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PREFACE

The expanding ability of computers to solve problems for which the
solutions have been impractical in the past has been applied to several
areas of map-projection research by the U.S. Geological Survey. Since
the principle of least squares applies to several of the topics researched,
some of the earlier usage of least squares in the development of map
projections, with or without computers, is also reviewed.

Two general areas of development are described. The first area,
treating efficient data transfer between maps, is subdivided into two
principal investigations. In the first, the principle of least squares is
applied to the development of polynomials to be used in place of analyt-
ical equations in transferring large quantities of data from one map to
another map or transferring data to or from a data base in geodetic or
rectangular coordinates. This use of least squares was described in large
part in a paper by Wu and Yang (1981). The derivations contained herein
are more extensive, but were inspired by that paper.

In the second investigation, the computer is used to determine
which, if any, of several common map projections fit a map for which the
projection or set of parameters is not known. The user must carefully
measure rectangular coordinates for a certain matrix of nine points of
known latitude and longitude. The computer program tests these for
successive types of projections. The answer is not exact, limited by
paper expansion, accuracy of cartography, accuracy of measurement,
and the fact that, on some large-scale maps, projection difference is
almost undetectible; for the latter, a second-order polynomial fits satis-
factorily. The result normally is sufficiently accurate to permit transfer
of other data from the map.

The second general area of study discussed in this paper concerns
minimum-error projections. Here the computer is used to provide a
least-squares fit of a conformal or equal-area map projection to a large
number of weighted points representing the region to be mapped. Thus
the central meridian and central scale factor of the Transverse Mercator
or the various parameters of oblique aspects of other projections may be
chosen analytically, rather than by subjective judgment, to reduce over-
all scale error on the map. With the careful use of complex transforma-
tions, still less error can usually be achieved in a given region, for ex-
ample, to prepare a 50-State map of the United States.

I appreciate the helpful counsel of several individuals in and out of
the Survey in reviewing the manuscript or inspiring some of the research.
Especially do I thank Atef A. Elassal and Allen J. Pope of the National
Ocean Service, Paul R. Wolf of the University of Wisconsin/ Madison,
and Lee U. Bender, Joel L. Morrison, and John F. Waananen of the U.S.
Geological Survey. In addition, I appreciate the devotion of K. Susan
Bruckschen and Cynthia L. Cunningham in formatting, typing, and
repeatedly changing the equation-laden manuscript. The remaining
errors and limitations are entirely my responsibility.

It is hoped that these applications of well-known principles will be
found useful to prepare maps with still less distortion than those designed
with earlier conventions.

John P. Snyder

Reston, Va.
1984 iii
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SYMBOLS

If a symbol is not listed here, it is used only briefly and identified
near the formulas in which it is given.

a = semimajor axis of Earth at map scale

arctan2 = arc tangent with quadrant adjustment like that of

Fortran ATAN2 function. Otherwise, arctan
corresﬁonds to ATAN.

e = eccentricity of reference ellipsoid (generally).

= base of natural logarithms (2.718 ...)(if specially indicated)
f = function of
= square root of -1

In = natural logarithm based on e=2.718...

n = cone constant in conic projections; otherwise integer
serving as upper limit.

R = radius of Ear‘th as sphere at map scale

RMSE = root—mehn—square error

s = distance

X = rectangular coordinate: distance to the right of the
vertical line (Y axis) passing through the origin or center
of a projection (if negative, it is distance to the left).

y = rectangular coordinate: distance above the horizontal
line (X axis) passing through the origin or center of a
projection (if negative, it is distance below).

x', y") = rectangt‘llar coordinates in a different reference

frame, such as on another map.

z = angular distance from the pole of the projection.

A = finite change in

d = partial derivative of

© = angle, usually between meridians

N = longitude east of Greenwich (for longitude west of
Greenwich, a minus sign is used).

Xp = longitude east of Greenwich of the pole of a transformed

projection. |

Xo = longitude east of Greenwich of the central meridian of

the map, or of the origin of the rectangular coordinates.
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SYMBOLS--continued

¢ = north geodetic or geographic latitude (if latitude is south, a
minus sign is applied).
<|>p = north latitude of pole of transformed projection.
d)o latitude of central point on miscellaneous map projections
] single standard parallel of latitude on cylindrical or
conic projections; latitude of central point on azimuthal

]

1

projections.
¥ = isometric latitude

L = sum of



COMPUTER—ASSISTED MAP PROJECTION RESEARCH

By John P. Snyder

ABSTRACT

Computers have opened up areas of map projection research which
were previously too complicated to utilize, for example, using a least-
squares fit to a very large number of points. One application has been
in the efficient transfer of data between maps on different projections.
While the transfer of moderate amounts of data is satisfactorily accom-
plished using the analytical map projection formulas, polynomials are
more efficient for massive transfers. Suitable coefficients for the poly-
nomials may be determined more easily for general cases using least
squares instead of Taylor series.

A second area of research is in the determination of a map projec-
tion fitting an unlabeled map, so that accurate data transfer can take
place. The computer can test one projection after another, and include
iteration where required.

A third area is in the use of least squares to fit a map projection
with optimum parameters to the region being mapped, so that distortion
is minimized. This can be accomplished for standard conformal, equal-
area, or other types of projections. Even less distortion can result if
complex transformations of conformal projections are utilized.

This bulletin describes several recent applications of these prin-

ciples, as well as historical usage and background.

INTRODUCTION

The use of the computer for map plotting has, in less than two dec-
ades, become standard for many governmental agencies as well as an

increasing number of private firms. Many of the map projections used,

Publication authorized by the Director, U.S. Geological Survey, on
April 20, 1984.
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however, remain those of long standing, although formulas have not been
available for some until recently because they had been plotted geomet-
rically. Until computers were available, the formulas for some projec-
tions were too complicated to be practical for computation of coor-
dinates.

Computers and even pocket calculators have opened up large areas
of research on new projections which were previously too complicated
for practical computation of coordinates for plotting. One area has been
in the numerical solutions of problems, such as those involving hundreds
of points in least-squares fitting, or iteration involving several simultan-
eous equations. Previously these problems could defeat even the most
persistent mathematician because of the sheer volume of work and the
ease with which errors could be made.

A leader in this field from its earlier days (soon after 1960) has been
Waldo R. Tobler. During his tenure on the faculty of the University of
Michigan, where he remained until 1977, he was a major influence in
moving the field from its infancy to accepted practice. Among Tobler's
numerous special studies were applications of spatial effects to mapping
so that the areas could be automatically altered in accordance with, for
example, population or retail sales (Tobler, 1963a, 1963b). In other
studies he used a computer to determine possible projections for old
maps and to determine by least squares an "optimum" map projection of
the United States (Tobler, 1966, 1977).

Another recent product of map-projection research with computers
was the mathematical development of the Space Oblique Mercator pro-
jection. This was pursued by the writer using only programmable pocket
calculators for the numerous calculations and checking of formulas
(Snyder, 1978, 1981a). On a more conventional basis, the writer used the
same calculators to check numerous existing map-projection formulas as
well as newly derived ones before including them in other published
papers, or in a computerized USGS map-projection package called the
General Cartographic Transformation Package (U.S. Geological Survey,
1981).



EFFICIENT DATA TRANSFER BETWEEN MAPS OF DIFFERENT
PROJECTIONS: OVERVIEW

Since data are being digitized at an increasing rate from existing
maps into a data base, and are being increasingly plotted from one map
onto another, it is essential that the mathematical relationship between
the projections of the maps involved be properly understood. Several
common situations occur that affect the nature of these relationships.
The map projection of the existing map may be unidentified, identified
only by name, or completely identified with parameters. The projection
of the map to which data are to be transferred will more likely be known
in detail, but this may not be the case. The transfer of data may involve
only a few points or a great many points. Several options are available
to perform the transfer of data based on the situations that exist.

Judging from the notations on many maps, there is a widespread
belief that the name of the projection is sufficient identification.
Generally this is not true. For example, unless the standard parallels for
a conic projection are given, data cannot be properly transferred from
this map to another. The Lambert Conformal Conic label tells the user
that there is conformality and therefore correct local shape, and that the
meridians are straight, but only if the standard parallels are known can
the scale be used to determine accurately the geographic positions of
points on the map. Similarly, the central meridian of a Transverse
Mercator projection must be known together with any central scale
reduction.

Measurements may be made to determine standard parallels or
central meridians, as discussed in a later section, but this procedure can
be technically complicated, and it is limited by errors of map drafting,
measurement, and paper expansion. On the other hand, the choice by the
mapmaker for the origin of rectangular coordinates on any map, or for
the central meridian of a conic projection, although used for the original
plotting, is not needed for the transfer of data, since another choice
merely rotates or translates the map and does not affect relative

positions.
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Because of the increased emphasis on data transfer, the USGS has
recently undertaken research to develop additional capabilities in trans-
ferring data automatically from one map to another. The standard
approach in data transfer, namely analytical transfer using exact
formulas for the projections involved, is briefly mentioned below. The
mention is brief only because it is standard. It remains the approach to
consider first. This is followed by a discussion of the use of polynomial
approximations for the same purpose. The third phase under the same
heading "Efficient Data Transfer ..." involves computer techniques for
identification of the map projection for an incompletely labeled map,
and therefore one from which data cannot be readily transferred. This
identification is developed with sufficient parameters to permit data

transfer from the map to a data base or to another map.

ANALYTICAL TRANSFER OF DATA

Assuming that the projection of the existing map is adequately
identified, the transfer of a moderate number of points from one map to
another is most satisfactorily accomplished by the use of the exact
trigonometric formulas, usually called "inverse" formulas, for conversion
of rectangular to geographic coordinates for the first map, followed by
conversion of geographic to rectangular coordinates with exact "forward"
formulas for the second map. These formulas apply to maps extending
over small or large portions of the Earth. While a few projections are
computed using approximate series, such as the Space Oblique Mercator
and the ellipsoidal form of the Transverse Mercator, the series are
sufficiently accurate for the entire normal ranges of the projections.

There are several computer packages containing the forward
formulas for one or more projections, such as Philip Voxland's WORLD
package at the University of Minnesota (Voxland, 1981). It contains over
a hundred projections. The inverse formulas are much less common in
computer programs. The USGS General Cartographic Transformation
Package (GCTP) has forward and inverse formulas for 17 major projec-
tions, including the ellipsoidal or spherical versions for 8 of them (U.S.
Geological Survey, 1981). This package is also incorporated into
GS-CAM, a plotting package modified from CAM (the Cartographic
Automatic Mapping program of the Central Intelligence Agency) by
USGS (U.S. Geological Survey, 1982). A recent USGS bulletin lists the
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forward and inverse formulas for all projections used by the Survey in its
past and present published maps (Snyder, 1982).

The exactness of the analytic formulas is offset by the fact that
most involve several trigonometric calculations and similar time-
consuming operations which may unnecessarily increase the computer
time and therefore the cost of data transfer, depending on the quantity

and type of transformation required.

POLYNOMIAL APPROXIMATIONS FOR DATA TRANSFER

If thousands of points are to be transferred between two maps of
known projection parameters, the use of a polynomial approximation
should be considered to reduce computation time. However, this is not a
panacea. If the region of the map is continent-sized, a polynomial of
sufficient accuracy will usually contain an excessive number of terms
and will not save computer time. If the area is smaller, however, a low-
order polynomial may be more efficient. Since the calculation of the
polynomial coefficients may require moderate computer storage, and the
coefficients apply only to a limited area, the number of points to be
transferred must normally be very large for this technique to be
effective.

The actual computer time saved varies with the projection, the
accuracy required, and the type of transformation. For forward or
inverse conversion of Lambert Conformal Conic coordinates, even a
nested third-order polynomial can take longer to compute than the
analytical equations, and is more limiting. Polynomials are normally
faster than the ellipsoidal Transverse Mercator series. To convert from
rectangular coordinates of the Lambert Conformal Conic to those of the
Transverse Mercator, or to transfer data between two Transverse
Mercator projections, it is usually faster to use polynomials, if enough
transformations are required to justify computation of coefficients
suitable for the region of interest.

In the analyses given later, polynomial equations for converting one
type of coordinates to another are described for two categories of map
projections, namely general and conformal. The general equations also
apply to conformal map projections, but for conversion from one con-
formal projection to another, the polynomial may be expressed in com-

plex algebra, using fewer coefficients for a given accuracy.



6 COMPUTER-ASSISTED MAP PROJECTION RESEARCH

The computation of polynomial coefficients can take one of at least
two forms. The conventional pattern is to develop coefficients from a
Taylor series. This becomes increasingly unwieldly and error prone as
the size of the geographic region increases, or when the conversion
involves rectangular to rectangular coordinates with at least one noncon-
formal projection. A more generally useful technique for developing
coefficients involves the use of least squares. The Taylor series
approach is briefly described, but éhe application of the least-squares

method is discussed more completely.

IDENTIFYING AN UNMARKED MAP PROJECTION

The foregoing approaches are based upon adequately knowing the
map projection together with its parameters for the source map. If they
are not known, data cannot be properly transferred from this map to
another base. For these transfers to take place, it may not be necessary
to determine the original projection parameters precisely, but a close
approximation is needed. An experienced observer can frequently deter-
mine a possible projection and its parameters by beginning with elemen-
tary checks and ending with careful measurements. Initially the ques-
tions may include these: Are meridians straight or curved? Are parallels
straight or curved? If parallels are curved, are they concentric circular
arcs? How are parallels spaced along meridians? Without measure-
ments, however, an unlabeled map of the United States according to the
Lambert Conformal Conic cannot be distinguished from one according to
the Albers Equal-Area Conic, and the standard parallels are even more
difficult to determine. For large-scale maps such as topographic quad-
rangles covering small areas, ascertaining the projection is still more
difficult, and a low-order polynomial or more than one projection may
fit the points as accurately as normal measurement permits. In any
case, the identity of the projection for purposes of data transfer is
incomplete without parameters such as scale and standard parallels or
central meridian.

While the computer lacks an ability to give the map an overview, it
can be programmed to make some of the normal human tests, and also to
make checks which are too subtle even for experienced observers, much

less those less familiar with map projection design. Even the computer
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is limited by the problem of unequal expansion and contraction of paper
maps, the usual form in which maps with unknown parameters are
supplied.

A computer, however, can make a large number of computations for
an undefined map to determine which projection fits reference points
measured. In view of this, a program has been developed and tested to
determine the suitability of a second-order polynomial or of some 18
projections. Of these projections eight are also tested for the Earth
taken as an ellipsoid. The program then permits calculation of geo-
graphic coordinates of other points on the map based on the parameters

determined. These projections are as follows:

Regular Cylindrical:
Mercator (spherical or ellipsoidal)
Miller Cylindrical (spherical)

Equirectangular (spherical)
Gall's (spherical)
Regular Conic (spherical or ellipsoidal):
Lambert Conformal Conic
Albers Equal-Area Conic
Equidistant Conic
Azimuthal (spherical for any aspect, except ellipsoidal form also for
polar aspects asterisked (¥)):
Stereographic*
Lambert Azimuthal Equal-Area*
Azimuthal Equidistant*®
Orthographic
Gnomonic
General Vertical Perspective
Pseudocylindrical (spherical only):
Sinusoidal
Mollweide
Others (spherical or ellipsoidal):

Polyconic
Transverse Mercator
Tilted Perspective

Second-order polynomial

Additional projections may be added with varying difficulty if the
projections have curved meridians and curved parallels, but minimal

difficulty for others (regular cylindricals, conics, and pseudocylindricals).
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LIMITATIONS

If coordinates are artificially calculated rather than measured, the
program determines the projection parameters almost exactly. For 25
actual maps, using a coordinate-measuring machine and a skilled techni-
cian, the final projection determined by the program generally fits with-
in 0.5 mm. Determining map parameters in this manner is not ideal. It
is often not possible to determine the original parameters of an exist-
ing map correctly. It is only possible to determine parameters of suf-

ficient accuracy to permit transfer of data.

GENERAL FORMAT OF PROGRAM

The program as developed is designed to handle data supplied in the
form of a matrix of nine known points along three meridians and three
parallels; the second meridian and second parallel are not necessarily
midway between the first and third. Knowing the latitude, longitude, and
rectangular coordinates of these nine points relative to an arbitrary set
of X and Y axes, the program first checks for the straightness of
meridians and parallels.

If meridians and parallels are all straight, and one set perpendicular
to the other, the spherical Mercator projection is tested for fitting the
nine points. If it fails to fit, the ellipsoidal Mercator is tested, and then
the Miller, Equirectangular, and Gall's, in order. If none fits, the pro-
gram reports that the projection is cylindrical, but does not fit projec-
tions currently programmed.

If fit is achieved for one of these cylindrical projections, it is so
reported, giving the scale of the map and, for the Equirectangular, the
standard parallels. The program then applies the scale and unreported
parameters, including rotation and translation of the axes used for meas-
urement, to other pairs of rectangular coordinates, computing and re-
porting latitude and longitude.

If meridians and parallels are not all straight, the suitability of a
second-order bivariate polynomial (the highest order which may be
generally determined from nine points) is checked. It would exactly fit
the nine-point matrix for a cylindrical projection without fitting other
points well, so it is not tested if all meridians and parallels are straight.
If the polynomial does not fit well, projection tests continue.
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If meridians are straight, but parallels are not, meridians are
checked for parallelism. If parallel, the Transverse Mercator, Polyconic
and equatorial Gnomonic projection are tested for fit; if not parallel,
meridians are tested for convergence at a common point. (Although
meridians of the Transverse Mercator and Polyconic are curved, they are
nearly straight on many large-scale maps of small areas.) If there is no
convergence, the program cannot find the projection. If there is con-
vergence, and if parallels are not concentric about this point, the
Transverse Mercator, Polyconic, and oblique Gnomonic are tested.

If parallels are concentric, successive conics are tested, spherical
and ellipsoidal, Lambert Conformal, Albers Equal-Area, and Equidistant.
If the cone constant (the ratio of meridian spacing on the map to true
spacing) is +1, the conic is reported in its polar form (Stereographic,
Lambert Azimuthal Equal-Area, and Azimuthal Equidistant, respectively)
if fit occurs. If these projections do not fit, and the cone constant is not
+1, the program reports that the projection is an unprogrammed conic;
if the cone constant is +1, the Orthographic, Gnomonic, and Vertical
Perspective are successively tested before the program reports an un-
programmed polar azimuthal.

If parallels are straight and meridians are not, the equatorial Ortho-
graphic and pseudocylindrical projections are tested. If neither set of
lines is straight, the program tries successively the Transverse Mercatdr
and Polyconic in both spherical and ellipsoidal form, and then the various
oblique or equatorial azimuthals, including the Vertical Perspective, and
finally the Tilted Perspective. The mathematics for the all-curved group
is more difficult, and programming involved several false starts because
of iteration which seemed feasible in principle, but which failed to con-
verge or which converged to the wrong answers due to the difficulty of
choosing the first approximations.

In any of these cases, errors in measurements and errors due to di-
mensional instability of the paper map must be considered. Therefore a
tolerance is required in comparison checks such that a reasonable pro-
jéction solution is not rejected. The tolerances are discussed later. The
general flowsheet is shown in figures 1 and 2. Once the projection is
determined, the computation of latitude and longitude from rectangular
coordinates of additional points involves previously published inverse
projection formulas combined with translation and rotation of coordi-

nates based on parameters of the nine points already used.
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These testing approaches are converted to mathematical expressions
with the derivations following those for polynomials. They are shown
approximately in the order the tests are used. Additional formulas are
included in the Appendix (Section 6).
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Figure 1.--General flowsheet of program to identify map projection (part 1).
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Figure 2a.--General flowsheet (part a & b).
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Pigure 2b.--General flowsheet (part ¢ & d).
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EFFICIENT DATA TRANSFER: ANALYSIS AND DERIVATIONS

1. ANALYTICAL TRANSFER OF DATA

The use of exact trigonometric formulas (or approximating series if
required) is important enough to be given a separate section number. For
the actual formulas, the reader is referred to Snyder (1982), and for the
derivations to some of the references listed therein. Except for the use
of some of these equations in connection with the derivations presented

in this bulletin, they are not repeated here.

2. POLYNOMIAL APPROXIMATIONS FOR DATA TRANSFER

Before reading through the following derivations, the paragraphs
under this same heading on p. 5 should be read first.

a. BASIC EQUATIONS

The general bivariate transformation polynomial for converting
longitude N\ and latitude ¢ to rectangular coordinates x and y is as
follows:

2 2 3 2
x=C1+C2')\.+C3¢+C47\. +C5X¢+C6¢ +C77\. +Ca')»<|>
2 3
+C9X¢ +C1°¢ # oo

y = the same equation but with C' in place of C

where C j and C jl are constant coefficients.

To transform coordinates from (x,y) to (\,9), equations (2-1) and
(2-2) are rewritten, interchanging x with \ and y with ¢ and using new
coefficients.

To transform from rectangular coordinates (x',y') of one projection
to (x,y) of another projection, equations (2-1) and (2-2) are written with
x' and y' in the place of \ and ¢ respectively, using new coefficients.

Although equations (2-1) and (2-2) are left in the above form for
further analysis below, they should be nested for more efficient actual

1s

(2-1)

(2-2)
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computation, once the coefficients are determined, to avoid repeated

exponentiation. For example, equation (2-1) can become

X = C1 + <1>(Ca + c;I)(Cs + C1o¢» + 'MCz + <|>(C5 + ng))

+NMC +C d+C A+ ...
4 8 7

This can save 20 to 30 percent in computation time for a fifth-order
polynomial.

If the projection is symmetrical about the Y axis, which is normally
made to lie along the central meridian, some of the above coefficients
are zero: In equation (2-1) the coefficients of even powers of \ (includ-
ing the zero power) are zero; in equation (2-2) the coefficients of odd
powers of '\ are zero. If the projection is symmetrical about the X axis
within the mapped region, the coefficients of odd powers of ¢ in equation
(2-1) and even powers of ¢ in equation (2-2) are zero. For symmetry

about both axes, both consequences apply.

b. CONFORMAL TRANSFORMATIONS

If the projections involved are conformal, complex algebra may be
used instead of the real equations above. Wherever ¢ is involved, how-
ever, the isometric latitude, often given the symbol ¥, must be used in
the polynomial (Snyder, 1982, p. 18-19). Equations (2-1) and (2-2) may

be replaced as follows, where B wials

x+iy=(K +iK D +(K +iK YN +iPp) +(K +iK "
(o] o 1 * 2 2

On +ig)° 4 (K_+iK (N + i) + ...

n

or x+iy=I (K +iKOh+ i)

j=o

For the inverse, x may be interchanged with \, and y with ¥, using new
coefficients. For transformation from rectangular coordinates (x',y') of
one projection to (X,y) of another projection, N and ¥ in (2-4) or (2-5) are
replaced with x' and y', respectively.

If there is symmetry about the Y axis in equations (2-4) or (2-5), Kj
is zero if j is even, and Kil is zero if j is odd. With symmetry about the X
axis, Kj' is zero for all values of j. With symmetry about both axes, then,
j

K, is zero if j is even, and K

j ' is zero for all values of j. By interchanging

(2-3)

(2-4)

(2-5)
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x with y and \ with ¥ in equation (2-4), for the fairly common case of
symmetry about the Y axis, it is found that all coefficients are real, and

equation (2-5) may be written for this case only:

n
y+ix=L K

j=o

j(ﬂr + i)\.)j

The new K ,K ,K , and K are equaltotheold K ',K ,-K ', and -K ,
o 1 2 3 o 1 2 3
respectively.

Expanding (2-4) or (2-5), and separating the real and imaginary
portions,

x=K +KN-K ¥+ sz’ - qu:’ - 2K "Ny + Kax"
» 3K3X¢r2— 3K3'x2w " Ka'q:’ b

y=K'+K ¢+K 'N+2K M+ Kz'xz - Kz'q:’ + 3K3x’¢
. Kawﬂ Ka'xa . 3K3'M|r2 b

Comparison with equations (2-1) and (2-2) shows that, if ¥ were used
instead of ¢ in the latter two equations,

[
l
=
(&)
n-
=

w
-
W
[

[
=
0
"
2]

»
N
»
N

"
[
=
(@]
n-
1
=

()
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1l
=
(@]

I-
-

o ~
W
[ ] ~
w

o

O 000000000
n n
1 1
w [ %)
= =
(@] (@]
w- -
0 i
& )
= NN
“-

1
]
(@]
0
[

2]

™
]
w
™
(=]
w

For transformation from rectangular coordinates of one conformal pro-
jection to those of another, only (x,y) and (x',y') need be compared, so
the complex coefficients may be directly compared to the real coeffi-
cients without involving .

To convert geodetic latitude ¢ to.isometric latitude ¥,

17
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(2-7)
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¥ = In {tan (1/8 + G/2(L - e sin HI/(1 + e sin $)E’ 2}

where e is the eccentricity of the ellipsoid.
Nesting of equation (2-5) for improved final calculating efficiency
leads to the following:

X+iy= [[(K3 + iKa')O\. + i) + Kz + iKz'](')\ + i)

+ K +iK 'I(N +iYp) + K +iK ', etc.
1 1 [e] o]

It is still more efficient to use Knuth's algorithm for evaluation of
equation (2-5) (Knuth, 1969):

Letr=2N;s' =\ +¢2; g, = 0; 8¢ = Kf+iK'f; a =8

b =g ja,=b +ra 1;b -s'a

ML T T N o

After j is given the value of successive integers from 2 to n,
x+1y=(k+n|t)an+bn

Equation (2-5) and the Knuth algorithm are used again in this paper, but
to solve a different problem with equation (4-65) and following equation
(5-28). :

c. COMPUTATION OF COEFFICIENTS

(1) Conventional

A standard method of determining the coefficients in equations (2-1)
and (2-2) is by the development of a Taylor series. If a central point has
coordinates d)o and ko, and X and V. and if x = fl(}\,q)), y = fz()»,cb), Ax
=X-X, Ay =y - Y AN =\ - ')»o, and A} = ¢ - <|>°, then equation (2-1)

may be rewritten using a bivariate Taylor series,

Ax = (Bf /ANNAN) + (O /36NAP) + (1/2:)[<za’fl/ax")(AM2
+ z<a’fl/axa¢) (ANXAD) + (82f1/8¢2)(A¢)2] + (1/31)
[(a"'fl/axsmma + 3<a3f1/ax’a¢)(Ax)2<A¢> + 3<a3f1/

AP UANNAD) + (aaflxa¢3)(A¢>31 gt

(2-9)

(2-10)

(2-11)

(2-12)
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and (2-2) may be written identically but with Ay in place of Ax and f , in
place of f ) Without a difficult bivariate inversion of this series, the co-
efficients for the inverse (x,y to ¢,\) must be determined by separate
differentiation of the more complicated inverse formulas for the projec-
tion. The differentiation, forward or inverse, is normally very tedious,
and successive derivatives are increasingly subject to errors in derivation
for each projection involved. To determine coefficients to transform
rectangular coordinates from one projection to another is still more com-
plicated, unless one pair of series based on the inverse formulas of one
projection is followed by a pair based on the forward formulas of the
second projection. Use of numerical bivariate differentiation also re-
quires inverse formulas, or bivariate series inversion.

If only conformal projections are involved, as is often the case, the

handling of Taylor series is simplified. Equation (2-5) becomes

n s
Ax + iAy = £ [{ﬁo,wovmmx " iAw)j

j=o

This is described by Jordan-Eggert (1962, p. 160-163, 225-228), Lee
(1974a), and others. To change from (x',y') of one projection to (x,y) of
another, where both projections are conformal, the constant coefficients
may be evaluated using only the forward formulas, as discussed for two
Transverse Mercator projections by Jordan-Eggert (1962, p. 199-217),
and for the Transverse Mercator and Lambert Conformal Conic projec-
tions by Shmutter (1981) and Doytsher and Shmutter (1981). Numerical
monovariate or bivariate differentiation using a computer subroutine is
probably a safer means of accomplishing the above objectives on a uni-
versal basis, but this was not attempted by the writer, in favor of a

least-squares approach.

(2) Least Squares

For general purposes, the least-squares approach provides a system
relatively free of many separate complicated derivations and differen-
tiations. To permit transformation involving additional projections in a
computer program based on this approach, only the forward formulas
need to be added, even though the program computes forward, inverse or

rectangular-to-rectangular transformations.

19
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The techniques described here are used to determine a least-squares
fit of a given matrix of known points to a given-size polynomial, de-
scribed in large part by Wu and Yang (1981).

To determine the coefficients in the general polynomial equations
(2-1) and (2-2) by least squares, the exact forward map projection equa-
tions are used to calculate rectangular coordinates for a matrix of m
points distributed over the region for which points are to be transformed.

There must be at least as many distinct points as the number of co-
efficients desired. For example, if there is symmetry about the Y axis,
symmetrical pairs of points should count as only one per pair, in deter-
mining matrix size. The m x n matrix [A] is then developed, where n is
the number of coefficients to be computed, using the various values of ¢
and '\, one pair to a row:

1 N o A Ae o A A\ A ...

1 1 1 11 1 1 11 s A
Bl N 6o A Ao 62 AT Al NI ol

2 2 2 2 2 2 2 2" 2 2 2

2 2 a 2 2 3
1 N ) N N b N }\.md)m ')\.md)m b

Using a standard means of solving for the coefficients, an n x m matrix

[D] is developed (see Appendix, Section 7, for derivation):

(D] = (aT a17aT ;
from which
C X
; 4 1
C2 =[D] e X,
C X
n m
i b
and
P - = -
Cl Y.’L
c'l =m « |y,
Cn Ym

(2-14)

(2-15)

(2-16)

(2-17
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where (xm, ym) are the rectangular coordinates calculated for the
respective values of ('Km, 4)m) from the map-projection formulas.

For complex variables, equation (2-14) takes the form

aJl= v ¢, o ¢

where Cm = }‘m + iq:m (compare equation (2-4)). Equation (2-15) is

rewritten

T

T -1
[Dc] = [AcAc] Ac

Equations (2-16) and (2-17) may be combined:

-k1 _z -
1 b 2

kz = [Dc] ° "

k %

L T | 1

where kn = Kn + iKn' and Z, =X, * 1ym. Wu and Yang did not describe
the complex alternative, although they discussed conversion between two
conformal projections, the Mercator and the Lambert Conformal Conic.
Yang (1982) addressed the complex approach in a later paper, however.

To decrease rounding errors, it is important to subtract the average
of the various values of \ and ¢ from the individual values before calcu-
lating the coefficients, and therefore before using the coefficients to
calculate coordinates. Coefficients for the inverse or for transformation
from one projection to another are determined from equations (2-14)
through (2-20), using the proper substitutions for ¢m, )‘m’ X 0 and Y 28
described above. The forward formulas may be used in each case, even
though N\ and ¢ or ¢ will not appear in equations (2-14) through (2-20)
for rectangular to rectangular conversion.

The accuracy of the coefficients with various levels of polynomials

(1st, 2nd, 3rd order, etc.) may be checked by using the coefficients to

21
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2-19)
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recalculate (x,y), comparing these values with the correct values obtained
from analytical equations. The root-mean-square error (RMSE), 1, is

found as follows:

m
2 2 Y,
r={ 1L [(xc - xt) + (yc - Yt) }/m (2-21)

j=a

where (xc,yc) are computed for each of the m points from equations
(2-1), (2-2), or (2-5), using the calculated coefficients, (xt,yt) are found
from the true formulas, and I indicates the sum of the squares of each
residual. If the residual is less than the desired accuracy limit, the co-
efficients are accepted. It was found for examples tested that the use of
complex algebra for conformal projections resulted in residuals about
twice those found using real coefficients derived from equations (2-14)
through (2-17) for a given order polynomial. This is largely due to the
reduced number of complex coefficients at a given level (not over 2 for
each order if complex, but up to (n+1) for the nth-order terms if all are
real). It is also necessary to calculate coefficients for a given order
polynomial by separate computation, rather than to obtain them by trun-
cating a higher order series, because of errors introduced by the latter
approach.

It is also desirable to weight the various points used to calculate
polynomial coefficients in proportion to the expected use in data transfer
of the region surrounding the point. The most elementary weighting is
by area. On maps of small regions, a graticule of uniform spacing in de-
grees is almost uniform in spacing by area. In a larger region, weighting
in proportion to the cosine of the latitude on such a graticule would com-
pensate exactly for the sphere, satisfactorily for the ellipsoid. This may
be done by multiplying every term in the first row of the matrix of equa-
tion (2- 14) by cos ¢ in the second row by cos /'d) , and in the ith row
by cos ¢i’ etc., and each term in the (m x 1) matrices at the right of
equations (2-16) and (2-17) by cos q> s cos q> s cos (b , respec-
tively. Equation (2-21) becomes

m m
T cos jlex, -x,f:"+(y -y %1/Z  cos 4’5 (2-22)
j=1 ’ j=a1
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Table 1 shows examples of real and complex coefficients determined for
a 6° x 6° range, transforming geodetic to rectangular coordinates for the

ellipsoidal Lambert Conformal Conic projection.

Table 1.--Examples of polynomial coefficients for map projection
transformations

Example 1:
Conversion: Geodetic to rectangular coordinates
Projection: Ellipsoidal Lambert Conformal Conic
Standard parallels: Latitudes 33° and 45°N.
Central Meridian: Longitude 95°W.
Origin of rectangular coordinates: Latitude 23°N.; Longitude 95°W.
Ellipsoid: Clarke 1866
Scale: Full, meters
Range: Longitudes 98° to 92°W., Latitudes 40° to 46°N.

Matrix Intervals: 1° Longitude x 1° Latitude (number of points in matrix: m = 49)

Sample Coordinates:

Input Output

Point '\ (radians) ¥ b4 v

(1,1) -1.71042266 0.75855478 -254775.581 1901261.028
(1,2) -1.69296937 0.75855478 -169867.529 1898924.567
(1,3) -1.67551608 0.75855478 -84938.907 1897522.578
(1,4) -1.65806279 0.75855478 0.000 1897055.229
(1,5 -1.64060949 0.75855478 84938.907 1897522.578
(1,6) -1.62315620 0.75855478 169867.529 1898924.567
a,7n -1.60570291 0.75855478 254775.581 1901261.028
(2,1) -1.71042266 0.78141800 -251129.288 2011672.055
(7,7 -1.60570291 0.90140082 232832.464 2565706.325

Average input coordinates: )\.o =-1.65806279, \l:o =0.82900061

Note: N\ = longitude (west is -)
¥ = isometric latitude (see equation (2-9))

(x,y) = rectangular coordinate, Y axis increasing northerly along central
meridian.

Complex polynomial coefficients, for input \ in radian,

x+iy=L (K

n

j

j=o

' j
+ iKi )[(k—')\.o) + iy - \lro)]

If polynomial is 4th order,
K '=12232394.424

If polynomial is 2nd order,
K '=2232395.619

If polynomial is 3rd order,
K '=2232394.967

K: =4653848.161 K: = 4655308.609 K: = 4655308.791

K,' = 1469623.762 K.' = 1467865.207 , = 1467577.828

rms error = 150.124 m Ka = -308173.969 Ka = -308446.444
rms error = 1.210 m .' = -48609.0346

rms error = 0.011 m
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Table 1.--Examples of polynomial coefficients for map projections
transformations (cont'd.)

Example 2:

Same as Example 1, but real instead of complex. Instead of ¥, ¢ is used as an input
coordinate (if ¥ = 0.75855478, ¢ = 0.69813170 radians). Average input ¢° = 0.75049158.

2
x=C1+Cz(X—K°)+Ca(¢—¢O)+C‘(X-')\,o) +CS(X—X°)
2 3 2
(P - ¢°) + Cs (P - 4)0) + C7(')\. - )\.o) + Ca(k - XO) (¢ —4)0) + e
) L L} ] 2 ] o
y=C:l +C2(X—7\.°)+C3(¢—¢o)+C‘(X-X°) +C5(')\. ')\.o)

@-0)+C_ " - ¢°)’ +C'On - xo)’ +#C_'On - xo)’(q) R

If polynomial is 2nd order, If polynomial is 3rd order, If the polynomial is 4th order,

C = 4656747.857 C =4657602.103 C =4657602.097
(_‘,2 =-4001532.769 (:2 =-4001670.100 C2 =-4000712.736
c® - 2228756.675 C’ = -308852.687 C® - -308551.350
Cl' =6346215.322 C: =-160790.692 C: =-161313.447
C:' = 1469530.890 C:.I =2228757.414 Cu= 265137.469
Cs' = 254996.621 Ca' = 6345337.588 C“= -714444.096

rms error = 58.256 m C" =1468097.120 Cl' = 2228757.634

G ™ 255825.654 c,= 6345337.185
Cs' =-1261532.493 C" =1468300.751
Cm' =1133030.948 c‘- = 254842.304
rms error = 0.832 m ca' =-1261575.789
Clo' =1133244.655
Cn' = -48683.4726
Cu' = -50691.2433
C '= 358537.886

rms elrsror =0.012 m

In some cases, the weighting can be adjusted to include only points
on the map which are within the desired country or on land rather than
water, etc. Points near a boundary or a shoreline can be weighted in
proportion to the area of interest. In each case cos%¢j in the above
weighting is replaced by the square root of the area, and cos ¢j by the
area.

A common basis for weighting in the use of least squares is to ac-
count for variation in accuracy of measurement of points using given
equipment or operators. Since the above polynomials are computed from

rigorously determined values, this criterion is not involved here.
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3. IDENTIFYING AN UNMARKED MAP PROJECTION

GENERAL MATHEMATICAL FORMAT
Before reading through the following derivations, the paragraphs

a.

under this heading on p. 6-13 should be read first.
Before showing the mathematical analysis for specific types of pro-

jections, the more general tests are derived below. These consist of tests

for the straightness of meridians and parallels, for the fit of a second-
order polynomial, and for convergence of meridians and concentricity of

parallels.
is numbered as shown in figure 3. Longitude may be stated relative to

Greenwich (or any other prime meridian), and (x,y) may be measured rel-
ative to any perpendicular coordinate axes. To determine whether the

meridians are straight, first the angle o of slope of a straight line
1-2

The matrix of nine points for which coordinates are to be measured

Increasing East ———>
A7

A N
¢1 4
7

2]
5

Increasing North

Figure 3.--Matrix of points for which coordinates are measured for map
projection identification. Example: Point § has geodetic

latitude cbs, longitude Xs, and rectangular coordinates (xs,ys).
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between points 1 and 2 is compared with the angle o, of slope of the
line from 2 to 3. If x and y are rectangular coordinates of these points

relative to any fixed axes,

Q
n

atrctanzl(y1 - yz)/(x1 - xz)]

Q
i

a1'ct:an2[(y2 - ya)/(x2 - xa)]

If the absolute value of (ov1 - oz—a) is greater than a preset con-

vergence factor, the meridians ;re considered curved. If it is less, the
bending of line 4-5-6 is similarly tested, and then line 7-8-9. All three
must be straight for the meridians to be considered straight, since one
meridian may be a straight central meridian. Similar calculations are
made for the parallels. Obviously, with this arrangement, the computer
can be fooled with doubly curved lines which fall on the same nine points
as straight meridians, but this would be highly coincidental and could be
resolved by measuring nine other points.

If not all meridians and parallels are straight, a second-order bivar-
iate polynomial is determined for the nine points. Such a polynomial re-
quires six coefficients for each variable. Since a third-order polynomial
requires ten coefficients, and there are only nine points given, this deter-
mination is limited to second order. While two or three of the third-
order terms could be used, the significance of the least-squares residuals
would be reduced in determining the general accuracy of the polynomial
fit. The second-order equations for transforming rectangular to geodetic
coordinates for nine points are as follows, adapting general polynomial
equations (2-1) and (2-2) and subtracting the average coordinates of the
given matrix:

2
)‘j = C1 + Czij + Csij + C4(ij) + Cs(Ax’)(ij)
2
+ Cs(ij)
) ] 1 ] 2 iy
¢i = C1 + C2 ij + C3 ij + C‘ (ij) + C5 (ij) (ij)
f 2
+ C‘s (ij)
where
Ax=x-X
o

Ay=y-vy,

3-1)

(3-2)

(3-3)

(3-4)

(3-5)

(3-6)
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9
x =(Z x)/9
o j

j=2

9
¥, = (L yj)/9
j=1

To determine the coefficients, standard least-squares formulas are
used, adapting equations (2-14) through (2-17), which were used to com-

pute coefficients for polynomials of any order:

(6 }\.T

1 1

C2 = [D] ° Xz

C6 XQ

L e =

Cl' ¢l

Cz' = [D] ° b,

CG' ¢9

where - -
1=(aT a7

2 2
1 Ax1 Ay1 (Axl) (Axl)(Ayl) (AY1)

2 2
[Al= |1 sz Ayz (sz) (sz)(Ayz) (Ayz)

2 2
1 Ax9 Ayg (Axg) (Axg)(Ayg) (Ayg)

Once the coefficients are determined, longitudes and latitudes cal-
culated using the coefficients with the given nine pairs of (xj,yj) coor-
dinates are compared with the given (\ ,¢o ), and the RMSE r is calculated
as an angle converted to distance at map scale, using 0\. ¢ ) for the

cj
coefficient-calculated geographic coordinates:

27

3-7

(3-8)
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2 2 25,012
r=1% [(kcj - ')\j) cos ¢>j + (¢cj - ¢j) 1/9

joa

2.

2
[(x4 - xs) + (Y‘ - ys) 1 /(<I>4 - ¢s) (3-13)

If r exceeds 1.5 mm (an arbitrary limit based on testing experience) for
actual maps used in program tests, the computer begins to test projec-
tions which are not regular cylindricals. If less, the polynomial is used to
calculate (\,$) for other points of known (x,y).

If all meridians and parallels are straight, the polynomial test is
omitted, and it is then determined whether meridians are parallel to each
other by comparing slope angles 01_2 and 04—5 of meridians Xl and ')\4,
respectively (see equations (3-1) and (3-2)). The equidistance of straight
meridians along straight parallels, even if not measured at equal intervals
on the map, can be determined by dividing the distance between merid-
ians along a given parallel by the difference in longitude. If spacing be-

tween points 1 and 4 is S e and between points 4 and 7 is S,_,?

2 2.Y2

S 0= [(x1 - x4) + (yl - y4) 1 /(')»4 - Xl) (3-14)
2 2.Y»

8 " [(x4 - x7) + (y4 - y7) ] /(k7 - }‘4) (3-15)

To compare 8 and s,_,ona unit basis, unaffected by map scale, the

absolute value of

A=(Q1-s /s ) (3-16)

is compared to the convergence tolerance.

Perpendicularity of meridians to parallels, if straight and parallel to
each other, is determined by comparing the angle between lines 1-2 and
1-4 to 90°. If all these conditions fall within tolerances, the projection is
a regular cylindrical (i.e., not oblique or transverse), and specific cylin-
dricals are tried one by one. The procedure for this is described later.

If parallels are curved but meridians are straight, the meridians are
first tested for being parallel in the above manner, and then tested fur-
ther for the equatorial Gnomonic if they are parallel. If they are not
parallel, the point of convergence of meridians Xl and ')\4 is determined,

calling the rectangular coordinates of this point (xo,yo):
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(x4 - xa)(ylx3 - xlya) - (x1 - xa)(yax6 - xdys)

X =
[e]

(x4 - x._,)(y1 - ya) - (x1 - xa)(y4 - ys)

by, = YG)(lea ~ X ¥yl = (Y1 -~ IER, - x4y6)

b

(x4 - xe)(yl - ya) - (xl - xs)(y4 - ye)

Using this X and the coordinates of points 7 and 9, the y of meridian }\7
at x may be compared with v,

y= [xc,(Y7 - YQ) ~¥ X * x7y9]/(x7 - xg)

If y and y, are the same (within tolerance), it is concluded that the
meridians converge to a common point, and the parallels may then be
tested for concentricity. The radius p of a circular arc for ¢1 must be
constant as measured between (xo,yo) and each of the points 1, 4, and 7,
or

2 2.Y
p=[(x°-x) +(Y0-Yi)]

j
for j=1, 4, and 7. Similarly, a different constant p should be found for
j=2, 5, and 8, and another for j=3, 6, and 9. If this test fails, the oblique
Gnomonic is still a possibility. If parallels are concentric, the equidis-
tance of meridians is checked by determining the cone constant n based
on two pairs of meridians. For meridians Kl and X7, the angle 91_7

between them, using the principle of equations (3-1) and (3-2), is

and the cone constant n is
n=606 /N -\)
1=7 7 1

The angle and cone constant are similarly calculated between meridians
kl and X‘. If the two calculated cone constants are nearly enough equal,
they are averaged, the projection is assumed to be a regular conic (or
polar azimuthal, if n=+1), and specific conics are tested one by one. This

procedure is described later.
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If meridians are curved but parallels are straight, the parallels are
checked for parallelism, and the meridians are checked for equidistant
spacing along a given parallel. If they are not equidistant, the equatorial
Orthographic is tested; if equidistant, specific pseudocylindrical projec-
tions are tested one by one.

Last but certainly not least is the condition in which both meridians
and parallels are curved. This includes many of the most widely used
projections such as the Transverse Mercator, the Polyconic and the azi-
muthals (other than the Gnomonic and the polar aspects). In theory, it
would appear that these projections can be tested as groups without
having to test every projection in each group in sequence until a satis-
factory one is found. In practice, this approach involves too many un-
certainties in selecting initial estimates for iteration to produce the
correct answers. Therefore, the testing of projections in this category
takes place one by one. If these projections fail to fit the map, the
Tilted Perspective is tested last.

b. TESTING CYLINDRICAL PROJECTIONS

Once the category of cylindrical, conic, pseudocylindrical, or "other"
is established as described above, the individual projection tests follow
patterns similar to the examples given below. The determination of the
projection could have been based upon either forward or inverse form-
ulas, since all coordinates are supplied, but the forward formulas are
used, although rearranged, because they are normally simpler than the
inverse.

In any regular cylindrical projection,

o
1

‘zak (N-N)
(o] o

' = af(d)

<
"

where ko is a scale factor equal to or less than 1, Xo is the central
meridian, f(}) is some function of ¢, a is the equatorial radius of the
Earth at map scale, and (x',y') are rectangular coordinates relative to
standard axes, the X' axis lying along the Equator and the Y' axis along
meridian ko. These coordinates (x',y') are related to coordinates (x,y)

measured on the given map as follows:

Xx=x'cosO -y sin6+xo

y=v' cos9+x'sin9+yo

(3-23)

(3-24)

(3-25)

(3-26)
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where O is the counterclockwise inclination of the X' axis to the X axis,
and (xo,yo) are the coordinates of the origin of the (X',Y') axes in the
(x,y) coordinate frame. The constants ©, x , and y are unknown, and
are related to the choice of }\o, which is in?ietermi;ate for a given cylin-
drical map. Furthermore, ko is indeterminate for a given conformal map,
unless the scale at a given point or along a given line is known or assum-
ed. Since the program described is based upon complete ignorance of the
projection and parameters, including scale, Xo for regular cylindrical
or conic projections is assumed to be zero, and the scale factor of con-
formal projections is assumed to be 1.0 at the central line or point - the
equator of the regular Mercator, the central meridian of the Transverse
Mercator, a single standard parallel of the Lambert Conformal Conic, or
the center of projection of the Stereographic.

In order to find the values of the unknown parameters, equations
(3-23) and (3-24) are substituted into (3-25) and (3-26):

x=ak (N -\ )cosO - af(p)sin© + x
o o] o]

y=af(dp)cosO +ak (N-N)sinO+y
o] (o] (o]

Measurements XoY XY, Xl, and )“4 (see figure 3) along parallel ¢1
are substituted in (3-27) and (3-28) for x, vy, and \ to obtain four equa-
tions. Then X and y, as well as f(¢4) and f(¢1), since ¢1 = <|>‘, cancel
when subtracting each new pair of equations, and ako and © may be
found by squaring the two remaining equations and adding to obtain

2,

- g
ako = [(y4 B yl) + (x4 - xl) ] /(}\4 - xl)
and by dividing the two equations to obtain
tan © = (y‘ - yl)/(x4 - xl)

These parameters are averaged by recalculating for other pairs of given
coordinates.

While these values of ako and © are used for all regular cylindrical
projections tested, xo and yo are computed for the specific projection.
This is done by transposing equations (3-27) and (3-28), solving for X and
v, using one of the measured points, such as (xl,yl,cbl,kl), and letting

Xo equal zero as stated above:
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X =X -ak N\ cos© + af(dp )sin©
o] 1 o 1 1

¥, =¥, ~ af(d)l) cos © - akoklsin (]

More rigorously, X could be found as the constant (xo - ako')\ocos ©) and
vy, as (yo - akokosin 0).
Specifically, for the spherical Mercator projection,

f(d) = koln tan (/4 + ¢/2)
For the ellipsoidal Mercator,
£(4) = k_In [tan (n/4 + $/2)((1 - e sin $)/(1 + e sin oY

where e is the eccentricity of the Earth ellipsoid. In equations (3-33)
and (3-34), ko is taken as 1.0. For the Miller Cylindrical, k°=1, and

f($) = 1.25 In tan (n/4 + 2¢/5)

For the Equirectangular, ko = cOos ¢°, where ¢° is the unknown standard
parallel (N. and S.) and

f(P) = P

To determine ko for the Equirectangular,
kK =s_ (b - )2 4 ( e
O_ 1—-4 1_ 2 xl_x2 + Yl_Yi’

where S o a is found from equation (3-14).

\ Y,
For Gall's, ko =2"7/2, and

Y2
f(p) = (1 + 1/27°) tan ($/2)

With all the parameters now calculated for a given projection, the
forward formulas (3-27) and (3-28) are used to determine the fit of the
projection to the nine given points (see section 3i. Tolerances, on p. 56).
If the residuals are unsatisfactory, the next projection is tested. If
satisfactory, (x',y') may be found for other points (x,y) by inverting
equations (3-25) and (3-26):

(3-31)

(3-32)

(3-33)

(3-34)

(3-35)

(3-36)

(3-37)

(3-38)
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b4 =(x-x°)cose+(y-y°)sin9

v =(y-y)cosO-(x-x)sinO
o o

From x' and y', ¢ and '\ may be determined from inverses of equations
(3-23), (3-24), and (3-33) through (3-38) for the particular projection.
For example, for the spherical Mercator,

¢ = /2 - 2 arctan (e /a)

N =x'a

Since ko is taken as 1.0 and Xo is taken as zero; note that e is 2.718...,
the base of natural logarithms. The other formulas are not given here,
but they may be rather readily derived from equations (3-34) through
(3-37).

c. TESTING CONIC PROJECTIONS

If the unidentified map does not pass the general test for a regular
cylindrical projection and does not fit a second-order polynomial, but
does appear to conform to regular conic requirements, tests are made
to determine the specific conic projection. For any regular conic pro-

jection,

X' = psin ©'
y =p°-pcose
where p = a f(d)
©'=n(N-\N)
o

p and ©' are polar coordinates, P, is the radius of the parallel of the
origin, a is again the equatorial radius of the Earth at map scale, and n
is the cone constant. As with the cylindricals, ')\o is indeterminate on a
given map. This may arbitrarily be made zero.

The coordinates of the center of the parallels have already been
determined as (xo,yo) from equations (3-17) and (3-18); thus po is zero,
and equation (3-43) may be used with the given measurements to deter-
mine the suitability of a specific conic projection. The radius is calcu-
lated as follows:

pj = t[(xo - X

2 2.Y2
i) + (yo - Yj) ]
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where j=1, 2, and 3, successively, and the + takes the sign of n, positive
for a map centered in the Northern Hemisphere and negative if Southern,

as calculated from equation (3-22). To find the map scale, from (3-43),

a = pj/f(cbj)

For the spherical Lambert Conformal Conic, using a single standard
parallel ¢s = arcsin n, because the identity of two standard parallels is

indeterminate,

£(d) = k'tan (/4 - $/2)

where the constant
k' = 1/tan ¢ostann(1'r/4 - /)

does not need to be calculated until ak' for each parallel along a given
meridian Kl has been determined from pj/[f(¢j)/k'] (see equation (3-46)).

For the ellipsoidal Lambert Conformal Conic, ¢s is also taken as
arcsin n, and

e/2.n

f(d) = k'[tan (w/4 - $/2)/((1 - e sin P)/(1 + e sin P)) ™ "]

where

K = 1/4t 2. 2, Y
% an <|>s(l - e“sin 4)3) [tan (w/4 - cbs/Z)/

((1 - e sin $ /(1 + e sin ¢s))e/ el

If the three values of ak' are nearly enough equal, they are averaged, and
k' and a are separated by using equations (3-48) or (3-50). The forward
formulas (3-41), (3-42), and related equations are used with least squares
(see sections 3i and 3j) to determine how well the projection fits the nine
given points. Since, for the conic projections, the critical tests have al-
ready been made, this fit should be satisfactory. If not, the next projec-
tion is tested, If so, inverse computations may take place, but only after
determining O, the remaining required parameter.

In order to compute 6, equations (3-25), (3-26), (3-41), (3-42), and
(3-44) may be combined as follows, with Xo and po both taken as zero, as
stated above:

(3-46)

(3-47)

(3-48)

(3-49)

(3-50)
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x=psin(n7\+6)+xo

y=—pcos(n7\.+9)+y°

The value of © may be determined from point (xl,yl), combining equa-
tions (3-51) and (3-52),

0= arctanz[t(x1 - xo)/i(yo - yl)] - n?\l

in which each + sign takes the sign of n. The value of a determined from
(3-46) provides the equatorial radius of the Earth model to supply true
scale along ¢os. With a, k', 6, x from (3-17), v, from (3-18), and n from
(3-22), ¢ and \ may be determined for any other given (x,y) as follows
from the following transformations of (3-43), (3-51), (3-52), and, for the
ellipsoidal Lambert Conformal Conic, (3-49):

= {arctanz[t(x = xo)/:t(yo -y)] - 6¥/n

¢ = /2 - 2 arctan {t[(1 - e sin $)/(1 + e sin <j>)]£!/2
where t= (p/ak')l/n
p is found from equation (3-45), deleting subscripts j, (3-55) is solved by
iteration using successive substitution, and the + signs in equations (3-45)
and (3-54) take the sign of n.
For testing the spherical case of the Albers Equal-Area Conic, if q>s

is one of the (unknown) standard parallels, the function for equation
(3-43) is as follows:

1
£(¢) = (C - nq) / */n

where C is a constant, and
q=2sind

Since a in equation (3-43) is unknown, equation (3-57) is substituted into
(3-46), for j =1 and 2:

1 1
a=p n/(C - nql)/z = p_n/(C - nq ) "

Eliminating a and solving for C,
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2 2 2 2
C = n(qu1 -q.p, )/(p1 -P, )

If the value of C calculated from points 1 and 2 is close enough to C as
calculated from points 2 and 3 (replacing subscripts accordingly), the
projection is considered to be a spherical Albers, subject to the least-
squares-residual check mentioned for the Lambert, and a may then be
found from (3-59), using one of the points.

Although the values of standard parallels are not needed in order to
find (¢, \) for other values of (x,y) on the given map, they are of interest
in identifying the parameters of the projection, and may be found for the
Albers. The formula for scale factor k along a parallel of any conic pro-

jection is as follows:

k = pn/am

where m = cos ¢/(1 - ezsinzcb)vz

for the ellipsoid, or
m = cos ¢

for the sphere. At the standard parallels, k = 1, or
1= psn/ams

where s refers to either standard parallel.

For the spherical Albers, substituting from equations (3-43), (3-57),
(3-58), and (3-63) into (3-64) and solving for ¢s,

¢ h
sin¢s=n:t(n2- C +1)/l

in which the "+" provides one standard parallel and the "-" the other.

For inverse computations, equation (3-53) applies in calculating the
remaining parameter 6, and (3-54) may be used to find '\, but (3-55) is
replaced with the following:

¢ = arcsin [(C - pznzlaz)lzn]

with p found from equation (3-45) without subscripts j.

(3-60)
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Testing for the ellipsoidal Albers and for the ellipsoidal or spherical
Equidistant Conic projections follows patterns similar to those given
above. The standard parallels for all these projections may be deter-
mined, unlike the Lambert. Some iteration is involved. The polar azi-
muthals are handled in the same manner. The polar Stereographic, Lam-
bert Azimuthal Equal-Area, and Azimuthal Equidistant aspects are
limiting forms of these conic projections. The polar Orthographic,
Gnomonic, and Vertical Perspective are not thus related to useful conic
projections, but they are analogous. Formulas for all these projections

are given in the Appendix.

d. TESTING PSEUDOCYLINDRICAL PROJECTIONS

The other remaining important category of projections in which
either the meridians or the parallels remain straight is the pseudo-
cylindrical, such as the Sinusoidal or Mollweide.

For regular pseudocylindrical projections, the fundamental equations

analogous to (3-23) and (3-24) (for the cylindricals) are as follows:

»
]

'=al\ - ko)fz(d))

y' afl(d))

where f1 and f2 are different functions of ¢.

As with the general cylindrical projection equations (3-23) and
(3-24), incorporation of rotation-translation equations (3-25) and (3-26)
leads to equations like (3-27) through (3-30), except that k is replaced
with f2(¢)» and f(¢) becomes fl(cb). In order to solve for a, formulas from
analytic geometry are adapted to provide the distance between parallels

¢1 and 4)2. The distance on the measured map is

(x1 - xz)(yz - ys) - (y1 - 312)(1~:2 - xs)

2 2.Y>
[(xz - xs) + (y2 - Ys) 1

In equation (3-68), this distance is the difference between y' for ¢1 and

for cbz. Equating and solving for a,

a=d _/IE @)-f(®)]
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By obtaining a based on the distance between parallels d>2 and cba in like
manner (adding 1 to each subscript in (3-69)), an average value of a may

be used for further computation.
For the Sinusoidal projection,

f1(¢) =¢

f2(¢) = cos ¢

For the Mollweide projection, as an example involving iteration,

1
f1(¢) =2 A sin ©

1
fz(cb) = (8 b cos w)/m

where 20 +sin 20 = wsin ¢

Equation (3-75) may be solved for & using a Newton-Raphson iteration.
It is then necessary to determine ko, X and : For a pseudo-
cylindrical projection, ')\O is not indeterminate, as it was for cylindrical
projections. Solving equation (3-25) for xo, and substituting from (3-67)

and (3-68),

x =x-af (PN -\ ) cos O + af () sin ©
o] 2 o 1

Using X ¢1, Xl, and © and a as calculated from (3-30) and (3-70), re-
spectively, for one equation, and X 4)2, and )\.1 for a second equation,

x may be eliminated by subtraction and the difference solved for ’)\o:

sinO[f ()] +(x -x)a
1 1 2 1
A = + N\
g Ot (b)-F ()] :
it [2¢1 2 2

Then X is found from (3-76) and ¥, from a similar transposition of
equation (3-26). By calculating the values of Xo using ¢2 and <ba at 7\1,
and repeating the calculations for the three parallels using k‘ and X7, all
with the proper subscripts and the corresponding x, the six values of ‘r\o

may be averaged. These parameters may then be applied to computations

(3-71)

(3-72)

(3-73)

(3-74)
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of (x,y) for (p,\) of the nine given points. These coordinates are com-
pared with the given (x,y) by a least-squares fit as described later, to
determine whether the projection applies. If satisfactory, the same
parameters are applied to inverse forms of equations (3-67), (3-68),
(3-71), and (3-72), together with (3-39) and (3-40), to find values of (¢p,\)

for other (x,y) values.

e. TESTING FOR THE TRANSVERSE MERCATOR AND POLYCONIC
PROJECTIONS

Projections in which meridians and parallels are generally curved,
such as the Transverse Mercator, the Polyconic, and azimuthal pro-
jections, were incorporated into this testing package only after several
false starts. Most disappointing was being unable to test all transverse
cylindrical projections with one package, all azimuthal projections with
another package, etc. Ostensibly, this may be done by eliminating the
functions which vary from one projection to another within each such
package. For example, all spherical azimuthal projections fit the

formulas,

b
n

' = ak'cos ¢ sin (N - Xo)

<
1}

' = ak'[cos ¢° sin ¢ - sin ¢ocos ¢ cos (N - Xo)]

where k' is a function of ¢, \, cbo, and ')\o, different for each azimuthal.
By eliminating ak' and incorporating equations (3-25) and (3-26), it would
appear that the five parameters d)o, )\o, xo, yo, and © may be found from
five simultaneous equations using five measured points and Newton-
Raphson iterations. In testing this approach, it was found that the proper
initial values of these parameters are critical, and certain projections in
the group had to be omitted due to lack of convergence regardless of ini-
tial estimates. The initial values chosen often led to parameters which
were incorrect (when checked using the other four points, or based upon
known examples), and attempts to overcome this problem were unsuc-
cessful until projections were treated individually and parameters xo, yo,
and © were eliminated from the simultaneous iteration.

The approach finally used relies on the fact that the difference in
slope between two lines joining measured points is independent of a, X
¥ and ©. This was found successful along meridians, but generally not
along parallels, and not for the Gnomonic with its straight meridians. In

the latter case, an approach found satisfactory uses the principle that
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the ratio of lengths of the meridian line segments is also independent of
a, xo, yo, and O, but this is not sufficiently sensitive to use generally for
other azimuthal projections.

The Transverse Mercator and Polyconic projections (spherical or
ellipsoidal) are somewhat simpler to resolve than the azimuthal, after
eliminating a, XY and O, because only Xo must be found by iteration
for the former two projections, but both ¢o and xo must be found for the
latter. For the general perspective azimuthal, P, the location of the
point of perspective in radii from the Earth's center, should be found as
well, but a different approach was found necessary. For the Transverse

Mercator and Polyconic, where g and h are specific functions given later,

x'= ah(cb,?\,ko)

y' = ag(cp,')\,)\.o)

The angle F between straight lines joining points 1 and 2 and points 2 and
3 (figure 3) may be determined from the data given and is

F = arctanz[(y1 - 3r2)/(x1 - xz)]

- arctanz[(y2 - ys)/(xz - xa)]
As indicated above, this angle is also

F = arc!‘.anz[(y1 - YZ')/(xl' - le)]

- arctanz[(yz ot )/(x2 - X )]

Adapting equation (3-83) to prepare for a Newton-Raphson iteration, and
dividing through by a,

fON )=F -arctan (G /H )+ arctan (G /H )
o 2 1-2 1-2 2 2-3

2-3

where H =h -h, G =g -g,H =h -h ,and G =g
2 h § 2 1-2 1 2 2~3 2 3 2-3 2
-8, with hj and gj the respective functions of ¢, \, and 'ko in equations
(3-80) and (3-81) at point j. Function f(}\.o) should converge to near zero
with iteration.

Differentiating with respect to Xo, and letting primesongand h

denote differentials,

(3-80)

(3-81)

(3-82)

(3-83)

(3-84)
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f\)=-[H (g'-g"-G ('-h"
o 1-2 71 2 1-2 1 2

2

2 ] )
((}1_2 + Hl—z) + [Hz_a(gz -8, )

-G, (b '-h G 2 +H )
The differentials are given in detail in the Appendix (section 6) by equa-
tions (6-29) through (6-39), (6-45) through (6-53), and (6-58) through
(6-61).
Applying the Newton-Raphson iteration formula,

AN = -fON VE'ON)
o o o

with an initial estimate of 7\0 along or near the middle meridian of the
measurements, iteration is carried out toward a desired convergence,
changing the previous Xo by AXO at the end of each iteration. For the

Transverse Mercator for the sphere, for example,

h(¢,k,xo) = (Y2)k In {[1 + cos ¢ sin (\ - Xo)]/
[1 - cos ¢ sin (N - ko)]}

g(tb,X,Xo) =k arctanZ[tan ¢/cos (N - ')»o)]

(The indeterminate k for a conformal projection is again assumed to be
1.0.) When the iteration is completed, a similar iteration is performed
using X“ instead of 7\.1, and then 7\7. The three values of )\.o are
averaged.

The fact that the lengths of segments between any two points on the
map are proportional to the scale but independent of ©, X and Y, may
now be used to calculate scale. Since

2 2.Y» , "2 . w2,/
[(xl-xz) +(y1-y2)] =[(x1 —xz) +(y1 —Yz)]

substituting from (3-80) and (3-81) and solving for a,
2 2.Y> 2 PR
a= [(xl - xz) + (y1 - yz) ] /[(h1 - hz) + (g1 - gz) ]

using measured values of x and y in the numerator and values of h and g
calculated from equations (3-87) and (3-88) in the denominator, or the

equivalent for other projections, based upon the given values of ¢ and \.
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(3-85)

(3-86)

(3-87)

(3-88)

(3-89

(3-90)
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For the remaining parameters, rotation-translation equations (3-25) and
(3-26) may be converted to the following by substitution of measurements
and functions for points 1 and 2 and subtracting pairs of equations:

xl-x2=(x1 —xz)cose—(y1 -yz)sine

y -Y2=(Y1

-y VcosO+(x'-x sinO
1 2 1 2

Solving for cos © and then sin © by determinants or the equivalent, and
then dividing the resulting equations, it will be found that a can be
factored out, x' replaced with h, and y' with g:

—(xl - xz)(g1 ~ gz) + (y1 - yz)(h1 - hz)

tan © =
x -x)h -h)+(ly -y)g -8)

By transposing and substituting in (3-25) and (3-26),

X =X -alh cos© -g sin 0)
o 1 2 1

¥, ¥, « a(glcos 0+ hlsin 0)

Since the parameters Xo, a, 9, X and y, are now known, the forward
formulas (3-25), (3-26), (3-80), (3-81) and the appropriate functions such
as (3-87) and (3-88) may be used to calculate (x,y) for the nine given pairs
of (p,\). These coordinates are compared with the given values of (x,y)
by least squares (see section 3i, p. 52). If satisfactory, (¢, \) for other
points (x,y) may be determined from equations (3-39) and (3-40) (the
inverses of (3-25) and (3-26)) and the inverses of equations (3-80) and
(3-81) for the given projection (see equations (6-40) through (6-44), (6-54)
through (6-57), and (6-62) through (6-67) in the Appendix, Section 6).

f. TESTING FOR AZIMUTHAL PROJECTIONS

Although azimuthal projections generally have curved meridians and
parallels as do the Transverse Mercator and Polyconic, an additional
parameter must be known, namely the latitude of the center of projec-
tion. While the principles used in the foregoing derivations may be used,
here they lead to iteration for both latitude and longitude instead of for
longitude only.

(3-91)

(3-92)

(3-93)

(3-94)

(3-95)
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Equations (3-80) and (3-81) may be revised as follows for azimuthal

projections:
x' = ah(cb,}»,d)o,')\o) (3-96)
Y‘ = ag(‘b)‘)\-)‘bo)‘)\-o) (3—97)

After comparing with equations (3-78) and (3-79), for the spherical form,

h = k' cos ¢ sin(\ - ko) (3-98)

g = k' [cos ¢°sin ¢ - sin q>°cos ¢ cos (N - Xo)] (3-99)

From various standard references,

k' = 2/(1 + cos z) for the Stereographic projection, (3-100)

k'=1 for the Orthographic, (3-101)

k' = z/sin z for the Azimuthal Equidistant, (3-102)
and

k' = [2/(1 + cos z)]l/' for the Lambert Azimuthal Equal Area, (3-103)

where z, the great circle distance, is found from the formula

cos 2z = sin ¢osin ¢ + cos ¢°cos ¢ cos (N - XO) (3-104)

While the Stereographic may be tested in the following manner, it is
tested in the program as part of the perspective package to eliminate
iteration. To find ¢O and ko, equations (3-82) through (3-85) apply as
shown, except that f(ko) in (3-84) is written f(d)o,?»o), and (3-84) must
also be differentiated with respect to ¢° to provide a new equation
(3-85a) identical with (3-85) except that the left-hand term is f' (¢°)
and the right-hand prime terms refer to differentiation with respect to
q>°. These differentials are detailed in equations (6-68) through (6-81).
Now the Newton-Raphson iteration shown in (3-86) is modified to

require two simultaneous equations of the form

Axof'(ko) + A¢of'(¢0) = —f(cbo,XO) (3-108)
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With assumed initial values of ¢° and 'Ko near the center of the map, the
unknowns Aq;o and Ako may be found for the first iteration by evaluating
f and f' from equations (3-84), (3-85), and (3-85a) based on points 1, 2,
and 3 of Figure 3 for one equation (3-105), and based on points 4, 5, and

6 for a second equation (3-105), the two equations being linear in the un-
knowns and solvable by determinants. The A<|>o and A')\o obtained are
added to the initial values, and the operations in this paragraph are re-
peated until the changes in both ¢° and 'Ko are minimal. These values are
averaged with those obtained by iteration from points 1, 2, 3, 7, 8, and 9
instead of 1 through 6.

To determine a, 6, X and ¥, for the azimuthals, equations (3-90),
(3-93), (3-94), and (3-95) apply without change. Forward formulas are
then used to check the validity of the projection with least squares, as in
the case of the Transverse Mercator and Polyconic. If the projection
applies, values of ($p,\) for other points (X,y) may then be found from
equations (3-39), (3-40) and the inverses of (3-96) through (3-104) (see
equations (6-82) through (6-92)).

To test the equatorial Gnomonic projection, with its parallel merid-
ians, the spacing of the meridians on the map is compared to the correct

spacing. Basic formulas for the equatorial Gnomonic are as follows:

o
i

'z atan (\ - 7\0) (3-106)

<
1]

‘= a tan ¢/cos (\ - Xo) (3-107)

Adapting equation (3-69), the distance between straight meridians )‘1
and k“ is

(x1 - x4)(y4 - ys) - (y1 - y4)(x‘ - xs)
d = (3-108)
2 2.Y2
[(x‘ - xs) + (y‘ - Ys) ]

From equation (3-106), this distance is the difference between x' for }“1’
and }“4' An equation similar to (3-108), called (3-108a), may be prepared
by replacing subscripts 1, 4, and § with 4, 7, and 8, respectively. Al-
though N\ and a are unknown, a can be eliminated by dividing (3-108) and
its equivalent in (3-106) by (3-108a) and its equivalent in (3-106). The
resulting ratio, which will be called F;’ is
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d tan(N. - N )-tan(N -\
1-4 1 [o] 4 [e]

d tan(A -N)-tan(\N -\
4-7 4 o 7 o

After expanding the terms with the identity for the tangent of the

difference between two angles, equation (3-109) can be solved for tan XO:

tan\. -tan\ +F (tanN -tan\ )
1 a 1 7 4

tan}\oz-—
tan\ (tanAX -tan N )+ F tan\ (tanA_-tan\ )
7 1 4 a : B 7 a4

The arctan2 function does not seem to resolve the quadrant selection for
7\0; the latter must be within 90° of say )\.4 by adding or subtracting 180°
if necessary.

For a, transposing the relationship between (3-106) and (3-108),
a=d /[tan(A -N)-tan(N -\ )]
1-4 1 [e] 4 o]

For ©, taking the slope of one of the meridians,
tan © = —(x4 - xs)/(y4 - ys)

while xo and yo may be determined from equations (3-94) and (3-95), sub-
stituting for h and g by relating equations (3-80), (3-81), (3-106), and
(3-107). For the oblique Gnomonic projection, as stated before, the ratio
of distances along meridians is used instead of curvature, since meridians
are straight. Otherwise the principle used for other azimuthal projec-

tions above is followed. In equations (3-98) and (3-99),
k' =1/cos z

where 2 is found from (3-104). The square of the ratio of distances,
which will be called Fz, is

2 2
(x1 - xz) + (y1 - yz)

Fz =
2 2
(x2 - xa) + (y2 - ya)

Also, in the (x',v") coordinate system,
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(3-109)

(3-110)

(3-111)

(3-112)

(3-113)

(3-114)
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P =i ®
1-

2

+H 2w ? +H ?) (3-115)
2 A=2 2-3 2-3

By analogy with equation (3-84),

B A J=F (G2 B %wg ?® sH*) (3-116)
[e] (o] 2 A=2 1-2 2

-3 2-3
and its differential with respect to ')\o is, using primes as in (3-85),

2 2

BN =-26G 2 +H ZHG (g '-gN+H _(('-h"]

2 2

ZMG, (g -g N+ H__ (h'-h "

(¢ 2 +H *) (3-117)

The differential with respect to ¢:o is written identically, but with q>°
instead of ’Ko, and g' and h' related to ¢°. Equations (3-105), (3-90),
(3-93), (3-94), and (3-95) are used with these revised functions to
establish the values of the six parameters.

g. TESTING FOR THE GENERAL PERSPECTIVE PROJECTION

After experiencing failure when applying the above principles to
iteration for the general Vertical Perspective projection with its addi-
tional unknown parameter denoting the location of the point of perspec-
tive, the non-iterative projective formulas for the general tilted per-

spective projection of the ellipsoid were applied successfully. These
equations are as follows (Snyder, 1981b):

x=(XK +YK +ZK +K V(XK _ + YK +ZK_+1) (3-118)
1 2 a a s 6 7

y=(XK +YK +ZK +K V(XK +YK +ZK_+1) (3-119)
8 ° 10 11 5 6 7

where K1 through K11 are constants and X, Y, and Z are the rectangular
coordinates of the point on the Earth's surface in the Earth reference
system. For the ellipsoid (omitting height above the ellipsoid in map
projection considerations),

X =Ncos ¢ cos N (3-120)
Y =Ncos¢sin\ (3-121)
Z = N(1 - e”)sin ¢ (3-122)

1
N = a/(1 - e’sin’¢) i (3-123)
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For the sphere, N = a and Z = a sin ¢.

Given the measured (x,y) for 5 ¥ of the nine points (x for six points,
y for five), the values of K1 through Kn may be found from the above
equations by solving eleven simultaneous linear equations with standard

algorithms. For the six x equations, transposing equation (3-118),

XK +YK +ZK +K -xX)K -&xY)K -(&Z)K
a0 T2 e e T s T e Jj 7

+0K +0K +0K +0K =x
8 9 10

11 j

j

For the five y equations, transposing equation (3-119),

OK1 + OKZ + OK3 + 0K4 - (ijj)K5 - (yij)K6 - (iji)K_' + X Ka

j

+ Yng + ZiKm + K1 = yi

1

In the program, first the sphere is assumed for the calculation of K1
through Kn. After these constants are obtained, a test is made to
determine whether the perspective projection is vertical, by calculating
seven parameters as follows based on constants Ks through K7, Klo, and
Ku. The relationship of Kn to the parameters may be determined by
combining equations (3-25), (3-26), (3-96) through (3-99), and (3-126),
expanding and combining in somewhat the manner described in Snyder
(1981b), but retaining the derivation of the constants. The function k'

for the Vertical Perspective is as follows:
k' =(P - 1)/(P - cos 2)

where z is found from equation (3-104), and P is described just before
equation (3-80). After several steps of algebra, it is found that, for the

Vertical Perspective,

N = arctan [(-K W(-K )]
2 6 S

o

Y2

¢ ]

tarctan [-K /(K + K®)
o] 7 S 6

1
P-+1/K>+ K2+ KD
s 6 7
© = -arctan (K -K KWK -K K)
2 3 a4 7 10 11 ¥ 4

x =K

o 4
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(3-124)

(3-1256)

(3-126)

(3-127)

(3-128)

(3-129)

(3-130)

(3-13D)
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L% Ku

3 1
2]/'/(Kz . K:)/'(IP _1p

a =[(K -KK)+(®K -K K)

If the Xo determined above, and ¢o using the "+" sign, are more than 90°
from (d):,)»‘) using equation (3-104), 180° must be added to (or subtracted
from) 'ho, while c|>o and P must be given a "-" sign instead of "+". This
indicates that the point of perspective is opposite the center of the Earth
with respect to the center of the map projection, as in the case of the
Stereographic (P = -1). Gnomonic and Orthographic projections, although
they are both Vertical Perspectives, cannot be tested with this approach
without modifications to the formulas.

Using the seven parameters found above in the forward formulas for
the Vertical Perspective, (3-126), (3-104), (3-96) through (3-99), (3-25),
and (3-26), (x,y) for the given nine points are calculated from (p,\). If
these agree with the given (x,y) for the points, the projection is reported
as Vertical Perspective of the sphere. If they do not agree, the constants
K1 through K11 already calculated are used in equations (3-118) through
(3-123) (for the sphere) to attempt to duplicate the coordinates given. If
there is agreement, the projection is reported as a Tilted Perspective of
the sphere. If there is no agreement, K1 through K11 are calculated for
the ellipsoid, using equations (3-120) through (3-125), and then used to
calculate coordinates for all nine given points. If accurate, the ellip-
soidal Tilted Perspective is reported as the projection; if not, the pro-
gram reports that no solution is programmed. The program does not
include the Vertical Perspective of the ellipsoid as such, but the Tilted
Perspective does include this, although the parameters (center, scale,

etc.) are not computed.

h. TOLERANCES IN MEASUREMENTS ON THE MAP SUPPLIED

It proved to be difficult in many cases to set meaningful tolerances
within which the program can determine the correct (or a reasonable)
map projection for an actual map. It was necessary to permit the cartog-
raphy to be slightly but not unreasonably inaccurate, to permit the paper
base to expand and contract, and to permit the matrix of points to be
measured with normal care, but not perfectly.

After a number of tests, it was found that for a given error in place-
ment and measurement of points on the graticule, differentiation could
only be satisfactorily used to establish tolerances in matching of values in
the case of cylindrical and conic projections. For a projection in which

(3-132)

(3-133)
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both meridians and parallels are curved, this approach could not be satis-
factorily applied. In these situations, the final solution, even in several
cases where differentiation was satisfactory, was to calculate the rec-
tangular coordinates for the nine given points according to the projection
and parameters being considered, and then to determine whether a least-
squares fit of the given rectangular coordinates into the calculated coor-
dinates gives a small enough RMSE. If so, the constants determined for
the least-squares fit are used for other points being transformed. If not,
the next projection is tested. Differentiation of equations to establish
tolerances is used only to determine whether the projection is cylindri-
cal, conic, or in another category, and then to distinguish between the
conics.

In practice, for determining the projection category, a measurement
accuracy of 0.01 inch is used for actual maps and 10~* inch is used for
hypothetical maps for which coordinates are mathematically calculated
for entry into the computer program to 10~ ° inch. With this general
tolerance, which is called dm here, individual tolerances are determined
by elementary differentiation of functions used in analysis of the maps
for projections. Specifically, the first check made is that for straight
meridians (see equations (3-1) and (3-2)). Instead of differentiating them,
one may simplify the mathematics if one intuitively thinks of the maxi-

mum error in angle 01 ) as the result of misplacing each end of the

chord from point 1 to point 2 by 0.01" (dm) in a direction perpendicular
to the chord. Then, the possible error in 0‘1 . is twice dm divided by the

length of the chord, or

2 2.Y»
dol_2 = de/[(x1 - xz) + (y1 - yz) ]

Similarly

2 2.Y2
doz_3 = de/[(xz - xs) + (y2 - ya) ]

The maximum error in the angle between the two chords, or the maxi-
mum allowable deviation of the two chords from a straight line, is the
sum of the absolute values of the two. If this allowance is greater than

the calculated value of (01 - 02_3), using equations (3-1) and (3-2),

the meridian may be considered straight. If not it is assumed curved.
The same determination is made for each of the other meridians.
All three must pass the test if meridians are to be considered straight.

An analogous test is made for each parallel of latitude.
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To test equidistance of meridians along a given straight parallel, a
similar intuitive relationship is used: The greatest error in measuring
the length of a segment of a parallel between two meridians is a length-
wise error of dm at each end, or 2dm total. In equations (3-14) through
(3-16), if 5 and s,_, are both subject to this error, the tolerance for
A, taking absolute values, is as follows:

dsl_‘ = de/(k4 - Xl)
ds“_7 = de/(k7 - }‘4)

2
dA = [|54_7d51_4| + Isldds‘_?ﬂ/s

4-7

The tolerances for perpendicularity of meridians to parallels and for
skewness of meridians are calculated using the same concept as equations
(3-137) and (3-138). The tolerance for convergence of the meridians at
X and y, was determined by direct differentiation of equations (3-17)
and (3-18), with lengthy results. Extracting dxn and dyn from all expres-
sions before changing each of them to dm, to minimize the accumulation
of absolute errors, and calling the identical denominators of equations
(3-17) and (3-18) D, and the numerators N and N', respectively,

dxo = dm[ID(ylx3 S PR xaye) - N(y1 - ya)l
+ lD(ylx3 XY +XY, - xsyd) - N(y1 - ya)l
+ | (Dxa - N)(x4 - xs)l + |D(x4y3 XY +YX - xays)
. N(y4 - Y6)| + ID(an1 ~XYy +Y X - X4Ye)
-N@y, - y6)| + I(Dx1 - N)(x, - xs)l + | (Dx_ - N)x - xa)l
+|(Dx - NXx_ - x)|I/D?
a 1 3
dyo = dm[ID(ylx3 XY -V X + yaxs) +N (y1 - ya)l
+ |D(y1xa -X Yy -Xy + xaya) +N (x1 - xa)l
+|D(-xy + Xy +yx -Xxy )+ NEx -x)|
3 4 3 6 4 © 4 6 4 6
- l(Dy3 <N )(y4 - Ys)l + |(Dy1 ~-N )(y4 - y6)|
4 ID(—xly‘ *E ¥ FYE - x4y6) + N (x‘ = x6)|

+|(Dy_ - N'y_-y))l+|(Dy, - N)y_- ya)I]/Dz

(3-136)

(3-137)

(3-138)

(3-139)

(3-140)
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Differentiating equation (3-19) likewise,

dy={dx |(x -x Xy -y +dm[[(x -x Ux -x)
(o] 7 9 7 -1 7 k-] (o] -]
+ I(x7 - xg)(xo - x7)| + I(y7 - yg)(xo - xg)l

sy, -y )& - x )M - %) (3-141)
Comparing v, with vy,
A=y -y (3-142)

and the tolerance is
dA = Idyol + |dy] (3-143)

To check concentricity, strict differentiation of equation (3-20) would
result in excessive tolerance in radius due to the relatively large value of
dA from equation (3-143):

dp = -[(dx -dx)x -x)+(dy -dy Ny -v)l/p
o iTo T o i e 7

By taking absolute values and letting dxo, dyo, dx,, and dyj all equal dm,

j

dp = 2clm(|xo - xj[ + Iyo - yjl)/p - (3-144)

Although this is not rigorous, it has been found satisfactory. This value
of dp is used as the allowable variation in p calculated for j = 1, 4, and 7
from equation (3-20).

The tolerance was also not practical when derived rigorously for
spacing of meridians on the conics. Instead, the error in the angle of
slope of each meridian is found by applying equation (3-134) to point 3
and the point of convergence 0. From equations (3-21) and (3-22), since
the distance between points 0 and 3 equals the distance between points 0
and 9,

dn = (do -do. V(N -N\)
1-3 7—-9 7 X

2.2

2
= 4dm/{[(x° - xa) + (yo - ya) ] (X7 - Xl)} (3-145)
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The calculation for dn based on 7\1 and X4 is the same, but using }\4 in
place of X7, assuming an equal radius vector. The tolerance for the
difference between the two calculated n's is the sum of the absolute

values, or

/2

2 2.}
dn = {4dm/[(xo - xs) + (yo - ya) ] }[l/lk1 - )\4| + lll}»1 = 'h7|]

i. TOLERANCES FOR INDIVIDUAL PROJECTIONS

For the tested projections with curved meridians and curved paral-
lels, differentiation of equation (3-82) to calculate tolerance as a func-
tion of F is relatively straightforward. It appeared that the variability
of Xo and ¢° could then be determined from this. The results were un-
satisfactory. After several tests and other approaches, it was decided
not to derive a tolerance for these projections (as well as for many
others) but instead to calculate the rectangular coordinates of each of
the nine points of the given matrix, using the given latitude and longi-
tude and the parameters determined for the projection under considera-
tion, with the forward formulas for the projection rather than the in-
verse. The measured coordinates given for these same nine points are
translated, rotated, and changed in scale affinely to find the closest
least-squares fit to the rectangular coordinates just calculated. The
RMSE or r of distances at map scale between each of the nine adjusted
given points (xaj’ ya’) and the corresponding calculated points (xj’Yj) is

determined:

9
r={L [X

j=2

2 2 Y,
j~ xaj) + (Yi - ya’) 179

If the residual is less than the experimentally established 1.5 mm for a
real map (0.01 mm on a mathematically calculated set of given coor-
dinates), the projection is accepted, and the constants for the final fit
are used to modify any other given rectangular coordinates before cal-
culating latitude and longitude from projection parameters. If not, the
program similarly tests the next projection in order.

The formulas used for this operation are adapted from traditional
ones (see Appendix, sectibn 8 for derivation): If the given coordinates
%

are (x ’Yj) and the calculated coordinates are (X ), where j=1to 9,

j

X3

(3-146)

(3-147)
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the constants a1 to as for the affine transformation (equations (3-164)
and (3-165)) are calculated as follows (each summation & is taken for
j=1to9):

a = (AE - BF)/D (3-148)
A = (CF - BEY/D (3-149)
a_ =(2Xj/9) - ali - azs'] (3-150)
8= (AG - BH)/D (3-151)
a_= (CH - BG)/D (3-152)
8 = ().‘.Yi/‘)) - a‘)': - asir (3-153)
where A = Iy, - 28 (3-154)
B= Z(xj - )'()(yj - (3-155)
C = Itx; - %)? (3-156)
D=AC-B? (3-157)
E = Z:Xj(xj - X) (3-158)
F = Z:Xj(yj -9 (3-159)
G = EYj(xj - X) (3-160)
H=ZIY(y, -9 (3-161)
X = Z'.xj/9 (3-162)
Fa Eyj/g (3-163)
Then, for the adjusted values (xaj’yaj) of (xj,yi),
xaj = a.lxj + 43,2yi va (3-164)
yaj = a“xj - asyj va, (3-165)

Because this sort of test proved generally applicable for any projection,
it was also finally used for cylindrical projections and certain polar azi-
muthals, giving results equal to or better than individual differentiation

applied to the specific projection.
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j. TOLERANCES FOR CONIC PROJECTIONS

Using the least-squares approach on the conic projections was not
sufficiently sensitive to choose correctly between conformal, equal-area
and equidistant conic projections when real maps were involved. More
satisfactory answers were obtained using tolerances obtained by differen-
tiation.

For the Lambert Conformal Conic, the tolerance for ak', as calcu-
lated from equations (3-46) and (3-47), or (3-46) and (3-49), is

d(ak.") =dp

j /[E(d

Wk,
j ]

j j

= dm/[f(cbi)/kj'] (3-166)

since (xo,yo) is considered fixed so that the radius pi varies only by dm.
Then if

A=1- akj'/akl‘ (3-167)

the tolerance of the fit,
dA = [lakl'd(akj')| + I:a.ki'd(akl')I]/(a.kl')2 (3-168)

where j = 2,3 as defined for equation (3-45).
For the Albers Equal-Area Conic, by differentiation of equation
(3-60),

2

2 2

dCl_2 = 2n(dm)p1pz(q2 - ql)(lpll + Ipzl)/(p1 - p2) (3-169)

assuming dp=dm and adding the absolute values since dp may be + or -.

As in (3-167) and (3-168),
A=1-C /C (3-170a)
2-3 1-2
dh=fic A «ic. de. qjet (3-171)
1-2 2-3 2-3 1=-2 1=2

where subscripts refer to the points involved along a given meridian.
For the Equidistant Conic, by differentiation of equation (6-13) (see
Appendix),
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2
dG __=dmM_-M Xlp |+ 1o, D/p, -p) (3-172)

A=1-G_ /G (3-173)

dA =[G dG |+|G dG |vG ? (3-174)
1=2 2-3 2-3 1=2 L=

2






MINIMUM—ERROR MAP PROJECTIONS

In principle, the selection of a map projection for any given applica-
tion usually is based on an attempt to minimize distortion, but the term
"minimum-error" is normally applied to a projection which has been der-
ived by applying the principle of least squares to a given set of param-
eters. Commonly, the type of projection will be established, but certain
constants will be allowed to vary until the distortion, as determined by
an often arbitrary standard, becomes a minimum. Thus, a minimum-error
azimuthal projection has been developed, as well as a minimum-error
perspective azimuthal, a minimum-error equidistant conic, etc. It is
possible to derive, for example, different minimum-error equidistant
conics by using different criteria for calculating the amount of distortion
at any given point on the map.

Most published minimum-error projections were devised between
1850 and 1950, after the development of the least-squares principle in
the early 1800's, but before the availability of high-capacity computers.
Therefore, they are limited to projections such as regular conics in which
the parameters can be more easily altered. Since then, investigators such
as Tobler, Reilly, and this writer have developed projections which would
have been nearly impossible without modern computers.

Before discussing recent developments by the U.S. Geological Sur-
vey, it is appropriate to review several earlier minimum-error projec-
tions. These help to set the stage for later studies, inspired by the earlier
concepts. They are varied both in approaches and in nationality, with
British, German, Russian, New Zealander, and American contributions
detailed, including formulas.

The various historical minimum-error approaches in map projections
are outlined just below and mathematically described in the section fol-
lowing. Then the least-squares approach is used to develop a low-error
map projection for the 50 States, substantially reducing the range of
scale as contrasted with standard projections available for the purpose.
Following a discussion of the 50-State projection, a least-squares fit is
used to find parameters giving the minimum-error Oblique Conformal
Conic, Oblique Mercator, or other conformal projections for North

America, Alaska, and South America. 57
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Figure 4.--Airy minimum-error azimuthal projection - oblique aspect of
one hemisphere, centered at Washington, D.C. (latitude 39°
N., longitude 77° W.)

Finally, this least-squares principle is applied to a very different
type of projection, a pseudocylindrical equal-area projection of the
Earth, primarily to show the versatility of the approach even for the
single subject of map projections.

4. HISTORY OF MINIMUM-ERROR PROJECTIONS

a. OVERVIEW

(1) Azimuthal Projections

In 1861, George Biddell Airy (1801-1892), a British geodesist and
astronomer, presented an azimuthal projection with a minimum "total
misrepresentation" determined "by balance of errors" (Airy, 1861). He
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Figure 5.--Azimuthal Equidistant projection - oblique aspect of one
hemisphere, centered at Washington, D.C. (latitude 39° N.,
longitude 77° W.) Very similar to Airy projection if the
bounding circle is given the same spherical radius.

achieved a sort of mean between the Lambert Azimuthal Equal-Area and
the Stereographic conformal projections, based on least squares. Applied
to a hemisphere (or less), the projection (figure 4) resembles an Azimu-
thal Equidistant projection of the same area (figure 5). Fellow British
geodesists A.R. Clarke, whose name is best remembered in the United
States because of the Clarke 1866 and 1880 ellipsoids, and Henry James
corrected an error in Airy's constraints the next year (figure 4 is based
on the correction), and at the same time also applied Airy's approach
with the additional restraint of producing a perspective projection onto a
secant plane. Overall scale errors are reduced using a secant rather than

tangent plane for either projection.
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(2) A Cylindrical Projection

Walther Behrmann (1910) of Germany sought a minimum-error
equal-area world map, but did not use the least-squares approach as
described by Airy. He apparently found the arithmetic average of the
maximum angular deformation as determined for uniformly spaced inter-
sections of latitude and longitude, weighting these angles in proportion
to the cosine of the latitude. By comparing this average for various pro-
jections used as world maps, he found that the Cylindrical Equal-Area
projection gave the least average value, provided that latitudes 30° N.

and S. were made standard parallels rather than the Equator (figure 6).

(3) Conic Projections

Alfred Ernest Young (1920) of the Royal Geographical Society,
London, made a careful study of several low-error map projections,
especially azimuthal and conic. He applied the least-squares principle
with such restraints on azimuthal projections as the "minimum-error"
conformal, equal-area, equidistant, or tangent perspective projection.

In some cases this resulted in a change in the nominal map scale to
balance errors, without any other change in the map. By applying the
principle involved in Airy's projection to a minimum-error conic projec-
tion, Young devised a projection which is almost an Equidistant Conic,
but which has very complicated formulas.

The computations are less complicated if the minimum-error
analysis is confined to determining the standard parallels for a con-
formal, equal-area, or equidistant conic projection:

The standard parallels define the shape of a conformal conic projec-
tion of the sphere or given ellipsoid. The scale or region shown may be
varied, but the distortion pattern of a conformal conic is solely a func-
tion of the standard parallels. The same is true of equal-area or equi-
distant conics, although some other conics, such as Young's minimum-
error conic, are neither conformal, equal-area, nor equidistant. Several
different-named conformal conic projections vary only in the manner in
which standard parallels are chosen. One may make the maximum scale
factor the reciprocal of the minimum scale factor, or the greatest scale
error (scale factor minus one) between the standard parallels may be
made equal and opposite in sign to the greatest scale error beyond the
standard parallels, and so on. These approaches reduce the range of the
scale factors, but do not apply the principle of least squares to minimi-
zing the overall scale error throughout the map, and therefore do not

have minimum error.
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A conformal conic projection for which standard parallels are chosen
by a least-squares analysis was derived in 1916 by N.J. Tsinger (1842-
1918) of Russia (Tsinger, 1916; Graur, 1956, p. 157-170; Maling, 1960,

o 264)*. Since scale is a function only of latitude on a regular conic
projection, the projection constants are chosen to make the overall root-
mean-square scale error a minimum based on the linear scale error at
each latitude. The scale errors are weighted, however, in proportion to
the area being shown along the particular parallel. This area may be
based on the total width of the map, or on the area of the country or
region of interest which lies within say a 1°-wide band centered on the
parallel. Tsinger (1916) also applied the same principles to the equal-
area conic, choosing the standard parallels to suit best the area being
mapped.

While Tsinger applied the least-squares principle on conic projec-
tions only to the conformal and equal-area forms, V.V. Kavrayskiy (1884-
1954) (or Kavraisky), also of Russia, extended it to the Equidistant Conic
projection in 1934 (Kavrayskiy, 1934; Graur, 1956, p. 159-160; Maling,
1960, p. 263-265). This projection was then used for maps of Russia pub-
lished by the Soviet Union, and became confused in some literature in the
United States with the general Equidistant Conic with two standard par-
allels, devised two centuries earlier. As in the Tsinger variations, the
Kavrayskiy projection (actually his fourth projection) involves only a
least-squares technique for determining the standard parallels (or other
constants). Once this is done, the standard projection just mentioned is

used.

(4) Projections Using Complex-Algebra Transformations

One of the intriguing mathematical relationships in mapping is found
in the Cauchy-Riemann equations, which state, as applied to map projec-
tions, that any map projection which is conformal may be reshapen or
transformed to another conformal map projection if certain simple rela-
tionships occur between the respective coordinates. This occurs with the
use of a certain general polynomial series involving real and imaginary
coefficients, although there are practical limitations on the use of the
series. Miller (1953, 1955), Reilly (1973), and Stirling (1974) have used

. Tsinger is sometimes spelled Zinger in a different transliteration.
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this concept to construct, in Miller's case, Prolated and Oblated Stereo-
graphic projections for low-error maps of Africa, Europe, Asia, and
Australasia, and, in Reilly's and Stirling's case, a "minimum-error" pro-
jection for New Zealand.

Miller used the conformal relationship in a relatively simple form to
transform the oblique Stereographic projection, with small spherical
circles of constant scale, to a new projection with ovals of constant
scale. The New Zealand projection began with the regular Mercator,
transforming it to produce lines of constant scale roughly following the
irregular outlines of the two main islands of the nation.

The Cauchy-Riemann equations have also been used within the
USGS to develop a new low-error map projection for the 50 States. This
will be discussed at length later in this paper (p. 79-92).

(6) Other Existing Minimum-Error Projections

Waldo R. Tobler (1977), then of the University of Michigan, devised
an empirical minimum-error projection based on minimum overall error
for all great-circle distances between selected points covering the region
under consideration. For his map of the United States, he chose as points
the 65 graticule intersections at every 5° of longitude between longitudes
125° and 65° W. and every 7.5° of latitude between latitudes 22.5° and
52.5°N. The number of distances to be minimized in error was then (65 x
64/2) or 2080, using the sphere for "true" distances, although the same
principle can be applied to the ellipsoid.

b. A MINIMUM-ERROR AZIMUTHAL PROJECTION

Airy (1861) applied least squares to the development of his
minimum-error azimuthal projection by minimizing the sum of the
squares of the errors in scale both along and perpendicular to the radii

from the center, that is,

error = J'E[(h‘ - 1%+ (¥ - 1D?sin z dz

&
= minimum
where, for an azimuthal projection of the sphere,
B = the angular distance z from the center of projection to the

rim of the circular map region to which minimum error is

being applied.
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h' = the scale factor at a given point along the radius from the
center

=dp/R dz (4-2)

k' = the scale factor perpendicular to the radius

= p/(R sin 2) (4-3)

z = the angular distance of the given point from the projection

center, as measured from the center of the Earth.

p = the radius from the projection center to the given point, as

measured on the map.
R = the radius of the Earth at map scale.

and scale factor is the ratio of the scale on the map at a given point to
the nominal scale of the map.

Airy had made an error in his constraints, but this was corrected by
James and Clarke (1862), resulting in the following formulas in polar
coordinates:

p = 2R [cot (Y2)z In sec (*2)z + tan (V2)z cot®(a) B In sec (*2) B] (4-4)

0= arctanz{cos ¢ sin (N - Xo)/[cos ¢1 sin ¢

- sin ¢1 cos ¢ cos (N - Xo)]} (4-5)
where
cos 2z = sin ¢ sin ¢1 + cos ¢ cos <|>1 cos (N - 'ko) (4-6)
and ($,N\) = the latitude and longitude, respectively, of the given

point

(cpl,}\.o) = the latitude and longitude, respectively, of the centeg
of the projection

(p,0) = polar coordinates: radius and azimuth east of north,

respectively.
When converted to rectangular coordinates,

x = Rk' cos ¢ sin (N - Xo) (4-7
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y = Rk' [cos ¢1 sin ¢ - sin ¢1 cos ¢ cos (N - ko)] (4-8)
where

k' = - {[In [(1 + cos 2)/2])/(1 - cos 2) + 2[In cos (B/Z)]/[tanz(B/Z)

(1 + cos 2)]} (4-9)

If z = 0, equation (4-9) is indeterminate, but

k' = R[¥: - (In cos (B/2))/tan’(B/2)] (4-10)

This projection is not perspective. It is also projected onto a secant
plane rather than a tangent plane. If B = 90°, thus applying the
minimum-error constraint to one hemisphere, the projection resembles
an Azimuthal Equidistant projection (figures 4 and §) as stated pre-
viously, but h' (h for the polar aspect described) is about 18 percent
greater at the limit of the hemisphere than at the center on the
Azimuthal Equidistant (see Table 2). It is calculated as follows:

h'=1+[In[(1 + cos 2)/2]1/(1 - cos 2) - 2[In cos (3/2))/

[tan®(B/2) (1 + cos 2)] (4-11)

while k' is found from equations (4-9) or (4-10). It may be noted that
many terms in (4-9) and (4-11) are identical.

The projection was used for an Ordnance Survey map of the United
Kingdom at ten miles per inch, but has rarely been used otherwise (Airy,
1861; Hinks, 1912, p. 36-37; Close and Clarke, 1911, p. 660; Young, 1920,
p. 2-7; Andrews, 1938).

c¢. A MINIMUM-ERROR PERSPECTIVE AZIMUTHAL PROJECTION

In analyzing and correcting Airy's formulas, James and Clarke
(1862) explored minimum-error perspective projections. The general
formulas for polar coordinates of any secant vertical perspective

projection of the sphere are as follows:
p = RP' sin z/(P + cos 2) (4-12)

with © found from equation (4-5). Symbols p, R, and z are defined above,
while P is the distance of the point of projection from the center of the
sphere in terms of R, and P' is the distance of the plane of projection

from the point of projection in terms of R (see figure 7).
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Table 2.--Comparison of Airy's minimum-error azimuthal projection with
Azimuthal Equidistant projection

[Based on B = 90°, or minimum error within one hemisphere; polar aspect;
Earth taken as sphere, with radius = 1.0.; h = scale factor along meridian
of longitude; k = scale factor along parallel of latitude.]

Airy's Minimum- Error Azimuthal Equidistant
Lat. i

Radius h k Radius h k
90° 0.00000 0.84657 0.84657 0.00000 1.0 1.00000
80 .14780 .84732 .85114 .17453 1.0 1.00510
70 .29586 .84966 .86504 .34907 1.0 1.02060
60 .44450 .85392 .88899 .52360 1.0 1.04720
50 .59408 .86074 .92423 69813 1.0 1.08610
40 .74516 .87113 97273 .87266 1.0 1.13918
30 .89847 .88673 1.03746 1.04720 1.0 1.20920
20 1.05514 .91014 1.12285 1.22173 1.0 1.30014
10 1.21686 .945565 1.23563 1.39626 1.0 1.41780
0 1.38629 1.00000 1.38629 1.57080 1.0 1.57080

Applying equations (4-1) through (4-3) to (4-12), Clarke found that

H: /H1 must be a maximum,

where H2=B—(P+1)1n(A+1)

H =AQ2-B+ B%/3)/(P + 1)

A =(1 - cos B)/(P + cos B)

B=AP-1

and B is defined after equation (4-1). For each 3 desired, various values
of P are tested to obtain a maximum H:/H1 (this can, of course, also be

done by calculus). Then the corresponding P' is found thus:
P'=-H /H
2 2

Clarke obtained various constants depending on the 3 chosen (Close and
Clarke, 1911, p. 655-656). Minor differences are obtained with modern
calculators or computers. For example, Clarke's constants (followed by
recalculated constants in parentheses) for a map of Africa or South
America, in which 8 = 40° are as follows: P = 1.625 (1.626); P' = 2.543
(2.544). For Asia, using 8 = 54°, P = 1.61 (1.594), P' not given (2.443).

(4-13)

(4-14)

(4-15)

(4-16)

(4-16a)
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Figure 7.--Geometry of Clarke's minimum-error perspective projection,
shown for a north polar aspect.

For a hemisphere, 8 = 90°, P = 1.47 (1.472), P' = 2.038 (2.040). James
proposed 3 = 113 ¥2°, so that P = 1.367 (1.367), P' = 1.663 (1.662). The
latter was based on 90° plus the 23 %.° latitude of the tropic lines. With
the Tropic of Cancer at longitude 15° E. as the center, all the larger con-
tinental masses are shown complete on the James projection, although
Australia and Antarctica are missing (Craig, 1882, p. 95; Young, 1920,
p. 13-16).

A few years later Clarke (1879) presented the "Twilight" projection
(figure 8), with 3 = 108°, obtaining P = 1.4 (1.393), P' = 1.7572 (1.759).
This was so named because astronomical twilight officially ends when
the sun is 18° below the horizon (108° from the zenith).

d. A MINIMUM-ERROR EQUAL-AREA CYLINDRICAL PROJECTION
Behrmann's minimum-error equal-area projection, with standard

parallels at latitudes 30° N. and S., may be constructed by compressing
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Figure 8.--Clarke's "Twilight" perspective projection, centered at
latitude 23Y%:° N., longitude 0°, projected from a point 1.393
times the radius of the globe from the center of the globe,
and extending 108° from the center of the map. The error is
minimum for a perspective projection with this range.

the regular Cylindrical Equal-Area projection from east to west and
expanding it from north to south in the same proportion, specifically,

x = RO\ - '}»o) cos 30° 4-17

v = R sin ¢/cos 30° (4-18)

where symbols are as defined with equations (4-1) through (4-8) for Airy's
projection. A graticule of Behrmann's projection with Tissot indicatrices
superimposed is shown in figure 9. At latitudes 30° N. and S. the indi-
catrices are circles, indicating that there is no local shape (or angular)
distortion. The other indicatrices are ellipses with the same area as the
circles, indicating distortion in shape but not area.
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Figure 9.--Behrmann's cylindrical equal-area projection with Tissot
indicatrices using a 30° graticule.
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There are other ways to define minimum error for a projection of
this type: For example, the minimum mean maximum angular deforma-
tion may be determined by least squares, or the principle of equation
(4-1) can be applied in the following manner:

For the Cylindrical Equal-Area projection, as shown in equations
(4-17) and (4-18),

h=Kcos¢

k = 1/(K cos ¢)

where K = 1/cos ¢1, ¢1 is the standard parallel, and h and k are scale
factors along the meridian and parallel, respectively, at a given point. If
equation (4-1) is applied to this projection,

=
1]

error = J'E[(h - 1% + (k- D?] cos b d

()K? cos’B sin B + (#)K? sin B - KB - (/)K sin 2B

+2sinB + (1/K?) In (sec B + tan B) - 2B/K

where B is the latitude limit, north and south.
For a minimum E, equation (4-22) is differentiated with respect to
K, and set equal to zero:

(/)K* sin B (cos’B + 2) - K>(B + (*2) sin 2B) + 2KB

-2In(secB+tanPB) =0

If B = 90°, K = o, and there is no meaningful solution. If B = 80°, K =
1.417, or ¢1 =45.1°. If B = 40° K = 1.083, or cp1 = 22.6°.
Other alternatives to Behrmann's "best-known equal-area" world

map (translating the title of his paper) are mentioned in Section 5c
(pp. 120-131).

e. A MINIMUM-ERROR CONIC PROJECTION

Young's minimum-error conic projection has such lengthy formulas
that there is almost no justification for its use over the very similar
Equidistant Conic (Young, 1920, p. 22-23). The equations are presented
here as an example of the results of a complicated earlier analysis.
Now, of course, these equations can be programmed and routinely

computed, if desired.

(4-19)

(4-20)

(4-21)

(4-22)

(4-23)
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p/R = A tan"(z/2) + cotn(z/Z).l'ztann(z/Z)dz + B cot™z/2)
A= [JEL tan " (z/2)dz)/[tan 2" (B/2) - tan *(a/2)]
B [tan’“(a/z)JE’ tan"™(z/2)dz - tanm(B/Z)j'g tan™(z/2)dz)/

[tan*"(B/2) - tan*™(a/2)]

a and B are the limiting co-latitudes of the map (90° - latitude), and n is

the cone constant, such that, if
£ = alf° tan(2/2)dz] Yltan *"(B/2) - tan *(a/2))

then f is to be made a maximum. Young derived a series from (4-27) for
n, but its lack of terms results in a Yz-percent error in n in one example
checked. However, by differentiating (4-27) with respect to n and
setting the result equal to zero, a lengthy expression is obtained which

may be iterated by false position to obtain a more accurate n:.

(E - F)_[‘?x tan ®(z/2)dz - 2n[[E In tan (B/2) - F In tan (a/2)]
J‘i tan "(z/2)dz - (E - F)J'E tan Nz/2) In tan (z/2)dz] = 0

where E = tanm(B/Z)

F = tan®™a/2)

Actually equations (4-24) through (4-26) provide the minimum-error
conic for any given n, but (4-28) through (4-30) permit the calculation of
the minimum-error conic of them all for a given a and B.

If n=1and a = 0, the formulas reduce to the polar form of Airy's
minimum-error azimuthal (see equations (4-4) through (4-6)). In table 3
an example of Young's conic, using the more accurate n, is compared
with an Equidistant Conic for which the standard parallels are selected

with Kavrayskiy's minimum-error technique.

f. A MINIMUM-ERROR CONFORMAL CONIC PROJECTION
Mathematically, Tsinger's minimum-error conformal conic discussed

earlier is based upon the following least-squares relationship:

1
E = (Ze’P/LP) / = minimum
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(4-25)

(4-26)

(4-27)

(4-28)

(4-29)

(4-30)

(4-31)
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Table 3.--Comparison between Kavrayskiv's minimum-error Equidistant
Conic and Young's minimum-error conic projections

[Map range: latitudes 25° to 49° N. Earth taken as sphere. Map width
for Kavrayskiy computation taken as same longitude width throughout

the map. n = cone constant. Standard parallels for Kavrayskiy: 30.220°
and 44.125°.]

Radius of Parallel

Lat. .
Young difference Kavrayskiy difference
50° 1.0883967 1.0884016
0.0872830 0.0872665
a5 1.1756797 1.1756681
.0873073 .0872664
40 1.2629870 1.2629345
.0872665 .0872665
35 1.3502535 1.3502010
.0872390 .0872665
30 1.4374925 1.4374675
.0872411 .0872665
25 1.5247336 1.5247340
n 0.602724 0.602736

where E is the overall root-mean-square scale error, € is the linear scale
error at each latitude, and P is the area of each element.

For conformal projections, the following version of € was used:
e=Ink

where k is the scale factor at a given point; thus € is approximately
equal to (k-1) when k is near 1, as it normally is. Since Tsinger's
approach is merely a means of determining standard parallels for a
conformal conic, k may be computed from the ellipsoidal Lambert
Conformal Conic projection formulas (Snyder, 1982, p. 107),

k=m tn/mtn
1 1

1
m = cos ¢/(1 - ezsinzcb) e

t = tan (w/4 - $/2)/[(1 - e sin $)/(1 + e sin ¢)]e/2

where n is the cone constant to be determined, and m1 and t:1 are

found from equations (4-34) and (4-35), substituting one of the standard

(4-32)

(4-33)

(4-34)

(4-35)
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parallels in place of ¢, although they are not yet determined. To
determine the standard parallels, certain related constants are found
first. Combining (4-32) and (4-33),

€=In(m tn/mtn)
1 1

=1nm1+n1nt-lnm-n1nt1

Let v=1nm1-n1nt1
u=Int
s=lnm

Then €E=V+NU-S

in which v and n are projection constants, while u and s are functions of
the latitude. For a minimum E in equation (4-31), since the denominator,
or the total area IP, is a constant, the derivatives of the numerator with

respect to v and n are set equal to zero:

dLe’P/av = 0

3re’P/dn = 0
Differentiating and cancelling out the common factor of 2,

LPun + ZPv - EPs =0
£Pu’n + ZPuv - ZPus = 0

Solving these linear simultaneous equations for cone constant n and com-

bined constant v,

n = [(EPsNEZPu) - (EPusXIZP)/[(ZPw)? - (ZPu®)/(EP)]

v = [(EPusXIPu) - (EPsNEZPud))/[(ZPu)’ - (ZPu’)EIP)]

w

with each I equivalent to & and each P, u, and s having subscript j. The
J=1

map is divided into w zones 1° of latitude wide (or as desired), and the

central latitude of each zone is used for the successive values of q;i.
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(4-36)

(4-37)

(4-38)
(4-39)

(4-40)

(4-41)

(4-42)

(4-43)

(4-44)

(4-45)

(4-46)
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The standard parallels ¢1 and ¢2 may then be found by trial and
error as the two values of ¢1 which fit (4-37), using (4-34) and (4-35).
The above derivation and the one following are essentially those given in
Graur (1956, p. 170, 178).

g. A MINIMUM-ERROR EQUAL-AREA CONIC PROJECTION

The standard parallels for Tsinger's minimum-error equal-area conic
are determined using an analysis similar to that for his conformal conic,
and the standard Albers formulas (Snyder, 1982, p. 97) may be used to
compute coordinates. To determine the parallels and equivalent con-
stants, instead of equation (4-32) Tsinger used the following approximate
relationship for scale error about a single point on an equal-area conic
projection (Graur, 1956, p. 177):

= (/)2 - 1) (4-47)

The equations corresponding to (4-33) and (4-35) for the ellipsoidal Albers
Equal-Area Conic are as follows:

1
k= (C - nq) A e (4-48)
C=mZ+nq (4-49)
1 S

q = (1 - e*){sin ¢/(1 - e? sin’¢) - [1/(2€)] In [(1 - e sin ¢}/

(1 + e sin P)]} (4-50)

in which m is found from (4-34), and m and q, are found from (4-34)

and (4-50) substituting one of the standard parallels (not yet determined)

in place of ¢. If e = 0, (4-50) is indeterminate, but q = 2 sin ¢.
Substituting from (4-48) and (4-49) into (4-47),

€ = C/2m” - ng/2m’ - ¥ (4-51)
Let

u=-gq/m’ (4-52)

s =1/m” (4-53)

C and n are projection constants to be determined, and u and s vary with
latitude.
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Performing steps analogous to those in equations (4-40) through
(4-46), using equations (4-41) and (4-42) with C in place of v,

n = [(EPs®)LPu) - (EPus)EZPS))/[(EPs*NEZPu’) - (ZPus)?] (4-54)

C = [(ZPsXEPu?) - (EPuXEPus))/[(EPs X ZPu) - (ZPus)?] (4-55)

The comments following (4-46) also apply here.
The cone constant is n, and the standard parallels may be found by

trial and error as the two values of ¢1 fitting (4-49).

h. A MINIMUM-ERROR EQUIDISTANT CONIC PROJECTION

For the derivation of Kavrayskiy's minimum-error Equidistant Conic
projection, similar in principle to Tsinger's work, the equivalent of equa-
tions (4-32) and (4-47) for the Equidistant Conic projection is

1
e=k-12" (4-56)

The equations corresponding to (4-33) and (4-35) are as follows (Snyder,
1979, p. 71):

k = (G - nM)/m (4-57)

Cwm +nM (4-58)
X 1
M =a[(l - e/4 - 3e*/64 - 5¢%/256 - ...)p - (3e°/8 + 3e*/
32 + 45¢°/1024 + ...) sin 26 + (15¢*/256 + 45e°/

1024 + ...) sin 4¢ - (35e°/3072 + ...) sin 64 + ...] (4-59)

in which m is found from (4-34), and m1 and M1 are found from (4-34)
and (4-59) using one of the standard parallels (to be determined) in place
of ¢.

Substituting from (4-57) into (4-56),

1
€ = (G/m - nM/m - 1)/2 e (4-60)
Letting
u=-Mm (4-61)

s=1/m (4-62)
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and performing steps analogous to those in equations (4-40) through
(4-46), with equations (4-41) and (4-42) intact but using G in place of v,
the final equations are found to be identical with (4-54) and (4-55), ex-
cept that G replaces C, and u and s represent the above functions. This
time the standard parallels are found from equation (4-58), by trial and
error. Kavrayskiy's projection is compared with Young's minimum-error
conic in table 3.

i. A MINIMUM-ERROR CONFORMAL PROJECTION FOR NEW ZEALAND

One mathematical expression of the Cauchy-Riemann equations re-
ferred to in the introduction to this portion of this paper states that any
map which is conformal and represented by a set of rectangular coor-
dinates (x',y") is also conformal when transformed to another set of rec-

tangular coordinates (x,y), provided that

ax/oy" =Aay/ax'
and ox/ox' = ??y/ay'

A general equation which fits these conditions is the long-established
formula (used in analogous form in equation (2-5) when discussing poly-

nomials for conformal projections),

n
x+iy=1X (Aj + iBj)(x' + iy')j
j=1

where i’ = -1, n is any positive integer, and Aj and Bj are any real con-
stants. It can be fairly readily differentiated to prove that it agrees with
(4-63) and (4-64). In theory, it might appear that Aj’ Bj’ and n can be
determined to make the scale factors on the new projection follow almost
any prescribed pattern to minimize distortion in certain regions. In prac-
tice, this can be very difficult or impossible in many cases. The use of
least squares allows some freedom in determining coefficients Aj and B5
which may not be possible if the exact locations of points with given
scale factors are specified. There have been few earlier applications of
the least-squares principle to equation (4-65) for developing new map
projections.

Reilly (1973) and Stirling (1974) used these equations to develop a
new conformal projection for the topographic mapping of the irregularly
shaped islands of New Zealand. Using the Mercator projection of the

(4-63)

(4-64)

(4-65)
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International ellipsoid as the basis for the (x',y') coordinates of equation
(4-65), Reilly made a least-squares fit with a sixth order (n = 6) complex
polynomial to 228 points at half-degree intervals of latitude and longi-
tude spread over New Zealand.

Since the derivation is quite lengthy and is published in English, its
inclusion here will not be attempted, but the final formulas for calcu-
lating coordinates are given below. For the Mercator projection, relative
to the origin and an ellipsoid of unit radius, and interchanging (not rotat-

ing) axes for consistency with Reilly,

P -
N

x' 1]:0
y' A
[e]

where ¥ is isometric latitude which may be calculated as

Y=-Int

t is found from equation (4-35), and q;o is ¢r calculated for ¢ = 41° S.
latitude, Xo = 173° E. longitude. Reilly and Stirling provide a 10th-order
polynomial instead of (4-35) and (4-68) for calculating ¥ from ¢, and a
9th-order polynomial for the inverse, giving 10-place accuracy between
34° and 48° S. latitude. To obtain only positive coordinates, using N and
E instead of x and y, respectively, equation (4-65) is in effect rewritten

6

N+iE=al B(x' +iy')Y + N +iE
j o o

j=1

where B) is a set of complex constants, and a is 6,378,388 m, the semi-
major axis of the International ellipsoid. Note again that the x' and y'
axes are interchanged from the orientation elsewhere in this paper. For

the constants,

Real Imaginary
No+iEo = 6023150 + 2510000

= 0.7557853228 + 0

= 0.249204646 + 0.003371507
=-0.001541739 + 0.041058560
=-0.10162907 + 0.01727609
=-0.26623489 - 0.36249218
=-0.6870983 - 1.1651967

S W N M

(== --I .- I - - - Ao -

77

(4-66)

(4-67)

(4-68)

(4-69)
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The finite series (4-69) is inverted for inverse computations to pro-
vide a theoretically infinite complex series of which the first six terms
are used for a first approximation to (x',y') for a given (N,E). A rational-
function equation using the first approximation and the above coeffic-
ients B1 through Bs provides a second, then a third approximation which
"gives sufficient accuracy at any point within the land area of New
Zealand." From x'is obtained ¢ and then ¢, using the inverse series
mentioned above, and \ is obtained directly from y'. Other formulas give
the scale factor and convergence (Stirling, 1974). The error in scale
using this projection is less than +0.02 percent for the land area of New
Zealand.

j. A MINIMUM-ERROR PROJECTION BASED ON FINITE DISTANCES

Tobler's (1977) approach to an empirical minimum-error projection
minimized overall error for all great circle distances between a matrix
of points, such as intersections of meridians and parallels distributed
over the region being mapped. If Di) represents the various true dis-
tances on the Earth, and dij represents the corresponding distances as
measured on the map, the development of the map projection requires
that, for overall error E,

E = ZI(Di - di )? = minimum

S

2.Y%

2
where dij =[x, - xi) A e Yj) 1

Dii = R arccos [sin ¢i sin ¢j + CcOS <bi cos ¢j cos 0"1 - kj)]

and R is the radius of the sphere representing the Earth.

Differentiation of E in equation (4-70) with respect to map coor-
dinates X Yy xj, and yj for the 65 points leads to simultaneous equations
which may be solved for changes in the rectangular coordinates, starting
with the initial guesses. Successive iteration leads to convergence in
coordinate adjustments. As Tobler states, points can also be weighted in
(4-70) in accordance with importance or area of the region surrounding
each point. The resulting map projection is defined not by formulas but
by rectangular coordinates, and does not fall into any of the standard
classifications such as a conic.

Instead of minimizing distances, Tobler showed that a different con-
straint may be applied to obtain a projection which is "nearly conformal

in the large," minimizing the error in azimuths between the finite points.

(4-70)

4-71)

(4-72)
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Tobler also computed a map projection for the Mediterranean Sea, min-
imizing distances by loxodrome (line of constant compass bearing or
rhumb line) rather than great circle, as a modern simulation of a possible
principle of construction of 13th-century portolan charts. Portolan
charts were prepared for navigators and showed seacoasts, ports, and
numerous diagonal straight lines radiating from compass roses dispersed

over the map.
5. CURRENT STUDIES OF MINIUMUM-ERROR PROJECTIONS

a. A LOW-ERROR CONFORMAL PROJECTION FOR A 50-STATE MAP OF THE
UNITED STATES

As stated previously (equation (4-695)), a finite complex series of var-
ied order and coefficients can be used to create an infinite set of pre-
cisely conformal map projections. The Prolated (or Oblated) Stereo-
graphic projection by O.M. Miller (1953) of the American Geographical
Society, and developed for a reduced-distortion conformal map of Europe
and Africa, was mentioned previously as an early example. The (x',y")
coordinates of equation (4-65) are based on the oblique Stereographic
projection, n is made 3 and all but two coefficients are made zero in the
Oblated Stereographic. The remaining coefficients A1 and A3 are
chosen to provide a line of constant scale which is an oval instead of the
circle of the Stereographic. In essence, Miller chose A1 = 0.9245, Aa =
0.01943, and centered the Stereographic at latitude 18° N. and longitude
20° E. Equation (4-65) simplifies to

x = 0.9245x'{1 - (0.2522/12)[3(y"* - (x")*]}

y = 0.9245y'{1 + (0.2522/12)[3(x"* - (y"°]}

and x' and y' may be found from equations (5-3) through (5-8), (5-26), and
(5-27), simplified for the sphere (e = 0). L.P. Lee (1974b) adapted an
oblique aspect of this projection, also third order, but with different con-
stants, to a map of the Pacific Ocean.

In an unpublished manuscript report, Miller (1955) extended the prin-
ciple to other continents of the Eastern Hemisphere, with two additional
Oblated Stereographic projections linked by non-conformal "fill-in" pro-
jections. His 1953 Oblated Stereographic projection was used without
change, except that the central meridian was moved from longitude 20°

E. to 18° E. The American Geographical Society prepared continuous

(5-1)

(6-2)
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maps of all of Africa, Europe, Asia, and Australasia, using this "Miller
Oblated Stereographic" Projection at a scale of 1:5,000,000.

The Oblated Stereographic projections are not based upon the least-
squares principle but were derived by selecting suitable values for the
scale factor at the center and various limits of the map. The scale fac-
tors are symmetrical about two perpendicular axes, and the constants
were determined without iteration.

It seemed appropriate to apply equation (4-65) to the development
of a projection which would show all 50 States of the United States with
as little scale variation as possible. Prior to the achievement of state-
hood by Alaska and Hawaii in 1959, these two territories were commonly
shown as insets on maps of the 48 conterminous States. Alaska was nor-
mally reduced considerably in scale for the inset. After 1959, there was
concern that the largest State was shown smaller than several other
States and to the south rather than the north. Rand McNally promptly
published a map for wall and atlas use showing the 50 States in their rela-
tive positions and sizes. The projection used was apparently the Lambert
Azimuthal Equal-Area. In 1975, the U.S. Geological Survey issued a map
with similar coverage (although omitting the smaller islands of Hawaii)
at scales of 1:10,000,000 and 1:6,000,000, but cast on the Lambert Con-
formal Conic projection with standard parallels of latitudes 37° and 65°
N. (see figure 10).

While both of these standard projections accomplished the basic pur-
pose for visual purposes, the scale distortion or error (scale factor minus
one) on the USGS maps, for example, varies from +12 percent on the
island of Hawaii, +7 percent in southern Florida, and +4 percent in north-
ern Alaska to -3 percent at the 49th parallel (see figure 11). Since the
scale along any given parallel on the Lambert Conformal Conic projec-
tion is constant, the scale error is zero or minimal not only in central
Alaska and the middle of the 48 conterminous States, but in regions of
northern Canada and the northern Pacific Ocean, at the expense of other
regions which are parts of the United States.

When equation (4-65) was applied to this problem without using least
squares, but with the stipulation that the scale factor be 1.0 through
several specific points, no satisfactory solution was found. While co-
efficients could be obtained (in quantity equal to the number of points),
the scale at other points on the map fluctuated too widely, and it was too
difficult to guess where to move the reference points. On the other hand,

when the same equation was applied to a large number of points using
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least squares, and developing a moderate number of coefficients, far
more satisfactory solutions were found, and simple adjustments of the
location of points led to a map projection on which the scale error does
not exceed +2 percent for all land forms of the 50 States as well as
adjacent waters and the connecting routes between Hawaii, Alaska, and
the West Coast of the 48 conterminous States (see figures 12 and 13).

This range of scale error includes all the islands of Alaska and of
Hawaii to its western limit at Kure 1., as well as northern Mexico, adja-
cent Canada and Cuba. These regions, adjacent Siberia, the rest of
Mexico, and the rest of mainland Canada (except for Labrador) appear
normal to the eye, providing an esthetically acceptable map covering the
general region. The northern Pacific Ocean varies from true scale by 3.2
percent or less. The projection has been given the name GSS50.

These conditions were obtained by using the least-squares fit to ob-
tain 20 coefficients (n = 10 but B1 = 0) for equation (4-65), beginning
with an oblique Stereographic projection, and fitting to 44 points. After
the 44 points were adjusted to produce the final coefficients, their loca-
tions are as shown in table 4.

The 50-State region is not surrounded by the ideal line of constant
scale to satisfy Chebyshev's principle for a minimum-error map projec-
tion; instead there are 18 prongs of true scale extending away from the
heart of the map. This map is not claimed to be the theoretically best
solution to the problem, so it is called low-error rather than minimum-
error. It is believed, however, to be a good practical solution. It is
minimum-error for the number of coefficients and locations of points,
but these are somewhat arbitrary. More coefficients lead to too much
variation in scale between points; fewer coefficients do not provide the
desired accuracy range. Because of the low scale-error range in the
relevant regions of the GS50, corrections for the ellipsoid (up to 0.6 per-
cent in shape) are worth incorporating. While the projection is much
more complicated to program and compute than standard projections,
once programmed it may be plotted by the computer operator at any
scale almost as if it were a projection like the Lambert. The latitude
and longitude ranges must be limited, as discussed below.

The derivation of the formulas used to determine the coefficients of
the GS50 or other similar projections is given in the appendix (section 9)
and in Snyder (1984). Here the equations are given in the order needed
for computing the coefficients. The equations also are based on the el-
lipsoid only, although the sphere is obtained by letting the eccentricity
e = 0, and simplifying.
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Figure 11.--The map of figure 10 with lines of constant scale factor superimposed. The scale factors
for the 50 States vary from 1.12 at the south tip of the island of Hawai<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>