miles along the San Andreas fault.

The genus Ceratostoma ranges from middle Miocene to Holocene. Five species have been described from the California Neogene; one of these, C. delorae, is figured.

HALL, C. A., Jr., 1960, Displaced Miocene molluscan provinces along the San Andreas fault, California: California Univ. Pubs. Geol. Sci., v. 34, no. 6, p. 281-308.

This analysis is based upon extensive faunal lists of late Miocene mollusks from seven areas in central California; an accompanying chart shows bathymetric and temperature ranges. These faunas are converted into inferred February minimum isotherms and into inferred late Miocene molluscan provinces. The inferences are utilized to reconstruct lateral slip along the San Andreas fault. Post-late Miocene movement of 120 miles is inferred, although movement may have varied between 50 and 150 miles. Includes a late Miocene paleogeographic map.

Infers marine surface water temperatures from late Miocene molluscan faunas in California and, from these, infers post-late Miocene right-lateral slip of from 50 to 150 miles along the San Andreas fault. A warm water Arca-Turritella faunal element in San Luis Obispo County west of fault is not developed in the San Joaquin Valley east of fault.

Lists small assemblages of mollusks and echinoids from six members of the upper Miocene Santa Margarita Formation in the Phoenix-Saucelito Creeks area, San Luis Obispo County, Calif. These assemblages indicate deposition in shallow water—intertidal to 75 ft.

A rebuttal of Durham and Primmer's (1962) critique. Includes a revised late Miocene paleogeographic map showing inferred molluscan provinces and isotherms and a list of mollusks from the San Pablo Group.

The new species is from the upper Miocene Santa Margarita Formation. Lists 12 mollusks that occur with the new Arca.

Several mollusks from the Pismo Formation are listed. Related mollusks and some echinoids suggest a bathymetric range of 150-300 ft for the fossil occurrence.

Includes a check list of mollusks from localities in the Vaqueros Formation, Obispo Formation, Monterey Formation, Santa Margarita Formation, all of Miocene age, and the Pliocene Careaga Formation. The uppermost part of the Santa Margarita Formation is of Pliocene age.

List common mollusks from the Vaqueros Formation, Obispo Tuff, and Pismo Formation. Specific molluscan occurrences in roadcuts along the field trip route are noted in the road log.

A rhyolitic tuff from the Obispo Formation yielded a plagioclase age of 20.9±1.5 m.y. [subsequently revised to 16.5±1.2 m.y. by Turner]. A few mollusks of middle Miocene age are reported for this formation.

Hall, E. A., and Redin, T., 1967, Big Mountain Oil Field, Ventura County, California, Stratigraphic section, in Geology of the Big Mountain Oil Field and the nearby area, including notes on the trip from Piru to Big Mountain, Ventura County, California: Am. Assoc. Petroleum Geologists, Pacific Sec., Spring Field Trip, morning section, 6 p.

Anomia vaquerosensis and Rapana vaquerosensis occur in the Vaqueros Formation at Big Mountain oil field. Pecten healeyi occurs in the basal part of the Las Posas Formation.

Hall, N. Timothy, 1965, Late Cenozoic stratigraphy between Mussel Rock and Fleishhacker Zoo, San Francisco Peninsula [California], in International Association for Quaternary Research, VII Congress, Denver, Colorado: Guidebook for Field Conference I: Northern Great Basin and California, p. 151-158.

Nine mollusks from the lower part of the type Merced Formation are recorded.

Lists four species, including Echinophoria apta, from the San Ramon Formation; 14 species from the Monterey Formation; 10 species from the Briones Formation; four species from the Cierbo Formation; and three species from the Neroly Formation.

"Lime caps" similar to beach rock of tropical shores found at altitudes of at least 800 ft contain scattered pelecypods of late Cenozoic age.

Eleven species are recorded from his "Vaquero Sandstone." Beds underlying the Monterey Shale near Stone Canyon in the Diablo Range are also referred to his Vaquero [Vaqueros] Formation.

Mollusks from Black Bluffs and from Tolstoi Point, St. Paul Island (identified by Dall, 1919), are of about the same age. Hanna considers the strata to be of Pliocene age.

Four brackish-water mollusks, *Mya dickersoni* Clark, *Corbicula gabiana* Henderson, *Nematurella euzona* n. sp., and *Goniobasis rodeoensis* (Clark) are recorded. All but the *Mya* are figured.

Proposed many new names for Miocene and Pliocene marine mollusks.

Records *Pecten cerrosensis* and *P. veatchii* from Pliocene sands at Cedros Island.

Basically a descriptive paleontologic account of larger invertebrates, mostly mollusks, collected by the author and earlier investigators from the type area of the Imperial Formation at Coyote [Carrizo] Mountain. Treats 63 mollusks including eight new species in the systematic section. Several other mollusks are figured. Many fragmentary specimens identifiable only to genus are noted but not listed. Concludes that the fauna is of Pliocene age. There is an extensive account of earlier work and age determinations.

Fossiliferous limestone of Pliocene age crops out on Maria Madre Island. Molluscan fossils of undetermined age occur on Clarion Island of the Revillagigedo group. Pliocene strata on Cedros Island have yielded many species of mollusks including *Pecten cerrosensis* and *P. veatchii*.

Reviews paleontologic studies on mollusks of the Monterey Formation listing 10 species identified by previous investigators.

A general discussion of Miocene mollusk assemblages from the Kern River area and from Comanche Point including review of previous work. A few mollusks from well cores near Sharktooth Hill permit correlation with early Miocene assemblages of Anderson's (1911) A Zone at Pyramid Hill. A large pectinid and an ostreid occur in upper Miocene beds at Comanche Point.

Many specimens of Phacoideae acutilineatus are associated with the lower jaw of a small-toothed whale in the basal sandstone of Anderson's Temblor Formation in Carneros Creek.

Pliocene specimens of Oompsomya and Pecten caurinus Gould, from the Wildcat Formation dredged in 90 fathoms southwest of Trinidad Head, northern California, are illustrated. Recoveries of similar material from 80 to 120 fathoms and as far as 30 miles offshore are recorded.

Mya occurs in Pliocene formations in central California.

The first general description of Neogene and Quaternary molluscan paleontology of the Gulf of California area. Mollusks recorded from near Boleo, Baja California, by Arnold in 1906 are of late Pliocene age.

An oyster from the Imperial Formation at Coyote Mountain, Calif., once identified by Hanna (1926) as Ostrea iridescens is believed to be O. virginica var. californica Marcou.

Five new species of Miocene mollusks from California are described.

Illustrate characteristic Miocene and Pliocene marine mollusks from California (4 plates).

Two new species from Pliocene strata in Imperial Valley, Calif., C. durhami and C. bramkampi, are described.

Includes a brief review of earlier work on the San Diego Pliocene.

Contains a brief description of Pliocene strata and a list of 12 fossils.

In describing the Yaquina Sandstone the following characteristic fossils are listed: *Aturia angustata, Acila thracia, Phacoides, Spisula.*

Lists seven mollusks from the middle Miocene Temblor Sandstone and two from the upper Miocene Santa Margarita Formation.

Four mollusks from rocks mapped as Pliocene Jacalitos-Etchegoin (identifications by J. W. Durham and A. M. Keen), one of which was from a redeposited boulder of middle Miocene age, are recorded.

Fossiliferous Pliocene and Pleistocene exposures in Ventura basin traversed by the field trip route are noted in the road log.

Two living species of *Venericardia, V. crassicostata* and *V. megastropa,* occur in the Pleistocene of Baja California (Gulf coast). These probably were derived from late Miocene species of eastern North America by pre-Pleistocene migration into the Pacific.

Miocene mollusks from the Buttonbed Sandstone, Agua Sandstone, and the Twisselman Sandstone Member of the Monterey Formation are listed.

Seven Miocene and Pliocene oysters from California are recorded; four of these are figured.
BIBLIOGRAPHY

Mollusks identified from the Miocene Purisima Nueva Formation by Clark and Arnold (1918) are listed together with additional comments by T. W. Vaughan and C. W. Cooke as to synchronicity with the fauna of the Gatun Formation of Panama. Generic identifications of mollusks from the Isidro Formation (Miocene) and the Salada Formation (Pliocene) are by B. L. Clark.

Reports on Neogene mollusks of Oregon, a few of which are annotated, are included in the bibliography.

Yoldia (Portlandia) astoriana is proposed as a new name for Nucula impressa Conrad (1849) from the Astoria Formation at Astoria, Oreg.

Casts of Macoma [Cryptomya] kerica n. sp. occur in the Etchegoin Tegeler oil zone and about 5-35 ft above the Lenhardt oil zone.

The basal Miocene sandstone between Cholame and Devil's Den is said to be middle Miocene on the basis of Turritella ocoyana and Pecten ander-soni. In Franciscan Creek, to the south, Tivela diabloensis occurs in basal Miocene beds. Phacoides annulata occurs in the Santa Margarita Formation in Tent Hills.

An assemblage of seven mollusks is recorded from sandstone unconformably underlying his McLure Shale. These were considered to be of late Miocene age and correlatable with the fauna of the Santa Margarita Formation because of the occurrence of an Astrodapsis.

The first Mya zone occurs at the top of the San Joaquin Clay; the Mulinia zone at the top of the Etchegoin.

"A marine molluscan fauna occurring in a reef near the base of the Poncho [Pancho] Rico formation is that of Miocene-Pliocene transition."

A very brief description of the author's review of this gastropod family.
NEOGENE MARINE MOLLUSKS

Marine shells occur in cores of Pliocene rock from near Humphrey's Station in the eastern part of the Ventura basin. "Pecten caurinum" is recorded from an indefinite locality near Gorman.

Described Pecten vancouverensis fernandoensis from a core of the Pliocene Repetto Formation from Long Beach oil field. Other new species are described from the Montesano Formation, southwestern Washington.

Sixteen Neogene pectinids, including 13 new species, are described and illustrated. Fourteen previously described species of pectinids of Pliocene age are also listed.

HERTLEIN, L. G., 1928a, Pecten (Patinopecten) lohri, new name for Pecten oweni Arnold, a Pliocene species from California: Nautilus, v. 41, no. 3, p. 93-94.

Pecten lohri is proposed as a new name for P. oweni Arnold, a homonym.

Recognized two Miocene faunal zones on the western Channel Islands—San Miguel and Santa Rosa—the Turritella inezana zone of early Miocene age and the T. ocoyana zone of middle Miocene age. The two zones are separated by 300 to 400 meters on Santa Rosa but only about 150 meters on San Miguel. The faunas of these zones are not listed but 10 new species of mollusks are described and illustrated.

An abstract of Ph. D. thesis on the geology and paleontology of the Pliocene rocks of San Diego, California.

Pecten (Plagioctenium) ericellus is described from the San Diego Formation.

Ostrea erici is described from Pliocene rocks near Scammon's Lagoon, Baja California. This species was previously figured as O. tayloriana by Jordan and Hertlein (1926).

Mollusks from 13 localities of Pliocene or Pleistocene age, most of which are on the Gulf side of the peninsula, are recorded.
BIBLIOGRAPHY

HERTLEIN, L. G., 1931b, Changes of nomenclature of some Recent and fossil Pectinidae from Japan, Porto Rico, South America, New Zealand, and California: Jour. Paleontology, v. 5, no. 4, p. 367–369.

_ Pecten crassicardo biformatis_, an upper Miocene taxon from California, is renamed _P. crassicardo nomlandi_.

Twenty-three mollusks, mostly pectinids, are recorded from the lower 20–30 meters of Pliocene beds that overlie Miocene sediments at the north end of Turtle Bay.

Describes _Ostrea ashleyi_ from the Kern River area (middle Miocene) and proposes a new name for _O. titan corrugata_ Nomland [_O. titan eucorrugata_ Hertlein].

Stratigraphic ranges of those living species that have fossil records are indicated.

Includes discussion of _Pecten oweni_ Gregorio and _P. oweni_ Arnold, a Pliocene species from California.

The description is based on one specimen from the Vaqueros Formation, Lompoc quadrangle, Santa Barbara County, associated with _Lucinoma acutilineata_, _Lyropecten miguelesiensis_, and _Trophosycon_ cf. _T. ocyana_. Other Tertiary occurrences of _Haliotis_ are reviewed.

A discussion of the Caribbean and Indo-Pacific origins of tropical eastern Pacific molluscan fauna. _Chione_ (gnidia group), _Dosinia_, and _Solenosteira_ are Caribbean immigrants; certain _Conus_, a _Cypraea_, and a _Cymanium_ are Indo-Pacific immigrants.

Five Miocene and Pliocene mollusks are figured. Some collecting localities are indicated.

The newly described *Lima mori* n. sp. is compared with a Pliocene species, *L. hamlini*, from the Los Angeles basin, California.

A few faunal assemblages of Pliocene age from islands in the southern part of the Gulf of California (San Esteban and Ceralbo Islands) and the adjacent coast of Baja California are listed. These consist mostly of ostreids and pectinids. A few species are treated systematically.

Hertlein, L. G., 1959, Notes on California oysters: Veliger, v. 2, no. 1, p. 5-10, pl. 2.

A late Miocene specimen of *Ostrea titan* measures 457 mm (about 18 inches).

Sistrum hannai Howe (1922), a Pliocene species from the Empire Formation, Coos Bay, Oreg. is included in this family. This species is recorded for the first time from Pliocene strata in San Benito County, Calif. (sec. 28, T. 19 S., R. 11 E.).

Condonia occurs in the Coos Conglomerate of the Empire Formation in southwestern Oregon and in the Etchegoin Formation of San Benito County, Calif.

Lists 36 mollusks of middle Pliocene age from Rancho El Refugio and nine mollusks of middle Pliocene age from Isla Cerralvo. Several of these taxa are illustrated; new subspecies of *Ostrea* and *Chlamys* are described and illustrated.

Two Pliocene collections from northeastern part of Baja California peninsula about 15.5 and 18.5 miles west of San Felipe, Mexico, include 20 mollusks that are correlated with the Imperial Formation of southeastern California.

Twenty-seven Pliocene mollusks are recorded from Pliocene strata [Cantil Costero Formation] in northwestern Baja California. *Acanthina*
emersoni n. sp. is described; Thais transcosana Arnold, a Pliocene species from central California, is illustrated.

A thorough review of paleontologic and stratigraphic reports on the marine Tertiary of Oregon and Washington. Many lists of mollusks from Miocene and Pliocene formations are included. Although largely a resume of previous work, the authors conclude that (1) the Sooke Formation may be younger than Oligocene and correlative with the Vaqueros Formation of California, (2) the Astoria Formation contains a mixture of warm-water and cool-water mollusks, (3) the Empire Formation probably is older than the Santa Margarita-San Pablo Formations of California but younger than the Monterey-Temblor Formations of California, possibly being correlative with the Briones Formation of California, (4) the Montesano Formation probably is equivalent to the Empire Formation but the upper part of the formation is younger than the Empire Formation, and (5) the fauna of the Quillayute Formation is older than that of the Quinault Formation and more like the “Upper Miocene in faunal aspect” (p. 271).

Eighteen mollusks are recorded from localities of Pliocene age of María Madre and María Cleofas Islands.

Twelve mollusks are recorded from the Pliocene San Diego Formation; earlier studies of fossils by Dall are reviewed.

Typical Pliocene mollusks, such as Area (Anadara) trilineata, Pecten (Palinopecten) healeyi, and Ostrea vespertina, definitely prove the Pliocene age of the San Diego formation.

Include several records of Miocene and Pliocene mollusks that occur with Neogene brachiopods.

Species from San Diego area originally described as Miocene by Conrad (1855) are of Eocene age. Dall’s (1874) list of mollusks from the San Diego well is republished with modern nomenclatural assignments. The stratigraphy of Pliocene strata of the San Diego area is discussed in detail with a few notations on mollusks. The San Diego Formation is con-
sidered to be of middle Pliocene age. There is an extensive review of pre­
vious paleontologic studies in the San Diego area.

Diego coastal area, southern California, [Pt.] 4 in Chap. 2 of Jahns, R.
53-63.

List characteristic Pliocene mollusks from San Diego Formation which
is considered to be of middle or early late Pliocene age. The invertebrate
fauna suggests warmer water than now occurs in San Diego area.

HERTLEIN, L. G., and JORDAN, E. K., 1927, Paleontology of the Miocene of
605-647, pls. 17-21.

List 40 mollusks of Miocene age from near La Purisima and San Igna­
clo, collected, for the most part, by Marland Oil Co. geologists. Include
description and illustration of 16 new species. Mollusks from 12 localities
in Baja California are recorded. Contains a thorough review of previous
geologic and paleontologic investigations on the Neogene of Baja Califor­
nia.

Hickman, C. J. S., 1969, The Oligocene marine molluscan fauna of the Eugene
pls.

Several molluscan taxa from the early and middle Oligocene are com­
pared with Miocene species. A correlation chart of Oregon and Washington
Oligocene strata includes the lower part of the Miocene. Oligocene climates
were transitional between the tropical and subtropical climates of the
Eocene and the essentially modern climate and highly provincial molluscan
faunas of the Miocene.

Higgins, C. G., 1957, Pliocene rocks east of Stewart's Point, Sonoma County,

Strata of Pliocene age ranging up to 20 feet in thickness locally rest on
mollusk-bored, wave-cut terrace surfaces.

Higgins, C. G., 1960, Ohlson Ranch formation, Pliocene, northwestern Sonoma
199-232, pls. 18-20.

Stratigraphic occurrence and collecting localities in the Pliocene Ohlson
Ranch Formation are recorded. Paleontology of the mollusks in treated by
Peck (1960) in a companion paper.

Hill, F. L., 1960, Cantua Creek area of Fresno County [California]: California
Oil Fields, v. 46, no. 1, p. 11-14.

The middle Miocene Temblor Formation is reported to be “fossiliferous.”

Hill, F. L., 1964a, Harvester gas field [California]: California Oil Fields, v. 50,
no. 1, p. 11-15.

Three mollusks from the San Joaquin Clay and five from the Etchegoin
Formation are recorded.

Hill, F. L., 1964b, Northwest Trico gas field [California]: California Oil
Fields, v. 50, no. 1, p. 17-20.

Three mollusks from the San Joaquin Formation and five from the
Etchegoin Formation are recorded.
Characteristic fossils recovered from well cores include: *Mya*, *Acila* (Pliocene San Joaquin Clay); *Pseudocardium*, *Anadara*, *Mitrella*, and *Acila* (Etchegoin-Jacalitos Formation); oysters, pectens, mussels (McLure Shale); *Turrilerta ocoyana* (Temblor Sande); *Macoma*, *Mactra* (Felix silt); *Nuculana* (Whepley Shale); *Turrilerta inezana* (Vaqueros Formation).

A *Romulus* and mud *Pecten* zone occurs 80 ft above the base of the Temblor Formation in the Elwood oil field, Santa Barbara County, Calif.

A few mollusks are recorded from measured sections of marine Miocene formations of the Cuyama Valley-Caliente Range area.

Include Eaton's (1939) stratigraphic columns for Cuyama Valley and Caliente Range showing some characteristic Miocene mollusks.

Mulinia densata occurs at the top of the Etchegoin Formation.

A correlation chart of Cenozoic formations includes a column showing macrofossil stages and a few characteristic mollusks.

Includes lists of Miocene mollusks from the Vaqueros Formation [*Turrilerta ocoyana* zone] of the San Emigdio Mountains (21 taxa), the Tejon Hills area (seven taxa identified by B. L. Clark), and the Santa Margarita Formation at Comanche Point (25 species also identified by Clark). *Mulinia densata* and other mollusks are reported from the Etchegoin Formation on Little Muddy Creek. Four mollusks of late Miocene or early Pliocene age from near the base of the exposed section in Coaloil Canyon at Wheeler Ridge are listed.

Hoots, H. W., 1931*, Geology of the eastern part of the Santa Monica Mountains, Los Angeles County, California: U.S. Geol. Survey Prof. Paper 165-C, p. 88-134, pls. 18-33.
Lists 48 mollusks from several collections from the eastern part of the Santa Monica Mountains. A rock specimen with casts of "Pecten" Raymondii brionianus Trask is figured; 12 other mollusks are reported from the basal part of the Modelo Formation. Sixty-seven mollusks are reported from Pliocene clay shale near the head of Potrero Canyon. Twelve species from exposures of the San Diego Formation in the lower part of Temescal Canyon are listed. A tabulation of fossil localities and remarks by W. P. Woodring on the various mollusk assemblages are included.

Original proposal of a series of time-stratigraphic units to classify late Pliocene and Quaternary marine deposits of western Alaska. The fauna of four of these—Beringian (late Pliocene) and the Pleistocene Anvilian, Kotzebuan, and Pelukian—are characterized in a stratigraphic diagram showing some of the more important mollusks and their occurrences. The faunas of the Kruzensternian and Woronzofian are not shown because of meagre faunal data. This report is similar to Hopkins' later account (1967) of the late Pliocene and Quaternary transgressions written in English.

Biogeographical reports dealing with migration of marine mollusks through Bering Straits during the late Tertiary are reviewed.

Marine beds of Beringian transgression are considered to be of late Pliocene and early Pleistocene age. Twenty-three significant mollusks are listed in a stratigraphic chart. Correlative molluscan fauna occur on the Arctic Coast, in the Gulf of Alaska, and in the Aleutian Islands.

Thirteen mollusks are recorded from marine clay near Kivalina, Alaska, and from deposits of late Pliocene and Pleistocene age at Nome, Alaska. The occurrence of Fortipecten suggests a late Pliocene age and correlation with the submarine beach deposits at Nome.

Marine sand and clay of the "Submarine Beach" at Nome are believed to be of late Pliocene or early Pleistocene age. They contain the large pectiontid Fortipecten hallae (Dall). Several of the mollusks are identical or closely related to species now confined to more southerly, warmer waters suggesting warmer climate and lack of sea ice. Include list of mollusks and local stratigraphic ranges.
BIBLIOGRAPHY

Correlation of six late Cenozoic transgressions from western Alaska of Hopkins with Chukotka sequence of eastern Russian coast. Alaskan transgressions are briefly reviewed with mention of a few key mollusks and recent radiometric age determinations. Molluscan faunas show a progressive modernization in which warm-water elements disappear and are replaced by elements of the modern Arctic fauna.

Palliolium (Delectopecten) pedroanus (Trask) is reported from dredge haul from Zemchug Canyon [identified by O. M. Petrov]. A Neptunea of late Pliocene or early Pliocene age was recovered from a dredge haul in Pribiloff Canyon.

The orientation of a small unnamed species of pelecypod in Pliocene turbidite beds is related to position within a turbidite sequence. Shells are concave up in the lower part and, generally, convex up in the upper part.

HOWARD, P. J., 1935*, Report on Buena Vista Hills, a portion of the Midway-Sunset oil field [California]: California Oil Fields, v. 20, no. 4, p. 5-22, 7 pls.

Pecten peckhami occurs in the Maricopa Shale. Several Pliocene and one Miocene mollusks from well cores in the southern San Joaquin Valley and a few Pliocene specimens from surface exposures are figured.

Howe, H. V., 1921, Correlation of the Empire Formation, Oregon [abs.]: Geol. Soc. America Bull., v. 32, p. 147.

The Empire Formation is classified as early Pliocene on the basis of many species of mollusks that also occur in early Pliocene formations in California; the overlying Coos Conglomerate is also of Pliocene age.

Concludes that the Empire Formation is of early Pliocene age because of the similarity of species to other Pliocene formations and the percentage of living species. Also concludes that the Coos Conglomerate is part of the Empire Formation and not of Pleistocene age. Eight new Pliocene mollusks, some of which are from northwestern California, are described and illustrated.

The Barker's Ranch fauna of the Temblor Formation in California, and the Astoria Formation of Astoria, Oreg., and Lincoln County, Oreg., are "for all practical purposes, contemporaneous in time of deposition." Forty-
three percent of the 89 determinable species are common to both areas. The Oregon Miocene shows a closer relationship to the Asiatic side of the Pacific Ocean than does the California middle Miocene. Several mollusks with oriental affinities show that the Oregon Miocene is a different temperature province from California. Lists "marker" mollusk species for the California and Oregon standard sections.

The Pliocene El Salto Formation contains extensive reef deposits composed of large oysters and many other kinds of mollusks. There are also widespread coquinas.

Seven middle Miocene mollusks are recorded from the lower Modelo Sandstone at or near the type section (identification made by A. J. Tieje); nine species of late Miocene age are recorded from near the top of the Modelo. Other late Miocene species occur in Reasoner Canyon to the north. Turritella inezana occurs in the Vaqueros Formation.

Lists 18 mollusks from the Miocene Oursan? Sandstone. Reports a few mollusks of middle and late Miocene age from a nearby area that were listed in an unpublished master's thesis (Harding, J. W., Jr., 1940, University of California, Berkeley). Also listed are 14 species of mollusks from the upper Miocene Cierbo Formation.

Fossiliferous "reefs" in the Vaqueros Sandstone near Gaviota Creek in the Santa Ynez Mountains are characterized by Pecten magnolia, Ostrea eldridgei, and Turritella inezana.

Hughes, A. W., 1956, Generalized stratigraphy, Huasna Basin [California], in Soc. Econ. Paleontologists and Mineralogists Ann. Spring Field Trip, 1956: 8 p., and map (scale 1 in. = 8,000 ft).

Pecten magnolia and Turritella inezana occur in the lower Miocene Vaqueros Formation, Pecten discus in the upper Miocene Santa Margarita Formation, and Pecten bellus in the Pliocene Pismo Formation.

Ostrea titan reaches an average size of 8 to 12 in. in the type section of the upper Miocene Santa Margarita Formation. A specimen more than 2 ft long is used as a door step at a farmhouse near Creston.
Huguenin, E., 1926, Inglewood oil field [California]: California Oil Fields, v. 11, no. 12, p. 5-15.

Pliocene mollusks from the upper part of the Fernando Formation occur at many localities in the Baldwin Hills east of the Inglewood fault.

Includes brief mention of paleoclimatic analyses of middle Miocene, late Miocene, early Pliocene, and late Pliocene molluscan faunas from central and southern California. These are compared with paleoclimatic inferences from planktonic Foraminifera.

A coquina composed of Ostrea shells occurs stratigraphically above the phosphatic part of the Santa Margarita Formation.

A marine molluscan fauna of Miocene age occurs in a 2,200-ft thick sandstone and conglomerate unit in the Covelo area. Three mollusks considered to be of Miocene or Pliocene age were recovered from limestone float in the Petrolia area. Mollusks from the Wildcat Group are considered to be of Pliocene (?) age. The marine Neogene formations of coastal northwestern California are reviewed.

Isbister, A. K., 1855, On the geology of the Hudson's Bay territories and of portions of the Arctic and northwestern regions of America; with a coloured geological map: Geol. Soc. London Quart. Jour., v. 11, p. 497-520.

Records 33 mollusks from "the tertiary formation" of the Oregon Territory collected by Dana and identified by T. A. Conrad who considered them to be Miocene. Fourteen mollusks from the Alaskan Territory identified by Grewingk are also recorded.

Illustrates Echinophoria apta Tegland and large Neogene pectinids from the Olympic Peninsula, Wash.

Four mollusks from localities in the "Modelo" Formation identified by B. L. Clark and W. P. Woodring are the basis of assigning a late Miocene age to this formation. Further determinations by U.S. Grant 4th, are listed (eight mollusks).

Includes many articles with information on Miocene and Pliocene mollusks and correlation of marine Tertiary formations of coastal southern California and the San Joaquin Valley.
Dosinia cf. D. merriami Clark occurs in a Miocene assemblage dredged in Coos Bay, Oreg.

A brief review of the interfingering marine-nonmarine section of the Caliente Range is included. The Miocene provincial mammal ages can be tied into early and middle Miocene molluscan faunas in this section.

Fossiliferous strata of latest Pliocene age crop out north of the mouth of Elk River.

A small collection of mollusks (five taxa) from Tertiary rocks at Tatchu Point are most likely Miocene and correlatable with the Sooke Formation according to Ralph Stewart.

Jeletzky's Division D is correlated with the Sooke Formation of the southern part of Vancouver Island and is considered to be "early Miocene (?)."

Thirteen mollusks are listed from this division. The "lower Blakeley" fauna including Acita gettysburgensis may be a deeper and quieter water facies of the "upper Blakeley" (and Division D and Sooke Formation).

Clark and Arnold (1923) observed an interfingering of typical "Blakeley" (type Blakeley Formation) and Sooke Formation faunas near Carmanah Point, southern Vancouver Island.

Approximately 1,200 these titles are listed in two sections. One section includes areal reports keyed to an index map; the other, topical reports.

Records a few mollusks from Member D of his San Pablo Formation and from the Merced Formation.

List 61 species of mollusks of Pliocene age from localities on Cedros Island and on the mainland between Punta Eugenia and Punta Asuncion.
Eight new species of mollusks are described; a few other mollusks are figured.

Fourteen species of mollusks, mostly Ostrea and Pecten, are recorded from localities on Maria Madre Island. Four pelecypods are treated systematically and figured; two of these are new—Pecten dallasi and P. abietis.

Kelletia vladimiri is described from the Pliocene Pico Formation [Towsley Formation] of the Ventura basin.

Nassarius stocki and N. hildegardeae are described from the Pliocene Pico Formation [Towsley Formation] of the Ventura basin.

Boetica hertleini is described from exposures of the Pliocene Pico Formation [Towsley Formation] of the Ventura basin.

Résumé of current research and recent publications on fossil marine mollusks of the eastern North Pacific Ocean.

The “upper Mulinia” [bed] defines the subsurface contact between the San Joaquin and the underlying Etchegoin Formation.

Kasline, F. E., 1941, Edison oil field [California]: California Oil Fields, v. 26, p. 12–18.

Dentalium is characteristic of cores from the Miocene “Freeman-Jewett undifferentiated” [Silt] which is 257 feet thick in Jergens well “Hay” no. 1 (sec. 22, T. 30 S., R. 20 E.).

Thyasira alaskana is described from the upper part of the Nuwok Formation (Miocene or Pliocene) of the Arctic coast of Alaska.

A new name [unspecified] for a distinctive group of cardiids including “Cardium” nutallii and “C.” meekianum is needed. Ten species can be referred to this genus; the earliest occurrence of the unnamed genus is in the late Miocene.

Three Neogene cardiids are assigned to the newly proposed genus Clino-cardium: C. coosense (Dall), C. meekianum (Gabb), and C. yaketagense (Clark).

A useful compilation of geographic distribution of modern shallow-water mollusks of the eastern North Pacific in which ranges are reported to nearest degree of latitude. Bibliography (1908-36) includes several papers dealing in part with fossil mollusks.

A new species of Typhis is recorded from the Round Mountain Shale [Silt] near Bakersfield, Calif. Other mollusks from this unit indicate correlation with the Gatun Formation of Panama.

A critical discussion of the Lyellian method of correlation of Tertiary strata based upon percentages of living species of mollusks. The consequence of plotting Lyell's original percentages, and a more modern interpretation of these percentages, on a time scale based upon Tertiary epochs of equal duration and on an absolute time scale is indicated. In neither do these percentages approximate a straight line as would be expected if speciation proceeded at a constant rate during the Tertiary. It is concluded that Lyellian correlation is useful for establishing the general sequence of faunal units in a given region but that it cannot be used for refined age determination.

By eliminating doubtful identifications of living mollusks from the Vaqueros lists of Loel and Corey (1932) [aff., cf., or sp.] the living component of the fauna is greatly reduced—to less than 3 percent—suggesting an Oligocene age in terms of Lyellian correlation. Modern workers concede the Oligocene to have from 1 to 3 percent of living species.

Describes 19 new species of mollusks, and one new pelecypod subgenus, from the middle Miocene of the Kern River area. A columnar section and a geologic map are included. The fauna of Kern River area is correlated with Caribbean, Gulf Coast, and European sections. Seventy-seven mollusks are recorded from a locality in the lower part of the Round Mountain Silt.

Keen, A. M., 1944, Catalogue and revision of the gastropod subfamily Typhinae: Jour. Paleontology, v. 18, no. 1, p. 50-72, 20 text figs.
Typhis lampada, a Miocene species from the San Joaquin basin, California, is included in the subgenus Talityphus.

Keen, A. M., 1951, Outline of a proposed classification of the pelecypod family Cardiidae: Southern California Conchological Club Min., no. 111, p. 6–8.

Familial and generic classification of cardiids including many genera represented in the Pacific coast Neogene.

Familial and generic classification of venerids including many genera represented in the Pacific coast Neogene.

An undescribed species of Ventricolaria occurs in the California Miocene.

Describes Clinocardium praeblandum from the Briones Formation, California, C. pristinum from the Neroly Formation, California, C. hannibali from the Montesano Formation, southwestern Washington, and Nemocardium griphus from the Astoria Formation of southwestern Washington. Arctopratulum is proposed as a new subgenus of Nemocardium. The known Neogene species of Nemocardium and Clinocardium are reviewed.

A valuable systematic catalog of the modern shallow, warm-water fauna of the eastern Pacific. Included are taxonomic notes, geographic and bathymetric ranges, and illustrations of almost all of the species.

A key to modern molluscan genera of the Pacific coast that is very useful in the identification of Neogene mollusks. Includes a section in which bathymetric ranges, substrate associations, and generalized geographic range data are indicated for each genus.

A brief résumé of the development of invertebrate paleontology of the Pacific coast. Periods of activity in paleontological research have been keyed to periods of exploration for mineral resources. Future work is expected to permit greater refinement in age dating.

A supplement to the bibliography in Keen (1937) including 186 additional references.

465–965—72——7

An objective listing of literature pertaining to Tertiary mollusks of California in which all references containing illustrations of fossil specimens are arranged alphabetically by class. The work was later published by Keen and Bentzon (1944).

An extremely useful report that includes citations arranged alphabetically by genus and species of all illustrated Tertiary fossils up to and including 1941 (1,737 species of pelecypods, gastropods, and scaphopods). Each entry includes bibliographic reference, locality, formation, specimen number, and, usually, an indication of the most up-to-date generic allocation. Brief consideration is given to the paleogeographic significance of the number of species per epoch, history of molluscan paleontology in California, and broad aspects of faunal composition. A list of frequently mentioned fossil localities of the U.S. Geological Survey, California Academy of Science, Stanford University, University of California (Berkeley), and San Diego Society of Natural History is included.

Pecten lompocensis and other unnamed Miocene fossils believed to represent the "Temblor age" occur in strata directly overlying the Sierra Blanca Limestone.

Kennett, W. E., 1952, San Miguel Island, Santa Rosa Island south of Santa Rosa fault, Santa Rosa Island north of Santa Rosa fault, Santa Cruz Island south of Santa Cruz fault, in Redwine, L. E., chm., and others, Cenozoic correlation section paralleling north and south margins [of the] western Ventura basin from Point Conception to Ventura and Channel Islands, California: Am. Assoc. Petroleum Geologists, Subcommittee on the Cenozoic of the Geologic Names and Correlations Committee, 2 sheets.

Pecten crassicardo, P. miguelensis, and _Turritella ocoyana_ are reported from the Monterey Formation. _T. oocayana_ and _P. crassicardo_ are reported from the Conejo Volcanics. _Turritella inezana, T. ocoyana, T. tritschi, T. temblorenensis, Pecten miguelensis, Rapana vaquerosensis_, and _Spondylus_ occur in the Rincon Formation. _Tivela_ occurs in the Vaqueros Formation.

This a companion volume to Wilmarth (1938) but with narrower coverage—Mexican and Canadian names are not included and paleontologic terms are omitted. Includes age, geographic distribution, location of type section, original reference and brief description. Fossil names are included in some descriptions, that is, _Pecten estrellanus_ in the original description of the middle Miocene Bitter Creek Sandstone of Dibblee (1951).

Three mollusks are recorded from the Vaqueros Formation (lower Miocene). *Ostrea titan corrugata* is reported from upper Miocene Santa Margarita Formation east of the San Andreas fault. Seven mollusks are reported from “marine lower Pliocene” in the San Benito area.

Includes a list of 39 mollusks that occur with echinoids at three localities in his Carrizo Formation: Carrizo Creek, Coyote Mountain, and Yuha Buttes.

Kew, W. S. W., 1919, Geology of a part of the Santa Ynez River district, Santa Barbara County, California: California Univ. Pubs., Dept. Geology Bull., v. 12, no. 1, p. 1–21.

Both the *Turritella inezana* and *Turritella ocoyana* faunas are recognized in his Vaqueros Sandstone. A few species are recorded from each. Pliocene rocks mapped as the Fernando Formation contain *Nassa californica* Conrad.

Turritella inezana and *Pecten magnolia* are characteristic of the Vaqueros Formation. *Pecten raymondi* is the most common species in the Modelo Formation.

Mollusks are recorded from the Vaqueros Formation, Topanga Formation, Modelo Formation, Pico Formation, and Saugus Formation.

The Vaqueros Formation includes *Turritella inezana* and other fossils characteristic of the Vaqueros Formation elsewhere. Strata containing *T. ocoyana* are included in the upper part of this unit.

The fauna from this unit includes both early and late Miocene assemblages.

The Vaqueros Formation in its type section on Vaqueros Creek consists of 2,000 feet of marine sandstone containing [in the upper part] “the Turritella inezana megaassemblage” (p. 2258).

Subtropical marine genera *Lyropecten*, *Codakia*, *Strombus*, *Turritella*, *Cypraea*, *Terebra*, and *Chione* occur with dugongid remains in the Ysidro Formation near La Purisima, Baja California. The age of the Ysidro is considered to be early or middle Miocene.

Fossiliferous Pliocene sandstone and conglomerate occur on Cedros Island.

This species, referred to the subgenus Nucella, had its origin in the North Pacific during the late Miocene, having undergone notable expansion and differentiation during the Pliocene and Pleistocene. The stock from which the modern N. lapillus of the North Atlantic fauna was derived originated in the North Pacific. The local races of N. lapillus exhibit remarkable parallelism with those of T. lima of the North Pacific.

Maooma and Cryptomya, identified by E. J. Moore, are reported from core of Pliocene (?) marine strata near Richgrove, Tulare County, Calif. The occurrence is stratigraphically below beds containing late Pliocene marine diatoms.

Turritella inezana occurs in the upper part of the Vaqueros Formation on the divide between Reliz and Vaquero Canyons. Sandstone generally mapped as Santa Margarita [Formation] in Reliz Canyon contains Crepidula.

The newly proposed Zemorrian Stage based upon benthonic foraminifers from the California Coast Ranges includes strata that contain the Turritella inezana “horizons” of Loel and Corey (1932).

Definitive biostratigraphic study of benthonic foraminiferal assemblages of the California Miocene. Many stratigraphic records of Miocene mollusks are reviewed as is the relationship of the molluscan sequence to the newly proposed sequence of Miocene foraminiferal stages.

Molluscan and foraminiferal biostratigraphy play an important role in the delineation of Oligocene time-stratigraphic boundaries in the Transverse Ranges.

Kleinpell, R. M., and Weaver, D. W., 1963a, Foraminiferal faunas from the Gaviota and Alegria Formation, in Kleinpell, R. M., and Weaver, D. W.,

Included is a check list of mollusks from the Vaqueros Formation (18 species).

Includes three parts, each of which contains data on Miocene mollusks: (1) Oligocene foraminiferal faunas, (2) Oligocene mollusks, and (3) systematic catalog and locality descriptions. Parts 1 (Kleinpell and Weaver, 1963a) and 2 (Weaver and Kleinpell, 1963) are listed separately in this bibliography.

Four species of mollusks are recorded from the type section of the Vaqueros Formation. The upper few hundred feet of the Vaqueros in the type area contains foraminiferal assemblages referable to the lower part of the Saucesian Stage.

A supplement to Jennings and Strand (1963) in which 236 theses are listed in two sections. One section includes areal reports keyed to an index map; the other, topical reports.

The fauna of the Asagian State of Japan (early Miocene) is related to Vaqueros fauna of California.

Five mollusks from an unnamed Miocene (?) formation near Port Orford are recorded.

Includes a review of the middle Miocene to Recent [Holocene] Turritella cooperi stock of California. Phylogenetic development is represented by appearance and strengthening of secondary spiral sculpture in this stock.

The distribution of Aturia angustata is indicated in a table.

Lists nearly 50 species of mollusks from 20 localities in the Pliocene Pico Formation and eight species from a locality in the upper part of the underlying Repetto Formation, also of Pliocene age. The Repetto mollusks suggest a shallow water environment whereas Foraminifera from surrounding localities indicate bathyal depths: 2,000–4,000 ft.

A Mytilus bed at Bruceport in southwestern Washington is believed by W. H. Dall to be of Pliocene age.

According to Miller (1961) “manteau royal” found on an expedition in the Lituya District is the earliest known record of a fossil pectinid from the west coast of North America.

Includes Miocene and Pliocene records for some modern marine mollusks from western Canada.

Ostrea titan occurs in the upper Miocene Santa Margarita Formation and several taxa, including Turritella inezana var. hoffmani, occur in the lower Miocene Painted Rock Sandstone Member of the Vaqueros Formation.

Mega-fossil fragments are characteristic of the upper Pliocene Careaga Formation.

Eight mollusks from exposures of his Monterey Series near Carmelo Bay, Monterey County, identified by W. H. Dall, are recorded.

Contains a list of Pliocene and Recent [Holocene] fossils found in the vicinity of Mussel Rock.

Includes a list of mollusks identified by J. C. Merriam that are considered to be of Pliocene age because 39 percent of the species are extinct.

Molluscan assemblages from three faunal zones of the Monterey Group (Sobrante Sandstone; Claremont Shale, Oursan Sandstone, Tice Shale, Hambre Sandstone, and Rodeo Shale; Briones Sandstone) are listed. Mollusks from the San Pablo Formation are also listed. Identifications are by J. C. Merriam and B. L. Clark.

Report two mollusks from shales in their Monterey Series and eight from sandstone and limestone units in the Monterey.

Includes a list of fossils of late Tertiary age from Carter Creek, northeastern Arctic Coast of Alaska identified by W. H. Dall (p. 130). These were subsequently listed, some as new species, by Dall (1920).

Includes the statement that Taliaferro found "upper Vaqueros fossils" in a sedimentary unit overlying strata of Cretaceous age and underlying the Quien Sabe volcanics. The statement came from an unpublished report that no one has been able to find subsequently.

Late Miocene and Pliocene marine blue sand formations of central California are related to source areas and paleogeography. They are believed to have been derived from andesitic sources. Includes a correlation chart and paleogeographic maps but no mollusk identifications.

Figures *Pecten refugioensis* Hertlein, a late Miocene species from the Cape region of Baja California. Many other mollusks occur with this pectinid.

Lists a few fossil localities of late Tertiary age and includes line drawings of some later Tertiary molluscan genera.

Abstract: "The horizon markers and principal features show this division of the Lower Miocene to be a distinct and true formation, both faunally and lithologically."

A connection between the Pacific and Caribbean permitted a Caribbean fauna to migrate northward along the California coast during the early
Miocene. A paleogeographic map of their Vaqueros Period indicating the
greatest extent of the early Miocene sea depicts northwest-oriented embay-
ments and insular masses in the southern part of the California Coast
Ranges.

LOEL, WAYNE, and COREY, W. H., 1932, The Vaqueros formation, Lower
Miocene of California; [pt.] 1, Paleontology: California Univ. Publs., Dept.

The definitive work on the Vaqueros Formation together with a compre-
hensive review of mollusks from the Temblor Formation. Both names are
used as time-stratigraphic terms although not specified as such. Included
are a paleogeographic map, locality map, locality descriptions, lists of fos-
sils by localities and regions, illustrations and descriptions of most of the
Vaqueros mollusks, and sections on biozones and paleoecology. In the
latter, authors considered the Temblor faunas to be more diverse than
those of the Vaqueros; the increase in diversity was attributed to new
tropical immigrants and cooler water species that inhabited new niches
provided by deepening of marine basins in the Temblor.

Longinelli, A., and Nuti, S., 1968, Oxygen-isotope ratios in phosphate from

Record oxygen-isotope composition of phosphate and carbonate for Mio-
cene and Pliocene oysters from California: Ostrea titan, O. vespertina, O.
herrmanni, and O. sp.

The concept of the Monterey series is extended to include the Turritella
hoffmanni or T. inezana zone [early Miocene of current usage and now
disassociated from the Monterey Formation]. Concludes that the Vaqueros
Formation and the Temblor Beds were coeval. The bulk of the report con-
sists of an extended discussion of previous work on the Monterey includ-
ing reference to several paleontologic studies.

Louderback, G. D., 1951, Geologic history of San Francisco Bay [California]:

Exposures of the Merced Formation between Mussel Rock and Lake
Merced yield abundant marine fossils [mollusks]. The southern part of the
exposures include a fauna of which about 63 percent are still living
whereas in the northern part about 100 percent are still living. These
units are regarded as upper Pliocene and lower Pleistocene.

Lowe, D. R., 1969, Santa Margarita Formation (Upper Miocene), upper Sespe
Creek area, Ventura, County, California, in Dickinson, W. R., Soc. Econ.
Mineralists and Paleontologists, Pacific Coast Section, 1969 Field Trip
[Guidebook], Upper Sespe Creek: p. 56-62.

Aequipecten discus (Conrad) is reported from the lowermost member of
the Santa Margarita Formation (White Sandstone Member) and _Ostrea
titan_ and _Cerithium_ sp. are reported from the Middle Sandstone Member.

Thirty-four mollusks are recorded from the Sobrante Sandstone includ-
ing two newly named species; 23 mollusks are illustrated. A geologic map
of the Pacheco syncline and columnar sections of the Pacheco syncline and the Bear Creek anticline show the position of fossil localities.

Neptunia n. sp. aff. N. despecta, Astarte homonyma, and Fortipecten hallae are listed from marine sediment on wave-cut bedrock platform at Kivalina, on the Bering coast of Alaska. The molluscan fauna including 22 taxa (not listed) suggests a late Pliocene or early Pleistocene age.

Characteristic mollusks from the Vaqueros, Monterey, Puente, Santa Margarita, Jacalitos, Fernando, and Etchegoin Formations (17 spp.) are illustrated.

Macrarene diegensis is described from the Pliocene San Diego Formation.

A useful reference for identification of shallow water mollusks of the modern California molluscan province, many of which occur in rocks of Pliocene age in southern and central California. Includes bathymetric, substrate, and geographic range data and illustrations of 318 species.

Subsurface zones in the Etchegoin Formation include (from highest to lowest) the Mulinia densata zone, Bittium zone, sub-Mulinia or sub-Bittium zone, and Pecten oweni zone. Some of these are shown in a generalized geologic column.

Lists a few “fossil markers” [mollusks] for Pliocene formations in a composite stratigraphic column for Cymric field.

Includes a list of 17 mollusks from the Skonun Formation of northern Graham Island identified by Whiteaves and originally listed by Dawson (1880); four other taxa identified by Ralph Arnold are also listed. The fauna was considered to be of Miocene or Pliocene age.

Lists 26 mollusks from Tertiary strata (Nuwok Formation of Dall, 1910) along Carter Creek, Camden Bay, Alaska, most of which are also figured and treated systematically. Two new species are described from
this unit. The fauna shows relationship to the North Atlantic but not to the Pacific suggesting that there was no communication between the polar sea and the Pacific at that time. Some of the Quaternary pelecypods are believed to be related to Miocene species from the western North Pacific.

The stratigraphic ranges of 69 significant mollusks of Oligocene and Miocene age and the number of collections upon which these local ranges are based are shown on the chart. There are a few taxonomic notations on the chart.

Treats eight species of *Lituyapecten*, a new subgenus, from Miocene and Pliocene formations of California and Alaska; three of these are new. Traces the development of two stocks of this subgenus during the Neogene.

The definitive report on the genus *Mya* with particular reference to North Pacific species. All of the Miocene and Pliocene species from western North America are figured; one new species is described from the late Miocene of California. The genus reached the Atlantic during the late Miocene by way of the Arctic Ocean. Migrations within the Pacific have generally been from west to east. The genus is divided into two subgenera, *Mya (Mya)* and *Mya (Arenomya)*, based on configuration of the ligamental callus.

The definitive account of fossil pectinids of the North Pacific in which all of the known Alaskan pectinids are described and figured. A new subgenus, *Leochlamys*, and several new species of Miocene and Pliocene pectinids are described. Several pectinids migrated from the Pacific to the Atlantic during the late Cenozoic but none are known to have migrated from the Atlantic into the North Pacific. Middle Tertiary pectinids of the Pacific coast that have European affinities migrated into the North Pacific by way of an Indian Ocean or a Tethyan route.

The high percentage of extinct species in the Intermediate Beach and the Inner Submarine Beach deposits (27-46 percent) indicates a Pliocene age. The marine climate was warmer than at present during deposition of these fossiliferous strata. Fifteen new species or subspecies are described by MacNeil from the Intermediate Beach. Many other species are figured and treated systematically. Thirty-nine species are listed from the Inner
Submarine Beach, 41 are listed from the Intermediate Beach; almost all of these are mollusks.

Include marine sections from the Gulf of Alaska Tertiary province, Alaska Peninsula, Aleutian Islands, and Arctic coast. Many previously unpublished age determinations are included.

Miocene fossils determined by W. H. Dall from a 1,000- to 1,500-ft upper Miocene sandstone, shale, and conglomerate unit (24 localities) are recorded. The fossils are correlated with the Empire Formation of Oregon. Miocene and Oligocene fossils occur in an underlying unit consisting of 3,000 ft of sandstone, shale, and conglomerate.

Includes published and unpublished reports on the San Joaquin Valley including parts or all of 11 countries—Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare. The report includes literature pertaining to petroleum geology: stratigraphy, paleontology, structure, and geophysics.

Lists 11 common mollusks from unnamed Pliocene strata on Boulder Creek, Blue Lake quadrangle, Humboldt County, Calif.; *Mytilus highookiae* is described.

Sixteen mollusks from the basal conglomerate of the Pancho Rico Formation at the type locality of the Miocene Buttle Diatomite member of the Monterey Formation are listed (identifications by L. G. Hertlein). Two pectinids from the same stratigraphic position about 5 miles to the northwest were considered to be of Delmontian Age by J. W. Durham.

Lists seven mollusks from the Astoria Formation identified by W. O. Addicott. The fossil locality, near Cape Lookout, is shown on a geologic map.

Compares five newly named Pliocene pelecypods from Florida with species occurring in the Imperial Formation of southeastern California. Reviews published accounts of age of Imperial Formation noting the similarities between certain Florida Pliocene mollusks and species from the Imperial.

MARCOU, JULES, 1858, Geology of North America; with two reports on the prairies of Arkansas and Texas, the Rocky Mountains of New Mexico, and the Sierra Nevada of California, originally made for the United States government; Zurich, 144 p., + vi, 7 pls., 3 maps [From GSA Spec. Paper 56—Keen and Bentson].

Ostrea virginica californica is described from Tertiary strata near Carizo Creek, Imperial County, Calif.

B. L. Clark collected a pelecypod from the Tecuya Formation in Reed Canyon that resembles *Macoma nasuta* and further suggests that the Tecuya interfingers with the marine Vaqueros Formation.

Several species from the Round Mountain Silt near Bakersfield, Calif., are compared with species from the Miocene Subibaja Formation of southwestern Ecuador.

Lists *Pecten andersoni* from his lower Temblor Sandstone and *Lyropecten crassicardo* from his upper Temblor Sandstone.

Lists 10 mollusks from the lower part of the type Monterey Formation and three each from the middle and upper parts.

Abstract: "The results of recent work in this field and the close faunal relations with the Etchegoin formation of the Coalinga region were discussed."

A systematic report in which 16 new gastropods and one new pelecypod from the Pliocene of the California Coast Ranges are described and illustrated.

Lists Pliocene mollusks from the lower part of the type Merced Formation, upper type Merced Formation, Bolinas Bay Merced Formation, "Merced Formation" of Año Nuevo Bay, "Merced Formation" of Pillar Point, "Merced Formation" of Sargent oil field, two divisions of the Wildcat Formation, "upper Miocene" at mouth of Bear River, Purisima Formation south of Halfmoon Bay; Etchegoin of the Sargent oil field. Pliocene strata at Cape Blanco, Oreg., are reviewed but no species are listed.

A few molluscan genera from exposures of the Katalla Formation near Controller Bay, identified by T. W. Stanton and considered by him to be of Tertiary age, are listed. A small assemblage of mollusks of late Oligocene or early Miocene age collected from Kayak Island is recorded; the identifications are by W. H. Dall and Ralph Arnold.

Mollusks from the Katalla Formation identified by W. H. Dall and Ralph Arnold are recorded. Nine mollusks from middle Tertiary strata on Kayak Island are also listed. Several doubtfully identified genera are listed from the Stillwater Formation. Two doubtfully identified marine genera, Nassa? and Mactra or Spisula?, occur in the Kushtaka Formation. Several molluscan genera are recorded from localities in the Tokun Formation. All identifications are by Dall. Martin concluded that the entire sequence was of post-Eocene age.

A Miocene pectinid occurs in the Katalla Formation. W. H. Dall's determinations of fossils from Katalla area (in Maddren, 1914) are reviewed.

A review of work on marine invertebrates from the Skonun Formation. The formation is believed to be of "either late Miocene or early Pliocene" age (p. 173) at Skonun Point on megafossil evidence.

Pecten fragments occur in a 300-ft measured section of Pliocene siltstone in downtown Los Angeles.

Many pectinids from the eastern North Pacific Neogene are similar to Japanese species.

The Wimer Formation contains a marine molluscan fauna including *Pecten discus* Conrad which is indicative of Miocene age. Casts of a *Macoma* and a pectinid are figured. *Pecten parmeleei* occurs in the St. George Formation once exposed beneath the wharf at Crescent City.

The Santa Barbara faunal zone includes many extinct, northward-living, submergent mollusks of late Pliocene and (or) early Pleistocene age. Volcanic ash from near the base is dated by Yeats and others (1966) at 8.7 m.y. The base of the Santa Barbara faunal zone is temperature controlled. All of the molluscan assemblages are of inner sublittoral aspect.

The Santa Barbara faunal zone is composed of Pliocene and Pleistocene mollusks including extinct, extralimital northern, submergent forms. The mollusks lived in 15-50 fathoms of water but were subsequently displaced into deeper water—depths of 100 fathoms or more. The Fernando Formation below the Santa Barbara zone contains assemblages indicative of water temperatures about the same as today, whereas the stratigraphically higher Santa Barbara zone includes mollusks living today in cooler waters off southernmost Canada. The highest part of the Cenozoic section includes mollusks indicative of water temperatures not markedly different from modern temperatures at this latitude.

Many species from California and Oregon are listed. There is a section with taxonomic notes.

Lists descriptions for several Miocene fossil localities with brief comments on a few localities—pectens, oysters, *Maclea, Strombus*, etc. The collections had not as yet been studied by paleontologists at the time the report was written.

A comprehensive treatment of one of the most important groups of Cenozoic mollusks of the Pacific coast. Species are classified according to "stocks" [subgenera], most of which show clear-cut phylogenetic development. Stratigraphic ranges of the five Neogene "stocks" are indicated on a chart. The systematic section includes extensive discussions of variation, ontogenetic changes, and geographic occurrence. Eight new specific or subspecific Neogene taxa are described.

Merriam, J. C., 1889, A list of type specimens in the Geological Museum of the University of California, which have served as originals for figures and

Seventeen species of Miocene and Pliocene mollusks described by W. M. Gabb are listed [reference from Vogdes (1896, p. 21-23)].

Mollusks from the type Sooke Formation and from rocks near Carmanah Point to the northwest are recorded. The latter fauna was considered to be significantly older than that of the Sooke Formation which was considered to be of middle "Neocene" age.

Contains description of four new species of mollusks from the Sooke Formation and one from beds at Carmanah Point. These were subsequently illustrated by Merriam (1899).

The redescription and initial illustration of five species of mollusks named by Merriam in 1897. Lists 25 molluscan taxa from the Sooke and the known Miocene, Pliocene, and Holocene occurrences of these concluding that the fauna is of middle "Neocene" age.

Lists Miocene fossils from Santiago Canyon, Piru Creek, and Big Tar Canyon [as lower Neocene]; middle Neocene ("San Pablo Group" [Pliocene, in part]) from Puente Hills and Piru Creek area; upper Neocene ("Pliocene") from shallow well near San Juan Capistrano.

Three divisions of the Miocene are recognized in Contra Costa County: the lowest division is characterized by Agasoma gravida [San Ramon Formation]; the middle or Monterey Shale fauna is characterized by Pecten peckhani, Tellina congesta, and Leda; the upper differs from the overlying San Pablo by the presence of Trochita costellata and other mollusks. The Agasoma zone of Contra Costa County includes both the Turritella hoffmani [T. inezana] and T. ocoyana zones found farther south in California. The T. ocoyana zone, as developed at Kern River, is more modern in appearance and contains more recent living species than the T. hoffmani zone. The T. hoffmani zone is found principally in coastal California; the T. ocoyana zone in both coastal and inland areas. This suggests that the sea reached farther east during the deposition of the latter zone.

Includes a note on two Miocene faunas of the Tejon Hills furnished by B. L. Clark in which seven mollusks are listed from the Vaqueros or Temblor and 21 are listed from the Santa Margarita. The latter assemblage is correlated with the Santa Margarita of the Coalinga area to the northwest.

A résumé of paleontological studies on marine invertebrates including a bibliography.

Marine mollusks of early Miocene age are associated with continental vertebrates of late Miocene age at a locality in the Tejon Hills, Kern County, Calif. The discrepant ages may indicate incorrect correlation with marine standards of the Atlantic coast and vertebrate standards of the Great Plains area.

A bed of Ostrea vespertina Conrad occurs near Carrizo Creek, Imperial County.

A fauna collected from Ctenopah Island and identified by W. H. Dall includes more than 40 genera considered to be of Miocene age. Other collections from the area identified by Dall and by W. C. Mansfield were correlated with the Empire Formation (Pliocene) of coastal Oregon. There are 20 mollusks in the largest collection.

Twelve mollusks from a locality in the Nushagak Formation near Nushagak identified by W. H. Dall are listed. These were regarded as correlative with the Astoria Formation of Oregon.

Six marine mollusks identified by A. Myra Keen and Dwight W. Taylor (Halodakra, Diplodonta, Macoma, Mulina?, Batillaria, Barlecia?) suggest a brackish-water environment.

Mollusks from cores of the conglomerate overlying schist basement identified by W. H. Corey are considered to be of late Miocene age [Mytilus cf. mathewsoni Gabb, Ostrea sp., Pecten raymondi brionianus Trask, Pecten crassicarido var., Calyptraea inornata (Gabb)].

Pacific coast Miocene occurrences of *Aturia angustata* and *A. alaskensis* are noted. *Aturia* sp. occurs in the San Ramon Formation in association with five mollusks of late Oligocene or early Miocene age. These taxa are illustrated.

Figure Miocene specimens of *Aturia angustata* (Conrad)? from the upper part of the Twin River Formation, Wash., and from the Temblor Formation near Mt. Poso oil field, Kern County, Calif.

Part of the Katalla Formation may be of Miocene age. The Yakataga Formation is of Miocene age. Many of the species listed by Clark (1932) from the Yakataga Formation are actually from the underlying Poul Creek Formation. Some of the stratigraphic ranges of diagnostic mollusks in the Poul Creek and Yakataga Formations are shown on a correlation chart. Paleontologic determinations are by H. E. Vokes.

Twenty-four species of mollusks identified by F. S. MacNeil are listed together with ecologic and zoogeographic inferences. A Pliocene or Pleistocene age is indicated. Includes stratigraphic section and geologic map showing fossil localities.

Lists 69 mollusks in a stratigraphic range chart for the Poul Creek and Yakataga Formations; the localities are shown on a geologic map and on measured sections.

Includes correlation chart showing stratigraphic occurrence of eight Miocene and Pliocene species of *Lituyapecten* and *Patinopecten* in southeastern Alaska. The Tertiary sequence of the Gulf of Alaska is divided into three parts. The lower Tertiary is in part nonmarine but includes marine invertebrates indicative of tropical or subtropical conditions. The middle Tertiary consists of marine strata of somewhat deeper bathymetric aspect and warm temperate to subtropical water conditions. The upper Tertiary unit is wholly marine, of shallow water aspect, and includes marine tillite. It contains mollusks indicative of cool temperate to boreal marine climate.

Local glaciation which began during the middle or late Miocene is indicated by the marine invertebrate fauna [mostly mollusks] and marine glacial deposits in the Gulf of Alaska area.

Miller, R. H., and Bloom, C. V., 1937, Mountain View oil field [California]: California Oil Fields, v. 22, no. 4, p. 5-36.
"Pholas borings are common" in the lower part of the Chanac Formation. "Clementia pertenuis, large variety," was recovered from a core from the Chanac Formation suggesting a Miocene age. Casts of Mya and Cryptomya occur in cores from the lower part of the Chanac Formation in the northwestern edge of the oil field.

Pholas, or possibly worm borings, are of common occurrence in the Chanac Formation. A megafossil assemblage from the Wharton sand is similar to those occurring in the type Santa Margarita Formation.

A few pelecypods are recorded from the upper 600 feet of the Santa Margarita Formation and from the Etchegoin Formation.

List seven mollusks from the Pliocene San Diego Formation.

Pliocene mollusks are recorded from the Almejas Formation.

Mina U., Federico, 1957, Bosquejo geologico del Territorio sur de la Baja California [Mexico]: Asoc. Mexicana Geologos Petroleros Bol., v. 9, nos. 3 y 4, p. 139-269.

Lists mollusks from the San Raymundo Formation (middle Miocene), the San Ignacio Formation (upper Miocene), and the Almejas Formation (Pliocene). Paleogeographic maps of the Miocene (three divisions) and the Pliocene are included.

Miocene (?) marine fossils occur in the lower 200 ft of a succession of basalt, tuff, conglomerate, and sandstone along the northwestern coast of Baja California.

Includes list of 18 mollusks from two localities in his Rosarito Beach Formation (Miocene or Pliocene). Lists a few mollusks from the Pliocene San Diego Formation.

The new walrus, Valeniuctus imperialis n. sp., was collected from an Ostrea-Anomia bioherm in the mouth of Painted Gorge on the east Flank of Coyote Mountain.

A résumé of investigations on middle Miocene vertebrate fossils from Sharktooth Hill with brief mention of reports dealing with mollusks.

The middle Miocene sharktooth bed and bone bed at Sharktooth Hill near Bakersfield, Calif., lacks marine invertebrates excepting one pectinid. This may have been the result of recurrent noxious water-blooms of dinoflagellates that would not have affected relatively fast-moving marine vertebrates. Selective leaching of marine invertebrates is ruled out because no casts have been found in the extensively collected deposit. Two Miocene pectinids occur with *Allodesmus* on San Clemente Island, southern California.

Miocene pelecypods occur in sandstones exposed in the "south basin," near the middle of San Clemente Island.

List a few mollusks occurring with early, middle, and late Miocene specimens of *Desmostylus* in California and a late Miocene occurrence of *Paleoparadoxia*. A chart depicts the chronologic range of Desmostylians and Sirenians in terms of the late Tertiary marine chronologies of Europe, the northeastern Pacific, and the western Pacific.

Neogene species of *Lyropecten* and *Patinopecten* from California are related to certain Atlantic coast and European pectinids.

Pacific coast *Lyropecten*, characteristic of the Miocene, is the equivalent of Mediterranean *Giganteopecten* and western Atlantic *NoAipecten*.

One hundred forty-seven mollusks, including 11 new species, are recorded from Pliocene strata uncovered during excavation for a building in downtown Los Angeles. The fauna is of boreal aspect representing a comparatively shallow water environment; more than 16 percent of the living component is restricted to more northern waters.

Moore, B. N., 1930, Stratigraphic relations of the *Turritella inezana* and *Turritella ocoyana* zones of the Santa Ana Mountains, Orange County, California [abs.]: Geol. Soc. America Bull., v. 41, p. 212.

Turritella inezana and *T. ocoyana* are reported to have nonoverlapping stratigraphic ranges and to be separated, in this area, by a discon-
formity. One specimen of T. inezana occurring in the basal part of the T. ococoyana zone is believed to have been reworked.

Cenozoic mollusks from the western United States described by Conrad that were deposited in the Academy of Natural Sciences of Philadelphia are reviewed. Many of the types are missing. A biographic sketch of Conrad and an extensive bibliography of his publications are included.

The definitive paleontologic treatment of the larger marine invertebrate fauna of the middle Miocene Astoria Formation of Oregon. The systematic section includes treatment of 97 species of mollusks, 11 of which are new. The report includes an extensive annotated list of reports dealing with the Astoria Formation and its fossils.

Figures 19 Pliocene mollusks from localities in San Diego County.

Middle and early Miocene mollusks occur in the Narrow Cape Formation on Kodiak and Sitkinak Islands. Nassarius cf. N. andersoni is reported from the Pliocene Tugidak Formation.

Two pelecypods from the St. George Formation are identified by W. O. Addicott and are considered to corroborate an earlier age determination of Pliocene.

Includes many references and figures pertaining to eastern North Pacific taxa.

Includes many references and figures pertaining to eastern North Pacific taxa.

A middle Miocene faunal assemblage characterized by Arca montereyana occurs in Carneros Creek about 20 miles east of Petaluma. A pelecypod resembling Monia (Pododesmus) has been recovered from a well core about 300 ft above the base of the Petaluma Formation in strata considered to be of Pliocene age.

Characteristic mollusks (genera) mark the change from nonmarine to marine deposition at about 2,700 ft in wells (upper part of the Etchegoin Formation). At 3,730 ft another fossiliferous bed is found in which marine and freshwater forms occur together.

Three mollusks occur at the type locality of Cancer davidi n. sp. Mollusks from the Etchegoin Formation suggest a minimum average winter temperature of 13°C or higher.

Some common Miocene and Pliocene molluscan index species are indicated on stratigraphic columns for some California Tertiary basins.

A few Oligocene to Miocene [early Miocene] mollusks from the Vaqueros-Sespe Formations and middle Miocene mollusks from the Topanga Formation are indicated on a composite stratigraphic section of the Los Angeles basin.

Marine fossils occur on Maria Madre Island.

The Temblor Sandstone contains a Turritella ocyana fauna. A Turritella resembling T. inezana and Pecten peckhami are reported from rocks mapped as undifferentiated Monterey Formation. Elsewhere this formation contains fossils characteristic of the Temblor Sandstone.

Twenty-two species from localities in the Topanga Formation are recorded.

Includes a correlation chart showing Pacific coast microfaunal stages, molluscan stages, and the stratigraphic sequence of Tertiary formations of northwestern Oregon.

Ostrea titan from California Miocene reaches as much as 300 mm by 140 mm in size.

Nine new species of mollusks are described from the Jacalitos Formation. Seventy-eight mollusks are recorded from localities on Jacalitos and Waltham [?Warthan] Creeks.

NOMLAND, J. O., 1916b, Relation of the invertebrate to the vertebrate faunal zones of the Jacalitos and Etchegoin formations in the North Coalinga region, California: California Univ. Pubs., Dept. Geology Bull., v. 9, no. 6, p. 77-88, pl. 7.

Describes and illustrates three new species of Pliocene gastropods. The Pliocene invertebrate fauna of the Etchegoin Formation north of Coalinga is subdivided into four faunal zones; the lowest zone, the Glycymeris zone, has by far the largest number of species. The Jacalitos Formation of this area contains no marine fossils.

Includes an index map showing important Pliocene localities (27) in California. Lists 87 species from the lower Etchegoin “Jacalitos.” Other lists of Etchegoin mollusks from near Lonoak and Big Sandy Creek are included. Water temperatures were warmer than today during deposition of the Etchegoin; no cold water phases are indicated. The faunas from his Chione elamerensis, Turritella nova, Pecten coalingensis, and Mya japonica zones are listed. Sixteen new species of Pliocene mollusks are described.

The Etchegoin Formation includes all post-Santa Margarita strata and is of Pliocene age. Four distinct faunal zones are recognized in this formation.

Fifteen new molluscan taxa are described and illustrated. Santa Margarita assemblages from the Tejon Hills, San Luis Obispo area [at base of “Monterey” Shale], Coalinga, type section near Santa Margarita, and Nacimiento River are recorded.

Pecten specimens of Pliocene age were dredged from about 500 meters off the southeast tip of Baja California.

A Cryptomya resembling upper Pliocene forms from the San Joaquin Valley occurs in the upper part of the Upper Pico Formation. The Sunshine Ranch Member of the Pico Formation contains abundant marine megafossils near the type locality. These extend upwards into the middle part of the formation. The basal coquina beds were once mined for lime.

Mollusks from the upper Miocene Modelo Formation, the lower Pliocene Repetto Formation, and the lower part of the Pico Formation are listed. Identifications are by several paleontologists. The localities are shown on a map.

Several Neogene species from the Pacific Coast States are listed among the 230 species examined, thin sections of a few of these fossil species are illustrated. The pelecypod shell consists of two kinds of deposits: palliostracum secreted by the mantle and myostracum secreted over muscle attachment areas. Three kinds of shell structure are recognized: nacreoprismatic, foliated, and complex-lamellar.

A mean age of 3 m.y. was obtained from K-Ar investigation of glauconite from Lomita Marl Member of the San Pedro Formation, Palos Verdes Hills, Calif. The glauconite age of the Fernando Formation (late early Pliocene) from the same area is 6.1±1.2 m.y.

A check list of 53 mollusks from the Wildcat Group identified by the author and J. Wyatt Durham is included.

The occurrence of mollusks in the Pliocene Wildcat Group is shown on a generalized stratigraphic section. Pecten caurinus is reported from the Scotia Bluffs Sandstone and the Rio Dell Formation.

Pecten caurinus and Cerastoderma meekianum are reported as common in massive sandstone near the base of the Pliocene Scotia Bluffs Sandstone.

A useful reference for geographic and bathymetric records of the modern molluscan fauna of Puget Sound. Fossil occurrences of a few of these mollusks are indicated.

A very useful systematic catalog of the modern mollusks of the Pacific coast with original descriptions, range data, and many figured specimens. The stratigraphic range of each genus is indicated.

Mollusks collected from marine strata of Miocene age are identified as Lyropecten crassicardo and Aequipecten cf. A. andersoni. Abundant shell fragments occur at one locality.

Twenty-four species of Miocene mollusks from the Caribbean coast of Costa Rica are considered to be a Pacific element. Pacific analogs are listed for most of these.

A few species are compared with Miocene and Pliocene species from Baja California and California.

Olsson, A. A., 1961, Mollusks of the tropical eastern Pacific particularly from the southern half of the Panamic-Pacific faunal province (Panama to Peru); Panamic-Pacific Pelecypods: Ithaca, N.Y. Paleont. Research Inst., 574 p., 86 pls.

Includes a summary of the principal modern molluscan provinces of the eastern Pacific with a lengthy discussion of the Panamic-Pacific molluscan province (lat 30°30' N. [head of Gulf of California] to lat 5°40' S.). Principal gastropod and pelecypod genera and families are reviewed. This province includes an estimated 2,200 species of shelled mollusks including about 500 species of pelecypods and 1,660 species of gastropods. The Peruvian province is also treated in detail.

Pholadomya kawadai n. sp. is compared with the Miocene *P. kernensis* Wiedey, an early and middle Miocene species from California.

Orcutt, C. R., 1889a, Recent and sub-fossil shells of the Colorado desert: West Am. Scientist, v. 6 [whole no. 46], p. 92-93.

Miocene strata on "Carisso Creek" contain marine invertebrates that are older than mixed nonmarine and marine mollusk assemblages that occur at Salton, Calif.
Orcutt, C. R., 1889b, Some notes on Tertiary fossils of California, I: West Am. Scientist, v. 6 [whole no. 45], p. 70-71.

Includes list of 50 molluscan taxa of Pliocene age from Pacific Beach, San Diego County. According to Hertlein and Grant (1941) some of these may be of Pleistocene age.

Orcutt, C. R., 1889c, Some notes on Tertiary fossils of California, II: West Am. Scientist, v. 6 [whole no. 46], p. 84-87.

Includes a copy of Dall's (1874) list of Pliocene megafossils from the San Diego well. The San Diego well was drilled to a depth of 160 ft near the corner of Ash and 11th Streets. Mollusks of Pliocene age collected from the well cuttings and originally identified by Dall (1874) are listed. The shell-bearing stratum has been penetrated in almost every well drilled in San Diego.

Lists nine molluscan taxa of Pliocene age from the San Jacinto and San Bernardino Mountains; there are other unidentified mollusks in the collection. Oyster beds at Carrizo Creek consist of Ostrea subfalcata of Cretaceous age. A list of known Tertiary Ostreidae of California (13 spp.) is included.

Recapitulates an earlier account of the occurrence of fossil Ostrea on Carrizo Creek made by Dr. Charles C. Parry, botanist and geologist of the United States boundary commission in a report on explorations made in 1849.

Orcutt, C. R., 1901b, Some desert fossils: West Am. Scientist, v. 12, no. 1 [whole no. 102], c. 11-13.

Lists five species of pelecypods from Miocene strata on Carrizo Creek.

Osmont, V. C., 1904, Areas of the California Neocene: California Univ. Pubs., Dept. Geology Bull., v. 4, no. 4, p. 89-100, pls. 8-11.

Five species of Arca from the Neogene of California are described and illustrated; two species, Arca montereyana and Arca camulosensis, are new.

Osmont, V. C., 1905, A geological section of the Coast Ranges north of the Bay of San Francisco [California]: California Univ. Pubs., Dept. Geology Bull., v. 4, no. 3, p. 39-87, pls. 6, 7.

Eight mollusks from the San Pablo Formation (?) at the mouth of Estero San Antonio near Valley Ford, and 15 species from Wilson's Ranch about 1,000 ft above the Sonoma Tuff are recorded.

Miocene megafossils occur in the Vaqueros Formation (none are listed); Pecten elridgei occurs in the Etchegoin Formation north of McKittrick; Pecten estrellanus and a large Ostrea occur in the Santa Margarita Formation between Santiago and San Emigdio Creeks; Pseudocardium gabri and other megafossils occur at several localities in the Etchegoin Formation.

Pecten wattsi, P. coalingensis, and Thais etchegoinensis are reported from exposures of upper Miocene [Pliocene] strata in Waltham and Priest Valleys.

Includes brief taxonomic notations on species of Mulinia from the Pacific coast Pliocene.

Spisula reached its peak during the Miocene; mullinoid species first appeared during the early Miocene.

A comprehensive systematic review of Pacific coast macrids including more than 20 taxa of Miocene and Pliocene age, five of which are newly described. The macrid hinge is the least variable shell characteristic of a given species and is, therefore, the most important basis for species determination.

Nine mollusks are recorded from a locality in the Yaquina Formation on Yaquina Bay. Three mollusks from the overlying “Nye shales” are listed. Forty-five mollusks identified by H. G. Schenck, L. G. Hertlein, and C. W. Merriam from the Astoria Formation are recorded from several different localities in the Astoria Formation near Newport, Oreg., together with stratigraphic occurrences elsewhere in Oregon and Washington.

Eight mollusks are recorded from the “Temblor” Formation.

Middle Miocene and Pliocene marine mollusks occur in formations exposed near Stanford University. The Pliocene mollusks occur in what are considered to be marine tongues in the nonmarine Santa Clara Formation.

Thyasira bisecta and Phacoides acutilineatus occur in Oligocene? shale of the Hoh Formation between Hoh River and Agglomerate Ridge. The
Quillayute Formation is exposed in a limited area near the junction of the Solduc and Bogachiel Rivers. It is composed of gray sandstone carrying a plentiful fauna. It is "probably not more than 50 feet thick."

Fifty-nine species [not listed] of fossil mollusks occur in the uppermost of three units in the Hoh Formation; correlation with the Clallam Formation, Astoria Formation, and Kern River Temblor Formation is indicated. The lowermost unit includes seven mollusks [listed] of indeterminate age. These localities are on the coast 1 mile north of the mouth of Hoh River.

A few species of Miocene and Pliocene age identified by Gloria A. de Cserna are recorded.

Poorly preserved megafossil fragments occur in the Vedder Sand and in the overlying Freeman-Jewett Silt. The middle part of the Etchegoin Formation contains abundant Macoma kerica.

The upper Miocene Santa Margarita Formation contains common megafossils; scattered gastropods occur in the Fruitvale Shale (upper and possibly middle Miocene).

Park, W. H., Land, P. E., and Bruce, D. C., 1957, Belgian anticline oil field [California]: California Oil Fields, v. 43, no. 1, p. 5-12.

"Locally abundant megafossils" are reported from the Etchegoin Formation.

Pliocene "stages" apparently described informally by W. F. Barbat (Pacific Sci. Congress, Los Angeles, 1939) and based upon marine mollusks are utilized in correlation charts.

A few Miocene mollusks are recorded from the Pyramid Hill Sand Member and Jewett Sand Member of the Freeman-Jewett Silt, the Olcese Sand, and the Round Mountain Silt.

PARKER, PIERRE, 1949, Fossil and Recent species of the pelecypod genera Chione and Securella from the Pacific Coast: Jour. Paleontology, v. 23, no. 6, p. 577-593, pls. 89-95.

A review of Tertiary species of Securella, n. gen., and three subgenera of Chione: Gnidiella, n. subgen., Chione s.s., and Anomalocardia; all species are illustrated.

There is a brief discussion of the Tertiary faunal history of the Gulf of California and its relationship to Neogene molluscan faunas from tropical America. Data on the bathymetric distribution of the modern molluscan fauna are useful in paleoecologic studies.

Three mollusks are recorded from the basal part of the “Temblor” Formation about half a mile south of Moreno Gulch.

Megafossils [mollusks] from the Lincoln Formation of Weaver (1912) are in part of early Miocene age according to Ellen J. Trumbull. Most of the molluscan assemblages from the Astoria Formation are of middle Miocene age but a few near the top are correlated with the fauna of the Montesano Formation and are considered to be of late Miocene age. Megafossil localities are shown on the geologic map.

Marine tuff and sandstone near Scotts Mills has yielded several small collections of marine mollusks (eight species) indicative of an early Miocene age and of correlation with the Scappoose Formation. A map showing the early Miocene shoreline in the Willamette Valley and a correlation chart of coastal and inland Tertiary formations are included.

An assemblage of about 45 species of marine invertebrates of Pliocene age, mostly mollusks, is reported from the coastal area between the Russian River and Gualala on the northeast side of the San Andreas fault. Correlation with the lower part of the type Merced Formation is suggested.

Forty-one mollusks including one new species, Arca n. sp., are recorded. His lower faunal unit contains species never reported from the lower part of the type Merced Formation and is considered, therefore, to be somewhat older than it. The upper fauna is correlated with the Pliocene part of the type Merced. Ten mollusks are illustrated.

One of the Pleistocene mollusks occurring in the Punta Baja-Bahia San Quintin area, *Dentalium neohexagonum*, is recorded from strata of Pliocene age in southern California.

Pecten (*Pseudamusium*) *peckhami* is reported from localities in the upper Miocene Modelo Formation.

Three mollusks are recorded from localities in the lower Miocene Vaqueros Formation along route of field trip (identifications by L. G. Hertlein).

The occurrence of marine fossils [mostly mollusks] is indicated in the explanation of map units. A review of molluscan faunas from the Yakataga Formation by F. S. MacNeil indicates that the formation is of middle Miocene to early Pliocene age.

Mya and *Mytilus* occur in the Yakataga Formation which is considered by R. B. Stewart, H. E. Yokes, and F. S. MacNeil to be of both Miocene and Pliocene age. This report was released as a U.S.G.S. open-file report in 1954.

Six mollusks from the upper Tertiary Imperial Formation are listed.

The Sisquoc Formation is of early Pliocene age according to faunal studies by Mrs. Dorothy A. Castle.

Includes Pliocene and Miocene records of turrids from Pacific Coast States.

Three faunal "horizons" in the upper 2,000 ft of Fernando Formation of the western Ventura basin are recognized: Santa Barbara (considered Pliocene—cool-water), Kalorama (warm-water, about 12 percent extinct species, considered Pleistocene), and Long Canyon (warmer water, about 7 percent extinct species, considered Pleistocene). The latter two are
referred to the Las Posas Formation. Others' statements that sharp faunal breaks occur in the Pliocene-Pleistocene sequence of the Ventura basin are doubtful because faunal change in this section is gradual.

Lists of 55 mollusks from the Santa Margarita Formation and 13 mollusks from the Cryptomya californica zone of the Jacalitos or lower Echegoin Formation (identifications by H. R. Gale) are included. Gale believed Macoma kerica to be a synonym of Cryptomya californica.

Pecten peckhami occurs a few feet stratigraphically above the top of the Valvulineria californica zone and also within the zone. In wells the top of the ‘‘Button Bed’’ may be represented by the first occurrence of Pecten andersoni.

Seven mollusks from his Tuff Member of the Kirker Formation are listed and are correlated with the Echinophoria apta zone of western Washington. Several mollusks are also recorded from the upper Miocene Briones? Formation and Cierbo Formation.

Five pelecypods from the lower Miocene Vaqueros Formation and three from siliceous shale of the middle Miocene Monterey Formation are recorded.

A few line drawings of Neogene mollusks from California are included. Some of the well-known collecting localities in California, Oregon, and Washington are listed together with brief notation of common mollusks at many of these.

Genota riversiana n. sp. is described from Pliocene strata at Santa Monica, Calif. Also included is a list of five late Cenozoic species from California assigned to this genus.

Five late Cenozoic species of Genota are figured and treated systematically. Two of these, G. carpenteriana Gabb and G. riversiana Raymond, are recorded from Pliocene strata in California.

Mollusks from six localities in his Clallam Formation [in part Twin River Formation of later workers] are recorded and are correlated with
names used by Arnold (1906). Lists about 35 molluscan taxa from his Clallam Formation of which eight are newly described. A similar number of mollusks are listed from his Quillayute Formation of which eight are newly described. Many of the Clallam and Quillayute mollusks are illustrated by line drawings.

Includes lists of Miocene mollusks compiled from earlier workers—Merriam, Conrad, Arnold, and Reagan.

Mega­fossils representing the Pliocene Pecten bellus zone and Pleistocene Pecten caurinus zone of the Santa Barbara Formation crop out along Rincon Creek, western Ventura County, Calif.

Many of the stratigraphic columns [Channel Islands (Kennett), Capitan Canyon (Simonson), Goleta Point (Trefzger, Webster, and Redwine), Summerland and Ventura River areas (Bailey), Los Sauces Creek (Redwine, Bailey, and Webster), and Point Conception (Dibblee)] contain names or mention of mollusks. Each is described as a separate entry in the bibliography.

Redwine, L. E., Bailey, T. L., and Webster, Cutler, 1952, Los Sauces Creek area, in Redwine, L. E., Chm., and others, Cenozoic correlation section paralleling north and south margins [of the] western ventura basin from Point Conception to Ventura and Channel Islands, California : Am. Assoc. Petroleum Geologists, Subcommittee on the Cenozoic of the Geologic Names and Correlations Committee, 2 sheets.

An oyster reef occurs in the lower part of the Vaqueros Formation. There are rare fragments of poorly preserved megafossils in the Vaqueros.

Santa Margarita fossils [mollusks] occur in the Highland monocline area of the Northern La Panza Range, San Luis Obispo County.

References pertaining to marine and terrestrial climates during the Miocene in California are reviewed. Molluscan studies of Smith (1919) showing shallow seas to have been warm conflict with foraminiferal data indicating cool-water conditions.

Some of the common mollusks from Neogene formations in California are listed. A few turritellas and pectinids are figured.

Brief stratigraphic summaries of Miocene and Pliocene sequences include reference to fossils.

The Miocene species Trochita costellata Conrad, T. diabloensis (Clark) and T. martini (Clark) may be close to the living T. radians Lamarck.

This bibliography includes a detailed index that lists all new species of mollusks described from Washington during the period 1937-56. There is also an indexed list of theses dealing with the geology and paleontology of Washington.

Names new subgenus Larkinia to which the Pacific coast Pliocene species Anadara camulosensis is assigned.

Three new Pliocene species from the Santa Maria basin, California, are described: Arca sisquocensis, A. santamariensis, and Barbatia pseudoillota. The latter is placed in a newly named subgenus Fugleria.

Includes classification, description, and illustration of species in the subfamilies Anadarinae and Noetiinae. Stratigraphic occurrences of 32 specific and subspecific Miocene and Pliocene taxa are shown in a chart. Three new species of Miocene and Pliocene age are described.

Cardium gabbii and Ostrea bourgeoisii are described from upper Miocene strata near Kirker's Pass. Two other pelecypods are recorded from this exposure.

Three specimens of Thais, similar to Thais n. sp. Lutz, were found 75 ft above the base of Oursan Sandstone of Hall (1958). Foraminifera from
somewhat higher in the section are regarded as Relizian or Luisian by Kleinpell.

The *Turritella* in the Vaqueros Formation is allied to the *T. altilira*, group which has Oligocene origins in the Caribbean.

Correlation chart of San Joaquin and Sacramento Valley Tertiary sections showing relationship of provincial megafaunal, microfaunal, and continental vertebrate stages is included.

Early, middle, and late Miocene faunal divisions occurring in the eastern Caliente Range are correlated with informal megafossil stage names of Weaver and others (1944) and faunal divisions based upon terrestrial vertebrates from intertonguing marine and nonmarine strata. Several characteristic mollusks from each of the three divisions are listed. A stratigraphic diagram indicates intertonguing relationships and generalized stratigraphic position of diagnostic fossils.

The Santa Margarita Formation varies in age from Late Miocene to earliest Pliocene; it is the shallow water facies of the upper part of the Monterey Formation.

Pecten estrellanus and *Tridonalia* sp. occur at the type locality of *Astrodapsis salinensis*—2 miles south of San Lucas, Monterey County, Calif.

Four zones of late Miocene age are recognized. They contain typical late Miocene mollusks. The highest zone underlies the early Pliocene *Chione elsmereensis* zone.

Fossiliferous strata occur at the mouth of John River, between Otter Point and Sherringham Point; they are packed with *Ostrea, Pecten*, and *Saxidomus* and are of Tertiary or post-Tertiary age.

468–965—72—9

Eleven mollusks are recorded from four localities in the Orinda Formation; fossil localities are shown on a geologic map. Five mollusks are illustrated.

Turritella ocoyana, Chione tembloriensis, and _Arca_ occur in the middle Miocene Topanga Formation. Seven species of mollusks are listed from the Pliocene Repetto(?) Formation.

A general reference dealing with invertebrate marine life of the Pacific coast of the United States. Includes ecologic, distributional, and physiological observations and many photographs of modern mollusks. There is an extensive, partially annotated bibliography. Pliocene specimens of _Opalia_ from La Jolla attain almost 3 inches in length. Discusses the early records of _Mya arenaria_ concluding that it is difficult to determine whether or not this pelecypod is native or introduced.

The Pliocene El Salto Formation contains massive coquinas composed principally of pelecypod shells. They are best exposed along the river near El Salto.

Rivers, J. J., 1891, Occurrence of a Miocene shell in the living state: _Zoe_, v. 2, p. 70-72, 1 text fig.

A range extension of the Miocene [Pliocene] species _Nassarius californianus_ is noted.

Sandstones of Pliocene age similar to the Pliocene San Diego Formation are reported from the Santa Monica Mountains.

Seven Pliocene mollusks including _Arca trilineata_ and _Bittium quadrifilatum_ from well cores are figured. Other species are refuged from Arnold (1909). Pliocene "marker fossils" from several areas in the Midway-Sunset and Elk Hills oil fields are indicated.

This is an alphabetic compilation of theses together with an index map of the State.

Fourteen mollusks are recorded from the Sobrante Sandstone as are 10 from the lower sandstone of the Monterey Group. A few species are also listed from the Briones Sandstone and from the San Pablo Formation. Identifications of these Miocene mollusks are by W. P. Woodring and E. J. Trumbull.

Turritella moodyi and _T. ocoyana_ occur in diatomite beds of middle Miocene age exposed west of Round Mountain oil field; _Acila conradi_, _Fusinus corpulentus_, and _Cardita subtenta_ occur in cores of the lower Miocene Jewett silt.

Rogers, T. H., Gribi, E. A., Jr., Thorup, R. R., and Nason, R. D., 1967, Roadlogs (King City to Bolado Park; Bolado Park to San Juan Bautista and King City; San Juan Grade Road to Gilroy; Alternate road log no. 1—New Idria Loop, p. 25; Pinnacles National Monument, p. 30; Hollister to Gilroy, p. 32; Pajaro Gap, p. 35), in Guidebook, Gabilan Range and adjacent San Andreas Fault: Am. Assoc. Petroleum Geologists-Soc. Econ. Paleontologists and Mineralogists Pacific Secs., Guidebook, 1967.

An assemblage of five mollusks of Pliocene age from the Harris Ranch southwest of Hollister is recorded.

A list of the more common mollusks in the Barranca deposits along the Pacific coast of Costa Rica near Carballo includes eight mollusks of Miocene age.

Unidentified mollusk fragments are reported from an unnamed formation that carries a lower Saucesian foraminiferal assemblage.

Three mollusks from the upper Miocene Santa Margarita Formation and several others from the Pliocene Etchegoin and their Hans Grieve Formations are recorded.

First speculated that calcareous strata of Lower Gila region, Arizona, including fossiliferous limestone later named Bouse Formation by Metzger (1968), might have been deposited in an arm of the ancestral Gulf of California.

Roth, Barry, and Coan, Eugene, 1968, Further observations on the West American Marginellidae with the descriptions of two species: Veliger, v. 11, no. 1, p. 62-69, 1 pl., 2 text figs., 1 map.
A late Miocene Marginella (Prunum) occurs in the Castaic Formation of southern California.

The upper Pliocene Sunshine Ranch Formation contains "fairly common molluscan megafossils."

The middle Miocene Topanga Formation contains scattered fragments of fossils.

The molluscan fauna of the San Diego Formation of northwest Baja California coast includes 100 species. It is indicative of shallow, subtidal depths offshore from an exposed rocky point indented by sandy pocket beaches. The faunal assemblages of the Pliocene San Diego embayment to the north are of a more protected ecology.

Ruckman, J. H., 1913, Evidence indicating an unconformity at the base of the Tamiosoma zone in the Coalinga oil field, California [abs.]: Geol. Soc. America Bull., v. 24, p. 132.

Pholas borings mark the base of this zone.

A few mollusks are recorded from his Pinnacle System. The age of the assemblage was considered to be Pliocene or early Pleistocene by W. H. Dall who identified the fossils.

Paleontologic determinations by W. H. Dall first appearing in Russell (1891) are repeated.

Miocene and Pliocene species of Kelletia, K. posoensis and K. kelleti, are described and illustrated.

A second supplement to Jennings and Strand (1963) in which 168 theses are listed in two sections. One section includes areal reports keyed to an index map; the other, topical reports.

A correlation chart of Pacific coast mammalian, megafossil, and microfossil stages for the late Cenozoic is included. Lyellian correlation is satisfactory for general epochal age assignment in California. A small mollusk fauna from the Santa Margarita Formation at Comanche Point, Kern County (from Merriam, 1916), is reprinted.

Three cassidids of Pliocene age from Oregon and southeastern California and a new species from southwestern Washington of late Oligocene or early Miocene age, *Phalium iani* n. sp., are illustrated and treated systematically.

Specimens of *Acila paclcardi* are particularly abundant in the Nye Shale (lower Miocene) of the Newport area. Lists six common mollusks from the overlying Astoria Formation which is correlated with the fauna of the Temblor Formation of California.

The Oligocene epoch was recognized on the Pacific coast—first by Dall (in Diller, 1896) and later, and more definitively, by Arnold (1906). Common mollusks from the Empire Formation at Coos Bay and from the Nye Shale near Newport are listed. A correlation chart shows his classification of Neogene units used in previous reports on Oregon.

Miocene occurrences of *Aturia angustata* in the Temblor Formation of Kern County, Calif., near Knappton, Wash., and at Astoria, Oreg., are described and illustrated. A new subspecies from Alaska, *A. angustata alaskensis*, may be from beds of early Miocene age. An undetermined species occurs in the San Ramon Formation of Contra Costa County, Califa. The genus has not been found in rocks younger than middle Miocene on the Pacific coast.

Valid described species of *Acila* (*Acila*) and *Acila* (*Truncacila*) including several Pacific coast Tertiary species are listed.

The *Turritella inezana* zone is considered to be correlative with the European Aquitanian Stage which Schenck takes to be Oligocene. There is a thorough discussion of previous age classification of the Vaqueros including information on some of the key Vaqueros mollusks such as *T. inezana* and *Lyropecten magnolia*.

Includes a dichotomous key for identification of species and an alphabetical list of species with complete typological information including geologic
age, subgeneric assignment, allocation of species, and detailed treatment of all described species.

Three successive *Acila* biozones extend from the Oligocene into the middle Miocene of the Pacific coast. Includes a discussion of faunal migration during the later part of the Tertiary with relation to Japanese Tertiary *Acila* and a geologic range chart for worldwide occurrences of this genus. Systematic descriptions include faunal lists, correlation, and stratigraphic data. Sections on modern biology of *Acila* include bathymetric and latitudinal data on living species.

Latitudinal midpoints for late Pliocene, early Pleistocene, and late Pleistocene collections from the Los Angeles and Ventura basins show a systematic change from midpoints from about 2°-5° farther north in late Pliocene assemblages to 4°-8° farther north in early Pleistocene assemblages to about the same latitude as today in late Pleistocene assemblages.

Columnar sections of the California *Lepidocyclina* locality and the nearby type section of the Vaqueros Formation show the occurrence of three pectinids common to each section and the occurrence of *Turritella inezana* in the type section. A few mollusks from two localities in the Vaqueros—Reliz Canyon area and about 10 miles west of Paso Robles—are recorded.

Speculate on the development of molluscan provinces along the eastern Pacific margin. Suggest that northern and southern marine temperature "conditions" may have been established during the late Oligocene or early Miocene possibly accounting for faunal differences between the Vaqueros Formation of California and the Blakeley Formation of Washington. Tropical seas did not extend north of southern California during the late Miocene.

This method is suited for analysis of late Tertiary and Quaternary assemblages. Midpoints are plotted on a latitudinal bar graph and are then counted to determine the latitudinal midpoint. Thirty-five Pliocene and Pleistocene assemblages are analyzed showing nearly all of them to have calculated midpoints to the north of the latitude of the fossil locality. Development of a generic index to water temperature would permit comparable analysis of earlier Tertiary faunas.

Schenck, H. G., and Keen, A. M., 1940a, Biometrical analysis of molluscan assemblages, in Abrard, R., and others, Contribution a l'étude de la répar-
A further discussion of the median of midpoints method which is useful in analyzing late Tertiary and Quaternary faunas from western North America. Climatic cooling from the late Pliocene to the early Pleistocene in southern California (that is, Lomita Marl to Timms Point Silt) suggested by this analysis indicates that the Pliocene-Pleistocene boundary might fall between these formations.

About 70 species of Miocene and Pliocene mollusks from California are figured. A correlation diagram of Cenozoic formations of California by F. R. Kelley and a bibliographic list of reports on Tertiary mollusks are also included.

The base of the Zemorrian Stage is marked by the appearance of *Turritella inezana*, *Rapana vaquerosensis*, *Lyropecten miguelensis*, *Pecton sanxtecensis*, and *Acila gettysburgensis*.

Anadara mediaimpressa from the San Ramon Formation of central California is assigned to *Anadara s.s.*

Six species of *Anadara* from the Pacific coast are correlated with the Tongrian-Aquitainian Stages of Europe. Two Pacific slope specimens are figured.

This is an alphabetic compilation of theses together with an index map of the State.

The Temblor Formation includes the *Turritella ocoyana* molluscan fauna. Oysters and other megafossils occur in the Temblor Formation within the area of this map. No fossils are listed.

The Vaqueros Formation contains the *Turritella inezana* fauna; the Topanga Formation contains the *Turritella ocoyana* fauna. These formations are of early and middle Miocene age respectively.
Schoellhamer, J. E., and Yerkes, R. F., 1961, Preliminary geologic map of the coastal part of the Malibu Beach quadrangle, Los Angeles County, California: U.S. Geol. Survey open-file map.

Turritella inezana santana and other mollusks of early Miocene age occur in the Vaqueros Formation. Mollusks are locally abundant in the lower part of the Topanga Formation.

Schoellhamer, J. E., Yerkes, R. F., and Campbell, R. H., 1962, Preliminary geologic map of the coastal part of the Point Dume quadrangle, Los Angeles County, California: U.S. Geol. Survey open-file map.

Turritella inezana s.l. and _Chlamys sespeensis_ occur in the Vaqueros Formation. _Turritella ocoyana_ occurs in their middle Miocene Unit C. Pectinids of Miocene or Pliocene age occur in their unit A.

Six mollusks from the upper part of the Colville Series identified by W. H. Dall and considered to be of Pliocene age are recorded.

Many Neogene mollusks from the Pacific coast are included in this compilation. The classification of type material, museum numbers and original reference are given for each species.

The lower part of the Pliocene Etchegoin Formation, the Macoma Claystone Member, contains casts of _Macoma kerica_; the upper part of the formation is characterized by _Mulinia [Pseudocardium] densata_.

This is a comprehensive general bibliographic reference on California geology.

A continuation of Shedd's (1932) bibliography.

Marine shells from Catalina Island, once thought to be of Pleistocene age, are of Miocene age.

Most of the Pacific coast fulgorarids are treated systematically; they are classified as _Musashia_ (_Miopleiona_). Three species are illustrated by
line-drawings: *M. oregonensis*, *M. weaveri*, and *M. indurata*. The genus ranges from Oligocene to early Pliocene in the northeastern Pacific and from Oligocene to Holocene in the northwestern Pacific.

Includes notations on the generalized stratigraphic occurrence and illustrations of several Miocene, Pliocene, and Pleistocene mollusks from the Pacific coast.

SHUMARD, B. F., 1858, Descriptions of new fossils from the Tertiary formations of Oregon and Washington Territories and the Cretaceous of Vancouver Island: St. Louis Acad. Sci. Trans., v. 1, no. 2, p. 120–123.

Two pelecypods from Pliocene strata at Coos Bay, Oreg.—*Pecten coosensis* and *Venus securis*—are described but are not illustrated.

Three mollusks that have been reported from the Reef Ridge Shale by earlier workers—*Ficus ocoyana*, *Siliqua* cf. *S. patula*, and *Cryptomya californi*a—are not diagnostic of age. A very detailed discussion of earlier work bearing on the age and stratigraphic relationships of this formation forms the bulk of the report. It is noted that W. F. Barbat, in an unpublished paper, records the same three mollusks from a zone that he considered to occur stratigraphically above the Reef Shale and to be of Pliocene age.

A Miocene *Psephaea* is reported from a midden at Fogarty Creek, Lincoln County, Oreg.

The Vaqueros Sandstone is fossiliferous. It contains fragments of *Pecten magnolia*.

Pecten castellanus, P. crassicardo, and *Ostrea titan* occur in the Santa Margarita Formation in the southern part of the Temblor Range.

A catalog of Neogene mollusks of Sakhalin and Kamchatka with extensive section of illustrations. Many names originally proposed for eastern North Pacific species are used for Russian Neogene pelecypods. A new name, *Variatamusium pilarense*, is proposed for a specimen from the Twin River Formation of northwestern Washington originally included in the
type lot of *Pecten clallamensis* Arnold (1906). The original figure is re-illustrated. Contains an extensive bibliography of English language malacological and paleontological reports (p. 17-81). (In English.)

Neogene records of Amphineuran genera from Pacific coast are noted.

The Miocene fauna of California is largely endemic with only slight admixture of southern and northern species of possible Atlantic origin. During the Pliocene the marine faunas of the Pacific coast and Japan had many species in common (82 spp. are listed). Marine climate during the Pliocene was temperate.

One of two characteristic mollusks from four Miocene “formations” and two Pliocene “formations” are shown in a geologic column. A chart showing geographic relations of western American fossil faunas depicts tropical faunas in the lower Eocene [Paleogene] followed by temperate late Eocene faunas and cold water marine faunas in the Neogene. Cold water faunas in the early Quaternary were succeeded by warm-water marine faunas in the later part of the Quaternary in California.

A check list includes all known mollusks of Miocene age showing stratigraphic occurrence, by formation (used as a time-stratigraphic unit), for the lower Miocene [Vaqueros, Temblor, and Monterey] and upper Miocene [San Pablo-Santa Margarita and Etchegoin]. Oligocene and Pliocene occurrences of these Miocene species also are indicated. Species confined to each of the above formations are listed.

Analysis of marine invertebrate faunas indicates that climates cooled from the early Pliocene to the late Pliocene. During the early Pliocene sub-boreal climate extended almost as far south as Mendocino County, California. The climate of southern California was warm-temperate during the early Pliocene.

The initial documented interpretation of Cenozoic climatic change based upon zoogeographic analysis of shallow-water molluscan faunas from the Pacific coast. Fossil faunas are compared with a sequence of five modern molluscan provinces extending from southern Alaska to Mexico and two isotherms representing tropical and cool-temperate conditions are fitted to
these inferences. The tropical isotherm retreats from a position off British Columbia during the Eocene to a low point, somewhat south of its modern position, near the Tertiary-Quaternary boundary. The post-Eocene climatic cooling probably was oscillatory; there is no suggestion of climatic zones in Eocene marine faunas. There are extensive lists of species characteristic of Tertiary formations.

Localities in the Topanga Formation in the northern and central Santa Ana Mountains containing Turritella ocoyana are questionably assigned to the Relizian Stage of the provincial microfaunal chronology.

Fossil foraminifers [Pliocene] are associated with gastropods that indicate brackish-water conditions. They are from along the Colorado River between Earp, Calif., and from the Palo Verde Mountains.

A molluscan assemblage from the upper part of the Monterey Shale indicates deposition in the inner sublittoral zone—low tide to about 50 fathoms.

Mollusks indicative of brackish water to marine environments occur in cores and outcrop samples that also contain Foraminifera of Pliocene age.

Six mollusks from the upper Miocene Santa Margarita Formation are recorded.

A review of previous geological studies in Oregon is included. A few characteristic mollusks from the so-called Monterey fauna at Astoria, Oreg., are listed. The Empire Formation at Coos Bay, once considered to be of Miocene age, is now considered to be of early Pliocene age.

Miocene shale contains casts of what is thought to be Tellina congesta Conrad.

Impressions of *Pecten peckhami* Gabb occur in Miocene rocks exposed on the island.

Eight mollusks are recorded from two localities in the Astoria (?) Formation in the Centralia syncline.

Several mollusks identified by W. O. Addicott from the Astoria and Nye Formations are listed. The lowermost part of the Nye contains mollusks that are indicative of correlation with the early Miocene *Echinophoria apta* zone of the “Blakeley Stage.” About 30 percent of the Astoria mollusks from this area also occur in the middle Miocene of California.

Mollusks from the Astoria and the Yaquina Formations identified by Vokes are listed. These formations are considered to be of middle Miocene and late Oligocene age, respectively.

The modern Arctic pelecypod fauna originated, for the most part, in the North Pacific during the Miocene. Subsequent migration took place along the Arctic coast of North America to the North Atlantic, principally during the Pliocene. Miocene migration routes were by way of Central America and Tethys as the Bering Straits were closed by a land bridge during most of the Miocene. Many reports dealing with the zoogeography of arctic mollusks are reviewed.

California Miocene and Pliocene species assigned to *Crenomytilus* include: *C. mathewsoni* (Gabb), *C. trampascensis* (Clark), *C. coalingensis* (Arnold), *C. kewi* (Noinland) “and perhaps also other species listed as *Mytilus*” (p. 23).

Includes a list of 41 mollusks from the middle Miocene Topanga Formation identified by U. S. Grant.

List 173 mollusks from excavations in upper Pliocene strata in downtown Los Angeles. About 13 percent of the mollusks are extinct; those
that are still living suggest water temperatures comparable to today. A late Pliocene age is suggested by the percentage of extinct mollusks. Normal salinity is suggested.

A late Pliocene molluscan assemblage indicates cool water conditions. Other assemblages occur in stratigraphically lower units in Pliocene sandstones. Practically no molluscan fossils occur in the underlying sandstone of Miocene age.

Thirty mollusks of Miocene age from Cape Yaktag [Yakataga] are listed. The material is mostly from water-worn pebbles. The assemblage is correlated, by Dall, with the Empire Formation of coastal Oregon.

Collected fossil mollusks from rounded, apparently water-worn pebbles from Black Bluff, St. Paul Island, Alaska. Nine mollusks were identified in later report by Dall (1899, p. 545). Sixteen species identified by W. H. Dall are listed, nine of these had not been previously identified from the locality.

Stanton, R. J., Jr., 1962, Paleocology of the upper Miocene Castaic Formation, Los Angeles County, California [abs.]: Geol. Soc. America Spec. Paper 68, p. 278.

Molluscan assemblages indicate that the northern part of the Castaic depositional basin was embayed and that the southern part was an open, exposed coast. Faunal assemblages deposited in water of less than 25 fathoms indicate a warm-water marine climate similar to that found off the southwest Coast of Baja California today.

About 100 mollusks are listed from the Castaic Formation. About one-fourth of these were previously unknown from rocks of Miocene age, having only been recorded from Pliocene or younger strata. The fauna is of warm-water, tropical aspect and probably lived near the northern limit of the late Miocene equivalent of the modern Panamic molluscan province. Many of the mollusks are treated systematically and are illustrated.

Thirty-four species of late Miocene mollusks are recorded from the Castaic Formation; they represent, for the most part, a bathymetric environment of about five fathoms. They were, however, transported into a different, deeper water environment prior to burial. Crassostrea as large as 18 in. and Lyropecten as large as 8 in. are recorded.

Larger invertebrates are useful in local zonation in California but do not permit detailed correlation with European type sections for the Miocene and Pliocene. Phylogenetic series permit more precise correlation than broad-scale faunal comparisons, which may be in part due to variations in climate rather than evolutionary phenomena.

Analysis of the macro-invertebrate fauna [mostly mollusks] of the Pliocene sequence at Kettleman Hills indicates repeated transgressive-regressive cycles of deposition. The environments at the time of the transgressive peak graded from relatively open, shallow marine conditions at the north to non-marine toward the south. Similar patterns occurred during the Miocene in California.

Pliocene assemblages of the Kettleman Hills area indicate a marine climate similar to that of the northern part of the California molluscan province, just south of Point Conception (mean temperature 13°C). Strontium paleotemperatures on *Crenomytilus* suggest a mean of 14°C (range 11.5°-17.8°). Salinities based on paleontologic and oxygen isotopic studies varied from normal marine to brackish, freshening abruptly during deposition of the Tulare Formation.

Pecten andersoni (?) was recovered from the Monterey Shale in a well near Moss Landing, Monterey County, Calif.

Opalia anomala and *O. varicostata*, new species from Pliocene strata about 8 miles north of San Diego, Calif., are described and illustrated.

A quotation from J. G. Cooper indicates that a bed of *Crassostrea titan* of Miocene age occurs along the western edge of the Colorado Desert at an altitude of about 1,000 ft. During the Pliocene the site of the present Colorado Desert was occupied by the sea. Fossils described in the report are of fresh water origin.

A giant *Lima* and two species of "*Plagiostoma*" occur in clay penetrated during excavation of the Third Street tunnel in Los Angeles, Calif.

This is a useful, well-indexed compilation of reports published during the period 1946–50; unpublished theses are also included.

Eight mollusks are recorded from the middle Miocene Astoria Formation. Four collecting localities in this formation are shown on a geologic index map.

Pliocene mollusk localities in the Empire Formation are listed.

This is a useful, well-indexed bibliography including many references to Neogene mollusks. Unpublished theses on Oregon geology and paleontology are included.

This is a comprehensive review and taxonomic treatment of Gabb's (1866, 1869) fossil gastropods from California, most of which are of Cretaceous and early Tertiary age. About 20 species are from post-Eocene strata of California. A new Oligocene and Miocene genus, Bructarcia, is proposed.

About 20 of Gabb's species are from the Neogene, from localities mostly in California but also from Cedros Island, Mexico. The San Ramon Formation of Central California is considered to be of Miocene rather than Oligocene age. Many new genera and subgenera are named; a few conclusions from his earlier gastropod report are corrected or amended. All of Gabb's Neogene pelecypod types are figured. There is a section on Tertiary climatic history and origins of the temperate fauna of the eastern Pacific.

A large molluscan fauna from the middle Miocene Temblor Sandstone is listed. It is divided into two zones, a lower Vertipecten zone, probably representing less agitated water than the upper zone, the Aequipecten zone. A smaller faunal assemblage is recorded from the basal sand of the overlying McLure Shale. This is correlated with the molluscan assemblages from the Santa Margarita Formation north of Coalinga and is considered to be of late Miocene age. Nine Miocene mollusks are figured. Pliocene formations and a few characteristic mollusks are briefly reviewed.

Eight late Tertiary mollusks are recorded from measured sections near Mount Diablo, Calif.

Ten feet of strata exposed in the first canyon south of Moreno Gulch referred to the Temblor (?) Formation contain 10 species of mollusks that were identified by W. P. Woodring.

Two molluscan faunal zones separated by "barren zones" occur in the Wildcat Formation; one subzone is recognized in the lower faunal zone and three are recognized in the upper zone. Species of mollusks restricted to each zone are listed. The stratigraphic ranges of Pliocene mollusks are shown on a chart.

The Buttonbed sandstone contains *Pecten andersoni* and *Pecten estrellaianus*. The so-called *Phacoides* reef contains *Lucina acutilineata*, *Clementia pertenuis*, *Amiantis mathewsoni*, *Chlamys sespeensis*, *Chlamys branneri*, *Brucotarkia Barkeriana*, and *Ostrea* sp. *Pecten peckhamii* occurs in the Antelope Shale Member of the McLure Shale. *Pecten miguelensis* and *P. estrellaianus* occur in the Carneros Sandstone. A chart of stratigraphic units of the Temblor and Monterey Formations in the Chico Martinez Creek area is included.

Shallow water mollusk assemblages of provincial late Miocene age occur with continental vertebrates assigned to the early Pliocene at localities in the Tejon Hills and near Tracy, Calif. Marine invertebrates from the Merced Formation of Sonoma County are regarded by C. W. Merriam as "not older than Middle Pliocene."

There are five species of mollusks common to the Merced Formation of the Santa Rosa area and the Pliocene sequence of Kettleman Hills; one species—*Nassarius mororianus*—suggests correlation with the upper part of the Kettleman Hills Pliocene (San Joaquin Formation). Two brackish water mollusks also occur in the Petaluma Formation.

The marine mammal locality (Slip Point vertebrate fauna) is correlated with the Temblor Formation from California and the Turritella ocyana biozone as shown by Kleinpell (1938).

Reviews invertebrate paleontology (p. 322-326) including reference to some of the more important studies of Miocene and Pliocene mollusks.

"Abundant megafossils" occur in the upper Miocene Santa Margarita Formation.

"Abundant megafossils" occur in the upper Miocene Santa Margarita Formation and the middle Miocene Temblor Formation.

"Abundant megafossils" occur in the Temblor Formation (1,200-1,600 ft thick) and the Whpeley Shale (30-450 ft thick). The underlying Vaqueros Formation is "sometimes referred to as the 'Mollusk boring sand'."

An abundant molluscan fauna, collected from four stratigraphic intervals within the formation, is divisible into two faunal assemblages separated by about 1,200 ft of unfossiliferous strata. The lower assemblage, occurring through about 200 ft of strata at the base of the Topanga Formation, is characterized by Turritella ocyana s.s. and Lyropecten crassocardio, var. The higher assemblage ranges through three upper horizons. It is characterized by many specimens of T. ocyana topangensis and by T. temblorensis.

A few middle Miocene, late Miocene, and Pliocene mollusks are recorded from localities in the Salinas Valley.

"Fossils" occur in his Poul Creek and Yakataga Formations. Neptunea (Chrysodomus) is reported from Umbrella Reef and Leda fossa and Neptunea (Chrysodomus) cf. tabulatus from marine morainal material on the west side of Icy Bay.

Tertiary sediments occurring between Icy Bay and Katalla are very fossiliferous. B. L. Clark has assigned the fauna to the late Oligocene. Shale-
matrix conglomerates and breccias in the Yakataga Formation containing marine fossils are regarded as marine moraines indicative of glaciation during the late Oligocene. The marine climate is considered to have been as cool as at present.

The Santa Margarita Formation is fossiliferous; the Etchegoin Formation has yielded large collections of fossils that B. L. Clark refers to the "Jacalitos stage."

Three pectinids occur in the Vaqueros Formation at the Lepidocyclina locality in the Salinas basin: Pecten vanvlecki, P. miquelensis, and P. cf. P. sespeensis. Other mollusks characteristic of the Vaqueros Formation are reviewed.

Miocene Haliothis lasia Woodring and Pliocene H. elemerensis Vokes are identical; they are either H. fulgens or an ancestral species.

Modern counterparts of Pliocene mollusks from the Wildcat Group have been taken by fishing boats (trawlers) off Eureka, Calif. Included is a range extension of a Pliocene Trophon described by Martin (1914).

"Goniobasis rodeoensis (Clark)" figured by Hanna (1923) from the Petaluma Formation, Sonoma County, Calif., is a nonmarine species and it differs on a familial level from Clark's species which probably belongs to the Potamididae.

Thyasira disjuncta ranges from the Pliocene to Holocene on the Pacific coast; T. bisecta is a Miocene species found so far only in the Astoria Formation.

An assemblage of eight mollusks from a locality in the middle Miocene Clallam Formation near Slip Point, Clallam Bay, Wash., is listed. One of these, Pitaria arnoldi etheringtoni n. subsp., is described and illustrated.

Two Miocene species, Galeodea apta n. sp. and G. petrosa (Conrad), are described and illustrated.

There are many similarities between the late Oligocene fauna of the type Blakeley Formation and the middle Miocene fauna of the type Astoria Formation of northwestern Oregon. Faunal evidence suggests that the upper part of the Twin River Formation is at least of a different facies and possibly of somewhat younger age than the Blakeley Formation at its type section. Twelve new molluscan taxa are described from the Twin River fauna which is of late Oligocene and/or early Miocene age.

Templeton, E. C., 1913, General geology of the San Jose and Mount Hamilton quadrangles [California] [abs.]: Geol. Soc. America Bull., v. 24, p. 96.

The lowest Miocene sandstone in this area belongs to the Temblor ["Temblor Stage"] on the basis of an abundant age diagnostic fauna [mollusks are reported from this area by Crittenden (1951)].

Mediargo mediocris (Dall) occurs in the Pliocene of Oregon and Washington. Eight specimens are figured.

This report lists many papers on the late Cenozoic of coastal California; a few of these include molluscan data.

The stratigraphic occurrence of some characteristic mollusks is shown on a composite columnar section of the type Vaqueros Formation and in the text.

Fossiliferous upper Pliocene sands exposed in Los Angeles outfall sewer trench include a faunal assemblage of 53 species, chiefly mollusks, that are of a "notably cold-water facies."

Several valid species of oysters are recognized from the California Miocene. "The unpublished _Ostrea vaquerosensis_ Loel" which occurs in the Vaqueros Formation is distinct from _O. titan_. _Ostrea titan_ probably occurs in the middle Miocene "Temblor-Topanga."

Touwaide, M. E., 1930, Origin of the Boleo copper deposit, Lower California, Mexico: Econ. Geology, v. 25, p. 113-144.

A list of Pliocene mollusks identified by U. S. Grant, 4th, is recorded. Two pectinids are listed from the lower part of his Salada Formation; six pelecypods are listed from the upper part of the formation.

Three species are described from exposures near Santa Barbara, Calif. They were regarded as of Tertiary age by Trask but may have been collected from lower Pleistocene strata (Santa Barbara Formation).

Trask, J. B., 1855b, *** Report on the geology of the Coast Mountains; and embracing their agricultural resources and mineral production—also, portions of the middle and northern mining districts: California Legislature, Senate Doc. 14, 95 p.

Noted fossiliferous nature of sandstone and shale above his "infusorial group" [Monterey Shale].

Plagiostoma pedrona [pedroana], P. annulatus, and P. truncata from rocks thought to be of Mesozoic age [Monterey Shale, Miocene] are described and illustrated.

The Briones Formation is assigned to the lowest part of the upper Miocene San Pablo Series because nearly 60 percent of the determinable species also occur in the San Pablo whereas only 15 percent occur in the underlying Monterey Formation. The upper and lower contacts are marked by pholad borings.

Twenty new mollusks are described from the Briones Formation. A new gastropod genus, Koilopleura, is named. Eighty-six mollusks are listed from the Briones Formation together with their known geologic ranges.

Mollusks occur in three fossiliferous horizons in the middle Miocene Temblor Formation. Three mollusks are listed from stratigraphically higher Miocene rocks mapped as San Pablo Group.

Nineteen mollusks from several localities in the Pliocene Merced Formation are listed. The fossils are regarded as of middle or late Pliocene age and indicative of marine climate somewhat cooler than occurs at this latitude today.

Treasher, R. C., and Hodge, E. T., 1936, Bibliography of the geology and mineral resources of Oregon with digests and index to July 1, 1936: Oregon State Planning Board, 224 p.

Includes many references to Neogene mollusks. Each reference is annotated.

Trefzer, R. E., Webster, Cutler, and Redwine, L. E., 1952, Goleta Point-Tecolote Tunnel, in Redwine, L. E., chairman, and others, Cenozoic correlation section paralleling north and south margins [of the] western Ventura
basin from Point Conception to Ventura and Channel Islands, Calif.: Am. Assoc. Petroleum Geologists, Subcommittee on the Cenozoic of the Geologic Names and Correlations Committee, 2 sheets.

Mega fossils and an oyster reef occur in the Vaqueros Formation.

Two molluscan assemblages from the Scappoose Formation northwest of Portland, Oreg., identified by E. J. Trumbull and Ralph Stewart, are listed. The assemblages are believed to be of "probable early Miocene age" and "probably late Oligocene or early Miocene" (p. 17-18).

Patinopecten coosensis and Chione (Securella) securis are illustrated and described. Securella is an extinct subgenus of Chione of northern distribution as contrasted with Chionopsis, a Miocene to Holocene southern subgenus of Chione.

Two molluscan assemblages from the Scappoose Formation northwest of Portland, Oreg., identified by E. J. Trumbull and Ralph Stewart, are listed. The assemblages are believed to be of "probable early Miocene age" and "probably late Oligocene or early Miocene" (p. 17-18).

Patinopecten coosensis and Chione (Securella) securis are illustrated and described. Securella is an extinct subgenus of Chione of northern distribution as contrasted with Chionopsis, a Miocene to Holocene southern subgenus of Chione.

The upper part of the Pliocene Pico Formation (180-620 ft. thick) contains abundant marine molluscan fossils.

Miocene beds contain Ostrea titan Conrad; 15 mollusks are listed from stratigraphically higher beds near Kirker Pass that are also of Miocene age.

Turner, H. W., 1898, Notes on some igneous, metamorphic, and sedimentary rocks of the Coast Ranges of California: Jour. Geology, v. 6, no. 5, p. 483-499.

Mollusks from the San Pablo Formation near Kirker Pass are listed.

A few Miocene molluscan genera from localities in San Benito and Fresno Counties are recorded.

The geologic ranges of pholadid genera are shown on a chart.

According to Ashley (1895a), Tyson noted a large oyster in beds near Martinez and in Livermore Valley which led him to assign them to the Eocene or Miocene.

A correlation chart of medial Pliocene to late Pleistocene formations of California, based in large part on molluscan data, is presented.

The fauna of the Santa Barbara Formation includes about 250 species of mollusks. These are found in at least three associations related to sediment texture and depth. The formation is considered to be of Pliocene and Pleistocene age.

Computer analysis of data from 225 late Cenozoic fossil localities in California indicates a series of 16 recurrent groups. These are assigned to nine fossil communities representing littoral to deep sublittoral biotopes. Data from 40 localities in the Pliocene-Pleistocene Santa Barbara Formation are included in the analysis. Mixed late Cenozoic depth assemblages are attributed to the existence of environmental conditions different from the modern marine environment off California rather than to mechanical mixing or physiologic change.

Paleontologic and isotopic analysis of Pleistocene mollusks from southern California provide independent evidence of similar Pleistocene climatic trends. Isotopic data from the Lomita Marl indicate temperatures of from 13.2° to 19.0°C.

A critical review of zoogeographic-based inferences of Cenozoic marine climate of the Pacific coast with particular reference to the California Pleistocene. The paleoecologic approach is contrasted with oxygen isotope paleotemperatures on Pleistocene shells from northern Baja California and California. There is a useful tabulation ofextralimital mollusks including range end-points, depth ranges and average summer and winter surface water temperatures at the range end-points. Isotopic determinations of three mollusks from the lower Pleistocene Lomita Marl are indicative of rather warm water but there is also evidence of water temperatures at times cooler than today during deposition of the Lomita.

A “first Mya-Elphidium zone” occurs at the top of the “San Joaquin Clays.”

Early Miocene mollusks from the Vaqueros Formation near Cajon Pass (five taxa), San Bernardino County, Calif., identified by W. H. Corey, are recorded.

Pecten andersoni occurs in their Escudo Formation and Anadara osmonti and Lucina acutilincata in the upper member of their Hannah Formation [Kern County, Calif.].

Turritella ocoyana is reported from north of Coalinga. The Sooke Formation is equivalent to the Vaqueros Formation based on sea-cow evidence, that is, "The 'Vaqueros' does not represent a long time interval between the 'Sooke' and the 'Temblor' but should be considered at least in part, as being equal to Sooke time ***".

Vanderhoof, V. L., 1956, Correlation chart, central California Coast Ranges: California Oil Fields, v. 42, no. 1, p. 43.

Some common mollusks are recorded in a correlation chart.

Some characteristic Miocene or Pliocene mollusks are recorded.

An invertebrate assemblage from near San Gorgonio Pass is correlated with fossiliferous exposures at Carrizo Creek. A post-Miocene age is suggested.

The Lion sandstone contains Turritella, Spondylus, Pecten subnodosus, and other pectinids.

Gastropods and pelecypods identified by W. S. W. Kew from the lower and upper divisions of his Carrizo Formation are listed; these indicate a Pliocene age.

The megafauna of the Niguel Formation exposed near San Juan Capistrano and an unnamed sandstone of Pliocene age exposed in the upper part of Newport Bay contain a combined fauna of 205 taxa many of which were not previously known from rocks of Pliocene age and were not previously reported from the Los Angeles basin. Stratigraphically diagnostic and restricted mollusks from each formation are listed along with their occurrence in other Pliocene sections from California and Mexico.

Characteristic mollusks from lower to upper Miocene formations are noted in the map explanation. Megainvertebrate localities are plotted on the map.

Fourteen mollusks from lower and middle Miocene rocks are listed.

Marine mollusks occur in several map units of Miocene age. Fossil localities are plotted on the geologic map.

Turrilitella ocoyana and other mollusks occur in the Topanga Formation. Three species of Pliocene mollusks are listed from the Niguel Formation. Megafossil localities are plotted on the geologic map.

Included are many reports containing paleontologic data. References are arranged by journal and, in many cases, include extensive annotations indicating new fossil names. The reports are indexed by author and generalized title.

Included in this useful annotated bibliography are all references in Vogdes (1896) in addition to subsequently published reports through 1903. The names of new species of mollusks are indicated in annotations of paleontologic reports.

Described Trajana (Nerva) woodringi n. sp. from the Miocene Gatun Formation of Panama. This is the type species of Nerva, a nassariid gastropod with apertural denticles by which it can be differentiated from Trajana s.s.

Haliotis elsmerensis n. sp. is described from lower Pliocene strata in Elsmere Canyon, Los Angeles County, Calif.

The dentition of Miocene Miltha sanctaeclerusis (Arnold) is compared with Eocene species.

Solemya ventricosa from the Miocene Astoria Formation of Oregon and *S. aff. S. johnsoni* from the Pliocene Repetto Formation of southern California are reviewed.

Two Neogene species from the eastern North Pacific are briefly reviewed: *Lima (Acesta) twinensis* Durham, and *L. (A.) hamlini* Dall.

Miltha first appears during the early Miocene in California (*M. sanctae-crucis* Arnold).

Mollusks from localities in the Yaquina Formation, Nye Mudstone, and Astoria Formation are listed. The localities are plotted on the geologic map.

Many shallow-water mollusks including *Turritella ocoyana* and *Pecten andersoni* occur in the middle part of the Temblor Formation on Reef Ridge.

Two species from the Miocene Monterey Group, *Pecten vaughani emigdioensis* n. subsp., and *Tivela inezana* (Conrad), are figured. Mollusks from the uppermost fossiliferous zone of Pleito Formation and a few species from the Monterey Group are listed.

Pliocene intertidal deposits containing *Ostrea californica* occur on the coastal plain about 35–40 miles south of San Felipe, Baja California, Mexico [no other species listed]. *Ostrea californica* and *Argopecten deserti* occur in Pliocene deposits in the Cocopah Mountains about 20 miles south of the United States-Mexico border.

Argopecten circularis and *A. purpuratus*, Pliocene to Holocene species from the Pacific coast, are reviewed. Neogene species of *Plagioctenium [Aequipecten]* of Arnold including *P. discus* and *P. andersoni*, from the Pacific coast are noted but are not considered in detail.
Walling, R. W., 1939, Canal and Strand oil fields [California]: California Oil Fields, v. 24, no. 4, p. 9–15.

"Mulinia densata" Conrad, a fossil marker for the top of the Etchegoin (Pliocene), was cored at 3,990 feet in Shell Oil Co. well "Canal A" 21–14.

A few mollusks are recorded from the Vaqueros, Monterey, Santa Margarita, Jacalitos, and Etchegoin Formations, in part from the vicinity of Vineyard Canyon northeast of San Miguel, Calif.

A few mollusks from beds of Blakeley age [in part early Miocene] and the Astoria Formation [middle Miocene] identified by H. E. Vokes are listed. The localities are plotted on the geologic map.

Mollusks from the Scappoose Formation identified by H. E. Vokes include 21 taxa that are considered to be of late Oligocene or early Miocene age. The fauna is correlated with the Sooke Formation of Vancouver Island, British Columbia.

There is an extensive description of fossiliferous Miocene rocks at Astoria and scattered occurrences of Miocene mollusks at inland localities, many of which would nowadays be included in the Scappoose Formation. Lists of mollusks of Miocene age identified by W. H. Dall are included.

Nine new mollusks from the Pliocene Fernando Group are described. Twelve mollusks from the "lower Pico," 84 from the upper Pico Formation, and 92 from the Saugus Formation all from the northwestern part of Ventura basin are listed. The upper Pico fauna is cold temperate; the Saugus fauna warm temperate. Percentages of northern and southern mollusks in the faunas suggest that the Pico is of relatively cold-water aspect and that the Saugus is of somewhat warmer aspect than the fauna living at this latitude today. The Pico is assigned to the Pliocene; the Saugus to the Pleistocene.

Miocene and Pliocene mollusks are listed from localities in the southern and western parts of the San Joaquin basin, California: Kern River area (early and middle Miocene)—33 species; western San Emigdio Mountains
(Pliocene)—three species, (Miocene or Pliocene)—nine species; McKittrick area (Pliocene)—two species; Reef Ridge area—several middle Miocene and Pliocene species; Kettleman Hills are (Pliocene)—13 species; lower Pliocene southwest of Coalinga—17 species; and some upper Miocene and Pliocene mollusks from about 10 miles north of Coalinga.

Watts, W. L., 1897, Oil and gas yielding formations of Los Angeles, Ventura and Santa Barbara Counties [California]: California Mining Bur. Bull. 11, p. 1-94.

Pliocene fossils from downtown Los Angeles area identified by Dr. J. G. Cooper are listed.

Pecten peckhami occurs in Neogene shales at Coalinga and _Ostrea titan_ and _Lyropecten_ in overlying sandstones. Miocene fossils from Santiago Canyon, Piru Creek, and Big Tar Canyon, middle Neogene fossils "(San Pablo Group)" [Pliocene, in part] from Puente Hills, Elsmere Canyon, and Piru Creek, and upper Neogene fossils (Pliocene) from a shallow well near San Juan Capistrano, all identified by J. C. Merriam, are listed.

Weaver, C. E., 1909, Stratigraphy and palaeontology of the San Pablo formation in Middle California: California Univ. Dept. Geology Bull., v. 5, no. 16, p. 243-269.

Sixty-nine species of mollusks are recorded from his San Pablo Formation; their stratigraphic occurrence [lower, middle, and upper San Pablo] as well as their occurrences in the Merced, Purisima and Santa Margarita Formations are indicated. On the basis of percentage of living species, the San Pablo is assigned to the Pliocene.

A review of the Tertiary paleontology and stratigraphy of western Washington with a preliminary geologic map, lists of characteristic mollusks from four Miocene formations, and descriptions of 63 new molluscan taxa of Miocene age [many are from the Montesano Formation, a few of these are from strata now classified as late Oligocene].

The nautiloid _Aturia_, formerly regarded as an index to the Oligocene, occurs in the lower Miocene of western Washington.

Five post-Eocene faunal zones including the _Acila gettysburgensis_ (late Oligocene-early Miocene), _Arca montereyana_ (middle Miocene), and _Yoldia strigata_ zones (late Miocene) are defined. Generalized list of molluscan species are presented for each zone.

Three Miocene "zones" are defined: _Acila gettysburgensis_ [in part late Oligocene of modern usage], _Arca montereyana_, and _Yoldia strigata_ in
ascending order. Rocks near the mouth of the Quinault River in western Washington may represent a still younger unit than the *Yoldia strigata* "zone." Characteristic species of each zone are listed. Six new species of gastropods and one pelecypod from the *Arca montereyana* "zone" are described and illustrated.

A comprehensive review of the Tertiary geology of western Washington. Included are an annotated bibliography, descriptions of Miocene formations including characteristic mollusks, geologic maps showing fossil localities, locality descriptions, and check lists of (1) Oligocene and Miocene mollusks and (2) upper Miocene mollusks.

The Sooke Formation is regarded as a basal Oligocene unit in the more northern of two Oligocene basins of deposition in Washington and southernmost British Columbia. Overlying strata are assigned to the *Molopophorus lincolnensis* zone. The uppermost beds in the northern embayment contain a fauna that has been designated the *Acila gettyburgensis* zone [in part of Miocene age] which is of cooler aspect than the Oligocene *M. lincolnensis* zone which is regarded as subtropical.

A stratigraphic résumé of Tertiary formations that furnishes a framework for Weaver's (1942) later catalog of marine larger invertebrates from this region. A few mollusks are referred to in the text but no faunal lists are included.

A comprehensive catalog of larger invertebrate fossils, mostly mollusks, described from Oregon and Washington. Treatment for each species includes original description, type locality, location of type specimen(s), geologic and geographic distribution, supplementary description or comparative notes, and illustration of each species—usually including a figure of the type specimen. Also included is a comprehensive chronologic bibliography of paleontologic reports, a list of University of Washington faunal localities, and a correlation chart. Two new Miocene mollusks are described: *Megasurcula etheringtoni* and *Yoldia clallamensis*.

The fauna of the Empire Formation includes 112 mollusks which are enumerated in a stratigraphic checklist. Localities are listed and are shown on detailed geologic maps of the sea-cliff exposures.

Extensive faunal lists from the San Ramon Sandstone, Monterey Group, Briones Sandstone, Cierbo Sandstone, and Neroly Sandstone from the San
BIBLIOGRAPHY

Pablo Bay area are presented. The fauna of the San Ramon Formation is assigned to the Oligocene.

Lists of mollusks from the San Ramon Formation (47 species), Sobrante Sandstone (20 species), and Briones Sandstone (54 species) are included.

Weaver, C. E., chm., and others (20), 1944, Correlation of the marine Cenozoic formations of western North America: Geol. Soc. America Bull., v. 55, no. 5, p. 569-598.

The basic scheme for Pacific coast Cenozoic molluscan correlation is set forth in this publication. Here and there a few mollusks characteristic of particular stratigraphic units are indicated in addition to zonal index fossils on the correlation chart. Differences in correlating the microfossil and megafossil chronologies with Europe are shown and discussed. California Neogene "stages" are first defined in this report.

Three mollusks from the Vaqueros Formation are recorded. There is a discussion of the relationship between foraminiferal faunas of the Saucesian Stage and the Miocene megafaunal sequence.

Several articles contain data on Miocene and Pliocene molluscan assemblages from San Miguel, Santa Cruz, and Santa Rosa Islands. More than 20 mollusks from formations of early Miocene to Pliocene age are illustrated.

Mollusks identified by Bremner (1933) from the Vaqueros Formation and five mollusks from their Beechers Bay Member of the Monterey Formation, considered to be of middle Miocene age, are listed. The latter assemblage occurs stratigraphically above foraminiferal assemblages referable to the Saucesian Stage and below assemblages referable to the Lusitanian Stage.

The fauna of the Alegria Formation is now regarded as referable to the Oligocene Refugian Stage based on new mapping of the type area of the Refugian Stage in the western part of the Santa Ynez Mountains. It was previously believed to be in part of post-Refugian, Zemorian age.

Weaver, D. W., Griggs, G., McClure, D. V., and McKey, J. R., 1969, Volcaniclastic sequence, south-central Santa Cruz Island [California], in Weaver,
Five mollusks are recorded from the middle Miocene San Onofre Brec­cia; they suggest that this formation was deposited in a shallow-water marine environment and that the formation grades into finer grained sediments containing Saucesian foraminiferal assemblages.

Five mollusks are recorded from the middle Miocene San Onofre Brec­cia; they suggest that this formation was deposited in a shallow-water marine environment and that the formation grades into finer grained sediments containing Saucesian foraminiferal assemblages.

There is a brief discussion of mollusks from the Vaqueros Formation and problems of correlation by mollusks. Early Saucesian foraminiferal assemblages are correlated with Loel and Corey's (1932) "Vaqueros-Tem­blor Transition Zone," late Saucesian assemblages with the "Brucarkia barkeriana Zone."

Five mollusks first recovered by Rand (1933) from the Monterey Forma­tion and 12 from their newly named Potato Harbor Formation of Pliocene age are listed.

Webster, Arthur, 1906, Geology of the west coast of Vancouver Island [British Columbia, Canada]: Canada Geol. Survey Ann. Rept., new ser., v. 15, 1902-3, p. 54A-76A.

Six feet of sandstone beds with "vast quantities of fossil shells of vari­ous species" occur at the mouth of Coal Creek (p. 59A). Fossil shells occur from half a mile west of Muir Creek to the mouth of Coal Creek. Fossils occur in soft bedded sandstone at Point St. Juan.

"Megafossils" occur in the "Santa Margarita sand" (upper Miocene).

Mulinia [Pseudocardium] densata occurs in the upper 2,780 ft of the Etchegoin Formation; casts of Macoma kerica occur in the lower 4,150 ft of the formation.

A zone containing abundant Pecten peckhami occurs near the top of the upper Miocene Antelope Shale.

Fyritized megafossils occur in the upper Miocene Antelope Shale.

Pecten peckhami occurs about 170 ft above the base of the Gould Shale; Pecten andersoni and Turritella ocoyana occur in hard limy reefs in the underlying Temblor Sand.

Eight species of Ostrea from the California Neogene are listed; four of these are illustrated.

Some of the species described by Conrad (1848, 1949) from near Astoria, Oreg. [Astoria Formation, Miocene] are compared with Eocene mollusks from California. Concludes that "Chico-Tejon" strata [Eocene] may be present near Astoria.

A few of the paleontologists involved in studies pertaining to the early days of exploration for petroleum in California are mentioned in brief historical sketches.

The marine Modelo(?) Formation of the eastern part of the Ventura basin near Saugus contains a large invertebrate fauna assigned to the late Miocene on the basis of echinoids and four mollusks.

Small specimens of Hyalopecten peckhami (Gabb) occur in the lower part of the Capistrano Formation of late Miocene age.

Mollusks identified by W. M. Gabb are recorded from many localities: near the eastern part of Kirker's Pass (19 spp.), the Griswold Hills (10 spp.), Santa Ynez Pass (7 spp.), the northern margin of the Santa Lucia Range (4 spp.), and the Santa Monica Mountains (6 spp.); these probably are of Miocene age. There are scattered references to Neogene mollusks throughout the text.

Included is an extensive review of reports on Vaqueros and Temblor faunas. The upper Oligocene fauna was "predominately cool water"; the
fauna of the Vaqueros "indicates an invasion of many truly tropical genera." The fauna of the middle Miocene "indicates somewhat cooler conditions, more of a warm temperate type, than those of the preceding age, the Vaqueros" (p. 107). Thirty-two new molluscan taxa are described and illustrated.

WIEDEY, L. W., 1929a, New Miocene mollusks from California: Jour. Paleontology, v. 3, no. 3, p. 280-289, pls. 31-33.

Seven new species of mollusks are named and illustrated.

Turritella variata has been erroneously reported from the Temblor Formation and from the Vaqueros Formation. This discovery necessitates naming of two new species and a new variety of Miocene Turritella.

WIEDEY, L. W., 1929c*, Some previously unpublished figures of type mollusks from California: Nautilus, v. 43, no. 1, p. 21-26, pls. 1-3.

Five mollusks of Miocene, and possibly late Oligocene, age originally described by Hall and Ambrose (1916) from the San Francisco Bay area are figured for the first time.

Five mollusks collected from exposures of the Santa Margarita Formation in Oso Canyon are listed.

An Ostrea reef occurs in the basal part of Pliocene Etchegoin Formation; a "prominent megafossil horizon occurs in the upper part of the Miocene Temblor Formation."

Ostrea vespertina occurs in the upper part of the Purisima Formation; "numerous marine megafossils" occur in the lower part of the formation.

A further report of Ostrea from the Purisima Formation.

Includes a correlation chart for Oregon Coast Range Cenozoic sections by D. O. Cochran and lists of characteristic mollusks from a few Neogene formations: the Astoria Formation, Empire Formation, Scappoose Formation, and Nye Mudstone.

The fauna of the Scappoose Formation is believed to be most similar to the fauna of the Sooke Formation. There are, however, some species in the Scappoose that have been found only in the Astoria Formation suggesting that the fauna may be of intermediate age. Seventeen species of mollusks are recorded from three localities in the Scappoose; most of these were previously listed by Warren and others (1945). The fossil localities are plotted on an index map.

A list of species of Pliocene mollusks in collection at the Los Angeles County Museum is included.

Geologic names for United States, Mexico, and Canada through 1935 are listed. Citations include designation of type section, current age, geographic area, and original citation with extensive annotations that include some paleontologic data. This treatment is carried through 1960 by Kerchover and others (1966).

Many Miocene and Pliocene mollusks figured in reports of the San Diego Society of Natural History and other publications are listed.

Corbicula (?) and a cerithid are reported from southern Yuma County (identified by W. P. Woodring) together with a marine barnacle.

Three mollusks are recorded from exposures of the Vaqueros Formation near Gaviota Canyon, Santa Barbara County, Calif.

Faunas from the lower Temblor Sandstone (22 mollusks), Temblor Shale (1 mollusk), upper Temblor Sandstone (10 mollusks), Santa Margarita Formation (13 mollusks), Etchegoin (63 mollusks) are recorded. A 3,360-ft measured section of Etchegoin is described with brief listing of mollusks found in various units. Both early and middle Pliocene assemblages (of traditional usage) occur in the Etchegoin. The late Pliocene is believed to be represented by a thin interval of oyster beds near San Benito.

Lists mollusks from the lower Pliocene Boleo Formation (24 taxa), middle Pliocene Gloria Formation (28 taxa), and upper Pliocene Infierno 468-965—72——11
Formation (26 taxa). Most of these are pectinids; they were identified by H. E. Yokes.

Four mollusks of middle Miocene age are listed from a locality in the Isidro Formation about 5 km west of San Ignacio. Small assemblages of mollusks from the lower Pliocene Boleo Formation are listed. Twenty-nine mollusks are listed from localities in the middle Pliocene Gloria Formation; about 30 from the upper Pliocene Infierno Formation. Identifications are by H. E. Yokes.

Miocene shales contain abundant Pecten peckhami near the base. Dolomitic limestone containing Brulacrkia Barkeriana is disconformably overlain by rocks containing the middle Miocene foraminifer Valvulinera californica.

A preliminary report that includes information presented in Winterer and Durham (1958).

The Towsley Formation contains abundant megafossils [mostly mollusks] near Elsmere Canyon and north of the San Gabriel fault. Molluscan fossils are abundant in the Pico Formation.

Delectopecten occurs in the Miocene Modelo Formation and in shale of the overlying Towsley Formation. Almost 200 molluscan taxa are listed from localities in the Towsley and Pico Formations together with geographic and bathymetric data for those species that are still living. The molluscan assemblages of the Pico Formation are of mixed aspect; deep-water species are of northern aspect whereas shallow-water species suggest somewhat warmer surface temperatures than now occur near Ventura.

Hyalopecten randolphi tillamookensis (Arnold) is common in the middle Pico and *Hyalopecten pedroanus* (Trask) is fairly abundant in the lower half of Miocene Division C.

Ostrea-bearing strata occur in the cape region of Baja California. A few other mollusks including *Donax* and small gastropods occur in Tertiary strata of this region.

Miocene mollusks occur in the upper part of the Lincoln Creek Formation and in the Astoria Formation.

Lists four mollusks from the Vaqueros Formation, 39 from the Temblor Formation, three from blue-schist sandstone at Point Fermin, all of Miocene age. A few others are listed from the Pliocene Capistrano Formation.

Lyell's European lower Miocene includes the Aquitainian and Burdigalian; the former is Miocene because of its modern aspect. Recommends use of Miocene age for Vaqueros because of the presence of large pectinids, large ostreids, and other genera which are regarded by A. M. Davies as characteristic of the European Miocene.

Mollusks from sandstone at Point Mugu and from near the head of Sycamore Canyon, Santa Monica Mountains, indicate a "Temblor age."

Miocene and Pliocene occurrences of Clementia are listed; three species are reviewed and illustrated, a fourth, Venus brioniana Trask, may be a synonym of one of these. Clementia s.s. may have migrated from the eastern Pacific into the Caribbean during the early Miocene via a seaway crossing Costa Rica.

Scales petroli, nonmarine gastropod opercula that occur in a nonmarine tongue in the Etchegoin Formation penetrated by wells in the southwestern part of the San Joaquin basin, most likely represent an extinct group of Viviparidae.

Turritella ocoyana from California has no predecessor in the Eastern Pacific; it may have been an Atlantic immigrant derived from the T. subgrandifera stock.

This group of Turritellas reached California as an invader by way of the Central America seaway from the Atlantic. They have been found from Peru northward to California in the eastern Pacific.
Woodring, W. P., 1930a, Age of Modelo Formation of Santa Monica Mountains [California] [abs.]: Geol. Soc. America Bull., v. 41, p. 155.

Mollusks from the base of the Modelo Formation are of late Miocene age and are correlative with the fauna of the Briones Formation. They represent a rocky substrate association and include the gastropod *Haliotis*.

Thirty-one mollusks are recorded from Pliocene localities north of Simi Valley, California [Fernando Formation of Kew (1919)]. A small Pliocene assemblage (12 spp.) is also recorded from Temescal Canyon in the northwestern part of Los Angeles basin.

"Pecten" yneziana is compared with "P." perrini.

Some of the mollusks originally described by Conrad (1856) are compared with Miocene and Pliocene species from California.

Mollusks are recorded from six localities in the Imperial Formation of the Colorado Desert, San Diego, Riverside, and Imperial Counties, Calif. The largest assemblages are from Painted Hill near Whitewater River (25 mollusks). This formation is tentatively considered to be of "late lower Miocene age."

Haliotis palaea n. sp. based on material from the base of the Modelo Formation in the Santa Monica Mountains is described and illustrated. Eight Pliocene records of the genus from California are listed.

Haliotis lasia is described from the Santa Margarita (?) Formation in the southeast edge of the Temblor Range based on 20 specimens.

Shallow-water mollusks of late middle Miocene age at Palos Verdes Hills, California, include a number of tropical genera not previously known from the Coast Ranges. They provide further evidence of the migration of Caribbean mollusks into the Pacific during the Miocene.

BIBLIOGRAPHY

Scales petrolia, the operculum of a fresh-water gastropod occurs in two zones in Pliocene strata in the southern part of the San Joaquin basin. The upper zone occurs between probable equivalents of the Pecten coalingensis zone and the Aequipecten eldridgei zone; the lower zone occurs between the A. eldridgei zone and the upper Pseudocardium zone.

Lists and figures 26 molluscan taxa from outcrops and well cores of the Repetto Formation. The fossils represent depths of 2,000–4,000 ft in the deep-water facies of the Repetto. Thirty species occur in a transition zone between the Repetto and Pico Formations; these are considered to be of intermediate and shallow-water facies. Five new species or varieties and a new genus, Phreagena, are described. The systematic section includes extensive discussions of Lyropecten, Delectopecten, and Ostrea vespertina Conrad.

Turritella inezana and Crassatella granti occur in lower Miocene rocks northeast of the San Andreas fault near Cajon Pass, San Bernardino County, Calif.

There is a marked faunal discontinuity at the Pliocene-Pleistocene boundary. Important molluscan taxa that become extinct by the end of the Pliocene are Anadara s.s., Lyropecten s.s., Opalia varicostata, “Nassa” moraniana, Strioterebrum martini, Mytilus coalingensis, Patinopecten healyi, Patinopecten dilleri, Ostrea erici, Clinocardium meekianum, and Platydodon colobus. Lists a few species of mollusks that other workers have cited as criteria for a stratigraphically higher Pliocene-Pleistocene boundary. Includes a brief review of Pleistocene paleoclimatic inferences and correlation with European type Pleistocene. Correlation chart of late Pliocene and Pleistocene formations and a list of various extinct Pliocene and Pleistocene mollusks from California formations.

Agasoma sinuatum occurs in a late Miocene fauna with species of Astrodapsis that have been correlated with the upper Miocene Neroly Formation of the San Francisco Bay area. The stratigraphic range of this species may include all of the stratigraphic interval regarded as upper Miocene in California. The only other known occurrence of this species, and genus, is in the Briones Formation of the San Francisco Bay area. Two specimens are figured.

A brief listing of some of the more important references to Tertiary and Quaternary mollusks of California.

California Miocene records of *Trocita costellata* Conrad, "*Calyptraea* diabloensis" Clark, and "*C.* martini" Clark are probably of *T. trochiformis* (Born), a late Oligocene to Holocene species. There is a brief discussion of *Turritella ocyvana* and *T. inezana* from the California Miocene.

Includes a reference to *Trophosycon kernianum* from California middle Miocene.

A useful systematic report on tropical Neogene molluscan faunas of Panama with extended discussions of certain lineages that have persisted into the Holocene fauna of the tropical western Pacific.

The middle Miocene Caribbean province includes faunas of the modern Caribbean and from the west coast of the Americas as far north as about lat 10° N. Much of the endemism suggested by analysis of several local faunas is more apparent than real.

Paciphile molluscan genera (genera that once lived in the western Atlantic but are now extinct there and are still living in the eastern Pacific) are enumerated. Forty-three paciphile genera and subgenera are listed; their stratigraphic ranges in the western Atlantic and in the eastern Pacific are recorded. The generalized distribution of Miocene and Pliocene marine strata along the Pacific coast of Central America is indicated on an index map.

The definitive stratigraphic and paleontologic study of the Santa Maria basin including figures, brief descriptions, and stratigraphic lists of the large Pliocene molluscan fauna. Four new species or varieties of mollusks are named. Four mollusks are listed from conglomerate in the middle Miocene Monterey Shale. Pliocene rocks are divided into basin facies and marginal facies. There are sections on paleoecology and faunal correlation.

Mollusks of middle Miocene age occur in the Altamira Shale Member of the Monterey Shale; 19 of these are illustrated. Many of the genera are tropical migrants recorded for the first time from the California Coast Ranges. The fauna is correlated with the Temblor ("Stage") of California. A few mollusks occur in the upper part of the Altamira. *Lima hamlini* occurs in the Repetto Siltstone. There is a comprehensive annotated bibliography of previous geological reports on this area.

A molluscan assemblage from the late middle Miocene on the north side of Palos Verdes Hills includes many warm-water genera not previously recorded from California.

List 52 mollusks from the middle part of the Altamira Shale (loc. 13 in George F Canyon, 40 ft above the top of the schist). Many species previously unrecorded from California are of tropical aspect being allied to species living in the Gulf of California and Mazatlanic region. The middle Miocene assemblage indicates shallow water conditions close to the littoral zone. *Dectoctpecten pedraanus* is the only mollusk known from the upper Miocene Valmonte Diatomite.

A few mollusks occur in a breccia-conglomerate in exposures of the Monterey Shale near Point Sal. Many mollusks of Pliocene age are listed in the text; these are from the Sisquoc Formation, the Foxen Mudstone, and the Careaga Sandstone.

Temblor mollusks occur in middle Miocene strata in the San Pedro Hills.

Three molluscan genera are reported from cores of the Pliocene Etche­goïn Formation. The "Mulinia" zone is recognized in cores of the Etche­goïn Formation.

The classic biostratigraphic report on Neogene rocks of the Coalinga­Kettleman Hills area of the San Joaquin basin. Nine Pliocene faunal zones based on shallow-water marine mollusks are defined and are used in making a detailed biostratigraphic-geologic map of the North Dome of
Kettleman Hills. Somewhat fewer zones are recognizable in the Middle and South Dome areas. The faunas of each zone are listed; in the San Joaquin Formation the faunas of strata between the named zones are also listed. Nearly all of the Pliocene mollusks are illustrated and are discussed in a section including taxonomic notes. Eight new mollusks are described. A comprehensive discussion of Pliocene correlation in California is included, as is an annotated bibliography of reports on the Kettleman Hills-Coalinga area. There are several measured sections of the Temblor Formation along the west side of the San Joaquin Valley including mollusk occurrences. Middle Miocene mollusks from localities on Reef Ridge and Coalinga Anticline are listed. Molluscan paleontology is by Woodring and by Stewart.

A few mollusks from the Pliocene San Joaquin and Etchegoin Formations are listed. Five zones bearing the names of Pliocene marine mollusks are indicated on an electric log correlation section.

The basal sandstone of the Modelo? Formation in the southeastern part of the Ventura basin contains many late Miocene species, six of which are listed. Eleven species are listed from the Elsmere Canyon fauna [Pliocene]. About half of the species in the late Miocene fauna also occur in the Pliocene fauna.

Seven molluscan taxa of Miocene age are recorded from Santa Rosa Island.

Thyasira disjuncta occurs in the basal glauconitic sandstone of the Pico Formation.

A potassium-argon age of 8.7 m.y. is reported for thin volcanic ash bed in Pliocene Pico Formation. Warm-water mollusks are associated with the ash layer; 200-1,750 ft higher in the section the molluscan assemblages resemble those living in the Pacific Northwest.

The base of a cold-water molluscan faunal zone occurs just below an ash bed at South Mountain, Ventura County, that has K-Ar dates of 8.4±1.3 to 10.2±2.1 m.y. A warm-water molluscan faunal zone occurs
directly below the cold-water zone. The cooling evidenced by molluscan fossils is attributed to shifting oceanic current patterns superimposed upon a general late Tertiary cooling trend.

Mollusks from upper part of Fernando Formation represent depths of 15–50 fathoms but are displaced into deeper water deposits; they are of similar composition to modern fauna of this latitude. Early Pleistocene mollusks of the overlying Santa Barbara zone are of cooler water aspect, similar to the Puget Sound area or to the southwest part of Canada. Stratigraphically higher assemblages that may be early Pleistocene are again similar to modern fauna of this latitude. Includes a radiometric determination on an ash bed of Pliocene age (8.7 m.y.).

Marine mollusks of Pliocene age occur in the Fernando Formation.

Turritella inezana santana occurs in the Vaqueros Formation. Middle Miocene mollusks including Vertipecten cf. V. nevadanus occur in the lower part of the Topanga Formation. Melongena occurs in their Unit D.

Brief mention is made of mollusk evidence of age of some divisions of the Miocene and Pliocene. Mollusks have been used to divide lower Pliocene rocks into three bathymetric facies varying from shoreline to 4,000-ft depths. An annotated bibliography includes reference to some paleontological reports dealing with the Los Angeles basin.

A very useful source for stratigraphic data which includes correlation charts of western Oregon and western Washington Tertiary formations. The age, type section, original description, and geographic distribution of Tertiary formations are listed. A few molluscan genera and species are listed for some of the Neogene formations.

Sixteen Miocene mollusks are recorded from exposures of the Temblor Formation on Monocline Ridge, Fresno County, Calif.

Pecten eldridgei occurs in the basal part of San Joaquin Clay; also Mya occurs in thin sand bed in this formation. The Etchegoin Formation
(0–800 ft thick in wells) is “very fossiliferous.” *Pecten estrellanus* occurs in the Olig Formation (upper Miocene).

Pecten peckhami occurs in the upper Miocene Antelope Shale.

Zulberti, J. L., 1958, Santiago area of Midway-Sunset oil field [California]: California Oil Fields, v. 44, no. 1, p. 65–73.

Nassarius and *Bittium* are reported from cores of Etchegoin Formation (0–400 ft thick) in the Santiago pool.

The contact between the San Joaquin Clay and the underlying Etchegoin Formation is determined by the first occurrence of *Mulina densata* Conrad.

Pecten oweni [*Patinopecten lohri*] and “other fossil fragments” occur in the Calitroleum sand, a productive oil sand (0–30 ft thick) near the base of the Etchegoin Formation.

An assemblage of about 100 species from Moonstone Beach near Arcata, Calif., includes mollusks that suggest correlation with the upper part of the Etchegoin Formation. A younger fauna of about 80 species near Cape Blanco, Oreg., includes the extinct pelecypod *Clinocardium meekianum* suggesting a late Pliocene age and correlation with the lower part of the San Joaquin Formation.
Alaska—Continued

Paleoclimatology—Continued

Gulf of Alaska—Continued

Yakataga Formation, cool-water indicators:
Denton, G. H., and Armstrong, R. L., 1969

Systematic descriptions
Alaska Peninsula
Epitonidum dawoodi: Dall, W. H., 1908
Micoena: Gowingk, C., 1850
Aleutian Islands, Atka Island: Erman, A., 1843

Arctic coast
Carter Creek, Nuwok Formation: MacNeil, F. S., 1937

Nuwok Formation, Thyasira alaskana: Kaufman, E. G., 1969

Pliocene and Pleistocene:

Dall, W. H., 1920
MacNeil, F. S., and others, 1943

Gulf of Alaska
Aturia angustata alaskensis: Schenck, H. G., 1931

Poul Creek and Yakataga Formations: Clark, B. L., 1932

Pectinids: MacNeil, F. S., 1967

Zoogeography

Arctic coast, Nuwok Formation, Atlantic affinities: MacNeil, F. S., 1937

Bering Sea

Faunal migration, Macoma: Coan, E. V., 1968

Amphineura

Taxonomy

Pacific coast, Miocene and Pliocene species: Berry, S. S., 1922

Analysis

Paleoecology

Zoogeography

Pacific coast, living mollusks, geographic ranges: Burch, J. Q., ed., 1944-46; Dall, W. H., 1921a; Keen, A. M., 1937

Arctic Ocean

Zoogeography

Faunal migration, Miocene, Pacific-Atlantic: Soot-Ryen, T., 1932

Faunal migration, Pliocene: Dall, W. H., 1921a

Nuwok Formation, Atlantic affinities: MacNeil, F. S., 1937

Arizona

Faunal records

Colorado River area: Smith, P. B., 1968b
Lower Gila region: Ross, C. P., 1922
Yuma County

Plocene, Bouse Formation, Bittium: Blanchard, R. C., 1913

Southern, brackish-water taxa: Wilson, E. D., 1931

Bibliography

California

Cenozoic mollusks, selected references: Woodring, W. P., 1957a

Coastal, marine geology and oceanography:

Terry, R. D., 1955

Geological reports

Annotations, new fossil names: Vogdes, A. W., 1896, 1904

Prior to 1931: Shedd, S., 1932
1931-36: Shedd, S., 1938

Prior to 1942: Egenhoft, E. L., 1943

Geological theses

Prior to 1942: Jennings, C. W., 1963

Los Angeles basin

Geological reports, annotations: Yerkes, R. F., and others, 1965

Palo Verde Hills, geological reports, annotations: Woodring, W. P., and others, 1946

San Joaquin basin

Coalinga-Kettleman Hills area, geological reports, annotations: Woodring, W. P., and others, 1946

Geological reports: Mather, J. C., and Trollman, W. M., 1968

Tertiary mollusks, selected references: Schenck, H. G., and Keen, A. M., 1940b

Conrad, T. A.

Paleontologic reports: Moore, E. J., 1962

Mexico

Baja California, geographical and scientific reports, 1535-1964: Barrett, E. C., 1967

Oregon

Astoria Formation, paleontologic reports, annotations: Moore, E. J., 1963

Geological reports

Annotations: Henderson, C. W., and Winstanley, J. B., 1912
1936-45: Allen, J. E., and others, 1947
1946-50: Steere, M. L., 1953

Prior to July, 1936, annotations: Treasher, R. C., and Hodge, E. T., 1936

Geological theses, prior to 1959, index map: Schlicker, H. G., 1959

Geologic theses, 1959-65: Roberts, M., 1966

Pacific coast

Dall, William Healy: Bartsch, P., and others, 1946

Holocene mollusks

1938-56: Keen, A. M., 1937
1937-56: Keen, A. M., [n.d.]

Marine mollusks, post-Eocene, 1865-1908: Dall, W. H., 1909c

Oregon and Washington, paleontologic reports: Weaver, C. E., 1942

Paleontologic studies, current research: Merrill, J. C., 1921; Stock, C., 1946

Washington

Geological reports

1814-1936: Bennett, W. A. G., 1939
1937-56: Reichert, W. H., 1960
Bibliography—Continued
Washington—Continued
Geological reports—Continued
Through 1901: Arnold, R., 1902
Western, geological reports, annotations:
Weaver, C. E., 1901c
Biography
California
Early invertebrate paleontologists: Anderson, F. M., 1932
Early paleontologists, historical sketches: White, G. T., 1963
Dall, William Healy: Bartsch, P., and others, 1940
Gabb, W. H., Dall, W. H. (1909a
Biostratigraphy
Alaska
Bering Sea, Pliocene and Pleistocene, stratigraphic units: Hopkins, D. M., 1967b
Gulf of Alaska
Litupaceidae, stratigraphic occurrences: Miller, D. J., 1961
Yakataga district, Poul Creek and Yakataga Formations: MacNeil, F. S., 1957; Miller, D. J., 1951, 1957
California
Carrizo-Cuyama basin
Miocene formations: Eaton, J. E., 1939b
Eaton, J. E., and others, 1941
Miocene "stages," characteristic species: Eaton, J. E., 1943
Channel Islands, Turritella zones, Miocene: Hertlein, L. G., 1929b
Coast Ranges
Miocene faunal zones: Merriam, J. C., 1904
Miocene and Pliocene formations, characteristic species: Clark, B. L., 1929
Vaqueros Formation, faunal zones: Loel, W., and Corey, W. H., 1932
Foraminiferal stages, Miocene, relationship to molluscan sequence: Kleinpell, R. M., 1934, 1938
Los Angeles basin
Fernando Formation: Arnold, R., 1907b
Niguel Formation: Vedder, J. G., 1960
Santa Ana Mountains, Turritella zones: Moore, B. N., 1939
Topanga Formation, type area: Arnold, R., 1907b; Susuki, T., 1932
Miocene, stratigraphic range chart: Smith, J. P., 1934, 1938
Mount Diablo embayment
Monterey "Series," Scutella brevioriana zone: Clark, B. L., 1914b
San Pablo Group: Buvalda, J. P., 1913; Clark, B. L., 194a, 195a, 1915b
San Ramon Sandstone: Clark, B. L., 1918
Northern, Point Arena area, Skeney Gulch Formation: Addicott, W. O., 1907c
Biostratigraphy—Continued
California—Continued
Pliocene basins: Grant, U. S., 4th, and Gale, H. R., 1931
Salinas basin
King City Formation, mollusk-echinoid faunal zone: Clark, B. L., 1940
Vaqueros Formation, Pedunculina sanctaecruzensis: Edwards, K. L., 1940
Vaqueros Formation, type locality: Thorup, R. R., 1943
San Diego embayment, San Diego Formation: Hertlein, L. G., 1929a
San Joaquin basin
Jaclalitos Formation, faunal zones: Nomland, J. O., 1949b
Kern River area, Miocene faunal zones: Anderson, F. M., 1911
Kern River area, Miocene range chart: Addicott, W. O., 1969b
Kettleman Hills, Pliocene faunal zones: Woodring, W. F., and others, 1940
Pliocene, faunal zones: Gester, G. C., and Galloway, J., 1934
San Joaquin Clay, faunal zones: Barbat, W. F., and Galloway, J., 1934
West side, Miocene and Pliocene formations: Anderson, F. M., 1908
San Luis Obispo County, Miocene Formations: Hall, C. A., Jr., 1963b, 1966
Santa Cruz Mountains
Merced? Formation: Addicott, W. O., 1909b
Miocene and Pliocene formations: Arnold, R., 1908b; Cummings, J. C., and others, 1962
Vaqueros Formation, Pedunculina sanctaecruzensis tezalzone: Burchfield, B. C., 1964
Southern, faunal zones, Pliocene: Carson, C. M., 1926
Transverse Ranges
Oligocene-Miocene, boundary problems: Kleinpell, R. M., and Weaver, D. W., 1961
Santa Ynez Mountains, Refugian Stage, stratigraphic limits: Weaver, D. W., and Frants, J. D., 1967
Ventura basin
Fernando Formation, faunal zones: Eaton, J. E., 1928; Pressler, E. D., 1929

INDEX

169
Biostratigraphy—Continued
California—Continued
Ventura basin—Continued
Sausage Formation: Eaton, J. E., 1928

Mexico
Baja California
Neogene faunas, general account: Anonymous 1924

Oregon
Cape Blanco, Empire Formation, Mytilus midendorfii fauna: Durham, J. W., 1953

Coast Ranges, stratigraphic data, correlation chart: Schenck, H. G., 1928
Coo Bay embayment, Empire Formation: Allen, J. E., and Baldwin, E. M., 1944

Pacific Coast
Acita biozones: Schenck, H. G., 1936
Oligocene and Miocene, faunal zones: Clark, B. L., and Arnold, R., 1918
Southwest Oregon, northwest California: Allison, E. C., and others, 1962

Washington
Puget Trough
Chamis Formation: Arnold, R., 1905, 1906a; Gower, H. D., 1909
Oligocene and Miocene faunal zones: Durham, J. W., 1944
Twin River Formation, upper member: Gower, H. D., 1909
Western, post-Eocene faunal zones: Weaver, C. E., 1916, 1916b

British Columbia
Catalog
Holocene mollusks, Tertiary ranges, Pacific coast: LaRocque, A., 1953

Correlation
Vancouver Island
Sooke Formation: Clapp, C. H., 1912
West coast, Hesquiat-Nootka area, Miocene: Jeletzky, J. A., 1954

Faunal lists

Vancouver Island
Sooke Formation: Arnold, R., and Hannibal, H., 1918; Clapp, C. H., 1917; Cornwall, I. E., 1922; Merriam, J. C., 1939
West coast, Hesquiat-Nootka area: Jeletzky, J. A., 1944

Faunal records

Vancouver Island
Sooke area, Carmanah Point: Merriam, J. C., 1986
Southwestern: Richardson, J., 1878; Webster, A., 1906

British Columbia—Continued
Faunal records—Continued

Vancouver Island—Continued
West coast, Tatsch Point: Jeletzky, J. A., 1950

Paleoclimatology
Southwestern, early Miocene: Durham, J. W., 1942a

Paleoecology
Vancouver Island, Sooke Formation, brackish-water indicators: Cornwall, I. E., 1927

Systematic descriptions
Vancouver Island, Sooke Formation: Berry, S. S., 1922; Clark, B. L., 1922; Clark, B. L., and Arnold, R., 1923; Merriam, J. C., 1897, 1899

California
Absolute age, dates
Los Angeles basin, Pliocene-Pleistocene boundary, potassium-argon method: Obradovich, J. D., 1988
Santa Maria basin, Obispo Formation, potassium-argon method: Hall, C. A., Jr., and others, 1966

Bibliography
Cenozoic mollusks, selected references: Woodring, W. P., 1957a

Coastal, marine geology and oceanography:
Terry, R. D., 1955

Geological reports
Annotations, new fossil names: Vogdes, A. W., 1896, 1904
Prior to 1931: Shedd, S., 1932
1931-36: Shedd, S., 1938
Prior to 1942: Egenhoff, E. L., 1943

Geological theses
Prior to 1932: Jennings, C. W., 1963

Los Angeles basin
Geological reports, annotations: Yerkes, R. F., and others, 1965
Pinta and Verdes Hills, geological reports, annotations: Woodring, W. P., and others, 1946
San Joaquin basin
Coalinga-Kettleman Hills area, geological reports, annotations: Woodring, W. P., and others, 1940

Geologic reports: Maier, J. C., and Trolman, W. M., 1948

Tertiary mollusks, selected references: Schenck, H. G., and Keen, A. M., 1940b

Biography
Early invertebrate paleontologists: Anderson, F. M., 1932
Early paleontologists, historical sketches: White, G. T., 1968

Biostratigraphy
Carizzo-Cuyama basin
Miocene formations: Eaton, J. E., 1939b; Eaton, J. E., and others, 1941
Miocene "stages," characteristic species: Eaton, J. E., 1943
California—Continued
Biostratigraphy—Continued

Channel Islands, *Turritella* zones, Miocene: Hertlein, L. G., 1928b

Cost Ranges
Miocene faunal zones: Marriam, J. C., 1904
Miocene and Pliocene formations, characteristic species: Clark, B. L., 1929

Vaqueros Formation, faunal zones: Loel, W., and Corey, W. H., 1932

Foraminiferal stages, Miocene, relationship to molluscan sequence: Klempell, R. M., 1934, 1938

Los Angeles basin
Fernando Formation: Arnold, R., 1907a; Niguel Formation: Vedder, J. G., 1909

Santa Ana Mountains, *Turritella* zones: Moore, B. N., 1930

Topanga Formation, type area: Arnold, R., 1907c; Susuki, T., 1932

Miocene, stratigraphic range chart: Smith, J. P., 1912

Mount Diablo embayment
Monterey “Series,” *Scutella brevipes* zone: Clark, B. L., 1914b
San Pablo Group: Buwalda, J. P., 1913; Clark, B. L., 1914a, 1915a, 1915b
San Ramon Sandstone: Clark, B. L., 1918

Northern, Point Arena area, Skooner Gulch Formation: Addicott, W. O., 1967c

Pliocene basins: Grant, U. S., 4th, and Gale, H. R., 1931

Salinas basin
King City Formation, mollusk-echinoid faunal zone: Clark, B. L., 1940

Vaqueros Formation, type locality: Thorup, R. R., 1943

San Diego embayment, San Diego Formation: Hertlein, L. G., 1928a
San Joaquin basin

Dialobe Range, Temblor Range: Anderson, F. M., 1901

Etcheopa Formation, faunal zones: Nomland, J. O., 1915

Jacalitos Formation, faunal zones: Nomland, J. O., 1915

Kern River area, Miocene faunal zones: Anderson, F. M., 1911

Kern River area, Miocene range chart: Addicott, W. O., 1966b

Kettleman Hills, Pliocene faunal zones: Woodring, W. P., and others, 1940

California—Continued
Biostratigraphy—Continued

San Joaquin basin—Continued
Pliocene, faunal zones: Gester, G. C., and Galloway, J., 1933

San Joaquin Clay, faunal zones: Barbat, W. F., and Galloway, J., 1934

West side, Miocene and Pliocene formations: Anderson, F. M., 1935

San Luis Obispo County, Miocene formations: Hall, C. A., Jr., 1962b, 1966

Santa Cruz Mountains
Meredd Formation: Addicott, W. O., 1965a
Miocene and Pliocene formations: Arnold, R., 1940
Cumings, J. C., and others, 1955

San Luis Obispo County, Miocene formations: Hall, C. A., Jr., 1962b, 1966

Southern, faunal zones, Pliocene: Carson, C. M., 1925a

Transverse Ranges
Ecocene-Miocene, boundary problems: Kelinpell, R. M., and Weaver, D. W., 1951

Santa Ynez Mountains, Refugian Stage, stratigraphic limits: Weaver, D. W., and Frants, J. D., 1947

Turritella biozones and foraminiferal stages: Burchfiel, B. C., 1964

Ventura basin
Fernando Formation, faunal zones: Eaton, J. E., 1928; Presler, E. D., 1929

Saugus Formation: Eaton, J. E., 1928

Catalog
Cenozoic species, geologic ranges, geographic distribution: Cooper, J. G., 1888, 1894

Gabb's Neogene types, California University Geological Museum: Merriam, J. C., 1895

Miocene and Pliocene types, San Diego Natural History Museum: Wilson, E. C., 1966

Pliocene and Pleistocene species: Grant, U. S., 4th, and Gale, H. R., 1931

Southern, Holocene species, ecological data, illustrations: McLean, J. H., 1969

Tertiary, figured specimens, prior to 1942: Keen, A. M., and Bentson, H., 1940, 1944

Tertiary, selected index fossils, illustrations: Schenck, H. G., and Keen, A. M., 1940b

Tertiary species, geologic ranges: Gabb, W. M., 1890

Correlation
Carizo-Cuyama basin, Miocene, continental vertebrates-marine mollusks: James, G. T., 1963

Coast Ranges
Central, blue sand formations: Lerbeck, J. R., 1951

Central and northern, Pliocene formations: Martin, B., 1913, 1916

Central and northern, Miocene formations: Martin, B., 1913, 1916

Chart, characteristic species: Vanderhoof, V. L., 1942

Marine-continental chronologies: Stirton, R. A., 1936; Eaton, J. P., 1939a

Northern, Ohlson Ranch Formation: Peck, J. H., Jr., 1960
California—Continued
Correlation—Continued
Coast Ranges—Continued
Northern, Sonoma County, Merced Formation: Stirton, R. A., 1952
Pliocene-Pleistocene boundary, chart: Woodring, W. P., 1952
Vaqueros Formation, correlation with Europe: Clark, B. L., and Durham, J. W., 1942; Renz, H. H., 1942; Schenck, H. G., 1935a; Woodford, A. O., 1942
Vaqueros and Tembleker Formations, Turritella inaezana zone: Louderback, G. D., 1913
Imperial basin, Pliocene, Atlantic affinities: Dickerson, R. E., 1917a
Los Angeles basin, Pliocene, chart: Arnold, R., 1903
Mount Diablo embayment, Agassizina granulatum zone: Clark, B. L., 1917
Neogene, time-stratigraphic subdivisions: Clark, B. L., 1921b
Pectinidae, European affinities: Eaton, J. E., 1939a; Mongin, D., 1959
Pliocene formations: Grant, U. S., 4th, and Hertlein, L. G., 1941; Woodring, W. P., and others, 1940
San Joaquin basin, Caribbean, Gulf Coast, Europe, Miocene: Keen, A. M., 1943
Continental vertebrates-marine mollusks, Miocene, chart: Bode, F. D., 1936; Merriam, J. C., and Pack, R. W., 1913
Foraminiferal and mollusk zones, chart: Beck, R. S., 1982
Megafaunal-microfaunal-continental vertebrate stages, chart: Repenning, C. A., 1960
Mulinia densata zone: Ferguson, G. C., 1941
Santa Cruz Mountains, Miocene formations: Clark, J. C., 1968b
Southern
Sausesian Stage and molluscan sequence: Weaver, D. W., 1955
Time-stratigraphic units, chart: Corey, W. H., 1954
Tertiary basins, index species: Natland, M. L., 1957
Tertiary formations, molluscan zones, chart: Clark, B. L., 1941
Ventura basin, Mint Canyon Formation, vertebrate-invertebrate: Durham, J. W., 1948b
Faunal lists
Carrito-Cuyama basin: Carlson, S., and others, 1951; English, W. A., 1916
Central and northern, Pliocene: Martin, B., 1916
Channel Islands
San Miguel Island, Miocene formations: Bremner, C. St. J., 1933; Weaver, D. W., and Doerner, D. P., 1969
California—Continued
Faunal lists—Continued
Channel Islands—Continued
Santa Cruz Island, Miocene and Pliocene formations: Weaver, D. W., and Meyer, G. L., 1969
Santa Rosa Island: Avila, F. A., and Weaver, D. W., 1969; Yates, L. G., 1890
Coast Ranges
Diablo Range, Miocene and Pliocene formations: Dickinson, W. R., 1966b
Hollister area, Pliocene Formation: Rogers, T. H., and others, 1967
Northern, San Francisco Bay area, Miocene formations: Weaver, C. E., 1949
Northern, Sonoma County, Merced Formation: Cardwell, G. T., 1958; Dickerson, R. E., 1922; Osmont, V. C., 1905; Travis, R. G., 1952
Pliocene, index species: Woodring, W. P., 1952
Santa Margarita Formation: Nomland, J. O., 1917
Diablo Range
Northern, late Tertiary: Stewart, R. B., 1949
San Benito quadrangle, Miocene and Pliocene formations: Wilson, I. F., 1943
Eel River basin
Pliocene: Harmon, A. K., Jr., 1914
Imperial basin
Carrizo Creek area: Keew, W. S. W., 1914; Orcutt, C. R., 1901b; Vaughan, T. W., 1917
Imperial Formation: Popoff, F. W., 1968; Woodring, W. P., 1931b
Pliocene: Orcutt, C. R., 1890
Los Angeles basin
Fernando Formation: Arnold, R., 1907c; Eaton, J. E., 1926; Eldridge, G. H., 1907a; Moody, C. L., 1918
Northern, Modelo Formation: Dehlinger, P., 1952
Northern, Topanga Formation: Neuerburg, G. J., 1953
Puente Hills, Repetto and Fico Formations: Kundert, C. J., 1952
Repetto Formation: Woodring, W. P., 1938
San Juan Capistrano area, Niguel Formation: Vedder, J. G., 1960
Santa Ana Mountains, Miocene and Pliocene formations: Brebbia, J. F., 1952
Santa Monica Mountains, Miocene and Pliocene formations: Hoots, H. W., 1931
INDEX

California—Continued
Faunal lists—Continued
Los Angeles basin—Continued
Santa Monica Mountains, Topanga Formation:
Arnold, R., 1907c; Soper, E. K., 1938
Southern, Miocene formations: Woodford, A. O., 1925
Turritella inesana and T. ocoyana zones:
Dickerson, R. E., 1914
Vaqueros Formation: Eaton, J. E., 1925
Los Angeles and Ventura basins, Miocene and
Pliocene formations: Kew, W. S. W., 1924
Mount Diablo embayment
Berkeley Hills, Monterey Formation: Lawson, A. C., and Palache, C., 1901
Bromes Formation: Crittenden, M. D., Jr., 1901; Trask, P. D., 1922
Cierbo Formation: Huey, A. S., 1948
Hayward quadrangle, Miocene formations:
Robinson, O. D., 1956
Kirker Formation, Tuff Member: Primmer, S. R., 1964
Kirker Pass area, San Pablo Formation:
Clark, B. L., 1912; Turner, H. W., 1901, 1908
Martinez area, Miocene formations: Weaver, C. E., 1951
Neogene formations: Whitney, J. D., 1865
Northern, St. George Formation: Back, W. H., 1937
Ostrea spp.: Orcutt, C. R., 1890
Pacific Railroad Surveys: Blake, W. P., 1867
Saltbasin Adelaide quadrangle, Santa Margarita For-
formation: Smith, P. B., and Durham, D. L., 1968
Carmel Valley, Monterey Formation: Lawton, A. C., 1924a
Carmel Valley area, Miocene formations: Bowen, O. E., 1906; Fieder, W. M., 1944
Monterey Formation, type area. Hanna, G. D., 1928; Martin, B., 1912
Monterey Shale: Arnold, R., and Johnson, H. R., 1910
San Luis Obispo County, Miocene formations: Hall, C. A., Jr., and Surdam, R. C., 1967
Santa Lucia Range, northern, Miocene forma-
tions: Hash, H. W., 1930
San Joaquin basin
Etchebini Formation: Gester, G. C., 1917;
Nomland, J. O., 1917a
Jacaltos Formation: Nomland, J. O., 1916a
Kettleman Hills, Pliocene formations: Wood-
ing, W. P., and others, 1940
McLure Shale: Barbat, W. F., and Johnson, F. L., 1934
Miocene and Pliocene formations: Watts, W. L., 1904
San Emigdio Mountains, Miocene formations:
Wagner, C. M., and Schilling, K. H., 1923
Santa Margarita Formation: Adegoke, O. S., 1967b; Anderson, R., 1912; Clark, B. L., 1916;
Crowell, J. C., 1952a; Savage, D. E., 1955
Southern, Miocene and Pliocene formations:
Anderson, R., 1912; Barbat, W. F., and Blaisdell, R., 1965
Temblor Formation: Atwill, E. R., 1936;
Dickinson, W. R., 1963
Temblor Formation, type area: Anderson, F. M., 1906; Curran, J. F., 1943
Temblor Range, Miocene and Pliocene forma-
tions: Foss, C. D., and Blaisdell, R., 1965
Vaqueros Formation: Arnold, R., and
Johnson, H. R., 1910; Barbati, W. F., and
von Estorff, F. E., 1933
San Luis Obispo County, Miocene formations:
Hall, C. A., Jr., and Surdam, R. C., 1967
Santa Cruz Mountains, Miocene and Pliocene forma-
tions: Ashby, G. H., 1885a, 1890b;
Brammer, J. C., and others, 1909; Cummings,
J. C., and others, 1962; Haebi, H. L., and
Arnold, R., 1904
San Juan Island, northern, Miocene forma-
tions: Trask, P. D., 1926
San Francisco peninsula, northern, Merced
Formation: Glen, W. F., 1959; Hall, N. T., 1965;
Lawson, A. C., 1893b, 1894
San Joaquin basin
Etchebini Formation: Gester, G. C., 1917;
Nomland, J. O., 1917a
Jacaltos Formation: Nomland, J. O., 1916a
Kettleman Hills, Pliocene formations: Wood-
ing, W. P., and others, 1940
McLure Shale: Barbati, W. F., and Johnson, F. L., 1934
Miocene and Pliocene formations: Watts, W. L., 1904
San Emigdio Mountains, Miocene formations:
Wagner, C. M., and Schilling, K. H., 1923
Santa Margarita Formation: Adegoke, O. S., 1967b; Anderson, R., 1912; Clark, B. L., 1916;
Crowell, J. C., 1952a; Savage, D. E., 1955
Southeastern, Miocene formations: Addicott, W. O., 1965b
Southern border, Miocene and Pliocene forma-
tions: Hoels, H. W., 1930
Tejon Hills, Miocene formations: Clark, B. L., 1916;
Temblor Formation: Atwill, E. R., 1936;
Dickinson, W. R., 1963
Temblor Formation, type area: Anderson, F. M., 1906; Curran, J. F., 1943
Temblor Range, Miocene and Pliocene forma-
tions: Foss, C. D., and Blaisdell, R., 1965
Vaqueros Formation: Arnold, R., and
Johnson, H. R., 1910; Barbati, W. F., and
von Estorff, F. E., 1933
San Luis Obispo County, Miocene formations:
Hall, C. A., Jr., and Surdam, R. C., 1967
Santa Cruz Mountains, Miocene and Pliocene forma-
tions: Ashby, G. H., 1885a, 1890b;
Brammer, J. C., and others, 1909; Cummings,
J. C., and others, 1962; Haebi, H. L., and
Arnold, R., 1904
San Juan Island, northern, Miocene forma-
tions: Trask, P. D., 1926
San Francisco peninsula, northern, Merced
Formation: Glen, W. F., 1959; Hall, N. T., 1965;
Lawson, A. C., 1893b, 1894
San Joaquin basin
Etchebini Formation: Gester, G. C., 1917;
Nomland, J. O., 1917a
Jacaltos Formation: Nomland, J. O., 1916a
Kettleman Hills, Pliocene formations: Wood-
ing, W. P., and others, 1940
McLure Shale: Barbati, W. F., and Johnson, F. L., 1934
Miocene and Pliocene formations: Watts, W. L., 1904
San Emigdio Mountains, Miocene formations:
Wagner, C. M., and Schilling, K. H., 1923
Santa Margarita Formation: Adegoke, O. S., 1967b; Anderson, R., 1912; Clark, B. L., 1916;
Crowell, J. C., 1952a; Savage, D. E., 1955
Southeastern, Miocene formations: Addicott, W. O., 1965b
Southern border, Miocene and Pliocene forma-
tions: Hoels, H. W., 1930
Tejon Hills, Miocene formations: Clark, B. L., 1916;
Temblor Formation: Atwill, E. R., 1936;
Dickinson, W. R., 1963
Temblor Formation, type area: Anderson, F. M., 1906; Curran, J. F., 1943
Temblor Range, Miocene and Pliocene forma-
tions: Foss, C. D., and Blaisdell, R., 1965
Vaqueros Formation: Arnold, R., and
Johnson, H. R., 1910; Barbati, W. F., and
von Estorff, F. E., 1933
San Luis Obispo County, Miocene formations:
Hall, C. A., Jr., and Surdam, R. C., 1967
Santa Cruz Mountains, Miocene and Pliocene forma-
tions: Ashby, G. H., 1885a, 1890b;
Brammer, J. C., and others, 1909; Cummings,
J. C., and others, 1962; Haebi, H. L., and
Arnold, R., 1904
San Juan Island, northern, Miocene forma-
tions: Trask, P. D., 1926
California—Continued

Faunal lists—Continued
Santa Maria basin

Fernando Formation: Arnold, R., and Anderson, R., 1907a; Collom, R. E., 1918

Vaqueros Formation: Arnold, R., and Anderson, R., 1907a

Southeastern, Blythe area, Bouse Formation: Metzger, D. G., 1969

Southern:

Neenach quadrangle, Santa Margarita Formation: Wiese, J. H., 1950

San Raphael Mountains, Miocene formations: Vedder, J. G., and others, 1967

Temblor Formation: Leel, W., and Corey, W. H., 1932

Temblor Range: Anderson, F. M., 1903

Transverse Ranges:

Neenach quadrangle, Santa Margarita Formation: Wiese, J. H., 1950

San Raphael Mountains, Miocene formations: Vedder, J. G., and others, 1967

Santa Ynez Mountains, eastern, "Temblor" Formation: Page, B. M., and others, 1951

Santa Ynez Mountains, Vaqueros Formation: Kleinpell, R. M., and Weaver, D. W., 1963a

Vaqueros Formation: Leel, W., and Corey, W. H., 1932

Ventura basin

Eastern, Castaic Formation: Stanton, R. J., Jr., 1966, 1967a

Eastern, Fernando Formation: English, W. A., 1914b

Eastern "Modelo" Formation: Jahns, R. H., 1940

Fernando Group: Eaton, J. E., 1928; Waterfall, L. N., 1929

Las Posas area, Fernando Formation: Pressler, E. D., 1929

Miocene and Pliocene formations: Bowers, S., 1888, 1890b

Monterey Formation: Arnold, R., 1907b

California—Continued

Faunal lists—Continued

Ventura basin—Continued

Santa Clara Valley, Miocene and Pliocene formations: Eldridge, G. H., 1907b

Simi Valley, Fernando Formation: Woodring, W. P., 1930b

Faunal records

Carizzo-Cuyama basin

Fox Mountain quadrangle, Miocene formations: Vedder, J. G., 1968

Miocene, mollusk-nonmarine vertebrate correlations: Dougherty, J. F., 1940

Santa Margarita Formation: Hackel, O., and others, 1962

Turritella ocoyana: Cushman, J. A., and Laiming, B., 1931

Catalina Island, Miocene formations: Shepard F. P., and others, 1939; Smith, W. S. T., 1897

Channel Islands

Miocene and Pliocene formations: Kennett, W. E., 1952; Weaver, D. W., ed., and others, 1969

Santa Cruz Island: Bereskin, S. R., 1969; Doerner, D. P., 1969

Santa Rosa Island, Miocene formations: Kew, W. S. W., 1927

Coast Ranges

Huasna area, Miocene and Pliocene formations: Anderson, T. I., and Crawford, F. D., 1938

Late Tertiary: Blake, W. P., 1886; Trask, J. B., 1855b

Neogene formations, characteristic species: McLaughlin, R. P., and Waring, C. A., 1914; Reed, R. D., 1933

Northern, Del Norte County, Miocene and Pliocene formations: Maxson, J. H., 1933; Moore, G. W., and Silver, E. A., 1968

Northern, Gualala area: Peck, J. S., Jr., 1957

Northern, Miocene and Pliocene formations: Clark, S. G., 1940; Diller, J. S., 1902; Irwin, W. P., 1960

Northern, Napa County, Carneros Creek: Morse, R. R., and Bailey, T. L., 1938

Northern, Sonoma County, Merced Formation: Morse, R. R., and Bailey, T. L., 1938

Northern, Sonoma County, Ohlson Ranch Formation: Higgens, G. C., 1957, 1960

Northern, Sonoma County, Petaluma? Formation: Morse, R. R., and Bailey, T. L., 1935

Northern, Sonoma County, Petaluma Formation, brackish-water species: Hanna, G. D., 1923; Taylor, D. W., 1966

Pacific Railroad Surveys, fossil localities: Blake, W. P., 1855
California—Continued
Faunal records—Continued
Coast Ranges—Continued
Phosphatic facies, Miocene: Dickert, P. F., 1956
Southern, Miocene formations: Fairbanks, H. W., 1894b, 1895, 1898; Richards, G. L., Jr., 1936
Colorado River area, brackish-water assemblages: Smith, P. B., 1960b, 1968b
Diablo Range
Miocene genera: Turner, H. W., and Stanton, T. W., 1894
Parkfield area: Dickinson, W. R., 1966a
Quien Sabe quadrangle: Leith, C. J., 1949
San Jose area: Rose, R. L., 1965
Eel River basin
Carrizo Mountain: Fairbanks, H. W., 1893a; Mendenhall, W. C., 1910
Coyote Mountain: Mitchell, E. D., Jr., 1961
Crassostrea: Stearns, R. E. C., 1879
Imperial basin
Blythe area: Hamilton, W., 1960
Carrizo Creek: Arnold, R., 1904; Bowers, S., 1901; Merrill, F. J. H., 1914; Orenutt, C. R., 1893a, 1901a
Carrizo Mountain: Fairbanks, H. W., 1893a; Mendenhall, W. C., 1910
Coyote Mountain: Mitchell, E. D., Jr., 1961
Crassostrea: Stearns, R. E. C., 1879
Imperial Formation: Alien, C. R., 1957; Mansfield, W. C., 1932
Indio Hills: Buwalda, J. P., and Stanton, W. L., 1930
San Gorgonio Pass: Vaughan, F. E., 1918, 1922
Los Angeles basin
Baldwin Hills: Tiele, A. J., 1926
Deadman's Island: Crickmay, C. H., 1929
Downtown Los Angeles: Hertlein, L. G., 1952; Martin, L., 1952; Soper, E. K., and Grant, U. S., 4th, 1933; Stearns, R. E. C., 1900
Eastern, Santa Ana Narrows, Topanga Formation: Gray, C. H., Jr., 1961
Miocene and Pliocene formations: Arnold, R., 1907a; Eldridge, G. H., and Arnold, R., 1907; Merriam, J. C., 1900; Watts, W. L., 1900
Miocene, characteristic species: Natland, M. L., and Rothwell, W. T., Jr., 1954
Orange County: Adams, B. C., 1932
Orange County, Capistrano Formation: White, W. R., 1956
Pholad borings: Edwards, E. C., 1934
Puente Hills, Fernando Formation: Davies, S. N., and Woodford, A. O., 1949; Yerkes, R. F., 1900
San Joaquin Hills, Miocene and Pliocene formations: Vedder, J. G., and others 1957
Santa Ana Mountains: Bowers, S., 1896a

INDEX

California—Continued
Faunal records—Continued
Los Angeles basin—Continued
Santa Monica Mountains, Miocene and Pliocene formations: Rivers, J. J., 1944; Schoellhammer, J. E., and others, 1962; Schoellhammer, J. E., and Yerkes, R. F., 1961; Woodford, A., O., and Bailey, T. L., 1928; Yerkes, R. F., and others, 1964
Santa Monica Mountains, Modello Formation: Pierce, R. L., 1956; Woodring, W. P., 1930a
Southeastern, Topanga Formation: Smith, P. B., 1960a
Topsana Formation: Allison, R. C., 1965
Trenza polycrassum: Pitch, J. E., and Retsm, R. D., 1957
Turritella tenuana and T. ocoyana faunas: Schoellhammer, J. E., and Woodford, A. O., 1954
Millea, Miocene appearance: Vokes, H. E., 1999
Miocene and Pliocene, characteristic species: Hanna, G. D., and Hertlein, L. G., 1941; Yoder, L., 1921
Mojave Desert, Antelope Valley area: Dibblee, T. W., Jr., 1967
Monterey Formation, common species: Bramlette, M. N., 1946
Mount Diablo embayment
Briones Formation: Trask, P. D., 1921
Miocene formations: Clark, B. L., 1913; Cressert, W. V., 1914; Kow, W. S. W., and Stoner, R. C. 1913; Tyson, F. T., 1850
Oursan Sandstone: Ronsberger, J. M., 1969
San Jose area: Templeton, E. C., 1933
San Ramon Formation: Scheuck, H. G., and Reinhartz, P. W., 1936
Nassarius californianus, range extension: Rivers, J. J., 1931
Neogone mollusks: Whitney, J. D., 1865
Northern, continental shelf, Wildcat Formation: Hanna, G. D., 1952
Ostrea titan: Hertlein, L. G., 1959; Nicoll, D., 1964
Ostrostaeidae, Neogene species: Hallprin, A., 1884; White, C. A., 1884
Salinas basin
Adelaida quadrangle, Miocene formations: Durham, D. L., 1953a; Wilson, R. S., 1931
Bradley-San Miguel area, Miocene and Pliocene formations: Taliuferro, N. L., 1943
La Panza Range, Santa Margarita Formation: Reed, R. D., 1926; Richards, G. L., Jr., 1935
Ostrea titan: Fairbanks, H. W., 1894a; Hughes, A. W., 1968
Reliz Canyon, Miocene formations: Kleinpell, R. M., 1926
San Lucas area: Richards, G. L., Jr., 1935
Santa Lucia Range, Vaqueros Formation: Scheuck, H. G., and Childs, T. S., Jr., 1912
California—Continued

Faunal records—Continued

Salinas basin—Continued

Santa Margarita Formation: Durham, D. L., 1966a; English, W. A., 1918; Fairbanks, H. W., 1919

Vaqueros Formation, type section: Kilkenny, J. E., 1948; Kleinpell, R. M., and others, 1967

San Diego embayment

Pliocene: Fairbanks, H. W., 1899b; Hanna, G. A., 1930

San Francisco Bay area, Miocene and Pliocene formations: Hertlein, L. G., 1951

San Francisco peninsula, northern, Merced Formation: Louderback, G. D., 1951

San Joaquin basin

Devil's Den-McLure Valley, Miocene formations: Brooks, T. J., and others, 1955

Diablo Range, Cantus-Panoche area: Anderson, R., 1911

Diablo Range, San Pablo Formation: Briggs, L. I., Jr., 1953

Elk Hills, Etchegoin Formation: Woodring, W. P., and others, 1922

Kettleman Hills, Etchegoin Formation: Nations, J. D., 1928

Kettleman Hills, Pliocene formations: Woodring, W. P., 1946b

Miocene and Pliocene formations: Watts, W. L., 1900; Woodring, W. P., 1920b

Northern Moreno Gulch, "Tamborl" Formation: Payne, M. B., 1951

Reef Ridge, Miocene formations: Durham, J. W., 1957; Bramlette, M. N., 1944; Von Estorff, F. E., 1930

Reef Ridge Shale: Siegfus, S. S., 1939

San Emigdio Mountains, Miocene and Pliocene formations: DeLise, K. C., 1967; Dibblee, T. W., Jr., 1951; Marks, J. G., 1943; Pack, R. W., 1920

Tamborl Formation: Henry, G., 1927

Temblor Range, Chico Martinez Creek, Miocene formations: Stinemeyer, E. S., and others, 1959

Temblor Range, San Joaquin Formation: Church, C. C., 1958

Tulare County, subsurface, Pliocene: Kooling, R. L., and Lohman, K. E., 1964

Western, Miocene Formations: Kooling, R. L., and Lohman, K. E., 1964

Santa Maria basin

Husnas area, Miocene formations: Hughes, M. W., 1925

Miocene and Pliocene formations: Arnold, R., and Anderson, R., 1907b; Fairbanks, H. W., 1906

Obispo Formation: Hall, C. A., and others, 1956

Sisquoc Formation: Porter, W. W., 1932

Southern

Miocene and Pliocene formations: Dall, W. H., 1925; Jahns, R. H., and others, 1954; Perilliat Montoya, M. C., 1908; Reed, R. D., and Hollister, J. H., 1934

Vaqueros and Modelo Formations, characteristic species: Kew, W. S. W., 1923

Tayaira spp.: Dall, W. H., 1901

Transverse Ranges

Cajon Pass area, Vaqueros Formation: Dibblee, T. W., Jr., 1967; Woodring, W. P., 1942

Miocene and Pliocene formations: Antisell, T., 1856b; Hughes, A. W., 1947; Kew, W. S. W., 1919; Nelson, R. N., 1925

Santa Ynez Mountains, "Teblor Stage": Koonan, M. F., 1932

Upper Sespe Creek area, Santa Margarita Formation: Ingle, J. C., Jr., 1960; Lowe, D. R., 1960
California—Continued

Faunal records—Continued

Vaqueros Formation: Loel, W. F., 1918

Ventura basin

Big Mountain oil field area, Miocene and Pliocene formations: Hall, E. A., and Redin, T., 1957

Eastern, Ridge Basin Group: Crowell, J. C., 1952

Fillmore area, Miocene and Pliocene formations: Eschner, S., 1969

Los Sauces Creek, Vaqueros Formation: Redwine, L. E., and others, 1952

Miocene and Pliocene formations: Carson, C. M., 1965; Cartwright, L. D., Jr., 1938; Eldridge, G. H., and Arnold, R., 1957; Meredith, J. C., 1900; Redwine, L. E., chm., and others, 1952

Pico Formation: Boss, K. J., and Merrill, A. S., 1965

Pliocene, fossil localities: Hazzard, J. C., 1947

Rincon Creek, Santa Barbara Formation: Redwine, L. E., 1957

Santa Barbara Formation, Grant, U. S., 4th, and Hertlein, L. G., 1941

South Mountain, Pico Formation; Yeats, R. S., 1965

Vaqueros Formation: Corey, W. H., 1929; Crowell, J. C., 1950; Dibblee, T. W., Jr., 1952

Vaqueros Formation, Pecten seepensis var. hydei: Bailey, T. L., 1952a

Ventura River area, Miocene and Pliocene formations: Bailey, T. L., 1952b

Geochronology

Continental vertebrate-marine mollusk relationships: Durham, J. W., and others, 1954

Miocene

Vaqueros Formation, Lyellian correlation: Keen, A. M., 1942

Vaqueros Formation, pelecypod evidence: Cox, L. R., 1942

Miocene-Pliocene boundary

Molluscan correlation: Stanton, R. J., Jr., 1967b

San Joaquin basin: Adegoke, O. S., 1967d

Santa Cruz Mountains: Clark, J. C., 1968a

Neogene, time-stratigraphic subdivisions: Arnold, R., 1906b; Smith, J. P., 1910

Pliocene-Pleistocene boundary: Gale, H. R., 1931; Schenck, H. G., and Keen, A. M., 1940a

Southern, molluscan “stages”: Durham, J. W., 1954

Monographs of genera

Haliotis, Miocene species: Cox, K. W., 1962

Pecten s.l.: Arnold R., 1960b

Oil and gas fields

Carizzo-Cuyama basin, Morales oil field, Miocene faunal records: Lawrence, E. D., 1960

California—Continued

Oil and gas fields—Continued

Imperial basin, Ostrea: Auger, I. V., 1920

Los Angeles basin

Inglewood oil field, Pliocene species: Hazzard, J. C., 1947

Miocene and Pliocene formations: Wissler, S. G., 1941

Plays del Rey oil field, Miocene species: Corey, W. H., 1935, 1936; Metzner, L. H., 1935

Ventos oil field, Miocene species: Corey, W. H., 1935, 1936

San Joaquin basin

Belgian Anticline oil field, Etchegoin Formation, faunal records: Park, W. H., and others, 1957

Belridge oil field, Miocene formations, characteristic species: Wharton, J. B., 1943

Buena Vista Hills oil field, Miocene and Pliocene formations, characteristic species: Borkovich, G. J., 1958; Howard, P. J., 1938

Buena Vista Hills oil field, Pliocene zones: McMasters, J. H., 1943

Burrel oil field, Santa Margarita Formation, faunal records: Sullivan, J. C., 1961

Buena Vista gas field, Etchegoin Formation, marine-nonmarine markers: Musser, E. H., 1969

Buena Vista gas field, Pliocene, Mulinia bed: Chambers, L. S., 1943

Calders Corner oil field, Etchegoin Formation, characteristic species: Weddle, J. R., 1962

Canal and Strand oil fields, Etchegoin Formation, Mulinia densata; Walting, R. W., 1939

Canyon Creek area, Temblor Formation: Hill, F. L., 1960

Cawing oil field, pholad borings: Ruckman, J. H., 1913

Devils Den oil field, Miocene formations, characteristic species: VanCouvering, M., and Allen H. B., 1943

Dudley Ridge gas field, Mya and Mulinia zones: Henny, G., 1943

East Coalinga Extension oil field, upper Mulinia bed: Kaplow, E. J., 1942

Edison oil field, Miocene formations, faunal records: Cushman, J. A., and Laiming, B., 1931; Kasline, F. E., 1941

Fruitvale oil field, characteristic pelecypods: Miller, R. H., and Ledingham, G. W., 1931

Galena oil field, Miocene and Pliocene formations, faunal records: Preston, H. M., 1931

Giffen Hills oil field, Miocene formations, faunal records: Sullivan, J. C., 1962

Harvester gas field, Pliocene formations, faunal records: HIH, E. L., 1961a

Kern Bluff oil field, Santa Margarita Formation: Corwin, C. H., 1950
California—Continued
Oil and gas fields—Continued
San Joaquin basin—Continued

Kern Front oil field, Miocene and Pliocene formations, characteristic species: Park, W. H., 1965
Kern River oil field, Etchegoin Claystone Member, *Macoma terica, Cryptopoma;* Edwards, E. C., 1943
Kern River oil field, Etchegoin Formation, *Macoma;* Hendrickson, A. B., 1928
Kettleman Hills oil field, Miocene and Pliocene formations, characteristic species: Hill, F. L., 1965
Kettleman Middle Dome oil field, Miocene and Pliocene formations, characteristic species: Zulberti, J. L., 1956
McKittrick oil field, Antelope Shale, *Pecten peckhami;* Weddle, J. R., 1965
McKittrick oil field, Miocene and Pliocene formations, characteristic species: Zulberti, J. L., 1957
Midway-Sunset oil field, Antelope Shale, *Pecten peckhami;* Zulberti, J. L., 1957
Midway-Sunset oil field, Pliocene formations, faunal zones, characteristic species: Ayars, R. N., 1941, 1947
Mountain View oil field, Chanac Formation, characteristic species: Miller, R. H., and Bloom, C. V., 1937
Mountain View oil field, Miocene formations, characteristic species: Miller, R. H., and Ferguson, G. C., 1943; Park, W. H., 1966
North Belridge oil field, Miocene formations, characteristic species: Preston, H. M., 1932
Round Mountain oil field, Miocene formations, faunal records: Park, W. H., and others, 1953; Rogers, R. G., 1943
Ventura basin

Canoga Park oil field, Topanga Formation, faunal records: Rothermel, R. V., 1964
Capitan oil field, Vaqueros Formation, characteristic species: Dolman, S. O., 1938
Cascade oil field, Sunshine Ranch Formation, faunal records: Roth, G. H., and Sullwold H. H., Jr., 1958
Elwood oil field, Tmeldor Formation, *Robulus mud* pecten zone: Hill, F. L., 1943
San Joaquin basin

Kettleman Hills, Pliocene, faunal and geochemical evidence: Stanton, R. J., Jr., and Dodd, J. R., 1969
Late Miocene: Addicott, W. O., and Vedder, J. G., 1953
Santa Cruz Island, Miocene, foraminiferal and molluscan evidence: Bereskin, S. R., and Edwards, L. N., 1969
Miocene, middle, fish and invertebrate inferences: Backskl, J. A., 1969
Oligocene and Miocene: Wiedey, L. W., 1928
Pliocene-Pleistocene boundary, glacial control: Gala, H. R., 1951
San Joaquin basin

California—Continued
Oil and gas fields—Continued
San Joaquin basin—Continued
Wasco oil field, San Joaquin Clay, first *Mya* zone: Barnes, R. M., 1943
Western, *Pecten andersoni;* Goudkoff, P. P., 1941, 1947
Santa Maria basin
Cat Canyon oil field Monterey Shale, faunal records: Cross, R. K., 1943
Guadalupe oil field, Caraga Formation, faunal records: Lawrence, E. D., 1964
Santa Maria Valley oil field, Miocene and Pliocene formations, characteristic species: Canfield C. R., 1967

Ventura basin

Canoga Park oil field, Topanga Formation, faunal records: Rothermel, R. V., 1964
Capitan oil field, Vaqueros Formation, characteristic species: Dolman, S. O., 1938
Cascade oil field, Sunshine Ranch Formation, faunal records: Roth, G. H., and Sullwold H. H., Jr., 1958
Elwood oil field, Tmeldor Formation, *Robulus mud* pecten zone: Hill, F. L., 1943
San Joaquin basin

Kettleman Hills, Pliocene, faunal and geochemical evidence: Stanton, R. J., Jr., and Dodd, J. R., 1969
Late Miocene: Addicott, W. O., and Vedder, J. G., 1953
Southern, Miocene and Pliocene, foraminiferal and molluscan evidence: Ingle, J. C., Jr., 1967
Ventura basin

Pliocene: Yeats, R. S., and others, 1967
Pliocene and Pleistocene: Waterfall, L. N., 1929

Pleaeoclimatology

Channel Islands
Santa Cruz Island, Miocene, foraminiferal and molluscan evidence: Bereskin, S. R., and Edwards, L. N., 1969
Miocene, middle, fish and invertebrate inferences: Backskl, J. A., 1969
Oligocene and Miocene: Wiedey, L. W., 1928
Pliocene-Pleistocene boundary, glacial control: Gala, H. R., 1951
San Joaquin basin

Kettleman Hills, Pliocene, faunal and geochemical evidence: Stanton, R. J., Jr., and Dodd, J. R., 1969
Late Miocene: Addicott, W. O., and Vedder, J. G., 1953
Southern, Miocene and Pliocene, foraminiferal and molluscan evidence: Ingle, J. C., Jr., 1967
Ventura basin

Pliocene: Yeats, R. S., and others, 1967
Pliocene and Pleistocene: Waterfall, L. N., 1929

Paleoecology

Eel River basin, Wildcat Group, bathymetric inferences: Talmadge, R. R., 1968
Los Angeles basin, Repetto Formation: Woodward, W. P., 1938
Salinas basin, southern, Monterey Shale: Smith, P. B., 1968a
San Joaquin basin, Kern River area, Sharktooth Hill: Mitchell, E. D., Jr., 1966
INDEX

California—Continued
Paleoecology—Continued
Santa Margarita Formation, bryozoan-mollusk relationship: Adegoke, O. S., 1967a
Santa Maria basin
Pismo Formation, sand-pipes: Adegoke, O. S., 1966b; Evans, J. W., 1967
Ventura basin
Eastern, Castaic Formation: Stanton, R. J., Jr., 1962, 1967a
Plio Formation, orientation of pelecypod valves: Crowell, J. C., and others, 1966; Hoskins, C. W., 1967
Pliocene or Pleistocene, Santa Barbara zone: Meade, R. F., 1966, 1967
South Mountain, Fernando Formation: Yeats, R. S., and others, 1967
Western, Santa Barbara Formation, biofacies: Valentine, J. W., 1962
 Paleoecography
Coast Ranges
Late Miocene, maps: Hall, C. A., Jr., 1960
Miocene: Reed, R. D., 1926
Miocene, San Androas fault, evidence for lateral slip: Addicott, W. O., 1967a
Southern, Miocene: Eaton, J. E., and others, 1941
Imperial basin, late Tertiary: Brown, J. S., 1923
Miocene: Addicott, W. O., 1967b; Clark, B. L., and Arnold, R., 1918b; Cooper, J. O., 1974
Miocene and Pliocene, maps: Clark, B. L., 1950
Oligocene and Miocene, maps: Addicott, W. O., 1968a
San Francisco Bay area, Merced Formation, map: Addicott, W. O., 1969b
San Joaquin basin, Kettleman Hills, Pliocene: Stanton, R. J., Jr., 1969
Southern, Miocene and Pliocene, maps: Corey, W. H., 1964; Eaton, J. E., 1932
Vaqueros Formation, map: Loel, W., and Corey, W. H., 1932
Systematic descriptions
Aptasia spp.: English, W. A. 1914a
Arca spp.: Guimont, V. C., 1904
Carritzo-Cuyama basin
Miocene formations: Eaton, J. E. and others, 1941
Neptunea caton: Grant, U. S., 4th, and Quayle, E. H., 1934
Pecten juanensis: Grant, U. S., 4th, and Stevenson, R. E., 1948
Channel Islands, Miocene formations: Hertlein, L. G., 1928b
Coast Ranges
Miocene formations: Conrad, T. A., 1857b, 1857d; Gabb, W. M., 1866, 1869a; Wiedey, L. W., 1829, 1929a
Northern, Sonoma County, Pliocene formations: Howe, H. V., 1922; Peck, J. H., Jr., 1960
California—Continued
Systematic descriptions—Continued
Coast Ranges—Continued
Ostrea titan: Conrad, T. A., 1853b
Pliocene formations: Gabb, W. M., 1866, 1869a; Martin, B., 1914
Ed River basin
Wildcat Group: Faustman, W. F., 1950; Martin, B., 1914
Imperial basin
Carrizo Creek area: Conrad, T. A., 1853a, 1855b; Marcou, J., 1858
Coyote Mountain, Imperial Formation: Hansa, G. D., 1926b
Imperial Formation: Emerson, W. K., 1941; Hansa, G. D., and Streug, A. M., 1941; Ostrea zeppelin: Conrad, T. A., 1854
Larkina: Reinhart, P. W., 1858
Los Angeles basin
Monterey Shale, pelecypods: Trask, J. B., 1856
Pliocene formations: Dall, W. H., 1900; Moody, C. L., 1916
Repetto Formation: Hertlein, L. G., 1929a; Woodring, W. F., 1938
Santa Monica Mountains, Miocene and Pliocene formations: Conrad, T. A., 1857c; Raymond, W. J., 1914
Santa Monica Mountains, Modelo Formation: Woodring, W. P., 1931c
Santa Monica Mountains, Topanga Formation: Arnold, R., 1907e
Mount Diablo embayment
Briones Formation: Trask, P. D., 1922
Miocene formations: Hall, C. A., Jr., 1948b; Hall, E. B., and Ambrose, A. W., 1947; Remond, A., 1953
San Lorenzo Group: Clark, B. L., 1915a
San Pablo Group: Clark, B. L., 1915a
San Joaquin basin
Coallnga area, Miocene and Pliocene formations: Adegoke, O. S., 1969; Anderson, F. M., 1995; Arnold, R., 1909b
San Joaquin basin
California Continued
Paleoecology Continued
Santa Margarita Formation, bryozoan-mollusk relationship: Adegoke, O. S., 1967a
Santa Maria basin
Pismo Formation, sand-pipes: Adegoke, O. S., 1966b; Evans, J. W., 1967
Ventura basin
Eastern, Castaic Formation: Stanton, R. J., Jr., 1962, 1967a
Plio Formation, orientation of pelecypod valves: Crowell, J. C., and others, 1966; Hoskins, C. W., 1967
Pliocene or Pleistocene, Santa Barbara zone: Meade, R. F., 1966, 1967
South Mountain, Fernando Formation: Yeats, R. S., and others, 1967
Western, Santa Barbara Formation, biofacies: Valentine, J. W., 1962
California—Continued
Systematic descriptions—Continued
San Joaquin basin—Continued
Kettleman Hills, Pliocene formations: Woodring, W. P., and others, 1940
San Emigdio Mountains, Monterey Group: Wagner, C. M., and Schilling, K. H., 1923
Santa Margarita Formation: Hertlein, L. G., 1934; Nomland, J. O., 1917c
Temblor Range, Santa Margarita Formation: Woodring, W. P., 1932
Santa Cruz Mountains, Miocene and Pliocene formations: Arnold, R., 1908b; Carson, C. M., 1926; Conrad, T. A., 1857c
Santa Maria basin
Area leptogrammica: Hall, C. A., Jr., 1964
Arcidae: Reinhart, P. W., 1937
Pliocene formations: Arnold, R., 1907d; Bartsch, P., 1911; Carson, C. M., 1926; Woodring, W. F., and Bramlette, M. N., 1950
Vaqueros Formation: Hertlein, L. G., 1937
Southern, Pliocene formations: Carson, C. M., 1925b, 1926
Transverse Ranges, Santa Ynez Mountains, Miocene formations: Conrad, T. A., 1857c
Vaqueros Formation: Loel, W., and Corey, W. H., 1932
Ventura basin
Fernando Group: Waterfall, L. N., 1929
Santa Barbara area, Santa Barbara Formation: Ball, W. H., 1917; Gabb, W. M., 1861; Trask, J. B., 1855a
Vaqueros Formation: Arnold, R., 1907d
Taxonomy
Agasoma sinuatum: Woodring, W. P., 1956
Conrad's (1857d) species, Santa Ynez Mountains: Woodring, W. P., 1931a
Crenomytilus, Miocene and Pliocene species: Soot-Ryen, T., 1955
Miocen sanctaecrusis: Vokes, H. E., 1939
Miocene species, Carrizo-Cuyama basin: Mytilus loelii: Grant, U. S., 4th, 1930
Nassarius, Pliocene species: Addicott, W. O., 1965a, 1965c
Nisi? antissili: Emerson, W. K., 1905
Ostrea californica, Imperial basin: Hanna, G. D., and Hertlein, L. G., 1927b
Ostroidea, Miocene, valid species: Tieje, A. J., 1939
Pectinids: Hertlein, L. G., 1928a, 1981b, 1938; Woodring, W. F., 1909c
Tertiary species, systematic catalogue, revised generic assignments: Keen, A. M., and Benton, H., 1940, 1944
Tertiary species, systematic list, taxonomic notes: Gabb, W. M., 1869b
Turritella varia: Wiedey, L. W., 1929b
Typhus lambdites: Keen, A. M., 1944
Ventricolaria n. sp.: Keen, A. M., 1954a
Zoogeography
Cost Ranges
Miocene provinces, reply to Durham and Primmer (1962): Hall, C. A., Jr., 1962c
Miocene provinces, San Andreas fault, evidence for lateral slip: Hall, C. A., Jr., 1959a, 1960, 1962a
Imperial basin, late Tertiary, tropical affinities: Bramkamp, R. A., 1935; Dickerson, R. E., 1918
Miocene, Turritella ineziana: Addicott, W. O., 1967a, 1967b
Provincialism, Miocene and Pliocene: Durham, J. W., 1963
Catalog
British Columbia
Holocene mollusks, Tertiary ranges, Pacific coast: LaRocque, A., 1953
California
Cenozoic species, geologic range, geographic distribution: Cooper, J. G., 1888, 1894
Gabb's Neogene types, California University Geological Museum: Merriam, J. C., 1895
Miocene and Pliocene types, San Diego Natural History Museum: Wilson, E. C., 1966
Pliocene and Pleistocene species: Grant, U. S., 4th, and Gale, H. R., 1931
Southern, Holocene species, ecologic data, illustrations: McLean, J. H., 1969
Tertiary, figured specimens, prior to 1942: Keen, A. M., and Benton, H., 1940, 1944
Tertiary species, geologic ranges: Gabb, W. M., 1869b
Fossil invertebrates
U.S. National Museum, types specimens, taxonomic data: Schuchert, C. assisted by Dall, W. H., and others, 1905
INDEX

Catalog—Continued
Gastropoda
Systematics, illustrations: Moore, R. C., ed., and others, 1969
North America
Index fossil, stratigraphic data: Shimer, H. W., and Schrock, R. R., 1944
Oregon
Shumard’s (1858) types, Washington University at St. Louis: Trumbull, E. J., 1958
Pacific Coast
Æfia, valid species: Schenck, H. G., 1935b
Ardeidae: Reinhart, P. W., 1943
Conrad’s Cenozoic type specimens, Philadelphia Academy of Natural Sciences: Moore, E. J., 1962
Current research
Tertiary invertebrates, 1924: Clark, B. L., 1924
Holocene genera, ecologic data: Keen, A. M., 1968
Holocene pelecypods, systematics, geographic ranges: Olsson, A. A., 1961
Holocene species
Geographic ranges: Dall, W. H., 1921a
Latitudinal ranges: Keen, A. M., 1937
Tertiary ranges, original descriptions: Oldroyd, I. S., 1924b
Oregon and Washington
Tertiary, geologic names, selected paleontologic data: Youngquist, W., 1961
Tertiary species, original descriptions, illustrations: Weaver, C. E., 1942
Pandoridae, Miocene species: Boss, K. J., 1965
Pacific Ocean
Eastern, Holocene Pectinidae: Grau, G., 1959
Pelecypoda
Systematics, illustrations: Moore, R. C., ed., and others, 1969
United States
Geologic names, 1936-1960, miscellaneous faunal records: Kerother, G. C., and others, 1966
Geologic names, prior to 1936, miscellaneous faunal records: Wilmarth, M. G., 1938
Washington
Holocene mollusks, Puget Sound, ecologic data, fossil occurrences: Oldroyd, I. S., 1924a
William Healey Dall
Zoogeography: Boss, K. J., and others, 1968
Central America
Faunal lists
Costa Rica, Carballo area: Haas, O., 1942
Romano, J., 1912
Paleogeography
Miocene and Pliocene
Panama-Costa Rica seaways: Clements, T., 1941
Panama land bridge, map: Woodring, W. P., 1966

Central America—Continued
Systematic descriptions
Panama
Miocene, Gatun Formation: Vokes, E. H., 1969
Zoogeography
Costa Rica, Caribbean coast, Miocene, Pacific analogues: Olsson, A. A., 1922
Miocene, endemism: Woodring, W. P., 1965
Panama, Canal Zone, Miocene-Holocene lineages: Woodring, W. P., 1964
Correlation
Alaska
Alaska Peninsula, Unga Formation: Atwood, W. W., 1911
Aleutian Islands, Arctic Coast, Gulf of Alaska, late Cenozoic: Hopkins, D. M., 1967b
Bering Sea, American and Russian coasts, late Cenozoic: Hopkins, D. M., and others, 1965
Gulf of Alaska, Yakataga Formation: Clark, B. L., 1933
Tertiary formations, chart, annotations: MacNeil, F. S., and others, 1961
British Columbia
Vancouver Island
Sooke Formation: Clapp, C. H., 1912
West coast, Hesquiat-Noottka area, Miocene: Jelksosky, J. A., 1954
California
Carillo-Cuyama basin, Miocene, continental vertebrates-marine mollusks: James, G. T., 1963
Coast Ranges
Central, blue sand formations: Lerbekmo, J. F., 1961
Central and northern, Pliocene formations: Martin, B., 1913, 1916
Chart, characteristic species: Vanderhoof, V. L., 1986
Northern, Olson Ranch Formation: Peck, J. H., Jr., 1960
Northern, Sonoma County, Mere Formation: Stirton, R. A., 1952
Pliocene-Pleistocene boundary, chart: Woodring, W. P., 1952
Vaqueros Formation, correlation with Europe: Clark, B. L., and Durham, J. W., 1942
Renz, H. J., Jr., 1958
Woodring, D. W., 1942
Vaqueros and Temblor Formation, Tullitella inzona zone: Louderback, G. D., 1913
Imperial basin, Pliocene, Atlantic affinities: Dickerson, R. E., 1917a
Los Angeles basin, Pliocene, chart: Arnold, R., 1903
Mount Diablo embayment, Apasoma gravidum zone: Clark, B. L., 1917
Neogene, time-stratigraphic subdivisions: Clark, B. L., 1921b
Correlation—Continued

California—Continued

Pectinids, European affinities: Eaton, J. E., 1939a; Mougin, D., 1959
Pliocene formations: Grant, U. S. 4th., and Hertlein, L. G., 1941; Woodring, W. P., and others, 1940
San Joaquin basin
Caribbean, Gulf Coast, Europe, Miocene: Keen, A. M., 1943
Continental vertebrates-marine mollusks, Miocene, chart: Bode, F. D., 1935; Merriam, J. C., and Pack, R. W., 1913
Foraminiferal and mollusk zones, chart: Beck, R. S., 1982
Megafaunal-microfaunal-continental vertebrate stages, chart: Repenning, C. A., 1960
Santa Cruz Mountains, Miocene formations: Clark, J. C., 1968b
Southern
Saucesian Stage and molluscan sequence: Weaver, D. W., 1957b
Time-stratigraphic units, chart: Corey, W. H., 1954
Tertiary basins, index species: Natland, M. L., 1957
Tertiary formations, molluscan zones, chart: Clark, B. L., 1941
Ventura basin, Mint Canyon Formation, vertebrate-invertebrate: Durham, J. W., 1945b

Methods
Tertiary, percentage of living species, discussion: Keen, A. M., 1960

Mexico
Gulf of California, Miocene and Pliocene formations: Durham, J. W., 1940b
Oregon
Astoria embayment, Astoria Formation: Howe, H. V., 1926
Astoria Formation: Conrad, T. A., 1856b, 1866
Coo Bay embayment, Empire Formation: Howe, H. V., 1921
Newport embayment, Miocene formations: Snively, P. D., Jr., and others, 1964
Northwestern
Molluscan and foraminiferal stages, chart: Newton, V. C., Jr., 1969
Scappoose Formation: Wilkinson, W. D., and others, 1946
Vaqueros "stage": Durham, J. W., and others, 1942

Pacific Coast
Acita gettsburgensis zone: Clark, B. L., and Arnold, R., 1923
Astoria Formation: Clark, B. L., 1917
California and Ecuador, Miocene: Marks, J. G., 1951

Correlation—Continued

Pacific Coast—Continued
Late Cenozoic, mammalian-molluscan-foraminiferal stages, chart: Savage, D. E., 1955
Miocene, "Blakeley" and "Vaqueros Stages": Addicott, W. O., 1967b
Neogene: Dall, W. H., and Harris, G. D., 1892
Oligocene and Miocene: Dall, W. H., 1898
Oligocene and Miocene, Dosinia: Durham, J. W., 1957b
Peru and California, Neogene: Olsson, A. A., 1932
Provincial megafaunal and microfaunal stages, European relationships: Durham, J. W., 1960
Sooke and Vaqueros Formations, partial time equivalence: Vanderhoof, V. L., 1942
Tertiary basins, molluscan and foraminiferal stages: Weaver, C. E., and others, 1944
Turritella spp., stratigraphic ranges, chart: Merriam, C. W., 1941

Pacific Ocean
California and Japan, Asagian Stage and "Vaqueros Stage": Kobayashi, T., and Shikama, T., 1901
Northeast Pacific coast and Japan
Oligocene and Miocene, similar species: Durham, J. W., and Sasa, Y., 1961
Pectinids, Neogene: Masuda, K., 1962
Pholadomya, California-Japan, Miocene species: Omori, M., 1962

Panama
Miocene, Aquitanian Stage: Eames, F. E., and others, 1962

Washington
Puget Trough
Challam Formation: Stirton, R. A., 1960
Oligocene and Miocene formations: Tegland, N. M., 1933
Twin River Formation, upper part: Brown, R. D., and others, 1960

Faunal lists
Alaska
Alaska Peninsula
"Astoria group": Dall, W. H., and Harris, G. D., 1892
Late Tertiary: Burk, C. A., 1965
Miocene: Isbister, A. K., 1855
Unga and Popof Islands: Dall, W. H., 1904
Aleutian Islands, Kanaga and Tanaga Islands; Fraser, G. D., and Barnett, H. F., 1969
Arctic coast
Carter Creek: Dall, W. H., 1920; Leffingwell, E. de E., 1919
Colville River area: Dall, W. H., 1920; Schrader, F. C., 1904

Bering Sea
Bristol Bay, Nushagak Formation: Mertie, J. B. Jr., 1938
Nome, "Submarine Beach": Hopkins, D. M., and others, 1960
Nome, buried beaches: MacNeil, F. S., and others, 1943
Faunal lists—Continued
Alaska—Continued
Bering Sea—Continued
Pribilof Islands: Barth, T. F. W., 1966; Cox, A. V., and others, 1966; Dall, W. H., 1909, 1910; Stanley-Brown J., 1892
Gulf of Alaska
Kutila district, Kayak Island-Controller
Bay: Martin, G. C., 1908, 1906
Kodiak Island: Capps, S. R., 1937
Lituya district, Chenogen Island: Martie, J. B., Jr., 1931
Middleton Island: Miller, J. B., Jr., 1931
Yakataga district: MacNeil, F. S., 1957; Maddern, A. G., 1914; Spurr, J. E., 1900
British Columbia
Queen Charlotte Islands, Skoon Formation:
Vancouver Island
Sooke Formation: Arnold, R., and Hannibal, H., 1913; Clapp, C. H., 1917; Cornwall, J. E., 1922; Merriman, J. C., 1899
West Coast, Hespulat-Notoka area: Jeletzky, J. A., 1954
California
Carrizo-Cuyama basin: Carlson, S., and others, 1951; English, W. A., 1916
Central and northern, Pliocene: Martin, B. V., 1915
Channel Islands
San Miguel Island, Miocene formations: Brentner, C. J., 1933; Weaver, D. W., and Doerner, D. P., 1949
Santa Cruz Island, Miocene and Pliocene formations: Weaver, D. W., and Moyer, G. L., 1969
Santa Rosa Island: Avila, F. A., and Weaver, D. W., 1969; Yates, L. G., 1890
Coast Ranges
Diablo Range, Miocene and Pliocene formations: Dickson, W. R., 1966b
Dolostone area, Parisima Formation: Rogers, T. H., and others, 1957
Northern, San Francisco Bay area, Miocene formations: Weaver, C. E., 1946
Northern, Sonoma County, Merced Formation: Cardwell, G. T., 1958; Dickerson, R. E., 1922; Osment, V. C., 1903; Travis, R. G., 1902
Pliocene, index species: Woodring, W. P., 1922
Santa Margarita Formation: Nomland, J. O., 1917b
Diablo Range
Northern, late Tertiary: Stewart, R. B., 1949
San Benito quadrangle, Miocene and Pliocene formations: Wilson, I. P., 1943
Eel River basin
Faler Formation: Mandra, Y. T., 1949; Manning, G. A., and Ogle, B. A., 1930
Pliocene: Harmon, A. E., Jr., 1914
Faunal lists—Continued
California—Continued
Imperial basin
Carizzo Creek area: Kew, W. S. W., 1914; Orcutt, C. R., 1900; Vaughan, T. W., 1917
Imperial Formation: Popenoce, F. W., 1958; Woodring, W. P., 1931b
Pliocene: Orcutt, C. R., 1890
Los Angeles basin
Fernando Formation: Arnold R., 1970c; Eaton, J. E., 1928; Eldridge, G. H., 1906b; Moody, C. L., 1919
Northern, Moches Formation: Dehlinger, P., 1935
Northern, Topanga Formation: Neuberger, G. J., 1953
Puente Formation: Arnold, R., 1970c
Puente Hills, Repetto and Pic Formation: Kundert, C. J., 1932
Repetto Formation: Woodring, W. P., 1938
San Juan Capistrano area, Niguel Formation: Vedder, J. O., 1960
Santa Ana Mountains, Miocene and Pliocene formations: Richmond, J. F., 1932
Santa Monica Mountains, Miocene and Pliocene formations: Hoots, H. W., 1931
Santa Monica Mountains, Topanga Formation: Arnold, R., 1970c; Soper, E. K., 1938
Southern, Miocene formations: Woodford, A. H., 1928
Turrilidda inzone and T. oceana zones: Dickerson, R. E., 1944
Vaqures Formation: Eaton, J. E., 1926
Los Angeles and Ventura basins, Miocene and Pliocene formations: Kew, W. S. W., 1924
Mount Diablo embayment
Berkeley Hills, Monterey Formation: Lawson, A. C., and Palache, C., 1901
Briones Formation: Crittenden, M. D., Jr., 1954; Trask, P. D., 1922
Cerro Formation: Haeys, A. S., 1948
Hayward quadrangle, Miocene formations: Robinson, G. D., 1936
Kirker Formation, Tuff Member: Primmer, S. R., 1964
Kirker Pass area, San Pablo Formation: Clark, B. L., 1912; Turner, H. W., 1891, 1898
Martinez area, Miocene formations: Weaver, C. E., 1933
Orinda Formation: Richey, J. A., 1946
Oursant Sandstone: Haeys, A. S., 1948
San Pablo Group: Clark, B. L., 1916a; Weaver, C. E., 1909
Sobrante Sandstone: Lutz, G. C., 1951
Faunal lists—Continued

California—Continued

Mount Diablo embayment—Continued

Tembler Formation: Crittenden, M. D., Jr., 1951

Neogene formations: Whitney, J. D., 1855

Northern, St., George Formation: Back, W., 1937

Ostrea spp.: Orcutt, C. R., 1890

Pacific Railroad Surveys: Blake, W. P., 1857

Salinas basin

Carmel Bay, Monterey Formation: Lawson, A. C., 1893a

Carmel Valley area, Miocene formations: Bowen, O. E., 1966; Fiedler, W. M., 1944

Monterey Formation, type area: Hanna, G. D., 1928; Martin, B., 1912

San Diego embayment

Pliocene or Pleistocene: Orcutt, C. R., 1889b

San Diego Well: Dall, W. H., 1874; Ellis, A. J., and Lee, C. H., 1919; Orcutt, C. R., 1889c

San Francisco peninsula, northern, Merced Formation: Glen, W., 1959; Hall, N. T., 1965; Lawson, A. C., 1893b, 1894

San Joaquin basin

Etcheogoin Formation: Gester, G. C., 1917; Nomland, J. O., 1917a

Jacalitos Formation: Nomland, J. O., 1916a

Kettleman Hills, Pliocene formations: Woodring, W. P., and others, 1940

McLure Shale: Barbat, W. F., and Johnson, P. L., 1934

Miocene and Pliocene formations: Watts, W. L., 1894

Monocline Ridge, Temblor Formation: Zimmerman, J., Jr., 1944

Monterey Shale: Arnold, R., and Johnson, H. R., 1910

Northern, Moreno Gulch, Temblor? Formation: Stewart, R. B., and others, 1944

Priest Valley, Miocene and Pliocene formations: Rose, R. L., and Colburn, I. P., 1963

Reef Ridge, Miocene formations: Stewart, R. B., 1946

San Emidgio Mountains, Miocene formations: Wagner, C. M., and Schilling, K. H., 1923

Southeastern, Miocene formations: Addicott, W. O., 1960b

Southern border, Miocene and Pliocene formations: Hoots, H. W., 1930

Tejon Hills, Miocene formations: Clark, B. L., 1916; Merriam, J. C., 1916; Savage, D. E., 1955

Tembler Formation, type area: Anderson, F. M., 1905; Curran, J. F., 1943

Tembler Range, Miocene and Pliocene formations: Foss, C. D., and Blaisdell, R., 1968

Vacquerus Formation: Arnold, R., and Johnson, H. R., 1910; Barbat, W. F., and von Estorff, F. E., 1933

San Luis Obispo County, Miocene formations: Hall, C. A., Jr., and Surdam, R. C., 1967

Santa Cruz Mountains, Miocene and Pliocene formations: Ashley, G. H., 1895a, 1895b; Branner, J. C., and others, 1909; Cummings, J. C., and others, 1962; Haehl, H. L., and Arnold, R., 1964

Santa Lucia Range, northern, Miocene formations: Trask, P. D., 1926

Santa Maria basin

Fernando Formation: Arnold, R., and Anderson, R., 1907a; Colom, R. E., 1918

Vaquerus Formations: Arnold, R., and Anderson, R., 1907a

Southeastern, Blythe area, Boume Formation Metzger, D. G., 1969

Southern

Neenach quadrangle, Santa Margarita Formation: Wiese, J. H., 1960

San Raphael Mountains, Miocene formations: Vedder, J. G., and others, 1967

Tembler Formation: Loel, W., and Corey, W. H., 1932

Tembler Range: Anderson, F. M., 1903

Transverse Ranges:

Neenach quadrangle, Santa Margarita Formation: Wiese, J. H., 1960

San Raphael Mountains, Miocene formations: Vedder, J. G., and others, 1967

Santa Ynez Mountains, eastern, "Temblor" Formation: Page, B. M., and others, 1951

Santa Ynez Mountains, Miocene and Pliocene formations: Antisell, T., 1865a; Dibblee, T. W., Jr., 1950, 1966a
Faunal lists—Continued
California—Continued
Transverse Ranges—Continued
Santa Ynez Mountains, Vaqueros Formation:
Kleinpell, R. M., and Weaver, D. W., 1963a
Upper Sespe Creek area, Miocene formations:
Dickinson, W. R., 1969; Dickinson, W. R., and
Lowe, D. R., 1966
Vaqueros Formation: Loel, W., and Corey,
W. H., 1932
Ventura basin
Eastern, Castaic Formation: Stanton, R. J.,
Jr., 1966, 1967a
Eastern, Fernando Formation: English,
W. A., 1914b
Eastern, Miocene and Pliocene formations:
Eastern, “Modelo” Formation: Jahns, R. H.,
1940
Eastern, Modelo? Formation: Durham,
J. W., 1948a; Wright, L. A., 1948
Eastern, San Fernando quadrangle, Miocene
and Pliocene formations: Oakeshott, G. B.,
1958
Fernando Group: Eaton, J. E., 1928; Water­
fall, L. N., 1929
Las Posas area, Fernando Formation: Press­
er, E. D., 1929
Miocene and Pliocene formations: Bowers, S.,
1888, 1890b
Modelo Formation: Hudson, F. S., and Craig,
E. K., 1929
Monterey Formation: Arnold, R., 1907b
Santa Clara Valley, Miocene and Pliocene
formations: Eldridge, G. H., 1907b
Simi Valley, Fernando Formation: Woodring,
W. P., 1930b
Vaqueros Formation: Cushman, J. A., and
LeRoy, L. W., 1958
Costa Rica, Carballo area: Haas, O., 1942;
Romanes, J., 1912
Nicaragua, El Salto Formation: Hoyalman, H.
W., and Chilingar, G. V., 1965; Rivera, N. P.,
1955
Mexico
Baja California
Boleo copper district, Miocene and Pliocene
formations: Twu Gould, R. E., 1956; Wil­
son, J. F., and Rocha, V. S., 1955
Miocene and Pliocene: Beal, C. H., 1948
Northeastern, San Felipe area: Hertlein, L. G.,
1916
Northwestern, Cantil Costero Formation:
Hertlein, L. G., and Allison, E. C., 1959
Northwestern, Rosarita Beach area: Minch,
J. A., 1967
Pliocene and Pleistocene formations: Hertlein,
L. G., 1931a
Punta Rosalia area: Emerson, W. K., and
Hertlein, L. G., 1960
San Jose del Cabo region, Miocene and Pliocene
formations: Pantoja Alor, J., and Carrillo
Bravo, J., 1966
Santa Rosalia area, Pliocene formations:
Wilson, J. F., 1948

Faunal lists—Continued
Mexico—Continued
Baja California—Continued
Southern, Miocene and Pliocene formations:
Hertlein, L. G., 1966; Mina U., F., 1957
Southern, Purisma Nueva Formation:
Arnold, R., and Clark, B. L., 1917; Heim, A.,
1922
West coast, Miocene and Pliocene formations:
Hertlein, L. G., and Jordan, E. K., 1927;
Jordan, E. K., and Hertlein, L. G., 1929a
West coast, Turtle Bay: Hertlein, L. G., 1933
Gulf of California
Islands, Pliocene localities: Emerson, W. K.,
and Hertlein, L. G., 1944
San Esteban and Ceralbo Islands, Pliocene:
Hertlein, L. G., 1957
Tres Marias Islands, Pliocene localities: Hert­
lein, L. G., and Emerson, W. K., 1939;
Jordan, E. K., and Hertlein, L. G., 1929b
Oregon
Astoria embayment, Astoria Formation:
Jabister, A. K., 1855
Astoria Formation: Arnold, R., and Hannibal,
H., 1913; Moore, E. J., 1963
Coos Bay embayment, Empire Formation:
Weaver, C. E., 1948
Miocene and Pliocene formations, locality map:
Diller, J. S., 1956
Newport embayment
Astoria Formation: Snavely, P. D., Jr., and
Vokes, H. E., 1949; Steere, M. L., 1954
Miocene formations: McLean, P. L., and Kel­
logg, R., 1934; Vokes, H. E., and others, 1949
Yaquina Formation: Snavely, P. D., Jr., and
Vokes, H. E., 1949
Northwestern
Miocene formations: Warren, W. C., and others,
1915; Washburne, C. W., 1914
Warren, W. C., and Norbisrath, H., 1946;
Wilkinson, W. D., and others, 1946
Southwestern, Port Orford area: Koch, J. G.
1906
Tillamook embayment, Cape Lookout, Astoria
Formation: Mungum, D., 1967
Pacific Coast
California and Oregon, Miocene: Meek, F. B.,
1846
Oregon and Washington, Miocene and Pliocene
formations: Arnold, R., and Hannibal, H.,
1915; Hertlein, L. G., and Crickmay, C. H.,
1925
Washington
Grays Harbor basin
Astoria and Montesano Formations: Ether­
ington, T. J., 1931
Centralia-Chehalis area, Miocene formations:
Snavely, P. D., Jr., and others, 1958
Olympic Peninsula
Western, Hoh Formation: Arnold, R., 1906a;
Arnold, R., and Hannibal, H., 1913; Dur­
ham, J. W., 1944; Palmer, R. H., 1927a;
Reagan, A. B., 1909, 1910
Western, Quillayute Formation: Reagan, A.
B., 1909
Faunal lists—Continued
Washington—Continued
Olympic Peninsula—Continued
Western, Quinault Formation: Arnold, R., 1906a
Puget Trough
Clallam Formation: Tegland, N. M., 1929
Twin River Formation: Durham, J. W., 1944
Western
Miocene formations, faunal zones: Weaver, C. E., 1912, 1916b, 1916c
Post-Eocene formations, faunal zones: Weaver, C. E., 1916a
Faunal records—Continued
Alaska
Alaska Peninsula
Cape Seniavin, Mytilus middendorffi: Gratacap, L. P., 1912
Miocene: Eichwald, E. von, 1871
Aleutian Islands
Adak Island: Coats, R. R., 1947a, 1947b, 196?
Amchitka Island: Coats, R. R., 1947b
Unalaska Island: Drewes, H., and others, 1961
Bering Sea
Kivalina area: McCulloch, D. S., 1967
Nome: Brooks, A. H., 1921
Pribilof Islands: Dawson, G. M., 1894; Elliott, H. S., 1875; Hanna, G. D., 1919
Bering Sea
Kivalina area: McCulloch, D. S., 1967
Nome: Brooks, A. H., 1921
Pribilof Islands: Dawson, G. M., 1894; Elliott, H. S., 1875; Hanna, G. D., 1919
Gulf of Alaska
Katalla district, Katalla Formation: Martin, G. C., 1921; Miller, D. J., 1951
Lituya district: La Perouse, J. F. de G., 1797
Malaspina district, Yakataga Formation: Plafker, G., and Miller, D. J., 1957
Miocene and Pliocene formations: Brooks, A. H., 1906; Dell, W. H., 1882; Plafker, G. 1967
Mount St. Elias area: Russell, I. C., 1891, 1893
Yakataga district, Miocene formations: Taliaferro, N. L., 1932, 1933
Kodiak, Sitkinak, and Tugidak Islands: Moore, G. W., 1969
Arizona
Colorado River area: Smith, P. B., 1968b
Lower Gila region: Ross, C. P., 1923
Yuma County
Pliocene, Bouse Formation, Bittium: Blanchard, R. C., 1913
Southern, brackish-water taxa: Wilson, E. D., 1921
British Columbia
Vancouver Island
Sooke area, Carmanah Point: Merriam, J. C., 1896
Southwestern: Richardson, J., 1878; Webster, A., 1906
West coast, Tatchu Point: Jeletzky, J. A., 1980
California
Carizzo-Cuyama basin
Caliente Range, Miocene formations: Vedder, J. G., and Repenning, O. A., 1905
Faunal records—Continued
California—Continued
Diablo Range—Continued
Queen Sabe quadrangle: Leith, C. J., 1949
San Jose area: Rose, R. L., 1903
El River basin
Quien Sabe quadrangle: Leith, C. J., 1949
San Jose area: Rose, R. L., 1903
Eel River basin
' Eel River basin
Eiilia, Pliocene species: Ball, W. H., 1918
Imperial basin
Blythe area: Hamilton, W., 1960
Carrizo Creek: Arnold, R., 1904; Bowers, S., 1901; Merrill, F. J. H., 1914; Orcutt, C. R., 1889a, 1910
Carrizo Mountain: Fairbanks, H. W., 1893a; Mendenhall, W. C., 1910
Coyote Mountain: Mitchell, E. D., Jr., 1961
Crassostrea: Stearns, R. E. C., 1879
Imperial Formation: Alien, C. R., 1957; Mansfield, W. C., 1932
Indio Hills: Buwalda, J. P., and Stanton, W. L., 1930
San Gorgonio Pass: Vaughan, F. E., 1918, 1922
Los Angeles basin
Baldwin Hills: Tjeje, A. J., 1926
Deadman's Island: Crickmay, C. H., 1929
Downtown Los Angeles: Hertlein, L. G., 1952; Martin, L., 1952; Soper, E. K., and Grant; U. S., 4th; Starns, R. E. C., 1900
Eastern, Santa Ana Narrows, Topanga Formation: Gray, C. H., Jr., 1961
Miocene and Pliocene formations: Arnold, R., 1907a; Eldridge, G. H., and Arnold, R., 1907; Merriam, J. C., 1900; Watts, W. L., 1900
Miocene, characteristic species: Natland, M. L., and Rothwell, W. T., Jr., 1954
Orange County: Adams, B. C., 1932
Orange County, Capistrano Formation: White, W. R., 1956
Pholad borings: Edwards, E. C., 1934
San Joaquin Hills, Miocene and Pliocene formations: Veddur, J. G., and others, 1967
Santa Ana Mountains: Bowers, S., 1890a
San Diego embayment
Miocene: Fairbanks, H. W., 1903b; Hanna, M. A., 1926
San Clemente Island, Miocene formations: Mitchell, E. D., Jr., and Lipp, J. H., 1965; Olmstead, F. H., 1958; Smith, W. S. T., 1893
San Diego embayment
Miocene: Fairbanks, H. W., 1890b; Hanna, M. A., 1926
Faunal records—Continued
California—Continued
San Diego embayment—Continued
San Francisco Peninsula, northern, Merced Formation: Louderback, G. D., 1951
San Francisco area, Miocene and Pliocene formations: Hertlein, L. G., 1951
San Joaquin basin
Devil's Den-McLure Valley, Miocene formations: Brooks, T. J., and others, 1955
Diablo Range, Cantua-Panoche area: Anderson, R., 1911
Diablo Range, San Pablo Formation: Briggs, L. H., Jr., 1953
Elk Hills, Etchegoin Formation: Woodring, W. P., and others, 1932
Kern River area, Miocene formations: Clark, A., 1937; Church, C. C., 1958; Hackel, O., and Krammes, K., 1958; Hake, B. F., 1926; Keen, A. M., 1930
Kern River area, Sharktooth Hill: Hanna, G. D., 1930; Mitchell, E. D., Jr., 1965
Kettleman Hills, Etchegoin Formation: Nations, J. D., 1968
Kettleman Hills, Pliocene formations: Woodring, W. P., 1936b
Miocene and Pliocene formations: Watts, W. L., 1900; Woodring, W. P., 1926b
Northern, Moreno Gulch, "Temblor" Formation: Payne, M. B., 1951
Reef Ridge, Miocene formations: Durham, J. W., 1957; Bramble, M. N., 1953; Von Estorff, F. E., 1930
Reef Ridge Shale: Siegfus, S. S., 1939
San Emigdio Mountains, Miocene and Pliocene formations: DeLise, K. C., 1967; Dibblee, T. W., Jr., 1961; Marks, J. G., 1943; Pack, R. W., 1929
Temblor Range: Henny, G., 1927
Temblor Range, Chico Martinez Creek, Miocene formations: Stinnemeyer, E. S., and others, 1922
Temblor Range, San Joaquin Formation: Church, C. C., 1968
Tulare County, subsurface, Pliocene: Klausing, R. L., and Lohman, K. E., 1964
Western, Miocene Formations: Henny, G., 1927
Faunal records—Continued
California—Continued
Santa Cruz Mountains
Miocene formations: Arnold, R., 1904; Brabb, E. E., 1944; Fairchild, W. W., and others, 1969
New Almaden district: Becker, O. F., 1888; Bush, J. B., 1931
Palo Alto quadrangle, Miocene and Plioence formations: Arnold, R., 1901; Dibblee, T. W., Jr., 1966b; Page, B. M., and Tabor, L. L., 1967
San Juan Bautista quadrangle, Miocene and Pliocene formations: Allen, J. E., 1946
Santa Cruz area, Purlisina Formation: Addicott, W. O., 1966a
Santa Maria basin
Huauna area, Miocene formations: Hughes, A. W., 1956
Miocene and Pliocene formations: Arnold, R., and Anderson, R., 1907b; Fairbanks, H. W., 1896
Ojai Formation: Hall, C. A., and others, 1936
Sisquoc Formation: Porter, W. W., II, 1932
Southern
Miocene and Pliocene formations: Dall, W. H., 1925; Jahns, R. H., ed., 1984; Perilliat Montoya, M. C., 1968; Reed, R. D., and Hollister, J. H., 1938
Vaqueros and Modelo Formations, characteristic species: Kow, W. S. W., 1923
Zygospira spp.: Dall, W. H., 1901
Transverse Ranges
Cajon Pass area, Vaqueros Formation: Dibblee, T. W., Jr., 1967; Woodring, W. P., 1942
Miocene and Pliocene formations: Antisell, T., 1886b; Hughes, A. W., 1947; Kew, W. S. W., 1919; Nelson, R. N., 1925
Santa Ynez Mountains, "Temblor Stage": Keenan, M. F., 1932
Santa Ynez Mountains, Vaqueros Formation: Bailey, T. L., 1932a; Bandy, O. L., and Kolpack, R. N., 1958; Kleinpell, R. N., and Weaver, D. W., 1923b; Simonson, R. R., 1923; Trefzger, R. E., and others, 1922; Weaver, D. W., 1965; Wilson, E. J., 1945
Vaqueros Formation: Loel, W. F., 1918
Ventura basin
Big Mountain oil field area, Miocene and Pliocene formations: Hall, E. A., and Redin, T., 1967
Eastern, Modelo Formation: White, R. C. and Buffington, E. C., 1948
Eastern, Ridge Basin Group: Crowell, J. C., 1952
Fillmore area: Miocene and Pliocene formations: Eschner, S., 1969
Los Sauces Creek, Vaqueros Formation: Redlin, L. E., and others, 1952
Faunal records—Continued

California—Continued

Ventura basin—Continued

Miocene and Pliocene formations: Carson, C. M., 1965; Cartwright, L. D., Jr., 1928; Eldridge, G. H., and Arnold, R., 1907; Merrill, J. C., 1900; Redwine, L. E., chm., and others, 1932

Pico Formation: Boss, K. J., and Merrill, A. S., 1963

Miocene and Pliocene formations: Carson, C. M., 1965; Cartwright, L. D., Jr., 1928; Eldridge, O. H., and Arnold, R., 1907; Merrill, J. C., 1900; Redwine, L. E., chm., and others, 1932

Pico Formation: Boss, K. J., and Merrill, A. S., 1963

Pico Formation, fossil localities: Hazzard, J. C., 1947

Santa Barbara Formation, Miocene and Pliocene formations: Bailey, T. L., 1952a

Santa Barbara Formation, Miocene and Pliocene formations: Bailey, T. L., 1952b

San Quintin bay: Emmons, S. F., and Merrill, G. P., 1894

Southern, Almejas Formation: Mina, U. F., 1956

Pacific coast, Amphineuran genera, Neogene occurrences: Smith, A. G., 1960

Aturia angustata: Kummel, B., 1956; Miller, A. K., 1947; Miller, A. K., and Downs, H. R., 1959

Brachiopods and mollusks, co-occurrences: Hertlein, L. G., and Grant, U. S., 1944a

Echinoids and mollusks, co-occurrences: Grant, U. S., 4th, and Hertlein, L. G., 1938

Holocene Pectinidae, Neogene occurrences: Hertlein, L. G., 1938

Mya, new and oldest occurrences: Adegoke, O. S., 1967

Neogene localities, fossil illustrations: Ransome, J. E., 1964

Pholadid genera, geologic ranges: Turner, R. D., 1954

Thracia spp.: Dall, W. H., 1915

Turridae, Miocene and Pliocene genera: Powell, A. W. B., 1966

Washington and Oregon, characteristic mollusks: Weaver, C. E., 1937

Washington

Doty-Mint Peak area, Miocene formations: Pease, M. H., and Hoover, L., 1957

Fossil localities: Livingston, V. E., Jr., 1959

Olympic Peninsula

Western, Hoh and Quillayute Formations: Palmer, R. H., 1927a

Faunal records—Continued

Oregon—Continued

Continental shelf, dredged material: Fowler, G. A., 1996

Cocos Bay embayment

Cocos Bay, dredged material: James, E. L., 1950

Deedenia: Baldwin, E. M., 1966

Miocene and Pliocene formations: Ehlen, J., 1987

Newport embayment

Miocene formations: Schenck, H. G., 1927; Snively, F. D., Jr., and others, 1994

Peepea, midden occurrence: Simon, L. F., and Reed, C. A., 1945

Yauquina Formation: Harrison and Eaton (firm), 1920

Southwestern

Bandon area, beach drift: Baldwin, E. M., 1961

Cape Blanco, Elk River Beds: Janda, R. J., 1969; Zullo, V. A., 1961

Cape Blanco, Empire Formation: Bandy, O. L., 1950; Diller, J. S., 1901, 1903; Dott, R. H., Jr., 1902

Capo Blanco, Port Orford Formation: Baldwin, E. M., 1945; Bandy, O. L., 1930

Pacific coast

Amphineuran genera, Neogene occurrences: Smith, A. G., 1960

Aturia angustata: Kummel, B., 1956; Miller, A. K., 1947; Miller, A. K., and Downs, H. R., 1959

Brachiopods and mollusks, co-occurrences: Hertlein, L. G., and Grant, U. S., 1944a

Echinoids and mollusks, co-occurrences: Grant, U. S., 4th, and Hertlein, L. G., 1938

Holocene Pectinidae, Neogene occurrences: Hertlein, L. G., 1935

Mysa, new and oldest occurrences: Adegoke, O. S., 1967

Neogene localities, fossil illustrations: Ransome, J. E., 1964

Pholadid genera, geologic ranges: Turner, R. D., 1954

Thracia spp.: Dall, W. H., 1915

Turridae, Miocene and Pliocene genera: Powell, A. W. B., 1966

Washington and Oregon, characteristic mollusks: Weaver, C. E., 1937

Washington

Doty-Mint Peak area, Miocene formations: Pease, M. H., and Hoover, L., 1957

Fossil localities: Livingston, V. E., Jr., 1959

Olympic Peninsula

Western, Hoh and Quillayute Formations: Palmer, R. H., 1927a
Faunal records—Continued
Washington—Continued
 Olympic Peninsula—Continued
 Western, Miocene, Browns Point Formation: Glover, S. L., 1940
 Puget Trough, Twin River Formation: Jackson, H. E., 1966; Brown, R. D., Jr., and Gower, H. D., 1958
 Southwestern, Bruceport: Landes, H., 1902
 Western, Aturia; Weaver, C. E., 1914

Geochronology
California
 Continental vertebrate-marine mollusk relationships: Durham, J. W., and others, 1954

Miocene
 Vaqueros Formation, Lyellian correlation: Keen, A. M., 1942
 Vaqueros Formation, pectinid evidence: Cox, L. R., 1942
 Miocene-Pliocene boundary
 Molluscan correlation: Stanton, R. J., Jr., 1967b
 San Joaquin basin: Adegoke, O. S., 1967d
 Santa Cruz Mountains: Clark, J. C., 1968a
 Miocene-Pliocene boundary
 Neogene, time-stratigraphic subdivisions: Arnold, R., 1906b; Smith, J. P., 1910
 Pliocene-Pleistocene boundary: Gale, H. R., 1931; Schenck, H. G., and Keen, A. M., 1940a

Methods
 Tertiary, percentage of living species, discussion: Keen, A. M., 1940

Pacific coast
 Miocene, vertebrate-molluscan-foraminiferal chronologies, chart: Mitchell, E. D., Jr., and Repenning, C. A., 1963

Baja California
 Boleo district: Aguilera, J. C., 1607

Cape region
 Miocene, vertebrate-molluscan-foraminiferal chronologies, chart: Mitchell, E. D., Jr., and Repenning, C. A., 1963

Correlation
 Gulf of California, Miocene and Pliocene formations: Durham, J. W., 1940b

Mexico
 Bibliography
 Baja California, geographical and scientific reports, 1835-1964: Barrett, E. C., 1967

Biostratigraphy
 Baja California
 Neogene faunas, general account: Anonymous, 1924
 Gulf of California, peninsular coast, islands: Anderson, C. A., 1900

Correlation
 Gulf of California, Miocene and Pliocene formations: Durham, J. W., 1940b

Mexico—Continued
 Faunal lists
 Baja California
 Miocene and Pliocene: Beal, C. H., 1948
 Northwestern, San Felipe area: Hertlein, L. G., 1968
 Northwestern, Rosarita Beach area: Minch, J. A., 1967
 Pliocene and Pleistocene formations: Hertlein, L. G., 1931a
 Punta Rossella area: Emerson, W. K., and Hertlein, L. G., 1960
 San Jose del Cabo region, Miocene and Pliocene formations: Pantoja Alor, J., and Carrillo Bravo, J., 1966
 Santa Rossella area, Pliocene formations: Wilson, I. F., 1948
 Southern, Miocene and Pliocene formations: Hertlein, L. G., 1966; Mina, U. F., 1957
 Southern, Pufushima Nueva Formation: Arnold, R., and Clark, B. L., 1917; Helm, A., 1922
 West coast, Turtle Bay: Hertlein, L. G., 1933
 Gulf of California
 Islands, Pliocene localities: Emerson, W. K., and Hertlein, L. G., 1964
 San Esteban and Ceralbo Islands, Pliocene: Hertlein, L. G., 1957

Faunal records
 Baja California
 Boleo district: Aguilera, J. C., 1967
 Cape region, Miocene and Pliocene pectinids: Lindsay, G. E., 1966; Norman, W. R., and Curray, J. R., 1968
 Cape region, Tertiary strata: Wittlich, E., 1911
 Cedros Island: Aguilera, J. C., 1907; Gabb, W. M., 1890b; Hanna, G. D., 1926a; Klimer, F. H., 1908
 La Purisima area, Ysidro Formation: Kilmer, F. H., 1965
 Northwestern, Miocene?: Minch, J. A., 1969
 San Quintin bay: Emmons, S. F., and Merrill, G. F., 1894
 Southern, Almejas Formation: Mina, U. F., 1957
 Gulf of California
 Ceralbo Island: Galvez, V., 1927
 General: Grewingk, C., 1848
 Neogene localities: Hanna, G. D., and Hertlein, L. G., 1927a
Mexico—Continued

Faunal records—Continued

Maria Madre Island: Grayson, A. J., 1872;
Hanna, G. D., 1927; Nelson, E. W., 1899
West coast: Darton, N. H., 1921

Paleoecology

Baja California, northwestern, San Diego
Formation: Rowland, R. W., 1908
Gulf of California, ecologic data, Holocene:
Keen, A. M., 1938; Parker, R. H., 1904

Paleogeography

Baja California, Miocene and Pliocene, maps:
Allison, E. C., 1964; Durham, J. W., and
Allison, E. C., 1960

Systematic descriptions

Baja California

Cedros Island: Gabb, W. M., 1866
Northwestern, Cantil Costero Formation:
Hertlein, L. G., and Allison, E. C., 1959
Arctoidea: Hertlein, L. G., 1926a, 1966
West coast, Miocene species: Hertlein, L. G.,
and Jordan, E. K., 1927
Gulf of California, Pliocene species: Durham,
J. W., 1950b
Maria Madre Island, Pecten spp.: Jordan, E.
K., and Hertlein, L. G., 1926b

Zoogeography

Miocene, Gulf of Tehuantepec, Caribbean
affinities: Durham, J. W., and others, 1956
Neogene faunas, Gulf of California, tropical
origins: Parker, R. H., 1944
Venericardia, faunal migration, late Cenozoic:
Heaslip, W. G., 1968

Monographs of genera—Continued

Pacific coast—Continued

Penetella: Adegoke, O. S., 1967c
Platypodon: Adegoke, O. S., 1967c
Securita: Parker, R., 1949
Siphonina: Reth, J. W., 1942
Spinula: Packard, B. L., 1916
Verrucula: Merriam, C. W., 1941

North America

Catalog

Index fossils, illustrations, stratigraphic data:
Shimer, H. W., and Shrock, R. R., 1944

Faunal records

Pacific coast, Miocene and Pliocene: Grabau,
A., and Shimer, H. W., 1909

Oil and gas fields

California

Carrito-Cuyama basin, Morales oil field, Mioc.
ene faunal records: Lawrence, E. D., 1909
Diablo Range, Eulista field, Purisima Forma.

Monographs of genera—Continued

Pacific coast Continued

Penetella Continued

Monospondylodon: Adegoke, O. S., 1967c
Securita: Parker, R., 1949
Siphonina: Reth, J. W., 1942
Spinula: Packard, B. L., 1916
Verrucula: Merriam, C. W., 1941

North America

Catalog

Index fossils, illustrations, stratigraphic data:
Shimer, H. W., and Shrock, R. R., 1944

Faunal records

Pacific coast, Miocene and Pliocene: Grabau,
A., and Shimer, H. W., 1909

Oil and gas fields

California

Carrito-Cuyama basin, Morales oil field, Mioc.
ene faunal records: Lawrence, E. D., 1909
Diablo Range, Eulista field, Purisima Forma.

Monographs of genera—Continued

Pacific coast Continued

Penetella Continued

Monospondylodon: Adegoke, O. S., 1967c
Securita: Parker, R., 1949
Siphonina: Reth, J. W., 1942
Spinula: Packard, B. L., 1916
Verrucula: Merriam, C. W., 1941

North America

Catalog

Index fossils, illustrations, stratigraphic data:
Shimer, H. W., and Shrock, R. R., 1944

Faunal records

Pacific coast, Miocene and Pliocene: Grabau,
A., and Shimer, H. W., 1909

Oil and gas fields

California

Carrito-Cuyama basin, Morales oil field, Mioc.
ene faunal records: Lawrence, E. D., 1909
Diablo Range, Eulista field, Purisima Forma.

Monographs of genera—Continued

Pacific coast Continued

Penetella Continued

Monospondylodon: Adegoke, O. S., 1967c
Securita: Parker, R., 1949
Siphonina: Reth, J. W., 1942
Spinula: Packard, B. L., 1916
Verrucula: Merriam, C. W., 1941

North America

Catalog

Index fossils, illustrations, stratigraphic data:
Shimer, H. W., and Shrock, R. R., 1944

Faunal records

Pacific coast, Miocene and Pliocene: Grabau,
A., and Shimer, H. W., 1909

Oil and gas fields

California

Carrito-Cuyama basin, Morales oil field, Mioc.
ene faunal records: Lawrence, E. D., 1909
Diablo Range, Eulista field, Purisima Forma.

Monographs of genera—Continued

Pacific coast Continued

Penetella Continued

Monospondylodon: Adegoke, O. S., 1967c
Securita: Parker, R., 1949
Siphonina: Reth, J. W., 1942
Spinula: Packard, B. L., 1916
Verrucula: Merriam, C. W., 1941

North America

Catalog

Index fossils, illustrations, stratigraphic data:
Shimer, H. W., and Shrock, R. R., 1944

Faunal records

Pacific coast, Miocene and Pliocene: Grabau,
A., and Shimer, H. W., 1909

Oil and gas fields

California

Carrito-Cuyama basin, Morales oil field, Mioc.
ene faunal records: Lawrence, E. D., 1909
Diablo Range, Eulista field, Purisima Forma.

Monographs of genera—Continued

Pacific coast Continued

Penetella Continued

Monospondylodon: Adegoke, O. S., 1967c
Securita: Parker, R., 1949
Siphonina: Reth, J. W., 1942
Spinula: Packard, B. L., 1916
Verrucula: Merriam, C. W., 1941

North America

Catalog

Index fossils, illustrations, stratigraphic data:
Shimer, H. W., and Shrock, R. R., 1944

Faunal records

Pacific coast, Miocene and Pliocene: Grabau,
A., and Shimer, H. W., 1909

Oil and gas fields

California

Carrito-Cuyama basin, Morales oil field, Mioc.
ene faunal records: Lawrence, E. D., 1909
Diablo Range, Eulista field, Purisima Forma.

Monographs of genera—Continued

Pacific coast Continued

Penetella Continued

Monospondylodon: Adegoke, O. S., 1967c
Securita: Parker, R., 1949
Siphonina: Reth, J. W., 1942
Spinula: Packard, B. L., 1916
Verrucula: Merriam, C. W., 1941

North America

Catalog

Index fossils, illustrations, stratigraphic data:
Shimer, H. W., and Shrock, R. R., 1944

Faunal records

Pacific coast, Miocene and Pliocene: Grabau,
A., and Shimer, H. W., 1909

Oil and gas fields

California

Carrito-Cuyama basin, Morales oil field, Mioc.
ene faunal records: Lawrence, E. D., 1909
Diablo Range, Eulista field, Purisima Forma.

Monographs of genera—Continued

Pacific coast Continued

Penetella Continued

Monospondylodon: Adegoke, O. S., 1967c
Securita: Parker, R., 1949
Siphonina: Reth, J. W., 1942
Spinula: Packard, B. L., 1916
Verrucula: Merriam, C. W., 1941

North America

Catalog

Index fossils, illustrations, stratigraphic data:
Shimer, H. W., and Shrock, R. R., 1944

Faunal records

Pacific coast, Miocene and Pliocene: Grabau,
A., and Shimer, H. W., 1909

Oil and gas fields

California

Carrito-Cuyama basin, Morales oil field, Mioc.
ene faunal records: Lawrence, E. D., 1909
Diablo Range, Eulista field, Purisima Forma.

Monographs of genera—Continued

Pacific coast Continued

Penetella Continued

Monospondylodon: Adegoke, O. S., 1967c
Securita: Parker, R., 1949
Siphonina: Reth, J. W., 1942
Spinula: Packard, B. L., 1916
Verrucula: Merriam, C. W., 1941

North America

Catalog

Index fossils, illustrations, stratigraphic data:
Shimer, H. W., and Shrock, R. R., 1944

Faunal records

Pacific coast, Miocene and Pliocene: Grabau,
A., and Shimer, H. W., 1909

Oil and gas fields

California

Carrito-Cuyama basin, Morales oil field, Mioc.
ene faunal records: Lawrence, E. D., 1909
Diablo Range, Eulista field, Purisima Forma.

Monographs of genera—Continued

Pacific coast Continued

Penetella Continued

Monospondylodon: Adegoke, O. S., 1967c
Securita: Parker, R., 1949
Siphonina: Reth, J. W., 1942
Spinula: Packard, B. L., 1916
Verrucula: Merriam, C. W., 1941

North America

Catalog

Index fossils, illustrations, stratigraphic data:
Shimer, H. W., and Shrock, R. R., 1944

Faunal records

Pacific coast, Miocene and Pliocene: Grabau,
A., and Shimer, H. W., 1909

Oil and gas fields

California
Oil and gas fields—Continued

California—Continued
San Joaquin basin—Continued
Dudley Ridge gas field, Mysa and Mulinia zones
Henny, G., 1943
East Coalinga Extension oil field, upper Mulinia bed: Kaplow, E. J., 1942
Edison oil field, Miocene formations, faunal records: Cushman, J. A., and Laming, B., 1931; Kasline, F. E., 1941
Fruitvale oil field, characteristic pelecypods: Miller, R. H., and Ledingham, G. W., 1943
Fruitvale oil field, Miocene and Pliocene formations, faunal lists: Preston, H. M., 1931
Guijarral Hills oil field, Miocene formations, faunal records: Sullivan, J. C., 1962
Harvester gas field, Picomos, faunal records: Hill, F. L., 1962
Kern Bluff oil field, Santa Margarita Formation: Corwin, C. H., 1950
Kern Front oil field, Miocene and Pliocene formations, characteristic species: Park, W. H., 1965
Kern River oil field, Etchegoin Formation, Macoma: Hendrickson, A. B., 1928
Kettleman Hills oil field, Miocene formations, faunal records: Cunningham, G. M., and Barbat, W. F., 1932; Goudkoff, P. P., 1934; Sullivan, J. C., 1966
Kettleman Middle Dome oil field, Miocene and Pliocene formations, characteristic species: Hill, F. L., 1965
Lost Hills oil field, Etchegoin Formation, faunal records: Ayars, R. N., 1939
McKittrick oil field, Antelope Shale, Pecten peckhami: Weddle, J. R., 1959
McKittrick oil field, Miocene and Pliocene formations, characteristic species: Zulberti, J. L., 1956
McKittrick oil field, Pliocene index species: Atwill, E. F., 1943; Bertholf, H. W., 1942
Midway-Sunset oil field, Antelope Shale, Pecten peckhami: Zulberti, J. L., 1957
Midway-Sunset oil field, characteristic species, illustrations: Roberts, D. C., 1927
Mountain View oil field, Chanac Formation, characteristic species: Miller, R. H., and Bloom, C. V., 1937
Mountain View oil field, Miocene formations, characteristic species: Miller, R. H., and Ferguson, G. C., 1943; Park, W. H., 1966
North Belridge oil field, Miocene formations, characteristic species: Preston, H. M., 1932
Pono Creek oil field, Etchegoin Formation, characteristic species: Weddle, J. R., 1959
San Joaquin basin—Continued
Round Mountain oil field, Miocene formations, faunal records: Park, W. H., and others, 1933; Rogers, R. G., 1943
Semipalate gas field, San Joaquin Clays, Mysa—Elphidium zone: Valentine, W. W., 1943
Strand oil field, Etchegoin Formation, characteristic species: Shes, D. N., 1966
Ten Section oil field, Etchegoin Formation, Mulinia zone: Gentry, A. W., 1943
Trico gas field, Pliocene formations, characteristic species: Doell, E. C., 1943; Hill, F. L., 1964b
Union Avenue oil field, San Joaquin Clay, first Mysa zone: Barnes, R. M., 1943
Western, Pecten andersoni: Goudkoff, P. P., 1941, 1947

Santa Maria basin
Cat Canyon oil field, Monterey Shale, faunal records: Cross, R. K., 1943
Guadalupe oil field, Ceara Formation, faunal records: Lawrence, E. D., 1964
Santa Maria Valley oil field, Miocene and Pliocene formations, faunal records: Wilkinson, E. R., 1959
Wasco oil field, San Joaquin Clay, first Mysa zone: Barnes, R. M., 1943

Ventura basin
Canoga Park oil field, Topanga Formation, faunal records: Rothermel, R. V., 1964
Capitan oil field, Vaqueros Formation, characteristic species: Delman, S. G., 1938
Cascade oil field, Sunshine Ranch Formation, faunal records: Roth, M. H., and Sullwold, W. E., Jr., 1958
Correlation chart, macrofossil stages, characteristic species: Holman, W. H., 1958
Elwood oil field, Tumbler Formation, Robulus—pektan zone: Hill, M. L., 1943
Suspe oil field, Vaqueros Formation, faunal records: Doesch, M. W., 1967

Oregon
Bibliography
Astoria Formation, paleontological reports, annotations: Moore, E. J., 1963
Geological reports
Annotations: Henderson, C. W., and Winstanley, J. B., 1942
1938-45: Allen, J. E., and others, 1947
1948-50: Steere, M. L., 1953
Prior to July, 1936, annotations: Tressler, R. C., and Hodge, E. T., 1936
Oregon—Continued

Bibliography—Continued

Geological theses, prior to 1959, index map:
Schlicker, H. G., 1959

Biostratigraphy

Cape Blanco, Empire Formation, Mytilus mid-dendorffi fauna: Durham, J. W., 1963

Coast Ranges, stratigraphic data, correlation chart: Schenck, H. G., 1928

Coos Bay embayment, Empire Formation: Allen, J. E., and Baldwin, E. M., 1944

Southwestern, Elk River Beds: Addicott, W. O., 1946; Baldwin, E. M., 1945; Bandy, O. L., 1952

Catalog

Shumard's (1858) types, Washington University at St. Louis: Trumbull, E. J., 1958

Correlation

Astoria embayment, Astoria Formation: Howe, H. V., 1926

Astoria Formation: Conrad, T. A., 1856b, 1866

Coos Bay embayment, Empire Formation: Howe, H. V., 1921

Newport embayment, Miocene formations: Snavely, P. D., Jr., and others, 1946

Northwestern

Molluscan and foraminiferal stages; chart: Newton, V. C., Jr., 1969

Scappoose Formation: Wilkinson, W. D., and others, 1946

Vaqueros "stage": Durham, J. W., and others, 1942

Faunal lists

Astoria embayment, Astoria Formation: Isbister, A. K., 1855

Astoria Formation: Arnold, R., and Hannibal, H., 1913; Moore, E. J., 1938

Coos Bay embayment, Empire Formation: Weaver, C. E., 1945

Miocene and Pliocene formations, locality map:
Diller, J. S., 1956

Newport embayment

Yaquina Formation: Snavely, P. D., Jr., and Vokes, H. E., 1949

Northwestern

Miocene formations: Warren, W. C., and others, 1945; Washburne, C. W., 1914

Southwestern, Port Orford area: Koch, J. G., 1966

Tillamook embayment, Cape Lookout, Astoria Formation: Mangum, D., 1967

Faunal records

Oregon—Continued

Faunal records—Continued

Astoria Formation: Cope, E. D., 1880; Dana, J. D., 1845; Emerson, W. K., 1958

Characteristic megafossils, Miocene and Pliocene formations: Baldwin, E. M., 1929

Coast Ranges, Miocene and Pliocene formations, correlation chart: Wilkinson, W. D., 1959

Continental shelf, dredged material: Fowler, G. A., 1966

Coos Bay embayment

Coos Bay, dredged material: James, E. L., 1960

Dolostina: Baldwin, E. M., 1966

Empire Formation: Dall, W. H., 1907; Diller, J. S., 1941; Hertlein, L. G., 1950; Steere, M. L., 1955

Miocene and Pliocene formations: Ehlen, J., 1967

Newport embayment

Miocene formations: Schenck, H. G., 1927; Snavely, P. D., Jr., and others, 1964

Psephaea, midden occurrence: Simon, L. F., and Reed, C. A., 1945

Yaquina Formation: Harrison and Eaton [firm], 1920

Southwestern

Bandon area, beach drift: Baldwin, E. M., 1961

Cape Blanco, Elk River Beds: Janda, R. J., 1966; Zullo, V. A., 1961

Cape Blanco, Empire Formation: Bandy, O. L., 1930; Diller, J. S., 1902, 1903; Dott, R. H., Jr., 1962

Cape Blanco, Port Orford Formation: Baldwin, E. M., 1945; Bandy, O. L., 1950

Paleoclimatology

Tertiary: Hickman, C. J. S., 1969

Paleogeography

Systematic descriptions

Astoria embayment, Astoria Formation: Conrad, T. A., 1848, 1849; Dall, W. H., 1909b; Henderson, J., 1922; Moore, E. J., 1938

Coos Bay embayment, Pliocene, Empire Formation: Dall, W. H., 1909b; Hertlein, L. G., 1955; Howe, H. V., 1922; Shumard, B. F., 1858

Pacific coast

Bibliography

Dall, William Healey: Bartsch, P., and others, 1946

Holocene mollusks

1968-69: Keen, A. M., 1937

1957-58: Keen, A. M., [n.d.]

Marine mollusks, post-Eocene, 1805-1908: Dall, W. H., 1909b

Oregon and Washington, paleontologic reports:

Weaver, C. E., 1942
Pacific coast—Continued

Bibliography—Continued

Paleontologic studies, current research: Merriam, J. C., 1921; Stock, C., 1946

Biostratigraphy

Actela biozones: Schenck, H. G., 1936
Oligocene and Miocene, faunal zones: Clark, B. L., and Arnold, R., 1918b
Southwest Oregon, northwest California: Allis-
son, E. C., and others, 1962

Catalog

Actela, valid species: Schenck, H. G., 1936b
Arcidae: Reinhart, P. W., 1943
Conrad's Cenozoic type specimens, Philadel-
phia Academy of Natural Sciences: Moore, E. J., 1962

Current research

Tertiary invertebrates, 1924: Clark, B. L., 1924
Holocene genera, ecologic data: Keen, A. M., 1963
Holocene pelecypods, systematics, geographic ranges: Olsson, A. A., 1961
Holocene species

Geographic ranges: Dall, W. H., 1921a
Latitudinal ranges: Keen, A. M., 1937
Tertiary ranges, original descriptions:
Oldroyd, J. S., 1924b
Oregon and Washington
Tertiary, geologic names, selected paleon-
atology data: Youngquist, W., 1961
Tertiary species, original descriptions, illus-
trations: Weaver, C. E., 1942

Pandoridae, Miocene species: Boss, K. J., 1965

Correlation

Actela pettygourensis zone: Clark, B. L., and Arnold, R., 1923
Atoria Formation: Clark, B. L., 1917
California and _Ecuador_, Miocene: _Moece_ Marks, J. G., 1951
Late Cenozoic, mammalian-molluscan-foraminiferal stages, chart: Savage, D. E., 1955
Miocene, "Blakeley" and "Vaqueros Stages": _Addicott_, W. O., 1967b
Miocene and Pliocene formations, Oregon and Washington: _Addicott_, W. O., 1969b; Hertle-
lin, L. G., and Crickmay, C. H., 1925
Neogene:
Dall, W. H., and Harris, O. D., 1922
Oligocene and _Miocene_:
Dall, W. H., 1925
Oligocene and _Miocene_, _Dosinia_:
Durham, J. W., 1957b
Peru and _California_, _Neogene_:
Olsson, A. A., 1922
_Provincial megafaunal and microfaunal stages, European relationships: _Dubham_, J. W., 1960
Sooke and _Vaqueros_ Formations, partial time equivalence: Vanderhoof, V. L., 1942
Tertiary basins, molluscan and foraminiferal stages: Weaver, C. E., and others, 1944
Turritella spp., stratigraphic ranges, chart: Merriam, C. W., 1941

Pacific coast—Continued

Faunal lists

California and Oregon, Miocene: Meek, F. B., 1884

Faunal records

Amphineuran genera, Neogene occurrences:
Smith, A. G., 1950
Brachiopods and mollusks, co-occurrences:
Hertlein, L. G., and _Grant_, U.S., 4th, 1944a
Echinoids and mollusks, co-occurrences:
Grant, U. S., 4th, and _Hertlein_, L. G., 1938
Holocene _Festinidae_, _Neogene_ occurrences:
Hertlein, L. G., 1943
Mysa, new and oldest occurrences: Adegoke, O. S., 1957a
Neogene localities, fossil illustrations: _Ransome_, J. E., 1954
Terads spp.: _Dall_, W. H., 1915
Turridae, _Miocene_ and _Pliocene_ genera: _Powell_, A. W. B., 1965
Washington and _Oregon_, characteristic mollusks: _Weaver_, C. E., 1937
Geochronology

Miocene, vertebrate-molluscan-foraminiferal chronologies, chart: _Mitchell_, E. D., Jr., and _Repckenning_, C. A., 1963
Oligocene faunal units, relationship to _Miocene_:
Clar, B. L., and _Arnold_, R., 1922b
Oregon and _Washington_, _Neogene_ faunal units: _Arnold_, R., and _Hannibal_, H., 1913
Tertiary, correlation chart, characteristic mol-
lusks: _Clark_, B. L., 1921a
Tertiary, invertebrate stages: _Weaver_, C. E., and others, 1944

Monographs of genera

Actela: _Schenck_, H. G., 1936
"_Apopora_": _English_, W. A., 1914a
Anasara, _Oligocene_ species: _Schenck_, H. G., and _Reinhart_, P. W., 1938
Area s.l.: _Reinhart_, P. W., 1943
Atoria: _Schenck_, H. G., 1931
Cassis s.l.: _Schenck_, H. G., 1925
Ceratostoma: _Hall_, C. A., Jr., 1959b
Chione: _Parker_, P., 1949
Clementia: _Woodring_, W. P., 1925a
Comia, _Holocene_:
Hanna, G. D., and _Strong_, A. M., 1949
Epitonium: _Durham_, J. W., 1937
Genoa: _Raymond_, W. J., 1906
Lutapsetra: _MacNeill_, F. S., 1961
Medargo: _Peckard_, E. L., 1916
Medisago: _Terry_, J. S., 1968
Pacific coast—Continued
Monographs of genera—Continued

Miopleona: Shikama, T., 1967

Mulinia: Packard, E. L., 1916

Mys: MacNeil, F. S., 1965

Nassarius: Addicott, W. O., 1965d

Pandora: Boss, K. J., 1965

Pedum: Holocene: Grau, G., 1959

Peneis: Adegke, O. S., 1966

Pecten: Holocene: Qrau, O., 1959

Penitella: Adegoke, O. S., 1967c

Planodonta: Adegke, O. S., 1967c

Scuralla: Parker, P., 1949

Siphonaria: Ruth, J. W., 1942

Spisula: Packard, E. L., 1916

Turrilerta: Merriam, C. W., 1941

Paleoecology

Acila, valid species, list: Schenck, H. G., 1934, 1935b

Argopecten: Waller, T. R., 1969

Cardiidae: supraespecific classification: Keen, A. M., 1936a, 1936b, 1951a

Ceratostoma: Hall, C. A., Jr., 1958a

Delectopecten: Woodring, W. P., 1938

"Galeodes", Olione and Miocene species: Durham, J. W., 1942b

Gastropoda, designation of type species: Coisson, A. E. M., 1895-1925

Lima, giant species: Vokes, H. E., 1963

Lyropecten: Woodring, W. P., 1938

Lyropecten, Miocene, Atlantic and Mediterranean counterparts: Mongin, D., 1968

Miocene and Pliocene species, taxonomic revisions: Hanna, O. D., 1924

Miopleona spp.: Dall, W. H., 1907a

Mullina: Packard, E. L., 1914

Pyramidellidae: Bartisch, P., 1917a

Starless: Grant, V. B., 4th, 1933

Solemya: Vokes, H. E., 1963

Thaya dispersa and T. biesa: Boss, K. J., 1967; Taglan, N. M., 1928

Trochidae: affinities with Holocene species: Redder, H. A., 1943

Trochus: Gale, R. H., 1929

Turrilerta cooperi stock, phylogenetic development: Kotaka, T., 1960

Veneridae, supraespecific classification: Keen, A. M., 1951b

Zoogeography

Acila, Tertiary migrations: Schenck, H. G., 1938

Clementia, Pacific-Caribbean migration, Miocene: Woodring, W. P., 1929a

Faunal migration

Atlantic-Pacific, Miocene: Clark, B. L., and Durban, J. W., 1942

Atlantic-Pacific, Pacifica plethora genera: Woodring, W. P., 1929a

Japan-California, Pliocene: Smith, J. P., 1904

Late Tertiary: Arnold, R., 1903

Pacific-Atlantic: Davies, A. M., 1929, 1934; Ehrman, S., 1933; Hagg, R., 1924

Pacific-Atlantic, Maconma: Coan, E. V., 1969
Pacific coast—Continued
Zoogeography—Continued

Faunal migration—Continued

Pacific-Atlantic, *Nucella*: Kinne, T., 1957

Pacific-Atlantic, *Searlesia*: Grant, U., 1933

Faunal provinces

Holocene, warm-water: Olsson, A. A., 1961

Holocene species, geographic ranges: Burch, J. Q., ed., 1944-46; Call, W. H., 1921a

Miocene, Caribbean affinities: Arnold, R., and Clark, B. L., 1917; Loel, W., and Corey, W. H., 1921b

Neogene, insular faunal change: Addicott, W. O., 1968a, 1969b; Clark, B. L., 1921a

Spisula, Pliocene: Chamberlin, J. L., and Stearns, F., 1941

Tropical faunas, Caribbean and Indo-Pacific origins: Hertlein, L. G., 1933

Turritella ocoyana stock, Atlantic origin, geographic distribution: Woodring, W. P., 1928, 1929

Pacific Ocean

Catalog

Eastern, Holocene Pectinidae: Grau, G., 1959

Correlation

California and Japan, Asagian Stage and "Vaqueros Stage": Kobayashi, T., and Shikama, T., 1961

Northeast Pacific coast and Japan

Oligocene and Miocene, similar species: Durham, J. W., and Sasa, Y., 1961

Pectinids, Neogene: Masuda, K., 1962

Pholadomya, California and Japan, Miocene species: Omori, M., 1952

Paleoclimatology

Alaska

Bering Sea, Nome area: Ball, W. H., 1907b; Hopkins, D. M., and others, 1960

Ogif of Alaska

Miocene glaciation, effect on marine invertebrates: Miller, D. J., and others, 1959

Oligocene and Miocene, foraminifer-mollusk data: Bandy, O. L., and others, 1969

Tertiary: Miller, D. J., 1961

Yakataga Formation, cool-water indicators: Denton, G. H., and Armstrong, R. R., 1969

British Columbia

Vancouver Island, Sooke Formation, brackish-water indicators: Cornwall, I. E., 1927

California

Eel River basin, Wildcat Group, bathymetric inferences: Talmadge, R. R., 1968

Los Angeles basin, Repetto Formation: Woodring, W. P., 1938

Salinas basin, southern, Monterey Shale: Smith, P. B., 1968a

San Joaquin basin, Kern River area, Sharktooth Hill: Mitchell, E. D., Jr., 1966

Santa Maria basin

Santabarbara zone: Adegofe, O. S., 1967a

Pisano Formation, sand-pipes: Adegofe, O. S., 1966b; Evans, J. W., 1967

Pisano formations, Woodring, W. P., and Bramlette, M. N., 1950

Ventura basin

Eastern, Castaic Formation: Stanton, R. J., Jr., 1965, 1967a

Ple Formation, orientation of pelecypod valves: Crowell, J. C., and others, 1966; Hoskins, C. W., 1967

Pleocene or Pleistocene, Santa Barbara zone: Meade, R. F., 1966, 1967
Paleocology—Continued
California—Continued
Ventura basin—Continued
 South Mountain, Fernando Formation: Yeats, R. S., and others, 1967
 Western, Santa Barbara Formation, biofacies: Valentine, J. W., 1962
Methods
Paleotemperature analysis, median-of-midpoints:
Recurrent species groups, Pliocene and Pleistocene, computer analysis:
 Valentine, J. W., 1965
Mexico
 Baja California, northwestern, San Diego Formation: Rowland, R. W., 1968
 Gulf of California, ecologic data, Holocene:
 Keen, A. M., 1963
 Pacific Ocean:
 Holocene genera, ecologic data:
 Holocene species, ecologic data:
 Mixed depth assemblages, interpretation:
 Valentine, J. W., and Mallory, B., 1965
 Paleotemperature analysis, median-of-midpoints:
 Pholad burrows, initial rock hardness:
 Evans, J. W., 1968
 Pleistocene, paleotemperatures, Californian molluscan province:
PaleogEOGRAPHY
California
 Coast Ranges
 Late Miocene, maps:
 Hall, C. A., Jr., 1960
 Miocene:
 San Andreas fault, evidence for lateral slip: Addicott, W. O., 1967a
 Southern, Miocene: Eaton, J. E., and others, 1941
 Imperial basin, late Tertiary:
 Brown, J. S., 1923
 Miocene:
 Addicott, W. O., 1967b; Clark, B. L., and Arnold, R., 1938; Cooper, J. G., 1874
 Oligocene and Miocene, maps:
 Addicott, W. O., 1968a
 San Francisco Bay area, Merced? Formation, map:
 Addicott, W. O., 1969a
 San Joaquin basin, Kettleman Hills, Plococene:
 Stanton, R. J., Jr., 1969
 Southern, Miocene and Pliocene, maps:
 Corey, W. H., 1954; Eaton, J. E., 1932
 Vaqueros Formation, map:
 Loel, W., and Corey, W. H., 1932
 Central America
 Miocene and Pliocene
 Panama-Costa Rica seaways: Clements, T., 1941
 Panama land bridge, map:
 Woodring, W. P., 1966
INDEX
INDEX

Systematic descriptions—Continued

California—Continued

Coast Ranges—Continued

Northern, Sonoma County, Pliocene formations: Howe, H. V., 1922; Peck, J. H., Jr., 1960
Ostrea titan: Conrad, T. A., 1833b
Pliocene formations: Gabb, W. M., 1866, 1890a; Martin, B., 1914

El River basin
Faler Formation: Mandra, Y. T., 1949; Manning, Q. A., and Ogle, B. A., 1950

Imperial basin
Carrizo Creek area: Conrad, T. A., 1853a, 1855b; Marcou, J., 1858
Coyote Mountain, Imperial Formation: Hanna, G. D., 1926b

Los Angeles basin
Monterey Shale, pectinids: Trask, J. B., 1856
Pliocene formations: Ball, W. H., 1900; Moody, C. L., 1916
Repetto Formation: Hertlein, L. G., 1925a; Woodring, W. P., 1938
Santa Monica Mountains, Miocene and Pliocene formations: Conrad, T. A., 1857c; Raymond, W. J., 1904
Santa Monica Mountains, Modelo Formation: Woodring, W. P., 1931c
Santa Monica Mountains, Topanga Formation: Arnold, R., 1907c
Mount Diablo embayment
Briones Formation: Trask, P. D., 1922
Miocene formations: Hall, C. A., Jr., 1958b; Hall, E. B., and Ambrose, A. W., 1917; Rémont, A., 1963
San Lorenzo Group: Clark, B. L., 1918
San Pablo Group: Clark, B. L., 1915a
Sobrante Sandstone: Lutz, G. C., 1951
Vaqueros Formation: Hertlein, L. G., 1937

San Joaquin basin
Coalings area, Miocene and Pliocene formations: Adegoke, O. S., 1969; Anderson, P. M., 1955; Arnold, R., 1960b
Etchegoin Formation: Nomland, J. O., 1917a
Kettleman Hills, Pliocene formations: Woodring, W. P., and others, 1949
San Emidio Mountains, Monterey Group: Wagner, C. M., and Schilling, K. H., 1923
Santa Margarita Formation: Hertlein, L. G., 1934; Nomland, J. O., 1917c
Tembler Range, Santa Margarita Formation: Woodring, W. P., 1932
Santa Cruz Mountains, Miocene and Pliocene formations: Arnold, R., 1908b; Carson, C. M., 1926; Conrad, T. A. 1857c
Santa Maria basin
Area leptogrammica: Hall, C. A., Jr., 1964
Arcidae: Reinhart, P. W., 1937
Pliocene formations: Arnold, R., 1907d; Bartsch, P., 1911; Carson, C. M., 1926; Woodring, W. P., and Bramlette, M. N., 1950
Vaqueros Formation: Hertlein, L. G., 1937
Southern, Pliocene formations: Carson, C. M., 1925b, 1926
Transverse Ranges, Santa Ynez Mountains, Miocene formations: Conrad, T. A., 1857c
Vaqueros Formation: Loel, W., and Corey, W. H., 1932
Ventura basin
Fernando Group: Waterfall, L. N., 1929
Santa Barbara area, Santa Barbara Formation: Dall, W. H., 1917; Gabb, W. M., 1891; Trask, J. B., 1855a
Vaqueros Formation: Arnold, R., 1907d

Central America

Panama
Canal Zone, gastropods: Woodring, W. P., 1957b, 1959
Miocene, Gatun Formation: Vokes, H. E., 1969

Mexico

Baja California
Cedros Island: Gabb, W. M., 1866
Ostrea spp.: Hertlein, L. G., 1923a, 1966
Pectinids: Hertlein, L. G., 1920b, 1956
West coast, Miocene species: Hertlein, L. G., and Jordan, E. K., 1927
Gulf of California, Pliocene species: Durham, J. W., 1930b

South America

Cordilleran province

Colinera area, Miocene and Pliocene formations: Adegoke, O. S., 1969; Anderson, P. M., 1955; Arnold, R., 1960b

Central America

Panama
Canal Zone, gastropods: Woodring, W. P., 1957b, 1959
Miocene, Gatun Formation: Vokes, H. E., 1969

Mexico

Baja California
Cedros Island: Gabb, W. M., 1866
Ostrea spp.: Hertlein, L. G., 1923a, 1966
Pectinids: Hertlein, L. G., 1920b, 1956
West coast, Miocene species: Hertlein, L. G., and Jordan, E. K., 1927
Gulf of California, Pliocene species: Durham, J. W., 1930b

María Madre Island, Pectes spp.: Durham, J. W., 1930b
Systematic descriptions—Continued

Oregon
Astoria embayment, Astoria Formation: Conrad, T. A., 1848, 1849; Dall, W. H., 1900b; Henderson, J., 1926; Moore, E. J., 1963

Coos Bay embayment, Pliocene, Empire Formation: Dall, W. H., 1909b; Hertlein, L. G., 1965; Howe, H. V., 1922, 1923; Shumard, B. F., 1858

Pacific coast
Acila, Tertiary species: Schenck, H. G., 1936
Arcidae: Reinhart, P. W., 1943
California and Alaska, Lituyapecten spp.: MacNeil, F. S., 1961
California and Oregon, cassidids: Schenck, H. G., 1926
California and Washington: Dall, W. H., 1890-1903
Cardiidae, Clinocardium spp., Artotrocholus: Keen, A. M., 1954
Chione: Parker, P., 1949
Condonia: Hertlein, L. G., 1965
Epitomium spp.: Durham, J. W., 1937
Euhyncardium: Packard, E. L., 1916
Euglypha: Terry, J. S., 1908
Oregon and Washington, Miocene and Pliocene species: Berry, S., 1922

Washington
Skagit Harbor basin
Astoria Formation: Addicott, W. O., 1965b
Etherington, T. J., 1931
Montesano Formation: Hertlein, L. G., 1925a, 1931
Olympic Peninsula, Quillayute Formation: Reagan, A. E., 1909
Olympic Trough
Puyet Point
Clallam Formation: Reagan, A. E., 1908
Oligocene and Miocene, Twin River Formation: Durham, J. W., 1944; Tegland, N. M., 1929, 1931, 1933
Vaniwka Formation: Siedkiewtisch, W. S., 1938
Shoualwater Bay, Mytilus condoni: Dall, W. H., 1900
Western
Arca montereyana zone: Weaver, C. E., 1916b
Miocene formations: Weaver, C. E., 1912

Taxonomy—Continued

California—Continued

Crenepiliopsis, Miocene and Pliocene species: Scott-Hyten, T., 1955
Diosida: Durham, J. W., 1959
Gabb's (1866, 1869) gastropods: Stewart, R. B., 1927
Gabb's (1866, 1869) pelecypods: Stewart, R. B., 1930
Haliotis, Miocene and Pliocene species: Talma, R., 1944
Hall's and Ambrose's (1891) species, illustrations: Wiedey, L. W., 1929c
Marginella spp., Ventura basin, Castle Formation: Roth, B., and Coan, E. V., 1968
Melaenididae, Miocene species, San Joaquin basin: Bartsch, P., 1917b
Miliids: N. s. accecreata: Vokes, H. E., 1939
Miocene species, Carrizo-Cuyama basin: Frisch, A. B., 1908
Miocene species, Santa Barbara basin: Talma, R., 1944
Tertiary species, systematic catalogue, revised generic assignments: Keen, A. M., and Bentzon, H., 1940, 1944
Tertiary species, systematic list, taxonomic notes: Gabb, W. B., 1890b
Turritella variata: Wiedey, L. W., 1920b
Typhis lampada: Keen, A. M., 1944
Ventricolaria n. sp.: Keen, A. M., 1946

Pacific coast
Acila, valid species, list: Schenck, H. G., 1934, 1943
Cardiidae, superfamily classification: Kean, A. M., 1936a, 1936b, 1936c
Ceratopecten, Miocene and Pliocene species: Addicott, W. O., 1965a, 1965b
Nassariidae: Addicott, W. O., 1965c, 1965d
Nassarius, Miocene species, Carrizo-Cuyama basin: Frisch, A. B., 1908
Mulinidae, Pliocene species: Coan, E. V., 1912

Taxonomy—Continued

Amphineura
Pacific coast, Miocene and Pliocene species: Berry, S. S., 1922

California
Acranius sinuatum: Woodring, W. P., 1956
Conrad's (1857d) species, Santa Ynez Mountains: Woodring, W. P., 1934a
Taxonomy—Continued

Puget Trough, Clallam and Quillayute Formations, critique of Reagan (1909): Dall, W. H., 1922

Washington Bibliography

Geological reports
1814-1936: Bennett, W. A. G., 1939
Through 1901: Arnold, R., 1902

Western, geological reports, annotations: Weaver, C. E., 1916c

Biostratigraphy

Puget Trough
Clallam Formation: Arnold, R., 1905, 1906a; Gower, H. D., 1960
Oligocene and Miocene faunal zones: Durham, J. W., 1944
Twin River Formation, upper member: Gower, H. D., 1960
Western, post-Eocene faunal zones: Weaver, C. E., 1916a, 1916b

Catalog
Holocene mollusks, Puget Sound, ecologic data, fossil occurrences: Oldroyd, I. S., 1924a

Correlation

Puget Trough
Clallam Formation: Stirton, R. A., 1960
Oligocene and Miocene faunal zones: Durham, J. W., 1944
Twin River Formation, upper member: Gower, H. D., 1960
Western, post-Eocene faunal zones: Weaver, C. E., 1916a, 1916b

Faunal lists

Grays Harbor basin
Astoria and Montesano Formations: Etherington, T. J., 1931
Centralia-Chehalis area, Miocene formations: Snively, P. D., Jr., and others, 1958

Olympic Peninsula
Western, Hoh Formation: Arnold, R., 1906a; Arnold, R., and Hannibal, H., 1913; Durham, J. W., 1944; Palmer, R. H., 1927b; Reagan, A. B., 1909, 1910
Western, Quillayute Formation: Reagan, A. B., 1909
Western, Quinault Formation: Arnold R., 1906a

Puget Trough
Clallam Formation: Tegland, N. M., 1929
Twin River Formation: Durham, J. W., 1944

Washington—Continued

Faunal lists—Continued

Western
Miocene formations, faunal zones: Weaver, C. E., 1912, 1916b, 1916c
Post-Eocene formations, faunal zones: Weaver, C. E., 1916a

Faunal records

Doty-Minot Peak area, Miocene formations: Pease, M. H., and Hoover, L., 1957
Fossil localities: Livingston, V. E., Jr., 1959

Olympic Peninsula
Western, Hoh and Quillayute Formations: Palmer, R. H., 1927a
Western, Miocene, Browns Point Formation: Glover, S. L., 1940

Puget Trough, Twin River Formation: Jackson, H. E., 1966; Brown, R. D., Jr., and Gower, H. D., 1958

Southwestern, Bruceport: Landes, H., 1902
Western, Asterias: Weaver, C. E., 1914

Paleoecology

Puget Trough, Twin River Formation: Jackson, H. E., 1966; Brown, R. D., Jr., and Gower, H. D., 1958

Paleogeography

Western, Oligocene and Miocene: Weaver, C. E., 1918

Systematic descriptions

Grays Harbor basin
Astoria Formation: Addicott, W. O., 1906b; Etherington, T. J., 1931
Montesano Formation: Hertlein, L. G., 1926a; Weaver, C. E., 1912

Olympic Peninsula, Quillayute Formation: Reagan, A. B., 1909

Puget Trough
Clallam Formation: Reagan, A. B., 1909
Oligocene and Miocene, Twin River Formation: Durham, J. W., 1944; Tegland, N. M., 1929, 1931, 1933

Variamussium pillarensis: Slodkewich, W. S., 1938

Shoalwater Bay, Mytilus condoni: Dall, W. H., 1890

Western
Area monteponiana zone: Weaver, C. E., 1916b

Miocene formations: Weaver, C. E., 1912

Taxonomy

Puget Trough, Clallam and Quillayute Formations, critique of Reagan (1909): Dall, W. H., 1922

Zoogeography

Alaska

Bering Sea

Faunal migration, Macoma: Coan, E. V., 1966

Analysis

Pacific coast, living mollusks, geographic ranges
Burch, J. Q., ed., 1944-46; Dall, W. H., 1921a

Keen, A. M., 1937
Zoogeography—Continued

Arctic Ocean

- Faunal migration, Miocene, Pacific-Atlantic: Soot-Ryen, T., 1932
- Faunal migration, Pliocene: Dall, W. H., 1921a

California

- Cost Ranges
- Imperial basin, late Tertiary, tropical affinities: Bramkamp, R. A., 1935; Dickerson, R. E., 1918

- Provincialism, Miocene and Pliocene: Durham, J. W., 1963

Central America

- Costa Rica, Caribbean coast, Miocene, Pacific analogues: Olsson, A. A., 1922
- Miocene, endemism: Woodring, W. P., 1965
- Panama, Canal Zone, Miocene-Holocene lineages: Woodring, W. P., 1954

Mexico

- Miocene, Gulf of Tehuantepec, Caribbean affinities: Durham, J. W., and others, 1955
- Neogene faunas, Gulf of California, tropical origins: Parker, R. H., 1964
- Venericardia, faunal migration, late Cenozoic: Hoagland, W. G., 1968

Pacific Coast

- Acita, Tertiary migrations: Schenck, H. G., 1936
- Clementia, Pacific-Caribbean migration, Miocene: Woodring, W. P., 1926a
- Faunal migration
 - Atlantic-Pacific, Miocene: Clark, B. L., and Durham, J. W., 1942
- Imperial basin, late Tertiary, tropical affinities: Bramkamp, R. A., 1935; Dickerson, R. E., 1918
- Provincialism, Miocene and Pliocene: Durham, J. W., 1963
- Holocene, warm-water: Olsson, A. A., 1961
- Holocene species, geographic ranges: Burch, J. Q., ed., 1944–46; Dall, W. H., 1921a
- Miocene, Caribbean affinities: Arnold, R., and Clark, B. L., 1917; Loel, W., and Corey, W. H., 1931
- Neogene, latitudinal faunal change: Addicott, W. O., 1967b, 1969; Clark, B. L., 1921
- Spisula, Pliocene: Chamberlin, J. L., and Stearns, F., 1963
- Tropical faunas, Caribbean and Indo-Pacific origins: Hertlein, L. O., 1944