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sandstones because of the presence of oil inclusions along
growth zones within dolomite rhombohedra. Other dolomite
rhombohedra are surrounded by oil and apparently precipi-
tated before the introduction of oil. Some rhombohedra may
have formed around a drop of oil already present. The round,
red-luminescent cores of many dolomite rhombohedra may
have been derived from adjacent interdune deposits. Dolo-
mite overgrowths commonly grew on these detrital dolomite
nuclei. The outermost part of the overgrowths is always fer-
roan, suggesting precipitation from fresher water, which
generally contains more iron than seawater, during uplift of
the Colorado Plateau. The lack of vapor-phase inclusions in
ferroan dolomite indicates that the ferroan dolomite formed
at temperatures below 50°C.

Compositionally zoned carbonate crystals are common
in sedimentary rocks. According to Machel and Burton
(1991), at least 26 factors may contribute to differences in
composition, and thus differences in luminescence, of
crystals. These factors include temperature, salinity, concen-
trations of activators and quenchers, Eh, kinetics, microbial
activity, diagenesis, fluid flow, and crystal surface structure.
One favored explanation for zoning is that changes in precip-
itation rate can lead to differences in partitioning of trace
elements into dolomite and calcite (Reeder and Prosky,
1986; Paquette and Reeder, 1990). Variations in both tem-
perature and distribution coefficients (dependent on crystal
growth rate) of iron and perhaps other trace elements or acti-
vators-quenchers in the dolomite have been suggested as a
cause of zoning by Dromgoole and Walter (1989); however,
Wogelius and others (1992) showed that the precipitation
rate would have to change by about four orders of magnitude
to produce a ferroan dolomite. This change would necessi-
tate a very large change (more than five times) in the equilib-
rium ion activity product that would have to be caused by a
very large variation in composition of the fluid.

The most commonly suggested cause for concentric
zoning such as that in the White Rim dolomites is a change
in the Eh of the groundwater because the elements that are
usually involved in the zoning (manganese and iron) are Eh
sensitive as a result of their occurrence in more than one
valence state. Fraser and others (1989) observed that the
pronounced concentric zoning in dolomite from limestone
in Italy resulted from variations in the concentrations of
iron, manganese, and zinc, all redox-controlled elements.
Variations in Eh controlled the distribution of manganese
and iron between the pore fluid and manganese- and iron-
oxyhydroxides and thus influenced the activities of these
elements in solution. Zinc is not directly controlledyby
changes in Eh; however, its solubility is governed by the
effects of Eh-pH on sulfide-sulfate equilibria and by the
release of zinc into solution after reduction of manganese-
or iron-oxyhydroxides.

The most likely mechanism for formation of the zoned
carbonate crystals in the White Rim, especially those that
contain many concentric zones, is a fluctuating interface
(oil-water contact?) between a reducing oil-bearing water

and a less reducing, non-oil-bearing brine(?). This explana-
tion is plausible because of the oscillatory nature (ferroan-
nonferroan) of the zones and the fact that the dolomite
crystals having the most zones are present in small vertical
intervals in the cores, particularly in the Bullfrog core. The
fact that the outermost zone is always ferroan and is inter-
preted to have precipitated during late diagenesis may
reflect formation during uplift of the Colorado Plateau and
percolation of meteoric water through the White Rim Sand-
stone.

PYRITE

Most pyrite cement in White Rim sandstones appar-
ently precipitated at the same time as the oil or perhaps
earlier because the cement completely surrounds frame-
work grains in some samples. Another generation of pyrite
crystals that are associated with ferroan dolomite precipi-
tated in secondary pores, possibly during biodegradation
of oil. During oxidation of the oil, some pyrite was
locally oxidized to barite and hematite.

POTASSIUM FELDSPAR

Small amounts of authigenic potassium feldspar may
have been furnished by dissolution of detrital potassium
feldspar within the White Rim Sandstone; however, the
large amounts of authigenic potassium feldspar in the
ALTEX core strongly suggest that some potassium was
imported into the sandstone. Perhaps a potassium-rich
brine migrated upward along faults from the underlying
Middle and Upper Pennsylvanian Hermosa Group, which
contains potash deposits (Phillips, 1975). Dissolution of
sylvite and carnallite in the Hermosa is thought to have
occurred during the Tertiary (S. Williams-Stroud, U.S.
Geological Survey, oral commun., 1994). Abundant authi-
genic potassium feldspar overgrowths and micrometer-
size crystals associated with dolomite near the bottom of
the ALTEX core suggest precipitation from a brine or in
a mixing zone between a brine and freshwater.

CLAY MINERALS

Kaolinite precipitates from freshwater (Bjorlykke,
1979); therefore, meteoric water invaded the White Rim
Sandstone at some time during its postdepositional history.
Textural relations suggest that kaolinite precipitated before
the migration of oil because kaolinite is locally saturated
with oil. Kaolinite may have formed, however, during bio-
degradation of the oil when conditions were acidic. Periods
of meteoric recharge before oil migration, during which the
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kaolinite may have precipitated, include the Triassic, when
the climate is interpreted to have been monsoonal (Dubiel
and others, 1991), the Jurassic, when rejuvenation of the
Uncompahgre uplift occurred (Sanford, in press), and the
middle to late Tertiary, when the Colorado Plateau was
uplifted. Intergrowth of kaolinite and ferroan calcite indi-
cates that they were cogenetic.

Illite overgrowths on kaolinite indicate that illite
formed after kaolinite. Intergrowths of illite and authigenic
potassium feldspar indicate that these two authigenic miner-
als are cogenetic.

SECONDARY POROSITY

Most porosity in White Rim sandstones is interpreted to
be secondary and to have formed during two major episodes
of dissolution. The first episode occurred when organic acids
related to the influx of oil dissolved early calcite cement.
Organic acids can dissolve carbonates and silicates and are
known to be present in significant concentrations in oil-field
brines (Kharaka and others, 1986). The second episode
occurred during the biodegradation of oil when the White
Rim was infiltrated by meteoric water. At this time the for-
mation water became acidic due to biodegradation of the oil
that resulted in the release of organic acids and carbon diox-
ide. Secondary porosity that formed during biodegradation
allowed for movement of oil into different areas of the sand-
stone.

STABLE ISOTOPES

CALCITE

All calcite samples chosen for isotopic analyses con-
tained what, under the petrographic microscope, appeared to
be early nonferroan calcite cement. Shortly after the time of
deposition, porewaters in the White Rim Sandstone were
probably marine because of the transgression of the Kaibab
sea (Kamola and Huntoon, 1994). The relatively light 313C
values for three of the calcite samples suggest that the carbon
is a mixture of inorganic (heavier) and organic (lighter) car-
bon (Longstaffe, 1987). The 8!3C value for early calcite
cement that precipitated from marine water should be near
zero per mil, whereas calcite that incorporated only organic
carbon should be much lighter (=30 per mil; Hoefs, 1987).
Because the White Rim is an eolian sandstone, there was lit-
tle or no organic matter within it at the time of deposition to
contribute isotopically light carbon. Therefore, the light val-
ues of the early calcite suggest that early formed calcite
reequilibrated during later diagenesis when light carbon was
available due to biodegradation of the oil.

Oxygen isotope values values for the three samples that
have light carbon isotopes are lighter than would be expected
for early calcite cements that precipitate from marine water
(Longstaffe, 1983, 1987); however, these isotopes probably
also reequilibrated during recrystallization because carbon-
ates exchange oxygen with water more readily than do sili-
cates (Clayton, 1959; Keith and Weber, 1964). The patchy
luminescence of the calcite indicates that this was indeed the
case. Oxygen isotope values for these calcites are light, prob-
ably as a result of exchange with 130-poor meteoric waters
during late diagenesis. Oxygen isotopes are sensitive to
changes in both temperature and salinity: 3130 values
decrease as temperature increases and increase as salinity
increases (Hoefs, 1987). Because the recrystallization event
is interpreted to have taken place during and (or) after uplift
of the Colorado Plateau, it is more likely that the depleted
oxygen isotope values are a result of decreased salinity due
to the influx of meteoric water.

The sample of calcite cement that has the heaviest car-
bon and oxygen isotope values apparently was not affected
as much by recrystallization because its values of —6.23 per
mil for $13C and —6.9 per mil for $!30 more closely approx-
imate those of seawater, which was probably the formation
water soon after burial.

Averaging the 8!80gyow values for the three lightest
calcites, the 3180Ogpow value for water from which the cal-
cite would have precipitated is —15.5 per mil (for method, see
Friedman and O’Neil, 1977). This relatively light value
probably includes a significant component of meteoric
water, which also suggests that the early calcite cement
reequilibrated during diagenesis. The 8!80gpow value for
the water from which the other calcite cement precipitated is
—5.1 per mil at 15°C, reflecting somewhat less meteoric
input.

DOLOMITE

Samples of dolomite that contain the least zoning were
chosen for isotopic analysis, but their isotopic values proba-
bly still represent a mixture of at least two stages of dolomite
precipitated from two different waters. Because the nonfer-
roan part of a dolomite rhombohedra is usually much larger,
the isotope values primarily represent that composition. Nei-
ther the oxygen nor the carbon isotope values deviate appre-
ciably from values for marine limestone; thus, the dolomite
most likely precipitated from waters close to seawater in
composition or from a mixture of a brine and freshwater. The
lighter carbon isotope values reflect a small input from
organic carbon. Isotopic formulas calculated for dolomite by
Friedman and O’Neil (1977) show that the water, which
would have been in equilibrium with the nonferroan dolo-
mite containing oil-bearing and two-phase inclusions with
homogenization temperatures clustering around 85°C,
would have had a 8!80gpow of +7.81 per mil. This heavy
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value suggests that the dolomite precipitated from an
evolved formation water more saline than seawater.

PYRITE

The heaviest 334S values are the +5 and +7 per mil val-
ues for pyrite cement at the top of the ALTEX core. At least
four explanations are possible for the genesis of the heavy
pyrite cement. (1) Organic sulfur derived from oil reacted
with ferric iron in the grain-rimming clay or oxyhydroxides
releasing sulfur in the form of hydrogen sulfide gas, which
then reacted with ferrous iron to form pyrite (organic sulfur
534S values vary from —10 to +35 per mil; Tissot and Welte,
1984). A range of pyrite 84S values would result from this
process. (2) Bacterially mediated sulfate reduction in a
closed system resulted in heavier and heavier sulfur isotope
values (Hoefs, 1987). (3) Diffusion of hydrogen sulfide gas
upward from the underlying petroleum reservoir during
(late) biodegradation of the oil and entrapment of this gas
below the impermeable Moenkopi beds is responsible for the
abundance of pyrite cement at the top of the permeable
White Rim. (4) Because the 534S value of the Permian ocean
was about +10 per mil (the heaviest in geologic history;
Hoefs, 1987), the pore waters initially contained heavy sul-
fur. Because the pyrite cement most likely precipitated dur-
ing early diagenesis, the last explanation is favored with
possibly some contribution from bacterially mediated sulfate
reduction (explanation 2).

The slightly lighter 84S values of the individual, late
pyrite crystals probably reflect a mixture of sulfur derived
from different processes. Many of these crystals are in sec-
ondary porosity apparently associated with the biodegrada-
tion of oil after uplift of the Colorado Plateau when
formation temperatures were cool enough for bacterial
reduction of sulfate to take place.

BLEACHED SANDSTONE

Bleaching of the White Rim Sandstone may have been
caused by the passage of oil and associated organic acids.
The White Rim is whitish gray in outcrop everywhere that it
is not oil saturated and in the subsurface with the exception
of the East Muley Creek core. Although the White Rim may
have been white at the time of deposition, the fact that the
East Muley Creek core is not bleached (and does not con-
tain oil) suggests that most bleaching is diagenetic. Round,
bleached spots in many red beds contain traces of organic
matter, suggesting that the bleaching was the result of
reduction processes caused by presence of organic matter
(Hofmann, 1992). Surdam and others (1993) proposed that
ferric iron in clay or iron oxyhydroxide coatings on sand
grains are reduced to ferrous iron by oil-bearing solutions.

This mechanism for the bleaching of red beds may be appli-
cable to the White Rim. Organic acids that are produced by
the (redox) reaction of oil with ferric grain coatings dissolve
calcite cement and thus create secondary porosity. Ferrous
iron is then carried by organic complexes to sites of precipi-
tation where it combines with sulfur and is incorporated into
pyrite. The sulfur is provided by organic matter or by reduc-
tion of sulfate. The East Muley Creek core apparently
remained pink due to pervasive, thicker grain rims that
decreased its permeability, thus preventing the influx of oil-
bearing solutions.

FLUID INCLUSIONS

Although it is not certain that they are primary, the
micron-size, two-phase hydrous inclusions in oil-bearing,
authigenic nonferroan dolomite meet two important recogni-
tion criteria for primary inclusions: (1) consistent liquid to
vapor phase ratios of inclusions within one crystal and (2)
occurrence in crystal growth zones (Goldstein and Reynolds,
1994; J. Reynolds, written commun., 1994). Homogeniza-
tion temperatures (n=30) of the inclusions are between 65°C
and 100°C, and most are tightly clustered (n=23) between
80°C and 90°C. These temperatures represent, at the very
least, minimum temperatures of formation for the dolomite.
Many inclusions are single phase, either all-liquid or solid,
but more research is needed to determine the phase present.
All-liquid inclusions could have resulted from necking,
metastability, or entrapment below 50°C (Goldstein and
Reynolds, 1994).

PROVENANCE

Johansen (1988) proposed that the source area for all
upper Paleozoic eolian sandstones in the southwestern
United States was somewhere to the northeast on the North
American craton. Because of the orientation of the continent
and the position of the Equator during the Permian, trade
winds would have blown sand to the southwest from areas
that are now in Alberta and Wyoming where thick sections
of Pennsylvanian strata were eroded prior to the Permian
(Johansen, 1988). Sea-level fall during late Paleozoic Gond-
wana glaciations may have facilitated this process by period-
ically exposing shelf sediments to erosion. Unfortunately,
this hypothesis cannot be tested because the source rocks
formerly exposed in this area have been eroded.

The Uncompahgre uplift would appear to be the most
likely source area for the White Rim Sandstone because of
its proximity (fig. 4) and the abundance of quartz and potas-
sium feldspar in both Uncompahgre uplift and the White
Rim; however, prevailing northwest winds (Poole, 1962;
Huntoon, 1985) during White Rim deposition rule out an
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easterly source. Huntoon (1985) suggested that detritus may
have been shed from the northern part of the Uncompahgre
highlands or from the Middle and Upper Pennsylvanian and
Lower Permian Weber Sandstone in the Emery high, moved
southward by longshore currents, and then carried southeast-
ward by northwesterly winds. On the basis of crossbedding
directions, Baars (1962) suggested that the White Rim is
composed of reworked Cedar Mesa Sandstone for which
source rocks were somewhere to the northwest; however, the
White Rim Sandstone is more quartzose (subarkose) than the
underlying Cedar Mesa Sandstone or Cutler Formation and
(or) Group (arkose) (Mack, 1978). This difference in miner-
alogy could be explained by mechanical winnowing, diagen-
esis, and (or) a different source area. Scott (1965) suggested,
on the basis of the abundance of brown tourmaline and a low
zircon to zircon+tourmaline ratio, that the Cedar Mesa, De
Chelley, and White Rim Sandstones all had the same source.
The Cutler Formation and (or) Group is almost devoid of
brown tourmaline and has a high zircon to zircon+tourma-
line ratio.

The freshness and abundance of detrital potassium feld-
spar grains in the White Rim Sandstone indicate that they
were not reworked and did not travel far from the source
area. Thus, a source area to the northwest is most likely,
perhaps the Emery uplift and (or) the northern part of the
Uncompahgre uplift or an unknown area from which the
source rocks have been eroded. Chert in the White Rim
would have had to come from sedimentary rocks in the
source area because the Uncompaghre uplift is composed of
plutonic igneous and metamorphic rocks (Werner, 1974).
Chert pebbles in the marine veneer could have been
reworked from the Kaibab Limestone, which contains chert
to the west in Capitol Reef National Park (Kamola and
Huntoon, 1994).

The greater abundance (as much as 16 volume percent)
of detrital potassium feldspar in the Tar Sand triangle cores
as compared to that (as much as 5 volume percent) in the
three cores to the south may indicate that the source area was
to the north and that fewer feldspar grains were transported
to the south because of the longer distance. Diagenesis
apparently did not play a role in the different amounts of
feldspar because the Tar Sand triangle cores, which contain
the most potassium feldspar, also contain the most diage-
netic alteration. The Bullfrog area cores contain significantly
less diagenetic alteration.

The lack of detrital plagioclase in the White Rim and
correlative sandstones may be explained by selective weath-
ering in the source area or by mechanical abrasion and chem-
ical weathering in transport. The lack of textural evidence,
such as moldic porosity or partly dissolved plagioclase
grains, does not support diagenetic removal of detrital pla-
gioclase from the White Rim Sandstone.

BURIAL HISTORY OF THE TAR SAND
TRIANGLE

Burial history reconstructions of the White Rim Sand-
stone in the Tar Sand triangle were generated (fig. 32) by
using thicknesses of units in stratigraphic columns (Hintze,
1988) near the Tar Sand triangle and by estimating thick-
nesses of eroded sediments represented by major unconfor-
mities (J. Huntoon, written commun., 1994). A constant heat
flow of 50 mW/m? was chosen for the area (Bodell and
Chapman, 1982). A mean annual surface temperature of
15°C was used because of the proximity of southeastern
Utah to the Equator during the Permian. Uplift of the Colo-
rado Plateau began about 24 Ma, in the late Oligocene to
early Miocene (Lucchitta, 1972). A major unknown factor is
the amount of sediment that was deposited during Creta-
ceous and early Tertiary time and then stripped by erosion
from middle Tertiary time to the present. Extrapolation from
Cretaceous and Tertiary sections in the Uinta Basin (Hintze,
1988) and in the Book Cliffs—Piceance Basin area to the
northeast of the Tar Sands triangle, where there is about
10,000 ft (3,049 m) of strata (Dyman and others, 1994, fig.
7), indicates that approximately 5,750 ft (1,753 m) of Creta-
ceous and early Tertiary sediments was probably deposited
over the White Rim Sandstone in the Tar Sand triangle area.
This value may be too high because the Tar Sand triangle is
on the northwestern slope of the Monument upwarp, which
probably began to rise in the late Paleozoic (Huntoon, Dol-
son, and Henry, 1994) and rose intermittently through Lara-
mide time. The burial and temperature reconstructions (fig.
32) for the White Rim Sandstone show that it was most
deeply buried at approximately 11,520 ft (3,600 m) in late
Oligocene to early Miocene time (24 Ma) when formation
temperatures would have been about 90°C.

POTENTIAL SOURCE ROCKS

Many of the lighter hydrocarbons in the White Rim
Sandstone are gone because of the biodegradation of the oil,
but heavy biomarkers, such as triterpanes and steranes, are
usually present. Nevertheless, the source rock(s) for this
large accumulation of oil has not been identified. Organic
geochemical comparisons of tar seeps and oils in the region
show that tar seeps in the Tar Sand triangle, San Rafael
Swell, and Circle Cliffs area may have been derived from
carbonate source rocks (Dembicki and others, 1986). Gas
chromatography and mass spectrometry spectra of oil from
the Muley Creek State core also suggest that the source rock
was a carbonate or phosphorite (J. Palacas, oral commun.,
1993). Oil did not migrate from east to west due to paleohy-
drologic gradients (Sanford, in press) but travelled from
some component of west to east or vertically through faults
into the White Rim Sandstone. Most groundwater flow has
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Figure 32 (above and following page). Burial history reconstructions of Lower Permian White Rim Sandstone in the Tar Sand triangle.
A, Time versus depth. B, Time versus temperature (J. Huntoon, written commun., 1994).

been parallel with bedding because of the confinement of the
White Rim Sandstone between semipermeable beds over
much of its area of deposition.

These data constrain the time and direction of oil migra-
tion and, as a result, put constraints on potential source
rocks; however, a source rock is also limited by the tremen-
dous size of this deposit, unless more than one formation was
the source. To form such a large accumulation, the source
rock should have contained several percent of a hydrogen-
rich kerogen, such as type I or II. For the source rock to have
been any leaner would necessitate an unrealistically large
volume of rock and (or) an unrealistic expulsion and migra-
tion efficiency.

Among the most promising source rocks are the Late
Proterozoic Chuar Group, the Mississippian Delle Phos-
phatic Member of the Chainman Shale and equivalent for-
mations, the Middle Pennsylvanian Paradox Formation of
the Hermosa Group, the Lower Permian Phosphoria Forma-
tion and Kaibab Limestone, and the Lower Triassic Sinbad
Limestone Member of the Lower and Middle(?) Triassic
Moenkopi Formation. Because of the bouyancy of oil,

migration almost certainly proceeded updip, and thus units
stratigraphically above the White Rim are not candidates.

The source-rock potential of the Chuar Group is rela-
tively unknown except for outcrops in the Grand Canyon
area and in the Uinta Mountains. In northwestern Arizona,
the Chuar is 5,120 ft (1,560 m) thick and has a total organic
carbon (TOC) content of 9 weight percent in some algal car-
bonate rocks and mudstones (Palacas, 1992). The Chuar is
an intriguing possibility as a source rock because it extends
under the Paradox Basin, where it is now overmature and
metamorphosed (Palacas and Reynolds, 1989). Oil would
have had to migrate upward through faults and fractures
either from the southwest or from directly under the Tar
Sand triangle to reach the White Rim. Comparisons of car-
bon isotope, biomarker, and saturated hydrocarbon gas chro-
matogram data between tar sands in the White Rim
Sandstone at Temple Mountain in the San Rafael Swell, oil
at Circle Cliffs, and the tar in the Tar Sand triangle suggest
that all came from the same source rock (Wenrich and Pala-
cas, 1990). There are also some similarities between the oil
in the Tar Sand triangle and the Chuar Group bitumens
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(Wenrich and Palacas, 1990). According to Sanford (in
press), groundwater flow directions were favorable for
northward flow from the middle late Campanian to the late
Miocene (74-10 Ma). Using thicknesses of formations in
various areas to the south of the Tar Sand triangle (Hintze,
1988) under which the Chuar Group may be present, the
Chuar would probably have reached the oil window in the
Jurassic; however, it is still in the oil window in the Grand
Canyon region (J. Palacas, oral commun., 1993).

The Delle Phosphatic Member of the Chainman Shale
and of the equivalent Woodman Formation is composed of
micrite (80 percent) and phosphatic shale and contains from
3 to 8 weight percent total organic carbon in western Utah
where it is immature to overmature (Poole and Claypool,
1984). Its high conodont alteration index suggests that the
Delle has generated oil in the past (Sandberg and Gutschick,
1984). In western Utah, migration of oil from Cretaceous
source rocks would have been assisted by thrust faulting dur-
ing the Sevier orogeny in western Utah, which lasted from
Aptian to early Tertiary time (Heller and others, 1986).
Because of erosion, it is difficult to estimate when the Delle
Phosphatic Member would have been mature in western
Utah, but it probably was not mature until the early Tertiary.

The Paradox Formation of the Hermosa Group, which
underlies the Permian section in the Paradox Basin, is an
attractive source rock because it contains as much as 13
weight percent total organic carbon (Hite and others, 1984)
and is near the Tar Sand triangle. Attempts at oil-source rock
correlations based on geochemistry between it and the tar in
the White Rim have, however, failed (J. Palacas, oral com-
mun., 1993). Rough calculations using stratigraphic columns
in Hintze (1988) show that the Paradox Formation probably
began to generate oil in the Early Jurassic in the Moab area.
Calculations are approximate because of the presence of salt,
the unknown amount of erosion in the past, and variations in
thickness of units in different parts of the basin.

The Phosphoria Formation in northwestern Utah has
been suggested as a possible source rock for oil in the Middle
and Upper Pennsylvanian and Lower Permian Tensleep
Sandstone and Weber Sandstone and in the Lower Permian
Park City Formation (Maughn, 1984). Mudstone, phospho-
rite, and dolomite of the Phosphoria average about 10 weight
percent total organic carbon (Maughn, 1984). Because the
White Rim is truncated by the Permian-Triassic unconfor-
mity to the southeast, it forms a favorable stratigraphic trap
for fluids migrating from the northwest. Oil from southern
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Idaho, southern Wyoming, or northern Utah would have had
to migrate before Laramide faulting because hydrologic
communication between the White Rim and source rocks to
the northwest did not exist after that time (Sanford, in press).
Based on burial reconstruction, oil is thought to have been
generated in the Phosphoria Formation in early Mesozoic to
Late Cretaceous time (Maughn, 1984).

The Kaibab Limestone consists of limestone, dolomite,
sandstone, and evaporite facies. It is an attractive source rock
because of its stratigraphic and geographic proximity to the
White Rim; however, its total organic carbon content is gen-
erally low (<0.5 percent). Oil staining of the Kaibab in many
areas of western Utah indicates that it has generated oil (B.
Law, oral commun., 1993). Burial history estimates indicate
that the Kaibab reached the oil window in Late Cretaceous to
early Tertiary time west of the San Rafael Swell in western
Utah.

The Sinbad Limestone Member of the Moenkopi For-
mation contains between 1 and 4 weight percent total
organic carbon; however, it is not very thick (45-425 ft,
15-175 m) and thus probably could not have provided
enough bitumen for such a large accumulation of oil. The
Sinbad, similar to the Kaibab, probably reached the oil win-
dow in Late Cretaceous to early Tertiary time west of the
San Rafael Swell.

All of these formations have been considered as source
rocks for oil in the Tar Sand triangle. Most contain suffi-
cient total organic carbon; they are all in favorable geo-
graphic and stratigraphic positions to meet the hydrologic
requirements for delivering oil to the Tar Sand triangle; and
they are known to have reached the oil window in the past.
It is not inconceivable that combinations of these forma-
tions, or formations not discussed, were the source(s) of oil
in the Tar Sand triangle.

OIL MIGRATION

The inverse relation between poikilotopic (early) cal-
cite and oil (fig. 31) demonstrates that oil migration took
place during and after calcite dissolution. Oil migration into
the White Rim Sandstone in the Bullfrog area may have
been earlier than in the Tar Sand triangle because in Bullfrog
cores oil appears to fill primary pores. This apparent pore
filling may, however, be an artifact of the preservation of
primary porosity by the illite-smectite grain rims and the
lack of alteration by meteoric water. The average homogeni-
zation temperature (83°C) of two-phase primary(?) inclu-
sions in authigenic, oil-bearing dolomite fixes the minimum
temperature of formation waters at the time of oil migration.
The ‘White Rim may have been buried deeply enough for
indigeneous fluids to be in this temperature range, or a warm
fluid may have migrated from below up into the cooler
White Rim Sandstone :when it was at a shallower depth.
Because relatively impermeable siltstone and sandstone of

the Organ Rock Shale underlie the White Rim in most of the
area, hydrologic modeling indicates that fluids migrated lat-
erally through the White Rim Sandstone and the overlying
Permian-Triassic unconformity; therefore, this latter sce-
nario is unlikely unless the waters moved upward along
faults. There is little reported evidence for movement of
hydrocarbons along faults in the area. As burial history
reconstructions show, the formation temperature of the
White Rim Sandstone at maximum burial was about 90°C,
very close to the average homogenization temperature
(83°C) of the fluid inclusions. The White Rim crossed the
83°C isotherm twice during its postdepositional history:
once in the early Paleocene at approximately 11,726 ft
(3,575 m) depth and again in the early Miocene at about
10,660 ft (3,250 m) depth (fig. 32). Because 83°C is so close
to 90°C, they are considered to be essentially the same tem-
perature.

Interpretation of textural relations between early cal-
cite and oil and minus-cement porosity values of the cal-
cite indicates that oil migration occurred after at least 300
m of burial. Some compaction also took place after disso-
lution of calcite cement and introduction of oil; therefore,
oil is interpreted to have entered the sandstone after more
burial, possibly as late as Cretaceous time. The presence
of “dead” oil in the Island in the Sky District of Canyon-
lands National Park fixes the youngest time for migration
as middle Tertiary because incision of the Green River
began in Oligocene to Miocene time (Gardner, 1975).
Lucchita (1973) concluded that the lower Colorado River
did not exist until about 10.6 Ma, but he suggested that it
may have captured a preexisting upper Colorado River.
Based on the preceding data and interpretations, oil migra-
tion may have occurred between Cretaceous and middle
Tertiary time.

Long-distance migration of hydrocarbons facilitated
by tectonics has been proposed to explain long-distance
migration of fluids in other areas (Oliver, 1986). Migra-
tion paths for oil were most likely to have been perme-
able sandstone, unconformity surfaces, and faults. To the
west of the Tar Sand triangle, the White Rim and other
upper Paleozoic units may have formed a relatively con-
tinuous aquifer all the way to Nevada before basin and
range faulting in the Tertiary. Because subsurface flow in
the White Rim Sandstone and adjacent aquifers was from
west to east in Cretaceous to middle Tertiary time (San-
ford, in press), hydrodynamic flow facilitated by tectonic
forces during the Sevier orogeny could have provided the
impetus for movement of large amounts of oil over long
distances. Thrust sheets could have acted like giant
“squeegees,” pushing fluids ahead of them (Oliver, 1986).
Stacking of large thrust plates may have locally doubled
the geologic section, causing more rapid maturation of
organic-rich rocks (Royse, 1993). West-east thrust faults
also provided surfaces along which oil could migrate;
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however, they could also-have been barriers to fluid
migration. After thrusting, these aquifers were probably
too discontinuous due to basin and range faulting to trans-
port oil for long distances.

CONCLUSIONS

A synthesis of fluid inclusion data, paragenesis of
diagenetic alterations, and burial history reconstruction of
the Lower Permian White Rim Sandstone in the Tar Sand tri-
angle of southeastern Utah strongly favors oil migration near
the time of deepest burial in Cretaceous to middle Tertiary
time. Hydrology of the White Rim Sandstone suggests that
fluid flow through it would have been mostly horizontal, and
this conclusion suggests derivation of the oil from source
rocks to the west. Because of the proposed long migration
distance from some of the potential source rocks to the west,
the driving force for secondary migration of oil may have
been west-to-east thrusting during the Sevier orogeny (Early
Cretaceous to early Tertiary). Most oil may have migrated
along major, continuous surfaces such as faults and uncon-
formities in addition to through permeable sandstones.
Long-distance migration is typical of other giant accumula-
tions of oil, such as in Venezuela or Alberta, that are in strati-
graphic traps on the margins of basins.

The diagenetic and burial history data presented in this
report constrain, for the first time, the timing of oil migration
into the Tar Sand triangle. When these data are combined
with results of ongoing studies of fission tracks in detrital
apatite in the White Rim Sandstone and burial history mod-
eling of potential source rocks, more conclusions may be
drawn regarding the source of this giant accumulation of oil.
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