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PREFACE 

The expanding ability of computers to solve problems for which the 
solutions have been impractical in the past has been applied to several 
areas of map-projection research by the U.S. Geological Survey. Since 
the principle of least squares applies to several of the topics researched, 
some of the earlier usage of least squares in the development of map 
projections, with or without computers, is also reviewed. 

Two general areas of development are described. The first area, 
treating efficient data transfer between maps, is subdivided into two 
principal investigations. In the first, the principle of least squares is 
applied to the development of polynomials to be used in place of analyt­
ical equations in transferring large quantities of data from one map to 
another map or transferring data to or from a data base in geodetic or 
rectangular coordinates. This use of least squares was described in large 
part in a paper by Wu and Yang (1981). The derivations contained herein 
are more extensive, but were inspired by that paper. 

In the second investigation, the computer is used to determine 
which, if any, of several common map projections fit a map for which the 
projection or set of parameters is not known. The user must carefully 
measure rectangular coordinates for a certain matrix of nine points of 
known latitude and longitude. The computer program tests these for 
successive types of projections. The answer is not exact, limited by 
paper expansion, accuracy of cartography, accuracy of measurement, 
and the fact that, on some large-scale maps, projection difference is 
almost undetectible; for the latter, a second-order polynomial fits satis­
factorily. The result normally is sufficiently accurate to permit transfer 
of other data from the rna p. 

The second general area of study discussed in this paper concerns 
minimum-error projections. Here the computer is used to provide a 
least-squares fit of a conformal or equal-area map projection to a large 
number of weighted points representing the region to be mapped. Thus 
the central meridian and central scale factor of the Transverse Mercator 
or the various parameters of oblique aspects of other projections may be 
chosen analytically, rather than by subjective judgment, to reduce over­
all scale error on the map. With the careful use of complex transforma­
tions, still less error can usually be achieved in a given region, for ex­
ample, to prepare a 50-State map of the United States. 

I appreciate the helpful counsel of several individuals in and out of 
the Survey in reviewing the manuscript or inspiring some of the research. 
Especially do I thank Atef A. Elassal and Allen J. Pope of the National 
Ocean Service, Paul R. Wolf of the University of Wisconsin/ Madison, 
and Lee U. Bender, Joel L. Morrison, and John F. Waananen of the U.S. 
Geological Survey. In addition, I appreciate the devotion of K. Susan 
Bruckschen and Cynthia L. Cunningham in formatting, typing, and 
repeatedly changing the equation-laden manuscript. The remaining 
errors and limitations are entirely my responsibility. 

It is hoped that these applications of well-known principles will be 
found useful to prepare maps with still less distortion than those designed 
with earlier conventions. 

Reston, Va. 
1984 

John P. Snyder 
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SYMBOLS 

If a symbol is not liste here, it is used only briefly and identified 
near the formulas in which lt is given. 

a = semimajor ax,s of Earth at map scale 

arctan
2 

= arc tanrent with quadrant adjustment like that of 

Fortra~ ATAN2 function. Otherwise, arctan 

corres~onds to ATAN. 

e = eccentricity df reference ellipsoid (generally). 

=base of naturillogarithms (2.718 ... )(if specially indicated) 

f = function of 

i = square root of -1 

1n = naturallogarr,thm based on e=2. 718 ... 

n = cone consta1t in conic projections; otherwise integer 

serving as u~per limit. 

R =radius of Ear~h as sphere at map scale 

RMSE = root-me~n-square error 

s =distance 

x = rectangular coordinate: distance to the right of the 

vertical line (Y axis) passing through the origin or center 

of a project on (if negative, it is distance to the left). 

y = rectangular !coordinate: distance above the horizontal 

line (X axis) passing through the origin or center of a 

projection (i~ negative, it is distance below). 

(x', y') = rectangt lar coordinates in a different reference 

frame, uch as on another map. 

z = angular dista ce from the pole of the projection. 

6. = finite changr in 

a = partial deriva tlve of 

e = angle, usuallt between meridians 

k = longitude e st of Greenwich (for longitude west of 

Greenwich, [ minus sign is used). 

kp = longitude e st of Greenwich of the pole of a transformed 

projection. 

k = longitude e st of Greenwich of the central meridian of 
0 

the map, or of the origin of the rectangular coordinates. 

ix 
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SYMBOLS-- continued 

<t> = north geodetic or geographic latitude (if latitude is south, a 

minus sign is applied). 

<t> = north latitude of pole of transformed projection. 
p 

<t> = latitude of central point on miscellaneous map projections 
0 

<t> = single standard parallel of latitude on cylindrical or 
l 

conic projections; latitude of central point on azimuthal 

projections. 

'It = isometric latitude 

E =sum of 



COMPUTER-ASSISTED MAP PROJECTION RESEARCH 

By John P. Snyder 

ABSTRACT 

Computers have opened up areas of map projection research which 

were previously too complicated to utilize, for example, using a least­

squares fit to a very large number of points. One application has been 

in the efficient transfer of data between maps on different projections. 

While the transfer of moderate amounts of data is satisfactorily accom­

plished using the analytical map projection formulas, polynomials are 

more efficient for massive transfers. Suitable coefficients for the poly­

nomials may be determined more easily for general cases using least 

squares instead of Taylor series. 

A second area of research is in the determination of a map projec­

tion fitting an unlabeled map, so that accurate data transfer can take 

place. The computer can test one projection after another, and include 

iteration where required. 

A third area is in the use of least squares to fit a map projection 

with optimum parameters to the region being mapped, so that distortion 

is minimized. This can be accomplished for standard conformal, equal­

area, or other types of projections. Even less distortion can result if 

complex transformations of conformal projections are utilized. 

This bulletin describes several recent applications of these prin­

ciples, as well as historical usage and background. 

INTRODUCTION 

The use of the computer for map plotting has, in less than two dec­

ades, become standard for many governmental agencies as well as an 

increasing number of private firms. Many of the map projections used, 

Publication authorized by the Director, U.S. Geological Survey, on 

April 20, 1984. 
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however, remain those of long standing, although formulas have not been 

available for some until recently because they had been plotted geomet­

rically. Until computers were available, the formulas for some projec­

tions were too complicated to be practical for computation of coor­

dinates. 

Computers and even pocket calculators have opened up large areas 

of research on new projections which were previously too complicated 

for practical computation of coordinates for plotting. One area has been 

in the numerical solutions of problems, such as those involving hundreds 

of points in least-squares fitting, or iteration involving several simultan­

eous equations. Previously these problems could defeat even the most 

persistent mathematician because of the sheer volume of work and the 

ease with which errors could be made. 

A leader in this field from its earlier days (soon after 1960) has been 

Waldo R. Tobler. During his tenure on the faculty of the University of 

Michigan, where he remained untill977, he was a major influence in 

moving the field from its infancy to accepted practice. Among Tobler•s 

numerous special studies were applications of spatial effects to mapping 

so that the areas could ~e automatically altered in accordance with, for 

example, population or retail sales (Tobler, 1963a, 1963b). In other 

studies he used a computer to determine possible projections for old 

maps and to determine by least squares an 110ptimum11 map projection of 

the United States (Tobler, 1966, 1977). 

Another recent product of map-projection research with computers 

was the mathematical development of the Space Oblique Mercator pro­

jection. This was pursued by the writer using only programmable pocket 

calculators for the numerous calculations and checking of formulas 

(Snyder, 1978, 1981a). On a more conventional basis, the writer used the 

same calculators to check numerous existing map-projection formulas as 

well as newly derived ones before including them in other published 

papers, or in a computerized USGS map-projection package called the 

General Cartographic Transformation Package (U.S. Geological Survey, 

1981). 



EFFICIENT DATA TRANSFER BETWEEN MAPS OF DIFFERENT 
PROJECTIONS: OVERVIEW 

Since data are being digitized at an increasing rate from existing 

maps into a data base, and are being increasingly plotted from one map 

onto another, it is essential that the mathematical relationship between 

the projections of the maps involved be properly understood. Several 

common situations occur that affect the nature of these relationships. 

The map projection of the existing map may be unidentified, identified 

only by name, or completely identified with parameters. The projection 

of the map to which data are to be transferred will more likely be known 

in detail, but this may not be the case. The transfer of data may involve 

only a few points or a great many points. Several options are available 

to perform the transfer of data based on the situations that exist. 

Judging from the notations on many maps, there is a widespread 

belief that the name of the projection is sufficient identification. 

Generally this is not true. For example, unless the standard parallels for 

a conic projection are given, data cannot be properly transferred from 

this map to another. The Lambert Conformal Conic label tells the user 

that there is conformallty and therefore correct local shape, and that the 

meridians are straight, but only if the standard parallels are known can 

the scale be used to determine accurately the geographic positions of 

points on the map. Similarly, the central meridian of a Transverse 

Mercator projection must be known together with any central scale 

reduction. 

Measurements may be made to determine standard parallels or 

central meridians, as discussed in a later section, but this procedure can 

be technically complicated, and it is limited by errors of map drafting, 

measurement, and paper expansion. On the other hand, the choice by the 

mapmaker for the origin of rectangular coordinates on any map, or for 

the central meridian of a conic projection, although used for the original 

plotting, is not needed for the transfer of data, since another choice 

merely rotates or translates the map and does not affect relative 

positions. 

3 
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Because of the increased emphasis on data transfer, the USGS has 

recently undertaken research to develop additional capabilities in trans­

ferring data automatically from one map to another. The standard 

approach in data transfer, namely analytical transfer using exact 

formulas for the projections involved, is briefly mentioned below. The 

mention is brief only because it is standard. It remains the approach to 

consider first. This is followed by a discussion of the use of polynomial 

approximations for the same purpose. The third phase under the same 

heading 11 Efficient Data Transfer ..... involves computer techniques for 

identification of the map projection for an incompletely labeled map, 

and therefore one from which data cannot be readily transferred. This 

identification is developed with sufficient parameters to permit data 

transfer from the map to a data base or to another map. 

ANALYTICAL TRANSFER OF DATA 

Assuming that the projection of the existing map is adequately 

identified, the transfer of a moderate number of points from one map to 

another is most satisfactorily accomplished by the use of the exact 

trigonometric formulas, usually c.alled 11 inverse 11 formulas, for conversion 

of rectangular to geographic coordinates for the first map, followed by 

conversion· of geographic to rectangular coordinates with exact 11 forward 11 

formulas for the second map. These formulas apply to maps extending 

over small or large portions of the Earth. While a few projections are 

computed using approximate series, such as the Space Oblique Mercator 

and the ellipsoidal form of the Transverse Mercator, the series are 

sufficiently accurate for the entire normal ranges of the projections. 

Th,ere are several computer packages containing the forward 

formulas for one or more projections, such as Philip Voxland's WORLD 

package at the University of Minnesota CVoxland, 1981 ). It contains over 

a hundred projections. The inverse formulas are much less common in 

computer programs. The USGS General Cartographic Transformation 

Package (GCTP) has forward and inverse formulas for 17 major projec­

tions, including the ellipsoidal or spherical versions for 8 of them (U.S. 

Geological Survey, 1981). This package is also incorporated into 

GS-CAM, a plotting package modified from CAM (the Cartographic 

Automatic Mapping program of the Central Intelligence Agency) by 

USGS (U.S. Geological Survey, 1982). A recent USGS bulletin lists the 
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forward and inverse formulas for all projections used by the Survey in its 

past and present published maps (Snyder, 1982). 

The exactness of the analytic formulas is offset by the fact that 

most involve several trigonometric calculations and similar time­

consuming operations which may unnecessarily increase the computer 

time and therefore the cost of data transfer, depending on the quantity 

and type of transformation required. 

POLYNOMIAL APPROXIMATIONS FOR DATA TRANSFER 

If thousands of points are to be transferred between two maps of 

known projection parameters, the use of a polynomial approximation 

should be considered to reduce computation time. However, this is not a 

panacea. If the region of the map is continent-sized, a polynomial of 

sufficient accuracy will usually contain an excessive number of terms 

and will not save computer time. If the area is smaller, however, a low­

order polynomial may be more efficient. Since the calculation of the 

polynomial coefficients may require moderate computer storage, and the 

coefficients apply only to a limited area, the number of points to be 

transferred must normally be very large for this technique to be 

effective. 

The actual computer time saved varies with the projection, the 

accuracy required, and the type of transformation. For forward or 

inverse conversion of Lambert Conformal Conic coordinates, even a 

nested third-order polynomial can take longer to compute than the 

analytical equations, and is more limiting. Polynomials are normally 

faster than the ellipsoidal Transverse Mercator series. To convert from 

rectangular coordinates of the Lambert Conformal Conic to those of the 

Transverse Mercator, or to transfer data between two Transverse 

Mercator projections, it is usually faster to use polynomials, if enough 

transformations are required to justify computation of coefficients 

suitable for the region of interest. 

In the analyses given later, polynomial equations for converting one 

type of coordinates to another are described for two categories of map 

projections, namely general and conformal. The general equations also 

apply to conformal map projections, but for conversion from one con­

formal projection to another, the polynomial may be expressed in com­

plex algebra, using fewer coefficients for a given accuracy. 

5 
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The computation of polynomial coefficients can take one of at least 

two forms. The conventional pattern is to develop coefficients from a 

Taylor series. This becomes increasingly unwieldly and error prone as 

the size of the geographic region increases, or when the conversion 

involves rectangular to rectangular coordinates with at least one noncon­

formal projection. A more generally useful technique for developing 

coefficients involves the use of least squares. The Taylor series 
' 

approach is briefly described, but the application of the least-squares 

method is discussed more completely. 

IDENTIFYING AN UNMARKED MAP PROJECTION 

The foregoing approaches are based upon adequately knowing the 

map projection together with its parameters for the source map. If they 

are not known, data cannot be properly transferred from this map to 

another base. For these transfers to take place, it may not be necessary 

to determine the original projection parameters precisely, but a close 

approximation is needed. An experienced observer can frequently deter­

mine a possible projection and its parameters by beginning with elemen­

tary checks and ending with careful measurements. Initially the ques- . 

tions may include these: Are meridians straight or curved? Are parallels 

straight or curved 7 If parallels are curved, are they concentric circular 

arcs? How are parallels spaced along meridians? Without measure­

ments, however, an unlabeled map of the United States according to the 

Lambert Conformal Conic cannot be distinguished from one according to 

the Albers Equal-Area Conic, and the standard parallels are even more 

difficult to determine. For large-scale maps such as topographic quad­

rangles covering small areas, ascertaining the projection is still more 

difficult, and a low-order polynomial or more than one projection may 

fit the points as accurately as normal measurement permits. In any 

case, the identity of the projection for purposes of data transfer is 

incomplete without parameters such as scale and standard parallels or 

central meridian. 

While the computer lacks an ability to give the map an overview, it 

can be programmed to make some of the normal human tests, and also to 

make checks which are too subtle even for experienced observers, much 

less those less familiar with map projection design. Even the computer 
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is limited by the problem of unequal expansion and contraction of paper 

maps, the usual form in which maps with unknown parameters are 

supplied. 

A computer, however, can make a large number of computations for 

an undefined map to determine which projection fits reference points 

measured. In view of this, a program has been developed and tested to 

determine the suitability of a second-order polynomial or of some 18 

projections. Of these projections eight are also tested for the Earth 

taken as an ellipsoid. The program then permits calculation of geo·­

graphic coordinates of other points on the map based on the param~~ters 

determined. These projections are as follows: 

Regular Cylindrical: 

Mercator (spherical or ellipsoidal) 

Miller Cylindrical (spherical) 

Equirectangular (spherical) 

Gall's (spherical) 

Regular Conic (spherical or ellipsoidal): 

Lambert Conformal Conic 

Albers Equal-Area Conic 

Equidistant Conic 

Azimuthal (spherical for any aspect, except ellipsoidal form also for 

polar aspects asterisked (*)): 

Stereo graphic* 

Lambert Azimuthal Equal-Area* 

Azimuthal Equidistant* 

0 rthogra phic 

Gnomonic 

General Vertical Perspective 

Pseudocylindrical (spherical only): 

Sinusoidal 

Mollweide 

Others (spherical or ellipsoidal): 

Polyconic 

Transverse Mercator 

Tilted Perspective 

Second-order polynomial 

Additional projections may be added with varying difficulty if the 

projections have curved meridians and curved parallels, but minimal 

difficulty for others (regular cylindricals, conics, and pseudocylindricals). 

7 
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LIMITATIONS 

If coordinates are artificially calculated rather than measured, the 

program determines the projection parameters almost exactly. For 25 

actual maps, using a coordinate-measuring machine and a skilled techni­

cian, the final projection determined by the program generally fits with­

in 0.5 mm. Determining map parameters in this manner is not ideal. It 

is often not possible to determine the original parameters of an exist­

ing map correctly. It is only possible to determine parameters of suf­

ficient accuracy to permit transfer of data. 

GENERAL FORMAT OF PROGRAM 

The program as developed is designed to handle data supplied in the 

form of a matrix of nine known points along three meridians and three 

parallels; the second meridian and second parallel are not necessarily 

midway between the first and third. Knowing the latitude, longitUde, and 

rectangular coordinates of these nine points relative to an arbitrary set 

of X and Y axes, the program first checks for the straightness of 

meridians and parallels. 

If meridians and parallels are all straight, and one set perpendicular 

to the other, the spherical Mercator projection is tested for fitting the 

nine points. If it fails to fit, the ellipsoidal Mercator is tested, and then 

the Miller, Equirectangular, and Gall's, in order. - If none fits, the pro­

gram reports that the projection is cylindrical, but does not fit projec­

tions currently programmed. 

If fit is achieved for one of these cylindrical projections, it is so 

reported, giving the scale of the map and, for the Equirectangular, the 

standard parallels. The program then applies the scale and unreported 

parameters, including rotation and translation of the axes used for meas­

urement, to other pairs of rectangular coordinates, computing andre­

porting latitude and longitude. 

If meridians and parallels are not all straight, the suitability of a 

second-order bivariate polynomial (the highest order which may be 

generally determined from nine points) is checked. It would exactly fit 

the nine-point matrix for a cylindrical projection without fitting other 

points well, so it is not tested if all meridians and parallels are straight. 

If the polynomial does not fit well, projection tests continue. 
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If meridians are straight, but parallels are not, meridians are 

checked for parallelism. If parallel, the Transverse Mercator, Polyconic 

and equatorial Gnomonic projection are tested for fit; if not parallE~l, 

meridians are tested for convergence at a common point. (Although 

meridians of the Transverse Mercator and Polyconic are curved, they are 

nearly straight on many large-scale maps of small areas.) If there :Ls no 

convergence, the program cannot find the projection. If there is COin­

vergence, and if parallels are not concentric about this point, the 

Transverse Mercator, Polyconic, and oblique Gnomonic are tested. 

If parallels are concentric, successive conics are tested, spherical 

and ellipsoidal, Lambert Conformal, Albers Equal-Area, and Equidistant. 

If the cone constant (the ratio of meridian spacing on the map to true 

spacing) is ±1, the conic is reported in its polar form (Stereographic:, 

Lambert Azimuthal Equal-Area, and Azimuthal Equidistant, respectively) 

if fit occurs. If these projections do not fit, and the cone constant is not 

±1, the program reports that the projection is an unprogrammed conic; 

if the cone constant is ±1, the Orthographic, Gnomonic, and Vertical 

Perspective are successively tested before the program reports an 1m­

programmed polar azimuthal. 

If parallels are straight and meridians are not, the equatorial Ortho­

graphic and pseudocylindrical projections are tested. If neither set of 

lines is straight, the program tries successively the Transverse Mercator 

and Polyconic in both spherical and ellipsoidal form, and then the Via.rious 

oblique or equatorial azimuthals, including the Vertical Perspective, and 

finally the Tilted Perspective. The mathematics for the all-curved group 

is more difficult, and programming involved several false starts because 

of iteration which seemed feasible in principle, but which failed to con­

verge or which converged to the wrong answers due to the difficulty of 

choosing the first approximations. 

In any of these cases, errors in measurements and errors due to di­

mensional instability of the paper map must be considered. Therefore a 

tolerance is required in comparison checks such that a reasonable pro­

jection solution is not rejected. The tolerances are discussed later. The 

general flowsheet is shown in figures 1 and 2. Once the projection is 

determined, the computation of latitude and longitude from rectan1~ular 

coordinates of additional points involves previously published invers:e 

projection formulas combined with translation and rotation of coordi­

nates based on parameters of the nine points already used. 

9 
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These testing approaches are converted to mathematical expressions 

with the derivations following those for polynomials. They are shown 

approximately in the order the tests are used. Additional formulas are 

included in the Appendix (Section 6). 
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Figure 1.--General flowsheet of program to identify map projection (part 1}, 
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Figure 2a.--General flowsheet (part a & b). 
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Figure 2b.--General flowsheet (part c & d). 

M 
"l:j 
"l:j -0 

t?a 
z 
t-3 
tj 

~ 
t-3 
~ 
> z 
00. 
"l:j 
M 
~ 
0 
< 
M 
~ 
< 
t?a 
~ 

...... 
tA) 





EFFICIENT DATA TRANSFER: ANALYSIS AND DERIVATIONS 

1. ANALYTICAL TRANSFER OF DATA 

The use of exact trigonometric formulas (or approximating se:ries if 

required) is important enough to be given a separate . section number. For 

the actual formulas, the reader is referred to Snyder (1982), and for the 

derivations to some of the references listed therein. Except for the use 

of some of these equations in connection with the derivations pres•~nted 

in this bulletin, they are not repeated here. 

2. POLYNOMIAL APPROXIMATIONS FOR DATA TRANSFER 

Before reading through the following derivations, the paragraphs 

under this same heading on p. 5 should be read first. 

a. BASIC EQUATIONS 

The general bivariate transformation polynomial for converting 

longitude "- and latitude <1> to rectangular coordinates x andy is as 

follows: 

2 2 3 2 
X = C + C "' + C <I> + C "' + C "-<1> + C <I> + C "' + C "' <I> 

~ 2 3 4 5 6 7 8 

y = the same equation but with C 1 in place of C 

where C j and C j 1 are constant coefficients. 

To transform coordinates from (x,y) to C"-,<J>>, equations (2-1) and 

(2-2) are rewritten, interchanging x with "- and y with <1> and using :new 

coefficients. 

To transform from rectangular coordinates (X1 ,y1
) of one projection 

to (x,y) of another projection, equations (2-1) and (2-2) are written with 

X 1 and Y1 in the place of "- and <1> respectively, using new coefficients. 

Although equations (2-1) and (2-2) are left in the above form for 

further analysis below, they should be nested for more efficient actual 

~5 

(2-1) 

(2-2) 



16 COMPUTER-ASSISTED MAP PROJECTION RESEARCH 

computation, once the coefficients are determined, to avoid repeated 

exponentiation. For example, equation (2-1) can become 

X = c + cj>(C + cj>(C + c cj>)) + 'k(C + cj>(C + c cj>) 
1 3 6 10 2 5 9 

+ 'k(C + C <I> + C 'k)) + ••• 
4 8 7 

This c~n save 20 to 30 percent in computation time for a fifth-order 

polynomial. 

If the projection is symmetrical about the Y axis, which is normally 

made to lie along the central meridian, some of the above coefficients 

are zero: In equation (2-1) the coefficients of even powers of 'k (includ­

ing the zero power) are zero; in equation (2-2) the coefficients of odd 

powers of 'k are zero. If the projection is symmetrical about the X axis 

within the mapped region, the coefficients of odd powers of <1> in equation 

(2-1) and even powers of <1> in equation (2-2) are zero. For symmetry 

about both axes, both consequences apply. 

b. CONFORMAL TRANSFORMATIONS 

If the projections involved are conformal, complex algebra may be 

used instead of the real equations above. Wherever <1> is involved, how­

ever, the isometric latitude, often given the symbol 'tiT, must be used in 

the polynomial (Snyder, 1982, p. 18-19). Equations (2-1} and (2-2) may 

be replaced as follows, where i
2 

= -1: 

or 

X + iy = (K + iK ') + (K + iK ')('k + hJt) + (K + iK ') 
0 0 1 l. 2 2 

('k + hJt)
2 + (K + iK ') ('k + hJt)

3 
+ •.• 

3 3 

n 

X + iy = I: (Kj + iK ')('k + i'lt)J 
j=o 

For the inverse, x may be interchanged with 'k, andy with v, using new 

coefficients. For transformation from rectangular coordinates (x',y') of 

one projection to (x,y) of another projection, 'k and v in (2-4) or (2-5) are 

replaced with x' and y', respectively. 

If there is symmetry about theY axis in equations (2-4) or (2-5), KJ 

is zero if J is even, and KJ' is zero if J is odd. With symmetry about the X 

axis, KJ' is zero for all values of j. With symmetry about both axes, then, 

KJ is zero if j is even, and Kj' is zero for all values of j. By interchanging 

(2-3) 

(2-4) 

(2-5) 
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x withy and ~ with '11 in equation (2-4), for the fairly common case of 

symmetry about the Y axis, it is found that all coefficients are real, and 

equation (2-5) may be written for this case only: 

n 

y + 1x = E Kj(W + i~)j 
J=o 

The new K ,K ,K , and K are equal to the old K • ,K , -K •, and --K , 
012 3 0 1 2 3 

respectively. 

Expanding (2-4) or (2-5), and separating the real and imaginary 

portions, 

x = K + K ~ - K •v + K ~ 2 
- K '112 

- 2K ·~v + K ~ 3 

0 1 1 2 2 2 3 

2 2 2 
Y = K • + K v + K ·~ + 2K ~* + K ·~ - K ·w + 3K ~ w 

0 1 1 2 2 2 3 

- K '113 
+ K ·~ 3 

- 3K ·~w2 
+ .•• 

3 3 3 

Comparison with equations (2-1) and (2-2) shows that, if w were used 

instead of <t> in the latter two equations, 

C = K c I= K I 

1 0 1 0 

C = K c I= K I 

2 1 2 1 

c = -K I c I= K 
3 1 3 l. 

C = K c I= K I 

4 2 4 2 

c = -2K I c I= 2K 
5 2 5 2 

C = -K c I= -K I 

6 2 6 2 

C = K c I= K I 

7 3 7 3 

c = -3K I c I= 3K 
8 3 8 3 

C = -3K c I= -3K I 

9 3 9 3 

c = K I c I= -K 
10 3 1.0 3 

For transformation from rectangular coordinates of one conformal pro­

jection to those of another, only (x,y) and ex• ,y•) need be compared, so 

the complex coefficients may be directly compared to the real coeffi­

cients without involving V· 

To convert geodetic latitude <t> to ·isometric latitude w, 

17 

(2-6) 

(2-7> 

(2-8) 



18 COMPUTER-ASSISTED MAP PROJECTION RESEARCH 

e/2 
1Jr = ln {tan (rr/4 + 4>/2)[(1 - e sin 4>)/(1 + e sin 4>)) } 

where e is the eccentricity of the ellipsoid. 

Nesting of equation (2-5) for improved final calculating efficiency 

leads to the following: 

X + iy = [[(K + iK '><"- + i1Jr) + K + iK '1<"- + i1Jr) 
3 3 2 2 

+ K + iK '1<"- + i1Jr) + K + iK •, etc. 
1 1 0 0 

It is still more efficient to use Knuth's algorithm for evaluation of 

equation (2-5) (Knuth, 1969): 

b = g ; a; = bj + raj ; bj = g j - s' aj 
1 n-1 -1 -1 n- -1. 

After j is given the value of sue cessive integers from 2 to n, 

x + iy = <"- + i1Jr)a + b n n 

Equation (2-5) and the Knuth algorithm are used again in this paper, but 

to solve a different problem with equation (4-··65) and following equation 

(5-28). 

c. COMPUTATION OF COEFFICIENTS 

(1) Conventional 

A standard method of determining the coefficients in equations (2-1) 

and (2-2) is by the development of a Taylor series. If a central point has 

coordinates 4> and "- , and x and y , and if x = f <"-,4>), y = f <"-,4>>, 6.x 
0 0 0 0 1 2 

= x - x , ~Y = y - y , ~"- = "- - "- , and ~4> = 4> - 4> , then equation (2-D 
0 0 0 0 

may be rewritten using a bivariate Taylor series, 

(2-9) 

(2-10) 

(2-11) 

(2-12) 
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and (2-2) may be written identically but with 6.y in place of 6.x and. f in 
2 

place of f . Without a difficult bivariate inversion of this series, the co-
l 

efficients for the inverse (x,y to <J>, ~) must be determined by separate 

differentiation of the more complicated inverse formulas for the projec­

tion. The differentiation, forward or inverse, is normally very tedious, 

and successive derivatives are increasingly subject to errors in derivation 

for each projection involved. To determine coefficients to transform 

rectangular coordinates from one projection to. another is still more com­

plicated, unless one pair of series based on the inverse formulas of one 

projection is followed by a pair based on the forward formulas of the 

second projection. Use of numerical bivariate differentiation also re­

quires inverse formulas, or bivariate series inversion. 

If only conformal projections are involved, as is often the case, the 

handling of Taylor series is simplified. Equation (2-5) becomes 

This is described by J ordan-Eggert (1962, p. 160-163, 225-228), Lee 

(1974a), and others. To change from (x' ,y') of one projection to (x,y) of 

another, where both projections are conformal, the constant coeffidents 

may be evaluated using only the forward formulas, as discussed for two 

Transverse Merc ator projections by J ordan-Eggert (1962, p. 199-217>, 

and for the Transverse Mercator and Lambert Conformal Conic projec­

tions by Shmutter (19 81) and Doytsher and Shmutter (19 81). Numel'ic al 

monovariate or bivariate differentiation using a computer subroutine is 

probably a safer means of accomplishing the above objectives on a uni­

versal basis, but this was not attempted by the writer, in favor of a 

least-squares approach. 

(2) Least Squares 

For general purposes, the least-squares approach provides a sy:stem 

relatively free of many separate complicated derivations and differen­

tiations. To permit transformation involving additional projections in a 

computer program based on this approach, only the forward formulas 

need to be added, even though the program computes forward , inve:rse or 

rectangular-to-rectangular transformations. 

19 
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The techniques described here are used to determine a least-squares 

fit of a given matrix of known points to a given-size polynomial, de­

scribed in large part by Wu and Yang (1981). 

To determine the coefficients in the general polynomial equations 

(2-1) and (2-2) by least squares, the exact forward map projection equa­

tions are used to calculate rectangular coordinates for a matrix of m 

points distributed over the region for which points are to be transformed. 

There must be at least as many distinct points as the number of co­

efficients desired. For example, if there is symmetry about the Y axis, 

symmetrical pairs of points should count as only one per pair, in deter­

mining matrix size. Them x n matrix [A] is then developed, where n is 

the number of coefficients to be computed, using the various values of <1> 

and~, one pair to a row: 

1 

[A]= 1 

1 ~ 
m 

~3 
1 

3 
<I> ••• 

1 

3 
<I> ••• 

2 

Using a standard means of solving for the coefficients, ann x m matrix 

[D) is developed (see Appendix, Section 7, for derivation): 

[D)= [AT Af 1 A T 

from which 

c X 
1 1 

c =[D) • X 
2 2 

c X n m 

and 

C' y 
1 l. 

C' =[D) • y 
2 2 

C' Ym n 

(2-14) 

(2-15) 

(2-16) 

(2-17> 
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where (x , y ) are the rectangular coordinates calculated for the 
m m 

respective values of (~ , <1> ) from the map-projection formulas. 
m m 

For complex variables, equation (2-14) takes the form 

1 

[A 1 = c 
1 

1 

where C = ~ + i'lr (compare equation (2-4)). Equation (2-15) is 
m m m 

rewritten 

[D 1 = [AT A 1-1 AT 
c c C'! c 

Equations (2-16) and (2-17) may be combined: 

k 
1 

k = [D 1 
2 c 

k 
n 

• 

z 
1 

z 
2 

z 
m 

where k = K + iK • and z = x + iy . Wu and Yang did not describe 
n n n m m m 

the complex alternative, although they discussed conversion between two 

conformal projections, the Mercator and the Lambert Conformal Conic. 

Yang 0982) addressed the complex approach in a later paper, however. 

To decrease rounding errors, it is important to subtract the average 

of the various values of~ and <1> from the individual values before calcu­

lating the coefficients, and therefore before using the coefficients to 

calculate coordinates. Coefficients for the inverse or for transformation 

from one projection to another are determined from equations (2-14) 

through (2-20), using the proper substitutions for <1> , ~ , x , andy as 
m m m m 

described above. The forward formulas may be used in each case, even 

though ~ and <1> or v will not appear in equations (2-14) through (2-20) 

for rectangular to rectangular conversion. 

The accuracy of the coefficients with various levels of polynomials 

(1st, 2nd, 3rd order, etc.) may be checked by using the coefficients to 

21 
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(2-19) 
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recalculate (x,y), comparing these values with the correct values obtained 

from analytical equations. The root-mean-square error CRMSE), r, is 

found as follows: 

where (x ,y ) are computed for each of them points from equations 
c c 

(2-1 ), (2-2), or (2-5), using the calculated coefficients, (xt'y t) are found 

from the true formulas, and I: indicates the sum of the squares of each 

residual. If the residual is less than the desired accuracy limit, the co­

efficients are accepted. It was found for examples tested that the use of 

complex algebra for conformal projections resulted in residuals about 

twice those found using real coefficients derived from equations (2-14) 

through (2-17) for a given order polynomial. This is largely due to the 

reduced number of complex coefficients at a given level (not over 2 for 

each order if complex, but up to (n+1) for the nth-order terms if all are 

real). It is also necessary to calculate coefficients for a given order 

polynomial by separate computation, rather than to obtain them by trun­

cating a higher order series, because of errors introduced by the latter 

approach. 

It is also desirable to weight the various points used to calculate 

polynomial coefficients in proportion to the expected use in data transfer 

of the region surrounding the point. The most elementary weighting is 

by area. On maps of small regions, a graticule of uniform spacing in de­

grees is almost uniform in spacing by area. In a larger region, weighting 

in proportion to the cosine of the latitude on such a graticule would com­

pensate exactly for the sphere, satisfactorily for the ellipsoid. This may 

be done by multiplying every term in the first row of the matrix of equa-
1/z 1/z 

tion {2-14) by cos <1> , in the second row by cos <1> , and in the ith row v 1 . 2 

by cos 
2
<l>i' etc., and each term in the (m x 1) matrices at the right of 

1/z . 1fz 1/z equations (2-16) and {2-17> by cos <1> , cos <1> , ••• cos <1> , respec-
1 2 m 

tively. Equation {2-21) becomes 

(2-21) 

{2-22) 
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Table 1 shows examples of real and complex coefficients determined for 

a 6° x 6° range, transfer ing geodetic to rectangular coordinates for the 

ellipsoidal Lambert Conf rmal Conic projection. 

Table 1.--El mples of polynomial coefficients for map projection 
transformations 

Example 1: 

Conversion: 

Projection: 

Geodetic to rectangular coordinates 

Ellipsoid 1 Lambert Conformal Conic 
Standard !parallels: Latitudes 33° and 45°N. 
Central Meridian: Longitude 95°W. 
Origin of rectangular coordinates: Latitude 23°N.; Longitude 95°W. 
Ellipsoid: Clarke 1866 

Scale: Full, metj rs 

Range: Longitudr 98° to 92°W., Latitudes 40° to 46°N. 

Matrix Intervals: 1 o Lol gitude x 1° Latitude (number of points in matrix: m = 49) 

Sample Coordinates: 

Itlput 

(1,1) 
(1,2) 

(1,3) 
(1,4) 
(1,5) 
(1,6) 
(1,7) 

(2,1) 

-1.710422~ 6 
-1.692969 7 
-1.675516~ 8 
- 1.6580621:9 
-1.640609~9 
-1.623156 ~ 0 
-1.605702 1 
-1.710422 6 

0. 75855478 
0. 75855478 
0. 75855478 
0.75855478 
0. 75855478 
0. 75855478 
0. 75855478 
0. 78141800 

Output 
X 

-254775.581 
-169867.529 

-84938.907 
0.000 

84938.907 
16986 7.529 
254775.581 

-251129.288 

y 

1901261.028 
1898924.56 7 
1897522.578 
1897055.229 
1897522.578 
1898924.567 
1901261.028 
2011672.055 

(7,7) -1.605702 . 1 0.90140082 232832.464 2565706 ;325 

Average input coordinat, s: ~ = -1.65806279, '11 = 0.82900061 
0 0 

Note: ~ = longitude (we~t is -) 
v = isometric 1ati ,ude {see equation {2-9)) 

{x,y) = rectangular c ordinate, Y axis increasing northerly along central 
meridian. 

Complex polynomial coe ficients, for input~ in radian, 

n 

X+ iy = E (Kj + iK,I)[(~-~0) + Hv- vo>]j 
)=o 

If polynomial is 2nd orde~ 
K I = 2232395.61 

0 
K = 4653848.16~ 
K

11 
= 1469623. 76 r 

rms er~or = 150.124 l 

If polynomial is 3rd order, 
K I = 2232394.96 7 

0 
K = 4655308.609 

1 
K I = 146 7865.207 
K

2 
= -308173.969 

3 
rms error= 1.210 m 

If polynomial is 4th order, 
K I = 2232394.424 

0 
K = 4655308.791 

1 
K I = 146 7577.828 

2 
K = -308446.444 

3 
K I = -48609.0346 

4 
rms error = 0.011 m 

23 
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Table 1.--Examples of polynomial coefficients for map proJections 
transformations (cont'd.) 

Example 2: 

Same as Example 1, but real instead of complex. Instead of 'IJ, <t> is used as an input 
coordinate {if 'IJ = 0. 75855478, <t> = 0.69813170 radians). Average input <I> = 0. 75049158. 

0 

X = C + C {}., - }.. ) + C {$ - $ ) + C (}., - }.. ) 
2 

+ C (}., - }.. ) 
l. 2 0 3 0 4 0 5 0 

<<t>- <I> ) + c <<t>- <I> )2 + c (}., - A. )3 + c (}., - A. )2($ -<1> ) + ... 
0 6 0 7 0 8 0 0 

Y : c I + c 1{}._ - }._ ) + C 1{$ - <I> ) + C 1(}._ - }._ )
2 + c 1(}._ - }._ ) 

' 1 2 0 3 0 4 0 5 0 

<<t>- <I> ) + c 1(<1>- <I> )2 + c 1(}., - A. )3 + c 1(}._ - A. )2{<1> -<1> ) + ... 
0 6 0 7 0 8 0 0 

If polynomial is 2nd order, 
c = 4656 747.857 

2 c =-4001532.769 
5 

c I : 2228756,675 
1 c I : 6346215.322 
3 c I : 1469530,890 
4 

c I : 254996,621 
6 

rms error= 58.256 m 

If polynomial is 3rd order, 
c = 4657602.103 

2 c =-40016 70.100 
c 5 

= -308852.687 
7 c = -160790.692 
9 c I : 2228757,414 
1 c I : 6345337,588 
3 c I = 1468097,120 
4 

C I = 255825,654 
6 

C I =-1261532.493 
8 c I = 1133030,948 
10 

rms error= 0.832 m 

If the polynomial is 4th order, 
c = 4657602.097 

2 
c =-4000712.736 

5 
c = -308551.350 

7 c = -161313.447 
9 

c = 265137.469 
12 

c = -714444.096 
14 

C I = 2228757,634 
l. 

C I = 6345337.185 
3 

C I = 1468300.751 
4 c I = 254842,304 
6 c I =-1261575,789 
8 

C I = 1133244,655 
l.O 

C I -48683,4726 
11 c I = -50691.2433 
13 

C I = 358537,886 
15 

rms error= 0.012 m 

In some cases, the weighting can be adjusted to include only points 

on the map which are within the desired country or on land rather than 

water, etc. Points near a boundary or a shoreline can be weighted in 
1/, 

proportion to the area of interest. In each case cos <f>; in the above 

weighting is replaced by the square root of the area, and cos <f>; by the 

area. 

A common basis for weighting in the use of least squares is to ac­

count for variation in accuracy of measurement of points using given 

equipment or operators .. Since the above polynomials are computed from 

rigorously determined values, this criterion is not involved here. 
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3. IDENTIFYING AN UNMARKED MAP PROJECTION 

a. GENERAL MATHEMATICAL FORMAT 

Before reading through the following derivations, the paragraphs 

under this heading on p. 6-13 should be read first. 

Before showing the mathematical analysis for specific types of pro­

jections, the more general tests are derived below. These consist of tests 

for the straightness of meridians and parallels, for the fit of a second­

order polynomial, and for convergence of meridians and concentricity of 

parallels. 

The matrix of nine points for which coordinates are to be measured 

is numbered as shown in figure 3. Longitude may be stated relative to 

Greenwich (or any other prime meridian), and (x,y) may be measured rel­

ative to any perpendicular coordinate axes. To determine whether the 

meridians are straight, first the angle a of slope of a straight line 
1-2 

Increasing East 

A.4 A.7 

I 
4 

'€ 
i 
g> 
~ rP2 

@ 
0 

5 8 .s 

rP3--~------------------~----------------~-3 6 9 

Figure 3.--Matrix of points for which coordinates are measured for map 
projection identification. Example: Point 5 has geodetic 
latitude 4> , longitude "- , and rectangular coordinates (x ,y ). 

5 5 5 5 
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between points 1 and 2 is compared with the angle cr of slope of the 
2-3 

line from 2 to 3. If x and y are rectangular coordinates of these points 

relative to any fixed axes, 

cr = arctan [(y - y )/(x - x )] 
1-2 2 l 2 1 2 

cr = arctan [(y - y )/(x - x )] 
2-3 2 2 3 2 3 

If the absolute value of (cr - cr ) is greater than a preset con-
1-2 2-3 

vergence factor, the meridians are considered curved. If it is less, the 

bending of line 4-5-6 is similarly tested, and then line 7-8-9. All three 

must be straight for the meridians to be considered straight, since one 

meridian may be a straight central meridian. Similar calculations are 

made for the parallels. Obviously, with this arrangement, the computer 

can be fooled with doubly curved lines which fall on the same nine points 

as straight meridians, but this would be highly coincidental and could be 

resolved by measuring nine other points. 

If not all meridians and parallels are straight, a second-order bivar­

iate polynomial is determined for the nine points. Such a polynomial re­

quires six coefficients for each variable. Since a third-order polynomial 

requires ten coefficients, and there are only nine points given, this deter­

mination is limited to second order. While two or three of the third­

order terms could be used, the significance of the least-squares residuals 

would be reduced in determining the general accuracy of the polynomial 

fit. The second-order equations for transforming rectangular to geodetic 

coordinates for nine points are as follows, adapting general polynomial 

·equations (2-1) and (2-2) and subtracting the average coordinates of the 

given rna trix: 

where 

~, = c + c !J.x) + c b.yj + c (b.x))
2 

+ c (/J.x))(b.y.) 
1 2 3 4 5 J 

2 
+ C

6
Cb.yj) 

<1>. = c • + c '~J.x. + c •t::..y. + c '<~J.x >2 
+ c ·cax > <t::..y > 

) 1 2 J 3 J 4 j 5 j j 

!J.x=x-x 
0 

b.y = y- y 
0 

(3-1) 

(3-2) 

(3-3) 

(3-4) 

(3-5) 

(3-6) 
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9 

x
0 

= 0:: xj)/9 

)=~ 

9 

y 0 = o:: yj)/9 

)=1 

To determine the coefficients, standard least-squares formulas are 

used, adapting equations (2-14) through (2-17), which were used to com­

pute coefficients for polynomials of any order: 

c A. 
~ ~ 

• = [D] c 
2 2 

c 
6 9 

c I <P 
1 1 

c~ 

2 
= [D] • <P2 

c I 

<P9 6 

where 

[D]=[A T Ar 1 AT 

[A]= 1 ~ /J.y (~ )2 (~ )(/J.y ) (/J. )2 
2 2 2 2 2 y2 

Once the coefficients are determined, longitudes and latitudes cal­

culated using the coefficients with the given nine pairs of (xj,yj) coor­

dinates are compared with the given <A..,<P.>, and the RMSE r is calculated 
' J as an angle converted to distance at map scale, using CA. d <P .) for the 

CJ C) 

coefficient-calculated geographic coordinates: 

27 

(3-7) 

(3-8) 

(3-9) 

(3-10) 

(3-11) 

(3-12) 
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2 2% 
[(x - x ) + (y - Y ) 1 /(<f> - <t> ) 

4 5 4 5 4 5 

If r exceeds 1.5 mm (an arbitrary limit based on testing experience) for 

actual maps used in program tests, the computer begins to test projec­

tions which are not regular cylindricals. If less, the polynomial is used to 

calculate <"-,<t>> for other points of known (x,y). 

If all meridians and parallels are straight, the polynomial test is 

omitted, and it is then determined whether meridians are parallel to each 

other by comparing slope angles a and a of meridians "- and "- , 
1-2 4-5 1 4 

respectively (see equations (3-1) and (3-2)). The equidistance of straight 

meridians along straight parallels, even if not measured at equal intervals 

on the map, can be determined by dividing the distance between merid­

ians along a given parallel by the difference in longitude. If spacing be-

tween points 1 and 4 iss and between points 4 and 7 iss , 
1-4 4-7 

2 2% 
s = [(x - x ) + (y - y ) 1 1<"- - "- ) 
1-4 1 4 1 4 4 1 

2 2 1/a s = [Cx - x ) + (y - y ) 1 /C"- - "- ) 
4-7 4 7 4 7 7 4 

To compare s and s on a unit basis, unaffected by map scale, the 
1-4 4-7 

absolute value of 

6. = 0-s /s ) 
1-4 4-7 

is compared to the convergence tolerance. 

Perpendicularity of meridians to parallels, if straight and parallel to 

each other, is determined by comparing the angle between lines 1-2 and 

1-4 to 90°. If all these conditions fall within tolerances, the projection is 

a regular cylindrical {i.e., not oblique or transverse), and specific cylin­

dricals are tried one by one. The procedure for this is described later. 

If parallels are curved but meridians are straight, the meridians are 

first tested for being parallel in the above manner, and then tested fur­

ther for the equatorial Gnomonic if they are parallel. If they are not 

parallel, the point of convergence of meridians "- and "- is determined, 
1 4 

calling the rectangular coordinates of this point Cx ,y ): 
0 0 

(3-13) 

(3-14) 

(3-15) 

(3-16) 
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(X - X )(y X - X y ) - (X - X )(y X - X y ) 
4 613 13 l. 3 46 46 

(x - x )(y - y ) - Cx - x )(y - y ) 
4 6 l. 3 1 3 4 6 

(y - y )(y X - X y ) - (y - y )(y X - X y ) 
4 61.3 13 l. 3 46 46 

y =-------------------
0 

Cx - x )(y - y ) - (x - x )(y - y ) 
4 6 1 3 l. 3 4 6 

Using this x and the coordinates of points 7 and 9, they of meridian~ 
0 7 

at x may be compared withy : 
0 0 

y = [X (y - y ) - y X +X y ]/(X - X ) 
07 9 79 79 7 9 

If y and y are the same (within tolerance), it is concluded that the 
0 

meridians converge to a common point, and the parallels may then be 

tested for concentricity. The radius p of a circular arc for <t> must be 
1 

constant as measured between (x ,y ) and each of the points 1, 4, and 7, 
0 0 

or 

for j=1, 4, and 7. Similarly, a different constant p should be found for 

)=2, 5, and 8, and another for )=3, 6, and 9. If this test fails, the oblique 

Gnomonic is still a possibility. If parallels are concentric, the equidis­

tance of meridians is checked by determining the cone constant n based 

on two pairs of meridians. For meridians~ and~ , the angle 9 
1 7 1-7 

between them, using the principle of equations (3-1} and (3-2), is 

a =C1 -cr 
l.-7 l.-3 7-9 

and the cone constant n is 

n =a /(~ - ~ ) 
l.-7 7 1 

The angle and cone constant are similarly calculated between meridians 

~ and~ . If the two calculated cone constants are nearly enough equal, 
1 4 

they are averaged, the projection is assumed to be a regular conic (or 

polar azimuthal, if n=±1 ), and specific conics are tested one by one. This 

procedure is described later. 
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(3-17) 

(3-18) 

(3-19) 

(3-20) 

(3-21) 

(3-22) 
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If meridians are curved but parallels are straight, the parallels are 

checked for parallelism, and the meridians are checked for equidistant 

spacing along a given parallel. If they are not equidistant, the equatorial 

Orthographic is tested; if equidistant, specific pseudocylindrical projec­

tions are tested one by one. 

Last but certainly not least is the condition in which both meridians 

and parallels are curved. This includes many of the most widely used 

projections such as the Transverse Mercator, the Polyconic and the azi­

muthals (other than the Gnomonic and the polar aspects). In theory, it 

would appear that these projections can be tested as groups without 

having to test every projection in each group in sequence until a satis­

factory one is found. In practice, this approach involves too many un­

certainties in selecting initial estimates for iteration to produce the 

correct answers. Therefore, the testing of projections in this category 

takes place one by one. If these projections fail to fit the map, the 

Tilted Perspective is tested last. 

b. TESTING CYLINDRICAL PROJECTIONS 

Once the category of cylindrical, conic, pseudocylindrical, or 11other11 

is established as described above, the individual projection tests follow 

patterns similar to the examples given below. The determination of the 

projection could have been based upon either forward or inverse form­

u1as, since all coordinates are supplied, but the forward formu1as are 

used, although rearranged, because they are normally simpler than the 

inverse. 

In any regu1ar cylindrical projection, 

x' = ak (~- ~ ) 
0 0 

y' = af($) 

where k is a scale factor equal to or less than 1, ~ is the central 
0 0 

meridian, f(cf>) is some function of 4>, a is the equatorial radius of the 

Earth at map scale, and (x' ,y') are rectangular coordinates relative to 

standard axes, the X' axis lying along the Equator and the Y' axis along 

meridian~ . These coordinates (x' ,y') are related to coordinates (x,y) 
0 

measured on the given map as follows: 

X= X
1 

COS a- y' sin a+ X 
0 

y = y' cos a + x' sin a + y 
0 

(3-23) 

(3-24) 

(3-25) 

(3-26) 
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where 9 is the counterclockwise inclination of the x• axis to the X axis, 

and (x ,y ) are the coordinates of the origin of the cx•,y•) axes in the 
0 0 

(x,y) coordinate frame. The constants 9, x , andy are unknown, and 
0 0 

are related to the choice of ~ , which is indeterminate for a given cylin­
o 

drical map. Furthermore, k is indeterminate for a given conformal map, 
0 

unless the scale at a given point or along a given line is known or assum-

ed. Since the program described is based upon complete ignorance of the 

projection and parameters, including scale, ~ for regular cylindrical 
0 

or conic projections is assumed to be zero, and the scale factor of con-

formal projections is assumed to be 1.0 at the central line or point - the 

equator of the regular Mercator, the central meridian of the Transverse 

Mercator, a single standard parallel of the Lambert Conformal Conic, or 

the center of projection of the Stereographic. 

In order to find the values of the unknown parameters, equations 

(3-23) and (3-24) are substituted into (3-25) and (3-26): 

X = ak (~ - ~ ) COS 9 - afC<1>) sin 9 + X 
0 0 0 

y = af(<1>) cos e + ak (~ - ~ ) sin e + y 
0 0 0 

Measurements x , y , x , y , ~ , and ~ (see figure 3) along parallel <1> 
l l 4 41 4 l 

are substituted in (3-27) and (3-28) for x, y, and~ to obtain four equa-

tions. Then x andy as well as fC<1> ) and f(<1> ), since <1> = <1> , cancel 
0 0 4 l 1 4 

when subtracting each new pair of equations, and ak and 9 may be 
0 

found by squaring the two remaining equations and adding to obtain 

2 2 1/, 
ak = [ (y - y ) + (x - x ) 1 /(~ - ~ ) 

0 4 1 4 1 4 1 

and by dividing the two equations to obtain 

tan 9 = (y - y )/(X - X ) 
4 1 4 1 

These parameters are averaged by recalculating for other pairs of given 

coordinates. 

While these values of ak and e are used for all regular cylindrical 
0 

projections tested, x and y are computed for the specific projection. 
0 0 

This is done by transposing equations (3-27) and (3-28), solving for x and 
0 

y using one of the measured points, such as (x ,y ,<1> , ~ ), and letting 
0 l l 1 1 

~ equal zero as stated above: 
0 

31 

(3-27) 

(3-28) 

(3-29) 

(3-30) 
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x = x - ak A. cos 9 + af(<l> ) sin 9 
0 l. 0 l. l. 

y = y - af(<t> ) cos 9 - ak A. sin 9 
0 l. l. 0 l. 

More rigorously, x could be found as the constant (x - ak A. cos 9) and 
0 0 0 0 

y as (y - ak A. sin 9). 
0 0 0 0 

Specifically, for the spherical Mercator projection, 

H<t>> = k 1n tan (n/4 + <1>/2) 
0 

For the ellipsoidal Mercator, 

f(<l>) = k ln [tan (n/4 + <1>/2)({1 - e sin <J>)/{1 + e sin <t>»e/
21 

0 

where e is the eccentricity of the Earth ellipsoid. In equations (3-33) 

and (3-34), k is taken as 1.0. For the Miller Cylindrical, k =1, and 
0 0 

f<<l>) = 1.25 1n tan (n/4 + 2<1>/5) 

For the Bquirectangular, k = cos <1> , where <1> is the unknown standard 
0 0 0 

parallel (N. and S.) and 

f<<t>> = <I> 

To determine k for the Bquirectangular, 
0 

2 2 1/2 
k = s <<1> - <1> )/[(x - x ) + (y - y ) ] 

0 l.-4 l. 2 l. 2 l. 2 

where s is found from equation (3-14). 
l.-4 

1
/2 

For Gall's, k = 2 /2, and 
0 

f(<l>) = (1 + 1/2
112

) tan (<1>/2) 

With all the parameters now calculated for a given projection, the 

forward formulas (3-27) and (3-28) are used to determine the fit of the 

projection to the nine given points (see section 31. Tolerances, on p. 56). 

If the residuals are unsatisfactory, the next projection is tested. If 

satisfactory, (x' ,y') may be found for other points (x,y) by inverting 

equations (3-25) and (3-26): 

(3-31) 

(3-32) 

(3-33) 

(3-34) 

(3-35) 

(3-36) 

(3-37> 

(3-38) 
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X 1 = (X - X ) COS a + (y - y ) sin a 
0 0 

y' = (y - y ) COS a - (X - X ) sin a 
0 0 

From x' andy', 4> and~ may be determined from inverses of equations 

(3-23), (3-24), and (3-33) through (3-38) for the particular projection. 

For example, for the spherical Mercator, 

-y'/a 4> = n/2 - 2 arctan (e ) 

~ = x'/a 

Since k is taken as 1.0 and~ is taken as zero; note that e is 2.718 ... , 
0 0 

the base of natural logarithms. The other formulas are not given here, 

but they may be rather readily derived from equations (3-34) through 

(3-37). 

c. TESTING CONIC PROJECTIONS 

If the unidentified map does not pass the general test for a regular 

cylindrical projection and does not fit a second-order polynomial, but 

does appear to conform to regular conic requirements, tests are made 

to determine the specific conic projection. For any regular conic pro­

jection, 

where 

x' = p sin a• 

y' = p - p cos a· 
0 

p = a f(¢) 

a• = n(~- ~ ) 
0 

p and a• are .POlar coordinates, p is the radius of the parallel of the 
0 

origin, a is again the equatorial radius of the Earth at map scale, and n 

is the cone constant. As with the cylindricals, ~ is indeterminate on a 
0 

given map. This may arbitrarily be made zero. 

The coordinates of the center of the parallels have already been 

determined as (x ,y ) from equations (3-17) and (3-18); thus p is zero, 
0 0 0 

and equation (3-43) may be used with the given measurements to deter-

mine the suitability of a specific conic projection. The radius is calcu­

lated as follows: 
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(3-39) 

(3-40) 

(3-41) 

(3-42) 

(3-43) 

(3-44) 

(3-45) 
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where )=1, 2, and 3, successively, and the± takes the sign of n, positive 

for a map centered in the Northern Hemisphere and negative if Southern, 

as calculated from equation (3-22). To find the map scale, from (3-43), 

For the spherical Lambert Conformal Conic, using a single standard 

parallel 4> = arcsin n, because the identity of two standard parallels is 
s 

indeterminate, 

n f(<J>) = k•tan (TT/4 - 4>/2) 

where the constant 

n 
k 1 = 1/tan 4> tan (TT/4 - 4> /2) s s 

does not need to be calculated until ak• for each parallel along a given 

meridian~ 
1 

has been determined from P{[f(<J>j)/k•] (see equation (3-46)). 

For the ellipsoidal Lambert Conformal Conic, 4> is also taken as 
s 

arcsin n, and 

e/2 n f(<J>) = k•[tan (TT/4 - 4>/2)/(Cl - e sin <f>)/(1 + e sin <f>)) 1 

where 

{ 
2 • 2 1/, 

k 1 = 1/ tan 4> (1 - e sm 4> ) [tan Cn/4 - 4> /2)/ s s s 

e/2 n 
((1 - e sin 4> )/(1 + e sin 4> )) 1 

s s 

If the three values of ak• are nearly enough equal, they are averaged, and 

k 1 and a are separated by using equations (3-48) or (3-50). The forward 

formulas (3-41 ), (3-42), and related equations are used with least squares 

(see sections 3i and 3 j) to determine how well the projection fits the nine 

given points. Since, for the conic projections, the critical tests have al­

ready been made,. this fit should be satisfactory. If not, the next projec­

tion is tested, If so, inverse computations may take place, but only after 

determining a, the remaining required parameter. 

In order to compute a, equations (3-25), (3-26), (3-41), (3-42), and 

(3-44) may be combined as follows, with ~ and p both taken as zero, as 
0 0 

stated above: 

(3-46) 

(3-47) 

(3-48) 

(3-49) 

(3-50) 
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x = p sin <n"- + 9) + x 
0 

y = -p cos <n"- + 9) + y 
0 

The value of 9 may be determined from point <x ,y ), combining equa­
l 1 

tions (3-51) and (3-52), 

9 = arctan [±(X - X )/±(y - y )) - n"-
2 1 0 0 1 1 

in which each ± sign takes the sign of n. The value of a determined from 

(3-46) provides the equatorial radius of the Earth model to supply true 

scale along <1>. With a, k', e, X from (3-17), y from (3-18), and n from 
s 0 0 

(3-22), <1> and "- may be determined for any other given (x,y) as follows 

from the following transformations of (3-43), (3-51), (3-52), and, for the 

ellipsoidal Lambert Conformal Conic, (3-49): 

where 

"- = {arctan [±(x - x )/±(y - y)] - 9}/n 
2 0 0 

<1> = 1T/2 - 2 arctan {t[(l - e sin <j>)/(1 + e sin <J>)]e/2 

t = (p/ak')l/n 

p is found from equation (3-45), deleting subscripts j, (3-55) is solved by 

iteration using successive substitution, and the ± signs in equations (3-45) 

and (3-54) take the sign of n. 

For testing the spherical case of the Albers Equal-Area Conic, if <1> 
s 

is one of the (unknown) standard parallels, the function for equation 

(3-43) is as follows: 

1/z f(<J>) = (C - nq) /n 

where C is a constant, and 

q = 2 sin <1> 

Since a in equation (3-43) is unknown, equation (3-57) is substituted into 

(3-46), for j = 1 and 2: 

1/z 1/z a = p n/(C - nq ) = p n/(C - nq ) 
1 1 2 2 

Eliminating a and solving for C, 
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(3-51) 

(3-52) 

(3-53) 

(3-54) 

(3-55) 

(3-56) 

(3-57) 

(3-58) 

(3-59) 
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2 2 2 2 C = n(q p - q p )/(p - p ) 
2 1 1 2 1 2 

If the value of C calculated from points 1 and 2 is close enough to C as 

calculated from points 2 and 3 (replacing subscripts accordingly), the 

projection is considered to be a spherical Albers, subject to the least­

squares-residual check mentioned for the Lambert, and a may then be 

found from (3-59), using one of the points. 

Although the values of standard parallels are not needed in order to 

find (<J>,~) for other values of (x,y) on the given map, they are of interest 

in identifying the parameters of the projection, and may be found for the 

Albers. The formula for scale factor k along a parallel of any conic pro­

jection is as follows: 

k = pn/am 

where 
2 2 1/J 

m = cos <J>/Cl - e sin <J>) 

for the ellipsoid, or 

m = cos <1> 

for the sphere. At the standard parallels, k = 1, or 

1 = p n/am 
s s 

where s refers to either standard parallel. 

For the spherical Albers, substituting from equations (3-43), (3-57), 

(3-58), and (3-63) into (3-64) and solving for <1> , 
s 

2 1/, 
sin <1> = n ± Cn - C + 1) s 

in which the 11 + 11 provides one standard parallel and the 11
-

11 the other. 

For inverse computations, equation (3-53) applies in calculating the 

remaining parameter 9, and (3-54) may be used to find~, but (3-55) is 

replaced with the following: 

with p found from equation (3-45) without subscripts j. 

(3-60) 

(3-61) 

(3-62) 

(3-63) 

(3-64) 

(3-65) 

(3-66) 
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Testing for the ellipsoidal Albers and for the ellipsoidal or spherical 

Equidistant Conic projections follows patterns similar to those given 

above. The standard parallels for all these projections may be deter­

mined, unlike the Lambert. Some iteration is involved. The polar azi­

muthals are handled in the same manner. The polar Stereographic, Lam­

bert Azimuthal Equal-Area, and Azimuthal Equidistant aspects are 

limiting forms of these conic projections. The polar Orthographic, 

Gnomonic, and Vertical Perspective are not thus related to useful conic 

projections, but they are analogous. Formulas for all these projections 

are given in the Appendix. 

d. TESTING PSEUDOCYLINDRICAL PROJECTIONS 

The other remaining important category of projections in which 

either the meridians or the parallels remain straight is the pseudo­

cylindrical, such as the Sinusoidal or Mollweide. 

For regular pseudocylindrical projections, the fundamental equations 

analogous to (3-23) and (3-24) (for the cylindricals) are as follows: 

x• = a(~ - ~ )f <<t>> 
0 2 

y• = af <<t>> 
1. 

where f and f are different functions of <f>. 
1 2 

As with the general cylindrical projection equations (3-23) and 

(3-24), incorporation of rotation-translation equations (3-25) and (3-26) 

leads to equations like (3-27) through (3-30), except that k is replaced 

with f (<f>), and fC<t>) becomes f (<f>). In order to solve for a, formulas from 
2 1 

analytic geometry are adapted to provide the distance between parallels 

<t> and <t> • The distance on the measured map is 
1 2 

Cx - x )(y - y ) - (y - y )(x - x ) 
1. 2 2 5 1 2 2 5 

d 
1-2 

2 2 
1/z [(x - x ) + (y - y ) 1 

2 5 2 5 

In equation (3-68), this distance is the difference between y• for <t> and 
1 

for <t> • Equating and solving for a, 
2 

a = d /[f <<t> ) - f <<t> )] 
1-2 1 1 1 2 

37 

(3-6 7) 

(3-68) 

(3-69) 

(3-70) 
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By obtaining a based on the distance between parallels <1> and <1> in like 
2 3 

manner (adding 1 to each subscript in (3-69)), an average value of a may 

be used for further computation. 

For the Sinusoidal projection, 

f (<J>) = <I> 
1 

f (<J>) = cos <I> 
2 

For the Mollweide projection, as an example involving iteration, 

1
/2 

f (<J>) = 2 sin c..> 
1 

1
/2 

f (<J>) = (8 COS c..> )/TT 
2 

where 2c..> + sin 2c..> = TT sin <1> 

Equation (3-75) may be solved for c..> using a Newton-Raphson iteration. 

It is then necessary to determine ~ , x , and y . For a pseudo-
o 0 0 

cylindrical projection, ~ is not indeterminate, as it was for cylindrical 
0 

projections. Solving equation (3-25) for x , and substituting from (3-6 7) 
0 

and (3-68), 

X = X - af (<J>)(~ - ~ ) COS 9 + af (<J>) sin 9 
0 2 0 1 

Using x , <1> , ~ , and a and a as calculated from (3-30) and (3-70), re-
1 1 1 

spectively, for one equation, and x , <1> , and ~ for a second equation, 
2 2 1 

x may be eliminated by subtraction and the difference solved for ~ : 
0 0 

~ = 
0 

sin 9 [f (<J> )] + (X - X )/a 
1 1 2 1 

cos a [f <<1> > - f <<1> >1 
2 1 2 2 

+~ 
1 

Then x is found from (3-76) andy from a similar transposition of 
0 0 

equation (3-26). By calculating the values of ~ using <1> and <1> at~ , 
0 2 3 1 

and repeating the calculations for the three parallels using ~ and ~ , all 
4 7 

with the proper subscripts and the corresponding x, the six values of ~ 
0 

may be averaged. These parameters may then be applied to computations 

(3-71) 

(3-72) 

(3-73) 

(3-7 4) 

(3-75) 

(3-76) 

(3-77) 
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of (x,y) for (<f>, ~) of the nine given points. These coordinates are com­

pared with the given (x,y) by a least-squares fit as described later, to 

determine whether the projection applies. If satisfactory, the same 

parameters are applied to inverse forms of equations (3-6 7), (3-68), 

(3-71), and (3-72), together with (3-39) and (3-40), to find values of (<f>, ~) 

for other (x,y) values. 

e. TESTING FOR THE TRANSVERSE MERCATOR AND POL YCONIC 
PROJECTIONS 

Projections in which meridians and parallels are generally curved, 

such as the Transverse Mercator, the Polyconic, and azimuthal pro­

jections, were incorporated into this testing package only after several 

false starts. Most disappointing was being unable to test all transverse 

cylindrical projections with one package, all azimuthal projections with 

another package, etc. Ostensibly, this may be done by eliminating the 

functions which vary from one projection to another within each such 

package. For example, all spherical azimuthal projections fit the 

formulas, 

x' = ak'cos <P sin(~ - ~ ) 
0 

y' = ak'[cos <P sin <P - sin <P cos <P cos (~ - ~ )] 
0 0 0 

where k' is a function of <f>, ~, <P , and ~ , different for each azimuthal. 
0 0 

By eliminating ak' and incorporating equations (3-25) and (3-26), it would 

appear that the five parameters <f> , ~ , X , y , and 9 may be found from 
0 0 0 0 

five simultaneous equations using five measured points and Newton-

Raphson iterations. In testing this approach, it was found that the proper 

initial values of these parameters are critical, and certain projections in 

the group had to be omitted due to lack of convergence regardless of ini­

tial estimates. The initial values chosen often led to parameters which 

were incorrect (when checked using the other four points, or based upon 

known examples), and attempts to overcome this problem were unsuc­

cessful until projections were treated individually and parameters x , y , 
0 0 

and e were eliminated from the simultaneous iteration. 

The approach finally used relies on the fact that the difference in 

slope between two lines joining measured points is independent of a, x , 
0 

y , and 9. This was found successful along meridians, but generally not 
0 

along parallels, and not for the Gnomonic with its straight meridians. In 

the latter case, an approach found satisfactory uses the principle that 
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the ratio of lengths of the meridian line segments is also independent of 

a, x , y , and 9, but this is not sufficiently sensitive to use generally for 
0 0 

other azimuthal projections. 

The Transverse Mercator and Polyconic projections (spherical or 

ellipsoidal) are somewhat simpler to resolve than the azimuthal, after 

eliminating a, X , y , and 9, because only ~ must be found by iteration 
0 0 0 

for the former two projections, but both <1> and ~ must be found for the 
0 0 

latter. For the general perspective azimuthal, P, the location of the 

point of perspective in radii from the Earth 1s center, should be found as 

well, but a different approach was found necessary. For the Transverse 

Mercator and Polyconic, where g and hare specific functions given later, 

X 1 = ah(<f>, ~, ~ ) 
0 

Yl = ag(<f>, ~, ~ ) 
0 

The angle F between straight lines joining points 1 and 2 and points 2 and 

3 (figure 3) may be determined from the data given and is 

F = arctan [(y - y )/(x - x )] 
2 1 2 1 2 

- arctan [(y - y )/(x - x )] 
2 2 3 2 3 

As indicated above, this angle is also 

F = arctan [(y 1 
- y 1)/(x 1 

- x 1
)] 

2 1 2 1 2 

- arctan [(y 1 
- y 1)/(x 1 

- x 1
)] 

2 2 3 2 3 

Adapting equation (3-83) to prepare for a Newton-Raphson iteration, and 

dividing through by a, 

f(~ ) = F - arctan (G /H ) + arctan (G /H ) 
0 2 1-2 1-2 2 2-3 2-3 

where H = h - h , G = g - g , H = h - h , and G = g 
1-2 1 2 1-2 1 2 2-3 2 3 2-3 2 

- g
3

, with hj and gj the respective functions of <f>, ~, and ~ 
0 

in equations 

(3-80) and (3-81) at point j. Function f(~ ) should converge to near zero 
0 

with iteration. 

Differentiating with respect to ~ , and letting primes on g and h 
0 

denote differentials, 

(3-80) 

(3-81) 

(3-82) 

(3-83) 

(3-84) 
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f 1
()... ) = -{H (g I - g 1

) - G (h I - h ')]/ 
0 1-2 1 2 1-2 1 2 

2 2 
(G + H ) + [H (g I - g 1

) 

1-2 1-2 2-3 2 3 

- G (h I - h 1)]/(G 2 + H 2 
) 

2-3 2 3 2-3 2-3 

The differentials are given in detail in the Appendix (section 6) by equa­

tions (6-29) through (6-39), (6-45) through (6-53), and (6-58) through 

(6-61). 

Applying the Newton-Raphson iteration formula, 

/::i)... = -fCA. )/f 1
()... ) 

0 0 0 

with an initial estimate of )... along or near the middle meridian of the 
0 

measurements, iteration is carried out toward a desired convergence, 

changing the previous)... by~)... at the end of each iteration. For the 
0 0 

Transverse Mercator for the sphere, for example, 

h(cp, )..., )... ) = (1/z)k In {{1 + cos <1> sin (}... - )... )]/ 
0 0 

[1 - cos <1> sin (}... - )... >]} 
0 

g(cp, A.,)... ) = k arctan [tan cp/cos (}... - )... )] 
0 2 0 

(The indeterminate k for a conformal projection is again assumed to be 

1.0.) When the iteration is completed, a similar iteration is performed 

using )... instead of )... , and then )... . The three values of )... are 
4 1 7 0 

averaged. 

The fact that the lengths of segments between any two points on the 

map are proportional to the scale but independent of 9, x , and y may 
0 0 

now be used to calculate scale. Since 

[(x - x )2 + (y y )2]1/z [(x I X 1)2 (y I y ')2]1/z 
1 2 1-2 = 1-2 + 1-2 

substituting from (3-80) and (3-81) and solving for a, 

2 2 1/z 2 2 
1/z 

a = [(x - x ) + (y - y ) ] /[(h - h ) + (g - g ) ] 
1 2 1 2 1 2 1 2 

using measured values of x andy in the numerator and values of hand g 

calculated from equations (3-87) and (3-88) in the denominator, or the 

equivalent for other projections, based upon the given values of <1> and A.. 
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(3-85) 

(3-86) 

(3-8 7) 

(3-88) 

(3-89) 

(3-90) 



42 COMPUTER-ASSISTED MAP PROJECTION RESEARCH 

For the remaining parameters, rotation-translation equations (3-25} and 

(3-26} may be converted to the following by substitution of measurements 

and functions for points 1 and 2 and subtracting pairs of equations: 

x - x = (x 1 
- x 1

} cos 9 - (y 1 
- y 1

} sin 9 
1 2 1 2 1 2 

y - y = (y 1 
- y 1

} cos 9 + (x 1 
- x 1

) sin 9 
1 2 1 2 1 2 

Solving for cos 9 and then sin 9 by determinants or the equivalent, and 

then dividing the resulting equations, it will be found that a can be 

factored out, X 1 replaced with h, and Y1 with g: 

-(x - x }(g - g } + (y - y }(h - h } 
1 21 2 1 2 l 2 

tan 9 = ----------------
(x - x }(h - h } + (y - y }(g - g } 

1 2 l 2 l 2 l 2 

By transposing and substituting in (3-25) and (3-26}, 

x = x - a(h cos 9 - g sin 9) 
0 l l l 

y = y - a(g cos 9 + h sin 9} 
0 l l 1 

Since the parameters A. , a, 9, x , andy are now known, the forward 
0 0 0 

formulas (3-25), (3-26}, (3-80}, (3-81} and the appropriate functions such 

as (3-87} and (3-88} may be used to calculate (x,y} for the nine given pairs 

of (<f>, A.}. These coordinates are compared with the given values of (x,y} 

by least squares (see section 3i, p. 52}. If satisfactory, (<f>, )..} for other 

points (x,y} may be determined from equations (3-39} and (3-40) (the 

inverses of (3-25} and (3-26}} and the inverses of equations (3-80} and 

(3-81} for the given projection (see equations (6-40) through (6-44}, (6-54) 

through (6-57}, and (6-62) through (6-67} in the Appendix, Section 6}. 

f. TESTING FOR AZIMUTHAL PROJECTIONS 

Although azimuthal projections generally have curved meridians and 

parallels as do the Transverse Mercator and Polyconic, an additional 

parameter must be known, namely the latitude of the center of projec­

tion. While the principles used in the foregoing derivations may be used, 

here they lead to iteration for both latitude and longitude instead of for 

longitude only. 

(3-91} 

(3-92} 

(3-93} 

(3-94} 

(3-95} 
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Equations (3-80) and (3-81) may be revised as follows for azimuthal 

projections: 

x' = ah(<t>, }...,<t> , }... ) 
0 0 

y' = ag(<t>, }...,<t> '}... ) 
0 0 

After comparing with equations (3-78) and (3-79), for the spherical form, 

h = k' cos <t> sin(}... - }... ) 
0 

g = k' [cos <t> sin <t>- ~:;in <t> cos <t> cos (}... - }... )] 
0 0 0 

From various standard references, 

k' = 2/0 + cos z) for the Stereographic projection, 

k' = 1 for the Orthographic, 

k' = z/sin z for the Azimuthal Equidistant, 

and 
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(3-96) 

(3-9 7) 

(3-98) 

(3-99) 

(3-1 00) 

(3-101) 

(3-1 02) 

lf'J. 
k' = [2/(1 + cos z)] for the Lambert Azimuthal Equal Area, (3-103) 

where z, the great circle distance, is found from the formula 

cos z = sin <t> sin <t> + cos <t> cos <t> cos (}... - }... ) 
0 0 0 

While the Stereographic may be tested in the following manner, it is 

tested in the program as part of the perspective package to eliminate 

iteration. To find <t> and }... , eq.uations (3-82) through (3-85) apply as 
0 0 

shown, except that f(}... ) in (3-84) is written f(<t> ,}... ), and (3-84) must 
0 0 0 

also be differentiated with respect to <t> to provide a new equation 
0 

(3-85a) identical with (3-85) ex1cept that the left-hand term is f' C<t> ) 
0 

and the right-hand prime terms refer to differentiation with respect to 

<t> • These differentials are detailed in equations (6-68) through (6-81). 
0 

Now the Newton-Raphson iteration shown in (3-86) is modified to 

require two simultaneous equations of the form 

~::!,.}.., f'(}.., ) + ~<t> f'(<t> ) = -fC<t> ,}... ) 
0 0 0 () 0 0 

(3-1 04) 

(3-105) 
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With assumed initial values of <t> and ~ near the center of the map, the 
0 0 

unknowns ~<t> and~~ may be found for the first iteration by evaluating 
0 0 

f and f• from equations (3-84), (3-85), and (3-85a) based on points 1, 2, 

and 3 of Figure 3 for one equation (3-105), and based on points 4, 5, and 

6 for a second equation (3-105), the two equations being linear in the un­

knowns and solvable by determinants. The ~<t> and~~ obtained are 
0 0 

added to the initial values, and the operations in this paragraph are re-

peated until the changes in both <t> and~ are minimal. These values are 
0 0 

averaged with those obtained by iteration from points 1, 2, 3, 7, 8, and 9 

instead of 1 through 6. 

To determine a, a, X , and y for the azimuthals, equations (3-90), 
0 0 

(3-93), (3-94), and (3-95) apply without change. Forward formulas are 

then used to check the validity of the projection with least squares, as in 

the case of the Transverse Mercator and Polyconic. If the projection 

applies, values of <<t>,~) for other points (x,y) may then be found from 

equations (3-39), (3-40) and the inverses of (3-96) through (3-104) (see 

equations (6-82) through (6-92)). 

To test the equatorial Gnomonic projection, with its parallel merid­

ians, the spacing of the meridians on the map is compared to the correct 

spacing. B~sic formulas for the equatorial Gnomonic are as follows: 

x• = a tan (~ - ~ ) 
0 

y• = a tan <t>/cos (~ - ~ ) 
0 

Adapting equation (3-69), the distance between straight meridians~ 
1 

and~ is 
4 

(X - X )(y - y ) - (y - y )(X - X ) 
1 4 4 5 1 4 4 5 

d 
1-4 

2 2 
1/z [(x - x ) + (y - y ) 1 

4 5 4 5 

From equation (3-106), this distance is the difference between x• for~ , 
1 

and~ . An equation similar to (3-108), called (3-108a), may be prepared 
4 

by replacing subscripts 1, 4, and 5 with 4, 7, and 8, respectively. Al-

though~ and a are unknown, a can be eliminated by dividing (3-108) and 

its equivalent in (3-106) by (3-108a) and its equivalent in (3-106). The 

resulting ratio, which will be called F , is 
1 

(3-106) 

(3-107) 

(3-108) 
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d tan n. - }... ) - tan (}... - }... ) 
1-4 1 0 4 0 

F = -- = (3-109) 
1 

d tan (}... - }... ) - tan (}... - }... ) 
4-7 4 0 7 0 

After expanding the terms with the identity for the tangent of the 

difference between two angles, equation (3-109) can be solved for tan}... : 
0 

tan }... - tan }... + F (tan }... - tan }... ) 
1 4 1 7 4 

tan}... = - ----------------------
o 

tan }... (tan }... - tan }... ) + F tan }... (tan }... - tan }... ) 
7 1 4 l. l. 7 4 

The arctan function does not seem to resolve the quadrant selection for 
2 

}... ; the latter must be within 90° of say}... by adding or subtracting 180° 
0 4 

if necessary. 

For a, transposing the relationship between (3-106) and (3-108), 

a = d /[tan (}... - }... ) - tan (}... - }... )] 
l.-4 l. 0 4 0 

For 9, taking the slope of one of the meridians, 

tan 9 = -(X - X )/(y - y ) 
4 5 4 5 

while x andy may be determined from equations (3-94) and (3-95), sub-
o 0 

stituting for hand g by relating equations (3-80), (3-81), (3-106), and 

(3-107). For the oblique Gnomonic projection, as stated before, the ratio 

of distances along meridians is used instead of curvature, since meridians 

are straight. Otherwise the principle used for other azimuthal projec­

tions above is followed. In equations (3-98) and (3-99), 

k' = 1/cos z 

where z is found from (3 - 104). The square of the ratio of distances, 

which will be called F , is 
2 

2 2 
(x - x ) + (y - y ) 

l. 2 1 2 

F 
2 

(x - x )2 + (y - Y )2 
2 3 2 3 

Also, in the (x' ,y') coordinate system, 

(3-110) 

(3-111) 

(3-112) 

(3-113) 

(3-114) 
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F = CG 
2 

+ H 
2 

)/(G 
2 

+ H 
2 

) 
2 l-2 l-2 2-3 2-3 

By analogy with equation (3-84), 

fC<t> , ~ ) = F - CG 
2 

+ H 2 
)/(G 

2 + H 2 
) 

0 0 2 l-2 l-2 2-3 2-3 

and its differential with respect to ~ is, using primes as in (3-85), 
0 

f'(~ ) = -2{(G 2 
+ H 2 )[G (g I - g 1

) + H (h I - h ')] 
0 2-3 2-3 l-2 l 2 l-2 l 2 

- (G 2 + H 2 )[G (g I - g ') + H (h I - h ')]}/ 
l-2 l-2 2-3 2 3 2-3 2 3 

CG 2 + H 2 )2 
2-3 2-3 

The differential with respect to 4> is written identically, but with 4> 
0 0 

instead of~ , and g• and h' related to 4> • Equations (3-105), (3-90), 
0 0 

(3-93), (3-94), and (3-95) are used with these revised functions to 

establish the values of the six parameters. 

g. TESTING FOR THE GENERAL PERSPECTIVE PROJECTION 

After experiencing failure when applying the above principles to 

iteration for the general Vertical Perspective projection with its addi­

tional unknown parameter denoting the location of the point of perspec­

tive, the non-iterative projective formulas for the general tilted per­

spective projection of the ellipsoid were applied successfully. These 

equations are as follows (Snyder, 1981 b): 

x = CXK + YK + ZK + K )/CXK + YK + ZK + 1) 
l 2 3 4 5 6 7 

y = CXK + YK + ZK + K )/(XK + YK + ZK + 1) 
8 9 10 11 5 6 7 

where K through K are constants and X, Y, and Z are the rectangular 
1 11 

coordinates of the point on the Earth's surface in the Earth reference 

system. For the ellipsoid (omitting height above the ellipsoid in map 

projection considerations), 

X = N cos 4> cos ~ 

Y = N cos <t> sin ~ 

Z = N(l - e
2
)sin 4> 

2 2 
1/2 

N = a/(1 - e sin <f>) 

(3-115) 

(3-116) 

(3-117) 

(3-118) 

(3-119) 

(3-120) 

(3-121) 

(3-122) 

(3-123) 
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For the sphere, N = a and Z = a sin ¢>. 

Given the measured (x,y) for 5 1/2 of the nine points (x for six points, 

y for five), the values of K through K may be found from the above 
1 11 

equations by solving eleven simultaneous linear equations with standard 

algorithms. For the six x equations, transposing equation (3-118), 

X.K + YjK + ZjK + K - (xjX.)K - Cx. Y .)K - (xjZ;)K 
)1 2 3 4 J 5 JJ 6 J 7 

+ 0 K + 0 K + 0 K + 0 K = x
1
• 

8 9 10 11 

For the five y equations, transposing equation (3-119), 

OK +OK + OK +OK - (yjXj)K - (yjY.)K - (yjZj)K + X.K 
1 2 3 4 5 ) 6 7 )8 

+ Y. K + Zj K + K = yj 
J 9 10 11 

In the program, first the sphere is assumed for the calculation of K 
1 

through K . After these constants are obtained, a test is made to 
11 

determine whether the perspective projection is vertical, by calculating 

seven parameters as follows based on constants K through K , K , and 
3 7 10 

K . The relationship of K to the parameters may be determined by 
11 n 

combining equations (3-25), (3-26), (3-96) through (3-99), and (3-126), 

expanding and combining in somewhat the manner described in Snyder 

(1981 b), but retaining the derivation of the constants. The function k' 

for the Vertical Perspective is as follows: 

k' = CP - 1>/CP - cos z) 

where z is found from equation (3-104), and Pis described just before 

equation (3-80). After several steps of algebra, it is found that, for the 

Vertical Perspective, 

).. = arctan [C-K )/(-K )] 
0 2 6 5 

2 2 
1/2 4> = ±arctan [-K /(K + K ) ] 

0 7 5 6 

9 = -arctan [CK - K K )/(K - K K )] 
2 3 4 7 10 11 7 

X = K 
0 4 
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(3-125) 

(3-126) 

(3-127> 
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(3-129) 
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Y - K 
0 11 

If the ')... determined above, and <t> using the 11 +11 sign, are more than 90° 
0 0 ' 

from <<t> ,')... ) using equation (3-104), 180° must be added to (or subtracted 
2 4 

from) ')... , while <t> and P must be given a 11
-

11 sign instead of 11 + 11
• This 

0 0 

indicates that the point of perspective is opposite the center of the Earth 

with respect to the center of the map projection, as in the case of the 

Stereographic (P = -1). Gnomonic and Orthographic projections, although 

they are both Vertical Perspectives, cannot be tested with this approach 

without modifications to the formulas. 

Using the seven parameters found above in the forward formulas for 

the Vertical Perspective, (3-126), (3-104), (3-96) through (3-99), {3-25), 

and {3-26), (x,y) for the given nine points are calculated from (<J>, ')...). If 

these agree with the given (x,y) for the points, the projection is reported 

as Vertical Perspective of the sphere. If they do not agree, the constants 

K through K already calculated are used in equations {3-118) through 
1 11 

(3-123) (for the sphere) to attempt to duplicate the coordinates given. If 

there is agreement, the projection is reported as a Tilted Perspective of 

the sphere. If there is no agreement, K through K are calculated for 
1 11 

the ellipsoid, using equations {3-120) through (3-125), and then used to 

calculate coordinates for all nine given points. If accurate, the ellip­

soidal Tilted Perspective is reported as the projection; if not, the pro­

gram reports that no solution is programmed. The program does not 

include the Vertical Perspective of the ellipsoid as such, but the Tilted 

Perspective does include this, although the parameters (center, scale, 

etc.) are not computed. 

h. TOLERANCES IN MEASUREMENTS ON THE MAP SUPPLIED 

It proved to be difficult in many cases to set meaningful tolerances 

within which the program can determine the correct {or a reasonable) 

map projection for an actual map. It was necessary to permit the cartog­

raphy to be slightly but not unreasonably inaccurate, to permit the paper 

base to expand and contract, and to permit the matrix of points to be 

measured with normal care, but not perfectly. 

After a number of tests, it was found that for a given error in place­

ment and measurement of points on the graticule, differentiation could 

only be satisfactorily used to establish tolerances in matching of values in 

the case of cylindrical and conic projections. For a projection in which 

{3-132) 

(3-133) 
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both meridians and parallels are curved, this approach could not be satis­

factorily applied. In these situations, the final solution, even in several 

cases where differentiation was satisfactory, was to calculate the rec­

tangular coordinates for the nine given points according to the projection 

and parameters being considered, and then to determine whether a least­

squares fit of the given rectangular coordinates into the calculated coor­

dinates gives a small enough RMSE. If so, the constants determined for 

the least-squares fit are used for other points being transformed. If not, 

the next projection is tested. Differentiation of equations to establish 

tolerances is used only to determine whether the projection is cylindri­

cal, conic, or in another category, and then to distinguish between the 

conics. 

In practice, for determining the projection category, a measurement 

accuracy of 0.01 inch is used for actual maps and 10- 4 inch is used for 

hypothetical maps for which coordinates are mathematically calculated 

for entry into the computer program to 10-6 inch. With this general 

tolerance, which is called dm here, individual tolerances are determined 

by elementary differentiation of functions used in analysis of the maps 

for projections. Specifically, the first check made is that for straight 

meridians (see equations (3-1) and (3-2)). Instead of differentiating them, 

one may simplify the mathematics if one intuitively thinks of the maxi-

mum error in angle a as the result of misplacing each end of the 
1-2 

chord from point 1 to point 2 by 0.01 11 (dm) in a direction perpendicular 

to the chord. Then, the possible error in a is twice dm divided by the 
1-2 

length of the chord, or 

2 2 
1/z do = 2dm/[(x - x ) + (y - y ) 1 

1-2 1 2 1 2 

Similarly 

2 2 
1/z do = 2dm/[(x - x ) + (y - y ) 1 

2-3 2 3 2 3 

The maximum error in the angle between the two chords, or the maxi­

mum allowable deviation of the two chords from a straight line, is the 

sum of the absolute values of the two. If this allowance is greater than 

the calculated value of (a - a ), using equations (3-1} and (3-2), 
1-2 2-3 

the meridian may be considered straight. If not it is assumed curved. 

The same determination is made for each of the other meridians. 

All three must pass the test if meridians are to be considered straight. 

An analogous test is made for each parallel of latitude. 
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To test equidistance of meridians along a given straight parallel, a 

similar intuitive relationship is used: The greatest error in measuring 

the length of a segment of a parallel between two meridians is a length­

wise error of dm at each end, or 2dm total. In equations (3-14) through 

(3-16), if s and s are both subject to this error, the tolerance for 
1-4 4-7 

l:l, taking absolute values, is as follows: 

ds = 2dm/(~ - ~ ) 
1-4 4 1 

ds = 2dm/(~ - ~ ) 
4-7 7 4 

dl:l = [Is ds I + Is ds ll/s
2 

4-7 1-4 1-4 4-7 4-7 

The tolerances for perpendicularity of meridians to parallels and for 

skewness of meridians are calculated using the same concept as equations 

(3-137) and (3-138). The tolerance for convergence of the meridians at 

x and y was determined by direct differentiation of equations (3-17) 
0 0 

and (3-18), with lengthy results. Extracting dx and dy from all expres-
n n 

sions before changing each of them to dm, to minimize the accumulation 

of absolute errors, and calling the identical denominators of equations 

(3-17) and (3-18) D, and the numerators Nand N•, respectively, 

dx = dm[ID(y x - x y + x y - x y ) - N(y - y >I 
0 13 13 16 36 1 3 

+ I D(y X - X y + X y - X y ) - N(y - y >I 
13 13 14 34 1 3 

+ I ( Dx - N)(x - x ) I + I D(x y - x y + y x - x y ) 
3 4 6 43 63 46 46 

- N(y - y ) I + I D(x y - x y + y x - x y ) 
4 6 41 61 46 46 

- N(y - y >I + ICDx - N)(x - x >I + I (Dx - N)(x - x >I 
4 6 1 4 6 . 6 1 3 

+ I<Dx - N)(x - x )IJ/D 2 

4 1 3 

dy = dm[ID(y x - x y - y x + y x ) + N•(y - y >I 
0 13 13 16 36 1 3 

+ ID<y x - x y - x y + x y ) + N•(x - x >I 
1 3 1 3 4 1 4 3 1 3 

+ ID<-x y + x y + y x - x y ) + N•(x - x >I 
3 4 . 3 6 4 6 4 6 4 6 

- I<Dy - N•)(y - y >I + I<Dy - N•)(y - y >I 
3 4 6 1 4 6 

+ IDC-x y + x y + y x - x y ) + N•(x - x >I 
14 16 46 46 4 6 

+ I<Dy - N•)(y - y >I + I<Dy - N 1)(y - y )I]/D 2 

6 1 3 4 1 3 

(3-136) 

(3-13 7) 

(3-138) 

(3-139) 

(3-140) 
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Differentiating equation (3-19) likewise, 

dy = {dx ICx - x )(y - y )I + dm[l(x - x )(x - x )I 
0 7 9 7 9 7 9 0 9 

+ ICx - x )(x - x )I + ICY - y )(x - x )I 
7 9 0 7 7 9 0 9 

+ ICy - y )(x - x )1]}/(x - x )2 

7 9 0 7 7 9 

Comparing y withy, 
0 

~ = y - y 
0 

and the tolerance is 

d~ = ldy I + Idyl 
0 

To check concentricity, strict differentiation of equation (3-20) would 

result in excessive tolerance in radius due to the relatively large value of 

d~ from equation (3-143): 

dp = -[{dx - dx.)(x - x.) + (dy - dy.)(y - y.)]/p 
0 } 0} 0 } 0 J 

By taking absolute values and letting dx , dy , dx~, and dy. all equal dm, 
0 0 J J 

dp = 2dmCix - x~l + IY - y.l)/p 
0 J 0 J 

Although this is not rigorous, it has been found satisfactory. This value 

of dp is used as the allowable variation in p calculated for j = 1, 4, and 7 

from equation (3-20). 

The tolerance was also not practical when derived rigorously for 

spacing of meridians on the conics. Instead, the error in the angle of 

slope of each meridian is found by applying equation (3-134) to point 3 

and the point of convergence 0. From equations (3-21) and (3-22), since 

the distance between points 0 and 3 equals the distance between points 0 

and 9, 

dn = (do - do )/("-. - "-. ) 
1-3 7-9 7 1 

2 2 '/2 
= 4dm/{[(x - x ) + (y - y ) 1 ("-. - "- )} 

0 3 0 3 7 1 
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(3-142) 

(3-143) 

. (3-144) 
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The calculation for dn based on ~ and ~ is the same, but using ~ in 
1 4 4 

place of ~ , assuming an equal radius vector. The tolerance for the 
7 

difference between the two calculated n's is the sum of the absolute 

values, or 

2 2 
1/z I dn = {4dm/[(x - x ) + (y - y ) 1 }[1/l~ - ~ I + 1/l~ - ~ 1 

0 3 0 3 1 4 1 7 

i. TOLERANCES FOR INDIVIDUAL PROJECTIONS 

For the tested projections with curved meridians and curved paral­

lels, differentiation of equation (3-82) to calculate tolerance as a func­

tion of F is relatively straightforward. It appeared that the variability 

of ~ and <1> could then be determined from this. The results were un-
o 0 

satisfactory. After several tests and other approaches, it was decided 

not to derive a tolerance for these projections (as well as for many 

others) but instead to calculate the rectangular coordinates of each of 

the nine points of the given matrix, using the given latitude and longi­

tude and the parameters determined for the projection under considera­

tion, with the forward formulas for the projection rather than the in­

verse. The measured coordinates given for these same nine points are 

translated, rotated, and changed in scale affinely to find the closest 

least-squares fit to the rectangular coordinates just calculated. The 

RMSE or r of distances at map scale between each of the nine adjusted 

given points (x ., y }) and the corresponding calculated points ex,, y .) is 
a) a J · J 

determined: 

If the residual is less than the experimentally established 1.5 mm for a 

real map (0.01 mm on a mathematically calculated set of given coor­

dinates), the projection is accepted, and the constants for the final fit 

are used to modify any other given rectangular coordinates before cal­

culating latitude and longitude from projection parameters. If not, the 

program similarly tests the next projection in order. 

The formulas used for this operation are adapted from traditional 

ones (see Appendix, section 8 for derivation): If the given coordinates 

are (xj,yj) and the calculated coordinates are cx
1
, Y j), where } = 1 to 9, 

(3-146) 

(3-147) 
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the constants a to a for the affine transformation (equations (3-164) 
1 6 

and (3-165)) are calculated as follows (each summation E is taken for 

j = 1 to 9): 

where 

a = CAE - BF)/D 
1 

a = (CF - BE)/D 
2 

a =(EX./9) - a x - a y 
3 J 1 2 

a = CAG - BH)/D 
4 

a = CCH - BG)/D 
5 

a = CEY /9) - a x - a y 
6 j 4 5 

A = ECy. - y) 2 

J 

B = ECxj - x)(yj - y) 

c = .ECx. ~ x) 2 

J 

D = AC- B
2 

E = EXj(xj - x) 

F = Ex,cyJ - v> 

G = EYJ(xj- x) 

H = EY.(y. - y) 
J J 

x = Exj/9 

y = Ey./9 
J 

Then, for the adjusted values (x .,y .) of (xj,y.), 
aJ aJ J 

y . = a x. + a y. + a 
aJ 4 J 5 J 6 

Because this sort of test proved generally applicable for any projection, 

it was also finally used for cylindrical projections and certain polar azi­

muthals, giving results equal to or better than individual differentiation 

applied to the specific projection. 
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(3-149) 

(3-150) 

(3-151) 

(3-152) 

(3-153) 

(3-154) 

(3-155) 

(3-156) 

(3-157) 

(3-158) 

(3-159) 

(3-160) 

(3-161) 

(3-162) 

(3-163) 

(3-164) 

(3-165) 
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j. TOLERANCES FOR CONIC PROJECTIONS 

Using the least-squares approach on the conic projections was not 

sufficiently sensitive to choose correctly between conformal, equal-area 

and equidistant conic projections when real maps were involved. More 

satisfactory answers were obtained using tolerances obtained by differen­

tiation. 

For the Lambert Conformal Conic, the tolerance for ak 1
, as calcu­

lated from equations (3-46) and {3-47>, or (3-46) and (3-49), is 

since (x ,y ) is considered fixed so that the radius pj varies only by dm. 
0 0 

Then if 

~ = 1 - ak 1 I ak 1 

J 1 

the tolerance of the fit, 

d~ = [lak 1d(ak
1

1>1 + lakj 1d(ak 1)1]/(ak 1
)

2 
l. 1 1 

where j = 2,3 as defined for equation (3-45). 

For the Albers Equal-Area Conic, by differentiation of equation 

(3-60), 

dC = 2n(dm)p p (q - q ><IP I + IP l>!Cp2 - p2)2 
1-2 1 2 2 1 1 2 l. 2 

assuming dp=dm and adding the absolute values since dp may be +or-. 

As in (3-167> and (3-168), 

~ = 1- C /C 
2-3 1-2 

d~ = £1 c dC I + I c dC 11/C 
2 

1-2 2-3 2-3 1-2 1-2 

where subscripts refer to the points involved along a given meridian. 

For the Equidistant Conic, by differentiation of equation (6-13) (see 

Appendix), 

(3-166) 

(3-167) 

(3-168) 

(3-169) 

(3-170a) 

(3-171) 
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dG = dm(M - M )(lp I + IP 1)/(p - p )2 

1-2 2 1 1 2 2 1 
(3-172) 

1:::. = 1 - G /G (3-173) 
2-3 1-2 

dl::. = [I G d G I + I G d G I ]I G 
2 

1-2 2-3 2-3 1-2 1-2 
(3-174) 





MINIMUM-ERROR MAP PROJECTIONS 

In principle, the selection of a map projection for any given applica­

tion usually is based on an attempt to minimize distortion, but the term 
11 minimum- error11 is normally applied to a projection which has been der­

ived by applying the principle of least squares to a given set of param­

eters. Commonly, the type of projection will be established, but certain 

constants will be allowed to vary until the distortion, as determined by 

an often arbitrary standard, becomes a minimum. Thus, a minimum-error 

azimuthal projection has been developed, as well as a minimum- error 

perspective azimuthal, a minimum-error equidistant conic, etc. It is 

possible to derive, for example, different minimum- error equidistant 

conics by using different criteria for calculating the amount of distortion 

at any given point on the map. 

Most published minimum-error projections were devised between 

1850 and 1950, after the development of the least-squares principle in 

the early 1800's, but before the availability of high-capacity computers. 

Therefore, they are limited to projections such as regular conics in which 

the parameters can be more easily altered. Since then, investigators such 

as Tobler, Reilly, and this writer have developed projections which would 

have been nearly impossible without modern computers. 

Before discussing recent developments by the U.S. Geological Sur­

vey, it is appropriate to review several earlier minimum-error projec­

tions. These help to set the stage for later studies, inspired by the earlier 

concepts. They are varied both in approaches and in nationality, with 

British, German, Russian, New Zealander, and American contributions 

detailed, including formulas. 

The various historical minimum-error approaches in map projections 

are outlined just below and mathematically described in the section fol­

lowing. Then the least-squares approach is used to develop a low-error 

map projection for the 50 States, substantially reducing the range of 

scale as contrasted with standard projections available for the purpose. 

Following a discussion of the 50-State projection, a least-squares fit is 

used to find parameters giving the minimum-error Oblique Conformal 

Conic, Oblique Mercator, or other conformal projections for North 

America, Alaska, and South America. 57 
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Figure 4.- - Airy minimum- error azimuthal projection - oblique aspect of 
one hemisphere, centered at Washington, D.C. (latitude 39° 
N., longitude 77° W.) 

Finally, this least-squares principle is applied to a very different 

type of projection, a pseudocylindrical equal-area projection of the 

Earth, primarily to show the versatility of the approach even for the 

single subject of map projections. 

4. HISTORY OF MINIMUM-ERROR PROJECTIONS 

a. OVERVIEW 

(1) Azimuthal Projections 

In 1861, George Biddell Airy {1801-1892), a British geodesist and 

astronomer, presented an azimuthal projection with a minimum .. total 

misrepresentation .. determined 11 by balance of errors .. (Airy, 1861). He 
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Figure 5.--Azimuthal Equidistant projection - oblique aspect of one 
hemisphere, centered at Washington, D.C. (latitude 39° N., 
longitude 77° W.) Very similar to Airy projection if the 
bounding circle is given the same spherical radius. 

achieved a sort of mean between the Lambert Azimuthal Equal-Area and 

the Stereographic conformal projections, based on least squares. Applied 

to a hemisphere (or less), the p~ojection (figure 4) resembles an Azimu­

thal Equidistant projection of the same area (figure 5). Fellow British 

geodesists A.R. Clarke, whose name is best remembered in the United 

States because of the Clarke 1866 and 1880 ellipsoids, and Henry James 

corrected an error in Airy's constraints the next year (figure 4 is based 

on the correction), and at the same time also applied Airy's approach 

with the additional restraint of producing a perspective projection onto a 

secant plane. Overall scale errors are reduced using a secant rather than 

tangent plane for either projection. 
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(2) A Cylindrical Projection 

Walther Behrmann (1910) of Germany sought a minimum-error 

equal-area world map, but did not use the least-squares approach as 

described by Airy. He apparently found the arithmetic average of the 

maximum angular deformation as determined for uniformly spaced inter­

sections of latitude and longitude, weighting these angles in proportion 

to the cosine of the latitude. By comparing this average for various pro­

jections used as world maps, he found that the Cylindrical Equal-Area 

projection gave the least average value, provided that latitudes 30° N. 

and S. were made standard parallels rather than the Equator (figure 6). 

(3) Conic Projections 

Alfred Ernest Young (1920) of the Royal Geographical Society, 

London, made a careful study of several low-error map projections, 

especially azimuthal and conic. He applied the least-squares principle 

with such restraints on azimuthal projections as the "minimum-error" 

conformal, equal-area, equidistant, or tangent perspective projection. 

In some cases this resulted in a change in the nominal map scale to 

balance errors, without any other change in the map. By applying the 

principle involved in Airy• s projection to a minimum-error conic projec­

tion, Young devised a projection which is almost an Equidistant Conic, 

but which has very complicated formulas. 

The computations are less complicated if the minimum-error 

analysis is confined to determining the standard parallels for a con­

formal, equal-area, or equidistant conic projection: 

The standard parallels define the shape of a conformal conic projec­

tion of the sphere or given ellipsoid. The scale or region shown may be 

varied, but the distortion pattern of a conformal conic is solely a func­

tion of the standard parallels. The same is true of equal-area or equi­

distant conics, although some other conics, such as Young•s minimum­

error conic, are neither conformal, equal-area, nor equidistant. Several 

different-named conformal conic projections vary only in the manner in 

which standard parallels are chosen. One may make the maximum scale 

factor the reciprocal of the minimum scale factor, or the greatest scale 

error (scale factor minus one) between the standard parallels may be 

made equal and opposite in sign to the greatest scale error beyond the 

standard parallels, and so on. These approaches reduce the range of the 

scale factors, but do not apply the principle of least squares to minimi­

zing the overall scale error throughout the map, and therefore do not 

have minimum error. 
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A conformal conic projection for which standard parallels are chosen 

by a least-squares analysis was derived in 1916 by N.J. Tsinger 0842-

1918) of Russia (Tsinger, 1916; Graur, 1956, p. 157 -170; JY!aling, 1960, 

p. 264)1
• Since scale is a function only of latitude on a regular conic 

projection, the projection constants are chosen to make the overall root­

mean-square scale error a minimum based on the linear scale error at 

each latitude. The scale errors are weighted, however, in proportion to 

the area being shown along the particular parallel. This area may be 

based on the total width of the map, or on the area of the country or 

region of interest which lies within say a 1 °-wide band centered on the 

parallel. Tsinger 0916) also applied the same principles to the equal­

area conic, choosing the standard parallels to suit best the area being 

mapped. 

While Tsinger applied the least-squares principle on conic projec­

tions only to the conformal and equal-area forms, V.V. Kavrayskiy (1884-

1954) Cor Kavraisky), also of Russia, extended it to the Equidistant Conic 

projection in 1934 (Kavrayskiy, 1934; Graur, 1956, p. 159-160; Maling, 

1960, p. 263-265). This projection was then used for maps of Russia pub­

lished by the Soviet Union, and became confused in some literature in the 

United States with the general Equidistant Conic with two standard par­

allels, devised two centuries earlier. As in the Tsinger variations, the 

Kavrayskiy projection (actually his fourth projection) involves only a 

least-squares technique for determining the standard parallels (or other 

constants). Once this is done, the standard projection just mentioned is 

used. 

(4) Projections Using Complex-Algebra Transformations 

One of the intriguing mathematical relationships in mapping is found 

in the Cauchy-Riemann equations, which state, as applied to map projec­

tions, that any map projection which is conformal may be reshapen or 

transformed to another conformal map projection if certain simple rela­

tionships occur between the respective coordinates. This occurs with the 

use of a certain general polynomial series involving real and imaginary 

coefficients, although there are practical limitations on the use of the 

series. Miller (1953, 1955), Reilly 0973), and Stirling (1974) have used 

1 
Tsinger is sometimes spelled Zinger in a different transliteration. 



MINIMUM-ERROR MAP PROJECTIONS 

this concept to construct, in Miller•s case, Prolated and Oblated Stereo­

graphic projections for low-error maps of Africa, Europe, Asia, and 

Australasia, and, in Reilly•s and Stirling•s case, a 11 minimum-error 11 pro­

jection for New Zealand. 

Miller used the conformal relationship in a relatively simple form to 

transform the oblique Stereographic projection, with small spherical 

circles of constant scale, to a new projection with ovals of constant 

scale. The New Zealand projection began with the regular Mercator, 

transforming it to produce lines of constant scale roughly following the 

irregular outlines of the two main islands of the nation. 

The Cauchy-Riemann equations have also been used within the 

USGS to develop a new low-error map projection for the 50 States. This 

will be discussed at length later in this paper (p. 79-92). 

(5) Other Existing Minimum-Error Projections 

Waldo R. Tobler 0977), then of the University of Michigan, devised 

an empirical minimum-error projection based on minimum overall error 

for all great- circle distances between selected points covering the region 

under consideration. For his map of the United States, he chose as points 

the 65 graticule intersections at every 5° of longitude between longitudes 

125° and 65° W. and every 7.5° of latitude between latitudes 22.5° and 

52.5°N. The number of distances to be minimized in error was then (65 x 

64/2) or 2080, using the sphere for 11 true 11 distances, although the same 

principle can be applied to the ellipsoid. 

b. A MINIMUM-ERROR AZIMUTHAL PROJECTION 

Airy (1861) applied least squares to the development of his 

minimum-error azimuthal projection by minimizing the sum of the 

squares of the errors in scale both along and perpendicular to the radii 

from the center, that is, 

=minimum 

where, for an azimuthal projection of the sphere, 

a = the angular distance z from the center of projection to the 

rim of the circular map region to which minimum error is 

being applied. 
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h' = the scale factor at a given point along the radius from the 

center 

= dp/R dz 

k' = the scale factor -perpendicular to the radius 

= p/(R sin z) 

z =the angular distance of the given point from th~ projection 

center, as measured from the center of the Earth. 

p = the radius from the projection center to the given point, as 

measured on the map. 

R = the radius of the Earth at map scale. 

and scale factor is the ratio of the scale on the map at a given point to 

the nominal scale of the map. 

Airy had made an error in his constraints, but this was corrected by 

James and Clarke 0862), resulting in the following formulas in polar 

coordinates: 

9 = arctan {cos <1> sin (~ - ~ )/[cos <1> sin <1> 
2 0 1 

- sin <1> cos <1> cos (~ - ~ ) )} 
1 0 

where 

cos z = sin <1> sin <1> + cos <1> cos <1> cos (~ - ~ ) 
1 1 0 

and (<J>, ~) = the latitude and longitude, respectively, of the given 

point 

(<I> , ~ ) = the latitude and longitude, respectively, of the cente 
1 0 

of the projection 

(p,9) = polar coordinates: radius and azimuth east of north, 

respectively. 

When converted to rectangular coordinates, 

x = Rk' cos <1> sin (~ - ~ ) 
0 

(4-2) 

(4-3) 

(4-4) 

(4-5) 

(4-6) 

(4-7> 
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y = Rk' [cos 4> sin 4> - sin 4> cos 4> cos C'k - 'k )] 
1 1 0 

where 

k' = - {[ln [Cl + cos z)/2]]/Cl - cos z) + 2[1n cos Cf3/2)]/[tan2 ((3/2) 

(1 + cos z)]} 

If z = 0, equation (4-9) is indeterminate, but 

k' = R[1/o~ - Cln cos ((3/2})/tan 2 ((3/2)] 

This projection is not perspective. It is also projected onto a secant 

plane rath~r than a tangent plane. If (3 = 90°, thus applying the 

minimum-error constraint to one hemisphere, the projection resembles 

an Azimuthal Equidistant projection (figures 4 and 5) as stated pre­

viously, but h' (h for the polar aspect described) is about 18 percent 

greater at the limit of the hemisphere than at the center on the 

Azimuthal Equidistant (see Table 2). It is calculated as follows: 

h' = 1 + [ln [Cl + cos z)/2]]/Cl - cos z) - 2[ln cos ((3/2)]/ 

[tan 2 ((3/2) (1 + cos z)] 

while k' is found from equations (4-9) or (4-10). It may be noted that 

many terms in (4-9) and (4-11) are identical. 

The projection was used for an Ordnance Survey map of the United 

Kingdom at ten miles per inch, but has rarely been used otherwise (Airy, 

1861; Hinks, 1912, p. 36-37; Close and Clarke, 1911, p. 660; Young, 1920, 

p. 2-7; Andrews, 1938). 

c. A MINIMUM-ERROR PERSPECTIVE AZIMUTHAL PROJECTION 

In analyzing and correcting Airy's formulas, James and Clarke 

0862) explored minimum-error perspective projections. The general 

formulas for polar coordinates of any secant vertical perspective 

projection of the sphere are as follows: 

p = RP' sin z/CP + cos z) 

with 9 found from equation (4-5). Symbols p, R, and z are defined above, 

while P is the distance of the point of projection from the center of the 

sphere in terms of R, and P' is the distance of the plane of projection 

from the point of projection in terms of R (see figure 7). 

65 

(4-8) 

(4-9) 

(4-10) 

(4-11) 

(4-12) 
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Table 2.--Comparison of Airy's minimum-error azimuthal projection with 
Azimuthal Equidistant proJection 

[Based on 13 = 90°, or minimum error within one hemisphere; polar aspect; 
Earth taken as sphere, with radius = 1.0.; h = scale factor along meridian 
of longitude; k = scale factor along parallel of latitude.] 

--------------·----------------
Airy's Minimum-Error Azimuthal Equidistant 

Lat. ---------------
Radius h k Radius h k 

90° 0.00000 0.84657 0.84657 0.00000 1.0 1.00000 
80 .14780 .84732 .85114 .17453 1.0 1.00510 
70 .29586 .84966 .86504 .34907 1.0 1.02060 
60 .44450 .85392 .88899 .52360 1.0 1.04720 
50 .59408 .86074 .92423 .69813 1.0 1.08610 
40 . 74516 .87113 .97273 .87266 1.0 1.13918 
30 .89847 .88673 1.03746 1.04720 1.0 1.20920 
20 1.05514 .91014 1.12285 1.22173 1.0 1.30014 
10 1.21686 .94555 1.23563 1.39626 1.0 1.41780 
0 1.38629 1.00000 1.38629 1.57080 1.0 1.57080 

Applying equations (4-1) through (4-3) to (4-12), Clarke found that 

H 
2 

/H must be a maximum, 
2 1 

where H = B - CP + 1) ln CA + 1) 
2 

H = AC2 - B + B
2
/3)/(P + 1) 

1 

A = ( 1 - cos 13>/CP + cos 13> 

B = ACP- 1) 

and 13 is defined. after equation (4-1). For each 13 desired, various values 

of P are tested to obtain a maximum H 2 /H (this can, of course, also be 
2 1 

done by calculus). Then the corresponding P' is found thus: 

P' =- H /H 
2 1 

Clarke obtained various constants depending on the 13 chosen (Close and 

Clarke, 1911, p. 655-656). Minor differences are obtained with modern 

calculators or computers. For example, Clarke's constants (followed by 

recalculated constants in parentheses) for a map of Africa or South 

America, in which 13 = 40° are as follows: P = 1.625 0.626); P' = 2.543 

(2.544). For Asia, using 13 = 54°, P = 1.61 (1.594), P' not given (2.443). 

(4-13) 

(4-14) 

(4-15) 

(4-16) 

(4-16a) 
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N. Pole 

Point of perspective 

Figure 7 .- - Geometry of Clarke's minimum-error perspective projection, 
shown for a north polar aspect. 

For a hemisphere, a= 90°, P = 1.47 (1.472), P' = 2.038 (2.040). James 

proposed a = 113 1/z0
, so that p = 1.36 7 (1.36 7), P' = 1.663 (1.662). The 

latter was based on 90° plus the 23 1/z0 latitude of the tropic lines. With 

the Tropic of Cancer at longitude 15° E. as the center, all the larger con­

tinental masses are shown complete on the James projection, although 

Australia and Antarctica are missing (Craig, 1882, p. 95; Young, 1920, 

p. 13-16). 

A few years later Clarke (1879) presented the "Twilight" projection 

(figure 8), with a= 108°, obtaining P = 1.4 (1.393), P' = 1.7572 0.759). 

This was so named because astronomical twilight officially ends when 

the sun is 18° below the horizon (108° from the zenith). 

d. A MINIMUM-ERROR EQUAL-AREA CYLINDRICAL PROJECTION 

Behrmann's minimum-error equal-area projection, with standard 

parallels at latitudes 30° N. and S., may be constructed by compressing 
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Figure 8.--Clarke's "Twilight" perspective projection, centered at 
latitude 2g1/.r0 N., longitude 0°, projected from a point 1.g9g 
times the radius of the globe from the center of the globe, 
and extending 108° from the center of the map. The error is 
minimum for a perspective projection with this range. 

the regular Cylindrical Equal-Area projection from east to west and 

expanding it from north to south in the same proportion, specifically, 

x = RC~ - ~ ) cos goo 
0 

y = R sin <1>/cos goo 

where symbols are as defined with equations (4-1) through (4-8) for Airy's 

projection. A graticule of Behrmann's projection with Tissot indicatrices 

superimposed is shown in figure 9. At latitudes gooN. and S. the indi­

catrices are circles, indicating that there is no local shape (or angular) 

distortion. The other indicatrices are ellipses with the same area as the 

circles, indicating distortion in shape but not area. 

(4-17) 

(4-18) 
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There are other ways to define minimum error for a projection of 

this type: For example, the minimum mean maximum angular deforma­

tion may be determined by least squares, or the principle of equation 

(4-1} can be applied in the following manner: 

For the Cylindrical Equal-Area projection, as shown in equations 

(4-17> and (4-18), 

h = K cos <I> 

k = 1/(K cos <I>) 

where K = 1/cos <1> , <1> is the standard parallel, and hand k are scale 
1 1 

factors along the meridian and parallel, respectively, at a given point. If 

equation (4-1) is applied to this projection, 

+ 2 sin a + Cl/K 
2

) ln (sec a + tan a> - 2a1K 

where a is the latitude limit, north and south. 

For a minimum E, equation (4-22) is differentiated with respect to 

K, and set equal to zero: 

- 2 1n (sec a + tan a> = 0 

If a = 90°, K = oo, and there is no meaningful solution. If a = 80°, K = 

1.417, or <1> = 45.1°. If a= 40°, K = 1.083, or <1> = 22.6°. 
1 1 

Other alternatives to Behrmann•s 11 best-known equal-area 11 world 

map (translating the title of his paper) are mentioned in Section 5c 

(pp. 120-131). 

e. A MINIMUM-ERROR CONIC PROJECTION 

Young•s minimum-error conic projection has such lengthy formulas 

that there is almost no justification for its use over the very similar 

Equidistant Conic (Young, 1920, p. 22-23). The equations are presented 

here as an example of the results of a complicated earlier analysis. 

Now, of course, these equations can be programmed and routinely 

computed, if desired. 

(4-19) 

(4-20) 

(4-21) 

(4-22) 

(4-23) 
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n n z n n 
p/R = A tan (z/2) + cot (z/2)f tan (z/2)dz + B cot (z/2) 

0 

f3 n 2n 2n 
A = [J a tan (z/2)dz]/[tan ((3/2) - tan (a/2)] 

2n a n 2n a n B = [tan (a/2)J tan (z/2)dz - tan ca12)J tan (z/2)dz]/ 
0 0 

2n 2n [tan ((3/2) - tan (a/2)] 

a. and a are the limiting co-latitudes of the map (90° - latitude), and n is 

the cone constant, such that, if 

Ja n 2 2n 2n f = n[ a tan (z/2)dz] /[tan ((3/2) - tan (a/2)] 

then f is to be made a maximum. Young derived a series from (4-27) for 

n, but its lack of terms results in a 1/z-percent error inn in one example 

checked. However, by differentiating (4-27) with respect ton and 

setting the result equal to zero, a lengthy expression is obtained which 

may be iterated by false position to obtain a more accurate n:. 

where 

CE - F)J~ tan n(z/2)dz - 2n[[E ln tan ((3/2) - F ln tan (a/2)] 

Jf3 tan n(z/2)dz - CE - F)J a tan n(z/2) ln tan (z/2)dz] =· 0 a. . a. 

2n E = tan ((3/2) 

Actually equations (4-24) through (4-26) provide the minimum-error 

conic for any given n, but (4-28) through (4-30) permit the calculation of 

the minimum-error conic of them all for a given a. and (3. 

If n = 1 and a. = 0, the formulas reduce to the polar form of Airy's 

minimum-error azimuthal (see equations (4-4) through (4-6)). In table 3 

an example of Young's conic, using the more accurate n, is compared 

with an Equidistant Conic for which the standard parallels are selected 

with Kavrayskiy's minimum-error technique. 

f. A MINIMUM-ERROR CONFORMAL CONIC PROJECTION 

Mathematically, Tsinger's minimum-error conformal conic discussed 

earlier is based upon the following least-squares relationship: 

2 1/z 
E = CEE P/EP) =minimum 

71 

(4-24) 

(4-25) 

(4-26) 

(4-27) 

(4-28) 

(4-29) 

(4-30) 

(4-31) 
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Table 3.- - Comparison between Kavrayskiy's minimum-error Equidistant 
Conic and Young's minimum-error conic projections 

[Map range: latitudes 25° to 49° N. Earth taken as sphere. Map width 
for Kavrayskiy computation taken as same longitude width throughout 
the map. n = cone constant. Standard parallels for Kavrayskiy: 30.220° 
and 44.125°.] 

I - ·------------------------------ ·-------

Radius of Parallel 

Lat. ------------------------- -----

Young difference Kavrayskiy difference 

-·------------------------

50° 1.088396 7 1.0884016 
0.0872830 0.0872665 

45 1.1756 797 1.1756681 
.0873073 .0872664 

40 1.2629870 1.2629345 
.0872665 .0872665 

35 1.3502535 1.3502010 
.0872390 .0872665 

30 1.4374925 1.4374675 
.0872411 .0872665 

25 1.5247336 1.524 7340 

n 0.602724 0.602736 

·-------------

where E is the overall root-mean-square scale error, e: is the linear scale 

error at each latitude, and P is the area of each element. 

For conformal projections, the following version of e: was used: 

e:=lnk 

where k is the scale factor at a given point; thus e: is approximately 

equal to Ck-1) when k is near 1, as it normally is. Since Tsinger's 

approach is merely a means of determining standard parallels for a 

conformal conic, k may be computed from the ellipsoidal Lambert 

Conformal Conic projection formulas (Snyder, 1982, p. 107), 

2 2 1/2 
m = cos ct>/C 1 - e sin ct>> 

· e/2 
t =tan (1T/4 - ct>/2)/[Cl - e sin cJ>)/(1 + e sin ct>>] 

where n is the cone constant to be determined, and m and t are 
1 1 

found from equations (4-34) and (4-35), substituting one of the standard 

(4-32) 

(4-33) 

(4-34) 

(4-35) 
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parallels in place of <f>, although they are not yet determined. To 

determine the standard parallels, certain related constants are found 

first. Combining (4-32) and (4-33), 

=lnm +nlnt-lnm-nlnt 
1 1 

Let v=lnm -nlnt 
1 1 

u = ln t 

s = ln m 

Then £ = v +nu-s 

in which v and n are projection constants, while u and s are functions of 

the latitude. For a minimum E in equation (4-31), since the denominator, 

or the total area EP, is a constant, the derivatives of the numerator with 

respect to v and n are set equal to zero: 

Differentiating and cancelling out the common factor of 2, 

EPun + EPv - EPs = 0 

EPu
2
n + EPuv- EPus = 0 

Solving these linear simultaneous equations for cone constant n and com­

bined constant v, 

n = [CEPs)(EPu) - CEPus)(EP)]/[CEPu) 2 
- CEPu2 )/(EP)] 

v = [CEPus)(EPu) - <EPs)(EPu2 )]/[CEPu) 2 
- CEPu

2
)(EP)] 

w 
with each E equivalent to E and each P, u, and s having subscript j. The 

)=1 
map is divided into w zones 1° of latitude wide (or as desired), and the 

central latitude of each zone is used for the successive values of <f> •• 
J 

73 

(4-36) 

(4-37) 

(4-38) 

(4-39) 

(4-40) 

(4-41) 

(4-42) 

(4-43) 

(4-44) 

(4-45) 

(4-46) 
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The standa~d parallels <1> and <1> may then be found by trial and 
) l 2 

error as the two values of <1> which fit (4-3 7), using (4-34) and (4-35). 
l 

The above derivation and the one following are essentially those given in 

Graur (1956, p. 170, 178). 

g. A MINIMUM-ERROR EQUAL-AREA CONIC PROJECTION 

The standard parallels for Tsinger•s minimum-error equal-area conic 

are determined using an analysis similar to that for his conformal conic, 

and the standard Albers formulas (Snyder, 1982, p. 97) may be used to 

compute coordinates. To determine the parallels and equivalent con­

stants, instead of equation (4-32) Tsinger used the following approximate 

relationship for scale error about a single point on an equal-area conic 

projection (Graur, 1956, p. 177): 

The equations corresponding to (4-33) and (4-35) for the ellipsoidal Albers 

Equal-Area Conic are as follows: 

1/a 
k = (C - nq) /m 

2 
C=m +nq 

l l 

q = (1 - e 2 ){sin <1>/0 - e 2 sin2 <1>)- [1/(2e)] 1n [(1 - e sin <1>)/ 

(1 + e sin <t>>)} 

in which m is found from (4-34), and m and q are found from (4-34) 
l l 

and (4-50) substituting one of the standard parallels (not yet determined) 

in place of <I>· If e = 0, (4-50) is indeterminate, but q = 2 sin <I>· 

Substituting from (4-48) and (4-49) into (4-47), 

2 2 
e: = C/2m - nq/2m - 1/a 

Let 

u =- q/m
2 

C and n are projection constants to be determined, and u and s vary with 

latitude. 

(4-47) 

(4-48) 

(4-49) 

(4-50) 

(4-51) 

(4-52) 

(4-53) 
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Performing steps analogous to those in equations (4-40) through 

(4-46), using equations (4-41) and (4-42) with C in place of v, 

The comments following (4-46) also apply here. 

The cone constant is n, and the standard parallels may be found by 

trial and error as the two values of 4> fitting (4-49). 
1 

h. A MINIMUM-ERROR EQUIDISTANT CONIC PROJECTION 

For the derivation of Kavrayskiy•s minimum-error Equidistant Conic 

projection, similar in principle to Tsinger•s work, the equivalent of equa­

tions (4-32) and (4-47) for the Equidistant Conic projection is 

% 
€ = (k- 1)12 

The equations corresponding to (4- 33) and (4-35) are as follows (Snyder, 

1979, p. 71): 

k = (G- nM)Im 

G=m +nM 
1 1 

2 4 6 2 4 
M = a[(l - e 14 - 3e 164 - 5e 1256 - ... )<J> - (3e 18 + 3e I 

6 4 6 
32 + 45e /1024 + ... ) sin 24> + (15e 1256 + 45e I 

1024 + ... )sin 44>- (35e 
6
13072 + ... ) sin 64> + ... ] 

in which m is found from (4-34), and m and M are found from (4-34) 
1 1 

and (4-59) using one of the standard parallels (to be determined) in place 

of <J>. 

Substituting from (4-57) into (4-56), 

Letting 

% 
€ = (Gim- nM/m- 1)12 

u =- M/m 

s =lim 
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(4-54) 

(4-55) 

(4-56) 

(4-57) 

(4-58) 

(4-59) 

(4-60) 

(4-61) 

(4-62) 
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and performing steps analogous to those in equations (4-40) through 

(4-46), with equations (4-41) and (4-42) intact but using G in place of v, 

the final equations are found to be identical with (4-54) and (4-55), ex­

cept that G replaces C, and u and s represent the above functions. This 

time the standard parallels are found from equation (4-58), by trial and 

error. Kavrayskiy's projection is compared with Young's minimum-error 

conic in table 3. 

i. A MINIMUM-ERROR CONFORMAL PROJECTION FOR NEW ZEALAND 

One mathematical expression of the Cauchy-Riemann equations re­

ferred to in the introduction to this portion of this paper states that any 

map which is conformal and represented by a set of rectangular coor­

dinates ex• ,y•) is also conformal when transformed to another set of rec­

tangular coordinates (x,y), provided that 

and 

A general equation which fits these conditions is the long-established 

formula (used in analogous form in equation (2-5) when discussing poly­

nomials for conformal projections), 

n 

x + iy = .E (Aj + iB})(x• + iy')j 

}=1 

2 
where i = -1, n is any positive integer, and A; and Bj are any real con-

stants. It can be fairly readily differentiated to prove that it agrees with 

(4-63) and (4-64). In theory, it might appear that AV B
1
, and n can be 

determined to make the scale factors on the new projection follow almost 

any prescribed pattern to minimize distortion in certain regions. In prac­

tice, this can be very difficult or impossible in many cases. The use of 

least squares allows some freedom in determining coefficients Aj and Bj 

which may not be possible if the exact locations of points with given 

scale factors are specified. There have been few earlier applications of 

the least-squares principle to equation (4-65) for developing new map 

projections. 

Reilly (1973) and Stirling (1974) used these equations to develop a 

new conformal projection for the topographic mapping of the irregularly 

shaped islands of New Zealand. Using the Mercator projection of the 

(4-63) 

(4-64.) 

(4-65) 
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International ellipsoid as the basis for the (x' ,y') coordinates of equation 

(4-65), Reilly made a least-squares fit with a sixth order (n = 6) complex 

polynomial to 228 points at half-degree intervals of latitude and longi­

tude spread over New Zealand. 

Since the derivation is quite lengthy and is published in English, its 

inclusion here will not be attempted, but the final formulas for calcu­

lating coordinates are given below. For the Mercator projection, relative 

to the origin and an ellipsoid of unit radius, and interchanging (not rotat­

ing) axes for consistency with Reilly, 

x' = 'it - 'it 
0 

y' = ~- ~ 
0 

where 'It is isometric latitude which may be calculated as 

'It = - ln t 

t is found from equation (4-35), and 'It is 'It calculated for <1> = 41° S. 
0 

latitude, ~ = 173° E. longitude. Reilly and Stirling provide a lOth-order 
0 

polynomial instead of (4-35) and (4-68) for calculating 'It from¢>, and a 

9th-order polynomial for the inverse, giving 10-place accuracy between 

34° and 48° S. latitude. To obtain only positive coordinates, using Nand 

E instead of x and y, respectively, equation (4-65) is in effect rewritten 

6 

N + iE = a E B.(x' + iy')j + N + iE 
J 0 0 

)=1 

where Bj is a set of complex constants, and a is 6,378,388 m, the semi­

major axis of the International ellipsoid. Note again that the x' andy' 

axes are interchanged from the orientation elsewhere in this paper. For 

the constants, 

Real Imaginary 

N + iE 6023150 + 2510000 
0 0 

B 0.7557853228 + 0 
1 

B = 0.249204646 + 0.003371507 
2 

B = -0.001541739 + 0.041058560 
3 

B = -0.10162907 + 0.01727609 
4 

B = -0.26623489 - 0.36249218 
5 

B = -0.6870983 - 1.1651967 
6 
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(4-66) 

(4-6 7) 

(4-68) 

(4.-69) 
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The finite series (4-69) is inverted for inverse computations to pro­

vide a theoretically infinite complex series of which the first six terms 

are used for a first approximation to (x' ,y') for a given (N,E). A rational­

function equation using the first approximation and the above coeffic­

ients B through B provides a second, then a third approximation which 
1 6 

"gives sufficient accuracy at any point within the land area of New 

Zealand." From x' is obtained v and then <J>, using the inverse series 

mentioned above, and ~ is obtained directly from y'. Other formulas give 

the scale factor and convergence (Stirling, 1974). The error in scale 

using this projection is less than ±0.02 percent for the land area of New 

Zealand. 

j. A MINIMUM-ERROR PROJECTION BASED ON FINITE DISTANCES 

Tobler's (1977) approach to an empirical minimum- error projection 

minimized overall error for all great circle distances between a matrix 

of points, such as intersections of meridians and parallels distributed 

over the region being mapped. If Dij represents the various true dis ­

tances on the Earth, and dij represents the corresponding distances as 

measured on the map, the development of the map projection requires 

that, for overall error E, 

where 
2 2 1/, 

dij = [(xi - xJ) + (yi - yj) ] 

Dij = R arccos [sin <l>i sin <I>; + cos <l>i cos <l>j cos (~i - ~j)] 

and R is the radius of the sphere representing the Earth. 

Differentiation of E in equation (4-70) with respect to map coor­

dinates xi, yi, xj, and yj for the 65 points leads to simultaneous equations 

which may be solved for changes in the rectangular coordinates, starting 

with the initial guesses. Successive iteration leads to convergence in 

coordinate adjustments. As Tobler states, points can also be weighted in 

(4-70) in accordance with importance or area of the region surrounding 

each point. The resulting map projection is defined not by formulas but 

by rectangular coordinates, and does not fall into any of the standard 

classifications such as a conic. 

Instead of minimizing distances, Tobler showed that a different con­

straint may be applied to obtain a projection which is "nearly conformal 

in the large," minimizing the error in azimuths between the finite points. 

(4-70) 

(4-71) 

(4-72) 
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Tobler also computed a map projection for the Mediterranean Sea, min­

imizing distances by loxodrome Cline of constant compass bearing or 

rhumb line) rather than great circle, as a modern simulation of a possible 

principle of construction of 13th-century portolan charts. Portolan 

charts were prepared for navigators and showed seacoasts, ports, and 

numerous diagonal straight lines radiating from compass roses dispersed 

over the map. 

5. CURRENT STUDIES OF MINIUMUM-ERROR PROJECTIONS 

a. A LOW-ERROR CONFORMAL PROJECTION FOR A 50-STATE MAP OF THE 
UNITED STATES 

As stated previously (equation (4-65)), a finite complex series of var­

ied order and coefficients can be used to create an infinite set of pre­

cisely conformal map projections. The Prolated Cor Oblated) Stereo­

graphic projection by 0 .M. Miller 0953) of the American Geographical 

Society, and developed for a reduced-distortion conformal map of Europe 

and Africa, was mentioned previously as an early example. The ex• ,y') 

coordinates of equation (4-65) are based on the oblique Stereographic 

projection, n is made 3 and all but two coefficients are made zero in the 

Oblated Stereographic. The remaining coefficients A and A are 
1 3 

chosen to provide a line of constant scale which is an oval instead of the 

circle of the Stereographic. In essence, Miller chose A = 0.9245, A = 
1 3 

0.01943, and centered the Stereographic at latitude 18° N. and longitude 

20° E. Equation (4-65) simplifies to 

x = 0.9245x'{l - (0.2522/12)[3(y') 2 
- (x') 2

]} 

Y = 0.9245y'{l + (0.2522/12)[3(x') 2 
- (y') 2

]} 

and x• and y• may be found from equations (5-3) through (5-8), (5-26), and 

(5-27), simplified for the sphere (e = 0). L.P. Lee (1974b) adapted an 

oblique aspect of this projection, also third order, but with different con­

stants, to a map of the Pacific Ocean. 

In an unpublished manuscript report, Miller (1955) extended the prin­

ciple to other continents of the Eastern Hemisphere, with two additional 

Oblated Stereographic projections linked by non-conformal 11 fill-in 11 pro­

jections. His 1953 Oblated Stereographic projection was used without 

change, except that the central meridian was moved from longitude 20° 

E. to 18° E. The American Geographical Society prepared continuous 
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maps of all of Africa, Europe, Asia, and Australasia, using this "Miller 

Oblated Stereographic" Projection at a scale of 1:5,000,000. 

The Oblated Stereographic projections are not based upon the least­

squares principle but were derived by selecting suitable values for the 

scale factor at the center and various limits of the map. The scale fac­

tors are symmetrical about two perpendicular axes, and the constants 

were determined without iteration. 

It seemed appropriate to apply equation (4-65) to the development 

of a projection which would show all 50 States of the United States with 

as little scale variation as possible. Prior to the achievement of state­

hood by Alaska and Hawaii in 1959, these two territories were commonly 

shown as insets on maps of the 48 conterminous States. Alaska was nor­

mally reduced considerably in scale for the inset. After 1959, there was 

concern that the largest State was shown smaller than several other 

States and to the south rather than the north. Rand McNally promptly 

published a map for wall and atlas use showing the 50 States in their rela­

tive positions and sizes. The projection used was apparently the Lambert 

Azimuthal Equal-Area. In 1975, the U.S. Geological Survey issued a map 

with similar coverage (although omitting the smaller islands of Hawaii) 

at scales of 1:10,000,000 and 1:6,000,000, but cast on the Lambert Con­

formal Conic projection with standard parallels of latitudes 37° and 65° 

N. (see figure 10). 

While both of these standard projections accomplished the basic pur­

pose for visual purposes, the scale distortion or error (scale factor minus 

one) on the USGS maps, for example, varies from +12 percent on the 

island of Hawaii, + 7 percent in southern Florida, and +4 percent in north­

ern Alaska to -3 percent at the 49th parallel (see figure 11). Since the 

scale along any given parallel on the Lambert Conformal Conic projec­

tion is constant, the scale error is zero or minimal not only in central 

Alaska and the middle of the 48 conterminous States, but in regions of 

northern Canada and the northern Pacific Ocean, at the expense of other 

regions which are parts of the United States. 

When equation (4-65) was applied to this problem without using least 

squares, but with the stipulation that the scale factor be 1.0 through 

several specific points, no satisfactory solution was found. While co­

efficients could be obtained (in quantity equal to the number of points), 

the scale at other points on the map fluctuated too widely, and it was too 

difficult to guess where to move the reference points. On the other hand, 

when the same equation was applied to a large number of points using 
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least squares, and developing a moderate number of coefficients, far 

more satisfactory solutions were found, and simple adjustments of the 

location of points led to a map projection on which the scale error does 

not exceed ±2 percent for all land forms of the 50 States as well as 

adjacent waters and the connecting routes between Hawaii, Alaska, and 

the West Coast of the 48 conterminous States (see figures 12 and 13). 

This range of scale error includes all the islands of Alaska and of 

Hawaii to its western limit at Kure I., as well as northern Mexico, adja­

cent Canada and Cuba. These regions, adjacent Siberia, the rest of 

Mexico, and the rest of mainland Canada (except for Labrador) appear 

normal to the eye, providing an esthetically acceptable map covering the 

general region. The northern Pacific Ocean varies from true scale by 3.2 

percent or less. The projection has been given the name GS50. 

These conditions were obtained by using the least-squares fit to ob­

tain 20 coefficients (n = 10 but B = 0) for equation (4-65), beginning 
1 

with an oblique Stereographic projection, and fitting to 44 points. After 

the 44 points were adjusted to produce the final coefficients, their loca­

tions are as shown in table 4. 

The 50-State region is not surrounded by the ideal line of constant 

scale to satisfy Chebyshev's principle for a minimum-error map projec­

tion; instead there are 18 prongs of true scale extending away from the 

heart of the map. This map is not claimed to be the theoretically best 

solution to the problem, so it is called low-error rather than minimum­

error. It is believed, however, to be a good practical solution. It is 

minimum-error for the number of coefficients and locations of points, 

but these are somewhat arbitracy. More coefficients lead to too much 

variation in scale between points; fewer coefficients do not provide the 

desired accuracy range. Because of the low scale-error range in the 

relevant regions of the GS50, corrections for the ellipsoid (up to 0.6 per­

cent in shape) are worth incorporating. While the projection is much 

more complicated to program and compute than standard projections, 

once programmed it may be plotted by the computer operator at any 

scale almost as if it were a projection like the Lambert. The latitude 

and longitude ranges must be limited, as discussed below. 

The derivation of the formulas used to determine the coefficients of 

the GS50 or other similar projections is given in the appendix (section 9) 

and in Snyder 0984). Here the equations are given in the order needed 

for computing the coefficients. The equations also are based on the el­

lipsoid only, although the sphere is obtained by letting the eccentricity 

e = 0, and simplifying. 
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Figure 10.--The United States: A computer-generated map using the projection of a 50-State map 
published by the U.S. Geological Survey, 1975, at a much larger scale. The projection is 
Lambert Conformal Conic with standard parallels at latitudes 37° and 65° N. 
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Figure 11.--The map of figure 10 with lines of constant scale factor superimposed. The scale factors 
for the 50 States vary from 1.12 at the south tip of the island of Hawaii to 0.97 at the 
49th parallel. 
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Figure 12.--The United States: A 50-State outline map generated by computer using a complex 
conformal transformation of the oblique Stereographic projection with 20 coefficients. 
While meridians and parallels near the edge are visually more distorted than those of 
figure 10, the region of the 50 States is much less distorted. The more distorted regions 
may be omitted on the final map. 
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Figure 13.--The map of figure 12 with lines of constant scale factor superimposed. All 50 States, 
including islands and passages between Alaska, Hawaii, and the conterminous 48 States are 
shown with scale factors ranging only from 1.02 to 0.98. 
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Table 4.- - The 44 points used for least- squares fit of the 50-State 
conformal map projection GS50 

[Center of the base oblique Stereographic Projection: latitude 45°N., 
longitude 120°W. The order of the points does not matter. The points 
were equally weighted.] 

Point No. Lat. Long. Point No. Lat. Long. 

1 70°N. 165°W. 23 48°N. 65°W. 
2 70 150 24 45 65 
3 70 138 25 40 180 
4 65 170 26 40 125 
s 65 150 27 40 110 
6 65 140 28 40 100 
7 60 170 29 40 90 
8 58 150 30 40 70 
9 58 140 31 34 120 

10 ss 170°E. 32 32 72 
11 ss l78°W. 33 30 180 
12 ss 165 34 30 135 
13 ss 130 35 30 110 
14 so 170°E. 36 28 90 
15 so 178°W. 37 27 175 
16 so 165 38 25 170 
17 so 110 39 25 98 
18 so 100 40 25 80 
19 so 90 41 22 145 
20 so 80 42 21 165 
21 so 70 43 18 160 
22 49 127 44 17 155 

It should be stressed that most transformations resulting from the 

use of equation (4- 65) can only be used within a limited range, depending 

on the number and values of coefficients. As the distance from the pro-

jection center increases, meridians, parallels, and shorelines begin to 

exhibit loops, overlapping, and other undesirable curves. A world map 

using the GS50 projection is nearly illegible, with the meridians and 

parallels intertwined like wild vines (see also figure 19). 

To determine coefficients: 

(I) Given are the latitude <1> and longitude 'k of the projection center 
0 0 

of the base oblique Stereographic projection, the number n of com-

plex coefficients CAj + iBj) to be determined, and the latitude <1> and 

longitude 'k of each of the m points to be fitted by least squares. 

For the GS50 projection, n = 10, m = 44, <1> , 'k , <J>, and 'k are found 
0 0 

in table 4, and a (semimajor axis of ellipsoid) may be taken as 1 for 

computation of coefficients. For thF.: first trial, A is set equal to 
l 

1, and A through A and B through B are made zero. 
2 n 1 n 

For <1> , the following is calculated: 
0 
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x = 2arctan {tan (TT/4 + 4> /2)[(1 - e sin 4> )/ 
0 0 0 

e/2 
(1 + e sin <1> )) } ·- TT/2 

0 

where e is the eccentricity of the ellipsoid, and x is the conformal 
0 

latitude corresponding to 4> • 
0 

(II) The following equations (5-4) through (5-15) are calculated for 

each of the m points, 

X = same as equation (5 - 3), but using <1> in place of <1> 
0 

2 2 1/J 
m = cos 4>/0 - e sin <I>) 

g = sin X sin X + cos X cos x cos (~ - ~ ) 
0 0 0 

s = 2/(1 + g) 

k' = s cos x/m 

where k' is the scale factor on the base Stereographic map, and X 

is the conformal latitude for 4>. A constant factor included in 

other references (Thomas, 1952, p. 139; Snyder, 1982, p. 162) to 

produce a central scale factor of 1 is omitted, since this is adjusted 

by the complex coefficients. 

9 = arctan [(cos X sin X - sin X cos X cos (~ - ~ ))/ 
2 0 0 0 

(cos x sin (~ - ~ ))] 
0 

n 

F 
1 

= E Jp)- 1 [AJ sin (j - 1)9 + Bj cos (j - 1)9) 

)=1 

n 

F 
2 

= E )pj-
1

[AJ cos (j- 1)9- Bj sin (j- 1)9) 

j=l 

where k is the scale factor on the map using coefficients A; and BJ, 

n 

ak/aAq = [(k') 2 /k]qpq- 1 
E jp)- 1 [AJ cos (q - j)9 + Bj sin (q - ))9] 

)=1 

87 

(5-3) 

(5-4) 

(5-5) 

(5-6) 

(5-7) 

(5-8) 

(5-9) 

(5-10) 

(5-11) 

(5-12) 

(5-13) 

(5-14) 
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n 
aktaBq = [(k') 2 /k]qpq- 1 E jpj- 1 [- Aj sin (q- j)9 + Bj cos (q- j)9] 

)=1 

where q is an integer identifying the particular coefficient which is 

being optimized by the differentiation. Equations (5-14) and (5-15) 

are separately calculated for each integer value of q from 1 ton in 

(5-14), and 2 ton in (5-15). It should be noted that (q- j) may be 

zero or negative at times, but the term is merely handled alge­

braically. 

(III) Using the values calculated in equations (5-·13) and (5 - 14) for each of 

the m points, and letting p identify the particular point, the fol­

lowing function is calculated separately for each value of q from 1 

ton, 

m 
f<A > = 2 E <k - nak taA q p p q 

P=1 

Likewise, using the results of equations (5-13) and (5-14), the 

following function is calculated separately for each value of q from 

2 ton, 

m 
f(B ) = 2 E (k - 1 >ak taB 

q p p q 
P=1 

These two functions will be used in the iterative simultaneous 

equations (5-24) and (5-25). In addition, (5-24) and (5-25) also 

require the calculation of the derivatives of the above functions 

with respect to the various coefficient. This is done just below. 

(IV) Calculated separately for each value of q from 1 ton as well as 

each value of from 1 to n, 

~ 

m 
af<A >1aA = 2 E [<ak taA ><ak taA >tk + P cos <q - g>Sl 

q g p g p q p 
P=1 

Calculated separately for each value of q from 1 ton as well as 

each value of (j{ from 2 ton, 

~ 

(5-15) 

(5-16) 

(5-17> 

(5- 18) 

(5-19) 
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afCA )/aB = afCB )!aA 
q g g q 

m 
= 2 I: [Cak /aA )Cak /aB )/k + P sin (q - g)9] 

p q p g p 
P=l 

Calculated separately for each value of q from 2 ton as well as 

each value of ~rom 2 to n, 

m 
afCB )/B = 2 I: [Cak /aB )Cak /aB )/k + P cos Cq - g)9] 

q g p q p g p 
P=l 

Actually, 

aHA )!aA = aHA )!aA 
q g g q 

and 

aHB )laB = afCB )/aB 
q g g q 

so that some computations in (5-19) and (5-21) duplicate others and, 

depending on the programming, may be convenient to eliminate. In 

addition, second derivatives may be eliminated here, so that in 

equations (5-19) through (5-21), the terms with P and the division of 

the first term by k may all be eliminated. 
p 

(V) Using values calculated from equations (5-16) through (5-21), the 

following (2n- 1) simultaneous equations are solved by a 

Newton-Raphson iteration for b..A and b..B , which total (2n- 1) 
g g 

unknowns. The first n equations take the form 

n n 
I: CaHA )!aA )b..A + I: caf(A )/aB )b..B = - f(A ) q g g q g g q 
g=l g=2 

where q is given values of 1 ton for successive equations. The last 

(n- 1) equations take the form 

n n 
I: caHB )/aA )b..A + I: cafCB )laB )b..B = - f(B ) q g g q g g q 
g=l 

where q is given values of 2 to n for successive equations. The 

matrix of coefficients of the b..'s is symmetric. The values of b..A 
1 

to b..A and 6B to b..B found from these simultaneous equations 
n 2 n 
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(5-20) 

(5-21) 

(5-22) 

(5-23) 

(5-24) 

(5-25) 
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(for which the solution is relatively standard and is not given here) 

are added to the previous trial values of coefficients, and the new 

coefficients are used in a repetition of equations (5-11) through 

(5-25), iterating until corrections are negligible. 

The forward formulas for the GS50 or a similar projection 

Once the coefficients are determined, they may be used to obtain x, 

y, and k for any points using, in order, equation (5-3) once for the map, 

then (5-4) through (5-8), followed by these equations: 

x' = ~os x. sin(~ - ~ ) 
0 

y' = (s[cos x. sin x. - sin x. cos x. cos (~ - ~ )] 
0 0 0 

in which symbols are defined or determined just before equation (5-3) or 

by equations (5-3) through (5-8). Corrdinat~s x' an~~· are cq~verted to 
with tl J·, ~Jr,-hJ. i.~.J/~~l;J JFitr 1fU, "= "_,;~n 

x and y with equations (4-65), and scale factor k may be determined ~s / 
/1 

follows: 

n 
k = E j(A. + iB )(x' + iy')j- 1 k' 

}=1 J j 

where the bars indicate the absolute value of the term enclosed, or 
2 2 1/, 

[F + F 1 , where (F + iF ) equals the term enclosed. 
2 1 2 1 

If k is not desired, equations (5-8) and (5-28) may be omitted. 

Equations (4-65) and (5-28) are solved more efficiently by nesting rather 

than as a normal series, and even faster by application of the algorithm 

by Knuth (1969) which was previously described in an analogous applica­

tion following equations (2-5) and (2-10). Here the algorithm is extended 

to include calculations of scale factor k: 

Let 

b = g ; c = ng ; d = (n - 1 )g ; a~ = b~ + raJ ; 
1 n-1 1 n 1 n-1 J r1 -1 

bJ=g .-s'aj ;c,=dj +rcj ;dj=(n-j)g 1-s'cj. n-J -1 -1 -1 n- -1 

After j is given the value of successive in;_Ef.Bers from 2 toJ n for aj and bj 

and 2 to (n- 1) for c
1 

and dj, then x + iy = tx• + iy') a + b ; F +iF = (x' 
A n 1)\2 1 

+ iy') c + d , finally using equation (5-13) to find k. 
n-1 n-1 

(5-26) 

(5-27) 

(5-28) 
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The inverse formulas 

For computing latitude <1> and longitude A. from rectangular 

coordinates x andy, complex equation (4-65) may be inverted. While 

reversion of the series may be employed, the failure of the coefficients 

Aj and Bj to converge indicates a lengthy inverse series. An alternate 

solution is a standard Newton-Raphson iteration applied to complex 

variables: 

where 

6(x' + iy') = -f(x' + iy')/f' (x' + iy') 

n 
f(x' + iy') = E (Aj + iBj)(x' + iy')j - (x + iy)/ q, 

)=l 

f' (x' + iy') = df(x' + iy')/d(x' + iy') 

n 

= E j(Aj + iBj)(x' + iy')j- 1 

)=1 

/"- /Q, 
using as the first trial x• = x and y• = y. " ,.... 

The Knuth algorithm as used in forward computation may be directly 

applied to these similar equations to facilitate the iteration. Converg­

ence is sufficient after three or four iterations to provide a final x• and 

y•. 

Given <1> , A. , a, n, A to A , and B to B (B = 0), the values of <1> 
o o 1 n 1 n 1 

and A. may be found from the final x• and y• noniteratively by the 

following inverses of equations (5-4) through (5-8), (5-26) and (5-27): 

z = 2 arctan (p/2a) 

x. = arcsin [cos z sin x. + (y' sin z cos x. /p)] 
0 0 

e/2 
<1> = 2 arctan {tan (TT/4 + x./2)[(1 + e sin <J>)/(1 - e sin <I>)] } - TT/2 

A. = A. + arctan [x' sin z/(p cos x. cos z - y• sin x. sin z)] 
0 2 0 0 

If p = 0, equations (5-34) and (5-36) are indeterminate, but x. = x. 
0 

and A. = A. • Equation (5-3) is used to find x. . Equation (5-35) involves 
0 0 

iteration by successive substitution, using x. as the first trial <1> on the 

right side of the equation, calculating <1> on the left side, using the new 

value for <1> on the right side, and so forth, until the change in <1> is 

negligible. 
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(5-29) 

(5-30) 

(5-31) 

(5-32) 

(5-33) 

(5-34) 

(5-35) 

(5-36) 
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Parameters for the GSSO Projection 

For the 50-State map with ±2 percent maximum scale error in de­

sired regions as described above, the parameters are shown below. To 

avoid the folding of the graticule and double plotting, if a computer is 

used for plotting, the plotted region should be limited to longitude 165°E. 

on the west, longitude 55°W. on the east, and latitudes 80° and l5°N. The 

rectangular coordinates should be limited to x = ±0.9a, andy= +0.7a, 

-O.Sa with final cropping in some corner areas. 

For the sphere: 

n = 10 

<t> = 45° N.lat. 
0 

"- = 120° W.long. 
0 

A = 0.9842990 
1 

A = 0.0211642 
2 

A = -0.1036018 
3 

A = -0.0329095 
4 

A = 0.0499471 
s 

A = 0.0260460 
6 

A = 0.0007388 
7 

A = 0.0075848 
8 

A = -0.0216473 
9 

A = -0.0225161 
10 

B = 0 
l 

B = 0.0037608 
2 

B = -0.0575102 
3 

B = -0.0320119 
4 

B = 0.1223335 
s 

B = 0.0899805 
6 

B = -0.1435792 
7 

B = -0.1334108 
8 

B = 0.0776645 
9 

B = 0.08536 73 
10 

For the Clarke 1866 ellipsoid: 

n = 10 

<t> = 45° N.lat. 
0 

"- = 120° W.long. 
0 

A = 0.9827497 
1 

A = 0.0210669 
2 

A = -0.1031415 
3 

A = -0.0323337 
4 

A = 0.0502303 
s 

A = 0.0251805 
6 

A = -0.0012315 
7 

A = 0.0072202 
8 

A =-0.0194029 
9 

A = -0.0210072 
10 

B = 0 
1 

B = 0.0053804 
2 

B = -0.0571664 
3 

B = -0.0322847 
4 

B = 0.1211983 
s 

B = 0.0895678 
6 

B = -0.1416121 
7 

B = -0.1317091 
8 

B = 0.0759677 
9 

B = 0.0834037 
10 

The opposite sign for the two values of A is correct. For the Clarke 
7 

1866 ellipsoid, e 2 = 0.006768658, a= 6378206.4 m. The resulting 

rectangular coordinates and scale factors are presented for a 15° 

graticule in table 5. 
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b. OTHER CONFORMAL TRANSFORMATIONS 

The availability of the computer to perform repeated iterations of 

simultaneous equations may be applied to the selection of minimum- error 

parameters for conventional conformal projections, specifically the 

Transverse Mercator, Oblique Mercator, oblique Stereographic, and 

oblique conformal conic. The same principles may also be applied to 

many other projections. The following computations are designed to 

obtain, in the case of a conformal projection, the minimum value 

over-all of E, where 

m 

E = 1: P j(kj - 1)
2 

j= 1 

with kj as the scale factor at each of the m given points, and P j as the 

weight assigned. This is slightly different from the natural logarithm On) 

function used by Tsinger (equation (4-32)), but it is more rigorous and · 

does not make solution in these cases more difficult, as it would for the 

Tsinger formulas. There are two to four independent parameters in­

volved in the four projections mentioned above. Each of them may be 

varied to obtain a minimum E. 

For the Transverse Mercator, the longitude '}... of the central merid­
o 

ian and the scale factor k along the central meridian may be varied. 
0 

For the Oblique Mercator, latitude <1> and longitude '}... of the trans-
P p 

formed pole of the projection, and scale factor k along the transformed 
0 

equator or central line may be varied. For the oblique Stereographic, 

latitude <1> and longitude '}... of the projection center (the same as the 
p p 

transformed pole) and k at the projection center are suitable param­
o 

eters. For the oblique conformal conic, the parameters chosen are <1> 
p 

and '}... for the transformed pole, n for the cone constant, and k for the 
p 0 

scale factor along the transformed parallel of latitude which would be 

tangent to the sphere for a tangent cone. In the latter case, the adjust­

ment of k is equivalent to providing two standard transformed parallels, 
0 

and is used partially because it is more consistent with the parameters 

used for the other projections. In addition, iterating the standard 

transformed parallels was not found to be practical. 

The first three projections are limiting cases of the fourth, in that 

an oblique conformal conic with n=l is an oblique Stereographic, but if 

n=O the Oblique Mercator is obtained, and if n=O and <1> =0, the Trans-. p 
verse Mercator is formed. Therefore, equations may be derived for the 
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(5-40) 
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Table 5. Saml!le rectangular 

[Note: y coordinate in parentheses below x coordinate; k 
a = 1 unit; eccentricity is 

Long. 165° 180° -165° -150° 

Lat. 

75° -0.29450 -0.26954 -0.22462 -0.16629 
(0.68122) (0.62252) (0.57777) (0.54832) 
0.96940 0.93350 0.94680 0.98600 

60 -0.56708 -0.47652 -0.37432 -0.25945 
(0.55579) (0.44931) (0.36467) (0.30448) 

1.11056 1.03320 0.99720 0.98684 

45 -0.78438 -0.65970 -0.51358 -0.35313 
(0.40816) (0.25882) (0.14804) (0.06 723) 

}.10999 1.01071 0.97599 0.96761 

30 -0.99437 -0.82970 -0.64556 -0.44699 
(0.18093) (0.05909) (-0.06996) (-0.16831) 
0.92437 0.994~ 0.98110 ~97955 

15 -1.26654 -0.99879 -0.77655 -0.54614 
(0.37724) (-0.17525) (-0.29355) (-0.40445) 
5.35283 1.26 751!_ 1.02533 0.96750 

-----------

general case and simplified as needed for the limiting cases, if necessary 

resolving a few indeterminate equations. To determine the least-squares 

solution based on equation (5-40), only the projection equations leading 

to k are necessary. 

Following the derivations, specific examples of the use of these 

minimum-error projections as applied to maps of North and South 

America and Alaska are given. 

(1) Minimum-Error Oblique Conformal Conic Projection 

Since the oblique conformal conic projection is the most general of 

the four projections discussed above, the derivations will first be applied 

to this projection, for which scale factor k may be expressed thus: 

where 

k = k sin z tann(z/2)/sin z tann(z /2) 
0 ]. ]. 

z =arccos n 
]. 

z = arccos [sin¢> sin¢> + cos ¢> cos ¢> cos (~ - ~ )] p p p 

-135° 

---· 

-0.09888 
(0.53514) 
}.04351 

-0.13450 
(0.26964) 
Q.99638 

-0.18060 
(0.01707) 
Q.97461 

-0.23176 
(-0.23587) 

1.01526 

-0.30348 
(-0.50718) 

l.JD69 

(5-41) 

(5-42) 

(5-43) 
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coordinates for GS50 projection. 

(scale factor) underlined. Equatorial radius of ellipsoid, 
based on Clarke 1866 ellipsoid.] 

-0.02577 0.05019 0.12669 0.20199 0.27474 0.34149 
(0 .53917) (0.56135) (0.60290) (0.6660 1) (0. 75568) (0.88349) 
1.11926 1.21874 1.35483 1.55468 1.87521 2.42649 

-0.00285 0.13189 0.26642 0.39828 0.52663 0.66111 
(0.26061) (0.27713) (0.31778) (0.37908) (0.45182) (0.50581) 
1~01989 1.05301 1.09134 1.12313 L1J492 1.17353 

0.00000 0.18215 0.35975 0.52 792 0.68068 0.78758 
(0.00000) (0.01665) (0.06457) (0.14091) (0.24688) (0.42634) 
.Q~~8441 0.99055 0.99558 0.99806 1:02418 1.44 78 7 

-0.00042 0.22878 0.44683 0.65324 0.83776 1.04409 
(-0.26080) (-0.23806) (-0.17878) (-0.086 78) (0.03834) (0.00223) 
1.02960 1.00249 0.99481 1.00384 0.87806 2. 72 764 

0.00686 0.28360 0.53662 0.76638 1.12680 0.56142 
(-0.54997) (-0.49621) (-0.43117) (-0.31713) (0.21682) 0.25008) 
1.24078 1.00240 1.10194 0.84755 ~ .. 88 781 li.99865 

and (<l> , ~ ) are the latitude and longitude of the transformed pole, while p p 
C<l>, ~) are the latitude and longitude of the point on the map. The con-

stants k and n are defined in the preceding paragraphs. 
0 

To minimize E as defined in equation (5-40), this equation is differ-

entiated with respect to each of the four parameters <l> , ~ , n, and k , 
p p 0 

using E in place of E with limits. 

f(<l> ) = aE/&p = 2 EP .Ck. - 1 >ak.Ja<l> 
p p J J J p 

fCk > = aEJa~ = 2EP.Ck.- uak.Ja~ 
p p J J J p 

f(n) = aE/an = 2EP.Ck. - Uak.Jan 
J J J 

fCk > = aEJak = 2 EP,ck. - 1 >ak.Jak 
0 0 J J 0 

To differentiate equation (5-41) for substitutions in equations (5-44) 

through (5-47), it is easier to rewrite it in terms of logarithms: 

ln k = ln k + ln sin z + n ln tan (z/2) - ln sin z - n ln tan (z /2) 
0 1 1 
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(5-44) 

(5-45) 

(5-46) 

(5-47) 

(5-48) 
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The differential is as follows: 

(dk)/k = (dk )/k + (cos z /sin z )dz + [ln tan (z/2)]dn 
0 0 1 1 1 

+ (n/sin z)dz - (cos z/sin z)dz - [ln tan (z /2)]dn 
1 

- (n/sin z )dz 
1 1 

Assembling terms for the respective partial derivatives, since z is 
1 

a function of n, and z is a function of 4> and A. , 
p p 

ak/Ckf> = k[(n - cos z)/sin z]az/Ckf> 
p p 

aktaA. = .k[(n - cos z)/sin z]aztaA. 
p p 

aktan = k ln [tan (z/2)/tan (z /2)] + k[(n - cos z )/sin z ]az tan 
1 1 1 1 

= k ln [tan (z/2)/tan (z /2)] 

since cos z = n from equation (5-42), 
1 

aktak = ktk 
0 0 

1 

For the additional partial derivatives required for equations (5-50) and 

(5-51 ), using equation (5-43), 

az/Ckf> = - [cos 4> sin 4> - sin 4> cos 4> cos (A_ - A. )]/sin z p . p p p 

aztaA. = - cos <I> cos 4> sin (A_ - A. )/sin z 
p p p 

To find parameters providing minimum E, equations (5-44) through (5-47) 

are iterated until each is sufficiently close to zero, using a Newton­

Raphson iteration. For this, each of these four non-linear equations 

must be differentiated with respect to all four parameters, although 

several differentiations result in duplicate expressions, since 

and so forth for others. There are two patterns of differentiation; for 

example, 

(5-49) 

(5-50) 

- (5~51) 

(5-52) 

(5-53) 

(5-54) 

(5-55) 

(5-56) 

(5-57) 
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For simplicity of derivations and programming, the second deri­

vatives of kj may be ignored, sincE} they are small, especially after 

multiplication by Ckj - 1), when compared with the remainder of 

equations (5-57> and (5-58). After such simplification, 

aH<t> >la<t> = 2 rP,cak1/a<t> )2 

p p p 

afc<J> )laA. = afcA. >la<t> = 2 l:P .cak,/a<J> >Cak
1
/aA. > p p p p J p p 

aH<J> )/an = afcn>la<J> = 2 rP,cak.la<J> >Cak
1
!an> p p J p 

afc<J> )lak = afck >la<t> = 2 EPJcak,/a<J> >cak
1
/ak > p 0 0 p p 0 

afcA. )laA. = 2 EP,cak,/aA. >
2 

p p p 

aHA.P)Ian = afcn>laA.P = 2 EP ,cak,/aA.P>cak1!an> 

and so forth. The iterations are performed by solving the following four 

simultaneous equations for the~ values, or the increments in param­

eters, and then recalculating all terms using the new parameters, rmtil 

all four changes are negligible: 

afc<J> >la<t> p p aH<I> >laA. p p afC<J> )!an p afc<J> )lak p 0 
~4> p - f(<f> ) p 

aHA. >la<t> afcA. )laA. aHA. )/an afcA. >lak l:J.A. -f(A. ) 
p p p p p p 0 p p 

• 
af(n)/a<J> aHn>laA. af(n)/an afCn)/ak ~ -f(n) 

p p 0 

aHk >la<t> aHk >laA. afck )!an afck >lak l:J.k -Hk ) 
0 p 0 p 0 0 0 0 0 

The solution involves standard matrix algebra, with multiplication of the 

inverse of the 4 x 4 matrix times the matrix to the right of the equal 

sign. It is necessary to start with appropriate initial estimates for each 

of the four parameters, and experience shows that the estimates do not 

always lead to convergence. 

Of obvious importance is the selection of them given points. The 

region represented by each point must be small enough to-allow a 

reasonably accurate application of the least-squares principle to the 

entire region rmder consideration. The regional elements cannot be 

strips of land, such as those used in Tsinger's and Kavrayskiy's studies, 

since the parameter adjustments cause changes in the lines of constant 

scale. 
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To use the computed parameters for construction of the oblique 

conformal conic projection of the region of interest, the two trans­

formed standard parallels may be of interest even though they are not 

needed in the calculation of rectangular coordinates, given nand k . 
0 

Since the polar distances of these two parallels are the two values of z 

(polar distance) resulting in a k of 1.0 in equation (5-41 ), they may be 

found by rearranging that equation: 

sin z/tann(z/2) = k sin z /tann(z /2) 
0 1 1 

By substituting from equation (5-42), this may also be written 

In either case, the right side of the equation is a constant known from 

the parameters determined, and z is found from the left side by 

iteration. Letting 

equation (5-6 7) is adapted to use a Newton-Raphson iteration: 

f(z) = K - sin z/tann(z/2) 

and df(z)/dz = (n - cos z)/tann(z/2) 

Then, b.z = - f(z)/[df(z)/dz] 

= - [K tann(z/2) - sin z]/(n - cos z) 

For the initial estimates of z, two angles respectively near 90° and near 

(but not at) 0° are suitable if n is positive, or with reversed signs if n is 

negative. 

To determine rectangular coordinates using parameters as calcu­

lated, equation (5-43) may be used with the following formulas which are 

presented without derivation: 

A_• = arctan {cos <1> sin (A, - A. )/[cos <1> sin <1> 
2 p p 

- sin <1> cos <1> cos (A, - A. )]} p p 

(5-66) 

(5-6 7) 

(5-68) 

(5-69) 

(5-70) 

(5-71) 

(5-72) 
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p = R k sin z tann(z/2)/(n tann(z /2)) 
0 1 1 

9 = n A_• 

x = -p sin 9 

y = -p cos 9 

where the X axis passes through the transformed pole perpendicular to 

the Y axis, which follows the meridian between the geographic pole and 

the transformed pole increasing southerly. The radius of the sphere at 

map scale is R, and (p,9) are polar coordinates; A_• is a transformed 

longitude, while (90° - z) is a transformed latitude with respect to the 

transformed pole. 

It may be desired to place the transformed pole at a latitude and 

longitude which are rounded off to the nearest 1°, 5°, or 10°. If so, n and 

k as calculated for the minimum-error pole will not produce quite as 
0 

low an error as possible for the rounded-off pole. The need for an addi-

tional adjustment of nand k may be questioned, since the difference 
0 

in root-mean-square error will usually be negligible, and is also a func-

tion of how well the m points were chosen and weighted in the first 

place. The values of n and k may be readjusted to the new pole, how-
o 

ever, by a simple adaptation of Tsinger•s non-iterative approach. Using 

equations (4-31) and (4-32) instead of (5-40), and adapting the format of 

equations (4-36) through (4-46) to equation (5-48), let 

a = ln k + ln sin z - n ln tan (z /2) 
0 1 1 

b = ln tan (z/2) 

c = ln sin z 

where a is not a radius of the Earth here. Then equation (5-48) may be 

written 

ln k =a+ nb- c 

If (5-40) is changed as follows, 
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then 

8E/8a = 2 EPCa + nb - c) = 0 

8E/8n = 2 EPCa + nb - c)b = 0 

Separating and transposing, 

a EP + n EPb = EPc 

a EPb + n EPb
2 

= EPbc 

These equations can be readily solved for unknowns a and n, in the 

manner of equations (4-43) through (4-46). From (5-42) and (5-77), k 
0 

can be found from a and n. 

(2) Minimum-Error Oblique Mercator Projection 

To apply the above formulas to the Oblique Mercator, n is made 

zero. In these equations no indeterminates result, but equation (5-65) 

reduces to three simultaneous equations in three unknowns (6 <1> , 6)... , 
p p 

k ), after every term showing an n is omitted). 
0 

Equations (5-41 ), (5-50), and (5-51) simplify as follows, since z = 
~ 

90° from equation (5-42), 

k = k /sin z 
0 

8k/8<1> = - (k/tan z) az/8<1> 
p p 

8k/8)... = - (k/tan z) az/8)... 
p p 

Equations (5-43), and (5-53) through (5-55) are unchanged. 

For rectangular coordinates of the final projection, 

x = Rk arctan {[tan <1> cos <1> - sin <1> cos (').... - )... )]/ 
0 2 p p p 

[sin (').... - )... )]} 
p 

y = (lfz)Rk ln [(1 + cos z)/(1 - cos z)] 
0 

Where the origin of the (x,y) axes occurs at <1> = 0 and )... = )... + 90°, with 
p 

the x axis lying along the central line (z = 90°), x increasing easterly. 

If the location of the pole is rounded off, k may be readjusted by 
0 

using equations (5-77) through (5-85), but with n = 0. Thus, equations 

(5-82) 

(5-83) 

(5-84) 

(5-85) 

(5-86) 

(5-87) 

(5-88) 

(5-89) 

(5-90) 
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(5-77), (S-80), and (5-82) become as follows, with equations (5-78) and 

(5-83) through (5-85) omitted: 

a= ln k 
0 

ln k = a - c 

a= I:Pc/EP 

where P is the weighting, and c is found from (5-79) and (5-43). 

(3) Minimum-Error Oblique Stereographic Projection 

To apply the oblique conformal conic projection to the oblique 

Stereographic, the cone constant!! is set equal to 1. From equation 

(5-42), z = 0, and equation (5-41) is indeterminate, but, using 
l 

Stereographic projection formulas, (5-41) may be written as follows: 

k = 2 k /0 + cos z) 
0 

The rectangular coordinates may be found from the parameters as 

follows: 

x = Rk cos 4> sin (A, - A. ) 
p 

y = Rk [cos <P sin 4> - sin 4> cos 4> cos (A, - "- )] p p p 

where z is found from equation (5-43) and k from (5-94). The origin of 

the (x,y) axes is now at (<j> ,A. ), and they axis lies along the central 
' p p 

meridian A. , withy increasing northerly. Equations (5-50) and (5-51) 
p 

become the following: 

ak/a<j> = [k(l - cos z)/sin z]az/a<j> 
p p 

= -ky/(2Rk ) 
0 

ak/aA. = [k(l - cos z)/sin z]az;a"' 
p p 

= -kx cos 4> /(2Rk ) 
p 0 

Equations (5-43) and (5-53) through (5-55) are unchanged, and equation 

(5-65) becomes the same set of three simultaneous equations that it did 

for the Oblique Mercator. Now, however, (<J> ,"- ) not only represent the 
p p 

transformed pole; they are also the center of the projection. 
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If the location of the pole is rounded off, k may be readjusted using 
0 

equation (5-94) and the procedure in equations (5-77) through (5-85), 

with the following result: 

ln 2k = [EP ln C1 + cos z)]/EP 
0 

(4) Minimum-Error Transverse Mercator Projection 

If the cone constant n is set equal to zero and the pole of the pro­

jection is placed on the Equator (<I> = 0), equations (5-86) of the Oblique 
p 

Mercator and (5-53) apply without change. Normally parameters are 

described in terms of central meridian "- , rather than longitude "- of 
0 p 

the pole, but "- = "- + 90°. Therefore d"- = d"- , so (5-88) may be 
0 p- 0 p 

rewritten with this substitution. Equations (5-43) and (5-55) then 

simplify, using -90° instead of ±90°, to 

z = arccos [cos <1> sin <"- - "- )] 
0 

azta"- = cos <I> cos <"- - "' )/sin z 
0 0 

Equation (5-65) reduces to 

[

aH"- >ta"-
o 0 

atck )la"-
o 0 

at<"- )tak l 0 0 

a£Ck )lak 
0 0 

[ ::: l = 
• 

for which solution by determinants is most straightforward: 

!:::."- = [f<k ) at<"- )lak - t<"- > atck )lak 11n 
0 0 0 0 0 0 0 

t:.k = [f<"- > at<"- )lak - fCk ) aH"- )Ia"- ltD 
0 0 0 0 0 0 0 

where 

For rectangular coordinates, 

x = -Rk ln tan (z/2) 
0 

y = Rk arctan [tan <1>/cos <"- - "- )] 
0 2 0 

[

-f<"-0)] 
-f(k ) 

0 

The origin of {x,y) axes is at <1> = 0 and "- = "- ; the y axis coincides with 
0 

the central meridian"- , y increasing northerly. 
0 

{5-99) 
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If A. is rounded off, k may be readjusted using equations CS-91 ), 
0 0 

{S-93), {5-79), and {5-10 1). 

For any of these projections, the RMSE r may be found thus: 

(5) Minimum-Error Standard Conformal Map Projections for 
North and South America 

The above computations were applied to map projections for North 

America, South America, both together, and just Alaska. Considering 

North America, for example, 162 points were used with weights propor­

tional to the area centered on each point. Nearby coastal waters were 

included, as well as all water bodies essentially surrounded by North 

American land, such as Baffin Bay and the Caribbean Sea. The points 

are so distributed that regions do not exceed so x so of great-circle 

distance. 

Table 6 lists the parameters, both as originally calculated, and as 

adjusted for rounded off latitude and {or) longitude of the central merid­

ian or pole. It will be noted that the range of scale factors for North 

America is slightly higher for the oblique conformal conic than for the 

Oblique Mercator, even though the RMSE is lower, as it should be because 

of the greater flexibility of the former. This results from the geographic 

distribution of points for the region involved. If the computation were 

designed to find the minimum range of scale factors, the oblique con­

formal conic would have a lower range than the Oblique Mercator, 

although the RMSE should be higher. 

The values of RMSE quantitatively show that for North America the 

oblique conformal conic {0.0245) is less distorted in overall scale than 

the Oblique Mercator {0.0326), which is considerably better than either 

the oblique Stereographic {0.0456) or Transverse Mercator {0.0487). 

These conclusions are based on using least squares and a particular pat­

tern of points and weights. The pole for the minimum-error oblique con­

formal conic falls in mid-continent, and is therefore useless, since a dis­

continuity occurs {see figures 16 and 17>. Starting iteration at a different 

point, a minimum RMSE of 0.0312 was found with the pole at 11.21° N., 

156.42° W., and a cone constant of 0.4277. The various minimum-error 

projections of North America are shown in figures 14 through 18. The 

oblique conformal conic projections of figures 16 and 17 are identical, 

except that the cone is opened in a different orientation. Although the 
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Table 6.--Minimum-error conformal map proJections for North and 
South America and Alaska 

North and 
North America South America South America Alaska 

No. of points used 162 107 263 177 

Transverse Mercator: 

~ -93.21° -58.53° -72.14° -158.94° 
0 

k 0.9588 0.9743 0.9401 0.99169 
0 

RMSE 0.0487 0.0285 0.0694 0.01096 

Rounded: 

~ -95° -60° -70° -160° 
0 

k 0.9617 0.9760 0.9464 0.99182 
0 

RMSE 0.0490 0.0291 0.0706 0.01104 

Range 0.2503 0.1240 0.3156 0.04634 

Oblique Mercator: 

<Pp 11.70° 11.68° 19.00° -26.89° 

~ 10.57° 29.38~ 24.46° -139.44° p 
k 0.96 70 0.9731 0.9670 0.99661 

0 

RMSE 0.0326 0.026 7 0.0354 0.00318 

Rounded: 

<Pp 10° 10° 20° -25° 

~ 10° 30° 25° -140° 
p 

k 0.9680 0.9743 0.9686 0.99554 
0 

RMSE 0.0332 0.0268 0.0356 0.00419 

Range 0.1233 0.1038 0.1753 0.01501 

Oblique Conformal Conic: 

<Pp 49.80° -19.92° 22.48° 39.32° 

~ -99.45° -64.55° 13.71° -146.73° p 
n 0.9338 0.9566 0.1449 0.91414 

k 0.9799. 0.9868 0.9664 0.99723 
0 

RMSE 0.0245 0.0142 0.0342 0.00280 
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Table 6.---Minimum-error conformal map projections for North and 
South America and Alaska (cont•d.) 

North and 
North America South America South America Alaska 

Oblique Conformal Conic: (Cont'd) 

Rounded: 

<l>p lOol -2502 20° 40° 

}.. -155° 1 -75o2 15° -145° p 
n 0.4241 0.9352 0.1146 0.91723 

k 0.9695 0.9824 0.9681 0.99714 
0 

RMSE 0.0314 0.0201 0.0349 0.00286 

Range 0.1339 0.0889 0.1743 0.01025 

Oblique Stereographic: 

<l>p 49.54° -18.83° 16.37° 59.14° 

}.. -97.63° -62.92° -91.40° -158.66° 
p 

k 0.9432 0.9621 0.8262 0.99361 
0 

RMSE 0.0456 0.02 77 0.1278 0.00543 

Rounded: 

<l>p 50° -20° 15° 60° 

}.. -100° -65° -90° -160° 
p 

k 0.9457 0.9618 0.8470 0.99376 
0 

RMSE 0.0459 0.0282 0.1309 0.00549 

Range 0.2110 0.1134 0.6339 0.02297 

Conformal Transformation 

from Oblique Mercator: 
3 

No. of Coefficients: 20 20 20 12 

min. k 0.9681 0.9774 0.9662 0.99707 

RMSE 0.0170 0.0119 0.0200 0.00171 

Range 0.0838 0.0512 0.1033 0.00765 
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Table 6.- ·-Minimum-error conformal map proJections for North and 
South America and Alaska (cont'd.) 

Standard Maps Used for These Regions: 

South America North America 

Transverse Mercator: Bipolar Oblique Conic Conformal: 

"' 0 

k 
0 

RMSE 

Range 

-100° 

0.9260 

0.0603 

0.240 

Bipolar Oblique Conic Conformal: 

<Pp 45° 

"' -19.9933° 

<Pp -20° 

"' -110° p 
n 0.63056 

k 0.9652 
0 

RMSE 0.0278 

Range 0.1022 

Alaska p 
n 0.63056 Lambert Conformal Conic: 4 

k 0.9652 
0 <1>1 

RMSE 0.0388 <1>2 
Range 0.177 RMSE 

Range 

Notes: All these computations are based on the Earth taken as a sphere. 

"- = central meridian, degrees 
0 

<P p = latitude of pole of projection, degrees 

'A. = longitude of pole of projection, degrees 
p 
k = central scale factor 

0 

n = cone constant 

C<P 
1

, <P 
2

) = standard parallels 

RMSE = root-mean-square error for all points used 

55° 

65° 

0.00539 

0.02097 

Rounded means the pole or central meridian is rounded to nearest 

5°, and other parameters are adjusted for minimum RMSE under these 

conditions. 

Range = difference between maximum and minimum scale factors at 

given points (min. scale factor is k ). 
0 

1 this is rounded from another. iteration leading to a pole at 11.2° latitude 
and -156.4° longitude, but which has an RMSE of 0.0312. The 49.8° pole 
has a lower RMSE, but it is on land. Moving the pole to nearby waters 
led to a 0.04()- RMSE. 

2 moved and rounded to take pole off land, otherwise creating 
discontinuity in map. 

3 Starting with parameters of optimum Oblique Mercator (not rounded 
off), listed in this table. 

4 Albers Equal-Area Conic normally used with same standard 
parallels, Lambert Conformal Conic listed for consistency. 

RMSE is lower for these than for the other alternates, the interruption is 

unacceptable in any direction. For other regions with different shapes, 

the relative preferability of projections changes, except that the oblique 

conformal conic would have to provide the lowest RMSE of the four, 
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Figure 14.- - Minimum-error Transverse Mercator projection of North 
America, with central meridian at longitude 93.21° W. 

because of having more degrees of freedom. If regions were weighted in 

proportion to population or commercial income, the conclusions could be 

different for the same region. If conformal transformations with com­

plex polynomial coefficients are used {figure 19) {see preceding and 

subsequent sections), a much lower RMSE is obtained. 

The nine values of RMSE for North America in table 6 may further 

be compared with those calculated for two existing maps of North 

America issued by the U.S. Geological Survey. The parameters for these 

were based upon minimizing the range of scale factor variation and not 

least squares. For one map the base is the Bipolar Oblique Conic Con­

formal projection developed by Miller and Briesemeister of the American 

Geographical Society {Miller, 1941; Snyder, 1982, p. 111-121). The North 

American portion is almost entirely identical to an oblique conformal 

conic with transformed pole at latitude 45° N. and longitude 19.9933° W. 

The only portion varying slightly is in southern Central America and the 

Caribbean Sea, due to the bipolar concept. Assuming the single cone, 
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Figure 15.--Minimum-error Oblique Mercator projection of North 
America. The pole of projection is placed at latitude 11.70° 
N., longitude 10.57° E. 
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the RMSE for the same 162 points is 0.0388 as shown. A later USGS map 

of North America is based on the Transverse Mercator, with a central 

meridian of longitude 100° W. and central scale factor of 0.926, for 

which the RMSE is 0.0603. 

(6) Minimum-Error Combinations of Standard Conformal 
Map Projection Bases and Complex Transformations 

Another step in the optimization of map projection selection for a 

given region is to iterate not only the complex coefficients but also the 

latitude <t> and longitude "- of the transformed pole of the oblique con-
P p 

formal conic base projection and the cone constant n simultaneously. It 

is not sufficient merely to determine the optimum base projection from 

the foregoing least-squares iteration, because the parameters are some­

what different if a complex transformation of a given degree is also 

imposed. It will be pointed out later, however, that the following deriva­

tions imply more versatility in parameter selection than actually exists, 

due to the difficulty in getting some combinations to iterate to converg­

ence. Equations (5-3) through (5-36) use an oblique Stereographic base 

map with a fixed pole, but some of the equations .apply to the more 

general problem. 

The general equations (5-40), showing the basis for evaluating E, and 

(5-44) through (5-46), which differentiate E with respect to <t> , }.. , and p p 
n, are used here, as well as the following, which differentiate E with 

respect to the complex coefficients: 

m 
fCAq> = aE/aAq = 2 ~= 1Pj Ckj- uak,;aAq 

m 
f(B ) = aE/aB = 2 I: Pj Ck. - 1 )akj/aB 

q q . J q 
J=l 

Equation (5-47), differentiating E with respect to the central scale 

coefficient k , may be omitted, since k is directly multiplied by 
0 0 

coefficients A and B , and attempts to adjust it as well would be 
q q 

redundant. Therefore k is taken as a constant 1. 
0 

The equations for k as a function of the scale factor k• of the base 

projection and of the complex coefficients are the same as equations 

( 5 -11) through ( 5 -13). 
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Figure 16.--Minimum-error oblique conformal conic projection of North 
America, cone open toward west. The pole of projection is 
placed at latitude 49.80° N., longitude 99.45° W., with a cone 
constant of 0.9338. 

To obtain ak./&p for use in equation (5-44), equation (5-13) is 
J p 

differentiated with respect to <1> : 
p 

ak/&p = (1/z)(F 2 
+ F 2) -lfz(2F aF ta<t> + 2F aF /&p ) 

p 1 2 l 1 p 2 2 p 

+ (F 2 + F 2)1/z ak'/&p 
1 2 p 

= [(k')
2
/k]CF aF /&p + F aF /&p ) + Ck/k')ak'/<34> 

11 p 2 2 p p 

The value of ak'/&p may be found from equations (5-50) for the oblique 
p 

conformal conic, (5-87) for the Oblique Mercator, and (5-95) for the 

oblique Stereographic, in all of which k is the same term ask' above. 

For .the first partial derivatives, however, 

(5-112) 
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Figure 17 .--Minimum-error oblique conformal conic projection of North 
America. Same parameters as figure 16, but cone open 
toward north-northeast. Neither arrangement is acceptable, 
although the root-mean-square error is lower for figures 16 
and 17 than for 14, 15, and 18. 

aF 
1
/0:pp = Ej(j- l)pj- 2 [Ajsin (j- 1)9 + Bjcos (j- 1)9] 

ap/&pp + E)(j- l)pj- 1 [Ajcos (j- 1)9 

- B
1
sin (j - 1)9]00/3:1> P 

For the partial derivatives ap/O:p and a9/&l> in equation (5-113), 
p p 

equations for p and 9 are needed. Although p and 9 for the 

Stereographic are given in (5-9) and (5-10), more general formulas, 

covering all base maps, are as follows: 

tan 9 = (y1 
- y I )/(X1 

- X I) 
0 0 

111 
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Figure 18.--Minimum-error oblique Stereographic projection of North 
America, with the center of projection at latitude 49.54°N., 
longitude 97 .63°W. 

where (x' ,y') are rectangular coordinates of the base projection, and 

(x ',y ') are coordinates of an arbitrary origin roughly centered among 
0 0 

the m points chosen for the least-squares iteration. The location of this 

origin does not affect the final RMSE of the coefficients, although it 

affects their values. 

Differentiating p and 9 with respect to <1> , using only equations p ' 
(5-114) and (5 - 114a), 

2 2 - 1/a · ap/&J> = (1/a)[(x' -X ') + (y' - y ') ] [2(x' - X ')ax'/&J> 
p 0 0 0 p 

+ 2(y' - y ')ey' /act> ] 
0 p 

= (cos 9)ax'/&l> +(sin 9)ey'/&l> 
p . p 

2 
(sec 9)a9/&J> = [(x' - x ')ey'/&1> - (y' - y ')ax'/&1> ]/ p 0 p 0 p 

(x' - x ') 2 

0 

(5-115) 
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Figure 19.- -Minimum-error complex conformal projection of North 
America, using 20 coefficients 00 pairs of complex 
numbers). Note the overlap in the lower right-hand 
corner. It is deliberately shown here, but would not 
be permissible on a finished map. 
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aa;(3q> = (cos
2
a/p cos a>~··;~ - (tan a cos

2
a/ p . vy ~~ 

p cos a>ax· 1<34> 
p 

= (cos a;p)ey'l&t> - (sin alp>ax'l&t> p p 

After equations (5-115) and (5-116) are substituted into (5-113), the 

latter simplifies to: 

aF 1<34> = I:j(j- 1)pj- 2 {(Ajax'/<3q> - Bjey'/<34> ]sin (j- 2>a 
1 p p p 

+ [AJey'/&t>P + B,ax•;<3q>P]cos (j- 2>a} 

Similarly differentiating (5-12), the equation for F , with respect to <t> 
2 p 

and substituting from equations (5-115) and (5-116), 

aF 1<34> = Ej(j- 1)pj-2{(Ajax'/<3q> - Bjey'/<34> ]cos (j- 2)a 
2 p p p 

For the equivalent of equations (5-112), (5-117), and (5-118), but for A. 
p 

or n instead of <t> , it will be found that the new equations are identical 
p 

e:\-cept for substitution of A. , or n, respectively, in place of each usage 
p 

of <t> • This can be shown by differentiating (5-13) fork with respect to 
p 

A. or n, and proceeding as before. 
p 

To determine ax'/&1> , etc., it is convenient to use the projection 
p 

equations for polar and rectangular coordinates of the base map. For the 

oblique conformal conic, in addition to equations (5-41) through (5-43), 

they include (5-72) through (5-76). In these equations panda should be 

given primes to distinguish them from panda of equations (5-114) 

through (5-118), while x andy are given primes to distinguish them from 

x andy of the complex transformation. Differentiating (5-75) and (5-76), 

which are standard equations for converting from polar to rectangular 

coordinates, 

ax· 1<34> = -p• cos a· caa· 1&1> > - sin a· cap' 1<34> > p p p 

av· 1&1> = p' sin a· caa· 1<34> ) - cos a· cap• 1<34> ) p p p 

These equations are identical to those for ax•;aA. , ax•;an, etc., except 
p 

for substitution of A. or n for <t> • This does not apply to the following p p 

(5-116) 

(5-117) 

(5-118) 

(5-119) 

(5-120) 
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equations for differentials to use in (5-119) and (5-120). From (5-74) and 

(5-72), 

ael /&.p : n cos 2 A. I COS 4> sin (A, - A. ) COS z/[cos 4> sin 4> 
p p p 

- sin 4> cos 4> cos (A, - A. )] 2 

p p 

Since k' = np1 /R sin z, formed by combining (5-41) and (5-73), the 

following may be obtained from (5-73) and (5-43), 

ap'/&p = -k'R[cos 4> sin 4>- sin 4> cos 4> cos CA.- A. )]sin z p p p p 

Similarly, 

ael ;aA. : n COS 4> COS 
2 A. I [sin 4> COS 4> 

p p 

- cos 4> sin 4> cos (A, - A. )]/ 
p p 

[cos 4> sin 4> - sin 4> cos 4> cos (A, - A. )]
2 

p p ' p 

ap~ taA. = -k' R cos 4> cos 4> sin CA. - A. )/sin z 
p p p 

ae•;an = ~· 

ap•tan = p'[ln tan (z/2) - (%) ln ((1 - n)/(1 + n))- 1/n] 

= p'{(1/2) ln [(1 - cos z)(l + n)/((1 + cos z)(l - n))] - 1/n} 

This provides all required terms for (5-112), whether for 4> , ~ , or n, 
p p 

except for the partial derivatives of k' with respect to the parameters, 

which are the same as (5-50) through (5-52), (5-54), and (5-55), replacing 

k with k'. Equation (5-52) may be rewritten 

ak'/an = (k'/2) ln [(1 - cos z)(l + n)/((1 + cos z)(l - n))] 

to reduce computation. 

For uniformity, equations corresponding to (5-112), (5-113), and 

(5-117) may be developed for aktaAj and aktaBj, instead of using (5-14) 

and (5-15): Equation (5-112) may be used intact except for substitution 

of Aj or B. in place of 4> , but the last term may be eliminated, since 
J p 
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(5-121) 

(5-122} 

(5-123} 

(5-124} 

(5-125) 

(5-126) 

(5-127} 

(5-128} 
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ak'/aB. = o 
J 

The derivatives corresponding to (5-113) and (5-117>, but with respect to 

Aj and Bj, are simpler. Differentiating (5-11) and (5-12) with respect to 

these coefficients, 

aF 
1
/aAj = jpj- 1 sin (j - 1)9 

aF 
2
/aAJ = JPJ-

1 
coso- 1>9 

aF 
1
/aBJ = JPJ-

1 
cos <J - u9 = aF 

2
/aA

1 

aF 
2
/aBJ = -jpj-

1 
sin (j- 1)9 = -aF 

1
/aAJ 

To obtain optimum values of AJ, BJ, <l>p' ~p' and n, matrices of the 

form (5-65) must be obtained, using equations (5-59) through (5-61 ), 

(5-63), and (5-64), without change. In addition to those shown in (5-65), 

partial derivatives involving Aj and Bj must be included. 

Those involving only Aj and Bj are shown in (5-19) and (5-20), except 

that the second derivatives may be omitted, so that 

m 
aHA >laA = 2 I: cak 1aA ><ak 1aA > q g p q p g 

P=1 

m 
afcA )laB = af<B )laA = 2 I: cak 1aA ><ak 1aB > q g g q p q p g 

P=1 

m 
a£<B >laB = 2 I: cak 1aB ><ak 1aN > q g p q p g 

P=1 

Those relating Aj and <l>p' etc., are comparable: 

m 
aHAJ>Ia<t> = aH<I> )laAJ = 2 I: cak /aA,>Cak 1a<t> > p p p p p 

P=1 

and so forth. Equation (5-65) then becomes, using an example with A , 
1 

A , B , <1> , ~ , and n, letting B = 0, 
2 2 p p 1 

(5-129) 

(5-130) 

(5-131) 

(5-132) 

(5-133) 

(5-134) 

(5-135) 

(5-136) 

(5-137> 
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afcA )faA aHA )faA aHA )laB afcA >t&t> aHA )Ia}.. 
l l 1. 2 l 2 l p l p 

aHA )faA aHA >taA aHA >taB aHA )/&J> aHA >ta}.. 
2 l 2 2 2 2 2 p 2 p 

afcB )faA afcB )faA - aHB )laB aHB )/&J> aHB >ta}.. 
2 l 2 2 2 2 2 p 2 p 

af<<l> )faA p 1 
aH<I> )faA p 2 

af<<l> )laB p 2 
af<<l> >t&t> p p af<<l> )Ia}.. p p 

aH}.. >taA afc}.. >taA aH}.. )laB afC}.. >t&t> afC}.. )Ia}.. 
p l p 2 p 2 p p p p 

afCn)laA afCn)laA aHn>taB af(n)/&f> aHn>ta}.. 
l 2 2 p p 

t:.A -HA ) 
l 1 

t:.A -f(A ) 
2 2 

t:.B -f(B ) 
2 2 

• 
6.<1> p -f(<l> ) p 

/).}.. -H}.. ) 
p p 

t:.n -f(n) 

Its solution follows the pattern described for (5-65). Because of the rela­

tionships as expressed in (5-135) and (5-137), the square matrix is ac­

tually symmetric. In summary, the first matrix is composed of deriva­

tives found from equations of the type (5-134) through (5-137> and (5-59) 

through (5-64). The terms for these equations are found from (5-112) 

and its similar variations for other variables, and in turn from (5-41) 

through (5-43), (5-·50) through (5-55), replacing k with k', (5-11 ), (5-12), 

(5-117) through (5 - 120) and all their variations for other variables, 

(5-121) through (5-133), and (5-73) through (5-76). 

The choice of initial estimates for parameters of <1> , }.. , and n is 
p p 

even more critical when the complex coefficients are involved, although 

in this case the initial estimates may again be 1 for A and zero for 
l 

other coefficients. 

While the above appears to be an ideal way to find a minimum-error 

conformal map projection, it is not necessarily the case, even when the 

program properly iterates. Examples were given in table 6 and figures 

16 and 17 in which the pole of the "optimum" oblique conformal conic 

projection occurs well inland in the region studied with the resulting 

unacceptable gore. 

Therefore, one should incorporate into a general optimizing program 

the ability to hold one or more of the variables constant. This is done by 

117 

aHA
1 
)!an 

aHA )/an 
2 

afcB )!an 
2 

af<<l> )!an p 

afC}.. >tan p 

af(n)/an 

(5-138) 
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striking out any row and column in which each element involves a differ­

ential of the variable to be eliminated. Thus, if the pole (<f> , ~ ) is to be 
p p 

held constant, rows 4 and 5 and columns 4 and 5 of the first matrix in 

equation (5-138) and rows 4 and 5 of the second and third matrices are 

all deleted. 

The cone constant can similarly be held constant, but if it is made 0 

or 1, fixing the base projection as the Oblique Mercator or oblique 

Stereographic, respectively, some equations become indeterminate, in 

addition to those mentioned in the previous section. For the Oblique 

Mercator, equations (5-86), (5-89), and (5-90) apply, adding primes to x 

andy, and deleting k . Differentiating, 
0 

ax'/&1> = -R cos z cos
2
Cx'/R)/cos 4> sin(~-~ ) p p 

ey'/&1> = RCk')
2
[cos 4> sin 4> - sin 4> cos 4> cos (~ - ~ )] p p p p 

ax• ta~ = R cos 
2 

Cx' /R )[cos 4> tan 4> cos (~ - ~ ) - sin 4> )/ p p p p 

sin2(~ - ~ ) 
p 

ay•ta~ = RCk')
2 

cos 4> cos 4> sin c~ - ~ > p p p 

For other partials, equations (5-54), (5-55), (5-87), and (5-88) apply. 

For the oblique Stereographic, equations (5-94) through (5-99) 

apply. After adding primes to x, y, and k and deleting k , differentiation 
0 

leads to the following: 

ax• /&p = -x' y' /2 R 
p 

ey'/a<J> = -Rk' cos z - Cy') 2 /2R p 

ax•ta~ = -Rk' cos 4> cos c~ - ~ > - Cx')
2 

cos 4> /2R p p p 

ay• ta~ = -x' sin 4> - x' y' cos 4> 12 R p p p 

The equations for the GSSO (50-State) projection described earlier in this 

bulletin, although involving the Stereographic, do not include the above 

equations, since the position of the pole-of projection (<f> , ~ ) is held 
p p 

constant for GSSO computations. 

In practice, the versatility in map projection optimization is not as 

great as the foregoing derivations might indicate. A number of attempts 

were made to iterate to convergence with a variety of constraints, using 

(5-139) 

(5-140) 

(5-141) 

(5-142) 

(5-143) 

(5-144) 

(5-145) 

(5-146) 
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the 162 weighted points selected for establishing a map of North 

America. If the cone constant n is fixed at zero (the Oblique Mercator) 

and the pole and complex coefficients are allowed to seek optimum 

values, only first and second order complex coefficients could be made 

to iterate to convergence. With a cone constant of 0.5, only first- to 

third-order complex coefficients could be used, and with a cone constant 

of 1.0, only the first-order (which is equivalent to adjusting only k in 
0 

earlier equations). If the pole is also fixed, the complex order can 

generally be increased indefinitely. 

As a further refinement, the development of an optimum projection 

may be applied to the ellipsoid, since for moderately sized regions the 

scale variation is small enough to make ellipsoidal corrections worth­

while. In practice, the parameters obtained are close to those obtained 

using spherical formulas, so the spherical optimum may be obtained and 

then used in ellipsoidal formulas with almost negligible variation from 

the true ellipsoidal optimum. The additional complication is relatively 

minimal, since the change may involve merely a substitution of con­

formal latitude for geographic latitude, as was done for the GS50 projec­

tion. This is satisfactory, since the lines of constant scale are not fol­

lowing a particular parallel or meridian. 

For the oblique conformal conic, using conformal latitude x, 

2 2 % 
k 1 = np• cos x (1 - e sin <1>> /(a sin z cos <I>) 

n/2 2 2 1/z 
= nF[(l - cos z)/(1 + cos z)] cos X (1 - e sin <1>> I 

(sin z cos <I>) 

where nF is a constant equal to the right side of equation (5-6 7) with 

k =1. Differentiation is eased by conversion to the logarithm form: 
0 

ln k 1 = ln(nF) + (n/2) ln (1 - cos z) - (n/2) ln (1 + cos z) 

2 2 1/z 
- ln sin z + ln [cos x (1 - e sin <1>> /cos <1>1 

Differentiating with respect to x , the conformal latitude of the pole, 
p 

cak· ;ax )/k 1 = [(n/2) sin z /(1 - cos z) + (n/2) sin z/(1 + cos z) 
p 

- cos z/sin z] aztax 
p 

ak· ;ax = k 1 (n - cos z)(az/ax )/sin z 
p p 
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(5-147) 

(5-148) 

(5-149) 

(5-150) 



120 COMPUTER-ASSISTED MAP PROJECTION RESEARCH 

Substituting x. and x. in place of <t> and <t> in equation (5-43) for z, the 
p p 

differential az/ax. is the same as (5 - 54) with the same substitutions. 
p 

Once X. is computed, using these formulas, it may be converted to <t> p p 
using the inverse of equation {5-3}. Thus, provided that k' is calculated 

according to {5-147) rather than {5- 41), equation {5-150) is the same as 

{5-50) with the substitution of {X., x. ) for {<f>,<t> ). Other equations for the 
p p 

spherical oblique conformal conic apply with the same substitution. For 

the ellipsoidal Oblique Mercator, the spherical equations also apply with 

the x. substitutions, except that the spherical k' is multiplied by cos x. {1 

2 2 1/2 
- e sin <f>) /cos <f>, and R is replaced by a. 

For the ellipsoidal oblique Stereographic, equations {5-6) through 

{5-8}, {5-26) and {5- 2 7) for g, s, k', x', and y' apply without change, while 

(5-97), {5-98), and {5-143) through {5- 146) become the following, 

respectively: 

ak·;ax. = -k'y'/C2Rk > 
p 0 

ak'/a).. = -k'x'cos x. /{2Rk ) 
p p 0 

ax· ;ax. = - x'y' /2a 
p 

2 ay•;ax. = -as cos z - {y') /2a 
p 

ax·;a).. = -as cos X. cos ('}.., - )., ) - {x')2 cos X. /2a p p p 

ay• ;a).. = -x' sin x. - x'y' cos x. /2a p p p 

c. MINIMUM-ERROR PSEUDOCYLINDRICAL EQUAL-AREA PROJECTIONS 

A type of map projection very different from the conformal projec­

tions evaluated for a given region is the pseudocylindrical. With straight, 

horizontal parallels of latitude, in the normal form, and curved meridians 

converging to a point or a line shorter than the Equator, it is impossible 

for a pseudocylindrical projection to be conformal. On the other hand, 

numerous equal-area pseudocylindricals have been developed, and there 

are infinite possibilities. Normally these projections are used for world 

maps. 

It is probably less important to consider minimum-error pseudo­

cylindrical projections of the world than to devise minimum-error 

regional maps- -conformal, equal-area or otherwise. To indicate the 

application of least squares and the computer to the design of such a 

projection, however, some examples of the procedure will be shown. 

{5-150a) 

{5-150b) 

{5-1 50 c) 

{5-150d) 

{5-150e) 

{5-150f) 
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It is known that normal equal-area pseudocylindricals, with either 

points or lines as poles, fit the following general equations: 

X = R 
2
("- - "' ) cos <1>/(dy/d<t>> 

0 

y = R fC<t>> 

where (x,y) are rectangular coordinates with origin at the intersection of 

the Equator and the central meridian <"- = 0), the X axis coincides with 
0 

the Equator, x increases easterly, R is the radius of the sphere, (<f>,"-> are 

latitude/longitude of a given point, and f(<t>) is any function of <f>. 

(1) A Pointed-Polar Pseudocylindrical Projection 

If the pole is to be shown as a point, fC<t>) may be written as a poly­

nomial as follows, omitting even powers of <t> since there should be sym­

metry about the Equator, 

y = RCA <t> +A <1>
3 

+A <1>
5 

+ ... ) 
~ 3 5 

Then 

2 4 
dy/d<t> = RCA + 3A <t> + 5A <t> + ... ) 

~ 3 5 

which may be substituted into equation (5-151). The basis for minimizing 

error may l>e taken as follows (another basis will be discussed later), 

adapting equation (4-21): 

m 

E = E [(h. - 1)2 + Ckj- 1) 2
] cos <t>. 

)= 1 ' J 

where his the scale factor along the meridian and k is the scale factor 

along the parallel of latitude for each of the m given points. To compute 

h and k for a normal pseudocylindrical, since y is not a function of "-, 

h = Cl/R}[ax/exp)
2 

+ Cdy/d<f>)
2

] 
11

" 

k = cax;a"->ICR cos <t>> 

From (5-151), (5-153}, and (5-154}, 
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(5-151} 

(5-152) 

(5-153} 

(5-154) 

(5-155) 

(5-156} 

(5-157) 
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ax/&f> = -R 
3 (~ - ~ ) cos 4> (6A 4> + 20A 4> 3 

+ ... )/(dy/d<J>)
2 

0 3 5 

- R 2(~ - ~ ) sin <J>/(dy/d<t>> 
0 

For convenience, let 

2 4 
F = A + 3A 4> + SA <1> + .•. 

l ]. 3 5 

F = 6A <I> + 20A <1> 
3 

+ ••• 
2 3 5 

Substituting into (5-158) and (5-159), 

ax;aq, = -R(~ - ~ }[(F /F 2) cos 4> + <1/F ) sin <I>] 
0 2 ]. ]. 

ax;a~ = R(cos <j>)/F 
l 

Substituting into (5-156) and (5-157), 

2 2 2 2 1/z 
h = {(~ - ~ ) [(F /F ) cos <I> + 0/F ) sin <I>] + F } 

0 2 l l l 

k = 1/F 
l 

To minimize E, it is first differentiated with respect to each constant 

A , omitting the limits in writing E: 
n 

aE/aAn = f<An> = 2 E[ChJ - 1 ><ah{aAn> + ck1 - 1 ><ak{aAn>1 

cos <I>; 

From (5-156) and (5-157), 

{R(<ax/&f>)2 + (dy/d<t>>2l lfz} 

ak/aA = ca2x/a~aA >I<R cos <t>> n n 

From equations (5-154) and (5-160) through (5-163), omitting 

intermediate steps, 

(5-158) 

(5-159) 

(5-160) 

(5-161) 

(5-162) 

(5-163) 

(5-164) 

(5-165) 

(5-166) 

(5-167) 

(5-168) 



MINIMUM-ERROR MAP PROJECTIONS 

2 2 n-2 n-1 
a x/&paA = -[RC}.. - }.. )n/F ] {[(n - 1 )4> - 24> CF /F )] 

n o 1 2 1 

n-1 
cos 4> - 4> sin 4>} 

2 a n-1 2 a x/a}.. A = - Rn 4> cos 4>/F 
n 1 

For the derivatives of equation (5-166) with respect to each constant A , 
n 

using p as a subscript to indicate either a different or the same constant: 

+ ch. - 1 )Ca
2
h.laA aA ) + ck. - 1 )Ca

2
k.laA a A )J 

J J n p J J n p 

cos <t>. 
J 

To simplify further derivations with minimal increase in iterations, these 

second derivatives may be ignored, so that 

In order to iterate equation (5-166) to near zero for each value of n, to 

find the minimum, the following equations are placed in matrix form for 

solution by standard methods: 

afCA )faA aHA )faA afCA )faA 6-A --f(A ) 
1 1 1 3 1 s 1 1 

afCA )faA afCA )faA afCA )faA • 6-A - fCA ) 
3 1 3 3 3 5 3 3 

af<A )faA afcA )faA af<A )faA 6-A -- fCA ) 
s 1 5 3 5 5 5 5 

using equations (5-154), (5-160) through (5-165), (5-169) through (5-171), 

(5-167), (5-168), (5-166) and (5-172) in order to develop the elements of 

the matrix, which, like (5-65), is symmetric. One may use initial 

estimates of 1 for A and zero for other constants, and calculate points 
1 

for say each 15° of both latitt•,de and longitude for one-fourth of the 

sphere, bounded by the central meridian, the Equator, and one of the 

outer meridians. The weighting along the Equator and central meridian 

must then be reduced to avoid double weighting in order to make the 

quadrant representative of the Earth. Furthermore, computation for 

either pole leads to indeterminant expressions in some of the above 
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(5-169) 

(5-170) 

(5-171) 

(5-172) 

(5-173) 
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equations, due to division by zero, so the latitude should be shifted to 

slightly less than 90° at that point for a northern quadrant. 

(2) A Flat-Polar Pseudocylindrical Projection 

Flat-polar pseudocylindricals, in which the poles are shown as 

straight lines shorter than the Equator, rather than as points, are 

probably used more than pointed-polar pseudocylindricals, since shape 

distortion can be less pronounced. Equations (5-151) and (5-152) apply 

also to flat-polar equal-area pseudocylindrical projections, but equations 

(5-153) and (5-154) are not satisfactory. Instead, it is desirable to use a 

derivative (dy/d<l>) which will cancel the cos <1> term in the numerator of 

(5-151) to allow a non-zero x when <1> = ±90°. This is accomplished by 

multiplying the right side of equation (5-154) by cos <1> and using new 

coefficients: 

dy/d<l> = R cos <I> CB + B <1>
2 

+ B <J>
4 

+ ••• ) 
1 3 5 

Integration to obtain y may be obtained from standard tables of integrals: 

n n-1 n-2 I <1> cos <1> d<t> = <1> (<I> sin <1> + n cos <t>> - n(n - l)J <1> cos <1> d<t> 

Integrating for the first three coefficients of the series in (5-174), 

y/R = B sin <1> + B (<I> 2 
sin <1> + 2<1> cos <1> - 2 sin <t>> + B 

1 3 5 

[<1>
3

(<1> sin <1> + 4 cos <I>)- 12(<1>
2 

sin <1> + 2<1> cos <1>- 2 sin <t>)] + ••• 

Equation (5-176) is not needed to determine the constants, but it is 

needed to compute rectangular coordinates for the final map projection. 

With derivations corresponding to those described earlier for the 

pointed-polar pseudocylindricals, let 

2 4 
F =B +B<I> +B<I> + ••• 

1 1 3 5 

F = 2B <I> + 4B <I> 
3 

+ ••• 2 3 5 

Then X= R<~- ~ )/F 
0 1 

dy/d<l> = RF cos <1> 
1. 

ax/84> = -R(~ - ~ )F /F 
2 

0 2 1 

(5-174) 

(5-175) 

(5-176) 

(5-177) 

(5-178) 

(5-179) 

(5-180) 

(5-181) 
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ax/a"- = R/F 
1 

2 n-1 a y/&J>aB = R<t> cos <t> n 

2 !lA..a n-1 3 a x/V<¥ B = -[RC"- - "- ) <t> IF ][F Cn - 1 )/<f> - 2F ] n o 1 1 2 

These equations may be substituted into (5-167), (5-168), and (5-166), 

(5-172), and (5-173), using B in place of A, and equations (5-156) and 

(5-157) instead of (5-164) and (5-165), iterating the equations to 

convergence to obtain the coefficients. For the flat-polar version, 

however, k is infinite at the poles, so the range of latitude used in 

minimizing must be limited to less than the range ±90°, and the 

constants will vary with the range chosen. 

(3) A Better Error Limitation 

Instead of using equation (5-155) as a basis for minimizing error, it 

is better to use a and bin place of hand k, where a and bare the 

relative lengths of the semiaxes of Tissot•s indicatrix, an ellipse 

representing a small circle on the Earth as portrayed on the map. The 

lengths a and bare made equal to the maximum and minimum scale 

factors at a given point, whereas hand k are not maximum and minimum 

unless the meridian intersects the parallel at a right angle. It should be 

noted that the intersection is perpendicular for the minimum-error 

conics discussed in an earlier section, while Airy•s minimum-error 

azimuthal is based on minimizing (h• - 1) and (k• - 1), where h• and k 1 are 

measured in directions perpendicular to each other. 

Without showing the derivation, the relationship between Ch,k) and 

(a,b) for an equal-area map projection is as follows: 

a= (a• + b 1)/2 

b = (a• - b 1)/2 

Adapting equation (5-155) and substituting from the above equations, 
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(5-182) 

(5-183) 

(5-184) 

(5-185) 

(5-187) 

(5-188) 

(5-189) 

(5-190) 

(5-191) 
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To replace equation (5 - 166), using equations (5-192) and (5-189), 

2 2 - 1/, 
aaj 1/aAn = (1/,)(hj + kj + 2) (2hjahj/aAn + 2kjakj/aAn) 

= <h.ah,/aA + k;ak,/aA >Ia. I 
J n n J 

Substituting from (5-194) into (5-193), 

f<A > = 2 Eo - 1/a. l><h,ah,/aA + k.ak.laA > cos <P; 
n J n J J n 

From (5-195) can be obtained the (a,b) equivalent of equation (5-172). In 

this case it is found that second derivatives cannot be ignored (the 

program will not iterate to convergence). 

af(An)laAP = 2 E{<aa,./aAn)(aa, 1/aAP)/a) I + (1 - 1/aj 1)[(ahj/aAn) 

cah.laA > + h; a
2
h;/aA aA + cak1taA ><ak,taA > 

J p n p n p 

For the second derivatives, equations (5-167) and (5- 168) are differen­

tiated with respect to A , 
p 

~A aA > + ca
2
yta<PaA ><a

2
yta<PaA > + <dy/d<P> n p n p · 

ca3y/~A aA >1 -[<axta<P><a2x/~A > + <dy/d<P> n p n 

+ Cdy/d<P>Ca
2
y/a<PaA )]/hR}h

2
R 

3 

p 

a
2
k/aA aA = ca3x/a~aA aA >I<R cos <P> n p n p 

For the additional derivatives required in equations (5-197) and (5-198), 

equations (5-169) through (5-171) are differentiated to produce 

(5-192) 

(5-193) 

(5-194) 

(5-195) 

(5-196) 

(5-197) 

(5-198) 
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3 n+p- 2 a x/&J>aA aA = 2RC~ - ~ )np <1> {(Cn + p - 2)/ 
n p o 

<I> - 3 F /F ] cos <I> - sin <1>}/F 
2 1 1 

3 n+p- 2 3 a x/a~aA a A = 2 Rnp <I> cos <1>/F 
n p 1 

Using equations (5-195) and (5-196) instead of (5-166) and (5-172), then 

equations (5-154), (5 - 160) through (5-165), (5-169) through (5-171), 

(5-167), (5-168), (5-197) through (5-201), (5-189), (5-194) and (5-173) 

may be used with (5-195) and (5-196) to determine constants A for a 
n 

minimum-error pointed-polar pseudocylindrical equal-area by iteration. 

The initial estimates of constants required trial and error before 

convergence would occur. 

The solution is analogous for the flat-polar equivalent based on 

(a,b). That is, equations (5-177), (5-178), (5-180) through (5-185), 

(5-167), (5-168), (5-156), (5-157), (5-189), (5-201) through (5-203), 

(5-194) through (5-197), and (5-173), using B instead of A, may be 

employed in order for each iteration. For the additional derivatives, 

(5-201) is valid, but from (5-184) and (5-185), 

For a minimum-error pointed-polar pseudocylindrical projection 

based on equation (5-192), and fitting points at 5° intervals of latitude 

and longitude, the coefficients are found to be 

A = 1.27326 
l. 

A = -0.04222 
3 

A = -0.02930 
5 

The RMSE orr is found to be 0.5749 from the following equivalent in 

principle to equation (5-109): 

1/2 
r = [E/E cos <1>.1 

J 

where E is found from (5-192). 
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(5-199) 

'(5-200) 

(5-201) 

(5 .... 202) 

(5-203) 

(5-204) 
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Sample coordinates for the 180th meridian of this projection, for a 

sphere of radius 1, are as follows, using equations (5-151) through (5-154): 

Latitude .1L .:L 

90° 0.00000 1.55620 

75 1.29863 1.45939 

60 1.63934 1.24797 

45 1.94968 0.97080 

30 2.21642 0.65946 

15 2.40096 0.33254 

0 2.46737 0.00000 

Symmetry exists about the Equator and central meridian, and 

meridians are equally spaced along each parallel of latitude. The 

projection is illustrated in figures 20 and 21, the latter including Tissot 

indicatrices (see also figure 9). 

For a minimum-error flat-polar pseudocylindrical based on equation 

(5-192), but limited in given points to 5° intervals of latitude and long­

itude between latitudes 75° N. and S., 

B = 1.24126 
1 

B = 0.31970 
3 

B = -0.00768 
5 

for which the RMSE is 0.4234. 

The coordinates for the 180th meridian of this projection, for a 

sphere of radius 1, are as follows, using equations (5-151), (5-174), and 

(5-176): 

Latitude .1L .:L 

90° 1.58403 1.38700 

75 1. 77844 1.32443 

60 1.98508 1.15840 

45 2.18845 0.91976 

30 2.36508 0.63463 

15 2.48715 0.32313 

0 2.53098 0.00000 



MINIMUM-ERROR MAP PROJECTIONS 

Symmetry and meridian spacing are as described for the pointed­

polar form. Each pole is thus a line 0.626 as long as the Equator on this 

projection. This projection resembles the pointed-polar form, in spite of 

the pole-line. In both cases, the central meridian varies appreciably 

from a length half that of the Equator, since the ratios are 0.631 and 

0.548, respectively. This in turn resembles Behrmann's cylindrical 

equal-area projection (figures 6 and 9) in distortion near the Equator. 

Because of the large remaining RMSE, the pseudocylindrical 

projections used are likely to remain those which have been developed in 

the past or which look satisfactory to the inventor and associates. Some, 

in fact, such as the Robinson projection, have been specifically chosen 

for the latter reason. 
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Figure 21.--Minimum-error pointed-polar pseudocylindrical equal-area projection, with 
Tissot indicatrices on a 30° graticule. 
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APPENDIX 

The Appendix consists of sections 6 through 9, which list additional 

formulas and derivations omitted from the main text. 

6. ADDITIONAL FORMULAS USED IN PROGRAM TO IDENTIFY UNMARKED 
MAP PROJECTIONS 

(1) For the ellipsoidal form of the Albers Equal-Area Conic, spherical 

equation (3-58) is replaced by the following, which is indeterminate if 

e = 0: 

2 2 2 } q = (1 - e ){sin <1>/0 - e sin <I>) - Cl/(2e)) ln [(1 - e sin <1>)/(1 + e sin <I>)] 

To find the standard parallels for the ellipsoid, substituting from (3-43), 

(3-57), and (3-62) into (3-64), then transposing, 

where q is found from (6-1), using <1> in place of <I>· With the two values 
s s 

of <1> calculated from (3-65) for the sphere as the first trial pair, 
s 

equation (6-2) may be solved with a Newton- Raphson iteration: First 

equation (6-2) is rewritten with f(<l> ) in place of the zero. 
s 

Differentiating the new equation with respect to <1> , and simplifying, 
s 

2 2 
f•(<l> ) = -2 sin <1> cos <1> [1 - e (C - nq )] + 2n(l - e ) cos <1> I s s s s s 

From these equations, using one set of iterations for each of the two 

trial values of <1> , 
s 
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(6-1) 

(6-2) 

(6-3) 

(6-4) 
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For the inverse computations, equations (3-45), (3-53), and (3-54) apply, 

but equation (3-66) is replaced by another Newton-Raphson iteration in 

which 

+ Cl/(2e)) ln ((1 - e sin <J>)/(1 + e sin <J>))]/(2 cos <t>) 

where q is found from an inversion of (3-43) and (3-57): 

2 2 2 q = CC - p n /a )/n 

and the first trial <t> is the arcsine of (q/2), from an inversion of equation 

(3-58). Other equations given for the spherical form remain unchanged. 

(2) For the Equidistant Conic for the ellipsoid (this readily simplifies for 

the sphere, if e = 0), the function in equation (3-43) is the following: 

fC<t>) = G - M 

where G is a constant, 

M = E <t> - E sin 2<t> + E sin 4<t> 
0 1 2 

and M is the distance along the meridian from the Equator to <J>. Com­

bining (3-43) and (6-7}, and applying to points 1 and 2, 

a = p /CG - M ) = p CG - M ) 
1 1 2 2 

Solving for G and eliminating a, 

G = (p M - p M )/(p - p ) 
2 1 1 2 2 1 

The value of G for points 1 and 2 is compared with G calculated for 

points 2 and 3 (replacing subscripts accordingly), using first the spherical 

(6-5) 

(6-6) 

(6-7) 

(6-8) 

(6-9) 

(6-10) 

(6-11) 

(6-12) 

(6-13) 
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form, and if unsatisfactory then the ellipsoidal form. The inverse follows 

the pattern for the Lambert and Albers, except that <1> may be found 

from an iterative inverse of (6-8): 

<1> = (M + E sin 2<1> - E sin 4<1>)/E 
~ 2 0 

(There is also an inverse series available, but it is not used in this pro­

gram.) The value of M is in turn found from another transposition of 

(3-43) and (6-7): 

M = G- p/a 

For determining the standard parallels, substitution from (3-43), (6-7}, 

and (3-62) into (3-64), followed by transposition and arrangement into a 

Newton-Raphson iteration, leads to the following: 

2 • 2 
1/z 

H<t> ) = (G - M )n(l - e s1n <1> ) - cos <1> s s s s 

2 • 2 
1/z 2 f'(<l> ) = - n[(l - e sm <1> ) (dM /d<t> ) + e sin <1> cos <1> (G - M )/ 

s s s s s s s 

2 2 1/z 
( 1 - e sin <1> ) ] + sin <1> s s 

where (dM /d<l> ) is readily found from (6-8) (compare (6-73)), using sub­
s s 

script s on M and <J>, and (6-4) is used to increment <1> . This involves 
s 

iteration for either sphere or ellipsoid, but initial values of 90° and -90° 

for the two standard parallels <1> cover all cases, and lead to few itera­
s 

tion steps. The initial values are used in two separate iterative 

sequences until convergence of each. 

(3) For the three polar azimuthal projections which are treated as limit­

ing forms of the conics, no additional formulas are needed for this pro­

gram. With a cone constant of 1 (north polar) or -1 (south polar), the 

formulas for the conics function without causing any indeterminate con­

ditions, except for the scale at the pole of the Stereographic. Since this 

projection is conformal, true scale may be placed along any parallel on 

the polar Stereographic, but this parallel is indeterminate for a given un­

identified map. Therefore the pole is the most suitable arbitrary 

latitude for true scale. Equation (3-50) is indeterminate for <1> = ±90°, 
s 

but it is found that in this case 
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(6-14) 

(6-15) 

(6-16) 

(6-17) 

(6-18) 
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This value of k 1 may be used to find a from equations (3 - 46) and (3-49) 

for points j = 1, 2, or 3. Likewise, equation (3-48) is indeterminate for 

<1> = ±90°, but then k 1 = 1. 
s 

(4) For the polar Orthographic projection of the sphere, 

fC<I>) = ± cos <I> 

with the ± taking the sign of n. Thus, from (3 - 43), 

since the sign in (3 - 45) cancels the sign of n. After a is averaged for j = 
1, 2, and 3, the projection is tested for fit using the forward formulas. If 

satisfactory, equations (3-53), (3-54), and (6-21) may be used for inverse 

calculations, where the ± takes the sign of n: 

<1> = ± arccos (p/a) 

(5) For the polar Gnomonic projection of the sphere, the description for 

the Orthographic applies, except that (6-19), (6-20), and (6-21) are 

replaced by the following, respectively, with the ± taking the sign of n. 

fC<I>) = cot <1> 

a = pj tan <l>j 

<1> = ±[TT/2 - arctan (p/a)] 

(6) For the polar Vertical Perspective, the unknown point of perspective 

makes calculation more complicated than that for the Orthographic, but 

p = -a(P - 1) cos <1>/C±P + sin <I>) 

where Pis the distance of the point of perspective from the center of 

the globe in radii, and the ± again takes the sign of n. 

Since pis known from (3-20) for three values of <J>, after calculation 

of Cx ,y ), points 1 and 2 may be inserted into equation (6-25), one at a 
0 0 

time, to produce two simultaneous equations which may be solved for P: 

P = ±Cp sin <1> cos <1> - p sin <1> cos <1> )/(p cos <1> - p cos <1> ) 
l. l. 2 2 2 1 1 2 2 l. 

(6-19) 

(6-20) 

(6-21) 

(6-22) 

(6-23) 

(6-24) 

(6-25) 

(6-26) 
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where the ± is as above. Then P is calculated using points 1 and 3 in 

place of 1 and 2. The two values are averaged, and a is calculated from 

a direct inversion of equation (6-25). The parameters are used to test 

the projection. For inverse calculations, equation (3-53) is used for 9 · 

and (3-54) for '}..., while (6-27) and (6-28) are used for <f>. 

<t> = ±(TT/2 - z) 

taking the sign of n (or of the pole). 

2 2 1/z 
z = arcsin {[P - [1 - (p /a )(P + 1 )/(P - 1)] ]/[a(P - 1 )/ 

p + p/a(P - 1)]} 

If p as calculated from this <t> in equation (6-25) is not the same as the p 

given, the arcsine is in the wrong quadrant, and z must be subtracted 

from TT or 180°. 

(7) For the spherical Transverse Mercator, expansion of the right side of 

equations (3-87) and (3-88) gives the following: 

h(<f>, '}..., '}... ) = (1/z)k 1n [(1 + cos <t> sin '}... cos '}... - cos <t> cos '}... sin '}... )/ 
0 0 0 

(1 - cos <t> sin '}... cos '}... + cos <t> cos '}...)] 
0 

g(<f>, '}..., '}... ) = k arctan [sin <f>/(cos <t> cos '}... cos '}... 
0 2 0 

+ cos <t> sin '}... sin '}... )] 
0 

Using three-dimensional rectangular coordinates (the spherical versions 

of (3-120) through (3-123)) and other symbols for rotation, let 

X = cos <t> cos '}... 

Y = cos <t> sin '}... 

Z = sin <t> 

A = X cos '}... + Y sin '}... 
0 0 

B = Y cos '}... - X sin'}... 
0 0 

Then, substituting in (6-29) and (6-30), 

h(<f>, '}..., '}... ) = (%) k ln [(1 + B)/(1 - B)] 
0 
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(6-27) 

(6-28) 

(6-29) 

(6-30) 

(6-31) 

(6-32) 

(6-33) 

(6-34) 

(6-35) 

(6-36) 
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g(<J>, "-, "- ) = k arctan (Z/ A} 
0 2 

Differentiating with respect to "- , then simplifying, 
0 

2 2 
g' = -ZB/(A + Z ) 

These values, calculated for various points indicated by subscripts, may 

be substituted into (3-84) through (3-86). 

The inverses of equations (3-80), (3-81), (6-36), and (6-37), for 

determining (<J>, "-> from (x', y') and in turn from (x,y) using equations 

(3-39) and (3-40), are as follows: 

F = e (x'/a) 

where e is the base of natural logarithms, 2. 71828 ... 

F = (F - 1/F)/2 
1 

F = cos (y'/a) 
2 

• 2 2 v2 
<t> = ±arcsm [(1 - F )/(F + 1 )] 

2 1 

taking the sign of y'. 

"- = arctan (F IF ) + "-
2 1 2 0 

(8) For the ellipsoidal Transverse Mercator, let 

A I = <"- - "- ) cos <I> 
0 

2 2 
C' = (e') cos <t> 

2 
T =tan <t> 

The functions for equations (3-80) and (3-81) are as follows in the usual 

series form applying only to a 6° to 8° band of longitude: 

letting 2 2 
1/2 

N = 1/(1 - e sin <t>> 

(6-37} 

(6-38) 

(6-39) 

(6-40) 

(6-41) 

(6-42) 

(6-43) 

(6-44) 

(6-45) 

(6-46) 

(6-47> 

(6-48) 

(6-49) 
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h = N[A 1 + (1 - T + C 1)(A 1
)

3 /6 + (5- 18T + T 2 + 72(C 1
)

2 
- 58(e 1

)
2

) 

(A 1
)

5 /120] 

+ C61 - 58T + T 2 + 600C 1 
- 330(e 1

)
2 )(A 1

)
6 /7201 

with M found from (6-8). Differentiation with respect to ~ leads to 
0 

h 1 = -N cos <I> [1 + (1 - T + C 1)(A 1
)

2 /2 + (5 - 18T + T
2 

+ 72CC 1
)

2 

g 1 = -N sin <I> [A 1 + (5- T + 9C 1 + 4(C 1
)

2
)(A 1

)
3 
/6 + (61 - 58T + T

2 

+ 600C 1 
- 330Ce 1>

2
>CA 1

)

5 
11201 

For the inverse of (3-80), (3-81), (6-50), and (6-51), first a .. footpoint 

latitude .. <l>f may be found by successive substitution, using y 1/a as the 

first trial <l>f: 

Using equations (6-45) through (6-49) with subscript f on <J>, C 1 , T, and N, 

and letting 

then, 

2 2 5 
+ 8(e 1

) + 24Tf)D /120]/cos <1> f 

(9) For the ellipsoidal or spherical Polyconic, only the ellipsoidal 

formulas are used here, since they apply to the sphere without 

introducing problems if e = 0. For the functions in (3-80) and (3-81), 
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(6-50) 

(6-51) 

(6-52) 

(6-53) 

(6-54) 

(6-55) 

(6-56) 

(6-57> 
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h = N cot <1> sin [(}... - }... ) sin <1>1 
0 

g = M + N cot <1> {1 - cos [(}... - }... ) sin <I>H 
0 

obtaining M from (6-8) and N from (6-49). 

Differentiating (6-58) and (6-59) with respect to }... , 
0 

h' = - N cos <1> cos ((}... - }... ) sin <1>1 
0 

g' = - N cos <1> sin [(}... - }... ) sin <1>1 
0 

Inverse formulas used for the Polyconic involve a Newton-Raphson 

iteration. Reusing some previous symbols, but obtaining N from (6-49), 

and M, E , E , and E from (6-8) through (6-11), 
0 1 2 

A'= y'/a 

B' = (x')
2 
/a 

2 
+ (A 1)

2 

With <1> = A 1 as the first trial <J>, 

C' = (tan <1>)/N 

M' = E - 2E cos 2<1> + 4E cos 4<1> 
· o 1 2 

~<I>= [2A 1(C 1M + 1)- 2M- CM2 
+ B')C']/(e 2 sin2 <1> CM2 

+ B1 
- 2A'M)/ 

2C 1 + 2(A'- M)(C 1M1
- 2/sin 2<1>)- 2M'] 

}... = [arcsin (X1 C 1 /a)]/sin <1> + }... 
0 

For both forward and inverse equations, if <1> = 0 or Y1 = 0 the equations 

are indeterminate, but h = }... - }... , g = 0 (forward), and <1> = 0, }... = X 1/a + 
0 

}... (inverse). 
0 

(10) For several oblique or equatorial azimuthal projections, namely 

those listed for equations (3-100) through (3-103), equations (3-84), 

(3-85), and (3-96) through (3-105) may be used. For the oblique Gno­

monic, equation (3-117) uses similar functions. 

Expanding and rewriting equations (3-98), (3-99), and (3-104) in 

terms of equations (6-31) through (6-35), 

h = k 1 B 

g = k'(Z cos <1> - A sin <1> ) 
0 0 

(6-58) 

(6-59) 

(6-60) 

(6-61) 

(6-62) 

(6-63) 

(6-64) 

(6-65) 

(6-66) 

(6-6 7) 

(6-68) 

(6-69) 
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cos z = A cos <1> + Z sin <1> 
0 0 

Differentiating h and g with respect to A. and <1> , after simplifi-
o 0 

cation and noting similarities between formulas for various azimuthal 

projections, 

where 

h\ = -Bk sin <1> + cz cos <1> - A sin <1> )ak'/aA. 
1\. 0 0 0 0 

0 

g' A. = Ak' + Bak' taA. o 

0 

g' A- = -k' cos z + (Z cos <I> - A sin <I> )ak' /a A. 
~ 0 0 0 

0 

ak'taA. = hf cos <1> 
0 0 

ak' ta<t> = gf 
0 
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(6-70) 

(6-71) 

(6-72) 

(6-73) 

(6-74) 

(6-75) 

(6-76) 

f = 1/cos z for Gnomonic (6-77) 

f = -1/0 + cos z) for Stereographic (6-78) 

for Orthographic (6-79) 

f = (z cos z - sin z)/(z sin 2 z) for Azimuthal Equidistant (6-80) 

f = -1/[2(1 + cos z)] for Lambert Azimuthal Equal-Area (6-81) 

The above projections are tested one at a time, although the Gnomonic 

and Stereographic are handled differently from the rest, as described 

earlier. For the inverse formulas, another pattern of equations satis­

factorily applies to all the non-polar azimuthals, including the Vertical 

Perspective. After x' and y' are found from (3-39) and (3-40) for a given 

point, 

R = p/a 
1 

<1> = arcsin [cos z sin <1> + (y' sin z cos <1> /p)] 
0 0 

but if p = 0, <1> = <1> • 
0 

B' = cos z - sin <1> sin <1> 
0 

A. = A. + arctan (x' sin z cos <1> /(B'p)) 
0 2 0 

(6-82) 

(6-83) 

(6-84) 

(6-85) 

(6-86) 



142 COMPUTER-ASSISTED MAP PROJECTION RESEARCH 

but if B' = 0 and x• = 0 (or if p = 0) k = k . 
0 

For z, 

z =arcsin R 
1 

Z=R 
1 

z = 2 arcsin CR /2) 
1 

for Orthographic 

for Azimuthal Equidistant 

for Lambert Azimuthal Equal-Area 

2 1/z . 
z =arcsin {(P - (1 - R CP + U/CP- 1)) ]/[CP- 1)/R + R I 

1 1 1 

CP- 1)]} 

for the Vertical Perspective in which Pis found from (3-129). If it is -1, 

the projection is Stereographic. For the Gnomonic inverse, (6-90) may 

be used with P = 0, simplified to 

z = 2 arctan CR /2) 
1 

z = arctan R 
1 

for Stereographic 

for Gnomonic 

7. DERIVATION OF MATRIX OPERATORS FOR LEAST-SQUARES COMPUTATION 
OF POLYNOMIAL COEFFICIENTS 

In order to derive equations (2-14) through (2-17), the equation for 

least-squares error E is written for discrepancies in x-coordinates as 

follows (for y-coordinates, the derivation is analogous, as outlined after 

equation C7-19)): 

m 

E = I: (xi- xi')2 

i=1 

where xi• are the coordinates for each of them points based on the true 

analytic equations, and xi are coordinates based on the polynomial series, 

equation (2-1), which is to be developed: 

X = C + C k + C <f> + C k 
2 

+ C k$ + C $
2 

+ C k 
3 

1 2 3 4 5 6 7 

2 2 3 
+ c k <I> + c k<l> + c <I> + ... 

8 9 10 

Differentiating equation (7 -1) with respect to each coefficient, and 

setting equal to zero for minimum error, using I: in place of I: with limits, 

(6-87) 

(6-88) 

(6-89) 

(6-90) 

(6-91) 

(6-92) 

(7-1) 

(2-1) 



aE/aC = 2 E<x. - x
1
')(1) = 0 

1 1 

aE/aC 2 = 2E<xi - x1')()..i) = 0 

aE/aC 3 = 2E<x1 - x1'><<t>1> = 0 

aE/ac 
4 

= 2E(xi - x1')()..:) = 0 

APPENDIX 

and so forth. Simplifying and transposing equations (7 -2) through (7 -5), 

the equations become, respectively, 

E)..ixi = E)..ixi' 

E<t>ixi = E<t>ixi' 

and so forth. Substituting from equation (2-1) into equations <7-6) 

through <7-9), 

EC + EC )..i + EC 4>i + EC )..~ + ... = Ex1• 1 2 3 4 1 

and so forth. These equations may be rewritten in matrix form as 

follows: 

m E)..i E<t>i E)..2 c Ex' 
i 1 i 

E)..i E)..2 E).. i4> i E)..3 c E)..ixl i i 2 
• 

E<l>i E).. i<l>i E4>2 E)..~<l> i c E<t>ixl i 3 

E)..2 E)..3 E).. ~4> i E)..~ c E)..2ix'i i i 4 
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<7-2) 

<7-3) 

<7-4) 

<7-5) 

(7 --6) 

(7 -· 7) 

(7 --8) 

(7 --9) 

(7 -10) 

<7-11} 

(7 -12) 

(7 -13) 

<7-14) 
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The above derivation is given by Wu and Yang (1981). The following steps 

further simplify the operations. Calling the above matrix equation 

Ma=b 

the matrix M is equivalent to the following, which may be readily 

multiplied for proof: 

1 1 1 1 ... 1 1 ).. <Pl 
)..2 

1 1 

).. ).. ).. ).. ... ).. 1 ).. 
<1>2 

)..2 
1 2 3 4 m 2 2 

M= <1>1 <1>2 <1>3 <1>4 ••• <t> • 1 ).. 
<1>3 

)..2 
m 3 3 

)..2 )..2 )..2 )..2 ••• ).. 2 1 ).. 
<1>4 

)..2 
1 2 3 4 m 4 4 

1 ).. <Pm 
)..2 

m m 

Matrix b is similarly 

1 1 1 1 ... 1 x' 
1 

).. ).. ).. ).. ... ).. x' 
1 2 3 4 m 2 

b= <1>1 <1>2 <1>3 <t> ••• <t> • x' 
4 m 3 

)..2 )..2 )..2 )..2 ••• ).. 2 x' 
1 2 3 4 m 4 

Identifying the right-hand matrix of equation 0-16) as A, it may be seen 
. T 

that one matrix in both 0-16) and <7-17) is the transpose A . Thus, 

equations (7-14) or 0-15) may be rewritten 

where x' is the right-hand matrix of equation 0-17>. To find a, equation 

0 -18) is inverted: 

0-15) 

0-16) 

<7-17) 

(7 -18) 

0-19) 
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From this, equations (2-14) through (2-16) are readily obtained, dropping 

the primes from x• in equation <7-17} for convenience, since the primes 

are used for other purposes in the main text. By substituting y, y•, and 

c• for each x, x•, and C, respectively, in equations <7-1} through <7-19), 

the solution is seen to be almost identical, yielding equations (2-14), 

(2-15), and (2-17). 

8. DERIVATION OF FORMULAS FOR THE LEAST-SQUARES AFFINE LINEAR 
TRANSFORMATION OF ONE MAP TO FIT ANOTHER 

In calculating equations (3-147) through (3-165), the errorE in 

fitting m given coordinates (xj,yj) into m calculated coordinates cx
1
, Y j) 

is as follows: 

m 

E = 1: [(Xj - xaj)
2 

+ (Yj - y aj)
2

] 

j=1 

where the adjusted coordinates (x .,y .) are obtained by the following 
a) aJ 

linear-transformation formulas: 

x . = a x. + a y. + a 
a) 1. J 2 J 3 

y j = a x1 + a y. + a a 4 5 J 6 

and a through a are the six constants to be determined. Setting the 
l. 6 

derivative of E in equation (8-1) with respect to each constant equal to 

zero, and using E in place of E with limits, 

3E/3a = -2E(X - a x - a y - a )x. = 0 
1 j 1) 2) 3J 

3E/3a
2 

= -2E(Xj- a
1
xj- a

2
yj- a

3
)yj = 0 

3E/3a = -2 E<Xj - a x
1 

- a y. - a ) = 0 
3 1 2 J 3 

3E/3a = -2E(Yj - a x
1

- a y. - a )xj = 0 
4 4 5 ' 6 

3E/3a = -2E(Y - a x - a y - a )y = 0 
5 j 4) 5) 6) 

3E/3a = -2E(Y - a x - a y - a ) = 0 
6 j 4j 5j 6 

Cancelling out the factors -2, expanding, and transposing, equations 

(8-2) through (8-4) may be written in matrix form: 
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(8-1) 

(3-164) 

(3-165) 

(8-2) 

(8-3) 

(8-4) 

(8-5) 

(8-6) 

(8-7) 
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Exj Exjy j Exj a Exf1 ~ 

Exjyj Ey: Eyj • a EXjyj 
2 

Ex. Eyj m a EX. 
) 3 ) 

To reduce computation, them values of xj and yj are averaged: 

X:= Exj/m 

y = Eyj/m 

and the averages are subtracted for each value of x
1 

and yj in equation 

(8-8): ' 

E<xj - x){y j - y) 

0 0 

The solution for a is seen to be direct: 
3 

0 

0 

m 

• 

a r:x,cxj - x> 
~ 

a = Ex,cyJ - v> 
2 

a Ex, 
3 

The remainder of the matrices of (8-11) may be rewritten in 

second-order format. A 2 x 2 symmetric matrix may be inverted as 

follows: 

c B -~ A -B 
1 

= --------

B A AC- B
2 

-B c 

Therefore, inverting the second-order simplification of (8-11 ), 

[::] [
AID 

-BID 
-B/D]• [E] 
C/D F 

where symbols are as defined in equations (3-154) through {3-159), and 

m = 9. These matrices expand to equations {3-148) and {3-149). Constant 

{8-8) 

{8-9) 

{8-10) 

{8-11) 

{8-12) 

{8-13) 

{8-14) 
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a must be adjusted further so that x andy do not have to be subtracted 
3 

before xj and yj may be used in equation (3-164}. This adjustment is 

found by writing equation (3-164} as follows: 

x . = a (xj - X:) + a (y. - y) + a 
aJ ' 1 2 J 3 

= a xj + a yj + (a - a x - a y) 
1 2 3 1 2 

Thus a as found from equation (8-12) must be reduced by (a x + a y) to 
3 1 2 

give equation (3-150). 

The corresponding transformations of equations (8-5) through (8-7) 

result in the following equivalent of (8-12) and (8-14) for constants a , 
4 

a , and a : 
5 6 

a =EY./m 
6 J 

[::] [ 
AID -:;: l . [: l -BID 

where symbols are as defined in equations (3-154) through (3-157), 

(3-160), and (3-161), and m = 9. Equations (3-151) and (3-152) may be 

found from equation (8-17), with an adjustment to a like that made to 

a to obtain (3-153) from (8-16}. 
3 

6 

9. DERIVATION OF FORMULAS FOR A LOW-ERROR CONFORMAL PROJECTION 
FOR THE 50 STATES 

(see also section 5a; previously published in Snyder (1984)) 

In deriving the formulas for determining the coefficients in equation 

(4-65), using least squares, it is convenient to use deMoivre's theorem to 

rewrite that equation: 

n 
x + iy = E (Aj + iBj) pj (cos j9 + i sin j9) 

)=l 

n 

= E pj [(Aj cos j9 - Bj sin j9) + HAj sin j9 + Bj cos j9)] 
)=1 

where p and 9 are polar coordinates corresponding to x' andy' as follows: 
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(8-15) 

(8-16} 

(8-17) 

(9-1> 
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a = arctan (y'/x') 
2 

using arctan as the equivalent of the Fortran ATAN2 function rather 
2 

than ATAN. The real and imaginary portions of equation (9-1> may be 

readily separated: 

n 

x = E pj (Aj cos )a - Bj sin )a> 
)=1 

n 

y = E pj CAJ sin ;a + B
1 

cos Ja> 
)=1 

For a conformal projection of the sphere, one form of the equation 

for the scale factor k is 

where R is the radius of the sphere at the nominal scale of the map, and 

4> is the latitude of the point. 

This is applied to the ellipsoid by replacing R as follows: 

where a is the semimajor axis and e the eccentricity of the ellipsoid. 

To solve for k, equations (9-2) and (9-3) may be differentiated and 

rearranged. Squaring (9-2), differentiating, and substituting from (9-3): 

2pdp = 2x' dx' + 2y' dy' 

= 2p cos a dx' + 2p sin a dy' 

Transposing and differentiating (9-3), then multiplying through by cos a: 

2 
dy' = X 1 sec ada+ tan a dx' 

cos a dy' = p da + sin a dx' 

For use in equations (9-13) and (9-14), the following may now be 

obtained: 

(9-2) 

(9-3) 

(9-4) 

(9-5) 

(8-6) 

(9-7) 

(9-8) 

(9-9) 

(9-10) 
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ap;&p = cap;ax') cax'/&f>) + cap;ay') cay•;&p) 

= cos 9 cax· /&p) + sin 9 cay• /&j>) 

ae;&p = ca9;ax•) <ax· /&f>) + ca9;ay·) cay· /&f>) 

= (-sin 9/pCax'/&p) + (cos 9/p) (ey'/&j>) 

Differentiating equation (9-4) and substituting from (9-11) and 

(9-12), 

n 

ax;&p = E jpj-
1 

<A; cos j9 - Bj sin j9) ap/&p 
)=1 

n 
+ E pj (-jAj sin j9 - jBj cos j9) a9/&p 

)=1 

n 

E Jpj-
1 

[AJ cos (j - 1 )9 - Bj sin <J - US]ax• /&p 

)=1 

n 

- E jpj-
1 

[Aj sin (j- 1)9 + Bj cos (j- 1)9] ay•;&p 

}=1 

Similarly from equations (9-5), (9-11), and (9 - 12), 

n 
ay;&p = E jpj- 1 [AJ sin (j- 1)9 + BJ cos (j- 1)9]ax'/&p 

)=1 

n 
·-1 

+ E Jp1 [Aj cos (j- 1)9- B) sin (j- 1)9] ay•;&p 

}=1 

Substituting equations (9-13) and (9-14) into (9-7), equation (5-13) is 

obtained, where F and F are convenient terms identified by equations 
1 2 

(5-11) and (5-12), and 
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(9-11) 

(9-12) 

(9-13) 

(9-14) 

(9-15) 
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By comparison of equations (9-15) and (9-7), it is seen that k' is the 

scale factor on the initial conformal projection of equation (4-65). Since 

this was made the Oblique Stereographic projection for the GS50 projec­

tion, k' may be found directly from equation (5- 8), for which the deriva­

tion is not shown. 

Equations (5-11) through (5-13) may be combined in complex 

notation to provide (5-28), which may be readily expanded to (5-11) 

through (5-13) for proof. 

To minimize scale error (k - 1 ), the least-squares principle states 

that, for the best fit to m points, and omitting the weighting shown in 

equation (5-40), 

m 

E = l: Ck - 1) 2 =minimum p 
P=l 

For a given coefficient A or B , using subscripts q to distinguish 
q q 

from others, and assigning symbol f to the differential: 

m 
fCA > = aEtaA = 21: Ck - 1> ak taA q q p p q 

P=l 

m 
HB > = aEtaB = 21: Ck - u ak taB q q p p q 

P=l 

which are the same as equations (5-16} and (5-17). For a minimum E, 

equations (9-17} and (9-18} must eventually equal zero. 

and 

Differentiating equations (5-11} through (5-13} with respect to A , 
q 

= Ck') 2 CF aF taA + F aF taA }/k 
1 1 q 2 2 q 

aF taA = qpq- 1 sin (q - 1}9 
1 q 

aF taA = qpq- 1 cos Cq - 1}9 
2 q 

(9-16) 

(9-17) 

(9-18) 

(9-19) 

(9-20) 

(9-21) 
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Combining (9-15), (9-16), (5-28), and (9-19) through (9-21) yields 

equation (5-14). Similarly, differentiating (5-11) through (5-13) with 

respect to B , equation (5-15) is obtained. 
q 

Since equations (9-17) and (9-18) are nonlinear, Newton-Raphson 

iteration of simultaneous equations may be used for computation of 

coefficients. Coefficient B merely rotates the map (changing other B 
1 

coefficients); therefore, it is held at zero. There are then C2n - 1) 

coefficients to find, requiring (2n - 1) simultaneous equations. These 

equations take the forms of equations (5-24) and (5-25), with appropriate 

starting trial values of A = 1 and zero for all other coefficients. 
1 

For equations (5-24) and (5-25), the following differentials are 

needed. From equation (9-17), treating g and q as equal or different 

subscripts, 

m 

aHA )!aA = a 2
E/aA aA = 2 E [Cak taA )(ak taA ) q g q g p g p q 

P=1 

Differentiating equation (5-14) with respect to A , 
g 

Substituting in (9-22), equations (5-18) and (5-19) are obtained. 

Differentiation of equation (9-17) with respect to B , (9-18) with respect 
g 

to A , and (9 - 18) with respect to B , each involving (5-14) or (5-15), 
g g . 

leads to (5-20) and (5-21). 
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(9-22) 

(9-23) 
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weighting points . . . . . . . .22 

Equal-area conic projections, 
minimum-error . . . . . . . . . . 61, 74-75 
(see also Albers Equal-Area 

Conic projection) 
Equal-area cylindrical 

projections ......... 61, 67-70 
Equal-area pseudocylindrical projections 

(see Pseudocylindrical projections) 
Equidistant conic projection 

identification of . 7, 9, 37, 54-55, 
134-135 

minimum-error .61, 62, 72, 75-76 
Equirectangular projection ..... 7, 8, 32 
Europe, maps of ..... 63, 79, 80 

G 

Gall • s projection . . . . . . . 7, 8, 32 
General Cartographic Transformation 

Package . . . . . . . . . . .2, 4 
Gnomonic projection, 

identification .... 7, 9, 28, 29, 30, 
37, 39, 44, 45, 48, 136, 140, 141, 142 

(see also Azimuthal projections) 
Great circle distance ..... .. ... 43 
GSSO projection (of 50 States) .... 81-92, 

118, 119 
GS-CAM plotting package . . ....... . 4 
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Identification of unmarked 
projection, general ........ 6-13 

derivation of algorithms .. 25-55, 133-142 
International ellipsoid ......... 77 
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James, H . .... ... 59, 64, 65, 67 

K 

Kavrayskiy, V.V. . .62, 71, 72, 75, 76, 97 
Knuth's algorithm for 

complex algebra ...... 18, 90, 91 

L 

Lambert Azimuthal Equal-Area 
projection, identification ... 7, 9, 37, 

43, 59, 80, 141, 142 
(see also Azimuthal projections) 

Lambert ~onformal Conic 
projection .......... 80, 82-83 

identification .... 3, 6, 7, 9, 31, 34, 
35' 54 

minimum-error . . . . . . . . . . . . . 72 
polynomial approximation .... 5, 19, 21, 

23-24 
(see also Conformal conic projections) 

Latitude, geodetic to isometric 
conversion .......... 17-18, 77 

Least squares, use of 
identification of projections . . . 26, 27, 

54 
minimum-error maps . .. 57-63, 70, 71, 77, 

80, 81, 86, 94, 97, 103, 112, 120 
polynomial approximation .. 19- 24, 142-151 
U.S. maps .2 

Lee, L.P. . . . . . . ...... . . 79 

H 

Maximum angular deformation 
Mediterranean Sea, map of . 
Mercator projection, regular 

base for complex 

61, 70 
79 

transformation ....... 63, 76, 77 
identification . . . ... 7, 8, 31, 32, 33 
polynomial approximation ........ 21 
(see also Oblique Mercator 

projection, Transverse Mercator 
projection) 

Miller, O.K ..... . ... 62, 63, 79, 107 
Miller Cylindrical projection . 7, 8, 32 
Miller Oblated Stereographic 

projection . . . . . . . 63, 79, 80 
Minimum-error projections . . . . 57-131 

History of development ....... 57-63 
(see also Azimuthal projections, 

Conic projections, Conformal conic 
projections, Cylindrical 
projections, Oblique Mercator 
projection, Perspective projection, 
Pseudocylindrical projections, 
Stereographic projection) 

Mollweide projection ....... 7, 37-38 

N 

New Zealand, maps of ...... 63, 76-78 
Newton-Raphson iteration, use of 

identification of 
projections .... 38, 39, 40, 41, 43, 

133, 134, 135, 140 
minimum--error projections .. ... 96, 98 
United States map projection ... 89, 91, 

151 
North America, maps of .... 103-109, 111, 

112, 113, 119 

0 

Oblated Stereographic projection 

Oblique conformal conic projection 

63, 79, 
80 

(see Conformal conic projections, oblique) 
Oblique Mercator projection, 

minimum-error . . . . 57, 93, 100--101, 102, 
103- 106, 108, 110, 118, 120 

Oblique Stereographic projection 
(see Stereographic projection) 

Ordnance Survey . . . . . .... 65 
-Orthographic projection, 

identification . .7, 9, 30, 37, 43, 
48, 136, 141, 142 

(see also Azimuthal projections) 
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Pacific Ocean, map of . 
Paper expansion and contraction 
Perspective projection 

INDEX 

79, 80, 81 
. 7 

tilted, identification .. 7, 9, 30, 46-48 
vertical, identification .. 7, 9, 37, 40, 

46-48, 136-137, 141, 142 
minimum-error ...... 59, 65-67, 68 

Pocket calculators, general use 
for cartography . . . . . 

Polyconic projection, 
. ... 2 

identification . . . . 7, 9, 30, 39-42, 
44, 139-140 

Polynomial approximations, general ... 5-6, 
7, 8 

basic equations ........... 15-16 
computation of coefficients .... 18-24, 

conformal transformations . 
26-28, 142-147 

.16-18 
Portolan charts . . . . . . . 
Prolated Stereographic projection 
Pseudocylindrical projections, 

79 
63. 79 

identification of ..... 7, 9, 30, 37-39 
equal-area, minimum- error ... 58, 120-131 

pointed-polar .... 121-124, 130, 131 
flat-polar . . . . . . . . .124-125 

R 

Rand McNally & Co. . . ......... 80 
Reilly, W.I. . . . . . .57, 62, 63, 76, 77 
Robinson projection ........... 129 
Root--mean-square error (RMSE) 

identification of map 
projections . . . . . . . . . . . 49, 52 

minimum-error projections .. 99, 103-109, 
111, 112, 127, 128, 129 

polynomial approximation ...... 22, 27 
Royal Geographical Society ........ 61 
Russia, maps of . . . ........ 62 

s 

Simple Conic projection 
(see Equidistant Conic projection) 

Sinusoidal projection ....... 7, 37-38 
South America, maps of ..... 66, 103-106 
Space Oblique Mercator projection ... 2, 4 
Standard parallels, general ... 3, 6, 8, 61 

(see also specific projection) 
Sbereographic projection . . . . 59, 81, 84, 

86, 87, 150 
identification of ... 7, 9, 31, 37, 43, 

48, 135, 141, 142 
minimum-error . . .93, 101-102, 103--106, 

109, 110-112, 118, 120 
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(see also Azimuthal projections, 
Oblated Stereographic projection) 

Stirling, I.F ......... 62, 63, 76, 77 
Symbols, identification ........ ix, x 

T 

Taylor series ...... 6, 18, 19 
Tilted perspective projection 

(see Perspective projection, tilted) 
Tissot indicatrices .... 68, 69, 125, 131 
Tobler, W.R ........ 2, 57, 63, 78, 79 
Tolerances in determining 

projections ........ 9, 28, 48-55 
Topographic quadrangles .......... 6 
Transverse Mercator projection ... 3, 4, 5, 

19 
identification of 

minimum-error . . 
Tsinger, N.J .... 
"Twilight" projection 
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... 7, 9, 30, 31, 
39-42, 44, 137-139 
. 93, 102-107, 109 

.62, 71-75, 93, 97, 99 
....... 67, 68 

United Kingdom, maps of ......... 65 
United States, maps of .... 2, 6, 57, 63, 

79-92, 147-151 
Unmarked projection, identification 

(see Identification of unmarked 
projection, also see under individual 
projections) 

v 

Vertical perspective projection 
(see Perspective projection, vertical) 

Voxland, P.M. . . . . . . . . . .4 

w 

Weighting of points .22, 24, 61, 62, 71, 
93, 103, 123 

World, map projections of 
(see Behrmann's projection, 

Cylindrical projections, 
Cylindrical Equal-Area projection, 
Pseudocylindrical projections) 

WORLD projection package . . . . . . . . . 4 

y 

Young, A.E ..... .... 61, 70-71, 72 
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Zinger, N.J. 
(see Tsinger, N.J.) 
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