





Neogene Geohistory Analysis of
Santa Maria Basin, California, and

Its Relationship to Transfer of

Central California to the Pacific Plate

By PATRICIA A. McCRORY, DOUGLAS S. WILSON,
JAMES C. INGLE, Jr., and RICHARD G. STANLEY

Diatom Biochronology of the

Sisquoc Formation in the Santa Maria Basin,
California, and Its Paleoceanographic and
Tectonic Implications

By MICHAEL P. DUMONT and JOHN A. BARRON

Chapters J and K are issued as a single volume
and are not available separately

U.S. GEOLOGICAL SURVEY BULLETIN 1995

EVOLUTION OF SEDIMENTARY BASINS/ONSHORE OIL AND GAS INVESTIGATIONS—
SANTA MARIA PROVINCE

Edited by Margaret A. Keller



U.S. DEPARTMENT OF THE INTERIOR
BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Gordon P. Eaton, Director

Any use of trade, product, or firm names
in this publication is for descriptive purposes only
and does not imply endorsement by the U.S. Government

Text and illustrations edited by James W. Hendley ||

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1995

For sale by

U.S. Geological Survey
Information Services

Box 25286, Federal Center
Denver, CO 80225

Library of Congress Cataloging in Publication Data

Neogene geohistory analysis of Santa Maria Basin, California, and its
relationship to transfer of central California to the Pacific Plate / by
Patricia A. McCrory ... [et al.]. Diatom biochronology of the Sisquoc Formation
in the Santa Maria Basin, California, and its paleoceanographic and tectonic
implications / by Michael P. Dumont and John A. Barron.

p. cm. — (Evolution of sedimentary basins/onshore oil and gas
investigations—Santa Maria Province ; ch. J-K) (U.S. Geological Survey
bulletin ; 1995)

"Chapters ] and K are issued as a single volume and are not available
separately.”

Includes bibliographical references.

Supt. of Docs. no.: | 19.3:1995-, K

1. Geology, Stratigraphic—Neogene. 2. Geology—California—Santa Maria
Basin. 3. Plate tectonics—California—Santa Maria Basin. 4. Diatoms, Fossil—
California—Santa Maria Basin. 5. Paleontology, Stratigraphic.
6. Paleontology—Miocene. 7. Paleontology—Pliocene. 8. Sisquoc Formation
(Calif.) 9. Santa Maria Basin (Calif.) 1. McCrory, Patricia Alison.
1. Dumont, Michael P. Diatom biochronology of the Sisquoc Formation in the
Santa Maria Basin, California, and its paleoceanographic and tectonic

implications. IIl. Barron, John A. V. Series. V. Series: U.S. Geological Survey
bulletin ; 1995.

QE75.B9 no. 1995-)-K

[QE693.5]

557.3 s—dc20 95-19019

[551.7'86'09794] cIp



Chapter J

Neogene Geohistory Analysis of

Santa Maria Basin, California, and

Its Relationship to Transfer of Central California
to the Pacific Plate

By PATRICIA A. McCRORY, DOUGLAS S. WILSON,
JAMES C. INGLE, Jr., and RICHARD G. STANLEY

U.S. GEOLOGICAL SURVEY BULLETIN 1995

EVOLUTION OF SEDIMENTARY BASINS/ONSHORE OIL AND GAS INVESTIGATIONS—
SANTA MARIA PROVINCE

Edited by Margaret A. Keller



v

Contents

CONTENTS

Abstract  J1
Introduction J1
The southern Coast Ranges J3
Santa Maria basin lithostratigraphy J5
Acknowledgments J5
Late Cenozoic tectonism in the Santa Maria area J5
Style, timing, and magnitude of late Cenozoic tectonism J6
Santa Maria basin study sites J7
Point Arguello area (offshore) J8
Point Sal area (onshore) J12
Central basin area (onshore) J14
Eastern basin area (onshore) J16
Tectonic events recorded at study sites J17
Late Cenozoic plate tectonic setting of central California J18
Reconstructed positions of central California J21
Reconstructed positions of the Farallon microplates J24
Discussion J29
Summary J31
References cited J31
Appendix—Data used in backstrip programs J35

FIGURES

1A.

Map showing present location of major tectonic features and normally magnetized
magnetic anomalies on oceanic crust of central California continental margin and
adjacent offshore area J2

1B. Location map of Santa Maria province and vicinity showing distribution of Neo-
gene sedimentary rocks, major faults, and anticlinal fold axes J3
2. General lithostratigraphy for onshore Santa Maria basin J4
3. Late Cenozoic time scale for northeast Pacific Ocean J8
4A. Lithostratigraphy and paleobathymetry for Cost Well (OCS-CAL 78-164-1) J9
4B. Age-depth plot for Cost well (OCS-CAL 78-164-1) showing inflection points in-
dicating changes in rate of sediment accumulation J10
4C. Backstrip plot of the Cost well (OCS-CAL 78-164-1) showing isostatic loading
and tectonic components of vertical movement J10
SA. Lithostratigraphy and paleobathymetry for Texaco Nautilus well (OCS-P 0496—
1) J11
SB. Age-depth plot for Texaco Nautilus well (OCS-P 0496-1) showing inflection
points indicating changes in rate of sediment accumulation J11
5C. Backstrip plot of Texaco Nautilus well (OCS-P 0496-1) showing isostatic loading
and tectonic components of vertical movement J12
6A. Lithostratigraphy and paleobathymetry for Point Sal composite section. J13
6B. Age-thickness plot for Point Sal composite section showing inflection points indi-
cating changes in rate of sediment accumulation J14
6C. Backstrip plot for Point Sal composite section showing isostatic loading and tec-

tonic components of vertical movement J14



7A.

Lithostratigraphy and paleobathymetry for Union Newlove No. 51 well (Orcutt
Field) J15

7B. Age-depth plot for Union Newlove No. 51 well (Orcutt Field) showing inflection
points indicating changes in rate of sediment accumulation J16
7C. Backstrip plot for the Union Newlove No. 51 well (Orcutt Field) showing isostat-
ic loading and tectonic components of vertical movement J16
8A. Lithostratigraphy and paleobathymetry for the Tidewater Davis No. 1 well (Zaca
Field) J17
8B. Age-depth plot for Tidewater Davis No. 1 well (Zaca Field) showing inflection
points indicating changes in rate of sediment accumulation J18
8C. Backstrip plot for Tidewater Davis No. 1 well (Zaca Field) showing isostatic load-
ing and components of vertical movement J18
9A. Reconstruction of the Pacific, Farallon, and North America Plates with coastal
California block fixed, 33.0 Ma J19
9B. Reconstruction of Pacific Plate, Monterey Microplate, Arguello Microplate, and
North America Plate with coastal California block fixed, 30.0 Ma J20
9C. Reconstruction of Pacific Plate, Monterey Microplate, Arguello Microplate, and
North America Plate with coastal California block fixed, 24.0 Ma J21
9D. Reconstruction of Pacific Plate, Monterey Microplate, Arguello Microplate, and
North America Plate with coastal California block fixed, 19.7 Ma  J22
9E. Reconstruction of Pacific Plate, Arguello Microplate, and North America Plate
with coastal California block fixed, 17.0 Ma J23
9F. Reconstruction of the Pacific and North America Plates with coastal California
block fixed, 15.0 Ma J24
9G. Reconstruction of the Pacific and North America Plates with coastal California
block fixed, 10.0 Ma  J25
9H. Reconstruction of the Pacific and North America Plates with coastal California
block fixed, 5.0 Ma J26
91. Modern configuration of Pacific Plate, relict Monterey Microplate, and North
America Plate J27
10. Simplified summary diagram of figure 9 showing change in plate boundaries
through time and transfer of central California from the North America Plate to
Pacific Plate J28
11. Plate vectors in velocity space at 35° N., 122° W. with coastal California
fixed J29
TABLES
1. Porosity-depth formulas used to decompact lithologies in backstrip program J8

2.

Model for relative motion of western North America microplates J30

Contents
























faulting began in Pliocene time (about 4 to 2 Ma) and has
continued into the Quaternary (Woodring and Bramlette,
1950; Namson and Davis, 1990). In offshore Santa Maria
basin, the main period of folding and reverse faulting
occurred in the early Pliocene (5.3-3.4 Ma) and continued
with decreased intensity into the late Pliocene and Quaternary
(Crouch and others, 1984; Clark and others, 1991; Miller
and others, 1992). In the Santa Lucia basin, west of the Santa
Lucia Bank Fault, significant compression has continued into
the Quaternary (McCulloch, 1987; Mclntosh and others,
1991).

In summary, a Pliocene and younger phase of folding
and reverse faulting in the southern part of Santa Maria
province (Namson and Davis, 1990; Clark and others,
1991) resulted in about 30 km of cumulative northeast-
directed shortening across the 200-km-wide area of the
southern Coast Ranges and offshore Santa Maria basin.
This estimate of shortening is based on modeling folds at
the surface as thrust faults at depth. The presence of sub-
surface thrust faults needs to be verified by deep seismic
imaging.

Paleomagnetic studies suggest that the southern Coast
Ranges have undergone little or no rotation during Neo-
gene and Quaternary time, in contrast to the western
Transverse Ranges to the south (Hornafius and others,
1986; Luyendyk, 1991). However, available data are few,
so this interpretation must be considered preliminary. Late
Cenozoic clockwise rotations of up to 70° in the northern
part of the Santa Maria province (Greenhaus and Cox,
1979) are attributed to local accommodation of distributed
dextral shear (Luyendyk, 1991).

The record of Cenozoic tectonism in Santa Maria
province is incomplete; data from the early Cenozoic are
sparse and the overprinting of subsequent stress regimes
hampers reconstruction of the central California continen-
tal margin. The locations and displacements of the major
faults active during early Miocene basin formation are
poorly resolved. The amount of early Miocene crustal
extension is unknown. A widespread middle Miocene hia-
tus is attributed to both tectonic and paleoceanographic
causes (Barron, 1986). Estimates of lateral offset along
possible strike-slip faults vary by more than 100 percent.
Nonetheless, the available estimates of crustal shortening,
lateral offset, and block rotation allow the following pre-
liminary attempt at margin reconstruction. This reconstruc-
tion can be revised as additional quantitative geologic and
geophysical data are acquired.

SANTA MARIA BASIN STUDY SITES

The offshore and onshore sites chosen for this study
form two transects, one that parallels the structural trend
in the southern part of Santa Maria province and the
other that crosses the structural trend. Lithostratigraphic

and biostratigraphic data from these sites are used to esti-
mate the timing and rate of vertical movement by using
backstripping techniques (Steckler and Watts, 1978; van
Hinte, 1978). Backstripping reconstructs a burial history
through time by systematically calculating the diagenetic
effects of sediment loading. Discrepancies between paleo-
bathymetry estimated from microfossils and paleobathym-
etry calculated from decompacting and unloading the
strata through time are attributed to vertical movement of
the basement.

Neogene and younger strata at the sites have been
decompacted using porosity-depth formulas for specific
lithologies (table 1) by using a computer program devel-
oped at the University of Arizona (Dickinson and others,
1987) and modified at Stanford University (Roger Bloch,
unpub. data, 1989). This computer program also calculates
isostatic loading through time using a one-dimensional
Airy model and lithologic densities calculated during
decompaction. The isostatic loading component subtracted
from the total basin uplift/subsidence curve yields a resid-
ual tectonic component of vertical movement. This tec-
tonic component may include contributions resulting from
crustal thinning, thermal decay, and flexural loading.

Backstrip modeling requires estimates of paleoba-
thymetry through time, estimates of the age of the various
stratigraphic units and duration of hiatuses, and estimates
of proportions of sand, mud, biosiliceous, and micritic
components in the units (see appendix). Benthic foramini-
fers with restricted paleoenvironmental ranges are used as
proxies for paleobathymetry following the procedures and
assignments of Ingle (1980). Uncertainties in water depth,
deduced from microfossils, are the main source of error in
backstrip analysis. Therefore, water depth is plotted within
an envelope of estimated range in water depth.

Sea level has fluctuated periodically over a range of
about 200 m during the time interval evaluated at sites in
this study (Haq and others, 1987). However, our backstrip
analyses do not attempt a correction to the modern sea
level datum because the timing and magnitude of sea level
variation are not well constrained at the study sites.

The principle source of age control at the sites is the
benthic foraminiferal stages of Kleinpell (1938, 1980)
(fig. 3), a source that is not ideal, as these organisms have
restricted environmental ranges. Key indicator species may
appear in a section late or disappear from a section prema-
turely owing to a change in environment (in other words,
water-mass character), rather than true first or last appear-
ance. For this reason, curves in the age-depth plots in this
report are shown within an envelope representing each
stage. Although the stages are shown as not overlapping in
age, some stages may in fact overlap in age, owing to the
reasons stated above. Independent age control from plank-
tonic microfossil groups, such as diatoms, or from isotopic
dating of volcanic material is needed to better constrain
the ages determined from benthic foraminifers.

Neogene Geohistory Analysis of Santa Maria Basin, California, and Its Relationship to Transfer of Central California to the PacificPlate )7



Table 1. Porosity-depth formulas used to decompact litholo-
gies in backstrip program

[¢, porosity; Z, burial depth; NA, not applicable. Mudstone, sandstone
(undifferentiated), and limestone (undifferentiated) formulas are from
Dickinson and others (1987). Micrite formula is derived from Bond and
Komitz (1984). Siliceous shale formula is from Ingle (1985b)]

Lithology Formula Burial depth
Mudstone ¢=0.6/(1=0.001*Z) NA
Sandstone 0=0.5/(1+0.0005*Z) NA
Limestone =0.5/(1.0+0.6*Z) NA
Micrite 0=0.75-(7.0%0.001*Z) 0-500 m
0=0.4/exp(0.5*(Z-500.0)/1000.0) >500 m
Siliceous Shale 0=0.85/(1+0.003*Z) 0-2500 m
0=0.10 >2500 m

The loss of sediment porosity with depth is strongly
dependent on sediment composition (see Dickinson and
others, 1987); thus, stratigraphic units are separated into
five lithologies (mudstone/shale, undifferentiated sand-
stone, undifferentiated limestone, biosiliceous sediment,
and micritic carbonate), each with a different porosity-
depth function derived from empirical studies. Silica phase
changes during burial diagenesis further complicate the
reconstruction of the burial histories of biosiliceous sedi-
ments, such as the Monterey Formation, which have high
primary porosities. We use a simple porosity-depth curve
formula developed by Ingle (1985b) and Garrison (1985)
from data of Isaacs and others (1983) to estimate porosity
changes in biosiliceous units. However, the silica phase
changes are temperature and composition dependent, and
neither parameter was reconstructed for this study. Thus,
refinement of these formulas (table 1) awaits empirical
data from wells in the Santa Maria area.

Point Arguello Area (Offshore)

The Cost well (OCS-CAL 78-164-1) (fig. 1B) is
located at the southernmost end of offshore Santa Maria
basin, just north of the “Amberjack High” (a basement
high considered to be the offshore boundary between the
Coast Ranges and the Transverse Ranges) in 435 m of
water. At this site, about 2,520 m of Neogene and younger
strata unconformably overlie Great Valley sequence rocks
(fig. 4). The basal interbedded sandstone and conglomerate
mark initial subsidence from neritic (150-15 m) to middle
bathyal (2,000-500 m) depths in early Miocene (?) time
(Cook, 1979). The site gradually deepened during Monte-
rey, Sisquoc, and early “Foxen” deposition and then
abruptly subsided to lower bathyal (4,000-2,000 m) depths
during late “Foxen” deposition. Units enclosed within

quotes are here considered to be offshore biostratigraphic
equivalents of named onshore units (for example, “Foxen”
is the offshore equivalent of the Foxen Mudstone). This
site subsequently began to shoal and had shoaled to mid-
dle bathyal depths by the end of “Foxen” deposition in
late Pliocene time. No paleobathymetric data are available
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DISCUSSION

The early Cenozoic record of tectonism in the Santa
Maria province is fragmentary and will not be addressed
here. However, the early Cenozoic was apparently a
period of oblique subduction of young oceanic crust, and
if the southern Cascadia margin can be used as an analog
for margin response to oblique subduction of young buoy-
ant plates, strong coupling between the accretionary mar-
gin and underlying oceanic lithosphere can be inferred,
resulting in folding and uplift of the margin (McCrory,
1989).

35.6-30.0 Ma
P F
\\1?,'
30.0-25.8 Ma
P A
25.8-19.9 Ma
P
7 A

Recent plate motion studies document a clockwise
reorientation of the Pacific Plate velocity vector (Cande
and others, 1992) and adjacent microplate vectors (Fernan-
dez and Hey, 1991) in the latest Oligocene (about 26 Ma).
This reorientation increased the obliquity of convergence
across the microplate-North America plate boundary.
Oblique relative motion in central California during the
carliest Miocene may have been partitioned into normal
and parallel components of relative motion. For example,
the Russell Fault, in Cuyama basin, underwent a relatively
short, intense period of right-lateral movement (23-19
Ma) followed by quiescence (Yeats and others, 1989),

19.0-10.6 Ma

10.6-5.0 Ma

P

>

a \
NA
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\
% \’ta
Ci \
NA

Cc

Cc

Figure 11. Plate vectors in velocity space at 35° N., 122° W. with coastal California
fixed (Pacific-North America total poles from Stock and Molnar, 1988; DeMets and

others, 1990; stage poles modified from
1991; Cande and others, 1992). Note that

Wilson, 1988; Harbert, 1991; McWilliams,
for 19.0 to 10.6 Ma vectors, Arguello Micro-

plate motion ceased about 16.0 Ma. A, Arguello Microplate; C, California Microplate;
Cc, coastal California Microplate; Ci, interior California Microplate; F, Farallon Plate; M,
Monterey Microplate; NA, North America Plate. Numbers along vectors represent plate

speeds in mm/yr.
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Table 2. Model for relative motion of western North America
microplates

[positive rotation angle rotates plate 2 counterclockwise, forward in time,
relative to plate 1. Lat, latitude; Lon, longitude; Ang, angle; deg, degrees;
N, north; E, east)

Rotation pole

Time Lat Lon Ang
Plate 1 Plate 2 (Ma) (deg N) (deg E) (deg)
North Interior 36-0 534 -106.4 -14.2
America. Calif.
Interior Coastal 10-0 47.8 -82.8 -5.7
Calif. Calif.
Coastal Santa 15-0 34.4 -120.4 -80.0
Calif. Barbara.

implying that shear strain was accommodated in this area
until Monterey subduction ceased at about 19 Ma.

The onset of late early Miocene extension along the
central California continental margin is likely linked to the
transition from subduction to strike-slip tectonics as
inferred for other extensional events along the western
North American continental margin (see Dickinson and
Snyder, 1979b; Glazner and Bartley, 1984). If this is the
case, other basins along the central and southern Califor-
nia continental margin should contain records of early
Miocene extension and subsidence following the cessation
of spreading on the adjacent oceanic-ridge segment.

The onset of volcanism in Santa Maria basin also
appears to be linked with the cessation of microplate sub-
duction; however, there was a lag time for the transit of
magma up through the accretionary margin. Bimodal vol-
canism dated at about 18 to 16 Ma, which accompanied
initiation of late early Miocene extension, has a mixed
magma source composed of oceanic-ridge and continental-
crust materials (Cole and Basu, 1992). This period of vol-
canism is attributed to upwelling of oceanic magma into
the “slabless window” formed behind the subducted Mon-
terey Microplate. However, this was not a simple “slabless
window,” as a fragment of relict Monterey Microplate
remains beneath central California and can be traced as far
east as the San Andreas Fault (Howie, 1991). The precise
location of this remnant oceanic crust beneath a recon-
structed California continental margin when spreading
ceased at about 19 Ma is unknown given both the uncer-
tainties in the global-circuit reconstructions and the uncer-
tainties in the reconstruction of strike-slip faults such as
the Hosgri Fault. Our California continental margin recon-
structions show the Monterey Microplate remnant to be
just south of the Santa Maria basin area (fig. 9E) during
this pulse of volcanism, with the volcanic material erupt-
ing above a true “slabless window” followed by north-

westward movement of the remnant beneath the margin
with the Pacific Plate. However, available constraints
allow the possibility that the microplate remnant was
already beneath the central California continental margin
at 19 Ma and that magma upwelled into a “slabless win-
dow” formed by delamination of the oceanic crust and
subduction of the lower lithosphere (Howie, 1991).

Transfer of the Monterey Microplate to the Pacific
Plate when spreading ceased (about 19 Ma) would have
created a wide Pacific-North America subhorizontal
boundary zone at depth. The low angle boundary perhaps
allowed shear to be distributed between the oceanic crust
and overlying relict accretionary complex (Howie and oth-
ers, 1993), until the oceanic lithosphere cooled and cou-
pled to the overlying margin, completing transfer of the
margin to the Pacific Plate. This postulated distributed
shear is a possible mechanism for in place rotation of
fault-bounded blocks, such as the western Transverse
Ranges, above a subhorizontal shear zone. In fact, dilata-
tion and initial subsidence of the Santa Maria basin may
have been accompanied by oblique normal slip, also
beginning about 18 Ma, associated with initial clockwise
rotation of the western Transverse Ranges about a pivot
located near Point Arguello (Hornafius, 1985; Luyendyk
and Hornafius, 1987).

Miocene subsidence occurred in two stages. The ini-
tial rapid phase from about 18 to 16 Ma, associated with
volcanism, is attributed to extreme local extension of the
continental crust associated with the beginning of western
Transverse Range rotation and triggered by Monterey
Microplate capture. The subsequent slower phase (about
16 to 7 Ma) is attributed to thermal subsidence associated
with cooling of underplated young oceanic lithosphere that
had moved northwestward with the Pacific Plate to a loca-
tion beneath the Santa Maria basin area.

Recent plate-motion studies shift the Pliocene clock-
wise reorientation of the Pacific Plate velocity vector and
onset of transpression across the Pacific-North America
transform boundary from about 3.9 to 3.4 Ma (Harbert and
Cox, 1989; Harbert, 1991) back to about 6 to 5 Ma
(Cande and others, 1992). This older age for onset of
transpression is approximately coeval with the time of dip-
slip faulting and bathymetric inversion seen in Santa
Maria basin. This inversion had previously been attributed
to normal faulting (Namson and Davis, 1990), but the pat-
tern of uplift and subsidence documented by backstrip
analysis is more easily explained by crustal shortening, an
explanation that agrees with a transpressive stress regime.
This shift in timing of the Pacific velocity change leaves
the uplift event that occurred at about 3.5 Ma, documented
in our backstrip plots (figs. 4C, 5C, 6C, 7C, and 80C),
unexplained.

Subhorizontal detachment faults or distributed ductile
shear within the lower part of the Franciscan Complex
near the base of the seismogenic zone (9-14 km deep) are

J30 Evolution of Sedimentary Basins/Onshore Oil and Gas Investigations—Santa Maria Province



inferred beneath the southern Coast Ranges as far east as
the Nacimiento Fault (Crouch and others, 1984; Howie,
1991; Miller and others, 1992). This postulated detach-
ment zone could provide a mechanism for continued dis-
tribution of transform motion across a broad area.

SUMMARY

Integration of backstrip plots with new, more com-
plete reconstructions of plate motions shows that Neogene
sedimentary and volcanic events in central California
basins can be interpreted in terms of the interactions of
microplates with each other and the larger Pacific, Faral-
lon, and North America Plates. When oblique subduction
ceased west of central California about 19 Ma by cessa-
tion of spreading on the Pacific-Monterey ridge segment,
Pacific-North America transform motion was accommo-
dated by distributed strike-slip motion across a broad
zone. About 6 to 5 Ma, the direction of Pacific-North
America relative plate motion became oblique to strike-
slip fault zones and should have caused transpression
along them, producing up to 10 mm/yr of shortening in
central California. Since about 3 Ma, the plate boundary
has been partitioned between strike-slip movement along
the San Andreas Fault system and shortening along
reverse faults and associated folds to the west and east of
the San Andreas Fault system.

The continuation of microplate subduction along the
California continental margin in the Miocene has signifi-
cant implications for the evolution of the San Andreas
Fault system. In particular, this system clearly began as
two separate segments, one in northern central California
and the other in southern Baja California. These segments
propagated toward each other over a period of several mil-
lion years and finally linked about 16 Ma, at the termina-
tion of Arguello subduction.

The central California continental margin experi-
enced a period of volcanism, normal faulting, and rapid
tectonic subsidence starting about 18 Ma. A 10-m.y.
interval of slow subsidence followed this period. About
6 Ma, the margin underwent a period of shortening,
reflected in rapid bathymetric inversion. A 2-m.y. interval
of slow uplift followed this period. About 3 Ma, the mar-
gin again experienced a period of intense shortening
reflected in large-scale folding of Neogene strata. This
latest shortening event is ongoing, as documented by
modern geodetic measurements and earthquakes with
reverse-fault mechanisms.

Documented geologic constraints are consistent with
a plate kinematic mechanism for tectonism along the cen-
tral California margin during the Neogene. However,
uncertainties about palinspastic restoration of extension
across western North America and uncertainties about
reconstruction of tectonically disrupted California hamper

the reliability of these correlations. The implications of
this kinematic model for the dynamics of transform plate
margins can be tested with detailed backstrip modeling of
La Honda, Santa Cruz, Salinas, and other central Califor-
nia continental margin basins.

Clearly much better constraints are needed on the
timing and amount of extension and shearing in Santa
Maria province. Currently, strike-slip faulting is not well
enough constrained to be tied with specific plate tectonic
events. Also, there is not enough data to verify or discount
the model of eastward migration of the transform bound-
ary, but it appears that this shift of transform motion from
the western edge of the continental margin to the San
Andreas Fault is linked to behavior of the relict Monterey
slab.

In summary, available data indicate that Pacific Plate
behavior in the late Cenozoic dominated tectonic events
along the central California continental margin. While sub-
duction of the Farallon Plate and its derivatives was ongo-
ing, Pacific Plate influence was indirect, expressed by
reorientation of spreading ridges and subsequent rotation
of microplates. Since subduction ceased, Pacific Plate
behavior has affected the margin directly, initially by cap-
ture of the underthrust relict slab and later by changes in
relative motion that induced a component of compression
across the transform boundary, compression expressed as
regional uplift as well as reverse faulting and folding.
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APPENDIX—DATA USED IN BACKSTRIP PROGRAMS

Data used in backstrip program for Cost well (OCS-CAL 78-164-1)

[Age and depth refer to top of unit listed unless otherwise noted. See figure 4 for sources of data. Water depth at well is 435 m. Units enclosed within quotes
are considered to be offshore stratigraphic equivalents of named onshore units. Mud, mudstone/shale; Sand, undifferentiated sandstone; Carb, undifferentiat-
ed limestone; Sil, biosiliceous sediment; Mic, micritic carbonate

Unit Age Depth Lithology Water depth Eustatic
Ma) (m) (percent) (m) sea level
Mud Sand Carb Sil Mic Min Max (m)

Quaternary deposits 0.0 0.0 807 20?7 0 0 0 450 450 0
Volcaniclastic conglomerate
and sandstone.
Horizon A 1.5 163.1 0 100 0 0 0 500? 20007 0
Horizon B 1.7 1722 0 100 0 0 0 1500 2000 0
Sandstone 1.8 2240 20 80 0 0 0 1500 2000 0
Siltstone 20 3734 80 20 0 0 0 1500 2000 0
"Careaga" Sandstone
Horizon A 22 511.2 20 80 0 0 0 1500 2000 0
Horizon B 25 663.0 20 80 0 0 0 2000 2500 0
"Foxen" Mudstone
Horizon A 26 681.2 75 10 0 0 15 2000 2500 0
Horizon B 42 8459 60 10 0 15 15 500 2000 0
Sisquoc Formation 6.5 1004.3 60 5 0 20 15 500 1500 0
Monterey Formation
Horizon A 7.2 1321.3 60 5 0 20 15 500 1500 0
Horizon B 8.2 1614.0 20 5 0 75 0 500 1500 0
Horizon C 8.8 1778.5 20 5 0 75 0 500 1500 0
Horizon D 9.7 18127 70 10 0 0 20 500 1500 0
Horizon E 14.0 1970.6 70 10 0 0 20 500 1500 0
Horizon F 15.5 23455 70 10 0 0 20 500 1500 0
Conglomerate and
sandstone. 17.5 24345 100 0 4] 0 4] 0? 5007 0
Base of Neogene
section. 18.0? 25207 100 0 0 0 0 Q9? 500? 0
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Data used in backstrip program for Texaco Nautilus well (OCS-P 496~1), Santa Maria basin, offshore

[Age and depth refer to age at top of unit listed unless otherwise noted. Hiatus between Monterey Formation and unnamed volcaniclastic
rocks is estimated to represent time interval between 17.5 and 9.5 Ma. See figure 5 for sources of data. Water depth at well is 375 m. Units
enclosed within quotes are considered to be offshore stratigraphic equivalents of named onshore units. Mud, mudstone/shale; Sand, undiffer-
entiated sandstone; Carb, undifferentiated limestone; Sil, biosiliceous sediment; Mic, micritic carbonate]

Unit Age Depth Lithology Water depth Eustatic
(Ng) m) (percent) (m) sea level
Mud Sand Carb Sil Mic Min Max )

Quaternary and upper

Pliocene deposits. 0.0 0 75 25 0 0 0 375 375 0
"Foxen" Mudstone
Horizon A 34 198 100 0 0 0 0 2000 2500 0
Horizon B 38 259 90 5 0 0 5 2000 2500 0
Horizon C 40 289 100 0 0 0 0 2000 2500 0
Sisquoc Formation
Horizon A 41 300 100 0 0 0 0 1500 2000 0
Horizon B 43 335 100 0 0 0 0 500 1500 0
Horizon C 47 390 95 5 0 0 10 500 1500 0
Horizon D 49 420 95 5 0 0 0 150 500 0
Horizon E 5.1 442 80 20 0 0 0 150 500 0
Horizon F 5.7 530 80 20 0 0 0 150 2500 0
Monterey Formation,
T part.
orizon A 6.5 650 80 20 0 0 0 2000 2500 0
Horizon B 6.9 670 S5 20 0 25 0 2000 2500 0
Horizon C 7.3 686 40 20 0 40 0 2000 2500 0
Horizon D 7.7 704 20 15 0 55 10 2000 2500 0
Monterey Formation,
middle part. 93 779 20 15 0 55 10 2000 2500 0
Hiatus 9.5 789 10 60 0 25 5 2000 2500 0
Volcaniclastic deposits
Horizon A 17.5 789 10 60 0 25 5 0 500 0
Horizon B 17.6 795 10 60 0 25 5 0 150 0
Horizon C 17.8 804 0 100 0 0 0 0 150 0
Conglomerate and
sandstone
Horizon A 184 834 30 70 0 0 0 0 150 0
Horizon B . 204 926 15 70 0 0 15 0 150 0
Base of conglomerate
and sandstone unit. 45 1124 0 100 0 0 0 0 150 0

J36  Evolution of Sedimentary Basins/Onshore Oil and Gas Investigations—Santa Maria Province



Data used in backstrip program for Point Sal composite section (North Beach surface section, Mussel Rock surface section, and
Union Los Nietos well subsurface section), Santa Maria basin, onshore

[Age and depth refer to top of unit listed unless otherwise noted. Hiatus within Monterey Formation is estimated to represent time interval between 15.5 and
14.0 Ma. See figure 6 for sources of data. Surface elevation of Union Los Nietos (Leroy A-2) well is 0 m. Mud, mudstone/shale; Sand, undifferentiated
sandstone; Carb, undifferentiated limestone; Sil, biosiliceous sediment; Mic, micritic carbonate]

Unit Age Depth Lithology Water depth Eustatic
(Mgn) (m) (percent) (m) sea level
Mud Sand Carb Sil Mic Min Max (m)

Holocene deposits and

Paso Robles Formation. 0.0 0 50 50 0 4] 0 0 0 0
Careaga Sandstone 1.5 137 30 70 4] 4] 0 0 100 0
Foxen Mudstone

Horizon A 2.8 206 90 10 0 0 0 100 150 0

Horizon B 3.1 350 90 10 0 0 0 500 600 0

Horizon C 3.8 750 90 10 0 0 0 100 150 0
Sisquoc Formation

Horizon A 4.0 791 60 30 0 10 0 400 500 0

Horizon B 58 1030 60 30 0 10 10 400 500 0
Monterey Formation,

upper part. 6.5 1191 25 0 0 55 20 600 700 0
Monterey Formation,

middle part. 7.3 1548 20 0 0 70 10 900 1300 0
Hiatus 14.0 1739 20 0 0 70 10 900 1300 0
Monterey Formation,

lower part. 15.5 1740 50 15 0 10 40 700 1100 0
Point Sal Formation

Horizon A 16.0 1991 60 40 0 0 0 500 700 0

Horizon B 16.7 2300 60 40 0 0 0 500 700 0

Horizon C 17.07 2413 90 10 0 0 0 300 700 0
Lospe Formation,

upper and middle parts. 17.14 2430 40 60 0 0 0 0 150 0
Lospe Formation,

lower part. 17.7 2703 0 100 0 0 0 0 0 0
Base of Lospe

Formation. 17.72 2843 0 100 0 0 0 0 0 0

Data used in backstrip program for Union Newlove No. 51 well, Orcutt Field, Santa Maria basin, onshore

[Age and depth refer to top of unit listed unless otherwise noted. See figure 7 for sources of data. Surface elevation of well is 243 m. Mud, mudstone/shale;
Sand, undifferentiated sandstone; Carb, undifferentiated limestone; Sil, biosiliceous sediment; Mic, micritic carbonate]

Unit Age Depth Lithology Water depth Eustatic
(N&) m) (percent) (m) sea level
Mud Sand Carb Sil Mic Min Max (m)

Careaga Sandstone

Horizon A 14 0 0 100 0 0 0 0 10 0
Horizon B 40 150 0 100 0 0 0 0 10 0
Sisquoc Formation
Horizon A 4.0 150 50 0 0 50 0 150 500 0
Horizon B 6.5 594 50 0 0 50 0 150 500 0
Monterey Formation 6.5 594 0 0 0 90 10 1000 1500 0
Point Sal Formation 16.0 859 60 40 0 0 0 1000 1500 0
Lospe Formation 17.0 1253 0 100 0 0 4] 0 0 0
Base of Lospe
Formation, 17.7 1300 0 100 0 0 0 0 0 0
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Data used in backstrip program for Tidewater Davis No. 1 well, Zaca Field, Santa Maria basin, onshore.

[Age and depth refer to top of unit listed unless otherwise noted. Hiatus between Sisquoc Formation and Careaga Sandstone is estimated to represent time
interval between 4.0 and 2.8 Ma. See figure 8 for sources of data. Surface elevation at well is 311 m. Mud, mudstone/shale; Sand, undifferentiated
sandstone; Carb, undifferentiated limestone; Sil, biosiliceous sediment; Mic, micritic carbonate

Unit Age Depth Lithology Water depth Eustatic
(Ma) (m) (percent) (m) sea level
Mud Sand Carb Sil Mic Min Max (m)

Holocene deposits and

Paso Robles Formation. 0.0 0 0 100 0 0 0 -311 -311 0
Careaga Sandstone 1.5 61 0 100 0 0 0 0 100 4]
Hiatus 28 415 100 0 0 0 0 100 150 4]
Sisquoc Formation 40 416 0 15 0 85 0 400 500 0
Monterey Formation 6.5 965 4] 0 0 100 0 600 700 4]
Point Sal Formation 16.0 1819 50 50 0 0 0 500 700 0
Base of Point Sal

Formation. 17.0 1859 50 50 0 0 0 500 700 0
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Berggren and others (1985) and with other microfossil
zonations in figure 2. Age estimates for the zones of
Dumont (1986) are derived from the paleomagnetic stra-
tigraphy of the Santa Cruz section of the Purisima Forma-
tion in northern California, which was completed by
Madrid and others (1986) (see Dumont and others, 1986).
Age estimates for older diatom zones are mostly derived
through indirect correlation to paleomagnetic stratigraphy
and (or) radiometric ages (Barron, 1986a, 1992a).

The radiolarian zonation of Weaver and others (1981)
and the calcareous nannofossil zonation of Okada and
Bukry (1980) as recognized by Bukry (1973, 1981) off
California are correlated to the diatom zones after Barron
(1986a, 1992a). Low diversity and low abundance of age-
diagnostic calcareous nannofossil taxa prevents further
subdivision of the calcareous nannofossil zones. The ben-
thic foraminiferal zones of Kleinpell (1938,1980) and the
corresponding benthic foraminiferal stage boundaries are
correlated to the geologic time scale following Barron
(1986a) and Blake (1991).

Two alternatives for placement of the Miocene-
Pliocene boundary are shown on figure 2 based on the
results of Berggren and others (1985) and the results of

Zijderveld and others (1986). The placement of Berggren
and others (1985) is followed in this report because it is
currently the standard accepted correlation. However, we
recognize that the younger placement of Zijderveld and
others (1986) is receiving increasing support from bios-
tratigraphers and paleoceanographers and probably repre-
sents the correct correlation.

Recently, a new magnetic-polarity time scale was pro-
posed by Cande and Kent (1992) that resulted in slightly
older age estimates for events near the Miocene-Pliocene
boundary. The Cande and Kent (1992) time scale, how-
ever, is not followed in this paper because detailed recali-
bration of the diatom biostratigraphy of Barron (1981,
1986a) and Dumont (1986) is beyond the scope of this

paper.

Diatom Ranges

Figure 3 shows the stratigraphic ranges of important
diatom taxa in the uppermost Miocene and lowermost Pli-
ocene rocks of California. This figure was compiled from
the results of Barron and Baldauf (1986), Dumont (1986),
Barron and Ramirez (1992), and Barron (1992a, b).
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Figure 2. Correlation of California microfossil zones and
California benthic foraminiferal stages of Kleinpell (1938,
1980) with geologic time scale of Berggren and others
(1985) in vicinity of Miocene-Pliocene boundary. Mio-
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cene-Pliocene boundary (1) of Berggren and others (1985)
is followed in this paper; (2), Miocene-Pliocene boundary
of Zijderveld and others (1986). Dark bars, normal
polarity.
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The last occurrences of Synedra jouseana and
Asteromphalus darwinii are secondary markers that approx-
imate the base of the Thalassiosira miocenical/Nitzschia
miocenica Interval Zone (Barron, 1976, 1986a), as do the
first occurrences of Azpeitia vetustissimus sensu Barron and
Baldauf (1986) and Coscinodiscus subtilis. Together, these
datum levels and the last common occurrence of Rouxia
californica typically correspond with the Monterey-Sisquoc
boundary (Dumont, 1986; Barron, 1986a; Barron and
Baldauf, 1986; Barron and Ramirez, 1992). As noted by
Dumont (1986) and Barron and Baldauf (1986), the first
occurrence of Lithodesmium cornigerum is a secondary
marker for the base of the Thalassiosira praeoestrupii Partial
Range Zone. Rossiella tatsunokuchiensis, Hemidiscus ovalis,
and Rhaphoneis fatula appear to be restricted to the lower
part of the Thalassiosira oestrupii Partial Range Zone in
California (Barron and Baldauf, 1986; Dumont, 1986; Barron
and Ramirez, 1992). The upper part of the T. oestrupii Zone

is distinguished by the absence of L. cornigerum and
L. minusculum, which have last occurrences in California
sections at about 4.2 to 4.4 Ma (Barron and Ramirez, 1992;
Barron, 1992b).
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DIATOM STRATIGRAPHY OF
SISQUOC FORMATION SECTIONS

Sweeney Road

The Sweeney Road section is located about 3 km east
of Lompoc, Santa Barbara County, along the north bank of
the Santa Ynez River (Lompoc Quadrangle 7.5-minute
series U.S. Geological Survey topographic map). The out-
crop is composed of a continuous sequence of finely lami-
nated porcellanites of the siliceous member of the Monterey
Formation (Isaacs, 1981; Dumont, 1986; Ramirez, 1990)
and overlying diatomaceous mudstones and shales of the
Sisquoc Formation (Dibblee, 1950; Dumont, 1986;
Ramirez, 1990). The base of the section studied by Dumont

(1986) and Ramirez (1990) is located at the apex of a small
anticline within the finely laminated porcellanites of the
upper part of the Monterey Formation. This is about 2.4 km
southeast of the junction of Sweeney Road and Highway 1,
east of Lompoc, just north of the confluence of Salsipuedes
Creek and the Santa Ynez River where the river starts to
bend to the northwest (fig. 4).

A detailed study of the diatom stratigraphy of the
Sweeney Road is presented in Dumont (1986); because
this study is not readily available in the published litera-
ture, it is summarized in some detail in this report.

Twenty-nine samples were collected initially at 30.48
m (100 ft) horizontally-measured intervals along the diato-
maceous exposure at Sweeney Road (fig. 4). To refine the
diatom biostratigraphy across the Miocene-Pliocene
boundary, six additional samples were collected from an
interval lying 275 to 355 m above the base of the same
section. The lithologic column of Sweeney Road section
after Ramirez (1990) showing Dumont's (1986) samples 1
through 27 is shown in figure 5. The stratigraphic level of
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Figure 4. Map of Sweeney Road section (fig. 1), east of Lompoc, showing the samples studied
(Dumont, 1986; this report) and location of phosphatic conglomerate beds. Contour interval

equals 200 ft.
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these samples is shown according to the measured section
of Ramirez (1990) because his measurements were more
detailed and employed more measurements of bedding
attitudes than those of Dumont (1986).

All the samples used for this study were prepared
employing a modified technique of Schrader (1973b) and
counted using the techniques of Schrader and Gersonde
(1978) (see Dumont, 1986, for details).

The 37 m of finely laminated porcellanites lying at
the base of the section are correlated with the Rouxia
californica Partial Range Zone on the basis of the occur-
rence of Rouxia californica in samples 1 (6 m) and 3 (31
m), the first occurrence of Nitzschia reinholdii in sample 5

(37 m), and the absence of Thalassionema schraderi. The
lower porcellanite interval of the Sweeney Road section
may also be correlated to the upper part of magnetic polar-
ity Chron 6 (Subchron C3Ar.2r of Cande and Kent, 1992)
on the basis of an estimated age for the last consistent
occurrence of Rouxia californica as 6.0 Ma (Barron and
Keller, 1983; Dumont, 1984), an occurrence which
approximates the first occurrence of Nitzschia reinholdii in
the California Continental Borderland (Barron, 1981).

The first occurrence of the warm-water species Thalas-
siosira miocenica was recorded in sample 6 (72 m), followed
by the first occurrence of Nitzschia miocenica in sample 7
(76 m) (table 1, fig. 5), which is within laminated diatoma-
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Figure 5. Sweeney Road lithologic section of Ramirez (1990) showing samples studied for
diatoms (Dumont, 1986; this report) and diatom zones of Dumont (1986), Barron and Baldauf
(1986), and Barron (1986a). *, Thalassiosira pracoestrupii.
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Table 1. Stratigraphically important diatoms (per sample) in Sweeney Road section after Dumont (1986)

[Stratigraphic position of Dumont's (1986) samples have been redetermined in order to conform with lithologic column of Ramirez (1990) (fig. 5) and
was accomplished by identification of marker beds and extent of exposed outcrops]
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ceous shale of the basal Sisquoc Formation (Dumont, 1984,
1986). Sample 11 (230 m) contains the last occurrences of
T. miocenica and N. miocenica within a finely-laminated
diatomaceous shale (laminae 1-2 cm thick). The last occur-
rence datum of T. miocenica occurs at the base of the
reversed-polarity event of Chron 5 (Subchron C3Ar.1r of
Cande and Kent, 1992) within the Purisima Formation at
Santa Cruz in northern California (Dumont, 1986; Dumont
and others, 1986), suggesting an age of 5.68 Ma for sample
11 (Berggren and others, 1985).

Between 244 and 257 m above the base of the section,
the first of six phosphatic conglomerate beds is found (fig.

Neogene Geohistory Analysis of Santa Maria Basin, California, and Its Relationship to Transfer of Central California to the Pacific Plate

5). Sample 13 (257 m), which was collected within a massive
diatomaceous shale, contains the first occurrence of Thalas-
siosira hyalinopsis. Correlation to the first occurrence of 7.
hyalinopsis in the Purisima section at Santa Cruz suggests
that sample 13 lies within the middle of the reversed-polarity
event of Chron 5 (Subchron C3Ar.1r of Cande and Kent,
1992), with an estimated age of 5.6 Ma (Dumont, 1984;
Berggren and others, 1985; Dumont and others, 1986).
The first occurrence of Thalassiosira praeoestrupii and
Lithodesmium cornigerum are found in sample 18/19 (336
m). The first occurrence of 7. praeoestrupii coincides closely
with the top of polarity Chron 5 (Chron C3A of Cande and
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Kent, 1992) (Dumont, 1984; Dumont and others, 1986;
Madrid and others, 1986) and the Miocene-Pliocene bound-
ary within the Santa Cruz section (5.35 Ma). A precise
correlation of the T. oestrupii datum at Sweeney Road with
the Santa Cruz section cannot be made because of the appar-
ent unconformity identified within the Gilbert Reversed-
Polarity Chron (Chron C3) at Santa Cruz (Madrid, 1982).
However, the first occurrence of T. oestrupii was correlated
to a level within the lower reversed-polarity event of the
Gilbert Reversed-Polarity Chron (Subchron C3Ar4r of
Cande and Kent, 1992) in the equatorial Pacific Ocean by
Burckle (1978) and has an estimated age of 5.1 Ma (Baldauf,
1985; Barron and others, 1985). Available correlations
(Burckle, 1978; Barron, 1981) suggest that the 7. oestrupii
datum is isochronous between the tropics and California.

A benthic, cosmopolitan diatom marker for the Plio-
cene, Rossiella tatsunokuchiensis, was first recorded in
sample 25 (430 m) in the Sweeney Road section. This dia-
tom was also recorded in the last two samples, 26 (439 m)
and 27 (440 m), at the top of the section. Another Pliocene
benthic species, Rhaphoneis fatula (Barron and Baldauf,
1986), was first recorded in sample 21 (379 m).

A multisiliceous microfossil study (radiolaria, diatoms,
and silicoflagellates) of the Sweeney Road section has been
published by Akers and others (1987). The radiolarian bio-
stratigraphy suggests that the Sweeney Road section ranges
in age from late Miocene to undifferentiated Pliocene, on
the basis of the occurrences of Stichocorys peregrina, Lych-
nocanoma grande, and Lamprocyrtis heteroporos. How-
ever, the diatom stratigraphy presented in Akers and others
(1987) is difficult to interpret. Basically, Akers and others
(1987) recorded diatom species (for example, Pseudoeuno-
tia doliolus, Rhizosolenia praebergonii, and Actinocyclus
oculatus) from the Sweeney Road section that are younger
than the ages represented by the radiolarians they report.
Aside from the internal inconsistencies among the micro-
fossil groups (radiolaria, diatoms, and silicoflagellates),
their report suggests that radiolaria may be useful in the
time interval represented in this section.

In figure 6 an age versus stratigraphic-height (sedi-
mentation rate) curve is plotted for the Sweeney Road sec-
tion on the basis of the stratigraphic placement of diatom
datum levels that have been calibrated to paleomagnetic
stratigraphy at Santa Cruz by Dumont and others (1986)
(fig. 6). Two alternatives are given for placement of the
first occurrence of Thalassiosira oestrupii within the
Sweeney Road section—one, between sample 19 (345 m)
and 19/20 (355 m), based on Dumont's (1986) study (table
1), and the other, between samples 22 (379 m) and 23
(393 m) based on Barron's previous studies (1975; unpub.
data, 1993) and preliminary examination of Dumont's
(1986) samples. The sedimentation-rate curve in figure 6
is drawn through the latter alternative because it fits on a
linear extrapolation of the line through the first occur-
rences of T. hyalinopsis and T. praeoestrupii. The two

alternative stratigraphic placements are probably due to
slight differences in the two author's taxonomic concept of
T. oestrupii.

The sedimentation curve in figure 6 indicates that the
lower part of the Sisquoc Formation at Sweeney Road
(50-230 m; about 6.0 to 5.65 Ma) accumulated at a post-
compaction sedimentation rate of about 600 m/m.y. This is
in good agreement with sedimentation rates estimated for
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Figure 6. Age versus stratigraphic height plot for Sweeney
Road section. Estimated sedimentation rates for lower and
upper segments of plot are 600 and 280 m/m.y., respec-
tively. Ages used are those of figure 2; bar shows strati-
graphic constraint of datum level; B, first occurrence; T, last
occurrence; TC, last common occurrence; *, lowest Thalassi-
osira oestrupii observed by Barron (unpub. data, 1993, dif-
fers from that of Dumont, 1986). Hachured area represents
covered interval that obscures Monterey-Sisquoc contact.
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the Sisquoc Formation at Casmalia and Point Pedernales
(600 and 580 m/m.y., respectively) by Ramirez (1990) and
at Harris Grade (about 540 m/m.y.) by Barron and
Ramirez (1992). Diatom stratigraphy suggests that the
post-compaction sedimentation rate in the upper part of
the Sisquoc Formation at Sweeney Road (230-440 m)
declines to 280 m/m.y at about 5.6 Ma. The extrapolated
age for the top of the exposed Sisquoc Formation at
Sweeney Road is 4.9 Ma. The lower part of this upper
interval is marked by numerous phosphatic conglomerate
beds (fig. 5) (Dumont, 1986; Ramirez, 1990). Therefore, it
is possible that these beds correspond to unconformities
where relatively brief intervals of time, beyond the resolu-
tion of diatom biostratigraphy, are missing.

Lompoc Quarry

At the Lompoc (Johns-Mansville now Cellite) diatomite
quarry about 4 km south of Lompoc (fig. 1), about 23 m of
massive Sisquoc Formation rocks overlie a 50-cm-thick
phosphatic conglomerate bed at the top of the Monterey
Formation. This phosphatic conglomerate was recognized as
an unconformity by Barron (1975, 1986a) and Dumont
(1984) at which Sisquoc rocks assignable to the Thalassiosira
hyalinopsis Partial Range Zone overlie Monterey rocks
assignable to the Rouxia californica Partial Range Zone. A
minimal sediment interval corresponding to the 7. mioce-
nicalN. miocenica Interval Zone (6.0 to 5.6 Ma) is missing
at this unconformity (fig. 7).
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Figure 7. Correlation of various Sisquoc Formation sections in

Santa Maria basin to geologic time. Miocene-Pliocene bound-

ary (1) of Berggren and others (1985) is followed in this paper; (2), Miocene-Pliocene boundary of Zijderveld and others

(1986). Dark bars, normal polarity.
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Lompoc Hills

The Lompoc Hills section lies in the hills approxi-
mately 2.5 km west of Lompoc (fig. 1). A 200-m section
of interbedded massive and laminated beds of the Sisquoc
Formation overlying porcellaneous beds of the Monterey
Formation was measured at this locality by Ramirez
(1990). The lower 20 m of the measured Monterey section
consists of finely laminated lenticular to continuous por-
cellaneous beds that are 3 to 8 cm thick (Ramirez, 1990).
These porcellaneous beds alternate with 30 to 50 cm thick
packages of massive and laminated diatomaceous strata.
Above the porcellanites, banded and massive beds of the
Sisquoc Formation dominate the section. The Monterey-
Sisquoc boundary is placed at the change from finely lam-
inated to banded rocks, a change which also approximates
the change from opal-CT rocks below to opal-A rocks
above. The Sisquoc Formation is truncated by sandstones
and siltstones of the Pliocene Careaga Sandstone (Woo-
dring and Bramlette, 1950).

The absence of Thalassiosira hyalinopsis, T. prae-
oestrupii, and T. oestrupii in the Lompoc Hills section
suggests that the section is older than the 7. hyalinopsis
Partial Range Zone (Barron and Ramirez, 1992). Sporadic
occurrences of Nitzschia miocenica and the absence of
Rouxia californica and Synedra jouseana in all samples
above the basal samples of the section argues for correla-
tion of the bulk of the Sisquoc Formation in the Lompoc
Hills section with the Thalassiosira miocenicalNitzschia
miocenica Interval Zone. The basal samples are tentatively
correlated with the Rouxia californica Zone.

Point Pedernales

The Point Pedernales section is located along the
coast approximately 5 to 6 km southwest of the southeast
entrance to Vandenberg Air Force Base (fig. 1). At Point
Pedernales, Ramirez (1990) measured and described
approximately 400 m of mostly well-exposed strata of the
Monterey and Sisquoc Formations along steep seacliffs
containing exposures up to 4 m in height. The strata con-
sist largely of alternating massive and laminated diatoma-
ceous units ranging from less than 0.5 to greater than 5 m
in thickness (Ramirez, 1990). The lower 10 m of the sec-
tion was assigned to the Monterey Formation by Ramirez
(1990) on the basis of biostratigraphic correlation with the
Monterey-Sisquoc boundary at Mussel Rock (fig. 1; see
below). Biostratigraphic determination of the Monterey-
Sisquoc formational contact was utilized because the Sis-
quoc Formation grades into and is lithologically similar to
the underlying Monterey Formation and because an insuf-
ficient number of samples were taken from the Monterey
Formation to compositionally distinguish it from the Sis-
quoc Formation (Ramirez, 1990).

The basal sample of the Point Pedernales section was
assigned to the Rouxia californica Partial Range Zone on
the basis of the rare occurrence of Rouxia californica and
Synedra jouseana (Barron and Ramirez, 1992). The inter-
val from 10 to 350 m is placed in the T. miocenicalN.
miocenica Interval Zone, below the first occurrence of
Thalassiosira hyalinopsis at 355 m. The T. hyalinopsis
Zone then extends from 355 m upsection to a level imme-
diately below the first occurrence of Thalassiosira prae-
oestrupii at 456 m, the level of the highest sample taken in
the section. Whereas Hornafius and others (1982) reported
Thalassiosira oestrupii from the upper part of the Point
Pedernales section, Barron and Ramirez (1992) did not
observe this diatom and assign the top of the Pedernales
section to the older Thalassiosira praeoestrupii Partial
Range Zone (5.35-5.1 Ma).

Harris Grade

The Harris Grade section, which is located about 10
km north of Lompoc on old California Highway 1 (fig. 1),
contains a 900-m-thick section of the Sisquoc Formation
overlying a faulted anticline. The Sisquoc Formation is
conformably overlain by the relatively diatom-poor Foxen
Mudstone in the Harris Grade section. Barron and Baldauf
(1986) recognized a 50-m section of the Thalassiosira
praeoestrupii Partial Range Zone above a 140-m-thick
interval of porcellanites at the base of the Harris Grade
section. The bulk of the Harris Grade section is assignable
to the Thalassiosira oestrupii Partial Range Zone, and
Barron and Baldauf (1986) demonstrated that the top of
the Sisquoc Formation is well above (at least 900 m) the
Miocene-Pliocene boundary. Barron and Baldauf (1986)
followed Stanley and Surdham (1984) in estimating that
the Sisquoc-Foxen contact at the top of the Harris Grade
section corresponded with the 4.2-Ma sea level fall identi-
fied in the global eustatic sea level curve by Vail and
Hardenbol (1979), but Barron and Ramirez (1992) sug-
gested that this boundary may correlate with the 3.8 Ma
sea level fall of Haq and others (1987). This 3.8-Ma age
for the top of the Sisquoc Formation in the Harris Grade
section is based on an estimated sedimentation rate of 540
m/m.y., which was obtained by Barron and Ramirez
(1992) for the Harris Grade section by applying Barron's
(1992b) independent age estimates to the diatom events of
Barron and Baldauf (1986) in the Harris Grade section.

Casmalia

A 700-m-thick composite section containing the
uppermost Monterey Formation, the Sisquoc Formation,
and the basal Foxen Mudstone was measured along Black
Road and along the railroad tracks that run parallel to the
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road (Ramirez, 1990) north of the town of Casmalia (fig.
1). The lowermost 30 m of the measured section consists
of continuously to discontinuously banded and finely lami-
nated porcellaneous rocks assigned to the Monterey For-
mation. Upsection, platy-weathering rocks of the
Monterey Formation pass into massive, dense, siliceous
mudstones of the Todos Santos Claystone Member of the
Sisquoc Formation (Ramirez, 1990).

The successive first occurrences of T. hyalinopsis
(437 m), T. praecestrupii (557 m), and T. oestrupii (677
m) mark the respective bases of the T. hyalinopsis, T.
praeoestrupii, and T. oestrupii Partial Range Zones
according to the diatom stratigraphy of Barron and
Ramirez (1992). The Sisquoc-Foxen contact is estimated
to be 5.0 Ma in age at the Casmalia section on the basis of
the extrapolation upsection of a 600 m/m.y. post-compac-
tion sedimentation rate suggested by diatom biostratigra-
phy (Ramirez, 1990; Barron and Ramirez, 1992). Thus,
the Sisquoc-Foxen contact at Casmalia may be as much as
1.2 m.y. older than it is at Harris Grade (figs. 7, 8). This
diachroneity may reflect a more basin-marginal deposi-
tional setting for the Casmalia section than for the Harris
Grade section and an earlier appearance of the more clas-
tic-rich, diatom-poor sediments of the Foxen Mudstone.
Alternatively, this 1.2 m.y. interval (about. 5.0-3.8 Ma)
may have been removed at a yet to be recognized uncon-
formity in the Casmalia section.

Mussel Rock

The Mussel Rock section is exposed along the coast
(fig. 1) southwest of the town of Guadalupe. A 400-m-
thick section was measured by Ramirez (1990) from the
opal-A to opal-CT transitional zone of the upper part of
the Monterey Formation to the top of exposed rocks of the
Sisquoc Formation. An additional 300+ m of Monterey
Formation strata crops out to the south along the shore
below the measured section according to Pisciotto (1981).
The layered rocks of the Monterey Formation contrast
sharply with the overlying massive and intensively biotur-
bated rocks of the Sisquoc Formation, which become
increasingly conglomeratic upsection. A distinct phos-
phatic conglomerate marks the contact between the lay-
ered Monterey and massive Sisquoc Formations. Ramirez
(1990) measured this phosphatic conglomerate as 23 cm in
thickness, but it apparently varies laterally in thickness.

The last common occurrence of R. californica in the
uppermost part of the Monterey Formation at this section
defines the top of the R. californica Partial Range Zone, a
correlation which is supported by the last occurrences of
Synedra jouseana and Hemiaulus polymorphus in the
same sample. About 30 m of T. miocenica/N. miocenica
Interval Range Zone is present in the basal Sisquoc For-
mation at Mussel Rock according to the diatom biostratig-

raphy of Barron and Ramirez (1992). The T. hyalinopsis,
T. praeoestrupii, and T. oestrupii Partial Range Zones are
recognizable by the successive first occurrences of the
nominative taxa in the Sisquoc Formation at Mussel Rock
(Barron and Ramirez, 1992).

Comparison of Sisquoc Formation Sections

Based on the comparison of the ages of seven sections
of the Sisquoc Formation in the Santa Maria basin (fig. 7),
it is apparent that the Monterey-Sisquoc formational bound-
ary typically coincides with the boundary between the Rouxia
californica Partial Range Zone and the Thalassiosira mio-
cenicalNitzschia miocenica Interval Zone (6.0 Ma). How-
ever, in some sections, such as the Point Pedernales section,
no distinct lithologic break occurs at this 6.0 Ma time horizon,
and the Monterey Formation is difficult to distinguish from
the Sisquoc Formation. Most of the Sisquoc Formation out-
crop sections do not extend much younger than the basal
Thalassiosira oestrupii Partial Range Zone (about 5.0 Ma).
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The Harris Grade section, however, extends considerably
younger according to the diatom studies of Barron and
Baldauf (1986).

There is considerable variation in the thickness of indi-
vidual diatom zones in Sisquoc Formation sections (fig. 8).
For example, the Thalassiosira miocenica/Nitzschia mioce-
nicaInterval Zone is over 330 m thick in the Point Pedernales
section, but it is totally removed at an unconformity in the
Lompoc Quarry section. Generalized lithology is also quite
variable (Ramirez and Garrison, written commun., 1994);
for example, the interval of the Thalassiosira hyalinopsis
Partial Range Zone is generally represented by laminated
sediments in the Point Pedernales section, massive diatoma-
ceous sediments in the Sweeney Road, Casmalia, and Mussel
Rock sections, and by porcellanites in the Harris Grade
section. On the other hand, laminated beds are consistently
common within the T. miocenical/N. miocenica Interval Zone
in all Santa Maria basin sections studied. Similarly, phos-
phatic conglomerate beds, which often represent unconform-
ities, are more typical of an interval embracing the upper 7.
miocenicalN. miocenicaInterval Zone to lower T. hyalinopsis
Partial Range Zone.

THE MONTEREY-SISQUOC BOUNDARY
PROBLEM

As early as 1913, Louderback (1913) recognized the
problem of distinguishing the upper part of the Monterey
Formation from the overlying Sisquoc Formation in the
Lompoc-Santa Maria-Santa Barbara region. At several
localities in this region, the depositional sequence appears
continuous (Arnold and Anderson, 1907; Kleinpell, 1938;
Bramlette, 1946; Dibblee, 1950), but at the Lompoc
(Johns-Mansville now Cellite) diatomite quarry south of
Lompoc, an unconformity is recognized at the top of the
Monterey Formation (fig. 2) (Barron, 1975; Dumont,
1984). This unconformity was recognized and interpreted
by earlier workers as relatively brief and coincident with
both the Miocene-Pliocene boundary and the Monterey-
Sisquoc formational contact (Bramlette, 1946; Wornardt,
1963; Barron, 1975). These observations were the origin
of the hypothesis equating the Miocene-Pliocene boundary
with the top of the Monterey Formation, a simple formula
which some workers continue to apply.

Bramiette's (1946) classic paper, the first definitive
geologic study of the Monterey Formation, emphasized
the Monterey Formation's characteristic rhythmic bedding
and extremely high organic content and speculated on its
origin. At about the same time, biostratigraphic studies
referred to the basal Sisquoc Formation as being either lat-
est Miocene (benthic foraminifers) or earliest Pliocene
(mollusks) in age (Woodring and Bramlette, 1950).

In the past, different lithologic features have been
used to delineate the contact between the Monterey and

Sisquoc Formations in coastal southern California (Arnold
and Anderson, 1907; Mulryan, 1936; Canfield, 1939,
Bramlette, 1946; Woodring and Bramlette, 1950; Dibblee,
1950; Wornardt, 1963; Isaacs, 1981). One approach was to
differentiate the Monterey Formation from the overlying
Sisquoc Formation on the basis that the Monterey Forma-
tion was finely laminated (Canfield, 1939),whereas the
Sisquoc Formation contained a higher proportion of mud-
stone and was characterized by cruder bedding (Isaacs,
1981). However, interbedded, finely laminated and mas-
sive diatomaceous shales are often present in the basal
Sisquoc Formation (Ramirez and Garrison, written com-
mun., 1994) (figs. 5, 8), prompting Woodring and Bram-
lette (1950) to state that the Monterey-Sisquoc boundary is
gradational in some places in the Santa Maria basin and
difficult to place.

Another approach was to place the contact between
the Monterey and Sisquoc Formations at a depositional
break marked by the unconformity, represented by the thin
phosphatic conglomerate unit as seen at the Lompoc diato-
mite quarry (Mulryan, 1936; Bramlette, 1946; Wornardt,
1963, 1983). However, in some sections, such as the
Naples Beach section of the Santa Barbara basin (fig. 1)
(Isaacs, 1981), there is no apparent unconformity or phos-
phatic conglomerate at the formational boundary, whereas
in other sections (for example, the Sweeney Road section)
there may be numerous phosphatic conglomerate units
(fig. 5) (Dumont, 1984, 1986; Ramirez, 1990).

Dibblee (1950) placed the contact between the Mon-
terey and Sisquoc Formations at the break between the
porcellaneous shales (porcellanite/chert) and overlying dia-
tomaceous shales. Isaacs (1981) described the porcellan-
ites as “an aphanitic rock with a somewhat rough, matte
surface texture; *** even where laminated or well bed-
ded.” Application of this description would appear to be
the most consistent field method to differentiate the shales
that determine the Monterey and Sisquoc formational
boundary in the Santa Maria-Lompoc region. However,
Isaacs (1981) pointed out that the top of the porcellaneous
section migrates upward across different lithologic units of
the Monterey Formation, becoming successively younger
as one proceeds westward along the coast from Santa Bar-
bara to Point Conception.

Diatom studies have placed the age of the top of the
porcellanite unit at the Sweeney Road section at approxi-
mately 6.0 Ma (figs. 5, 7) (Dumont, 1984, 1986; Dumont
and others, 1986; Ramirez, 1990). However, the top of the
porcellanite in the nearby Lompoc diatomite quarry sec-
tion is over 1 m.y. older (Barron, 1975, 1986a; Dumont,
1984, 1986), as it contains diatoms assignable to Barron's
(1986a) northeastern Pacific Diatom Subzone (a) of the
Thalassiosira antigua Partial Range Zone (7.6-7.0 Ma).
This represents an age difference of as much as 1.5 m.y.
for the top of the porcellanite at these two localities
(Dumont, 1986).
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An additional approach, proposed by Isaacs (1981)
and emphasized by Ramirez and Garrison (written comm.,
1994), focused on the much greater detrital mineral con-
tent of the Sisquoc Formation compared to that of the
Monterey Formation. The Sisquoc Formation contains a
“greater average abundance of detrital minerals,” and a
“much higher proportion of massive mudstone,” than the
laminated Monterey Formation (Issacs, 1981). This
method, however, may be difficult to apply in the field, as
the diatomaceous rocks at the base of the Sisquoc Forma-
tion and the top of the Monterey Formation can be visu-
ally indistinguishable (Woodring and Bramlette, 1950).

All of the above criteria can be applied, with varying
success, on isolated sections to distinguish the upper part of
the Monterey from the overlying lower part of the Sisquoc
Formation. It can be demonstrated by diatom biostratigraphy
that none of the above criteria can be used independently to
distinguish the Miocene-Pliocene boundary.

In summary, the stratigraphic position of the Monte-
rey-Sisquoc formational contact can differ at many of the
sections found in the Santa Maria and Santa Barbara
basins depending on the lithologic criteria employed to
determine it. However, the Miocene-Pliocene boundary
can be consistently defined within this region by diatom
biostratigraphy. Where the basal Sisquoc Formation is
visually distinguishable from the underlying Monterey
Formation, the Monterey-Sisquoc formational contact con-
sistently coincides with the base of the Thalassiosira mio-
cenica/Nitzschia miocenica Interval Zone of Dumont
(1986) (latest Miocene). Where a more gradational transi-
tion occurs between the Monterey and Sisquoc Forma-
tions, this 6.0 Ma time horizon can be accurately placed
by diatom biostratigraphy (Barron, 1975; Dumont, 1984,
1986) (fig. 7).

PALEOCEANOGRAPHIC IMPLICATIONS

Middle to late Miocene climatic cooling accompanied
by the intensification of upwelling and increased primary
productivity within the eastern boundary current region of
coastal California was ultimately responsible for the
increased diatom blooms that contributed to the biosili-
ceous richness of the rocks of the upper part of the Monte-
rey Formation and the overlying Sisquoc Formation
(Ingle, 1981; Barron, 1986b). Superimposed on this bio-
genic sedimentation pattern in coastal California is an
increase in clastic deposition that began in the latest Mio-
cene and intensified in the early Pliocene (Crouch, 1979;
Ingle, 1980; Isaacs, 1981, 1983; Dumont, 1986; Teng and
Gorsline, 1989; Barron, 1992b).

High-latitude cooling and a fall in global eustatic sea
level at 5.5 Ma (fig. 9) are marked by the last occurrence
of a warm-water biofacies containing Thalassiosira mioce-
nica and Nitzschia miocenica in the Sweeney Road section

(5.6 Ma), an occurrence which is followed by an increase
of neritic versus planktonic diatoms in this section (table
1). A similar increase in neritic diatoms occurs in other
Sisquoc sections in the basal T. hyalinopsis Partial Range
Zone within the Santa Maria basin (Barron, unpub. data,
1993), as well as in the Purisima Formation at Santa Cruz
(Dumont, 1986). The increase of neritic diatoms in coastal
California is coupled with a marked increase of siliciclas-
tic debris in the samples (Dumont, 1986). This agrees with
the findings of Isaacs (1981) and Ramirez and Garrison
(written commun., 1994) who noted an abrupt increase in
sedimentation of detrital minerals during Sisquoc Forma-
tion depositional time.

Other potential evidence for the 5.5 Ma sea level fall
includes the presence of phosphatic conglomerate beds in
the lower T. hyalinopsis Partial Range Zone at Sweeney
Road (fig. 5), as well as the phosphatic conglomerates
associated with unconformities between the Monterey and
Sisquoc Formation in the Lompoc quarry and Mussel
Rock sections (fig. 8).

In a broader sense, these events, which occurred
approximately the time of deposition of the Monterey-Sis-
quoc contact, may be considered a response to the late
Miocene climatic deterioration and buildup of polar ice
(Kennett, 1977; Savin, 1977; Barron and Keller, 1983;
Dumont, 1986), which in turn caused a fall in sea level.

TECTONIC IMPLICATIONS

The lithologic character and diatom content of the
onshore Pliocene sections in California were strongly influ-
enced by tectonic events (Barron, 1992b). Tectonic reorga-
nization of the California Continental Borderland began in
the latest Miocene (Crouch, 1979) and was intensified during
the Pliocene as the Coast Ranges of California were uplifted
and adjoining basins underwent subsidence (Ingle, 1980;
Teng and Gorsline, 1989). An eastward jump in the San
Andreas Fault system at 5.5 Ma (Sedlock and Hamilton,
1991) and a major change in the motion of the Pacific Plate
between 3.9 and 3.4 Ma (Harbert and Cox, 1989) appear to
have been responsible for this tectonic reorganization (fig.
9). Increased deposition of clastic-rich sediments followed
these tectonic events and also coincided with global falls in
sea level at 5.5 and 3.8 Ma. Basins formed during the Mio-
cene in California were rapidly filled with Pliocene clastic
sediments, and diatoms persisted as a major component only
in sediments deposited in the center of basins and only until
about 4 Ma.

CONCLUSIONS

Diatom biostratigraphy offers a valuable means for
correlating and subdividing the Sisquoc Formation as well
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as recognizing the Miocene-Pliocene boundary. Our study
of the diatom biostratigraphy of the Sweeney Road sec-
tion, east of Lompoc, Calif., and summaries of the diatom
biostratigraphy of the Lompoc quarry, Lompoc Hills, Point
Pedernales, Harris Grade, and Mussel Rock sections of the
Santa Maria basin reveal that the base of the Sisquoc For-
mation typically coincides with the base of the Thalassio-
sira miocenica/Nitzschia miocenica Partial Range Zone
and has an age of approximately 6.0 Ma. Diatom biostra-
tigraphy, thus, represents a reliable means for recognizing
the 6.0 Ma time horizon that typically coincides with the
Monterey-Sisquoc boundary. Other criteria for recognizing
the Monterey-Sisquoc boundary, such as the laminated
(Monterey Formation) versus massive (Sisquoc Formation)
expression of the rocks or their porcellaneous (Monterey
Formation) versus diatomaceous (Sisquoc Formation)
character are either inconsistent or time transgressive.

The top of the Sisquoc Formation in outcrop sections
of the Santa Maria basin is typically about 5.0 Ma; how-
ever, the Sisquoc Formation may be as young as 3.8 Ma in
the Harris Grade section in the center of the basin.

The Sisquoc Formation was deposited during a rela-
tively high stand of eustatic sea level bracketed by low-
stands dated at 6.3 and 3.8 Ma. Clastic materials, however,
increase in many Sisquoc sections beginning at 5.0 Ma in
response to regional tectonism.
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