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Authigenic Albite in a Jurassic Alkaline, 
Saline Lake Deposit, Colorado Plateau- 
Evidence for Early Diagenetic Origin

By Neil S. Fishman, Christine E. Turner, and Isabelle K. Brownfield

Abstract

Authigenic albite in the Brushy Basin Member of the 
Upper Jurassic Morrison Formation, Colorado Plateau, 
probably formed at low (25°C-60°C), synsedimentary temper­ 
atures. This albite is present in tuff beds as the alteration prod­ 
uct of silicic volcanic ash deposited in Jurassic Lake 
T'oo'dichi'. The albitic tuff beds form the central diagenetic 
mineral zone in a concentric progression that is, from lake mar­ 
gin basinward, smectite^clinoptilolite »analcime±potassium 
feldspar »albite. The conformity of the outer boundary of the 
albite diagenetic mineral zone with boundaries of the other 
diagenetic mineral zones suggests that albite formed in 
response to the same lateral hydrogeochemical gradient 
responsible for the formation of other authigenic minerals and, 
therefore, at low, synsedimentary temperatures. Although 
albite is reported in minor amounts in other alkaline, saline- 
lake settings, this is the first reported occurrence of albite as a 
distinct diagenetic mineral zone.

Fluvial sandstone beds interbedded with and underlying 
the albitic tuff beds contain abundant authigenic albite as over­ 
growths, pore-filling laths, and replacement of detrital feldspar 
grains. The close spatial association of albitic tuff beds and 
albitized sandstone beds suggests that pore water in sediments 
of Lake T'oo'dichi', in which cations were enriched from the 
alteration of silicic ash, moved into nearby sands during early 
diagenesis. The coarseness of the albite in the sandstone beds 
makes it more amenable to study than the aphanitic albite in 
the tuff beds. Microprobe analysis of the albite cement indi­ 
cates a plagioclase composition of <An 1r almost pure 
NaAISi 3O8, and unit-cell determinations indicate that the 
albite is highly ordered. High minus-cement porosity in albite- 
cemented sandstone (as high as 33 percent) and the nature of 
grain contacts confirm an early diagenetic origin for the albite 
cement.

Alkaline, saline lakes may act as solar ponds because 
brine that develops by evaporative concentration has a high 
heat capacity. The high heat capacity of saline lakes may result 
in water temperatures higher than 25°C, perhaps as high as

50°C-60°C Because warm lake water may have infiltrated into 
underlying sediments, we postulate temperatures between 
25°C and 60°C for the formation of authigenic albite in Lake 
T'oo'dichi' tuff beds and associated sandstone beds. Pore- 
water chemistry can thus drive crystallization of albite at 
temperatures less than 85°C. Our results significantly expand 
the temperature range in which authigenic albite can form in 
sedimentary rocks and thus limit the use of albite as a geother- 
mometer.

INTRODUCTION

Authigenic albite is common in sedimentary rocks of 
various ages (Moore, 1950; Baskin, 1956; Milton, 1957; 
Kastner and Waldbaum, 1968; Kastner, 1971; Desborough, 
1975; Boles and Franks, 1979; Kastner and Siever, 1979; 
Cole, 1985; Saigal and others, 1988; Milliken, 1989), espe­ 
cially with increased depth of burial and temperature. Some 
rocks that have experienced burial temperatures of 100°C or 
greater show a dramatic increase in authigenic albite, as 
replacement of, or overgrowth on, detrital feldspar grains 
(lijima and Utada, 1972; Merino, 1975; Boles, 1982; Hel- 
mold and van de Kemp, 1984; Milliken, 1985; Gold, 1987), 
although recent studies suggest that albite may form at 
about 85°C (Pittman, 1988) or slightly lower (Saigal and 
others, 1988).

The presence of authigenic albite in some lacustrine 
rocks suggests temperatures of formation lower than 85°C. 
Authigenic albite is in the Green River Formation (Moore, 
1950; Milton, 1957; Desborough, 1975; Cole, 1985) in an 
area where vitrinite-reflectance data (Nuccio and Johnson, 
1988) confirm a cool (<70°C) thermal history. Authigenic 
albite is in Miocene rocks near Boron, California, where it 
formed at temperatures of less than 58°C, as indicated by its 
coexistence with primary borax (Williamson 1987), a

Jurassic Alkaline, Saline Lake Deposit, Colorado Plateau PI
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Figure 1 . Map of the study area showing outcrops of the Upper Jurassic Morrison Formation (shaded 
areas) in the Colorado Plateau and locations of measured sections used for this report (solid circles). 
Line of section A-A' (fig. 2) is also shown.
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mineral that alters to kernite at temperatures greater than 
58°C (Christ and Garrels, 1959).

Studies of alkaline, saline lake deposits in the Brushy 
Basin Member of the Upper Jurassic Morrison Formation, 
eastern Colorado Plateau (fig. 1), indicate that authigenic 
albite is present in interbedded silicic tuff beds and sand­ 
stone beds (Fishman and others, 1986; Turner-Peterson and 
others, 1986; Turner-Peterson, 1987; Turner and Fishman, 
1991). Both the confinement of albite primarily to the cen­ 
tral lake facies and petrographic constraints suggest an 
early, low-temperature origin, probably related to the alka­ 
line, saline pore-water chemistry. Because the albite seemed 
to have formed at low, synsedimentary temperatures, an 
integrated case study of the distribution, mode of occur­ 
rence, timing of formation, and thermal history of the albitic 
rocks was undertaken.

Acknowledgments. Discussions, both in the labora­ 
tory and in the field, with Richard L. Hay (University of 
Illinois), Richard L. Sheppard (U.S. Geological Survey), 
and Blair F. Jones (U.S. Geological Survey) were extremely 
important and helpful and contributed much to our knowl­ 
edge of alkaline, saline-lake systems. Vito Nuccio (U.S. 
Geological Survey^ kindly performed vitrinite-reflectance

studies on coal samples, and Joan Fitzpatrick (U.S. Geolog­ 
ical Survey) kindly made unit-cell determinations. This 
manuscript was improved by the critical reviews by George 
Breit, Joan Fitzpatrick (U.S. Geological Survey), Arthur S. 
Trevena (Unocal), Earle M. McBride (University of Texas), 
and Enrique Merino (Indiana University).

METHODS

Samples of interbedded albitic tuff beds and sand­ 
stone beds were collected from four localities: Durango, 
Norwood Hill, Piedra River, and Vancorum, Colorado (fig. 
1). The sections were measured and described in detail by 
Turner-Peterson (1987).

Petrologic studies were performed using X-ray dif­ 
fraction, electron microprobe, scanning electron micro­ 
scope, and petrographic microscopic techniques. Selected 
areas of thin sections were powdered in situ using a dia­ 
mond-tipped objective, and the powdered material was then 
mounted on a gelatin fiber for X-ray analysis using a 
powder camera and CuKoc radiation. Exposure times varied 
from 2 to 12 hours. This powder-camera technique allowed

Table 1. Electron microprobe data for authigenic albite from the Brushy Basin Member of the Morrison Formation, eastern 
Colorado Plateau.
[Sample localities are shown in figure 1. n is number of data points per grain. Oxide abundances are in weight percent (NazO, ±0.15 percent; KzO, 
±0.01 percent; CaO, ±0.03 percent; SiO2, ±0.34 percent; A12O3, ±0.13 percent; Fe2O3, ±0.02 percent; BaO, ±0.03 percent). Anorthite (An) content is 
<1 mole percent for all samples]

Sample 
locality

Piedra River
Piedra River
Piedra River
Piedra River
Piedra River

Piedra River
Piedra River
Durango
Durango
Durango

Durango
Durango
Durango
Durango
Durango

Norwood Hill
Norwood Hill
Norwood Hill
Norwood Hill
Norwood Hill

Sample 
type

Framework grain
Framework grain
Framework grain
Framework grain
Framework grain

Framework grain
Overgrowth
Framework grain
Framework grain
Framework grain

Overgrowth
Overgrowth
Overgrowth
Overgrowth
Overgrowth

Framework grain
Framework grain
Interstitial cement
Interstitial cement
Interstitial cement

n
14
5
3
5
5

2
5
7
6
5

2
1
1
1
1

5
5
1
1
1

Na2O
12.40
11.66
11.64
11.83
11.77

11.81
11.91
12.48
12.67
12.90

12.64
12.79
12.63
12.49
13.01

12.17
12,12
12.21
12.40
12.32

K2O
0.03
0.04
0.03
0.01
0.04

0.01
0.03
0.07
0.04
0.04

0.02
0.05
0.05
0.06
0.08

0.01
0.00
0.03
0.03
0.02

CaO
0.05
0.04
0.12
0.06
0.03

0.05
0.05
0.16
0.02
0.02

0.03
0.05
0.00
0.05
0.02

0.03
0.06
0.03
0.05
0.06

SiO2
68.19
67.36
67.27
67.01
67.28

67.67
67.19
68.53
67.98
68.24

67.99
68.01
67.38
65.76
66.43

67.21
66.79
67.19
67.55
67.52

AI 203
19.61
19.48
19.64
19.58
19.79

19.60
19.84
19.79
19.66
19.62

19.68
19.67
19.76
19.74
19.79

19.40
20.02
19.96
20.05
20.30

Fe203
0.02
0.04
0.01
0.03
0.05

0.00
0.01
0.05
0.08
0.01

0.02
0.00
0.01
0.08
0.00

0.01
0.02
0.00
0.00
0.00

BaO
0.03
0.02
0.03
0.01
0.00

0.04
0.02
0.00
0.01
0.01

0.00
0.00
0.00
0.00
0.04

0.01
0.00
0.00
0.03
0.00

Total
100.33
98.63
98.74
98.53
98.96

99.18
99.05

101.08
100.46
100.84

100.38
101.48
99.83
98.18
99.37

98.84
99.01
99.39

100.11
100.22

Norwood Hill Interstitial cement 12.48 0.02 0.00 66.83 19.78 0.05 0.07 99.23
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for analysis of individual crystals or of areas that were also 
examined in thin section. All tuff samples were also pow­ 
dered and X-rayed. Albitized detrital grains, identified by 
their white, opaque appearance, were picked by hand from 
a disaggregated sandstone sample, and the material was 
then used for determination of unit-cell parameters.

Major element (Na, K, Ca, Si, Al) and minor element 
(Ba, Fe, Sr) compositions of authigenic albite in sandstone 
beds were determined through quantitative analysis of 
grains in polished thin sections using an electron micro- 
probe (accelerating voltage 15 keV, beam current 10 nA, 
beam size 5 (im) (table 1). The microprobe data were 
reduced using the methods described by Ziebold and 
Ogilvie (1964), Albee and Ray (1970), and Bence and

Albee (1968). Strontium content was below the detection 
limit (0.02 percent) in all samples analyzed.

Forty-one thin sections were studied; most of these 
were stained with sodium cobaltinitrite for determination of 
potassium feldspar and with alizarine red S and potassium 
ferricyanide for determination of carbonate type and com­ 
position, respectively. Point counts (at least 300 points per 
section) were performed on the thin sections from sand­ 
stone samples. Selected samples were viewed using a scan­ 
ning electron microscope that was equipped with an 
energy-dispersive X-ray analyzer.

The thermal history of the Morrison Formation was 
determined by study of the vitrinite reflectance of organic 
material chiefly from coal beds in the lower part of the
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Figure 2. North-south stratigraphic section of the Morrison Formation in the Colorado Plateau. Diagenetic mineral zones in the 
alkaline, saline lake deposits in the Brushy Basin Member were determined from authigenic minerals in tuff beds (Turner-Peterson 
1987). The relationship between the Junction Creek Sandstone and the Morrison Formation is uncertain. Line of section is shown 
in figure 1 ; datum is base of Cretaceous rocks. J 5 unconformity as described in Pipiringos and O'Sullivan (1978).
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Upper Cretaceous Dakota Sandstone, a unit that either 
unconformably overlies the Morrison or is separated from 
the Morrison locally by the Lower Cretaceous Burro Canyon 
Formation (0-60 m thick). Even though an unconformity 
separates the Dakota from the Morrison, the Dakota coal 
samples would have experienced the same post-Late Creta­ 
ceous thermal history as the Morrison. Maximum burial 
depths occurred in the Tertiary, and the nearby San Juan 
volcanic field was active in the Tertiary. Thus, the Morri­ 
son's thermal history would be close to that of overlying 
Dakota coals. A single sample from an organic-rich horizon 
in the Brushy Basin Member of the Morrison Formation was 
also collected and used for vitrinite reflectance studies.

GEOLOGY 

Stratigraphy

The Brushy Basin Member, except locally where 
overlain by the Jackpile Sandstone Member, is the upper­ 
most member of the Morrison Formation on the Colorado 
Plateau and is recognized from the southern margin of the 
San Juan Basin northward to Grand Junction, Colorado 
(fig. 2). In the study area, it conformably overlies the 
fluvial Westwater Canyon, Recapture, or Salt Wash 
Members of the Morrison Formation. In an area north of 
the Colorado-New Mexico State line, beyond the 
depositional pinchout of the Westwater Canyon Member, 
beds equivalent to the Brushy Basin Member in New 
Mexico rest directly on beds that are equivalent to the 
Recapture Member (Turner-Peterson, 1987). The name 
Recapture is not extended much beyond the pinchout of the 
Westwater Canyon, and the entire interval of Morrison 
above the Salt Wash Member is mapped as Brushy Basin 
in this area (fig. 2).

Ancient Lake T'oo'dichi'

Deposits of a large, ancient alkaline, saline lake, 
Lake T'oo'dichi' (Turner-Peterson, 1987), have been 
recognized in the upper part of the Brushy Basin Member 
north of the Colorado-New Mexico State line and extend 
south to include the entire Brushy Basin Member in New 
Mexico (fig. 2). The lake sediments accumulated in a 
large, shallow basin that included the present-day San Juan 
and the ancestral Paradox Basins (Turner-Peterson, 1987) 
(fig. 3). The lake deposits are as thick as 100 m and 
contain intervals of altered volcanic ash (Turner-Peterson, 
1987). The ash was derived from a magmatic arc several 
hundred kilometers to the west of the Colorado Plateau 
region (Burchfiel and Davis, 1975; Hamilton, 1978). 
Differential alteration of the ash, which reflects lateral

hydrogeochemical gradients established during deposition 
in an alkaline, saline lake, resulted in development of four 
concentric diagenetic mineral zones. The zones are defined 
on the basis of the dominant diagnostic authigenic 
mineral(s) in tuff beds that were deposited in the lake. The 
three outer zones, which basinward are the smectite, 
clinoptilolite, and analcime±potassium feldspar zones, are 
similar to those recognized in Pliocene and Pleistocene 
alkaline, saline lake deposits studied by others (Sheppard 
and Gude, 1968; Surdam and Sheppard, 1978) and are part 
of the data that led to the interpretation of this interval of 
the Brushy Basin Member as lacustrine. However, a 
central albitic diagenetic mineral zone, such as occurs in 
deposits of Lake T'oo'dichi' (fig. 3), has not been 
described from other ancient alkaline, saline lake deposits.

Thermal History

Because high temperature (>85°C) is commonly 
considered necessary for albite formation, it is important to 
evaluate the thermal history of the Brushy Basin Member, 
which contains albitic tuff beds to determine if 
temperatures ever exceeded 85°C. Two factors, burial 
history and igneous activity, have contributed to the 
thermal history of the region.

Following deposition of the Morrison Formation, 
about 1,000 m of Cretaceous and Tertiary sediments accu­ 
mulated. Burial depths of Morrison sediments were 
probably somewhat uniform until the Late Cretaceous and 
early Tertiary Laramide orogeny, during which time down- 
warping of the San Juan Basin occurred. Samples used to 
define the diagenetic mineral zones in Lake T'oo'dichi' 
were collected from outcrops of the Brushy Basin Member 
of the Morrison Formation that flank the San Juan Basin or 
are distant from the basin; therefore, the structural effects 
of the Laramide orogeny are negligible. On the basis of 
stratigraphic reconstruction, the maximum depth of burial 
for the outcrops sampled is uniformly about 2,000 m. Vit­ 
rinite reflectance data (fig. 4) indicate that outcrops con­ 
taining albitic tuff beds never were subjected to 
temperatures in excess of 70°C (Barker and Pawlewicz, 
1986), which is consistent with the relatively shallow 
burial. This inferred temperature is below the 85°C com­ 
monly considered to be the minimum temperature required 
for formation of authigenic albite.

The vitrinite reflectance data, in addition to record­ 
ing burial history, would show thermal effects of igneous 
activity in the region. The San Juan volcanic field (fig. 4), 
which developed 35-20 Ma (Steven, 1975; Lipman and 
others, 1978), is thought by some workers to have left a 
regional thermal imprint; however, the uniformity of 
vitrinite reflectance data across the region indicates no 
thermal effects from the San Juan volcanic field.

Jurassic Alkaline, Saline Lake Deposit, Colorado Plateau P5
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Figure 3. Map showing the distribution of diagenetic mineral zones in altered tuff deposited in Jurassic Lake 
T'oo'dichi'. Modified from Turner and Fishman (1991).
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Figure 4. Map showing the distribution of Tertiary and Qua­ 
ternary igneous intrusive and extrusive rocks (shaded areas) in 
the study area and vitrinite reflectance values (in percent) for 
coal samples from the Dakota Sandstone (solid circles), which 
overlies the Morrison Formation, and from a sample in the 
Brushy Basin Member of the Morrison Formation (indicated by 
asterisk). Note uniformity of vitrinite reflectance values across

the region and the lack of thermal effects from the San Juan vol­ 
canic field; in fact, a vitrinite reflectance value of 0.53 percent 
is in coal from very near the volcanic field. Diagenetic mineral 
zone boundaries (heavy solid and dashed lines) in the Brushy 
Basin Member of the Morrison Formation (from fig. 3) are also 
shown; note how lithofacies boundaries are unaffected by 
proximity to volcanic field.

MODES OF OCCURRENCE OF 
AUTHIGENICALBITE

The coincidence of the outer boundary of the albitic 
diagenetic mineral zone with the boundaries of the other 
diagenetic mineral zones led us to infer an alkaline, saline

lake origin for the albite in the Brushy Basin Member of 
the Morrison Formation. This conformity remains one of 
the more compelling arguments for a low-temperature, 
syndepositional origin for the albite. Additional lines of 
evidence are provided by petrographic observations of tuff 
beds and sandstone beds interbedded with and underlying 
tuff beds of the central albitic zone.

Jurassic Alkaline, Saline Lake Deposit, Colorado Plateau P7



Albitic Tuff Beds

Albitic tuff beds are characteristically siliceous, well 
indurated, and aphanitic and form prominent ledges in steep 
cliff exposures (fig. 5). The tuff beds are grayish green (5G 
5/2) on both fresh and weathered surfaces, a color produced 
by authigenic clays. Local weathering of the pyrite in the 
tuff beds gives them a light-brown color (10YR 7/2). 
Locally, shard morphologies are preserved in albitic tuff 
beds (fig. 6). A distinctive spherulitic texture, diagnostic of 
authigenic analcime, preserved in some albitic tuff beds 
suggests an analcime precursor. The abundance of shard 
morphologies observed in thin sections of albitic tuff beds 
(fig. 6) contrasts with the relative paucity of shard morphol­ 
ogies in the analcime diagenetic mineral zone (Turner- 
Peterson, 1987). If the growth of spherulitic analcime crys­ 
tals destroys shard morphologies, then the abundance of 
shard morphologies in the albitic tuff argues for direct 
replacement of volcanic glass or clinoptilolite by authigenic 
albite. Scarcity of the spherulitic analcime texture further 
suggests a lack of an analcime precursor, although the con­ 
version of analcime to albite might have destroyed the 
spherulitic texture. Some albitic tuff beds exhibit the spher­ 
ulitic analcime texture; here the albite must have formed 
from an analcime precursor.

Albite Cement In Sandstone Beds

Thin sandstone beds (from several centimeters to sev­ 
eral meters thick), which represent fluvial episodes in the 
development of the alkaline, saline lake, are interbedded

with albitic tuff beds. Authigenic albite in the sandstone is 
present as overgrowths on detrital plagioclase grains, as 
intergranular cement, and as a replacement (albitization) of 
detrital feldspar grains. No evidence for precursor cements 
was observed in any of the albite-cemented sandstone sam­ 
ples. Albite overgrowths on detrital plagioclase grains gen­ 
erally are clear, have few or no vacuoles, and are well 
defined by sharp, euhedral faces (fig. 7A). The albite over­ 
growths typically are twinned, and twin planes commonly 
are aligned with those of the parent detrital core. Micro- 
probe analysis indicates that the overgrowths are less than 
Ant , almost pure NaAlSi3O8 (see table 1). The overgrowths 
may be as long as 50 |im; they compose less than 2 percent 
of the volume of the sandstone.

Albite intergranular cement has been identified 
optically, by microprobe, and by X-ray diffraction. It fills 
primary intergranular pores and is present as euhedral, 
tabular crystals (>5 (im long) that generally are clear, 
contain no vacuoles, and compose between 1 and 15 percent 
of the volume of the sandstone beds on the basis of point 
counts (see table 2). The interstitial albite generally is 
twinned and forms a network of intergrown crystals (figs. 
IB, C). Similar to albite overgrowths, the pore-filling albite 
has an anorthite composition of less than Ant (table 1).

Albitization of detrital plagioclase grains is wide­ 
spread, and albitization of detrital potassium feldspar grains 
was observed in varying abundance. Microprobe (table 1) 
and X-ray diffraction (table 3) analyses confirm that detrital 
feldspar is albitized. Determination of the original compo­ 
sition of detrital feldspar was made by examining unaltered 
grains in sandstone distant from the albite diagenetic min­ 
eral zone (N.S. Fishman and P.L. Hansley, unpub. data, 
1984; Fishman and Reynolds, 1986). These unaltered

Figure 5. Albite diagenetic mineral zone of the Brushy Basin 
Member of the Morrison Formation at Piedra River locality 
(fig. 1). Prominent ledges are predominantly stacked tuff beds 
that contains authigenic albite and silica. Some of the ledges 
are thin (<1 m) sandstone beds, which also are cemented with 
albite and silica.
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Figure 6. Photomicrograph of albitic tuff beds from Norwood 
Hill locality (fig. 1). Albite is in groundmass, whereas shards 
(dark, curved shapes) are filled mostly with iron oxide miner­ 
als, chalcedony, and minor albite. Note preservation of deli­ 
cate shard morphologies. Bar is 0.40 mm long.
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Table 2. Modal analyses of selected samples of sandstone interbedded with and underlying albitic tuffs in the Brushy Basin 
Member of the Morrison Formation, eastern Colorado Plateau.
[In volume percent. Sample localities are shown in figure 1. Abbreviations: Qtz, quartz; K-spar, potassium feldspar; Flag, plagioclase; Diss, dissolved 
grain; Rk. frag, rock fragments; QO+chal, quartz overgrowths+chalcedonic quartz; Alb, albite as overgrowths and pore-filling cement; Cal, calcite. 
Leaders ( ) indicate not present]

Detrital grains
Sample locality
Norwood Hill
Norwood Hill
Norwood Hill

Norwood Hill
Norwood Hill
Durango

Durango
Durango
Piedra River

Piedra River
Piedra River
Piedra River

Piedra River

Qtz
52
35
49

57
55
51

57
43
52

48
40
47

51

K-spar
2
 
--

_
 
1

__
5
4

7
5
1

 

Flag
7

10
6

_
11
4

8
2
2

4
3
7

5

Diss
 
6
1

5
4
1

1
1
3

5
 
-

 

Rk. frag
9

26
15

9
12
11

5
21
15

14
18
11

13

Authigenic cement
QO+chal

16
4

18

28
13
10

24
18
6

7
29
24

24

Alb
4
3
3

_
11
15

1
-
 

3
3
3

2

Cal
8

13
-

1
3
-

4
10
14

6
 
4

4

Clays
2
3
3

_
1
7

 
~
4

4
1
1

-

Percent 
minus-cement 

Void porosity
 
 
5

_
1
-

 
-
3

2
 
~

1

30
23
28

29
29
32

27
29
25

23
33
32

31

grains include microcline, orthoclase, sanidine, and calcic 
plagioclase (as much as 4.5 weight percent CaO, equivalent 
to An22)- Even the detrital plagioclase grains that are albi- 
tized commonly retain their original textural features (such 
as twinning characteristics). Some albitized grains were 
observed to have chessboard (checkerboard in appearance) 
twinning (fig. ID), but these grains contain no obvious 
relicts of the original grains and no K2O; thus, it is impos­ 
sible to discern the composition of the chessboard grain 
prior to albitization. Grains of similar appearance in other 
rocks have been described as albitized potassium feldspar 
(Walker, 1984; Gold, 1987; Pittman, 1988; Saigal and oth­ 
ers, 1988), and in the Morrison some detrital potassium 
feldspar grains may have been completely albitized, leaving

only the chessboard texture. X-ray diffraction analyses 
reveal that the unit-cell parameters of the albitized grains 
are similar to those of authigenic albite reported from other 
sedimentary geological environments (table 3). In addition, 
on the basis of the separation of the 131-131 peaks, the 
tetrahedral aluminium-silicon distribution of the albite in 
the Morrison is highly ordered, similar to that of authigenic 
albite in other sedimentary rocks (Kastner and Waldbaum, 
1968; Kastner, 1971), with the exception of authigenic 
albite in the Green River Formation (Desborough, 1975).

Point counts of albite-cemented sandstone beds reveal 
high minus-cement porosity in samples where albite and 
quartz are the dominant cements (table 2). The minus- 
cement porosity ranges from 29 to 33 percent, almost as high

Table 3. Unit-cell parameters for authigenic albite from the Brushy Basin Member of the Morrison Formation and from other 
sedimentary rocks.
[Standard deviation (xKT4) is given in parentheses. Cell dimensions a, b, and c are in angstroms, and lattice angles a, P, and y are in degrees. Unit-cell 
volume (v) is in cubic angstroms. The d^i-dili separation is in angstroms]

Sample locality
Norwood Hill 1 
Greece2 
Crete2 
Greece3 

Wyoming4

a
8.140(2) 
8.138(14) 
8.135(19) 
8.137(21) 
8.164(9)

b
12.796(3) 
12.788(13) 
12.781(15) 
12.785(18) 
12.804(6)

c
7.159(2) 
7.157(8) 
7.156(8) 
7.158(13) 
7.143(4)

a
94.220(3) 
94.230(13) 
94.206(14) 
94.170(25) 
93.923(4)

P
116.62(2) 
116.61(9) 
116.58(12) 
116.61(14) 
116.58(3)

Y
87.93(3) 
87.81(13) 
87.82(16) 
87.81(25) 
88.86(4)

V
664.9(2) 
664.1(20) 
663.6(26) 
664.0(32) 
666.2(6)

d, 31-d,3,
1.15 
1.14 
1.14 
1.13 
1.46

Albitized detrital plagioclase (this study). 
2Kastner and Waldbaum (1968). 
3Kastner (1971). 
4Desborough (1975).

Jurassic Alkaline, Saline Lake Deposit, Colorado Plateau P9



Figure 7 (above and facing page). Various types of authigenic albite in sandstone 
interbedded with tuff in the albite diagenetic mineral zone of the Brushy Basin Member of 
the Morrison Formation. See figure 1 for sample localities. A, Photomicrograph of albitized 
detrital plagioclase (outlined area) with large twinned albite overgrowth (arrows). Durango 
locality. Bar is 0.13 mm long. B, Photomicrograph of large, twinned albite laths filling large 
primary pores between detrital quartz grains (Q). Norwood Hill locality. Bar is 0.26 mm 
long. C, Scanning electron microscope photograph of large, pore-filling albite laths in sand­ 
stone enclosed within a sequence of albitic tuff. Norwood Hill locality. Bar is 5 \am long. 
D, Photomicrograph of albitized detrital potassium feldspaK?) grain displaying chessboard- 
twinning texture. Textural features of this grain are similar to those described by Walker 
(1984) for albitized potassium feldspar; however, no relicts of potassium feldspar are in the 
grain. Piedra River localitv. Bar is 0.13 mm lone.
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as primary porosity for medium to poorly sorted, fine- to 
medium-grained sandstone beds (Beard and Weyl, 1973). 
The high minus-cement porosity indicates that the albite and 
quartz cements filled available pore space before significant 
reduction in primary porosity, which suggests early cemen­ 
tation. The character of grain contacts corroborates early 
cementation; floating grains are common and grain contacts 
are chiefly point to point.

Sandstone beds that contain carbonate cements (fer- 
roan and nonferroan) and minor albite and quartz have

somewhat lower minus-cement porosity (table 2). The calcite 
cement is paragenetically later than albite and quartz; thus 
some compaction occurred after introduction of the early 
albite and quartz cements and before precipitation of calcite.

DISCUSSION

Because high temperature is commonly thought to 
be required for formation of albite in sedimentary rocks,
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the albitic tuff beds and albite-cemented sandstone beds in 
the Brushy Basin Member were considered in light of the 
thermal history of the region. Several lines of evidence 
preclude a high-temperature (>85°C) origin for the albite 
in this study. First, the vitrinite reflectance data indicate 
that the Morrison Formation never was subjected to tem­ 
peratures much greater than 70°C, either as a result of 
burial or from local igneous sources, including the San 
Juan volcanic field. Moreover, if the authigenic albite had 
formed in response to heat caused by deeper burial, the 
boundary of the albite diagenetic mineral zone would not 
coincide with the other boundaries of diagenetic mineral 
zones in the alkaline, saline-lake deposits (fig. 3). Simi­ 
larly, if hot fluids from the San Juan volcanic field or 
other igneous sources had been responsible for albite for­ 
mation, the albite zone would have formed a halo around 
the sources of hot fluids, which it does not (fig. 4).

The petrographic evidence also constrains the origin 
of the albite. Minus-cement porosity in the albite- 
cemented sandstone beds is almost as high as that 
expected for initial primary porosity of the sandstone beds, 
which suggests an early diagenetic origin for the albite. 
To infer a high-temperature origin for this albite would 
imply that high primary porosity was preserved through a 
70-100-m.y. burial history, from deposition of the 
Morrison Formation until either the Laramide orogeny (for 
an origin by burial diagenesis) or batholithic activity 
associated with the San Juan volcanic field (for generation 
of hot fluids). The hypothesis that a precursor cement 
filled primary pore spaces and was subsequently 
completely replaced by albite and quartz, leaving no 
relicts, is possible but not probable. If this had occurred, 
the restriction of albite overgrowths to detrital plagioclase 
grains would be difficult to explain. This selectivity is 
readily explained if it is assumed, as it is here, that albite 
precipitated directly as a primary cement because albite 
overgrowths on plagioclase grains are common in the rock 
record. Thus, the contrived scenarios required to support 
a late, hot origin for the authigenic albite, such as 
vanished precursors or maintenance of high primary 
porcsity over millions of years, highlight the difficulties in 
proposing such an origin.

An early, low-temperature, syndepositional origin 
for the albite in both the albitic tuff beds and albite- 
cemented sandstone beds in the Brushy Basin Member 
readily accommodates all of the observations. In the tuff 
beds the conformity of the outer boundary of the albite 
diagenetic mineral zone with boundaries between other 
diagenetic mineral zones (fig. 3) implies that all the zones 
formed during early diagenesis in alkaline, saline lake 
sediments. We infer that the albite in ancient Lake 
T'oo'dichi' formed in the central part of the lake basin, in 
response to lateral hydrogeochemical gradients in the pore 
waters. These same hydrogeochemical gradients caused 
the volcanic ash to alter to authigenic clays, zeolites, and

feldspar in the other diagenetic mineral zones (fig. 3); 
such alterations are thought to occur between 1,000 and 
500,000 years after deposition in alkaline, saline lakes 
(Hay, 1966, 1986; Sheppard and Gude, 1968; Taylor and 
Surdam, 1981), and it is reasonable to infer a similar time 
span for precipitation of the albite.

Albite cement in sandstone beds that underlie the 
albitic tuff beds in Lake T'oo'dichi' probably formed by 
the downward flux of alkaline, saline pore water. Density, 
as well as elevation, is a factor in determining hydrologic 
head. In modern alkaline, saline lakes, the increased den­ 
sity of lake water due to evaporative concentration can 
create a net downward flux of waters into underlying sedi­ 
ments (Hardt and others, 1972; Friedman and others, 
1982). A density-driven, downward movement of pore 
waters from the sediments of Lake T'oo'dichi' is sug­ 
gested by the presence of albite-cemented sandstone beds 
underlying albitic tuff beds; this mechanism of albite 
authigenesis is consistent with the nonmarine volcaniclas- 
tic model for albite formation in sandstone beds advanced 
by Kastner and Siever (1979).

Although we propose a low-temperature, syngenetic 
origin for the albite, the temperature of formation may not 
have been as low as 25°C because the behavior of alka­ 
line, saline lakes as solar ponds can result in water tem­ 
peratures as high as 56°C (Milton and Eugster 1959). The 
warm lake water may have infiltrated below the sediment- 
water interface during albite precipitation and may have 
helped to overcome any kinetic inhibition of the reaction 
to form albite. Because we have no way of knowing 
whether Lake T'oo'dichi' behaved as a solar pond, we can 
only postulate the extant temperatures during albite 
formation. To include the possibility of warmer lake 
water temperatures, in line with an inferred arid to semi- 
arid paleoclimate (Turner-Peterson, 1987), we postulate 
temperatures of albite formation in sediments of Lake 
T'oo'dichi' between 25°C and 60°C.

Although the interpretation of albitic tuff beds in the 
context of an alkaline, saline lake environment best fits all 
of our data and observations, albite is not commonly 
reported from other alkaline, saline lakes. Authigenic 
albite has been reported from tuff beds in the Eocene 
Green River Formation (Moore, 1950; Milton, 1957; 
Desborough, 1975; Cole, 1985) and from middle Miocene 
tuffaceous lacustrine deposits from Boron, California 
(Williamson, 1987), but not from Pleistocene Lake 
Tecopa, California (Sheppard and Gude, 1968), or from 
the Pliocene Big Sandy Formation, Arizona (Sheppard and 
Gude, 1973). Albite, an anhydrous mineral, is thermody- 
namically favored over analcime, a hydrous mineral, under 
conditions of increased salinity or decreased activity of 
water (Hay, 1966; Surdam and Sheppard, 1978). Also, 
assuming a favorable NaVK* ratio, the increase in activity 
of silica with an increase in pH favors albite with respect 
to analcime (Garrels and Christ, 1965). These factors may
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account for the formation of albite in tuff beds of the 
central diagenetic mineral zone of Lake T'oo'dichi'. 
Similar conditions may account for the presence of authi- 
genic albite in lacustrine rocks of both the Green River 
Formation and the middle Miocene deposits near Boron, 
California.

CONCLUSIONS

1. Albitic tuff beds and albite-cemented sandstone 
beds, which are interbedded with and underlie the tuff 
beds, are restricted to a zone in the central part of Lake 
T'oo'dichi', an ancient alkaline, saline lake in the Brushy 
Basin Member of the Jurassic Morrison Formation, Colo­ 
rado Plateau.

2. The spatial relationship between the albite zone 
and other diagenetic mineral zones in the lake deposits 
resulted from differential alteration of silicic volcanic ash 
in response to lateral hydrogeochemical gradients that 
developed in Lake T'oo'dichi'.

3. Petrographic observations indicate an early 
diagenetic and, therefore, low-temperature origin for the 
authigenic albite cement in sandstone beds. Vitrinite- 
reflectance data corroborate a low-temperature origin for 
albite because the tuff beds and sandstone beds were never 
subjected to temperatures in excess of about 70°C.

4. Albite-cemented sandstone beds that underlie the 
albitic tuff beds in Lake T'oo'dichi' provide evidence for 
downward movement of pore water similar to that which 
occurs in modern lakes characterized by dense brines.

5. Because Lake T'oo'dichi' may have behaved as 
a solar pond, we must allow for somewhat elevated 
temperatures (>25°C) for lake water and possibly pore 
water in the underlying sediments. We therefore postulate 
a temperature between 25°C and 60°C for albite forma­ 
tion.

6. Our results indicate that pore-water chemistry 
can facilitate formation of authigenic albite at tempera­ 
tures well below 85°C. This, in turn, significantly 
expands the temperature range in which authigenic albite 
can form in sedimentary rocks and thus limits the use of 
albite as a precise geothermometer.
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