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RECONNAISSANCE STUDY OF
- MISSISSIPPIAN SILICICLASTIC SANDSTONES
IN EASTERN NEVADA

By Hugh McLean

ABSTRACT

Siliciclastic sandstones of Mississippian age in some
areas of east-central Nevada may be reservoir rocks for
petroleum. Their reservoir potential derives from their strati-
graphic proximity to organic-rich shales that have probably
generated oil in the past and from their local porosity and
permeability. The quality of these reservoir sandstones has
been adversely affected, however, by two processes—early
calcareous intergranular cementation and (or) pervasive
quartz cementation associated with hydrothermally elevated
temperatures. In areas having mature to supermature (hydro-
thermal?) thermal indices sandstones are invariably tightly
cemented, whereas in areas having immature to mature ther-
mal indices sandstone porosity and permeability locally are
higher due to development of secondary porosity. Sand-
stones that contain pervasive intergranular calcite and (or)
dolomite cement have low porosity and low permeability
and minimal secondary porosity.

The siliciclastic sandstones contain a significant pro-
portion of sedimentary lithic framework grains and con-
glomerate clasts that were transported generally eastward
and southeastward from the uplifted Roberts Mountains
allochthon during the Late Devonian and Early Mississip-
pian Antler orogeny. Stratigraphic successions of Mississip-
pian siliciclastic sandstones and conglomerates in eastern
Nevada have been mapped variously as the Diamond Peak
Formation (part), the Tonka Formation, the sandstone of
Melandco, and the Scotty Wash Quartzite. Environments of
siliciclastic deposition include submarine fans, deltaic and
shallow-marine settings, and alluvial fans. The rocks are
more quartzose with decreasing age and with distance from
the allochthon; quartz sandstones of the Scotty Wash Quartz-
ite locally may have been derived from a cratonic source(s).

INTRODUCTION

Siliciclastic rocks of Mississippian age that were derived
from uplift and emplacement of the Roberts Mountains

allochthon during the Antler orogeny.extend from Idaho to
southeastern California and are thickest and best exposed in
central and eastern Nevada (fig. 1). Devonian rocks in eastern
Nevada mainly consist of shelf-carbonate strata that accumu-
lated in a tectonically stable environment along the western
edge of the North American craton. In latest Devonian and
Early Mississippian time, uplift and emplacement of the Rob-
erts Mountain allochthon generated an influx of siliciclastic
sediments that filled a narrow, elongate flysch trough that
formed along the western edge of a foreland basin (Poole,
1974; Poole and Sandberg, 1991). Early workers in the area
recognized that the siliciclastic detritus was derived from ero-
sion of chert, siliceous mudrock, and sandstone of quartzose
and arkosic composition that comprise what is now known as
the Roberts Mountain allochthon (Nolan, 1928; Nolan and
others, 1956).

Probably the most complete and best known Mississip-
pian siliciclastic sequence in eastern Nevada is the Diamond
Peak Formation (part). Approximately 2,000 m of Mississip-
pian siliciclastic strata are well exposed in the Diamond
Mountains in the eastern part of Eureka County, Nevada
(figs. 1, 2). Both the Diamond Peak Formation and the
underlying Chainman Shale in the Eureka district represent
marine sediments that filled a flysch trough. The geologic
characteristics of the Diamond Peak Formation in the Dia-
mond Range have been described by Nolan and others
(1956) and Brew (1963, 1971).

Trexler and Nitchman (1990) included the Chainman
Shale and the lowermost part of the Diamond Peak Formation
in a sequence that they named the Diamond Mountain
sequence. They included the upper part of the Diamond Peak
Formation in the Newark Valley sequence, a transgressive
braid-delta sequence that .unconformably overlies the
flysch-trough fill of the Chainman Shale. Trexler and
Cashman (1991) subsequently recognized that the
unconformity-bounded stratigraphic sequences in the
Diamond Mountains and northern Pancake Range resulted
from multiple tectonic pulses or phases during the Antler
orogeny.

1l
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Figure 1. Map of study area showing sample localities.

Numbered solid circles refer to locality number in column 1 of table 2.
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Figure 2. Time-rock correlation chart for Mississippian strata in
eastern Nevada. Modified from Poole and Sandberg (1991, p. 116
and 119, cols. 11, 21, 23, and 24 ).

Other Mississippian siliciclastic strata in eastern
Nevada include the Tonka Formation, the Scotty Wash
Quartzite and the sandstone of Melandco (fig. 2). The Tonka
Formation, named by Dott (1955), consists of sandstone and
conglomerate that crop out in the northern Pifion Range near
Carlin, Nevada. Siliciclastic strata in the Adobe Range north-
west of Elko and in the Snake Mountains north of Wells (fig.
1) were named the sandstone of Melandco by Poole and
Sandberg (1991, p. 119). Sandstone that crops out east and
southeast of the Pancake Range was named the Scotty Wash
Quartzite by Westgate and Knopf (1932). Scotty Wash sand-
stones are more quartzose, thinner bedded, and finer grained
than Diamond Peak sandstones; local well-developed trough
crossbedding in the Scotty Wash suggests tidal or deltaic
deposition. Columnar sections (Poole and Sandberg, 1991)
suggest that the Scotty Wash Quartzite correlates with the
upper part of the Diamond Peak and that the sandstone of
Melandco correlates with the lower part of the Diamond Peak
Formation (fig. 2). Stratigraphy and tectonism associated
with the Antler orogeny are discussed in more detail by Trex-
ler and Cashman (1990, 1991), Trexler and Nitchman (1990),
Goebel (1991), Poole and Sandberg (1991), and Trexler and
others (1991). Roberts and others (1967) provided a sum-
mary of early stratigraphic nomenclature in Eureka County
and a geologic map of the western Diamond Mountains.

Published subsurface oil and gas exploration data from
eastern Nevada suggest that, at least locally, Devonian lime-
stone and organic-rich shale of the Mississippian Chainman
Shale are potential hydrocarbon source rocks and that asso-
ciated siliciclastic sandstones are potential reservoir rocks
(Poole and others,1983; Poole and Claypool, 1984). In this
report, I describe a reconnaissance study of reservoir charac-
teristics (porosity and permeability) of Mississippian silici-
clastic sandstones in areas exposed to different thermal
regimes as determined by analyses of petroleum source-rock
potential (Poole and Claypool, 1984).

Acknowledgments.—Petrographic study of the silici-
clastic rocks of eastern Nevada was initially suggested by
Harry E. Cook. Forrest G. (Barney) Poole subsequently intro-
duced me to the siliciclastic rocks of eastern Nevada and pro-
vided technical and scientific advice throughout the duration
of the project. Tom Bergstresser of Chevron USA, Houston,
Texas, coordinated the laboratory analyses of porosity and
permeability that contributed greatly to the study. Some of
the thin sections used in this study were made by Barbara
Lockett. David Brew kindly loaned a suite of thin sections
from his dissertation area in the southern Diamond Moun-
tains. Laura Zink provided assistance with preliminary com-
puter graphics. Early drafts of the manuscript profited from
reviews by Janet Pitman, Tom MacKinnon, and F.G. Poole.

PREVIOUS WORK

Petrologic studies by previous workers of the Diamond
Peak Formation in the Diamond Mountains suggest that
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most of the detritus in the siliciclastic sequence was derived
from rocks that now comprise the Roberts Mountains alloch-
thon or Antler highland (Nolan, 1928; Brew, 1963, 1971;
Harbaugh, 1980; Harbaugh and Dickinson, 1981). Sedimen-
tary rock fragments of quartzose sandstone, siltstone, sili-
ceous mudstone, pure and impure chert, and potassium
feldspar-bearing arkosic sandstone are present within the
Antler foreland (Dickinson and others, 1983).

Studies of provenance and composition of the Chain- -

man Shale and Diamond Peak Formation in the central Dia-
mond Range were reported by Brew (1963, 1971). Detrital
modes, facies interpretations, and tectonic implications of
the Diamond Peak Formation from an area immediately
north of Brew’s map area were reported by Harbaugh (1980)
and recast by Harbaugh and Dickinson (1981) and Dickinson
and others (1983). Trexler and Cashman (1991) reported
paleocurrent data and selected detrital modes for the Newark
Valley sequence in the Diamond, Pancake, and White Pine
mountain ranges. Facies within the Newark Valley sequence
in the Diamond Mountains were interpreted by Perry and
Trexler (1993) as representing alluvial, deltaic, and shal-
low-marine environments, and detrital constituents within
the Newark Valley sequence were interpreted as reflecting
recycling of underlying strata. Together, the variation in
facies and composition were interpreted by Perry and Trex-
ler as indications of a tectonically active depositional setting.

METHODS OF STUDY

For the purposes of this study, 60 siliciclastic sandstone
samples were collected from 31 sites in Elko, Eureka, White
Pine, Nye, and Lincoln Counties of east-central Nevada (fig.
1). Thin sections were examined petrographically to deter-
mine composition of framework grains, type and volume of
intergranular cements, and amount of visible pore space.
Standard thin sections were stained with sodium cobaltini-
trate for potassium feldspar and point counted using petro-
graphic techniques outlined by Dickinson (1970). Most of
the thin sections were impregnated with blue-dyed epoxy,
which facilitated measurement of visible porosity. The
Gazzi-Dickinson method described by Ingersoll and others
(1984) was employed in counting polycrystalline rock frag-
ments. Detrital modes shown in figure 3 and listed in table 1
are based on counts of 300-400 framework grains per thin
section; raw point counts and porosity and permeability data
are given in table 2. Counts of visible pore space (filled by
blue-dyed epoxy) and intergranular cement increased the
total number of counted points in some sections to as many
as 655 (table 2). ' ‘

Calcite and dolomite cements were identified in hand
specimen by applying a drop of dilute (2N) HCl to fresh sur-
faces. Samples that effervesced freely were considered to be
cemented by calcite, whereas samples that effervesced only

on a scratched surface were considered to be cemented with
dolomite.

A suite of 27 sandstone samples was analyzed by the
Western Exploration Technical Center of Chevron USA,
Houston, Texas, for percentage of total porosity and perme-
ability. Porosities were measured by the mercury intrusion
technique, and permeabilities were measured by unstressed
(air) and stressed (brine) techniques. Results of these analy-
ses are given in table 2. '

COMPOSITION OF SANDSTONES

FRAMEWORK GRAINS

Detrital modes for samples of the Diamond Peak For-
mation and Scotty Wash Quartzite and for samples from
locations north of the Diamond Mountains are shown in four
ternary diagrams in figure 3. The rocks in the “northern area”
of figure 3 include the Tonka Formation of Dott (1955), the
sandstone of Melandco in the Adobe Range and Snake
Mountains, and the Diamond Peak Formation at Ferdelford
Canyon in the northern Pifion Range (locality 2, fig. 1).

Quartz—The QtFL and QmFLt diagrams of figure 3
illustrate the quartzose, subquartzose, and sublithic compo-
sitions of Mississippian siliciclastic sandstones of east-cen-
tral' Nevada. Most of the well-rounded monocrystalline
quartz grains (Qm) were probably recycled from eroded
quartzose sandstone protoliths in the source area. Polycrys-
talline quartz (Qp, table 2) excludes chert and consists
mainly of very fine grained quartzite. Well-rounded grains
were probably recycled from sandstone in the source area. '

Chert—Grains of recrystallized chert (Ch) are com-
mon framework constituents in most of the Mississippian
sandstones except for the Scotty Wash Quartzite.
Well-rounded grains of chert were probably recycled from
sandstone protoliths, whereas angular and subangular grains
were probably derived from chert-bearing sequences in the
source area such as the Ordovician Vinini Formation. The
great variation in degree of both clarity and recrystallization
of chert grains suggests the possibility of multiple sources.

Potassium feldspar.—Potassium feldspar is present in
modest amounts (4—12 percent) in samples from the Adobe
Range and Snake Mountains in the northern part of the area
(Tonka Formation and sandstone of Melandco) and from the
Diamond Peak Formation in the northern Pancake Range.
One sample from the Diamond Peak Formation contained as.
much as 19 percent potassium feldspar (table 2, locality 19).
Potassium feldspar is also present as detrital grains in sand-
stone and siltstone rock fragments. Individual potassium
feldspar framework grains were probably recycled from an
arkosic sandstone protolith. Dickinson and others (1983)
suggested that potassium feldspar in the Diamond Peak For-
mation was recycled from arkose in the Cambrian Harmony
Formation. Local variations in potassium feldspar content
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may support the concept of Perry and Trexler (1993) that
sediments comprising the Diamond Peak Formation in the
Newark Valley sequence were reworked by local tectonic
pulses. Alternatively, sediment availability and input from
source rocks in the allochthon such as the Harmony Forma-
tion may have varied locally. Such variation through time
could have affected potassium feldspar concentrations in
resultant sediment accumulations.

Potassium feldspar in tightly compacted rocks that have
little visible porosity shows no evidence of alteration. In
rocks that have significant secondary porosity, grains of
potassium feldspar are corroded and pitted.

Plagioclase.—Except for three samples from the Dia-
mond Peak Formation (localities 1, 20, and 23, table 2), raw
counts of plagioclase feldspar do not exceed six grains per
thin section. Most plagioclase is subangular to subrounded,

finely twinned albite. Plagioclase provenance remains prob-

lematic; possible sources include volcanic, recycled sedi-
mentary, and plutonic rocks. Patchy mottling observed on
some twinned grains might be a relict texture.

Sedimentary rock fragments.—Chert and siliciclastic
sedimentary rock fragments dominate the population of lithic
framework grains in samples from the Diamond Peak Forma-
tion, Tonka Formation, and sandstone of Melandco. The suite
of lithologies includes potassium feldspar-bearing quartzo-
feldspathic saridstone and siltstone, argillaceous mudstone of
varying brownish color and degree of opacity, and tuf-
faceous(?) mudstone that ranges from light-colored impure
chert to colorless, nearly isotropic cryptocrystalline forms.

Metamorphic rock fragments.—Schistose rock frag-
ments are present only in trace amounts in the Diamond Peak

‘ Formation and its northern correlatives and are absent in the
Scotty Wash Quartzite. Pale-green chloritic grains were
included as metamorphic rock fragments and make up the
relatively large part of metamorphic grains counted in Dia-
mond Peak sandstones at locality 19 (table 2).

Volcanic rock fragments.—Grains containing clearly
discernible volcanic textures are very rare; however; those
that were observed consisted of microlitic laths of albite set
in a groundmass of light-brown, translucent glass.

Limeclasts.—Calcareous framework grains were noted
in only a few geographically widely separated samples. This
local occurrence suggests that intertongues of limestone may
have provided an intraformational source for the limeclasts.
Limestone interbeds in the Diamond Peak Formation were
observed in the vicinity of locality 6 (table 2). Alternatively,
limeclasts at locality 3 (Carlin Canyon) may have been
derived from recycling of Paleozoic limestones that uncon-
formably underlie the Tonka Formation (Dott, 1955).

. Rock fragments of uncertain origin.—Cryptocrystalline
grains that have no discernible texture or fabric were counted
as rock fragments of uncertain origin. Although the general
abundance of sedimentary rock fragments suggests that most
of the grains in the uncertain-origin category are also proba-
bly sedimentary, a volcanic origin for some is possible. '

ACCESSORY GRAINS

Mica.—Mica was observed in only a few samples from
the Diamond Peak Formation and was notably absent in sand-
stones of the Scotty Wash Quartzite (table 2). In the few rocks
that contained mica, the predominant variety was muscovite,
although sparse grains of light-brown biotite were also noted.

Opagque grains.—Grains of opaque material are present
sporadically in both the Diamond Peak Formation and Scotty
Wash Quartzite. In sandstones adjacent to mineralized zones
where elevated temperatures are presumably related to circu-
lation of hydrothermal fluids (such as the Ward mining dis-
trict, localities 10-12, table 2), the opaque grains are mainly
pyrite. At Trough Spring Canyon (locality 15, table 2), how-
ever, dissolution of nonmetallic opaque grains that are pale
orange in reflected light forms secondary pores.

RESERVOIR CHARACTERISTICS

POROSITY AND PERMEABILITY

Laboratory measurements of total porosity and perme-
ability in air and brine are given together with visible poros-
ity in table 2. Budget limitations prevented rocks from the
Adobe and northern Pifion ranges and the Snake Mountains
from being included in the suite of samples in which these
parameters were measured. Total porosity within the sample
suite ranged from 2.5 to 19.4 percent (fig. 4). Unstressed
(air) permeability ranged from 0.32 to 420 mD (fig. 4),
whereas stressed (brine) permeability ranged from 0.10 to
370 mD. Visible porosity determined by point-counting
ranged from 0 to 28 percent and correlates favorably with
laboratory measurements (figure 5); in eight samples visible
porosity is within 2 percent of total porosity.

Where petroleum source rocks are mature to
supermature, such as the Ward mining district in the northern
Egan Range and Dry Creek in the Cherry Creek Range
(Poole and others, 1983) (localities 10-13, 14, fig. 1),
quartz-cemented quartzose sandstone is uniformly well
cemented; that is, porosity and permeability are minimal. In
contrast, noncalcareous sandstones associated with
immature to mature petroleum source rocks yielded highly
variable values of porosity and permeability. For example,
several samples from a small area in Trough Spring Canyon
in the southern Egan Range (locality 15, fig. 1) ranged from
11.6 to 17.4 percent porosity and from 43 to 420 mD
permeability. Similarly, at the south end of Buck Mountain
(locality 6, fig. 1), closely spaced samples ranged from 4.5 to
14.1 percent porosity and from 3 to 38 mD permeabilify.
Near Nevada Governors Spring in the northern Pancake
Range (locality 17, fig. 1), porosity ranged from 8.4 to 13.1
percent and air permeability from 2.4 to 18 mD. The
variations in porosity and permeability in noncalcareous and
slightly calcareous sandstones are probably due to variables
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MISSISSIPPIAN SILICICLASTIC SANDSTONES IN EASTERN NEVADA I

Figure 3 (facing column). Detrital modes of Mississippian sand-
stones of east-central Nevada. Qt, total quartzose grains
(=Qm+Qp-+chert); F, total feldspar grains (=P+K); L, total unstable
lithic grains (=Lv+Ls);"Qm, monocrystalline quartz; Lt, total lithic
grains (=Qp+Lv+Ls); Qp, polycrystalline quartz including chert;
Lv, microlitic volcanic lithic grains; Ls, pelitic sedimentary lithic
grains; P, plagioclase feldspar; K, potassium feldspar.
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112 EVOLUTION OF SEDIMENTARY BASINS—EASTERN GREAT BASIN

associated with the development of secondary porosity such
as ground-water temperature, pH, and, flow gradients, as
well as to the abundance of intergranular cements (calcite
and (or) dolomite) and the degree of weathering.

TEXTURAL CHARACTERISTICS OF
VISIBLE POROSITY

Visible pores in Mississippian siliciclastic rocks of east-
ern Nevada display many of the textural characteristics gen-
erally considered to be the result of secondary processes
(Schmidt and McDonald, 1979; Melvin and Knight, 1984).
Secondary porosity textures include grain shrinkage, disso-
lution of rock fragments, and dissolution of carbonate
cement. Examples of these textures are clearly illustrated by
blue epoxy in the photographs of figures 613 in which blue
areas represent visible pore space. Figure 6 illustrates shrink-
age of a sedimentary rock fragment that is surrounded by
quartz grains. The concentric band within the rock fragment
resembles a weathering rind that may have formed by reac-
tion with pore fluids. Figures 7 and 8 illustrate porosity asso-
ciated with dissolution of rock fragments. Opaque grains are
particularly susceptible to dissolution (fig. 7). Figure 9 shows
dissolution of rock fragments, as well as porosity due to grain

fracture in a rock that has been mechanically compacted and
cemented by quartz. Clusters of tightly compressed frame-
work grains in rocks that have abundant visible pore space
suggest that primary pore space in most cases was mostly
reduced by mechanical compaction and further reduced by
precipitation of quartz and (or) calcareous cement (figs. 7-9).

Both visible and total porosity are negligible in rocks
that have pervasive calcareous cement. Tests on hand
specimens with dilute HCl indicate that calcite and dolomite
are common cements in the Mississippian rocks of eastern
Nevada. Neither secondary porosity nor faceted quartz
overgrowths were observed in the suite of calcareous rocks.
Noncalcareous and sparsely calcareous sandstones
commonly contain quartz grains that have faceted
overgrowths, and visible pore spaces are commonly
bordered by faceted quartz grains (figs. 10-13).

In addition to standard petrographic examination of
visible pore space in thin sections impregnated with
blue-dyed epoxy, the presence of dissolution pores and
quartz overgrowths can also be rapidly and inexpensively
determined by examining unimpregnated, diamond-sawed
rock surfaces with a low-power binocular microscope. At
relatively low magnification (x24), reflected light flashes
from faceted quartz overgrowths (fig. 14A) and dissolution

Figure 6. Diamond Peak Formation, south end of Buck Mountain; sample 791-15-2B (loc. 6, fig. 1); 9 percent visual
porosity, 11.6 percent total porosity, and 13 mD air permeability. Secondary porosity resulted from shrinkage of pelitic
rock fragment. Euhedral quartz overgrowths fill primary pore space. Blue is visible porosity. Bar scale is 0.5 mm.
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Figure7. Diamond Peak Formation, south end of Buck Mountain; sample 791-15-2B (loc. 6, fig. 1); 9 percent visual
porosity. Secondary porosity formed by dissolution of opaque rock fragment. Note euhedral quartz overgrowths and
possible remnant primary pore in lower left of photograph. Blue is visible porosity. Bar scale is 0.5 mm.

Figure 8. Quartzose sandstone of the Scotty Wash Quartzite, Trough Spring Canyon, southern Egan Range; sample
791-18-2A (loc. 15, fig. 1); 9 percent visible porosity, 11.6 percent total porosity, and 43 mD air permeability. Note
euhedral quartz overgrowths and secondary porosity formed by dissolution of calcareous intergranular cement (rem-
nants line the pores). Blue is visible porosity. Bar scale is 0.5 mm.

113



114

EVOLUTION OF SEDIMENTARY BASINS—EASTERN GREAT BASIN

2 ke ¥

Figure 9. Secondary porosity in Diamond Peak Formation outcrop, south end of Buck Mountain; sample 791-15-4B
(loc. 7, fig. 1); 10 percent visible porosity, 14.4 percent total porosity, and 38 mD air permeability. Rock is cemented
by compaction and precipitation of quartz overgrowths; secondary porosity is due to dissolution of rock fragments and
to grain fracture. Blue is visible porosity. Bar scale is 0.5 mm.

Figure 10. Diamond Peak Formation, Nevada Governors Spring, northern Pancake Range; sample 791-19-3 (loc. 17,
fig. 1); 8 percent visible porosity, 8.4 percent total porosity, and 18 mD air permeability. Primary porosity was reduced
by compaction and precipitation of quartz overgrowths and then by precipitation of calcareous cement, which has been
subsequently removed to form secondary pore space. Blue is visible porosity. Bar scale is 0.5 mm.
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Figure 11. Diamond Peak Formation, Nevada Governors Spring, northern Pancake Range; sample 791-19-3 (loc. 17,
fig. 1); 8 percent visible porosity, 8.4 percent total porosity, and 18 mD air permeability. Quartz grain with doubly ter-
minated overgrowth is surrounded on two sides by outsized secondary pore formed by dissolution of calcareous cement.
Blue is visible porosity. Bar scale is 0.5 mm.

Figure 12. Diamond Peak Formation, Nevada Governors Spring, northern Pancake Range; sample 791-19-2A (loc.
17, fig. 1); 8 percent visible porosity, 13.1 percent total porosity; and 2.4 mD air permeability. Textures suggest that
primary porosity was eliminated by compaction and by precipitation of calcareous cement and that secondary porosity
resulted from dissolution of the calcareous cement and rock fragments. The final event was precipitation of quartz (note
overgrowths) . Blue is visible porosity; arrow indicates location of pore shown in figure 13. Bar scale is 0.5 mm.
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Figure 13. Closeup view of sample 791-19-2A showing euhedral quartz overgrowth and secondary pore space.
Location of pore is shown by arrow in figure 12. Blue is visible porosity. Bar scale is 0.05 mm.

pores are readily visible (figs. 14A, B). In some cases, quartz
facets line the walls of pores (fig. 14A).

PARAGENESIS OF CEMENTS

In sandstones that contain both faceted quartz over-
growths and intergranular calcareous cement, corrosion of
facets by adjacent calcite and (or) dolomite cement suggests
that quartz precipitation preceded calcareous cementation.
Textures illustrated in figures 10 and 11 indicate the com-
plexities of cementation. Both figures show interpenetration
of grain contacts that resulted from mechanical compaction.
The two figures also show euhedral quartz overgrowths that
project into visible pore space (blue areas), a texture that
probably developed after dissolution of calcareous cement.
Most of the blue areas in figures 10 and 11 were probably
occupied by calcareous cement that corroded the margins of
adjacent grains (note the ragged edges that project into the
pore space). A lack of faceted quartz overgrowths in sand-
stones that have poikilotopic calcareous cement indicates
that quartz precipitation was probably inhibited by early
formed calcareous cement.

Petrographic textures illustrated in figures 12 and 13

suggest the following sequence of cementation. (1) Grains
were pressed together by mechanical compaction. (Note the

interpenetrating grains.) (2) Calcareous grains and (or)
patchy calcareous intergranular cement precipitated, and
adjacent quartz was corroded. (3) Secondary pores were cre-
ated by dissolution of labile rock fragments and (or) calcar-
eous cement. (4) Quartz overgrowths precipitated. (Note the
delicate euhedral quartz facets that project into the pore (blue
area) of figure 13.)

Preservation of matrix-supported grains that have
smooth, well-rounded margins (grains that appear to float in
calcareous cement) suggests that the calcareous cement
precipitated prior to mechanical compaction. Such
calcareous-cemented rocks tend to have little or no visible
porosity and few or no quartz overgrowths.

SUMMARY
Mississippian siliciclastic sandstones of eastern
Nevada range in composition from litharenite to

quartzarenite. Their rock fragment content tends to decrease
with distance from the principal sediment sources in the
Roberts Mountains allochthon. Total porosity and
permeability of calcareous cement-free sandstone are
uniformly low in areas that have high paleotemperatures
(>300°C). Locally high paleotemperatures (Poole and
others, 1983) in Paleozoic strata in eastern Nevada probably
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Figure 14. Dissolution pores (dark areas) and euhedral surfaces of quartz overgrowths (lightest areas) on surfaces cut
with diamond saw and photographed using low-power (x24) binocular microscope. Bar scales are 2.0 mm. A, Diamond
Peak Formation, south end of Buck Mountain, sample 791-15-4B (loc. 7, fig. 1). B, Scotty Wash Quartzite, Trough
Spring Canyon, sample 791-18-3A (loc. 15, fig. 1).
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are due to thermal episodes associated with Mesozoic
plutonism and Cenozoic volcanism. Indeed, still active
hydrothermal heating is postulated for generating petroleum
in Paleozoic source rocks in the most productive fields of
eastern Nevada, the Grant Canyon and Bacon Flat oil fields
in Railroad Valley (Hulen and others, 1994). Preservation of
hydrocarbon-productive porosity and permeability in
Mississippian sandstones in eastern Nevada probably
depends on the delicate balance between a thermal regime
that generates and facilitates migration of liquid
hydrocarbons and excessive heat and adverse fluid
dynamics that destroy source rocks and render potential
reservoir rocks hard and tight.
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