Development of a Velocity Model for Locating Aftershocks in the Sierra Pie de Palo Region of Western Argentina

U.S. GEOLOGICAL SURVEY BULLETIN 1795

Development of a Velocity Model for Locating Aftershocks in the Sierra Pie de Palo Region of Western Argentina

By G. A. Bollinger and C. J. Langer

Local extreme variations in sedimentary thickness required development of a velocity model to accurately compute hypocenters of the aftershock seismicity following the western Argentina (Caucete) earthquake of November 23, 1977.

DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary

U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1988

For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225

[QE535.2A7] [551.2' 2' 098263]

Library of Congress Cataloging-in-Publication Data Bollinger, G. A. Development of a velocity model for locating aftershocks in the Sierra Pie de Palo region of western Argentina. (U.S. Geological Survey bulletin ; 1795) Bibliography: p. Supt. of Docs. no.: | 19.3:1795 1. Seismology—Argentina—Pie de Palo Mountains Region. I. Langer, C. J. II. Title. III. Series QE75.B9 no.1795 557.3 s 87-600225

CONTENTS

Abstract 1 Introduction 1 Regional geologic setting 1 Development of velocity model and travel time corrections 3 Summary 12 Acknowledgments 13 References cited 13 Appendix 14

FIGURES

- 1. Aftershock epicenter map 2
- 2. Location map of study area 3
- 3. Locations of refraction profiles 4
- 4. Thickness of sedimentary rocks 6
- 5. Average sedimentary rock velocities 7
- 6. Uppermost Precambrian rock velocities 8
- 7. Grid map for velocities and thickness 9
- 8. Sedimentary rock travel times 10
- 9. Wadati diagram 12

TABLES

- 1. P-wave velocity model, Sierra Pie de Palo region of Western Argentina 11
- 2. Velocity model (AVM) station corrections, T_c , Argentina aftershock network 11
- 3. Station-delay corrections, T_d , Argentina aftershock network 12 4. Final station corrections, T_s , Argentina aftershock network 12

Development of a Velocity Model for Locating Aftershocks in the Sierra Pie de Palo Region of Western Argentina

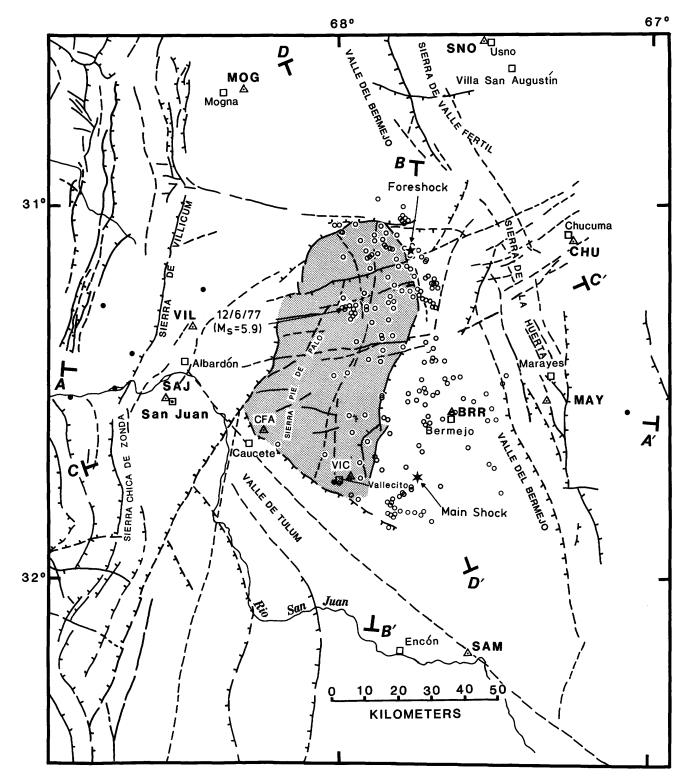
By G. A. Bollinger¹ and C. J. Langer

Abstract

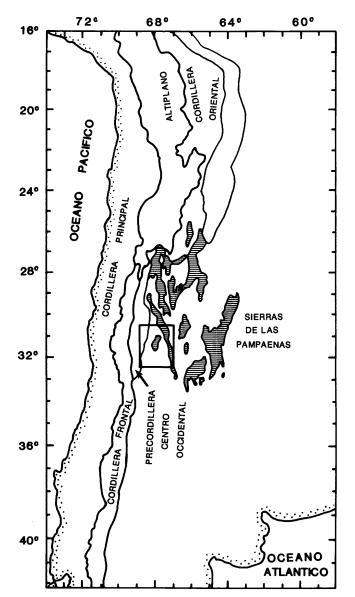
The ten stations included in a temporary seismograph network for locating aftershocks of the November 23, 1977, western Argentina earthquake were sited where the underlying sedimentary rock columns had thicknesses ranging from 0 to 6 km (up to 1.5-sec variation in vertical one-way travel times for the P-waves). Such rapid changes in the velocity structure cause considerable difficulty in obtaining accurate hypocenter locations. Fortunately, velocity data were available in the form of 26 refraction profiles for the near surface (0-6+ km). Those profiles gave the velocities for the sedimentary column and the underlying Precambrian basement in the network area. An estimate of the regional crustal velocity structure for this geologically complex area had also been determined previously by analysis of data from a well-located nearby earthquake. Unpublished surface-wave studies extend the model to the upper mantle. This paper describes the use of the available data to refine the velocity estimates for the uppermost layers of the regional crustal velocity model and the method used to calculate P-wave travel time corrections for each station. The resulting model and station corrections were used, with good results, to locate the 185 aftershocks listed in the appendix. Average HYPO71 error measures for the aftershock hypocenters were: RMS=0.12 sec, ERH=0.7 km, ERZ=1.3 km.

INTRODUCTION

The epicentral region for the magnitude 7.3 (M_s) western Argentina (Caucete) earthquake of November 23, 1977, and its aftershocks is restricted primarily to the eastern half of the Sierra Pie de Palo and to the eastern adjoining Valle Bermejo (fig. 1). That area lies within the Sierras de las Pampeanas (fig. 2) and is associated with the Sierras Pampeanas Occidentales geologic province,


a region of considerable stratigraphic and structural complexity (e.g., see Allmendinger and others, 1983; INPRES, 1977; Bastias and Weidmann, 1983; Jordan and others, 1983). The resulting velocity structure varies rapidly in both the horizontal and vertical directions; consequently, the area poses serious problems to accurate earthquake hypocentral locations.

The following discussion presents a brief summary of the regional geology of the aftershock zone followed by a detailed description of a four-stage procedure used to construct a local velocity model for the aftershock locale. Development of individual station corrections to account for systematic travel time differences at each of the seismograph locations completed the velocity model study.


REGIONAL GEOLOGIC SETTING

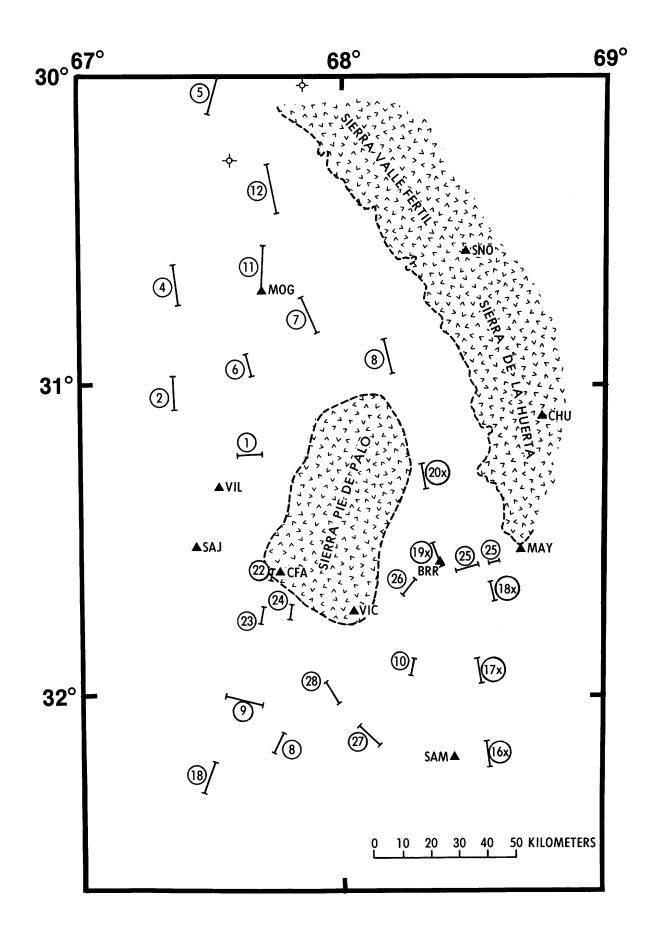
The Sierra Pie de Palo is encircled by a system of broad valleys (Valle del Bermejo to the east and Valle de Tulum to the south and west) that form a doughnutshaped basin (elevation of 500-700 m) filled in places with several kilometers of Quaternary age sediments. The eastern neighboring mountains, Sierra de la Huerta and Sierra de Valle Fertil as well as the central Sierra Pie de Palo, are composed of Precambrian and lower Paleozoic metamorphic and intrusive rocks that rise to more than 3,000 m above sea level. The mountain fronts are generally bounded by northerly or north-northweststriking reverse faults that dip moderately to the east (Jordan and others, 1983; Bastias and Weidmann, 1983) but a set of crosscutting, east-northeast-trending faults and lineaments are also present (INPRES, 1977, p. 13). West of the Sierra Pie de Palo are the Paleozoic highlands that form the Andean Precordillera Centro Occidental with elevations locally in excess of 4,000 m. Reverse faulting here is extensive along both east- and west-dipping

¹USGS and Virginia Polytechnic Inst. and State University, Blacksburg, Virginia 24061.

Figure 1. Aftershock epicenter (open circles) map after Langer and Bollinger (1987). Foreshock epicenter (five-pointed star) and main shock epicenter (solid six-pointed star) are from Kadinsky-Cade and others (1985); station locations shown by open triangles with center dot and three-letter station codes. Intermediate depth earthquake epicenters indicated by solid dots. Note that two of these deeper events are off the west side of the figure. Faults, shown by heavy solid (confirmed) or dashed (inferred) lines with hachures on down-dropped sides, and Precambrian outcrop on the Sierra Pie de Palo, shown by pattern symbols, were taken from INPRES (1977) geologic map. Cities and villages are indicated by open square symbols and names.

Figure 2. Location map of study area (rectangle) showing some of the geologic provinces of western Argentina. Irregularly shaped patterned figures are Sierras de las Pampaenas. The map is modified from Jordan and others (1983).

faults that predominantly strike north-south, subparallel to the Andean front. Bastias and Wiedmann (1983) have examined and described some of the major faults both east and west of Sierra Pie de Palo and have documented evidence for Holocene movement on several of the fault scarps. Baldis and Febrer (1983) have suggested that the north-northwest-striking faults just east of the Sierra Pie de Palo and the east-northeast crosscutting faults through the Sierra Pie de Palo (fig. 1) represent intersecting megafault systems that have been active from early Precambrian time to present.


DEVELOPMENT OF VELOCITY MODEL AND TRAVEL TIME CORRECTIONS

The network of eight portable and two permanent stations used to record the aftershock activity of the November 23, 1977, earthquake resulted in five stations being sited on Precambrian rocks (CFA, VIC, MAY, CHU, and SNO) and five stations on the basinal alluvium (MOG, BRR, SAM, VIL, and SAJ; e.g., see fig. 3). Given these very different station bedrock types, fortunately an approximate regional P-wave crustal-velocity model (Volponi, 1968) and results from 26 refraction profiles in the epicentral area were made available by Yacimientos Petroliferos Fiscales (YPF), the Argentine National Oil Company (see fig. 3). All but one of the YPF profiles were reversed and provided data to compute the sedimentary column and uppermost Precambrian (basement) velocities. Additionally, sonic log data from two wells that had been drilled in the northern part of the study area near 30°S., 68°W. (D. R. Toland, Cities Service Company, Houston, Tex., personal commun., 1978; fig. 3) agreed, generally, with the refraction velocity data in their vicinity. However, the wells were not drilled deep enough to extend our knowledge of the Precambrian velocities and, thus, only helped to confirm the velocity information within the section. Also, depth to the top of the mantle (Mohorovicić discontinuity), and the upper mantle velocity were estimated by J. C. Castano (staff seismologist, INPRES, San Juan, Argentina, personal commun., 1977) based on unpublished surface-wave studies.

To correct for the complexities in lithology and the other local geologic factors that affect seismic velocities, we state the following objectives and the analytic procedures to achieve these objectives:

- Develop an "average" layered velocity model (AVM) that is representative of the upper 10 km of crust in the Sierra Pie de Palo area.
- Estimate station corrections to account for systematic travel time differences at each station that result from the model.
- Estimate "station-delay" corrections that account for systematic travel time differences at each station that result from unknown sources.
- Combine the AVM station corrections with the "station-delay" corrections to estimate the "final" station corrections.

A brief summary of what the available data include is: 25 reversed and 1 non-reversed refraction profiles, well log data from 2 wells, a regional velocity model (Volponi, 1968), depth to the upper mantle and upper mantle velocity estimates from Castano, and aftershock data recorded at 10 stations. Our task is to apply these data

in a rational and also rigorous method to achieve the above-stated goals. A step-by-step description of how the "average velocity model" was developed and how the station corrections were determined is given below.

- (1) Average velocity model (AVM), Upper 10 km
 - (a) Location, length, and direction of profiles were plotted (fig. 3).
 - (b) Thickness and average sedimentary-column velocities were determined for all profiles, plotted at the profile center, and contoured (figs. 4 and 5).
 - (c) Precambrian basement velocities were determined, found to be variable, plotted, and contoured (fig. 6).
 - (d) The study area was gridded at 1/4-degree intervals and, for each of the resulting 45 grid points, the sedimentary velocity (V_{sed}), sedimentary thickness (Z_{sed}), and Precambrian basement velocity (V_{pe}), were estimated by interpolation between respective contours and then plotted (fig. 7).
 - (e) Mean values were obtained directly for each of the parameters in figure 7 and used as representative numbers in the AVM. The generalized P-wave velocity model for the upper 10 km is then:

P-wave Velocity (km/sec)	Thickness (km)	Depth to top of layer (km)
2.87	2.4	0
5.88	7.6	2.4

Available measurements of middle and lower crustal velocities from Volponi (1968) add to our model and are as follows:

P-wave Velocity (km/sec)	Thickness (km)	Depth to top of layer (km)
6.2 7.3	22.0	10.0 ?

The combination of our AVM with Volponi's investigation (1968) and information from J. C. Castano leads to our final P-wave velocity model given in table 1.

The model specifies only average velocities and thicknesses for the two layers above 10 km. However, looking at figures 4–8, considerable variability exists in sedimentary thickness, sedimentary velocity, and Precambrian velocity throughout the network area. Given the velocity and thickness for the AVM layers and, then, using figures 4, 5, and 6, to determine the "actual" P-wave travel time parameters for the upper two layers, we can estimate the AVM station corrections.

(2) AVM Station Corrections, T_c

- (a) Determine vertical, one-way travel time through the upper 10 km which we call the "AVM travel time," T_m , according to values specified by the AVM. $T_m = (2.4 \text{ km}/2.87 \text{ km/sec}) + (7.6 \text{ km}/5.88 \text{ km/sec}) = 0.84 \text{ sec} + 1.29 \text{ sec} = 2.13 \text{ sec}$
- (b) Use the "AVM travel time" $(T_m = 2.13 \text{ sec})$ to contrast with the "actual station travel times," T_a , at each of the network stations.
- (c) Calculate difference between AVM and "actual" travel times for AVM station corrections:

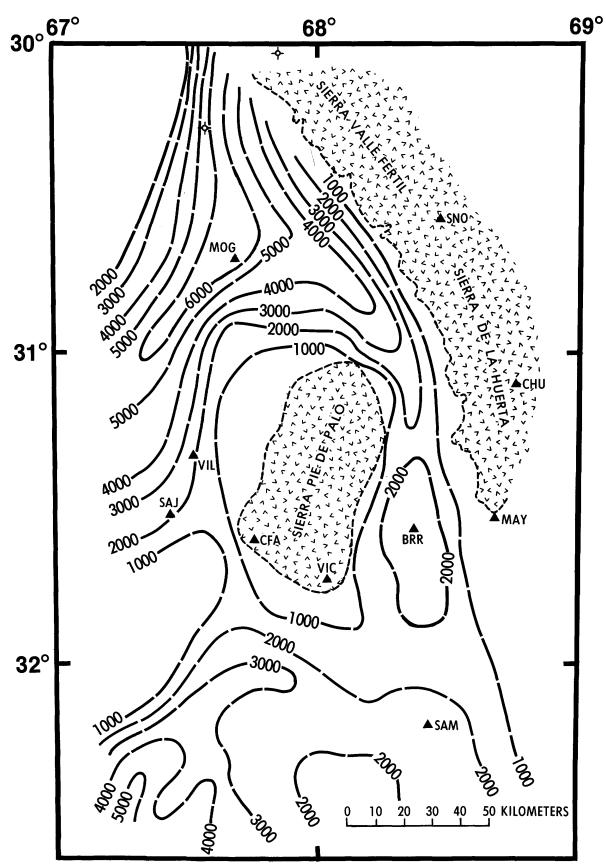
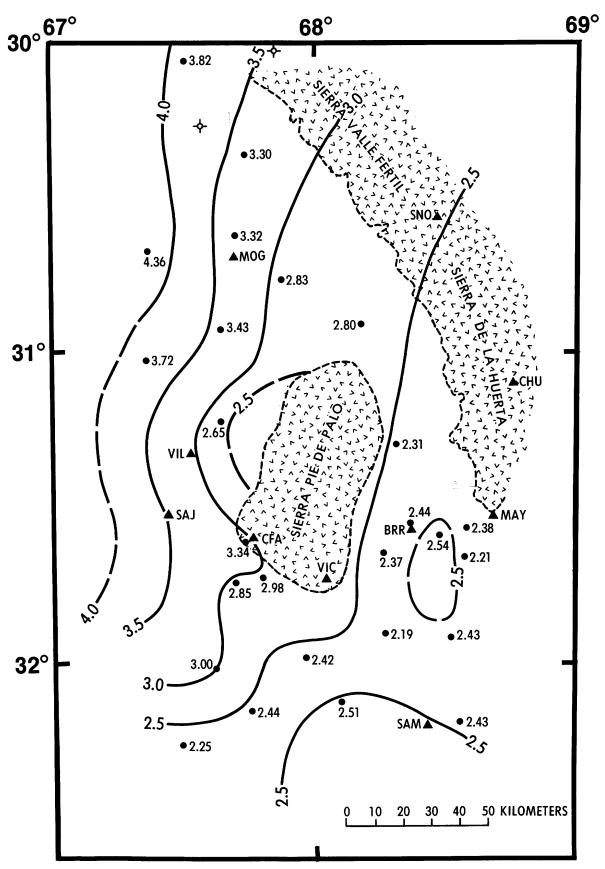
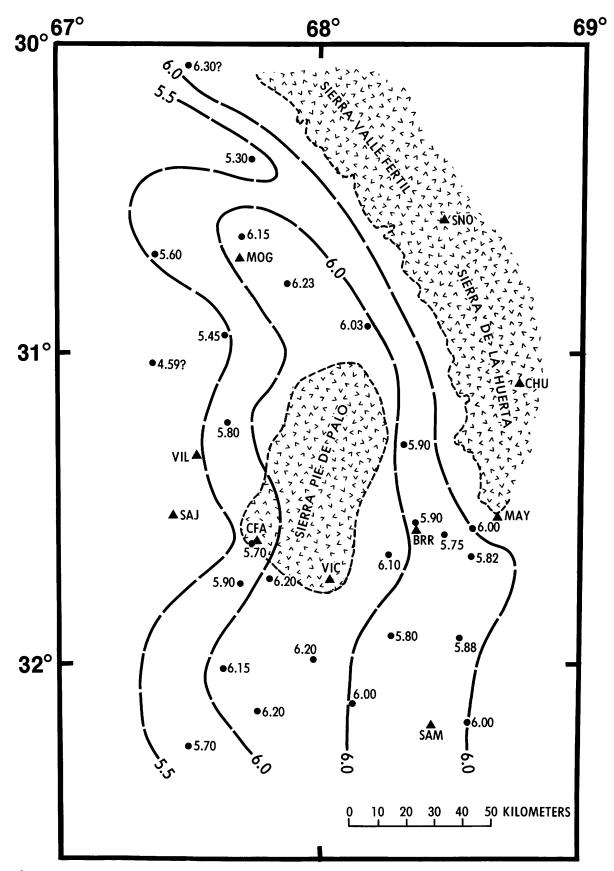
$$T_c = T_m - T_a.$$

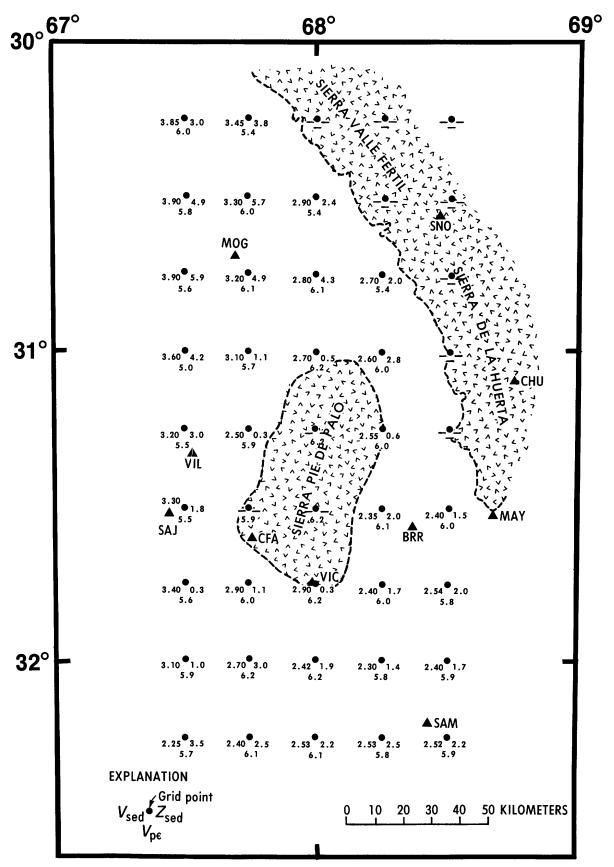
Sample AVM station correction calculations are given below for a basin location (MOG) and rock location (MAY). Because of adjustments in scale and projection that were necessary to composite the several large work maps used for preparation of the illustrations, corrections derived directly from the figures presented herein may not agree exactly with those described in the following text.

T_c for MOG (Sedimentary Site)

- a. From figure 8, the sedimentary travel time, $T_{sed} = 1.8 \text{ sec}$
- b. From figure 3, the sedimentary thickness (including station elevation), $Z_{sed} = 6.2$ km
- c. From figure 6, the Precambrian velocity, $V_{pe} = 6.0$ km/sec
- d. Thickness of Precambrian above 10 km, $Z_{re} = 10.0 - Z_{sed} = 10.0 \text{ km} - 6.2 = 3.8 \text{ km}$

Figure 3. (facing page) Location of refraction profiles obtained from Yacimientos Petroliferos Fiscales (YPF) (Burna, Abel E., Ing., Chief, Special Studies Agency of Interpretation and Investigation, YPF, Buenos Aires, Argentina, written commun., 1978); profiles are indicated by short lines with end bars; profile numbers given inside open circle symbols are those assigned by YPF. Seismograph station locations shown by solid triangles and 3-letter station codes. Location of two wells indicated by dry-hole symbols (open circles with four tic marks). Precambrian outcrop areas shown by pattern symbol. Open area, except to the far west, represents basinal sediments.


Figure 4. Thicknesses of sedimentary rocks, as calculated from the refraction profile data (fig. 3), contoured in meters. Other symbols the same as in figure 3.

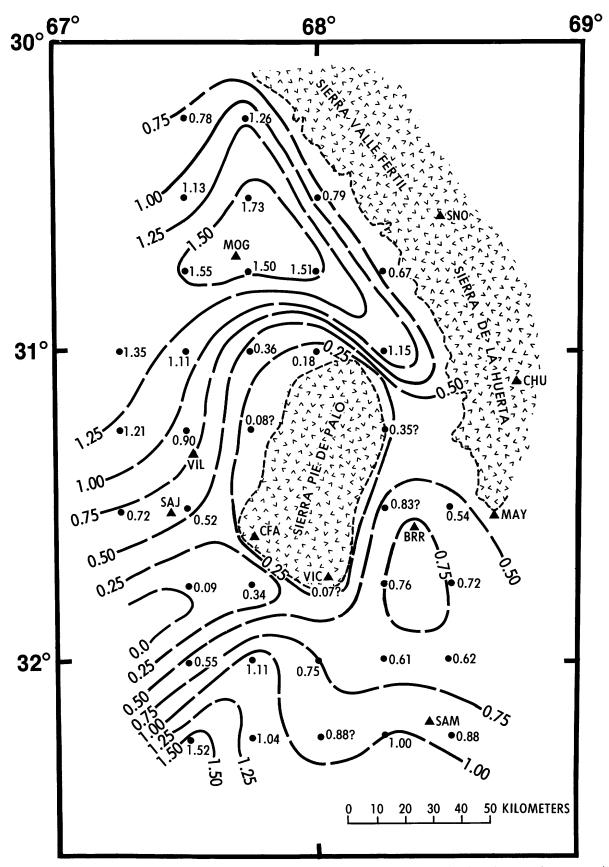

Figure 5. Average sedimentary rock velocities, as calculated from the refraction profile data (fig. 3), contoured in km/sec. Other symbols the same as in figure 3.

Figure 6. Uppermost Precambrian rock velocities, as determined by the refraction profile data (fig. 3), contoured in km/sec. Other symbols the same as in figure 3.

Figure 7. Grid map for velocities (sedimentary rocks = $V_{sed'}$ Precambrian rocks = $V_{pe'}$, both in km/sec) and sedimentary rock thicknesses ($Z_{sed'}$, in km), as derived from figures 4, 5, and 6. Other symbols same as in figure 3.

Figure 8. Sedimentary rock traveltimes (one-way vertical path), as calculated from the data shown in figures 4 and 5, contoured in seconds. Other symbols the same as figure 3.

P-wave velocity	Thickness	Depth to top of layer
(km/sec)	(km)	(km)
2.87	2.4	0
5.88	7.6	2.4
6.2	22.0	10.0
7.3	23.0	32.0
8.1	half-space	55.0

 Table 1.
 P-wave velocity model, Sierra Pie de Palo region of western Argentina

- e. Precambrian travel time, $T_{pe} = Z_{pe}/V_{pe} = 3.8$ km/6.0 km/sec = 0.63 sec
- f. "Actual" one-way travel time, $T_a = T_{sed} + T_{pe} = 1.80$ sec+0.63 sec=2.43 sec
- g. Station correction, $T_c = T_m T_a = 2.13 \text{ sec} 2.43$ sec = -0.30 sec
- T_c for MAY (Rock Site)
 - a. From figure 8, the sedimentary travel time, $T_{sed} = 0.0$ sec (station located on Precambrian rock)
 - b. Sedimentary thickness, $Z_{sed} = 0.0$
 - c. From figure 6, the Precambrian velocity, V_{pe} -6.0 km/sec
 - d. Thickness of Precambrian above 10 km, $T_{pe} =$ 10.0 km + station elevation = 10.0 km + 0.71 km = 10.71 km
 - e. Precambrian travel time, $T_{pe}-Z_{pe}/V_{pe} = 10.71$ km/6.0 km/sec = 1.78 sec
 - f. "Actual" one-way travel time, $T_a = T_{sed} + T_{pe} = 0.0 \text{ sec} + 1.78 \text{ sec} = 1.78 \text{ sec}$
 - g. Station correction, $T_c = T_m T_a = 2.13 \text{ sec} 1.78$ sec = +0.35 sec

A listing of the corrections derived in a similar manner for all network stations is given in table 2.

(3) Station-delay Corrections, T_d

The AVM station corrections almost certainly will not account for all of the travel time complexities within the region. Therefore, "station delay corrections," T_d , determined from the travel time residuals will also be applied in this study. Those corrections were calculated using the following procedure:

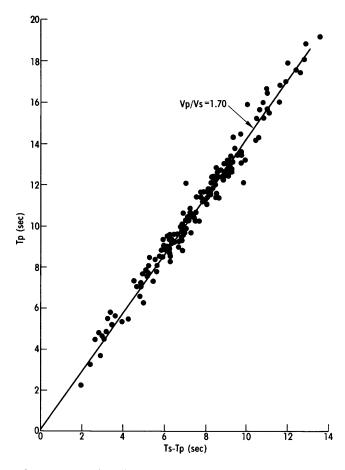

> a. Select a 20-event subset from the entire sample of aftershocks of the November 23, 1977, Argentina earthquake that were recorded by the portable network. Those 20 events should be well recorded by all of the network stations and have epicenters that are well distributed throughout

Table 2.	Velocity model (AVM) station corrections, $T_{c'}$
Argentina	aftershock network

Station	Site Lithology	<u>T_c</u> correction (sec)
BRR	Sedimentary	+0.02
CFA	pe rock	+0.30
СНИ	do.	+0.32
MAY	do.	+0.35
MOG	Sedimentary	-0.30
SAJ	do.	+0.03
SAM	do.	-0.09
SNO	pe rock	+0.30
VIC	do.	+0.40
VIL	Sedimentary	-0.03

the aftershock zone and have depths greater than 10 km.

- Locate the selected aftershocks using b. only the most precise arrival-time data available; that is, the P-wave arrival times from stations located on rock (CFA, VIC, MAY, CHU, and SNO) plus arrival-time data from VIL (for asimuthal control). Assume a P/S velocity ratio of 1.73 and use S-wave arrival times as recorded by the short-period horizontal seismographs at CFA. Apply the AVM station corrections. Results of this location process demonstrated that significant travel time residuals still remained at some stations located on alluvium, particularly MOG, BRR, and SAM. Thus, averages of the travel time residuals were determined for the individual network stations to serve as preliminary delay corrections, T_d .
- c. Relocate the 20 selected events using their above preliminary-delay corrections and the S-wave arrival times recorded at rock site stations and using the Wood-Anderson instruments in San Juan (SAJ). Try various P/S velocity ratios to establish a value that tends to minimize the S-wave residuals and construct a Wadati plot using only the P and S-wave arrival

Figure 9. Wadati plot showing traveltimes of S-wave minus traveltimes of P-wave (Ts-Tp, sec) versus traveltime of P-wave (Tp, sec) for 20-event subset (refer to page 20). Data from the rock site stations.

times recorded at the rock sites (fig. 9). The result of both the P/S velocity ratio search and the Wadati plot was the selection of a value of 1.70.

- d. To arrive at the final station delay corrections, T_d , relocate the 20-event subset of aftershocks using the 1.70 P/S velocity ratio and average the travel time residuals at each of the 10 stations. Table 3 presents the results of this procedure for the study area.
- (4) Final Station Corrections, T_s Obtain the algebraic sum of the AVM station corrections, T_c, and the "station delay" corrections, T_d, to estimate the "final" station corrections, T_s, as listed in table 4.

SUMMARY

The velocity model described in table 1 and the station corrections listed in table 4 were used in the HYPO71 program to locate the aftershocks of the western

Table 3. Station-delay corrections, T_d Argentina aftershock network

Station	Site Lithology	$\frac{T_d}{d}$ Correction
		(sec)
BRR	Sedimentary	-0.27
CFA	p C rock	+0.17
CHU	do.	0.00
MAY	do.	+0.14
MOG	Sedimentary	-0.97
SAJ	do.	0.00
SAM	do.	-0.39
SNO	p C rock	0.00
VIC	do.	-0.01
VIL	Sedimentary	+0.38
ATP	Sectimentary	

Table 4. Final station corrections, T_s Argentina aftershock network

		$\frac{T_s}{s}$, Correction
Stat	ion Site Lithology	(sec)
BRR	Sedimentary	-0.25
CFA	pë rock	+0.47
CHU	do.	+0.32
MAY	do.	+0.49
MOG	Sedimentary	-1.27
SAJ	do.	+0.03
SAM	do.	-0.48
SNO	p C rock	+0.30
VIC	do.	+0.39
VIL	Sedimentary	+0.35

Argentina earthquake of November 23, 1977 (Langer and Bollinger, 1987). The average HYPO71 error measures for the aftershock hypocentral calculations were: RMS = 0.12 sec; ERH = 0.7 km; ERZ = 1.3 km. We do not have a way to check for the presence of any systematic biases, but the use of high-quality S-wave data from CFA and SAJ eliminates the possibility of gross mislocations. Additionally, the depth distribution of the hypocenters (near surface to 30 + km; 110-135 km) given by Langer and Bollinger is the same as that derived from special seismicity studies of the region (Barazangi and Isacks, 1976). A full listing of the aftershock locational and error parameters is given in the appendix.

ACKNOWLEDGMENTS

Our appreciation is extended to the Instituto Nacional de Prevención Sismica (INPRES) and all personnel who contributed to our field monitoring program. Director Ing. Julio Aguirve Ruiz and staff seismologist, Dr. Juan C. Castano, provided assistance toward the necessary scientific and logistical support. We are also grateful to S. T. Algermissen for his coordination of this joint U.S.-Argentine postearthquake study. Ing. Abel E. Burna with YPF in Buenos Aires, Argentina, kindly provided the refraction profile data that were so important to our model development. Mr. David R. Toland of Cities Services Corporation, International Area, Houston, Tex., graciously provided the sonic logs for the two wells in the study area.

We also express gratitude to J. P. Whitcomb and R. F. Henrisey for their fieldwork and to Martha Adams, whose careful efforts obtained the basic data from the seismograms. M. J. Cecil and A. M. Rogers critically reviewed the manuscript and provided many helpful comments and suggestions.

REFERENCES CITED

- Allmendinger, R. W., Jordan, T. E., Palma, M., and Isacks,
 B. L., 1983, Paleogeography and Andean structural geometry, northwest Argentina: Tectonics, 2, p. 1–16.
- Baldis, B. A., and Febrer, J., 1983, Geodynamics of the Andean arc and related regions: *in* Geodynamics of the Eastern Pacific Region, Carribbean and Scotia Arcs, edited

by Ramon Cabre, S. J., American Geophysical Union and Geological Society of America, Geodynamics Series, v. 9, p. 127-135.

- Barazangi, M., and Isacks, B., 1976, Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America: Geology, v. 4, p. 686-692.
- Bastias, H. E., and Weidmann, N., 1983, Mapa de fallamiento moderno de la provincia de San Juan: Universidad Nacional de San Juan, Facultad de Ciencias Exactes, San Juan, Argentina, scale 1:500,000.
- INPRES (Instituto Nacional de Prevención Sismica), 1977, El terremoto de San Juan del 23 de Noviembre de 1977, informe preliminar: Instituto Nacional de Prevención Sismica, San Juan, Republica Argentina, 101 p.
- Jordan, T. E., Isacks, B. L., Allmendinger, R. W., Brewer, J. A., Ramos, V. A., and Ando, C. J., 1983, Andean tectonics related to geometry of subducted Nazca plate: Bulletin of the Geological Society of America, 94, p. 341-361.
- Kadinsky-Cade, Katherine, Reilinger, Robert and Isacks, Bryan, 1985, Surface deformation associated with the November 23, 1977, Caucete Argentina earthquake sequence: Journal of Geophysical Research, v. 90, p. 12,691-12,700.
- Langer, C. J., and Bollinger, G. A., 1988, Aftershocks of the western Argentina (Caucete) earthquake of 23 November 1977—some tectonic implications: Tectono-physics (in press).
- Lee, W. H. K., Bennett, R. E. and Meagher, K. L., 1972, A method of estimating magnitude of local earthquakes from signal duration: U.S. Geological Survey Open-File Report 72-223, 28p.
- Volponi, F. S., 1968, Los terremotos de Mendoza del 21 de Octubre de 1968 y la estructura de la corteza terrestre [The Mendoza earthquakes of 21 October 1968 and the structure of the earth's crust]: Acta Cuyana de Ingenieria, v. XII, Instituto Sismologico Zonda, Facultad de Ingenieria, Universidad Nacional de Cuyo, San Juan, Argentina, p. 95-110.

APPENDIX

List of aftershocks for the Argentina earthquake of November 23, 1977

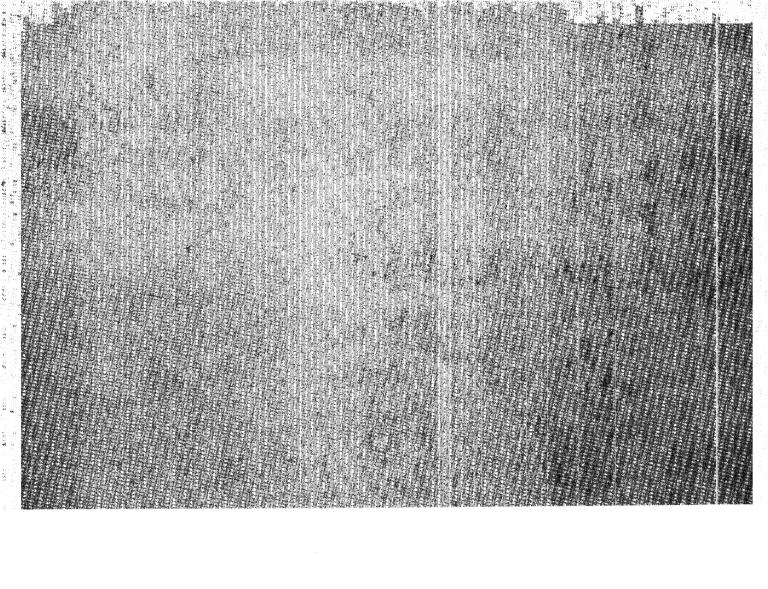
							·····						
Date		rigin	Lat. S	Long. W	Depth	No. ¹	DMIN ²	RMS ³	DLAT	andard er DLON	DZ	QF⁵	MD
(Dec. 1977)	(UTC)	(deg)	(deg)	(km)	obs.	(km)		(km)	(km)	(km)		
06 06	1705 1827	06.54 39.00	31.270 31.310	67.978 67.847	29.2 24.3	13 11	45 49	0.09 0.10	.24 .43	0.22 .31	0.66 2.35	B C	4.7 4.3
06 06	1932 2336	27.99 32.45	31.285 31.265	67.953 67.969	28.5 27.3	12 10	45 46	0.13 0.08	.45 .25	·31 ·38 ·33	.73	B	3.5 3.7
07	0200	32.82	31.140	67.737	7.5	11	40	0.08	.29	.55	2.01	c	3.6
07 07	0322 0409	41.52 55.42	31.276 31.576	67.956 67.529	27.8 13.1	11 12	46 19	0.18	.56 .45	.62	1.71	B B	4.4
07 07	0554 0655	18.64 46.13	31.746 31.694	68.027 67.939	115.1 30.0	12 11	6 5	0.11 0.10	.78 .61	.91 .37	1.35	Č A	3.3 2.6 3.2
07 07	0802 0807	19.84 09.89	31.837 31.038	67.836 67.803	17.7	10 13	16 53	0.08	.28	.35	.84	B C	3.0 4.0
07 07	0817 0919	29.49 04.14	31.827 31.508	67.737 67.537	17.1 52.1	10 12	24 19	0.07	.21 .35	.25 .43	1.01	B A	4.1
07 07	0926 0941	12.35 45.25	31.252 31.297	67.971 67.966	22.4 26.8	12 14	47 43	0.08	.24 .34	.22	1.75	B	2.5 2.8 3.9
07 07	1130 1413	27.97 06.22	31.837 31.456	67.743 67.468	8.9 19.9	11 11	24 15	0.09 0.17	.31 .65	.28 .95	.81 2.50	B B	3.9 2.7 2.4
07 07	1431 1509	13.52 39.03	31.128 31.276	67.881 67.833	21.6 21.3	11 11	60	0.16 0.08	.50 .27	.40 .28	3.74 2.17	C C	3.4 3.2
07 07	1612 1705	45.01 40.21	31.062 31.580	67.867 67.734	9.7 31.1	12 11	53 58 28	0.09 0.15	.25 .55	.23 .52	2.48 .51	C B	2.6 3.2
07 07	1720 1823	12.82 48.02	31.822 31.683	67.808 67.889	15.0 30.1	13 11	18 9	0.14 0.13	.32	.34 .66	1.37 .74	B A	3.1 2.8
07 07	1835 2012	12.65 27.47	31.114 31.640	67.798 67.913	7.8 28.5	14 11	52 12	0.08 0.08	.16 .36	.19 .24	.75 .49	C A	2.7 2.9
07 07	2016 2029	14.10 13.52	31.780 31.509	67.803 67.869	22.4 22.4	12 11	16 27	0.09	.25 .46	.25 .32 .46	.57 1.47	B B	3.1 3.2 2.8
07 07	2033 2137	27.85 16.22	31.269 31.043	67.845 67.782	9.5 4.4	10 12	53 51	0.13	.46 .23	,22	4.02 3.63	C	3.2
07 08	2252 0224	29.34 36.05	31.792 31.136	67.833 67.907	21.3 23.8	11 12	14 58	0.15 0.11	.47 .29	.47 .30	.81 1.27	B C	3.0 2.7
08 08	0416	05.64	31.527 31.231	67.577 67.803	13.9 7.9	12 11	23 55	0.07	.23 .38	.24	1.30 2.34	B C	3.0
08 08	1103 1202	28.38 26.51	31.800 31.421	67.854 67.874	24.0 7.4	11 10	13 36	0.10 0.08	.35 .44	.42	.61 1.79	B B	3.3 3.2 3.2
08 08	1251 1338	44.76 23.41	31.679 31.274	67.891 67.915	28.3 24.5	11 11	10 48	0.16 0.13	.60 .47	.60 .34	.89 2.42	B B	3.2 2.6 3.3 3.2
08 08	1505 1734	31.44 21.13	31.077 31.260	67.853 67.832	23.8 2.3	11 10	58 55	0.11 0.13	·33 .46	•33 •31	1.45 .61	C C	3.2 3.0 2.7
08 08	1831 1834	47.60 51.93	31.560 31.285	67.079 67.966	134.0 25.8	13 12	25 44	0.16 0.08	.85 .20	1.32 .19	1.26	C B	3.0
08 08	1904 1952	43.57 15.33	31.458 31.234	68.022 67.752	28.2 8.0	10 12	26 50	0.08 0.10	.31 .22	.21 .42	.48 1.37	A B	3.2 3.8
08 08	2046 2321	35.61 28.35	31.007 31.051	67.797 67.795	5.2 19.5	12 13	53 52	0.05 0.09	.12 .20	.12 .30	.67 2.89	с с	2.5 2.1
09 09	0038 0102	07.40 28.70	31.451 31.382	67.979 67.803	31.9 8.0	12 11	30 42	.13 0.13	.49 .55	•37 •33	.48 1.52	A B	3.3 3.3 2.9
09 09	0131 0248	59.19 58.05	31.197 31.509	67.845 67.705	1.6 30.4	12 11	58 35	0.18	.46	.43	.71	C B	2.9 3.3
09 09	0511 0716	31.44 54.56	31.146 31.058	67.722 68.003	2.6 1.7	12 13	45 49	0.06 0.14	.16 .26	.14 .29	2.08	C B	3.3 2.7 2.8
09 09	0825 0918	21.78 12.34	31.034 31.502	67.800 67.690	8.0 31.3	10 11	53 34	0.08 0.12	.23 .50	.26 .39	1.02 .45	C B	2.7 3.0
09 09	1036 1220	03.65 11.19	31.777 31.121	67.969 67.746	10.8 7.0	12 13	4 47	0.06 0.11	.20 .30	.15 .42	.37 1.51	B B	3.3 2.7
09 09	1244 1519	47.41 45.19	31.247 31.272	67.988 67.980	28.0 25.6	12 14	46 45	0.18	.49	.52 .21	1.68	B B	3.2 3.7
09 09	1842 1856	54.79 09.65	31.098 31.491	67.864 67.727	6.5 31.6	11 11	57 13	0.14	.46	• 37 • 58	1.87	C A	2.3 2.7
09 09	2032 2057	27.03 52.90	30.988 31.303	67.875 67.968	9.2 27.6	13 13	52 42	0.15	·35 ·33	.38 .32	2.94 1.01	C B	3.1 2.9
09 09	2144 2247 2210	48.19 39.93 48.66	31.615 31.348 31.564	67.839 67.868 67.968	12.8 4.8	15 12 12	18 33 19	0.11 0.12 0.13	.27 .42	.24 .29 .52	.87 1.93 .72	B B A	4.2 3.8 3.3
09	2310	40.00	31.004	67.968	30.5	12	17	0.13	.75	-92	• 14	n	3.3

List of aftershocks for the Argentina earthquake of November 23, 1977-Continued

	/, 1 b , 1 k,											
Date (Dec. 1977)	Origin (UTC)	Lat. S (deg)	Long. W (deg)	Depth (km)	No. ¹ obs.	DMIN ² (km)	RMS ³	Sta DLAT (km)	andard er DLON (km)	DZ (km)	QF ^⁵	MD
10 10 10 10 10 10 10 10 10 10 10 10 10 1	$\begin{array}{ccccccc} 0030 & 33.21\\ 0055 & 22.91\\ 0140 & 25.74\\ 0256 & 41.61\\ 0413 & 19.42\\ 0433 & 57.66\\ 0436 & 18.77\\ 0519 & 38.22\\ 0704 & 17.22\\ 0711 & 51.12\\ 0719 & 20.84\\ 0836 & 56.22\\ 1010 & 29.44\\ 1016 & 12.92\\ 1131 & 07.33\\ 1250 & 13.22\\ 1314 & 05.44\\ 1419 & 54.62\\ 11448 & 06.24\\ 1504 & 33.02\\ 1839 & 07.77\\ 1926 & 04.85\\ 1929 & 51.89\\ 2047 & 34.00\\ 2100 & 19.72\\ 2315 & 10.57\\ \end{array}$	31.142 31.057 31.833 31.526 30.913 31.112 31.463 31.743 31.743 31.225 31.261 31.261 31.261 31.274 31.250 31.741 31.297 31.495 31.741 31.250	67.908 67.819 68.012 67.828 67.758 69.006 67.859 67.636 67.636 67.690 67.771 67.708 67.745 67.938 67.849 67.745 67.968 68.668 67.726 67.726 67.775 67.9797 67.705 67.917 67.705 67.948 67.490 67.7951 67.680 67.740	$\begin{array}{c} 16.8\\ 6.3\\ 24.7\\ 28.5\\ 110.9\\ 41.0\\ 10.1\\ 25.4\\ 14.2\\ 27.1\\ 27.2\\ 112.1\\ 77.9\\ 21.5\\ 20.2\\ 21.4\\ 23.1\\ 12.1\\ 77.9\\ 21.5\\ 23.4\\ 23.4\\ 23.4\\ 23.4\\ 23.4\\ 23.4\\ 23.4\\ 23.4\\ 23.9\\ 19.9\\ \end{array}$	12 14 12 12 15 12 13 12 12 12 12 12 12 12 12 12 12 12 12 13 11 10 12 13 11 12 13 11 2 13 11 2 13 11 2 13 11 2 12 12 12 12 12 12 12 12 12 12 12 1	31 519 17 13 95 52 39 55 21 0 8 77 25 1 58 37 72 21 39 39 37 27 21 39	$\begin{array}{c} 0.13\\ 0.09\\ 0.06\\ 0.09\\ 0.27\\ 0.07\\ 0.08\\ 0.10\\ 0.12\\ 0.10\\ 0.08\\ 0.12\\ 0.10\\ 0.08\\ 0.12\\ 0.10\\ 0.08\\ 0.12\\ 0.10\\ 0.08\\ 0.12\\ 0.10\\ 0.12\\ 0.06\\ 0.14\\ 0.20\\ 0.13\\ 0.24\\ 0.19\\ 0.11\\ 0.09\\ 0.10\\ 0.09\\ 0.09\\ 0.00\\ 0.09\\ 0.00\\ 0.09\\ 0.00\\ 0.09\\ 0.00\\ 0.09\\ 0.00\\ 0.09\\ 0.00\\$.491.3298 .1298.01.482.265888747797.327.3244150.33 .231.502.2588.37674779.317.322.4441.502.33 .232.323	.33 .19 .33 .25 2.16 .32 2.28 .30 .29 .28 .13 .29 .28 .13 .29 .28 .13 .29 .28 .13 .29 .28 .13 .29 .28 .10 .32 .29 .28 .10 .30 .29 .28 .30 .29 .24 .30 .25 .29 .25 .22 .28 .30 .29 .28 .29 .28 .29 .28 .29 .28 .29 .28 .29 .28 .29 .28 .29 .28 .29 .28 .29 .28 .29 .29 .29 .29 .29 .29 .29 .29 .29 .29	$\begin{array}{c} 2.87\\ .91\\ .59\\ .58\\ 1.98\\ .47\\ 1.02\\ .30\\ 1.26\\ 1.42\\ 1.07\\ 2.44\\ 1.01\\ 1.89\\ 2.94\\ 1.24\\ 1.67\\ 3.36\\ 1.07\\ .96\\ 1.07\\ .96\\ 1.07\\ .96\\ 1.216\end{array}$	8 C B B A D C A B B B B C B B C C B B B B C B C B B B C B C B B B C B C B B B C B C B B B C B C B B B C B C B B B C B C B B B C B C B B C B C B C B B B C B C B C B B B C B C B C B B C B C B C B C B C B C C B B B C B C B C B C B C C B B B C C B B B C B C B C B C C B B B C C B B C C B B C C B B C C B B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B	10529613713258888203137073546 33332333434343322343323323333 333333333
11 11 11 11 11 11 11 11 11 11 11 11 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 31.038\\ 2.31.645\\ 31.645\\ 31.528\\ 31.076\\ 31.528\\ 31.076\\ 31.703\\ 31.151\\ 31.271\\ 31.168\\ 31.833\\ 31.767\\ 31.267\\ 31.267\\ 31.267\\ 31.267\\ 31.267\\ 31.473\\ 31.479\\ 31.479\\ 31.479\\ 31.479\\ 31.479\\ 31.479\\ 31.479\\ 31.479\\ 31.479\\ 31.479\\ 31.505\\ 31.418\\ 31.505\\ 31.505\\ 31.520\\ 31.116\\ 31.538\\ 31.084\\ 31.553\\ 31.075\\ \end{array}$	67.814 67.802 68.200 67.785 67.940 67.791 67.728 68.757 67.788 67.788 67.770 67.951 67.776 67.655 67.655 67.728 67.6593 67.761 67.761 67.87761 67.8761 67.634 67.697	$\begin{array}{c} 8.4\\ 6.2\\ 48.1\\ 31.6\\ 5.0\\ 16.7\\ 116.1\\ 6.8\\ 11.\\ 20.9\\ 25.9\\ 27.4\\ 24.0\\ 14.1\\ 9.8\\ 5.7\\ 21.3\\ 23.0\\ 14.1\\ 9.8\\ 5.7\\ 21.3\\ 23.0\\ 31.1\\ 8.7\\ 31.2\\ 28.6\\ \end{array}$	13 13 13 12 13 14 12 13 14 13 13 11 13 11 15 13 13 13 13 13 13 13 13 13 13 13 13 13	45365576887209568819014498668235504214 21956870956819014498668235504214 214	0.12 0.09 0.16 0.09 0.14 0.06 0.19 0.14 0.13 0.09 0.08 0.07 0.10 0.13 0.09 0.07 0.13 0.09 0.07 0.13 0.09 0.020	.29 .30 .716 .240 .13 .240 .13 .299 .224 .128 .300 .528 .242 .306 .225 .818 .600 .221 .00	.27 .25 .84 .22 .33 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25	$\begin{array}{c} 1.51\\ 1.36\\ 1.80\\ .37\\ .98\\ .77\\ 2.24\\ 1.44\\ 1.46\\ 3.65\\ .73\\ 2.50\\ 1.55\\ .73\\ 1.04\\ 2.50\\ 1.97\\ .60\\ 3.82\\ .52\\ 1.80\\ .47\\ 1.55\\ 1.60\\ \end{array}$	BCCACBCCBBCCBBABBBBABBBCACACB	8327341446204034900933096976189 33223332333333333322333223332232223332222
12 12 12 12 12 12 12 12 12 12 12 12	0043 29.00 0114 45.01 0215 38.32 0304 45.28 0412 45.04 0443 24.41 0556 13.62 0611 22.57 0819 52.39 0916 14.94 1029 00.95	31.801 31.277 31.517 31.266 31.503 31.353 31.466 31.817 31.574	67.802 67.833 67.918 68.868 67.986 67.730 67.835 67.666 67.828 67.502 67.724	1.7 22.0 27.5 110.0 26.3 30.6 20.6 8.8 17.2 16.5 6.0	12 13 16 12 12 13 12 11 12 13	53 14 42 30 45 12 31 12 16 12 43	0.09 0.07 0.16 0.10 0.05 0.12 0.16 0.16 0.16 0.16 0.09 0.14	.23 .20 .21 .93 .28 .19 .41 .63 .48 .28 .48	.23 .22 .19 1.46 .28 .18 .32 .48 .60 .34 .48	.50 .37 .65 .94 .19 2.58 1.32 1.54 .86 2.14	C B B C B A B B C B C B C B C	3.8 3.5 2.7 2.5 3.3 2.9 2.8

List of aftershocks for the Argentina earthquake of November 23, 1977-Continued

							•	•	Standard errors			-	
Date (Dec. 1977)		rigin UTC)	Lat. S (deg)	Long. W (deg)	Depth (km)	No. ¹ obs.	DMIN ² (km)	RMS ³	DLAT (km)	DLON (km)	DZ (km)	QF	MD
12 12 12 12 12 12 12 12 12 12 12 12 12 1	1244 1342 1346 1510 1517 1602 1715 1748 1908 2044 2056 2307 2318 2331	24.77 42.09 00.55 01.99 48.25 29.29 16.52 28.64 36.22 16.60 32.39 10.58 23.11 51.74	31.120 31.208 31.119 31.201 31.392 31.208 31.482 31.198 31.209 31.246 31.577 31.566 31.846 31.470	67.779 67.694 67.766 67.708 67.864 67.708 67.482 67.698 67.701 67.767 67.720 67.922 67.892 67.736	1.6 20.0 2.5 16.7 20.9 20.8 14.7 15.7 24.3 23.4 30.8 7.0 19.3 30.7	14 11 12 13 12 14 11 12 12 12 13 12 13 12	50 40 41 30 41 15 41 38 9 12 14 15	0.11 0.09 0.08 0.13 0.18 0.14 0.09 0.08 0.16 0.13 0.09 0.17 0.09 0.08	.22 .34 .19 .35 .71 .39 .31 .50 .45 .24 .29 .38	.28 .30 .19 .42 .47 .50 .33 .56 .38 .28 .28 .28 .32	.39 2.14 2.89 3.51 2.85 1.04 2.78 3.15 3.79 .25 1.93 .73 .40	C C C C B B A C B B A C B A A C B A C C B A C B	3.1 3.1 2.9 3.0 3.9 2.5 2.4 2.7 3.2 3.2 3.2 3.7 3.0
13 13 13 13 13 13 13 13 13 13 13 13 13 1	0033 0220 0304 0341 0744 0845 1006 1100 1424 1552 1620 1722 1845 1851 1904 1919 2325	09.95 57.35 36.21 55.31 12.44 11.80 40.12 17.79 26.53 04.99 50.28 26.89 45.76 45.73 15.08 21.58 54.29	31.574 31.268 31.385 31.222 31.866 31.559 31.519 31.699 31.785 31.124 31.355 31.231 31.757 31.570 31.666 31.773 31.652	67.673 67.708 67.702 67.753 67.641 67.608 67.523 67.811 67.830 67.862 67.772 67.774 67.738 67.738 67.795 67.591	5.3 26.9 30.3 5.7 18.6 34.6 23.2 9.3 7.0 23.0 15.2 16.9 21.6 12.0 23.8 24.5 11.0	14 13 14 12 13 14 13 14 13 12 13 11 12 12 12	4 21 40 18 16 53 32 40 20 18 21 15 17 10	0.13 0.14 0.09 0.10 0.09 0.12 0.15 0.13 0.12 0.12 0.12 0.15 0.10 0.07 0.13 0.13 0.13 0.13 0.15 0.09 0.06	.50 .32 .33 .32 .28 .47 .60 .35 .28 .55 .29 .20 .41 .50 .52 .26 .18	.36 .35 .27 .26 .31 .53 .39 .39 .39 .39 .39 .29 .36 .29 .26 .16	1.10 1.07 .42 1.30 .87 .86 .99 .65 .98 1.54 2.75 3.90 .74 .77 2.18 .85 .81	B B A B B A A B B C B C B B B B B B B B	3.88951332895 2.2332423376774585 3.232332233223322332233
14 14 14 14 14 14 14	0230 0344 0352 1124 1404 1742 2217	35.57 53.99 42.24 30.31 11.65 55.11 08.00	31.811 31.673 31.645 31.139 31.713 31.111 31.637	67.835 68.044 67.750 67.911 67.869 67.767 69.029	22.8 30.7 13.7 22.6 29.9 8.1 116.1	12 12 11 15 12 12 16	15 10 14 55 10 49 46	0.13 0.15 0.10 0.09 0.17 0.07 0.16	.42 .85 .30 .19 .66 .18 1.32	.41 .65 .26 .21 .57 .22 1.32	.79 .59 1.04 1.12 .74 .86 1.13	B C B C B C	2.9 2.4 2.2 3.2 2.4 3.1 2.9
15 15 15 15 15 15 15 15 15 15 15	0417 0436 0724 0751 0803 0958 1034 1425 1640 1744 1913 2234 2258 2320	25.16 33.23 57.89 21.62 38.56 24.94 02.60 40.98 23.56 59.03 49.18 28.64 04.85 37.86	31.585 31.132 31.316 31.838 31.493 31.122 31.099 31.581 31.611 31.216 31.228 31.242 31.831 31.194	67.727 67.911 67.902 67.831 68.722 67.894 67.717 67.894 67.717 67.828 68.444 67.841 67.847 67.719	29.2 8.4 27.0 13.2 122.2 6.6 22.5 29.5 29.5 5.8 116.0 9.3 18.1 24.2	14 15 15 18 14 12 12 12 12 13 13	9 55 38 17 16 53 29 28 58 29 28 51 21 15 41	0.13 0.07 0.11 0.16 0.08 0.08 0.07 0.10 0.11 0.09 0.06 0.13 0.12	.39 .17 .28 .26 .86 .16 .17 .22 .32 .42 .60 .19 .36 .29	.36 .17 .26 .28 1.15 .16 .19 .23 .29 .64 .15 .38 .36	.55 1.41 .88 1.15 .97 .59 .36 .54 1.74 1.32 .96 1.18	A C B B C C C A B C B B B B B	3.0 3.8 3.5 2.9 3.2 3.2 3.2 3.2 2.7 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2
16 16 16 16 16 16	0447 0553 1018 1106 1215 1249	02.10 01.24 35.84 45.45 33.30 44.28	31.747 31.419 31.549 31.170 31.461 31.798	68.007 67.669 67.513 67.905 67.617 67.939	28.1 33.6 9.8 25.9 39.1 16.5	13 12 9 12 13 10	4 17 11 51 12 7	0.12 0.13 0.25 0.09 0.05 0.21	.45 .63 1.37 .28 .25 .91	.42 .48 1.41 .24 .18 .88	.46 1.59 2.50 1.08 .59 3.26	B C B A C	3.2 3.2 2.9 3.3 3.1 2.9
17	0202	37.85	31.235	67.919	26.3	13	46	0.09	.25	.22	.94	В	3.7


 1 No. obs.--the number of observations used to obtain hypocentral solutions. $^2\text{DMIN}\text{--distance}$ to the closest seismograph station.

³RMS--root mean square errors of travel-time residuals.

Standard errors--the indices of precision relating to the values and distribution of the unknown errors in the hypocentral solution where DLAT=error in latitude, DLON=error in longitude, and DZ=error in depth.

Source of the second se depth.

 $[M_{D}$ -Local magnitude estimate of aftershock (Lee and others, 1972).

