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RECONNAISSANCE STUDY OF 
MISSISSIPPIAN SILICICLASTIC SANDSTONES

IN EASTERN NEVADA

By Hugh McLean

ABSTRACT

Siliciclastic sandstones of Mississippian age in some 
areas of east-central Nevada may be reservoir rocks for 
petroleum. Their reservoir potential derives from their strati- 
graphic proximity to organic-rich shales that have probably 
generated oil in the past and from their local porosity and 
permeability. The quality of these reservoir sandstones has 
been adversely affected, however, by two processes early 
calcareous intergranular cementation and (or) pervasive 
quartz cementation associated with hydrothermally elevated 
temperatures. In areas having mature to supermature (hydro- 
thermal?) thermal indices sandstones are invariably tightly 
cemented, whereas in areas having immature to mature ther­ 
mal indices sandstone porosity and permeability locally are 
higher due to development of secondary porosity. Sand­ 
stones that contain pervasive intergranular calcite and (or) 
dolomite cement have low porosity and low permeability 
and minimal secondary porosity.

The siliciclastic sandstones contain a significant pro­ 
portion of sedimentary lithic framework grains and con­ 
glomerate clasts that were transported generally eastward 
and southeastward from the uplifted Roberts Mountains 
allochthon during the Late Devonian and Early Mississip­ 
pian Antler orogeny. Stratigraphic successions of Mississip­ 
pian siliciclastic sandstones and conglomerates in eastern 
Nevada have been mapped variously as the Diamond Peak 
Formation (part), the Tonka Formation, the sandstone of 
Melandco, and the Scotty Wash Quartzite. Environments of 
siliciclastic deposition include submarine fans, deltaic and 
shallow-marine settings, and alluvial fans. The rocks are 
more quartzose with decreasing age and with distance from 
the allochthon; quartz sandstones of the Scotty Wash Quartz­ 
ite locally may have been derived from a cratonic source(s).

INTRODUCTION

Siliciclastic rocks of Mississippian age that were derived 
from uplift and emplacement of the Roberts Mountains

allochthon during the Antler orogeny extend from Idaho to 
southeastern California and are thickest and best exposed in 
central and eastern Nevada (fig. 1). Devonian rocks in eastern 
Nevada mainly consist of shelf-carbonate strata that accumu­ 
lated in a tectonically stable environment along the western 
edge of the North American craton. In latest Devonian and 
Early Mississippian time, uplift and emplacement of the Rob­ 
erts Mountain allochthon generated an influx of siliciclastic 
sediments that filled a narrow, elongate flysch trough that 
formed along the western edge of a foreland basin (Poole, 
1974; Poole and Sandberg, 1991). Early workers in the area 
recognized that the siliciclastic detritus was derived from ero­ 
sion of chert, siliceous mudrock, and sandstone of quartzose 
and arkosic composition that comprise what is now known as 
the Roberts Mountain allochthon (Nolan, 1928; Nolan and 
others, 1956).

Probably the most complete and best known Mississip­ 
pian siliciclastic sequence in eastern Nevada is the Diamond 
Peak Formation (part). Approximately 2,000 m of Mississip­ 
pian siliciclastic strata are well exposed in the Diamond 
Mountains in the eastern part of Eureka County, Nevada 
(figs. 1, 2). Both the Diamond Peak Formation and the 
underlying Chainman Shale in the Eureka district represent 
marine sediments that filled a flysch trough. The geologic 
characteristics of the Diamond Peak Formation in the Dia­ 
mond Range have been described by Nolan and others 
(1956) and Brew (1963,1971).

Trexler and Nitchman (1990) included the Chainman 
Shale and the lowermost part of the Diamond Peak Formation 
in a sequence that they named the Diamond Mountain 
sequence. They included the upper part of the Diamond Peak 
Formation in the Newark Valley sequence, a transgressive 
braid-delta sequence that unconformably overlies the 
flysch-trough fill of the Chainman Shale. Trexler and 
Cashman (1991) subsequently recognized that the 
unconformity-bounded Stratigraphic sequences in the 
Diamond Mountains and northern Pancake Range resulted 
from multiple tectonic pulses or phases during the Antler 
orogeny.



12 EVOLUTION OF SEDIMENTARY BASINS EASTERN GREAT BASIN

116'

40° -
111 DIAMOND 

23 l|i MOUNTAINS

0 10 20 MILES

0 10 20 KILOMETERS

Figure 1. Map of study area showing sample localities. Numbered solid circles refer to locality number in column 1 of table 2.
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Figure 2. Time-rock correlation chart for Mississippian strata in 
eastern Nevada. Modified from Poole and Sandberg (1991, p. 116 
and 119, cols. 11, 21, 23, and 24).

Other Mississippian siliciclastic strata in eastern 
Nevada include the Tonka Formation, the Scotty Wash 
Quartzite and the sandstone of Melandco (fig. 2). The Tonka 
Formation, named by Dott (1955), consists of sandstone and 
conglomerate that crop out in the northern Pinon Range near 
Carlin, Nevada. Siliciclastic strata in the Adobe Range north­ 
west of Elko and in the Snake Mountains north of Wells (fig. 
1) were named the sandstone of Melandco by Poole and 
Sandberg (1991, p. 119). Sandstone that crops out east and 
southeast of the Pancake Range was named the Scotty Wash 
Quartzite by Westgate and Knopf (1932). Scotty Wash sand­ 
stones are more quartzose, thinner bedded, and finer grained 
than Diamond Peak sandstones; local well-developed trough 
crossbedding in the Scotty Wash suggests tidal or deltaic 
deposition. Columnar sections (Poole and Sandberg, 1991) 
suggest that the Scotty Wash Quartzite correlates with the 
upper part of the Diamond Peak and that the sandstone of 
Melandco correlates with the lower part of the Diamond Peak 
Formation (fig. 2). Stratigraphy and tectonism associated 
with the Antler orogeny are discussed in more detail by Trex- 
ler and Cashman (1990,1991), Trexler and Nitchman (1990), 
Goebel (1991), Poole and Sandberg (1991), and Trexler and 
others (1991). Roberts and others (1967) provided a sum­ 
mary of early Stratigraphic nomenclature in Eureka County 
and a geologic map of the western Diamond Mountains.

Published subsurface oil and gas exploration data from 
eastern Nevada suggest that, at least locally, Devonian lime­ 
stone and organic-rich shale of the Mississippian Chainman 
Shale are potential hydrocarbon source rocks and that asso­ 
ciated siliciclastic sandstones are potential reservoir rocks 
(Poole and others, 1983; Poole and Claypool, 1984). In this 
report, I describe a reconnaissance study of reservoir charac­ 
teristics (porosity and permeability) of Mississippian silici­ 
clastic sandstones in areas exposed to different thermal 
regimes as determined by analyses of petroleum source-rock 
potential (Poole and Claypool, 1984).

Acknowledgments. Petrographic study of the silici­ 
clastic rocks of eastern Nevada was initially suggested by 
Harry E. Cook. Forrest G. (Barney) Poole subsequently intro­ 
duced me to the siliciclastic rocks of eastern Nevada and pro­ 
vided technical and scientific advice throughout the duration 
of the project. Tom Bergstresser of Chevron USA, Houston, 
Texas, coordinated the laboratory analyses of porosity and 
permeability that contributed greatly to the study. Some of 
the thin sections used in this study were made by Barbara 
Lockett. David Brew kindly loaned a suite of thin sections 
from his dissertation area in the southern Diamond Moun­ 
tains. Laura Zink provided assistance with preliminary com­ 
puter graphics. Early drafts of the manuscript profited from 
reviews by Janet Pitman, Tom MacKinnon, and F.G. Poole.

PREVIOUS WORK

Petrologic studies by previous workers of the Diamond 
Peak Formation in the Diamond Mountains suggest that
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most of the detritus in the siliciclastic sequence was derived 
from rocks that now comprise the Roberts Mountains alloch- 
thon or Antler highland (Nolan, 1928; Brew, 1963, 1971; 
Harbaugh, 1980; Harbaugh and Dickinson, 1981). Sedimen­ 
tary rock fragments of quartzose sandstone, siltstone, sili­ 
ceous mudstone, pure and impure chert, and potassium 
feldspar-bearing arkosic sandstone are present within the 
Antler foreland (Dickinson and others, 1983).

Studies of provenance and composition of the Chain- 
man Shale and Diamond Peak Formation in the central Dia­ 
mond Range were reported by Brew (1963, 1971). Detrital 
modes, facies interpretations, and tectonic implications of 
the Diamond Peak Formation from an area immediately 
north of Brew's map area were reported by Harbaugh (1980) 
and recast by Harbaugh and Dickinson (1981) and Dickinson 
and others (1983). Trexler and Cashman (1991) reported 
paleocurrent data and selected detrital modes for the Newark 
Valley sequence in the Diamond, Pancake, and White Pine 
mountain ranges. Facies within the Newark Valley sequence 
in the Diamond Mountains were interpreted by Perry and 
Trexler (1993) as representing alluvial, deltaic, and shal­ 
low-marine environments, and detrital constituents within 
the Newark Valley sequence were interpreted as reflecting 
recycling of underlying strata. Together, the variation in 
facies and composition were interpreted by Perry and Trex­ 
ler as indications of a tectonically active depositional setting.

METHODS OF STUDY

For the purposes of this study, 60 siliciclastic sandstone 
samples were collected from 31 sites in Elko, Eureka, White 
Pine, Nye, and Lincoln Counties of east-central Nevada (fig. 
1). Thin sections were examined petrographically to deter­ 
mine composition of framework grains, type and volume of 
intergranular cements, and amount of visible pore space. 
Standard thin sections were stained with sodium cobaltini- 
trate for potassium feldspar and point counted using petro- 
graphic techniques outlined by Dickinson (1970). Most of 
the thin sections were impregnated with blue-dyed epoxy, 
which facilitated measurement of visible porosity. The 
Gazzi-Dickinson method described by Ingersoll and others 
(1984) was employed in counting polycrystalline rock frag­ 
ments. Detrital modes shown in figure 3 and listed in table 1 
are based on counts of 300^4-00 framework grains per thin 
section; raw point counts and porosity and permeability data 
are given in table 2. Counts of visible pore space (filled by 
blue-dyed epoxy) and intergranular cement increased the 
total number of counted points in some sections to as many 
as 655 (table 2).

Calcite and dolomite cements were identified in hand 
specimen by applying a drop of dilute (2N) HC1 to fresh sur­ 
faces. Samples that effervesced freely were considered to be 
cemented by calcite, whereas samples that effervesced only

on a scratched surface were considered to be cemented with 
dolomite.

A suite of 27 sandstone samples was analyzed by the 
Western Exploration Technical Center of Chevron USA, 
Houston, Texas, for percentage of total porosity and perme­ 
ability. Porosities were measured by the mercury intrusion 
technique, and permeabilities were measured by unstressed 
(air) and stressed (brine) techniques. Results of these analy­ 
ses are given in table 2.

COMPOSITION OF SANDSTONES

FRAMEWORK GRAINS

Detrital modes for samples of the Diamond Peak For­ 
mation and Scotty Wash Quartzite and for samples from 
locations north of the Diamond Mountains are shown in four 
ternary diagrams in figure 3. The rocks in the "northern area" 
of figure 3 include the Tonka Formation of Dott (1955), the 
sandstone of Melandco in the Adobe Range and Snake 
Mountains, and the Diamond Peak Formation at Ferdelford 
Canyon in the northern Pinon Range (locality 2, fig. 1).

Quartz. The QtFL and QmFLt diagrams of figure 3 
illustrate the quartzose, subquartzose, and sublithic compo­ 
sitions of Mississippian siliciclastic sandstones of east-cen­ 
tral Nevada. Most of the well-rounded monocrystalline 
quartz grains (Qm) were probably recycled from eroded 
quartzose sandstone protoliths in the source area. Polycrys­ 
talline quartz (Qp, table 2) excludes chert and consists 
mainly of very fine grained quartzite. Well-rounded grains 
were probably recycled from sandstone in the source area.

Chert. Grains of recrystallized chert (Ch) are com­ 
mon framework constituents in most of the Mississippian 
sandstones except for the Scotty Wash Quart/ite. 
Well-rounded grains of chert were probably recycled from 
sandstone protoliths, whereas angular and subangular grains 
were probably derived from chert-bearing sequences in the 
source area such as the Ordovician Vinini Formation. The 
great variation in degree of both clarity and recrystallization 
of chert grains suggests the possibility of multiple sources.

Potassium feldspar. Potassium feldspar is present in 
modest amounts (4-12 percent) in samples from the Adobe 
Range and Snake Mountains in the northern part of the area 
(Tonka Formation and sandstone of Melandco) and from the 
Diamond Peak Formation in the northern Pancake Range. 
One sample from the Diamond Peak Formation contained as 
much as 19 percent potassium feldspar (table 2, locality 19). 
Potassium feldspar is also present as detrital grains in sand­ 
stone and siltstone rock fragments. Individual potassium 
feldspar framework grains were probably recycled from an 
arkosic sandstone protolith. Dickinson and others (1983) 
suggested that potassium feldspar in the Diamond Peak For­ 
mation was recycled from arkose in the Cambrian Harmony 
Formation. Local variations in potassium feldspar content
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may support the concept of Perry and Trexler (1993) that 
sediments comprising the Diamond Peak Formation in the 
Newark Valley sequence were reworked by local tectonic 
pulses. Alternatively, sediment availability and input from 
source rocks in the allochthon such as the Harmony Forma­ 
tion may have varied locally. Such variation through time 
could have affected potassium feldspar concentrations in 
resultant sediment accumulations.

Potassium feldspar in tightly compacted rocks that have 
little visible porosity shows no evidence of alteration. In 
rocks that have significant secondary porosity, grains of 
potassium feldspar are corroded and pitted.

Plagioclase. Except for three samples from the Dia­ 
mond Peak Formation (localities 1, 20, and 23, table 2), raw 
counts of plagioclase feldspar do not exceed six grains per 
thin section. Most plagioclase is subangular to subrounded, 
finely twinned albite. Plagioclase provenance remains prob­ 
lematic; possible sources include volcanic, recycled sedi­ 
mentary, and plutonic rocks. Patchy mottling observed on 
some twinned grains might be a relict texture.

Sedimentary rock fragments. Chert and siliciclastic 
sedimentary rock fragments dominate the population of lithic 
framework grains in samples from the Diamond Peak Forma­ 
tion, Tonka Formation, and sandstone of Melandco. The suite 
of lithologies includes potassium feldspar-bearing quartzo- 
feldspathic sandstone and siltstone, argillaceous mudstone of 
varying brownish color and degree of opacity, and tuf- 
faceous(?) mudstone that ranges from light-colored impure 
chert to colorless, nearly isotropic cryptocrystalline forms.

Metamorphic rock fragments.  Schistose rock frag­ 
ments are present only in trace amounts in the Diamond Peak 
Formation and its northern correlatives and are absent in the 
Scotty Wash Quartzite. Pale-green chloritic grains were 
included as metamorphic rock fragments and make up the 
relatively large part of metamorphic grains counted in Dia­ 
mond Peak sandstones at locality 19 (table 2).

Volcanic rock fragments. Grains containing clearly 
discernible volcanic textures are very rare; however; those 
that were observed consisted of microlitic laths of albite set 
in a groundmass of light-brown, translucent glass.

Limeclasts. Calcareous framework grains were noted 
in only a few geographically widely separated samples. This 
local occurrence suggests that intertongues of limestone may 
have provided an intraformational source for the limeclasts. 
Limestone interbeds in the Diamond Peak Formation were 
observed in the vicinity of locality 6 (table 2). Alternatively, 
limeclasts at locality 3 (Carlin Canyon) may have been 
derived from recycling of Paleozoic limestones that uncon- 
formably underlie the Tonka Formation (Dott, 1955).

Rock fragments of uncertain origin. Cryptocrystalline 
grains that have no discernible texture or fabric were counted 
as rock fragments of uncertain origin. Although the general 
abundance of sedimentary rock fragments suggests that most 
of the grains in the uncertain-origin category are also proba­ 
bly sedimentary, a volcanic origin for some is possible.

ACCESSORY GRAINS

Mica. Mica was observed in only a few samples from 
the Diamond Peak Formation and was notably absent in sand­ 
stones of the Scotty Wash Quartzite (table 2). In the few rocks 
that contained mica, the predominant variety was muscovite, 
although sparse grains of light-brown biotite were also noted.

Opaque grains. Grains of opaque material are present 
sporadically in both the Diamond Peak Formation and Scotty 
Wash Quartzite. In sandstones adjacent to mineralized zones 
where elevated temperatures are presumably related to circu­ 
lation of hydrothermal fluids (such as the Ward mining dis­ 
trict, localities 10-12, table 2), the opaque grains are mainly 
pyrite. At Trough Spring Canyon (locality 15, table 2), how­ 
ever, dissolution of nonmetallic opaque grains that are pale 
orange in reflected light forms secondary pores.

RESERVOIR CHARACTERISTICS

POROSITY AND PERMEABILITY

Laboratory measurements of total porosity and perme­ 
ability in air and brine are given together with visible poros­ 
ity in table 2. Budget limitations prevented rocks from the 
Adobe and northern Pinon ranges and the Snake Mountains 
from being included in the suite of samples in which these 
parameters were measured. Total porosity within the sample 
suite ranged from 2.5 to 19.4 percent (fig. 4). Unstressed 
(air) permeability ranged from 0.32 to 420 mD (fig. 4), 
whereas stressed (brine) permeability ranged from 0.10 to 
370 mD. Visible porosity determined by point-counting 
ranged from 0 to 28 percent and correlates favorably with 
laboratory measurements (figure 5); in eight samples visible 
porosity is within 2 percent of total porosity.

Where petroleum source rocks are mature to 
supermature, such as the Ward mining district in the northern 
Egan Range and Dry Creek in the Cherry Creek Range 
(Poole and others, 1983) (localities 10-13, 14, fig. 1), 
quartz-cemented quartzose sandstone is uniformly well 
cemented; that is, porosity and permeability are minimal. In 
contrast, noncalcareous sandstones associated with 
immature to mature petroleum source rocks yielded highly 
variable values of porosity and permeability. For example, 
several samples from a small area in Trough Spring Canyon 
in the southern Egan Range (locality 15, fig. 1) ranged from 
11.6 to 17.4 percent porosity and from 43 to 420 mD 
permeability. Similarly, at the south end of Buck Mountain 
(locality 6, fig. 1), closely spaced samples ranged from 4.5 to 
14.1 percent porosity and from 3 to 38 mD permeability. 
Near Nevada Governors Spring in the northern Pancake 
Range (locality 17, fig. 1), porosity ranged from 8.4 to 13.1 
percent and air permeability from 2.4 to 18 mD. The 
variations in porosity and permeability in noncalcareous and 
slightly calcareous sandstones are probably due to variables
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Figure 3 (facing column). Detrital modes of Mississippian sand­ 
stones of east-central Nevada. Qt, total quartzose grains 
(=Qm+Qp+chert); F, total feldspar grains (=P+K); L, total unstable 
lithic grains (=Lv+Ls); Qm, monocrystalline quartz; Lt, total lithic 
grains (=Qp+Lv+Ls); Qp, polycrystalline quartz including chert; 
Lv, microlitic volcanic lithic grains; Ls, pelitic sedimentary lithic 
grains; P, plagioclase feldspar; K, potassium feldspar.
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associated with the development of secondary porosity such 
as ground-water temperature, pH, and, flow gradients, as 
well as to the abundance of intergranular cements (calcite 
and (or) dolomite) and the degree of weathering.

TEXTURAL CHARACTERISTICS OF 
VISIBLE POROSITY

Visible pores in Mississippian siliciclastic rocks of east­ 
ern Nevada display many of the textural characteristics gen­ 
erally considered to be the result of secondary processes 
(Schmidt and McDonald, 1979; Melvin and Knight, 1984). 
Secondary porosity textures include grain shrinkage, disso­ 
lution of rock fragments, and dissolution of carbonate 
cement. Examples of these textures are clearly illustrated by 
blue epoxy in the photographs of figures 6-13 in which blue 
areas represent visible pore space. Figure 6 illustrates shrink­ 
age of a sedimentary rock fragment that is surrounded by 
quartz grains. The concentric band within the rock fragment 
resembles a weathering rind that may have formed by reac­ 
tion with pore fluids. Figures 7 and 8 illustrate porosity asso­ 
ciated with dissolution of rock fragments. Opaque grains are 
particularly susceptible to dissolution (fig. 7). Figure 9 shows 
dissolution of rock fragments, as well as porosity due to grain

fracture in a rock that has been mechanically compacted and 
cemented by quartz. Clusters of tightly compressed frame­ 
work grains in rocks that have abundant visible pore space 
suggest that primary pore space in most cases was mostly 
reduced by mechanical compaction and further reduced by 
precipitation of quartz and (or) calcareous cement (figs. 7-9).

Both visible and total porosity are negligible in rocks 
that have pervasive calcareous cement. Tests on hand 
specimens with dilute HC1 indicate that calcite and dolomite 
are common cements in the Mississippian rocks of eastern 
Nevada. Neither secondary porosity nor faceted quartz 
overgrowths were observed in the suite of calcareous rocks. 
Noncalcareous and sparsely calcareous sandstones 
commonly contain quartz grains that have faceted 
overgrowths, and visible pore spaces are commonly 
bordered by faceted quartz grains (figs. 10-13).

In addition to standard petrographic examination of 
visible pore space in thin sections impregnated with 
blue-dyed epoxy, the presence of dissolution pores and 
quartz overgrowths can also be rapidly and inexpensively 
determined by examining unimpregnated, diamond-sawed 
rock surfaces with a low-power binocular microscope. At 
relatively low magnification (x24), reflected light flashes 
from faceted quartz overgrowths (fig. 14A) and dissolution

Figure 6. Diamond Peak Formation, south end of Buck Mountain; sample 791-15-2B (loc. 6, fig. 1); 9 percent visual 
porosity, 11.6 percent total porosity, and 13 mD air permeability. Secondary porosity resulted from shrinkage of pelitic 
rock fragment. Euhedral quartz overgrowths fill primary pore space. Blue is visible porosity. Bar scale is 0.5 mm.
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Figure?. Diamond Peak Formation, south end of Buck Mountain; sample 791-15-2B (loc. 6, fig. 1); 9 percent visual 
porosity. Secondary porosity formed by dissolution of opaque rock fragment. Note euhedral quartz overgrowths and 
possible remnant primary pore in lower left of photograph. Blue is visible porosity. Bar scale is 0.5 mm.

Figure 8. Quartzose sandstone of the Scotty Wash Quartzite, Trough Spring Canyon, southern Egan Range; sample 
791-18-2A (loc. 15, fig. 1); 9 percent visible porosity, 11.6 percent total porosity, and 43 mD air permeability. Note 
euhedral quartz overgrowths and secondary porosity formed by dissolution of calcareous intergranular cement (rem­ 
nants line the pores). Blue is visible porosity. Bar scale is 0.5 mm.
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Figure 9. Secondary porosity in Diamond Peak Formation outcrop, south end of Buck Mountain; sample 791-15^B 
(loc. 7, fig. 1); 10 percent visible porosity, 14.4 percent total porosity, and 38 mD air permeability. Rock is cemented 
by compaction and precipitation of quartz overgrowths; secondary porosity is due to dissolution of rock fragments and 
to grain fracture. Blue is visible porosity. Bar scale is 0.5 mm.

Figure 10. Diamond Peak Formation, Nevada Governors Spring, northern Pancake Range; sample 791-19-3 (loc. 17, 
fig. 1); 8 percent visible porosity, 8.4 percent total porosity, and 18 mD air permeability. Primary porosity was reduced 
by compaction and precipitation of quartz overgrowths and then by precipitation of calcareous cement, which has been 
subsequently removed to form secondary pore space. Blue is visible porosity. Bar scale is 0.5 mm.
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Figure 11. Diamond Peak Formation, Nevada Governors Spring, northern Pancake Range; sample 791-19-3 (loc. 17, 
fig. 1); 8 percent visible porosity, 8.4 percent total porosity, and 18 mD air permeability. Quartz grain with doubly ter­ 
minated overgrowth is surrounded on two sides by outsized secondary pore formed by dissolution of calcareous cement. 
Blue is visible porosity. Bar scale is 0.5 mm.

Figure 12. Diamond Peak Formation, Nevada Governors Spring, northern Pancake Range; sample 791-19-2A (loc. 
17, fig. 1); 8 percent visible porosity, 13.1 percent total porosity; and 2.4 mb air permeability. Textures suggest that 
primary porosity was eliminated by compaction and by precipitation of calcareous cement and that secondary porosity 
resulted from dissolution of the calcareous cement and rock fragments. The final event was precipitation of quartz (note 
overgrowths). Blue is visible porosity; arrow indicates location of pore shown in figure 13. Bar scale is 0.5 mm.
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Figure 13. Closeup view of sample 791-19-2A showing euhedral quartz overgrowth and secondary pore space. 
Location of pore is shown by arrow in figure 12. Blue is visible porosity. Bar scale is 0.05 mm.

pores are readily visible (figs. 144, B). In some cases, quartz 
facets line the walls of pores (fig. 144).

PARAGENESIS OF CEMENTS

In sandstones that contain both faceted quartz over­ 
growths and intergranular calcareous cement, corrosion of 
facets by adjacent calcite and (or) dolomite cement suggests 
that quartz precipitation preceded calcareous cementation. 
Textures illustrated in figures 10 and 11 indicate the com­ 
plexities of cementation. Both figures show interpenetration 
of grain contacts that resulted from mechanical compaction. 
The two figures also show euhedral quartz overgrowths that 
project into visible pore space (blue areas), a texture that 
probably developed after dissolution of calcareous cement. 
Most of the blue areas in figures 10 and 11 were probably 
occupied by calcareous cement that corroded the margins of 
adjacent grains (note the ragged edges that project into the 
pore space). A lack of faceted quartz overgrowths in sand­ 
stones that have poikilotopic calcareous cement indicates 
that quartz precipitation was probably inhibited by early 
formed calcareous cement.

Petrographic textures illustrated in figures 12 and 13 
suggest the following sequence of cementation. (1) Grains 
were pressed together by mechanical compaction. (Note the

interpenetrating grains.) (2) Calcareous grains and (or) 
patchy calcareous intergranular cement precipitated, and 
adjacent quartz was corroded. (3) Secondary pores were cre­ 
ated by dissolution of labile rock fragments and (or) calcar­ 
eous cement. (4) Quartz overgrowths precipitated. (Note the 
delicate euhedral quartz facets that project into the pore (blue 
area) of figure 13.)

Preservation of matrix-supported grains that have 
smooth, well-rounded margins (grains that appear to float in 
calcareous cement) suggests that the calcareous cement 
precipitated prior to mechanical compaction. Such 
calcareous-cemented rocks tend to have little or no visible 
porosity and few or no quartz overgrowths.

SUMMARY

Mississippian siliciclastic sandstones of eastern 
Nevada range in composition from litharenite to 
quartzarenite. Their rock fragment content tends to decrease 
with distance from the principal sediment sources in the 
Roberts Mountains allochthon. Total porosity and 
permeability of calcareous cement-free sandstone are 
uniformly low in areas that have high paleotemperatures 
(>300°C). Locally high paleotemperatures (Poole and 
others, 1983) in Paleozoic strata in eastern Nevada probably
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Figure 14. Dissolution pores (dark areas) and euhedral surfaces of quartz overgrowths (lightest areas) on surfaces cut 
with diamond saw and photographed using low-power (x24) binocular microscope. Bar scales are 2.0 mm. A, Diamond 
Peak Formation, south end of Buck Mountain, sample 791-15^5 (loc. 7, fig. 1). B, Scotty Wash Quartzite, Trough 
Spring Canyon, sample 791-18-3A (loc. 15, fig. 1).
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are due to thermal episodes associated with Mesozoic 
plutonism and Cenozoic volcanism. Indeed, still active 
hydrothermal heating is postulated for generating petroleum 
in Paleozoic source rocks in the most productive fields of 
eastern Nevada, the Grant Canyon and Bacon Flat oil fields 
in Railroad Valley (Hulen and others, 1994). Preservation of 
hydrocarbon-productive porosity and permeability in 
Mississippian sandstones in eastern Nevada probably 
depends on the delicate balance between a thermal regime 
that generates and facilitates migration of liquid 
hydrocarbons and excessive heat and adverse fluid 
dynamics that destroy source rocks and render potential 
reservoir rocks hard and tight.
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