





Chapter H

Depositional Systems of a Synorogenic
Continental Deposit—The Upper Paleocene and
Lower Eocene Wasatch Formation of the
Powder River Basin, Northeast Wyoming

By DAVID SEELAND

A multidisciplinary approach to research studies of sedimentary
rocks and their constituents and the evolution of sedimentary basins,
both ancient and modern

U.S. GEOLOGICAL SURVEY BULLETIN 1917

EVOLUTION OF SEDIMENTARY BASINS—POWDER RIVER BASIN



U.S. DEPARTMENT OF THE INTERIOR
MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY
Dallas L. Peck, Director

Any use of trade, product, or firm names in this publication is for descriptive
purposes only and does not imply endorsement by the U.S. Government

UNITED STATES GOVERNMENT PRINTING OFFICE: 1992

For sale by

Book and Open-File Report Sales
U.S. Geological Survey

Federal Center, Box 25286
Denver, CO 80225

Library of Congress Cataloging-in-Publication Data

Seeland, David A.

Depositional systems of a synorogenic continental deposit; the Upper
Paleocene and Lower Eocene Wasatch Formation of the Powder River Basin,
northeast Wyoming / by David Seeland.

p. cm. — (U.S. Geological Survey bulletin ; 1917)
(Evolution of sedimentary basins—Powder River Basin ; ch. H)
Includes bibliographical references.

Supt. of Docs. no.: 1 19.3:1917

1. Sedimentation and deposition—Powder River Basin (Wyo. and
Mont.) 2. Geology, Stratigraphic—Paleocene. 3. Geology,
Stratigraphic—Eocene. 4. Wasatch Formation. 5. Coal—Powder River Basin
(Wyo. and Mont.) 6. Uranium ores—Powder River Basin (Wyo. and

Mont.) | Title. II. Series. . Series: Evolution of sedimentary
basins—Powder River Basin ; ch. H.

QE75.B9 no. 1917—H

[QE571]

557.3 s—dc20 91-26305

[551.7°83'09787] cip



CONTENTS

Abstract H1
Introduction  H1
Geologic setting  H2
Grain-size and grain-shape analysis H2
Conglomerate H2
Sandstone  Hé6
Facies studies H9
Paleocurrents and paleogeographic synthesis  H12
Methods H12
Results H17
A western-basin trunk stream in Wasatch time?  H17
Paleogeographic settings of coal and uranium deposits  H17
Conclusions H19
References cited  HI19

FIGURES

1-3. Maps showing:
1. Five proposed locations for the major basin-axis trunk stream of Wasatch
Formation time or Wasatch and late Fort Union Formation time = H3
2. Interpretive drainage in late Paleocene time  H4
3. Generalized geologic structures in and near the Powder River Basin  HS
4. Chart showing Late Cretaceous through early Tertiary stratigraphic
nomenclature for the Powder River Basin ~ H6
5. Map showing maximum clast size in the Wasatch Formation at sample
localities having granule-size or larger clasts H7
6. Histograms of mean sand-grain regularity, elongation, and size for Wasatch
Formation sandstone ~ H8
7-14. Maps showing:
7. Mean-elongation isopleths of sand grains from Wasatch Formation
sandstone  H9
8. Mean-regularity isopleths of sand grains from Wasatch Formation
sandstone  H10
9. Mean-size isopleths of sand grains from Wasatch Formation
sandstone  H11
10. Sandstone percentage in the Wasatch Formation =~ H13
11. Vector-mean crossbed-dip directions in the Wasatch Formation = H14
12. Moving-average crossbed-dip directions in the Wasatch
Formation HI15
13. Interpreted streams for Wasatch Formation time  H16
14. Relationship between early Eocene drainage patterns of the Bighorn,
Wind River, Shirley, and Powder River Basins  H18

Contents






EVOLUTION OF SEDIMENTARY BASINS—POWDER RIVER BASIN

Depositional Systems of a Synorogenic
Continental Deposit—The Upper Paleocene and
Lower Eocene Wasatch Formation of the
Powder River Basin, Northeast Wyoming

By David Seeland

Abstract

Fluvial sedimentary rocks of the Wasatch Formation of
the Powder River Basin had major sources in the Laramide
uplifts that nearly surround the basin on the east, south, and
west. Paleocurrent study based on crossbedding in sandstone
of stream-channel origin indicates that basin paleoslope
directions and the intersecting paleoslopes define two major
drainages. The first and largest was an extrabasinal stream that
was the major longitudinal river of the upstream Wind River
Basin. It flowed across the Casper arch and into the Powder
River Basin. This longitudinal basin-axis trunk stream of the
Powder River Basin, termed the Wind River of Eocene time,
flowed from south to north through the westernmost basin. The
other major stream flowed from southeast to northwest and
was the major tributary of the Wind River of Eocene time.

Three major alluvial depositional systems can be defined
using paleocurrent and facies analysis: (1) a distal mud-rich
alluvial plain with a source terrane to the east in the Black
Hills, (2) a proximal sand-rich alluvial plain-alluvial fan with a
source to the south in the Laramie Mountains, and (3) a
stream-dominated proximal to distal alluvial fan with a source
to the west in the Bighorn Mountains.

Grain-shape and grain-size studies supplemented the
paleocurrent study and corroborated transport directions. An
area of large tributaries to the Wind River of Eocene time is
indicated by an area of less-regular sand grains in the western
basin near Buffalo.

Major coal and uranium deposits are spatially related to
the depositional systems of the basin. Known Wasatch
Formation uranium deposits are limited to the proximal
alluvial plain-distal alluvial fan depositional system of the
southern basin. The source of the uranium was probably

Manuscript approved for publication July 12, 1991.

granitic detritus of the Wasatch sandstone and uraniferous tuff
of Oligocene age that overlap permeable Wasatch sandstone
units in the southernmost basin. The thickest coal bed known
in the United States originated in a peat swamp that paralleled
the basin-axis trunk stream. Other coal-forming swamps were
more abundant in the vicinity of the basin axis than in areas
remote from the axis.

INTRODUCTION

The synorogenic fluvial and paludal rocks of the
upper Paleocene and lower Eocene Wasatch Formation in
the Powder River Basin contain large deposits of coal and
uranium. These rocks also record the culmination of Lara-
mide tectonic events marked by subsidence in the basin and
uplift of the bounding structures. This study establishes the
early Eocene paleogeography of the basin using a two-part
approach consisting of (1) sedimentary particle-shape and
-size analysis, and (2) paleocurrent studies.

Because fluvial depositional systems are the key to
understanding the origin and localization of large deposits
of coal and uranium, many investigators have developed
paleogeographic frameworks for all or part of the basin (fig.
1) that attempt to explain the origin of these deposits.
Childers (1970) sketched an early Eocene paleogeographic
map of Wyoming (which included parts of the Wasatch,
Wind River, and Battle Spring Formations) based on
regional facies distributions. Galloway (1979) introduced a
late Paleocene and early Eocene (Tongue River Member of
Fort Union Formation and Wasatch Formation) paleo-
geographic framework based on a 50-log subsurface study
in the southern basin. Galloway’s trunk stream was
extended northward by Flores and Ethridge (1985) and
Flores (1986). Warwick and Flores (1987) postulated a
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north-flowing early Eocene basin-axis trunk stream in the
central basin. Seeland (1976) suggested westerly to
northwesterly flowing streams in the eastern and central
parts of the Wasatch outcrop area (the central part of the
topographic basin), with the trunk stream located in the
westernmost basin. Because of these conflicting paleo-
geographic frameworks showing the “western” trunk stream
(Seeland, 1976) or the “central” trunk stream (Galloway,
1979; Flores and Ethridge, 1985; Flores, 1986; Warwick
and Flores, 1987), the total number of paleocurrent
localities in the Wasatch Formation for this study were
increased by about 50 percent over the number used in
Seeland (1976), with recent supplemental field work
concentrated in the eastern part of the Wasatch Formation
outcrop (the central part of the topographic basin).
Comparison of the early Eocene paleogeography of
the basin (Seeland, 1976) (fig. 1) with the late Paleocene
(Tongue River Member of the Fort Union Formation)
paleogeography (Seeland, 1988; Seeland and others, 1988)
(fig. 2) shows that the two are very different, precluding
their combination as suggested by Galloway (1979) and as
followed by most of the other proponents of the eastern
trunk stream. These differences also preclude making paleo-
geographic inferences from a sand-percentage map of the
combined Wasatch Formation and Tongue River Member
of the Fort Union Formation (Flores and Ethridge, 1985).

GEOLOGIC SETTING

The Powder River topographic basin of northeastern
Wyoming and southern Montana is defined by the Bighom
Mountains on the west, the Black Hills on the east, and the
Laramie Mountains and the Hartville uplift on the south
(fig. 1). On the north, the Miles City arch structurally
separates the Powder River Basin from the Williston basin
of eastern Montana and North Dakota (fig. 3).

Following the eastward retreat of the Western Interior
Cretaceous epicontinental sea, thousands of meters of
mostly fluvial sediments were deposited, including the
Upper Cretaceous Lance and Hell Creek Formations, the
Paleocene Fort Union Formation, and the Paleocene (local)
and lower Eocene Wasatch Formation (fig. 4). The Wasatch
Formation is overlain by remnants of the Oligocene White
River Group, which formerly covered most of the basin.

The Wasatch Formation consists of alluvial mudstone
and sandstone. In most places mudstone of overbank flood
plain origin predominates and makes up about two-thirds of
the unit. Crossbedded sandstone that becomes finer grained
upwards is interpreted as channel deposits of meandering to
anastomosed streams and makes up much of the remainder
of the unit. Minor constituents include coarse conglomerate,
the Moncrief and Kingsbury Members of the Wasatch
Formation, deposited in alluvial fans along the western
margin of the basin, and carbonaceous shales and thick coal
beds deposited in extensive, long-lived, low-lying swamps.
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The maximum preserved thickness of the Wasatch is about
900 m (3,000 ft) along the present structural axis of the
basin (fig. 3) about 8 km southeast of Buffalo, Wyo.

GRAIN-SIZE AND GRAIN-SHAPE ANALYSIS

Conglomerate

Maximum clast sizes were determined at all field
localities where conglomeratic sandstone was present. Clast
shape was not studied. The maximum-clast-size map (fig. 5)
shows all localities with clasts larger than 3 mm (granules).

Two areas have conglomeratic sandstone: (1) the
western part of the basin adjoining the Bighorn Mountains,
and (2) the southern part of the basin where the most
probable source was the Laramie Mountains, but with the
Hartville uplift a second, less likely source. Granules at the
three northernmost localities in the southern part of the
basin most likely have a southern, rather than a Black Hills,
source. This conclusion is based on a lack of conglomerate
along the eastern part of the Wasatch Formation outcrop
north of these three localities. This eastern nonconglomer-
atic Wasatch is at least as close to a Black Hills source of
conglomerate as are the three granule localities. Probable
conglomerate source terranes are discussed in the section on
“Paleocurrents and Paleogeographic Synthesis.”

The Kingsbury Conglomerate Member and the
overlying Moncrief Member of the Wasatch Formation crop
out along and on the Bighorn Mountains uplift. They are
coarsely conglomeratic and record uplift and progressive
unroofing of the Bighorn Mountains. Kingsbury clasts are
predominantly carbonate rocks derived from the Ordovician
Bighorn Dolomite and the Mississippian Madison
Limestone (Nelson, 1968), and the Moncrief clasts are
predominantly crystalline rocks (Hoppin and Jennings,
1971; Sharp, 1948). Carbonate boulders as large as 1 m
were found at Kingsbury Ridge, 10 km south-southwest of
Buffalo. Conglomerate and conglomeratic sandstone are
interbedded with sandstone and minor amounts of mudstone
at Kingsbury Ridge.

Although Hoppin and Jennings (1971) and Mapel
(1959) stated that crystalline-rock fragments are uncommon
in the Kingsbury, they are present in fairly large amounts at

Figure 1 (facing page). Map showing five proposed locations
for the major basin-axis trunk stream of Wasatch Formation
time or Wasatch and late Fort Union Formation time
combined, Powder River Basin, Wyoming and Montana. A,
Wasatch time only, Seeland (1976); B, Wasatch time only,
Warwick and Flores (1987); C, Wasatch and late Fort Union
time combined, Flores and Ethridge (1985); D, Wasatch and
late Fort Union time, combined, Flores (1986); E, Wasatch
time(?) and late Fort Union time combined, Galloway (1979);
F, Wasatch time only, Childers (1970). Tw, uppermost Paleo-
cene and lower Focene Wasatch Formation; Twr, lower
Eocene Wind River Formation.













































Results

In the broadest sense, drainage was northward out of
the Powder River Basin. The latest Paleocene and early
Eocene depositional systems of the Powder River Basin are
defined by two trunk streams: (1) the south-to-north Wind
River of early Eocene time, an extrabasinal stream that
followed the primary depositional and structural axis of the
basin, and (2) a northwest-flowing intrabasinal stream
following a secondary basin axis (fig. 13). These framework
streams carried bed loads to mixed loads, and the streams
probably meandered, as evidenced by sandy channel
deposits that become finer upwards enclosed within
extensive fine-grained overbank deposits.

The two streams define three alluvial depositional
systems: (1) a distal mud-rich alluvial plain with westward-
flowing streams and a Black Hills source area, (2) a
proximal sand-rich alluvial plain-distal alluvial fan with
northward-flowing streams and a Laramie Mountains
source area, and (3) a stream-dominated proximal to distal
alluvial fan with eastward-flowing streams and a Bighom
Mountains source area (fig. 13).

The Black Hills provenance area had been much
reduced in size by post-Eocene (probably Pliocene to
recent) basin excavation. Because of early Eocene basin
asymmetry, it is the largest of the three depositional
systems. Stream directions in the Black Hills area were
relatively constant. The Laramie and Bighorn Mountains
depositional systems were smaller, were closer to their
respective source terranes, and had more variable stream
directions.

Swamps were associated with all three depositional
systems. Precipitation was adequate to allow the
development of raised swamps anywhere in the basin
(Ethridge and others, 1981; Flores, 1981; Warwick, 1985;
Pocknall and Flores, 1987). Low-lying swamps were
formed mostly in the western part of the basin where coals
as much as 80 m thick (Obernyer, 1978) attest to paleo-
geographic stability and continuous subsidence.

Understanding the regional paleogeography requires
an examination of the relationship of the outlet drainage of
the Wind River basin to the inlet drainage of the Powder
River Basin. Seeland (1978a) postulated that the Wind
River of Eocene time, the master stream of the Wind River
basin, left the northeastern basin and flowed eastward across
the Casper arch into the Powder River Basin (fig. 14). In a
preliminary version of this paper, Seeland (1976)
concluded, based on the paleocurrents of the Powder River
Basin and on the similarity between the textural
characteristics of the sandstone of the lower Eocene Wind
River Formation in the eastern Wind River basin and the
western Powder River Basin, that the Eocene Wind River
entered the southwestern Powder River Basin and continued
northward along the west side of the basin near the present
structural axis (fig. 14). This conclusion is supported by

lithofacies interpretations near the present structural axis
(Toomey, 1977) and results of paleocurrent studies
(Obermyer, 1980).

A Western-Basin Trunk Stream in
Wasatch Time?

Paleoslope and stream patterns of the uppermost
Paleocene and lower Eocene Wasatch Formation (fig. 14
and Seeland, 1976) and the upper Paleocene Tongue River
Member of the Fort Union Formation (Seeland, 1988;
Seeland and others, 1988) are similar in the southernmost
Powder River Basin but are significantly different to the
north. Flores (1986) extended Galloway’s (1979) drainage
axis for the combined Tongue River and Wasatch northward
about to the Montana State line, continuing the assumption
that the paleogeography for these two units is the same.

Warwick and Flores (1987) measured 84 crossbed
orientations at an unstated number of localities and
suggested a north-northwest stream flow in an area of the
Wasatch west of Gillette. Their studies locate the north-
flowing basin-axis master stream about 50 km east of the
position suggested herein and by Seeland (1976) (figs. 1,
13). Positioning the master stream this far east implicitly
denies west-flowing drainage in a large area of the basin, as
documented in this paper.

In summary, the expanded paleocurrent evidence of
this study continues to support a depositional basin axis and
associated trunk stream in the westernmost part of the
Powder River Basin during latest Paleocene and early
Eocene (Wasatch) time (fig. 13). The proponents of a trunk
stream in the approximate center of the Wasatch outcrop
area (fig. 1) commonly have made regional inferences from
local studies and have based Wasatch Formation paleo-
geography on the assumption that it was nearly identical to
the paleogeography of Tongue River Member time (fig. 2).
This paper demonstrates that the assumption is untenable on
the basis of regionally comprehensive evidence and that the
Wasatch-time basin axis was about 75 km west of the
Tongue River-time axis.

PALEOGEOGRAPHIC SETTINGS OF
COAL AND URANIUM DEPOSITS

Economic deposits of coal and uranium are common
in the basin. Most of the uranium deposits are in the
Wasatch Formation, and most of the coal deposits are in the
Fort Union Formation. The location of the coal and uranium
deposits of the Wasatch are directly related to the
depositional systems of the Wasatch.

Low-lying peat swamps that formed economic coal
beds were most likely to form in the wettest and least-
sloping parts of the basin near major streams (Ethridge and
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Figure 14. Relationship between early Eocene drainage patterns of the Bighorn, Wind River, Shirley, and Powder River Basins,
Wyoming and Montana. Tw, uppermost Paleocene and lower Eocene Wasatch Formation.

others, 1981). As could be predicted from this hypothesis,
coal deposits of the Wasatch are thicker and more persistent
in the western and central basin (Glass, 1980). The DeSmet
(Healy) coal bed locally exceeds 80 m (250 ft) in thickness
(Mapel, 1959) and is the thickest known coal in the United
States (Glass, 1980). The peat swamp from which it
originated was narrow and elongate, and lay just west of and
parallel to the basin-axis trunk stream near Buffalo, Wyo.
(Obernyer, 1980). It was bordered on the west by coalescing
alluvial fans originating in the rapidly rising Bighorn uplift
(fig. 3).

The distribution of the uranium deposits of the
southern part of the basin is related to the distribution of the
sandy facies of the Wasatch Formation, because it acted as
a conduit for oxygenated uranium-bearing ground water
(Santos, 1981). Seeland (1976) noted that almost all the
uranium mines in the basin are in an area shown to have a
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sediment source in the granite of the Laramie Mountains.
Because Wasatch coal beds do not have anomalous
uranium, and Szalay (1958) has pointed out that peat
adsorbs uranium, Santos (1981) suggested that there was no
early influx of uranium in solution or in detrital minerals.
J.S. Leventhal (oral commun., 1989) pointed out that the
peat-swamp environment has low pH, which would inhibit
uranium adsorption even if uranium were present in the
water. Galloway (1979) emphasized the importance of the
uranium-rich tuff of the White River Group as a uranium
source. These tuff units unconformably overlie the coarse-
grained sandstone whose sand had a Laramie Mountains
source south of the basin. Water percolating downward
through the tuffs could have picked up uranium from
devitrifying glass shards and carried it northward, forming
uranium deposits in the sandy facies of the Wasatch of the
southern part of the basin.



CONCLUSIONS

Paleocurrent study defines two major streams in the
fluvial rocks of late Paleocene and early Eocene Wasatch
Formation in the Powder River Basin. The larger was a
north-flowing basin-axis stream in the westernmost Powder
River Basin that was also the major longitudinal river of the
upstream Wind River basin. The other major stream flowed
northwest from the southeastern Powder River Basin.

Three alluvial depositional systems are defined: (1) a
distal mud-rich alluvial plain with a source terrane to the
east in the Black Hills, (2) a proximal sand-rich altuvial
plain-alluvial fan with a source to the south in the Laramie
Mountains, and (3) a stream-dominated proximal to distal
alluvial fan complex with a source to the west in the
Bighormn Mountains.

Grain-shape and grain-size studies corroborate
transport directions obtained by the paleocurrent study. In
the western part of the basin, an area of large tributaries
flowing into the major basin-axis stream from the Bighorn
Mountains is indicated by an area of less-regular sand grains
near Buffalo.

Major coal and uranium deposits are spatially related
to the Wasatch-time depositional systems of the basin.
Coal-forming swamps were more abundant in the vicinity of
the major basin-axis stream. Uranium deposits in the
Wasatch Formation are found only in the proximal alluvial-
plain distal-alluvial-fan depositional system of the southern
basin.
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