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Geochemical Study of Heavy Mineral Concentrates 
from the Northeastern Part of the Greenville 1°X2° 
Quadrangle, South Carolina 

By John C. Jackson and William J. Moore 

Abstract 

A geochemical investigation of heavy mineral 
concentrate samples from the northeastern part of the 
Greenville 1°X2° quadrangle was conducted to aid in the 
assessment of the mineral resource potential of the 
region . Samples were analyzed spectrographically, and 
element distribution maps were made for 19 selected 
elements (barium, beryllium, bismuth, boron, chromium, 
cobalt, copper, gold, lanthanum, lead, nickel, niobium, 
scandium, silver, thorium, tin, vanadium, yttrium, and 
zinc). Areas revealing anomalous concentrations of tin, 
beryllium, barium, thorium, and the rare earth elements 
lanthanum and yttrium are identified as possibly 
warranting additional study. Lanthanum and thorium 
values are consistently high in a large part of the study 
area, and thorium and yttrium values are associated in one 
region; monazite was identified in concentrates from 
throughout the study area. Values for certain lithophile 
elements, including tin, beryllium, and boron, are higher 
in concentrates from the northeastern part of the study 
area, where anomalous tin and beryllium values are 
associated. Cassiterite was identified in samples 
containing anomalous amounts of tin. The distribution of 
several elements, including tin, niobium, and vanadium, 
appears to be lithotectonically controlled and conforms 
generally with the thrust sheet boundaries that underlie 
the study area. 

INTRODUCTION 

This study is a regional geochemical reconnaissance 
of a part of the Inner Piedmont physiographic province of 
South Carolina (fig. 1). The emphasis of our interpretations 
is placed on element distribution maps that highlight those 
areas containing the most elevated values for 19 selected 
elements. Of primary interest are regions within the study 
area that reveal on the distribution maps a clustering of 

Manuscript approved for publication March 15, 1991. 

anomalous values for certain elements; this clustering 
indicates that a more rigorous sampling effort may be 
justified in those areas. Also, isolated single-element and 
multiple-element anomalies that are not a part of any 
obvious regional trend are reported for a number of 
locations, but these are given limited consideration. 

The heavy mineral concentrate samples used for this 
study represent an area of about 4,000 km2 (fig. 2). This 
regional collection of heavy mineral concentrates lends 
itself more to a comparison with regional geologic 
structures than to a detailed geologic map, given the 
relatively large size of the drainage basins that the collection 
covers and the variety of rock types that the samples 
represent. The geologic framework used for this report is 
shown on a generalized tectonic map (fig. 3) of the 
Greenville 1 oX 2° quadrangle prepared by Nelson (1988, 
fig. 5) and Nelson and others (1987). 

Previous reports of mineral resource occurrences 
within the study area are extremely limited (fig. 4). Perhaps 
the most noteworthy are the numerous occurrences and 
prospects of the rare-earth-bearing mineral monazite ((RE, 
Th)P04 ) in this region. Monazite was mined from several of 
the small prospects found within the study area (fig. 4) in 
the early 1900's, although production was minimal (Sloall, 
1908). Production of gold from the prospects shown on 
figure 4 was also minimal. Total historic gold production in 
Greenville and Spartanburg Counties was about 2,200 troy 
ounces (U.S. Bureau of the Mint, 1882-83, 1884-1906), 
but most of this production came from the Wolf and Tyger 
placers on the east bank of the Middle Tyger River near the 
Spartanburg-Greenville County line, northeast of the study 
area (not shown on fig. 4) (McCauley and Butler, 1966). 

This report supplements a quadranglewide assess­
ment prepared under the Conterminous United States 
Mineral Resource Assessment Program (CUSMAP) of the 
U.S. Geological Survey (USGS). Assessment of mineral 
resources under this program routinely employs semi­
quantitative spectrographic analyses of heavy mineral 
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Figure 1. Location of study area (shaded) and 
location and geologic setting of the Greenville 
1°X2° quadrangle, South Carolina. GSTS, Great 
Smoky thrust sheet; BRT, Blue Ridge thrust 
stack, which includes the Richard Russell, 
Young Harris, Helen, and Tallulah Falls thrust 
sheets; IPT, Inner Piedmont thrust stack, which 
includes the Chauga-Walhalla thrust complex 

concentrates of stream sediments in conjunction with other 
geochemical, geological, and geophysical data. To reduce 
costly and time-consuming field sampling for this study, 
608 pan concentrate samples were selected from archived 
samples collected by the USGS in the early 1950's (fig. 2). 
These samples were reprocessed by using heavy liquid and 
magnetic separation methods, then analyzed spectro­
graphically. 

and the Six Mile, Laurens, and Paris Mountain 
thrust sheets; KM, Kings Mountain belt; CS, 
Carolina slate belt; K, Kiokee belt; GST, Great 
Smoky thrust fault; HT, Hayesville and other 
thrust faults; BT, Brevard thrust fault; Lo, 
Lowndesville shear zone. Belts modified from 
King (1955), Overstreet and Bell (1965a,b), and 
Hatcher (1972). 

Previous Work 

In the early 1950's, several thousand pan con­
centrates were collected by the USGS to appraise fluvial 
placers in the Southeastern United States as possible sources 
for rare earth elements, uranium, and thorium in monazite 
(Overstreet, 1967; Overstreet and others, 1968; Caldwell 
and White, 1973; Cuppels and White, 1973). On the basis 
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Figure 2. Distribution of heavy-mineral concentrate sample locations across the study area showing major drainages and 
selected geographical locations. See Overstreet and others (1968, pl. 8) and jackson and Adrian (1991) for more detailed 
locations. See figure 3 for names and locations of tectonic features. 

of this work, an area between the Savannah and Catawba 
Rivers, N.C. and S.C., was reported as having the highest 
potential for monazite deposits in the Inner Piedmont 
(Overstreet and others, 1968). Furthur investigations of 
monazite in fluvial placers and granitic rocks of the South­
eastern United States by Mertie (1975, 1979) defined three 
subparallel monazite belts, the longest of which extends 
from Virginia to Alabama and includes the areas of 
monazite-bearing concentrates reported by Overstreet and 

others (1968). Locations of monazite-bearing saprolite or 
unweathered granite reported by Mertie ( 1979) are shown in 
figure 4 as occurrences. 

One hundred and forty of the concentrate samples 
collected by the USGS from the monazite-belt area of the 
Inner Piedmont were analyzed spectrographically; the 
results are summarized by Overstreet and others (1968). 
These analyses evaluated the monazite placers for possible 
economic concentrations of tin, tungsten, niobium, and 
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Figure 3. Generalized tectonic map of the Greenville 1°X2° quadrangle, South Carolina, showing interpreted regional 
metamorphic ages for various thrust sheets and area of sample coverage. Tectonic features from Nelson and others, 1987; 
metamorphic ages from Nelson, 1988, fig. 5. 
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Figure 4. Mineral mines, prospects, and occurrences in the study area. See figure 3 for names and locations of tectonic 
features. 

tantalum. Traces of tin and niobium were detected in a 
number of samples, but tungsten and tantalum were not. 
Ilmenite, the predominant heavy mineral in the concen­
trates, was determined to be responsible for most of the 
niobium but not to be economic. Tin was detected in 43 of 
these samples, and 39 of the 43 were from the North and 
South Carolina Piedmont. Beryllium was associated com­
monly with tin in many of these samples, and Overstreet 
and others (1968, p. 73) suggested that its presence indi­
cates a common source for the tin-bearing and beryllium-

bearing minerals in the samples. However, no cassiterite 
(Sn02) was recognized in the concentrates (Caldwell, 1962; 
Cuppels, 1962; Theobald, 1962). 

A study of minor elements in magnetite from pan 
concentrates by Theobald and others ( 1967) demonstrated 
that the regional distribution of certain trace elements, 
including Ba, Be, Cr, Cu, Pb, Mn, Sn, Ti, V, and Zn, was 
controlled by detrital magnetite that contained high amounts 
of those elements. For example, Theobald and others noted 
that the distribution of tin and beryllium was controlled by 
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specific postkinematic granitic rocks containing magnetite 
having high amounts of those elements. Because tin was 
detected in 284 of 291 magnetite samples, Overstreet and 
others (1968, p. 73) reasoned that, in the absence of 
cassiterite, tin-enriched magnetite may account for the 
spectrographically determined tin encountered in their 
study. 

Exploration interest in certain lithophile elements, 
especially tin, in the Charlotte 1 ox 2° quadrangle was 
generated by the report of coarse-grained, detrital cassiterite 
in pan concentrates of alluvium from nearly 40 stream sites 
southwest of Shelby, N.C. (D' Agostino and Whitlow, 
1985). In subsequent work, Gair (1986) defined a broad, 
northeast-trending belt of moderate potential for tin that is 
generally coincident with the trend of the Kings Mountain 
belt. Some of these occurrences, traditionally treated as 
micaceous pegmatites (Griffitts and Olson, 1953), were 
found to be stratiform (Carr and others, 1984; Rowe, 1987). 
The apparent strike continuation of the zone of tin-bearing 
rocks into the Greenville 1 ox 2° quadrangle gave impetus to 
test for similar geochemical signatures in the previously 
collected heavy mineral concentrates from the study area. 
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GEOGRAPHIC SETTING 

The study area is located in the northeastern part of 
the Greenville 1 ox 2° quadrangle and includes the generally 
east- and south-flowing Savannah, Reedy, Rocky, Saluda, 
Enoree, and Tyger Rivers and their tributaries. Local relief 
in this gently rolling part of the Piedmont province is 
generally less than 300 m but reaches 600 m at Paris 
Mountain, S.C., near the northern edge of the area. 

GEOLOGIC SETTING 

The heavy mineral concentrate samples collected for 
this study represent the heavy resistate minerals derived 
from rocks of the Inner Piedmont physiographic province 
(fig. 1). The Inner Piedmont is separated from the Blue 
Ridge province to the northwest by the Brevard thrust fault 
and from the Charlotte belt to the southeast by the Lowndes-

ville shear zone. The rocks in the study area have undergone 
multiple events of metamorphism and deformation and 
contain a wide variety of metamorphic rock types that have 
been subjected to continuous weathering and erosion prob­
ably since before Late Cretaceous time (Overstreet and 
others, 1968, p. 29). A saprolite layer, commonly tens of 
meters thick, is the source of much of the present detritus in 
the stream channels. The geologic relations within the study 
area are complex (fig. 3) and have been the subject of recent 
investigations by the USGS (Nelson and others, 1987, 
1989; Nelson, 1988). 

According to Nelson (1988, p. 13), the Inner Pied­
mont is underlain by four, possibly five, thrust sheets; in 
order of ascending structural position, these are the Chauga­
Walhalla thrust complex (possibly two different sheets), the 
Six Mile thrust sheet, the Paris Mountain thrust sheet, and 
the Laurens thrust sheet. Nelson (1988, p. 13) states that 
these assemblages appear to have been subjected to regional 
metamorphism at progressively later intervals from west to 
east. He estimated that the Chauga-Walhalla thrust complex 
and the Six Mile thrust sheet probably were metamorphosed 
at about 365 Ma and that the Laurens and Paris Mountain 
thrust sheets were metamorphosed later, at about 344 Ma 
(fig. 3). The rocks of the three easternmost thrust sheets of 
the Inner Piedmont found within the study area underwent 
mostly sillimanite-muscovite-grade metamorphism, but 
locally within the Six Mile sheet, rocks were subjected to 
kyanite-grade metamorphism (Nelson, 1988, p. 9). Only a 
small part of the Chauga-Walhalla thrust complex is found 
in the sampling area, and it also was subjected to kyanite­
grade metamorphism (Griffin, 1975). 

Each of these major lithotectonic units has a distinc­
tive assemblage of rock types, which have been described in 
detail by Nelson and others (1989). The Laurens sheet is 
primarily a layered biotite gneiss, interlayered with biotite 
schist that locally grades to sillimanite schist. The Paris 
Mountain thrust sheet is composed primarily of sillimanite 
schist. Minor amphibolite also occurs in both these sheets. 
The Six Mile thrust sheet consists of many rock types; the 
most abundant includes various schists and gneisses. The 
small part of the Chauga-Walhalla thrust complex covered 
by the study area is principally hornblende gneiss and 
amphibolite. Compositional layering occurs in each of these 
sheets at all scales. 

Extensive areas of granitic rocks are present through­
out the study area (fig. 3) and include layered or banded 
granitic gneisses containing bodies of syn- or posttectonic 
granitoids. These granitic rocks have obscured tectonic 
borders and intrusive contacts locally. Large areas of 
granite that are interlayered with other metamorphic rock 
types within the thrust sheets (Nelson and others, 1989) are 
not shown on figure 3. Nelson (1988, p. 7) states that 
granite plutons constitute as much as 50 percent of the 
volume of the Paris Mountain thrust sheet, but these plutons 
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were not shown on the tectonic map (Nelson and others, 
1987) that was used as a framework for this study. Pegma­
tite bodies, generally discordant with the foliation of the 
host rocks, are present throughout the study area. 

SAMPLE COLLECTION AND PREPARATION 

All of the samples used in this study were panned by 
D.W. Caldwell or N.P. Cuppels in 1952. The availability of 
these samples precluded the need for labor-intensive resam­
pling. The 608 samples represent 535 sample sites; the 
remainder are replicates. The distribution of the concentrate 
samples is reasonably even within the study area, and the 
average area of the drainage basins sampled is about 7.5 
km2

. 

As described by Overstreet and others (1968, p. 
51-53), these detrital heavy mineral concentrates were 
prepared by panning samples of gravel or sand dug from 
riffles in the active channels of small streams. The samples 
were wet sieved through a 1/s-in. screen; the oversized 
material was discarded prior to panning a volume of 
material that roughly filled a 16-in.-diameter stainless steel 
gold pan. Between 5 and 20 percent quartz was left in the 
concentrate to avoid loss of heavy minerals in the final 
stages of panning. 

For this study, the low density minerals including 
quartz and feldspar were removed by floatation in bromo­
form (2.85 g/cm3

). The ferromagnetic and strongly para­
magnetic fractions of the samples were separated by using a 
Frantz isodynamic magnetic separator. This set of proce­
dures resulted in a high-density, paramagnetic mineral 
concentrate for spectrographic analysis. 

The procedure used for magnetic separation was 
somewhat unconventional. The magnet of the Frantz iso­
dynamic separator was positioned horizontally and covered 
with a sheet of thin mylar. A sample was placed on a 
paper-covered tray, then raised up to the mylar-covered 
magnet, which was set at 0.3 A; this procedure effectively 
removed the ferromagnetic fraction of the sample. The 
procedure was repeated with settings at 1.0 and 1.8 A; as a 
result, three groups of fractions, each having a different 
magnetic susceptibility, were created. The 1.8-A fractions 
were analyzed for this study. The horizontal orientation of 
the Frantz isodynamic separator has two distinct advantages 
over the more conventional chute method (where inclined 
tracks pass between the pole pieces of the separator); first, 
cleaning between samples is easier, and so the risk of 
sample contamination is reduced; second, processing the 
samples is much faster. However, the tray method is not as 
precise as the chute method, and the tray method effectively 
reduces the pulling power of the magnet on the sample by as 
much as 50 percent, thus broadening the range of minerals 
found in the processed sample. 

Heavy mineral samples and resultant analytical data 
are highly skewed toward particular mineral phases and 

Table 1. Ranges and median concentrations in ppm for 19 
elements in heavy mineral concentrates from the 
northeastern part of the Greenville 1°X2° quadrangle, 
South Carolina, compared with average values for granite, 
shale, and basalt 
[Lower detection limits in parentheses next to element. N, not detected; L, 
detected but less than the number value shown in the first reporting 
interval; -, data are missing or unreliable. All values in parts per million] 

Element __ R_a_n_ge __ Median Aver~ge Avera~e Average 
Low High gran1te1 shale basale 

Barium (50) 
Beryllium (2) 
Bismuth (20) 

N 
N 
N 
N Boron (20) 

Chromium (20) N 

1,500 
500 
500 

5,000 
700 

50 Cobalt (10) 
Copper (10) 
Gold (20) 
Lanthanum (50) 
Lead (20) 
Nickel (10) 
Niobium (50) 
Scandium (10) 
Silver (1) 
Thorium (200) 
Tin (20) 
Vanadium (20) 
Yttrium (20) 
Zinc (500) 

N 
N 3,000 
N 1,000 
N >2,000 
N 50,000 
N 700 
N 
N 
N 

2,000 
>200 

20 
N >5,000 
N >2,000 

1,000 
N >5,000 

5,000 

L 

N 

N 4840 
2 5 
N .01 

20 4 10 
100 15 

N 3 
N 15 
N .004 

300 455 
20 20 
15 7 

150 20 
70 47 
N .04 
N 17.5 

50 3 
150 42 
500 441 

N 439 
1Guilbert and Park, 1985. 
2Average shale of Turekian, 1977. 
3 Average basalt of Turek ian, 1977. 

580 330 
3 

100 5 
90 170 
19 48 
45 87 

.005 .002 
39 17 
20 6 
68 130 
11 19 
13 30 

.07 .11 
12 2.7 
6 1.5 

130 250 
35 25 
95 105 

4Average low-calcium granite of Turekian, 1977. 

element associations. The accumulation of detrital minerals 
from fluvial sediments in small stream channels will vary as 
a complex function of many factors, including source 
material, stream regimen, position of the sampling site with 
respect to longitudinal distance from a stream's headwaters 
and transverse distance from the center of the present 
channel, and the size of the drainage basin containing a 
given stream. Overstreet and others (1968) and Mertie 
(1979) give thoughtful discussions concerning the natural 
factors affecting the tenor of different materials in a panned 
concentrate. Subsequent laboratory processing further mod­
ifies these patterns and results in enhanced abundances of 
certain minerals and elements and diminished abundances 
of others. Even the reproducibility of analytical results for 
replicate samples at a given site is limited. 

ANALYTICAL METHODS 

All of the samples were analyzed for 31 elements by 
using a six-step, semiquantitative emission spectrographic 
method (Grimes and Marranzino, 1968; Matooka and 
Grimes, 1976). These results are summarized in table 1 of 
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this report and are available in their entirety in Jackson and 
Adrian (1991). A small split ofunground sample was saved 
for mineral grain identification; however, no systematic 
attempt was made to determine the abundances of minerals 
in the splits of the analyzed concentrates. Distribution of the 
abundance of 15 selected minerals in the samples is given 
by Overstreet and others ( 1968, pls. 1-4). 

DISCUSSION 

The data permit some generalizations regarding geo­
logic and lithotectonic controls, and they draw attention to 
parts of the study area that contain anomalous concentra­
tions of certain elements. We present the geochemical 
attributes of the analytical data in frequency distribution 
histograms (fig. 5) and in single-element or multiple­
element distribution maps (figs. 6-28). For most elements, 
the values representing the high end of the sample popula­
tion, which include high background values as well as 
anomalous values, were plotted on the distribution maps. 
Reporting intervals representing high background values 
were included on the distribution maps to avoid unduly 
emphasizing values not truly anomalous. 

Using a single set of statistical parameters to define 
anomalous values was precluded because the heavy mineral 
concentrates reflect a wide range of rock types representing 
various geochemical terranes and because a relatively large 
number of elements were plotted for each sample. Instead, 
threshold limits for data intervals used on the element 
distribution maps were determined by visual inspection of 
the histograms for anomalous data. The average abundances 
of selected elements in granite, basalt, and shale (table 1) 
generally were considered as background values for unmin­
eralized materials and were compared to our data as an 
additional aid in identifying anomalous values. Median 
concentration intervals are indicated on the frequency dis­
tribution histograms by arrows, and the intervals used in 
plotting distribution maps are bracketed. 

Although the geochemical data for heavy mineral 
concentrates are not representative of the composite chem­
istry of rock units in a particular drainage basin, our 
reconnaissance data show median concentrations for most 
elements that differ by a factor of only 4 or less from 
concentrations in the average granite or shale, despite field 
and laboratory concentration factors of several thousand 
(table 1). Further, some of the observed variability is 
probably due to the relatively large analytical uncertainty 
associated with the spectographic method; this uncertainty 
is ± 1 reporting interval 83 percent of the time (Matooka 
and Grimes, 1976). Median values having a greater than 
fourfold enrichment compared to the average granite or 
shale values shown in table 1 are noted only for the 
elements La (sixfold), Nb (tenfold), Sc (sevenfold), Sn 
(elevenfold), and Y (thirteenfold). 

For certain elements, most notably lanthanum, scan­
dium, and vanadium, most samples fall in the higher 
reporting intervals, and generalizations regarding geologic 
controls or areal distribution may be unwarranted. Other 
elements, including gold, silver, and bismuth, were 
detected in so few samples that generalizations are, like­
wise, unwarranted. Selected elements of economic interest 
are plotted with geochemically associated elements (figs. 8, 
12, and 24) to help characterize any associations within the 
study area that may indicate a mineralized zone. Concen­
trations of other elements, such as zirconium and titanium, 
exceeded the upper detection limit for the six-step semi­
quantitative method in many samples, and they are not 
considered separately in our discussion. The high zirconium 
and titanium values indicate the persistence of zircon and 
the titanium minerals ilmenite and rutile across the entire 
study area. 

DISTRIBUTION OF SELECTED ELEMENTS 

Barium 

Barium was not detected in the vast majority of 
samples. Only one sample contains more than the 580-840 
ppm barium found in the average shale or granite (table 1), 
and the six remaining samples showing values more than 
150 ppm are widely scattered (fig. 6). Samples having 
concentrations in the 100-ppm to 150-ppm range are clus­
tered in the north-central and southwestern parts of the 
study area, many of them in or along the edge of areas 
containing granitic rocks delineated within the Six Mile 
thrust sheet by Nelson and others (1987). Alkali feldspar, 
which is the likely host mineral for barium in most rocks, 
was largely removed from the samples before analysis; its 
removal probably accounts for the generally low abundance 
of barium in the concentrates. Thus, the occurrences of 
barium reported in this study may be due to a less common 
mineral such as barite (BaS04), and the scattered higher 
concentrations, as well as the obvious clustering of samples 
having concentrations less than 200 ppm, may have intrin­
sic assessment · significance. 

Barite associated with gold has been reported at 
localities in the nearby Kings Mountain belt and Carolina 
slate belt (Bell and others, 1980; Butler, 1981). Two of the 
samples from our study area that contained detectable gold 
and barium come from the Six Mile thrust sheet. One 
sample contained 20 ppm gold and 300 ppm barium; the 
other contained 70 ppm gold and 100 ppm barium. 

Beryllium 

Concentrations of beryllium above the 30-ppm 
reporting interval are found mostly in samples from the 
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northern part of the Paris Mountain thrust sheet (fig. 7). The 
highest concentrations are reported from samples clustered 
immediately west of Paris Mountain. This zone of high 
beryllium concentrations may extend farther north or west, 
beyond our sampling area. 

The elevated beryllium values are substantially higher 
than would be expected in the average granite or shale, 
although the median beryllium content for our sample set is 
not appreciably different (table 1). Thus, the high beryllium 
values near Paris Mountain probably are not due to common 
rock-forming minerals, but to the presence of a beryllium­
bearing mineral. The mineral beryl, which has a specific 
gravity of only 2.65-2.80, should have been removed 
during the processing of the samples through bromoform 
(specific gravity=2.85). Griffitts, Duttweiler, and others 
(1985, p. 3) speculated that chrysoberyl (specific gravity= 
3.75) may account for high beryllium contents of heavy 
mineral concentrates from the Inner Piedmont and thus may 
explain the high beryllium contents of samples from this 
study. 

The beryllium distribution pattern is very similar to 
the pattern shown by certain other lithophile elements (fig. 
8), particularly tin (see Tin section). A number of pegma­
tites in which minor amounts of beryl occur are found in the 
southwestern part of the study area (fig. 4), but these do not 
fall within the region of elevated beryllium values shown in 
this report. 

Bismuth 

Bismuth, which was detected in only seven samples 
(fig. 9), is a common accessory element in many precious 
and base metal deposits (Rose and others, 1979, p. 106). 
Although bismuth is associated with tin in areas of the Inner 
Piedmont and in the tin-spodumene belt to the northeast in 
the Charlotte 1 ox 2° quadrangle (Griffitts, Whitlow, and 
others, 1985a), it showed no obvious association with tin in 
this study. The elevated values encountered here may be 
due to manmade contaminants, such as lead shot, which 
was present in some samples. 

Boron 

Sites having concentrations of boron 100 ppm or 
greater generally are confined to the Paris Mountain thrust 
sheet and the adjoining granitic rocks to the east; the highest 
values are found in the northeastern part of the study area 
(fig. 10). Tourmaline was noted in some of the heavy 
mineral concentrates and may be the source of the boron. 
Pegmatitic tourmaline-bearing lenses and dikes are common 
to the area and are the probable source of the tourmaline in 
the samples. 

The distribution pattern of boron is similar to that of 
certain other lithophile elements, most notably beryllium 

(figs. 7, 8), which is associated commonly with boron in 
pegmatites (Rose and others, 1979, p. 553). 

Chromium 

Sites having the highest concentrations of chromium 
are located mostly to the west of the Paris Mountain thrust 
sheet (fig. 11). Overall, the distribution of chromium shows 
some similarity to the distribution of the geochemically 
associated element nickel, as shown in figure 12 (see Nickel 
section). 

Cobalt 

Cobalt was detected in relatively low concentrations 
in a number of samples from across the study area (fig. 13). 
None of these values significantly exceed the value for an 
average basalt (table 1), and some of the higher values may 
be related to mafic rocks in the drainage basins of those 
samples. Griffitts, Whitlow, Siems, and others (1984) 
reported that, in the nearby Charlotte 1° x 2° quadrangle, 
cobalt was associated commonly with gold, and they 
speculated that both elements were involved in common 
episodes of mineralization. However, no similar correla­
tions were found within the study area. 

Copper 

The relatively even distribution of samples containing 
concentrations of copper greater than 30 ppm over the study 
area indicates no apparent lithologic or structural control of 
these values (fig. 14). Overall, there are few associations 
evident between higher copper values and higher values for 
any other chalcophile elements. One sample from near the 
southeastern border of the study area containing 1 ,000 ppm 
copper and 2,000 ppm zinc is located approximately 5.5 mi 
northeast of a known massive sulfide occurrence, the 
Saluda copper prospect (fig. 4). Upon visual examination 
with a binocular microscope of splits of the heavy mineral 
concentrates from sample sites reporting greater than 300 
ppm copper, no copper minerals or sulfides were noted. 
However, traces of lead shot were found in some samples, 
and copper commonly is used as plating on lead shot. 
Therefore, some of the elevated copper values may not be 
indicative of copper mineralization but may be due to 
manmade contaminants (see also Lead section). 

Gold 

Gold was detected in 11 samples from widely scat­
tered locations (fig. 15). All but one of the sites are in rocks 
structurally below the Paris Mountain thrust sheet, but there 
is no obvious lithologic or structural control to the distri-

Distribution of Selected Elements 9 



(I) 

~ 
a... 
:::2: 
<t: 
(I) 

u.. 
Cl 
cr:. 
UJ 
co 
:::2: 
::> 
z 

(I) 

~ 
a... 
:::2: 
<t: 
(I) 

u.. 
Cl 
cr:. 
UJ 
co 
:::2: 
::> 
z 

(I) 
UJ 
--' a... 
:::2: 
<t: 

«O~ 
400 

100 

Barium 

420U 
380 ' 

100 

Copper 

200 

~ 100 
Cl 
cr:. 
UJ 
co 
:::2: 
::> 
z 

(I) 

~ 
a... 
:::2: 
<t: 

200 

~ 100 
Cl 
cr:. 
UJ 
co 
:::2: 
::> 
z 

Niobium 

280b 
240 

(I) 

~ 
a... 
:::2: 
<t: 
~ 100 
Cl 
cr:. 
UJ 
co 
:::2: 
::> 
z 

Beryllium 

620~ 
580 

(I) 

~ 
a... 
:::2: 
<t: 
~ 100 
Cl 
cr:. 
UJ 
co 
:::2: 
::> 
z 

(I) 

~ 
a... 
:::2: 
<t: 

200 

~ 100 
Cl 
cr:. 
UJ 
co 
:::2: 
::> 
z 

Gold 

Scandium 

::~ 
~ 1J 
a... 
:::2: 
~ 100 
u.. 
Cl 

ffi 
co 
:::2: 
::> 
z 

Zinc 

10 Heavy Mineral Concentrates, Greenville 1°X2° Quadrangle, South Carolina 

(I) 
UJ 
--' a... 
:::2: 
<t: 
(I) 

u.. 
Cl 
cr:. 
UJ 
co 
:::2: 
::> 
z 

(I) 

~ 
a... 
:::2: 
<t: 
(I) 

u.. 
Cl 
cr:. 
UJ 
co 
:::2: 
::> 
z 

(I) 

~ 
a... 
:::2: 
<t: 

620~ 
580 " 

100 

Bismuth 

200 

100 

Lanthanum 

620~: 
580 . 

~ 100 
Cl 
cr:. 
UJ 
co 
:::2: 
::> 
z 

Silver 



C/') 

~ 
a.. 
~ 
<t: 
C/') 

u... 
a 
a: 
L.I.J 
co 
~ 
:::l 
z 

~ 
a.. 
~ 
<t: 

200 

100 

200 

~ 100 
a 
a: 
L.I.J 
co 
~ 
:::l 
z 

l 
0

-230 

Boron 

Lead 

3~~ 
320 

C/') 

~ 
a.. 
~ 
<t: 
~ 100 
a 
a: 
L.I.J 
co 
~ 
:::l 
z 

Thorium 

200 

C/') 

~ 
a.. 
~ 
<t: 
~ 100 
a 
a: 
L.I.J 
co 
~ 
:::l 
z 

Chromium 

200 

C/') 

~ 
a.. 
~ 
<t: 
~ 100 
a 
a: 
L.I.J 
co 
~ 
:::l 
z 

Figure 5. Histograms showing frequency distribution in 
parts per million for 19 selected elements in panned 
concentrate samples from the study area. N, not detected; 
L, detected but less than the number value shown in first 

bution pattern of gold. In five of these samples, detectable 
gold and silver are reported, and in two samples gold and 
barium are reported (see Barium section). The only other 
noted association is the presence of 2,000 ppm copper and 
200 ppm gold in one sample from the western edge of the 
sampling area. 
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reporting interval. Vertical arrows denote median report­
ing interval; horizontal brackets indicate range of intervals 
used in element distribution maps (figs. 6-28). 

Particulate gold was identified from splits of the 
heavy mineral concentrates in all but one of the samples 
containing 20 ppm or more gold by using a binocular 
microscope. Because of the scattered distribution and the 
lack of obvious elemental associations, no effort was made 
to systematically identify either deposit type or source 
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Figure 6. Distribution of barium in the study area. See figure 3 for names and locations of tectonic features. 

material for the precious metals encountered in the study 
area. 

Lanthanum 

Lanthanum contents of the heavy mineral concen­
trates are consistently skewed toward higher values (fig. 5). 
Median contents are about six times that of the average 
granite or shale (table 1). The lanthanum-bearing heavy 
mineral monazite was found in all of the samples reporting 

more than 2,000 ppm lanthanum. Given that these samples 
were collected in the monazite belt of Mertie (1975), the 
presence of monazite in many of the streams of the study 
area was expected. However, its presence was not expected 
in the paramagnetic fractions of the samples that were 
analyzed spectrographically, because monazite is generally 
magnetic at the amperage these samples were subjected to 
and should have been removed during sample preparation. 
Obviously the magnetic separation methods used for this 
study incompletely removed monazite from most of those 
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Figure 7. Distribution of beryllium in the study area. See figure 3 for names and locations of tectonic features. 

samples that contained the highest percentages of monazite, 
possibly due in part to monazite's variable magnetic sus­
ceptibility. 

Lanthanum is most abundant in samples from the 
northeastern half of the study area (fig. 16). Visual inspec­
tion of the magnetic fractions of the concentrates from the 
southwestern half of the study area, which have low 
lanthanum values, revealed that many of these samples also 
contain monazite, although in lesser amounts than samples 
from the northeastern half of the area. A comparison of the 
lanthanum values greater than 2,000 ppm from this study to 

contours drawn by Overstreet (1968, pl. 3) for samples that 
contain more than 10 percent monazite (from visual inspec­
tion) is shown in figure 17. Although a number of the 
samples that contain high lanthanum values fall outside of 
these contours, overall the two data sets correlate closely; 
this relation suggests that monazite is the source of the 
elevated lanthanum values. All but one of the monazite 
occurrences shown on figure 4 also are located in the 
northeastern half of the study area. 

Mertie (1979, p. 2, 37) described the distribution of 
monazite as variably present in many types of granitic rocks 
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Figure 8. Multiple-element distribution map of the study area for boron, beryllium, and tin. See figure 3 for names and 
locations of tectonic features. 

from within the belt and concluded that in South Carolina 
granitic gneisses are more important sources of monazite 
than are massive granitic rocks. Overstreet and others 
(1968, p. 24) reported that sillimanite schists are more 
important as source rocks contributing monazite to stream 
placers than are biotite schists and biotite gneisses. Over­
street and others (1968, p. 24) observed wide variations in 
the amount of monazite within similar rock types, as well as 
wide overlaps in the range of monazite present within 

different rock types. The high lanthanum values from the 
present study are widely distributed and cross major geo­
logic boundaries. These characteristics indicate that mona­
zite is a pervasive constituent of stream placers probably 
derived from different rock types throughout the study area. 
Another possible source for lanthanum in the samples is the 
mineral zircon (ZrSi04), which may contain small amounts 
of light rare earth elements and is found throughout the 
study area. 

14 Heavy Mineral Concentrates, Greenville 1°X2° Quadrangle, South Carolina 



I 

20 MILES 
I 

20 KILOMETERS 

EXPLANATION 

D Area of sample coverage • 500 ppm 

........___._ Thrust fault-Teeth on upper plate; • 70 ppm 

dashed where inferred; queried • 50 ppm 
where questionable 0 30 ppm 

Intrusive contact 
[':, 20 ppm 

Figure 9. Distribution of bismuth in the study area. See figure 3 for names and locations of tectonic features . 

Lead 

The distribution of lead in the study area is random 
(fig. 18). The median content of 20 ppm is the same as 
would be expected in the average granite or shale. The most 
likely lead-bearing mineral in the raw stream sediment is 
alkali feldspar; however, virtually all feldspar was removed 
during sample preparation. Although values for some sam­
ples greatly exceeded the median content, lead shot was 
detected in splits of several of these samples. Bismuth, a 

common alloying element in lead shot, is anomalous in 
several of these samples. 

Nickel 

All sample sites having concentrations of nickel 
greater than 100 ppm are found in rocks structurally below 
the Paris Mountain thrust sheet (fig. 19). Many of the 
higher values to the west of the thrust sheet are paired with 
elevated chromium values (see fig. 12). However, the 
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Figure 10. Distribution of boron in the study area. See figure 3 for names and locations of tectonic features. 

concentrations for these geochemically associated elements 
fall well within the expected range for the average basalt 
(table 1) and probably are related to nearby mafic bodies, 
such as the Anderson metagabbro in the Six Mile thrust 
sheet or smaller unmapped mafic or ultramafic units in the 
other thrust sheets. 

Niobium 

Many of the heavy mineral concentrates from the 
Paris Mountain thrust sheet and immediately to the east of 
it contain elevated niobium values (fig . 20). Most notable, 
however, is a pronounced clustering of high values from the 
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Figure 11. Distribution of chromium in the study area. See figure 3 for names and locations of tectonic features. 

Reedy River and Saluda River drainages, in rocks along the 
edge of and adjoining the Paris Mountain thrust sheet. This 
cluster is a localized feature in the terrane of granitic rocks 
delineated by Nelson and others ( 1987) and may represent a 
specialized pluton or pegmatitic lenses containing either a 
niobium mineral such as columbite or minerals such as 
ilmenite, sphene, or rutile incorporating niobium as an 
accessory component. Rutile grains in several of the concen­
trates from this area were analyzed qualitatively by energy­
dispersive X-ray fluorescence spectroscopy and were found 
to contain both niobium and tantalum. Fleischer and others 

(1952) showed that rutile having high niobium content is 
generally found in granitic pegmatites and alkalic rocks. 
Rutile, possibly as ilmenorutile, a phase containing iron in 
the form of ferrous niobate and tantalate, is a likely source 
of the elevated niobium values in the samples of this study. 

Scandium 

Scandium was detected in most samples, and the 
enrichment of scandium in the concentrates relative to the 
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Figure 12. Multiple-element distribution map of the study area for chromium, nickel, and cobalt. See figure 3 for names 
and locations of tectonic features. 

average granite or shale is about six times, but only about 
twice that of the average basalt (table 1). The overall 
variability around the median of 70 ppm (fig. 5) approaches 
that of normal distribution and indicates that the highest 
values may reflect little more than analytical uncertainty. 
Nevertheless, the distribution map for scandium shows a 
clustering of the highest values near Paris Mountain and in 
the east-central part of the study area, where yttrium and 
scandium appear to be associated (fig. 21). Scandium does 
not always accompany the lanthanide rare earth elements in 
minerals due to its smaller ionic radius; however, scandium 

has a close chemical relationship with yttrium and can occur 
as an accessory component in monazite (Rankama and 
Sahama, 1950, p. 508-517). 

Silver 

Silver was detected spectrographically in 10 samples, 
5 of which also have detectable gold (see Gold section). 
These samples are widely scattered throughout the study 
area and show no obvious lithologic or structural control to 
their distribution pattern (fig. 22). 
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Figure 13. Distribution of cobalt in the study area. See figure 3 for names and locations of tectonic features. 

Anomalous lead values as much as 5,000 ppm are 
associated with three samples containing anomalous silver, 
but because these lead values may be related to manamde 
contaminants (see Lead section), the significance of this 
geochemically important association is suspect. 

Thorium 

Thorium values, like the lanthanum values discussed 
earlier, appear to show a preferential enrichment in samples 
taken from the northeastern part of the study area (fig. 23). 

We determined that the high lanthanum values probably 
reflect, at least in part, a sample preparation bias in which 
monazite was incompletely removed from some samples 
(see Lanthanum section). Although this same sample 
preparation bias may account for the overall pervasiveness 
of the higher thorium values in the northeastern part of the 
study area, these samples do reveal a secondary clustering 
of anomalously high thorium values near the eastern edge of 
the study area, and the elevated values appear to be 
associated with yttrium (fig. 24). 
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Figure 14. Distribution of copper in the study area. See figure 3 for names and locations of tectonic features. 

The content of Th02 in monazite is highly variable 
(Mertie, 1979, p. 21). The high thorium values near the 
eastern edge of the study area suggest that the monazite 
from there may have a higher Th02 content relative to 
monazite from elsewhere in the study area. Most of the high 
thorium values occur in or near the edge of an area of biotite 
gneiss delineated by Nelson and others ( 1987) that in places 
grades to a sillimanite schist. 

Tin 

Tin is by far the most abundant of the ore metals 
encountered in this study and has a median value of 50 ppm, 
which represents an elevenfold enrichment relative to the 
average granite or shale. Tin is present in amounts greater 
than 1,000 ppm in 15 samples. The presence of elevated tin 
values throughout the study area suggests a tin-anomalous 
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Figure 15. Distribution of gold in the study area. See figure 3 for names and locations of tectonic features. 

region (fig. 25). A number of the samples containing the 
highest amounts of tin were examined by both X-ray 
diffraction and scanning electron microscope. Cassiterite in 
the 200- to 500-J..Lm range was positively identified in each 
of these samples. 

The frequency distribution histogram for tin (fig. 5) 
reveals two (and possibly three) populations: (1) samples 
having tin values below the lower detection limit of 20 ppm 
(not detected (N) or detected but less than the first reported 
value (L)), (2) samples having values above the upper 

detection limit of 2,000 ppm, and (3) a distinctly Gaussian 
population between these two extremes having a median at 
100 ppm. The values above detection may simply represent 
the upper end of the intermediate Gaussian population. 

Samples having tin values in the N or L reporting 
intervals are restricted almost entirely to the Six Mile thrust 
sheet ( 195 of 209 sample locations), whereas samples 
having values in the 70 to 150 ppm range (the median 
interval of population 3 and the two adjacent intervals) 
occur predominantly in the Paris Mountain and Laurens 
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Figure 16. Distribution of lanthanum in the study area. See figure 3 for names and locations of tectonic features. 

thrust sheets (117 of 156 sample locations). These relations 
suggest that the distribution of tin values within the study 
area may be lithotectonically controlled and that each 
population may favor a certain terrane. 

The most anomalous of the three groupings, those 
samples having values above detection (population 2), 
cluster near Paris Mountain and in a belt extending south­
east from Simpsonville, S.C. These samples are widespread 
and commonly are found near sample sites having much 
lower tin values; these characteristics suggest that the 

anomalous values probably represent localized mineralized 
pods or lenses in the schists, gneisses, or granites. 

Gair and Horton (1989) reported that tin anomalies in 
the nearby Inner Piedmont of North Carolina are generally 
indicative of individual mineralized zones, the most impor­
tant of which are greissens of the tin-spodumene belt. The 
greissens are generally less than 1 m thick and no more than 
15 m long. Thin ( <0.6 m) tin-bearing leucosomes are 
present in the Goodes Creek unit of the Inner Piedmont, 
located west of the tin-spodumene belt near Shelby, N.C., 
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Figure 17. Distribution of lanthanum >2,000 ppm and monazite contours of Overstreet (1968). See figure 3 for names and 
locations of tectonic features. 

but most leucosomes of that unit are geochemically barren 
of tin (Rowe, 1987). Rowe (1987) reported that these 
tin-bearing leucosomes occur within gneisses of the Goodes 
Creek unit that have slightly anomalous tin values, although 
the anomalous tin values are not evenly distributed within 
the gneisses. The spotty, uneven distribution of samples 
having elevated tin values from our study area may reflect 
the uneven distribution of tin-enriched rocks. We did not 

determine whether the elevated tin values represent 
cassiterite-bearing leucosomes or anomalous tin-bearing 
schists, gneisses, and (or) granites. 

The possibility of cassiterite-bearing leucosomes in 
the study area appears to be highest near Paris Mountain, 
where the tin values are associated with elevated beryllium 
values (fig. 8). A tin-beryllium association has been 
documented in the Inner Piedmont by Theobald and others 
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Figure 18. Distribution of lead in the study area. See figure 3 for names and locations of tectonic features. 

(1967) in their magnetite study, as well as by Griffitts 
(1954); Griffitts, Whitlow, Duttweiler, and others (1984); 
Griffitts, Duttweiler, and others (1985); and Gair (1986). 

Vanadium 

Vanadium was detected spectrographically in every 
sample. Higher concentrations of vanadium are rather 
evenly distributed across a northeast-southwest-trending 
belt that cuts through much of the study area (fig. 26). An 

apparent eastern limit to the higher values coincides roughly 
with the boundary between the Paris Mountain thrust sheet 
and granitic rocks to the east. The data suggest that 
vanadium is enriched in the predominantly schistose rocks 
of the Six Mile and Paris Mountain thrust sheets relative to 
the granitic rocks to the east. Because no vanadium miner­
als were noted upon inspection of the concentrates, the 
apparent lithologic control of vanadium likely occurs as a 
result of the enrichment of a mineral hosting vanadium, 
possibly a titanium-bearing mineral phase. 
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Figure 19. Distribution of nickel in the study area. See figure 3 for names and locations of tectonic features. 

Yttrium 

Yttrium concentrations are moderately high in many 
samples from the study area; the overall sample population 
has a median concentration interval of 500 ppm (table 1). 
The thirteenfold enrichment relative to the average granite 
or shale of these yttrium concentrations indicates the likely 
presence of one or more rare-earth-bearing minerals within 
the study area. The distribution of yttrium may be related , 
in part, to the abundance of monazite in many samples. 

Yttrium concentrations are elevated in samples clus­
tered near the eastern boundary of the study area (fig. 27). 
These anomalous yttrium values are associated with 
elevated thorium values (fig. 24) and high scandium values 
(see Scandium section), both of which also may be attrib­
uted to the presence of monazite in the concentrates. 
Xenotime, a mineral commonly associated with monazite in 
the North and South Carolina Piedmont (Overstreet and 
others, 1968), is a likely source for additional yttrium in the 
samples, as is zircon, which was abundant in most samples. 
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Figure 20. Distribution of niobium in the study area. See figure 3 for names and locations of tectonic features. 

Zinc 

Zinc was detected in only nine widely scattered 
samples and thus shows no obvious pattern in its 
distribution (fig. 28). Only two of the samples appear to be 
associated with elevated values for other elements. One 
sample having 2,000 ppm zinc, from the southeastern part 
of the study area, contains anomalous copper and tin, and 
one sample having 5,000 ppm zinc was collected near sites 
containing anomalous , tin near Paris Mountain. 

In the Inner Piedmont of North Carolina, in the 
nearby Charlotte 1 ox 2° quadrangle, zincian spinel is rela­
tively widespread, and zincian staurolite also occurs there, 
although not as commonly (Griffitts, Whitlow, ~nd others, 
1985b). Either of these two zinc-rich minerals, or sphaler­
ite, may be responsible for the zinc values reported within 
our study area. 

CONCLUSIONS 

The geochemistry of the heavy mineral concentrates 
reveals anomalous abundances of tin, beryllium, barium, 
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Figure 21. Distribution of scandium in the study area. See figure 3 for names and locations of tectonic features. 

thorium, and the rare earth elements lanthanum and yttrium 
within the study area, but direct source rocks have not been 
identified. Generalizations relating the geochemical data to 
the geologic and lithotectonic framework of Nelson and 
others ( 1987, 1989) do little to identify or favorably predict 
zones that may be linked to mineral resource occurrences. 
However, the spatial distribution of values reported for 
certain elements, including tin, niobium, and vanadium, do 
conform generally with the thrust sheet boundaries and 
seem to affirm the viability of the sheets as geochemically 
distinct units. 

The distribution of tin suggests that, overall, tin 
mineralization was a more widespread process in the 
metamorphically younger Laurens and Paris Mountain 
thrust sheets than in the older Six Mile thrust sheet. Thus, 
the younger thrust sheets appear to be the more favorable 
terrane for tin resource potential. Many of the tin values for 
the study area are anomalously high and appear to reflect a 
tendency shown by certain other lithophile elements, most 
notably beryllium and boron, to be higher in the northeast­
em part of the study area. Areas near Paris Mountain, S.C. , 
and around Simpsonville, S.C., show a clustering of high 
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Figure 22. Distribution of silver in the study area. See figure 3 for names and locations of tectonic features. 

tin values, and cassiterite was identified in samples from 
those areas; its presence suggests that a more detailed 
investigation may be justified there. 

The barium values reported in this study may warrant 
a more detailed study, especially where associated with 
gold. These barium values may reflect the presence of 
barite. 

The rare-earth-bearing mineral monazite is found 
throughout the study area, and its presence is reflected by 
high lanthanum values in many samples. The association of 

anomalous concentrations of lanthanum, yttrium, and scan­
dium, as well as elevated thorium values, near the eastern 
edge of the study area suggests that additional rare-earth­
bearing minerals may be present there, possibly hosting rare 
earth elements not analyzed for in this study. 

The scattered distribution patterns and apparent lack 
of lithotectonic controls for certain base metals, including 
nickel, copper, zinc, and lead, effectively limit the assess­
ment significance of the isolated anomalies reported for 
these elements. Low level traces of gold and silver are not 
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Figure 23. Distribution of thorium in the study area. See figure 3 for names and locations of tectonic features. 

uncommon in the North and South Carolina Piedmont; 
thus, the few scattered values reported here probably do not 

m themselves justify additional study for the precious 
metals. 
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Figure 24. Multiple-element distribution map of the study area for thorium and yttrium. See figure 3 for names and 
locations of tectonic features. 
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Figure 25. Distribution of tin in the study area. See figure 3 for names and locations of tectonic features. 
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Figure 26. Distribution of vanadium in the study area. See figure 3 for names and locations of tectonic features. 
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Figure 27. Distribution of yttrium in the study area. See figure 3 for names and locations of tectonic features. 
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Figure 28. Distribution of zinc in the study area. See figure 3 for names and locations of tectonic features. 
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