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PfTROLEUM SYSTEM DEFINITION 

A petroleum system encompasses a mature hydrocarbon source-rock and all generated oil and gas accumulations and in­
cludes all the geologic elements and processes that are essential if an oil and gas deposit is to exist. Petroleum includes high 
concentrations of any of the following substances: thermal and microbial natural gas found in conventional reservoirs as well as in 
gas hydrate, tight reservoirs, fractured shale, and coal; and condensates, crude oils, heavy oils, and solid bitumen found in reser­
voirs, generally in siliciclastic and carbonate rocks. System describes the interdependent elements and processes that form the 
functional unit that creates hydrocarbon accumulations. The elements include a petroleum source rock, reservoir rock, seal rock, 
and overburden rock whereas the processes are trap formation and the generation, migration, and accumulation of hydrocarbons. 
These essential elements and processes must be correctly placed in time and space so that organic matter included in a source rock 
can be converted into a petroleum deposit. A petroleum system exists wherever all these essential elements and processes are 
known to occur or are thought to have a reasonable chance or probability to occur. 

Characteristics and Limits.-The areal, stratigraphic, and temporal extent of the petroleum system is specific, as depicted in 
figures 1 to 4 for the Deer-Boar(.) petroleum system. The figures are as follows: a burial history chart depicts the critical 
moment (defined below) and the essential elements; a map and a cross section drawn at the critical moment depicts the spatial 
relation of the essential elements; and a petroleum system events chart shows the temporal relation of the essential elements and 
processes, and shows the duration time and the preservation time for the system. The duration of a system is the time required to 
deposit the essential elements and to complete the processes. The critical moment is usually near the end of the duration time when 
most hydrocarbons are migrating and accumulating in their primary traps. During the preservation time, existing hydrocarbons are 
either preserved, modified, or destroyed. 

The critical moment of a petroleum system is based on the burial history chart of the stratigraphic section where the source 
rock is at maximum burial depth. If properly constructed, the burial history chart shows the time when most of the hydrocarbons 
are generated. Geologically, migration and accumulation of petroleum occurs over a short time span, or in a geologic moment. 
Included with burial history curves, the essential elements of this system are shown; for example, in figure 1 the Deer Shale is the 
source rock. 

The areal extent of the petroleum system at the critical moment is defined by a line that circumscribes the mature source 
rock and all oil and gas deposits, conventional and unconventional, originating from that source at the time of secondary migra­
tion. A plan map drawn for the end of Paleozoic time, showing a line that circumscribes the pod of mature source rock and all 
related hydrocarbon accumulations, best depicts the areal extent of the system (fig. 2). 

Stratigraphically, the system includes the following rock units or essential elements: a petroleum source rock, reservoir rock, 
seal rock, and overburden rock at the critical moment. The function of the first three rock units are obvious; however, the overbur­
den rock is more subtle, because, in addition to providing the overburden necessary to mature the source rock, it also can have 
considerable impact on the geometry of the underlying migration path and trap. The cross section, drawn for the end of the 
Paleozoic to show the geometry of the essential elements at the time of hydrocarbon accumulation, best depicts the stratigraphic 
extent of the system (fig. 3). 

The petroleum system events chart (fig. 4) shows two temporal episodes, the duration time and the preservation time. The 
duration is the time it took to form a petroleum system, and the preservation is the length of time that the hydrocarbons within that 
system could have been preserved, modified, or destroyed. A petroleum system needs sufficient amount of geologic time to 
assemble all the essential elements and to carry out the processes needed to form a petroleum deposit. If the source rock is the first 
element or oldest unit deposited and the overburden rock necessary to mature the source rock is the last or youngest element, then 
the age difference between the oldest and youngest element is the duration time of the petroleum system. 

Preservation time starts after generation, migration, and accumulation processes are complete. Processes that may occur 
during the preservation time are remigration, physical or biological degradation, or complete destruction of the hydrocarbons. 
During the preservation time, remigrated (tertiary migration) petroleum can accumulate in reservoirs deposited after the duration 
time. If insignificant tectonic activity occurs during the preservation time, accumulations remain in their original position. Remi­
gration happens during the preservation time only if folding, faulting, uplift, or erosion occur. If all accumulations and essential 
elements are destroyed during the preservation time, then the evidence that a petroleum system existed is absent. An incomplete or 
just completed petroleum system is still in its duration time and thus is without a preservation time. 

Level of Certainty.-A petroleum system can be identified at three levels of certainty: known, hypothetical, and speculative. 
The level of certainty indicates the confidence for which a particular mature pod of source rock has generated the hydrocarbons in 
an accumulation. In a known petroleum system, in the case of oil, a good geochemical match exists between the source rock and 
the oil accumulations, or, in the case of natural gas, the gas is produced from a gas source rock. In a hypothetical petroleum 
system, geochemical information identifies a source rock, but no geochemical match exists between the source rock and the 
petroleum deposits. In a speculative petroleum system, the existence of source rocks and petroleum accumulations is postulated 
entirely on the basis of geologic or geophysical evidence. At the end of the system's name, the level of certainty is indicated by(!) 
for known, (.) for hypothetical, and (?) for speculative. 

Petroleum System Name.-The name of the petroleum system includes the source rock, followed by the name of the major 
reservoir rock, and then the symbol expressing the level of certainty. For example, the Deer-Boar(.) is a hypothetical system 
consisting of the Deer Shale as the source rock and the Boar Sandstone as the major reservoir rock. 
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ABSTRACT 

This publication, comprising 16 individually authored summaries by U.S. Geologi­
cal Survey scientists, prese ts a reorganized table of the petroleum systems within the 
United States and summari es the status of research for a number of petroleum-related 
topics and investigative me hods. 

The table of petroleu systems within the United States has been reorganized by 
Magoon to show that a so rce rock interval can extend beyond a single system to be 
included in other systems, and to show, as other authors have, that petroleum source 
rocks occur unevenly thro ghout geological time. Lewan discusses the role of hydrous 
pyrolysis as a method to imulate the generation and expulsion of petroleum from a 
source rock. Clayton focu s on bacteria that mediate coupled oxidation-reduction reac­
tions and use organic and inorganic substrates as a means of obtaining both the carbon 
and the energy necessary for metabolic processes. Law provides an overview of the 
occurrence of methane in oal and as an energy source. Normark and Piper examine 
the turbidite deposit, a pot ntial reservoir rock, using a series of analytical criteria: initi­
ation and flow evolution; ransport in channels; flow processes implied from turbidite 
bedforms; and facies distri ution in turbidite systems. Schmoker discusses the growing 
body of literature dealing ith the relation between porosity and time-temperature expo­
sure, or thermal maturity. chenk covers several petroleum reservoir topics: (1) facies, 
permeability, and heterog neity in siliciclastic sandstone reservoirs, (2) various ap­
proaches to characterizing luid-flow heterogeneity in carbonate reservoirs, and (3) min­
eral transformations in tar and and heavy oil reservoirs induced by thermal recovery 
methods. Lillis discusses t e use of biological markers as thermal maturity indicators. 
Naeser high I ights the considerable contribution that apatite fission-track analyses have 
made toward clarifying the thermal history of more than 40 sedimentary basins world­
wide. Pawlewicz and King review vitrinite and solid bitumen reflectance and discuss 
certain thermal maturity c rrelations and applications. Pollastro reports on the current 
research status and activiti s related to day-mineral geothermometry and, as an exam­
ple, discusses the use of cl y geothermometry as a predictor of oil or microbial gas in 
the Niobrara Formation. 8 contouring the thermal maturity of the Muddy Sandstone 
using vitrinite reflectance, igley and others show that thermal anomalies relate to dif­
ferences in burial depth, he t flow, and basin hydrodynamics. Nuccio and Fouch discuss 
the thermal maturity of the Mesaverde Group in the Uinta basin in northeastern Utah. 
Taylor discusses the origin nd function of the National Energy Research Seismic Library 
(NERSL). Lastly, Colburn pr sents a list of publications written by personnel of the USGS 
Branch of Petroleum Geolo y and published during 1989 and 1990. 

Manuscript approved for p blication, September 24, 1991. 
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Identified Petroleum Systems within the United States-1992 

By Leslie B. Magoon1 

INTRODUCTION 

Considerable progress has been made toward ex­
plaining the usefulness of the petroleum system as an in­
vestigative approach for research and exploration. At the 
Annual Convention of the American Association of Pe­
troleum Geologists, April 10, 1991, W.G. Dow and L.B. 
Magoon co-convened a well attended AAPG oral session 
on "The Petroleum System-From Source to Trap." Ten 
papers were presented. An introductory paper defined 
the petroleum system (Magoon and Dow, 1991), and an 
applications paper (Smith, 1991) showed how Shell Oil 
Company used the petroleum system for the last 25 
years to evaluate offshore tracts and onshore exploration 
ventures. Four papers covered various aspects of the pe­
troleum system (Curiale, 1991; Demaison and Huizinga, 
1991; England, 1991; and Lewan, 1991) and four case 
studies were presented (Bacoccoli and others, 1991; 
Bird, 1991; Talukdar, 1991; and Ulmishek, 1991). Other 
papers presented at this meeting indicate that the petrole­
um system concept is gaining acceptance (Resnick, 
1991; Tinker, 1991). In the May 1991 issue of the 
AAPG Explorer magazine, a popularized article about 
the petroleum system was published (Shirley, 1991). 

The petroleum system definition, which appears on 
the inside of the front and back cover of this bulletin, 
has been revised and expanded from the previous bulle­
tin (Magoon, 1989a) to include four figures. The text re­
vision and figures expand on the temporal extent of the 
system by emphasizing the burial history chart (fig. 1) 
as evidence for the timing of generation, migration, and 
accumulation of hydrocarbons, and the petroleum system 
events chart (fig. 4) more clearly shows the relationship 
between the essential elements and processes. Also in­
cluded are the map (fig. 2) and cross section (fig. 3) to 
show how the geographic and stratigraphic extent of the 
system are best depicted. Together, these four figures 
graphically portray what the revised text describes. 

1U.S. Geological Sutvey, Menlo Park, Calif. 
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Because the petroleum system can be classified more 
than one way, the classification scheme was deleted. 

The list of petroleum systems within the United 
States (table 1) has been reorganized and revised since 
the last tabulation in 1989, in which 130 systems were 
identified (Magoon, 1989b). Table 1 was reorganized by 
age of source rock to more clearly emphasize two im­
portant points. First, a petroleum source rock can have 
an areal distribution beyond any one system and, in fact, 
can be part of different systems in other areas. Second, 
as other authors have noted, petroleum source rock inter­
vals are unevenly distributed in the geologic record 
(Ulmishek and Klemme, 1990). The oldest age of the 
source rock is used to classify each system in the table. 
For example, a source rock whose age extends from 
Late Devonian through Early Mississippian is classified 
as Devonian. 

The total number of petroleum systems remains 
the same (Magoon, 1989b; table 2), but three names and 
two certainty levels were revised (table 2). The Elbert 
Formation is a reservoir rock rather than a source rock 
(Kent and others, 1988). The New Albany (.) is an oil 
system rather than gas, and most of the oil is in Chester­
ian age reservoirs (Barrows and Cluff, 1984). The level 
of certainty was changed to speculative for both Penn­
sylvanian systems [Pennsylvanian coals(?); Pennsylva­
nian-Late Paleozoic(?)] because of a lack of published 
information. Quotation marks were placed around "A-1" 
for the Salina "A-1"-Niagaran(!) system to more clearly 
separate it from Niagaran. As published information 
about U.S. petroleum systems becomes available, this 
list will be revised to incorporate the new information. 

SOURCE ROCK INTERVALS BY AREA 

In table 1, the region(s) and province(s) for the en­
tire United States are listed to show the general areal 
distribution for each petroleum system. In many instan­
ces, each system covers more than one province, which 
can include one or more basin (structural or sedimenta­
ry), uplift (arch), or mountain range (fold and thrust 
belt). With few exceptions, each system is associated 



Table 1. Identified petroleum systems within the United States as revised and reorganized by age of source rock 
(modified from Magoon, 1989b, table 2) 

[Level of certainty: (!),known; (.),hypothetical; ('!),speculative; for certainty definitions see Magoon, 1988b; lith, lithology; pet, petroleum; res, reservoir; S, 

sandstone; C, carbonate. Region codes (fig. 5) and references m: listed below. CSD/C, Geological province code number (Meyer, 1974)/COSUNA chart 

stratigraphic column number] 

Atlantic Coast region (Jordan and Smith, 1983); 

Central California region (Bishop and Davis, 1984a); 

AC, 

CCA, 

CSR, 

GB, 

GC, 

MBA, 
MC, 

NAL, 

NAP, 
NCA, 

Central and Southern Rockies region (Kent and others, 1988); 

Great Basin region (Hintze, 1985); 

Gulf Coast region (Braunstein and others, 1988); 

Midwestern basin and arches region (Shaver, 1985); 

Mid-Continent region (Adler, 1987); 

Northern Alaska region (Schaff and Gilbert, 1987a); 

Northern Appalachian region (Patchen and others, 1985a); 

Northern California region (Bishop and Davis, 1984b); 

Petroleum systems Source 
[source-reservoir(certainty)) type• 

Cenozoic(.)-------------------------------------- III 

Neogene-Salt Lake(?)-------------------------- I 

Eel River-Rio Dell(?)--------------------------- II 

Beluga-Sterling(.) ------------------------------- III 

Miocene(.)--------------------------------------- III 
Miocene(?) --- ----------------------------------- II 

Monterey(?)------------------------------------- II 

Monterey-Puente(!)----------------------------- II 
Monterey-Repetto/Pico(.)----------------------- II 

Monterey-Stevens/Kern River(.)--------------- II 
Monterey-Tinaquaic(.) ------------------------- II 

Soda Lake-Painted Rock(.)--------------------- II 

Domengine-Cierbo/Briones(?) ----------------- II 
Green River-Wasatch(!)----------------------- I 
Kreyenhagen-Gatchell(?) ---------------------- II 
Ozette-Hoh(l)----------------------------------- III 
Pool Creek(.) ------------------------------------ III 
Sheep Pass-Garrett Ranch(!)------------------- I 
Stepovak-Bear Lake(.)------------------------- III 

Stillwater-Kulthieth(.)--------------------------- III 

Aspen/Bear River Nugget/Madison(?)--------- II 

Austin Chalk(!)---------------------------------- I 
Austin Chalk/Eagleford-Woodbine(?) --------- I 

Cretaceous(.) ------------------------------------ III 

See footnote at end of table. 

Res 
lith 

s 
s 

s 
s 

s 
s 
s 
s 
s 

s 
s 

s 

s 
s 
s 
s 
s 
s 
s 
s 

s 
c 
s 

s 

Pet 
type 

NE, 
NMC, 

NRW, 

NW, 
PBR, 
SAL, 

SAP, 
SCA, 

SSMC, 

TOT, 

Region 
code 

Cenozoic 

0/G GC 

Oil GB 

Pliocene 

Gas NCA 

Gas SAL 

Miocene 

Gas GC 
Oil CCA 

Oil CCA 

Oil SCA 
Oil SCA 

Oil CCA 
Oil CCA 

SCA 

Oil SCA 

Eocene 

0/G CCA 
Oil CSR 
Oil CCA 
Oil NW 
Oil SAL 
Oil GB 
Gas SAL 

Oil SAL 

Cretaceous 

Oil CSR 
GB 

0/G GC 
Oil GC 

G/0 CSR 

New England region (Skehan, 1985); 
Northern Mid-Continent region (Bergstrom and Morey, 1985); 

Northern Rockies/Williston basin region (Ballard and others, 1983); 

Northwest region (Hull and others, 1988); 

Piedmont/Blue Ridge region (Higgins, 1987); 

Southern Alaska region (Schaff and Gilbert, 1987b); 

Southern Appalachian region (Patchen and others, 1985b ); 

Southern California region (Bishop and Davis, 1984c); 

Southwest/Sruthwest :Mid-Continent region (Hills and Kottlowski, 1983); 

Texas-Oklahoma Tectonic region (Mankin, 1987); 

Province 

Name CSD/C 

Gu1f Coast basin 220/2-4,10-11 
Gu1fCoast offshore 
Great Basin province 625/15,16 

Eel River basin 720/1-2 
Pacific offshore 
Cook Inlet basin 820/13 

Mid-Gulf Coast basin 210/14,16,17 
Santa Cruz basin 735/6 
Pacific offshore 
Northern Coast Range 72513 
Pacific offshore 
Los Angeles basin 760/8-11 
Santa Maria basin 750/3 
Ventura basin 155!4-5 
Pacific offshore 
San Joa~ basin 745/16-21,27-29 
Coastal sin 740 
Santa Maria basin 750/2 
Pacific offshore 
Coastal basin 740 
Santa Maria basin 750/1 

Northern Coast Range 725/1 
Uinta basin 515 
San Joaquin basin 745/16-21,27-29 
Western Columbia basin 710/14 
Gulf of Alaska basin 810/24 
Great Basin 625/9 
Alaska Peninsula 825/12 
Bristol Bay basin 845/10,11 
Gu1f of Alaska basin 810/24,26,27 

Green River basin 535/11 
Uinta uplift 570 
Gulf Coast basin 220/1,4,10 
Mid-Gulf Coast basin 210/14,17 
Gulf Coast basin 220/10 
East Texas basin 230 
East Texas basin 260/5,6 
Green River basin 535/12-14 
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Table 1. Identified petroleum systems within the United States as revised and reorganized by age of source rock 
(modified from Magoon, 1989b, table 2)-Continued 

Petroleum systems Source Res Pet Region Province 
[source-reservoir(certainty)] type' lith type code 

Name CSD/C 

Cretaceous 

Cretaceous(!}------------------------------------ III s Gas MC Sioux uplift 320/1-3 
NMC Salina basin 380/8 
NRW Chadron arch 390 

Williston basin 395 
Sweetgrass arch 500 
Central Montana uplift 510 
Powder River basin 515 
Denver basin 540 

Cretaceous(?) ----------------------------------- III s 0/G CSR Big Horn basin 520/3,4 
Cretaceous(?) ----------------------------------- III s Oil CSR Wind River basin 530/8 
Cretaceous(?) ----------------------------------- III s 0/G CSR Denver basin 540!21 
Cretaceous(?)----------------------------------- III s Oil CSR Powder River basin 515/6 
Cretaceous(?) ----------------------------------- III s Gas CSR Green River basin 535/9,15 
Cretaceous(?) ----------------------------------- III s Gas CSR North Park basin 545 
Cretaceous-Tertiary(?)------------------------- III s Gas CSR Big Horn basin 520/3,4 
Cretacous-Tertiary( I)--------------------------- III s Gas CSR Wind River basin 530/8 
Dollar Bay(.)------------------------------------ II c Oil GC South Florida 140131 

GuHCoast offshore 
Forbes (.) ------------------------- ---------------- III s Gas NCA Sacramento basin 730!27-29 
Greenhorn-Dakota(.)--------------------------- II s Oil CSR San Juan basin 580!29 
Hornbrook(?}------------------------------------ III s Gas NCA Klamath Mountains 715/3,5 
Hue-Sagavanirktok(!)-------------------------- II s Oil NAL Arctic Coastal Plain 890/5-6 
Lewis-Picture Qiffs(.) -------------------------- III s Gas CSR San Juan basin 580!29 
Lower Cretaceous-Paluxy(?)------------------- II s 0/G GC Mid-GuH Coast basin 210 

GuH Coast basin 220 
Arkla basin 230 
East Texas basin 260 
GuHCoast offshore 

Mesaverde(.) ------------------------------------ III s Gas CSR Uinta basin 575/16,17 
Mesaverde(.) ------------------------------------ III s Gas CSR Piceance basin 595/18 
Mancos-Tocito(.) ------------------------------- II s Oil CSR San Juan basin 580!29 
Mancos-Mesaverde(.)-------------------------- II s Gas CSR San Juan basin 580!29 
Moreno(?) II s Oil CCA Northern Coast Range 725 

San Joaquin basin 745!29,16,17 
Mowry-Muddy(!)------------------------------- II s Oil CSR Denver basin 540!20 
Niobrara(!)-------------------------------------- II c Gas CSR Las Animas arch 450131 

SSMC Denver basin 540!21 
Niobrara/Carlisle-Frontier(!)------------------- II c Oil CSR Denver basin 540!20,21 
Sligo(?) ------------------------------------------ III c Gas GC Mid-GuH Coast basin 210/14 

GuH Coast basin 220 
Arkla basin 230fl 
East Texas basin 260/5 

Starkey-Winters(.)------------------------------ III s Gas NCA Sacramento basin 730!20-26 
Sunniland(!) ------------------------------------- II c Oil GC South Florida 140131 

Gulf Coast offshore 
Torok-Nanushuk(.) ----------------------------- III s Oil NAL Arctic Coastal Plain 890/1-3 
Tuscaloosa(.)------------------------------------ II s Gas GC GuH Coast basin 220/3,10,11 

Jurassic 

Cotton Valley(?)--------------------------------- III s Gas GC Mid-Gulf Coast basin 210 
Gulf Coast basin 220/10 
Arkla basin 230 
East Texas basin 260 

Curtis-Entrada/Morrison(?)--------------------- II s Oil CSR Green River basin 535/13 
Piceance basin 595!18 

Jurassic-Cretaceous(?)------------------------- III s Gas Atlantic offshore 
Jurassic/Cretaceous(?)-------------------------- II s Oil NRW Sweetgrass arch 500/10,11 

Montana folded belt 505/6-8 
Central Montana uplift 510/12 

Smackover(!}------------------------------------ II c Oil GC Mid-GuH Coast basin 210 
Gulf Coast basin 220 
Arkla basin 230 
East Texas basin 260 
Gulf Coast offshore 

Todilto-Entrada(.)------------------------------- II s Oil CSR San Juan basin 580!29 
Tuxedni-Hernlock( .) ---------------------------- III s Oil SAL Cook Inlet basin 820/13 

See footnote at end of table. 
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Table 1. Identified petroleum systems within the United States as revised and reorganized by age of source rock 
(modified from Magoon, 1989b, table 2)-Continued 

Petroleum systems Source Res Pet Region Province 
(source-reservoir{certainty)] type I lith type code 

Name CSD/C 

Triassic 

Ellesmerian(l) ----------------------------------- II s Oil NAL Arctic Coastal Plain 890/1-8 
F avret(?)--------- ----------- -- ------------------- II c Oil GB Great Basin 625/2 
Newark(?)--------------------------------------- II s Oil NE New England 1oon-9 

PBR Piedmont Blue Ridge 150!11 
NAP N Appalachian basin N160/25,26 

Permian 

Permian(.) --------------------------------------- II c Oil SSMC Permian basin 430/18-20,23 
Permian(.) --------------------------------------- II c Oil SSMC Permian basin 430/20-21 
Phosphoria-Weber(!)--------------------------- II s Oil CSR Montana folded belt 505 

GB Central Montana uplift 510 
NRW Powder River basin 515 

Big Hom basin 520 
Yellowstone 525 
Wind River basin 530 
Green River basin 535 
Uinta uplift 570 
Uinta basin 575 
Snake River basin 615/22 
Wasatch uplift 630/23,27,28 

Pennsylvanian 

Desmoinesian-0 sandstone(!)------------------ II c Oil CSR Denver basin 540/20 
Minnelusa(!)------------------------------------- II s Oil CSR Powder River basin 515 

Denver basin 540/10,20 
Pennsylvanian(.)--------------------------------- II c Oil SSMC Permian basin 430/18-20 
Pennsylvanian(.)--------------------------------- II c Oil SSMC Permian basin 430/20-22 
Pennsylvanian cannel coals-sandstone(.) ------ I s Oil NAP N Appalachian basin N160/1,2,7-9 

SAP S Appalachian basin S160/11-24 
Pennsylvanian coals(?)-------------------------- III s Gas NAP N Appalachian basin N160 

SAP S Appalachian basin S160 
Pennsylvania-Late Paleozoic(?)---------------- III s Gas MC Forest City basin 335 

SSMC Arkoma basin 345/4-5 
TOT S Oklahoma folded belt 350/6 

Chautauqua platform 355/1,2 
Anadarko basin 360/26-29 
Cherokee basin 365 
Nemaha anticline 370!26 
Sedgwick basin 375/25 
Amarillo arch 440 

Paradox-Hermosa(.)---------------------------- II c Oil CSR Paradox basin 585/23 
Ty ler(l) ------------------------------------------ II s Oil NRW Williston basin 395/23 

Mississippian 

Chainman-Garrett Ranch(!)-------------------- II s Oil GB Great Basin 625/11 
Chainman-Simonson(?) ------------------------- II c Oil GB Great Basin 625/8,9,11,12, 

17,18,20,21 
Chainman-White Rim(?)------------------------ II s Oil CSR Paradox basin 585 

GB Wasatch uplift 630/29 
Chester(?) --------------------------------------- III s Gas TOT Warrior basin 200/17-19 
Heath-Tyler( I)---------------------------------- II s Oil NRW Williston basin 395/14 

Central Montana uplift 510/12 
Michigan-Stray(.)------------------------------- II s 0/G MBA Michigan basin 305/4-6 
Mississippian coals-sandstones(.)--------------- III s Gas SAP S Appalachian basin S160!25-26 
Sunbury-Berea(!)------------------------------- II s 0/G NAP N Appalachian basin N160/1,2,7,8,16,20 

SAP S Appalachian basin S160/18,21 
Sunbury-Murrysville(.)------------------------- III s Gas NAP N Appalachian basin N160/16-18 

Devonian 

Aneth-Elbert/McCracken(?)------------------- II s Oil CSR Paradox basin 585/23 
Antrim(.)----------------------------------------- III s Gas MBA Michigan basin 305/3-5,15 

See footnote at end of table. 
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Table 1. Identified petroleum systems within the United States as revised and reorganized by age of source rock 
(modified from Magoon, 1989b, table 2)-Continued 

Petroleum systems Source Res Pet Region Province 
[source-reservoir(certainty)] typet lith type code 

Name CSD/C 

Devonian 

Bakken-Madison(l) ----------------------------- II c Oil NRW Williston basin 395/13-20,23 
Chattanooga-Fort Payne(.)---------------------- III c 0/G SAP S Appalachian basin S160/11,12 
Devonian-Berea(?)----------------------------- II s Oil MBA Michigan basin 305/3-5 
Devonian Black Shales-Venango(!)----------- II s G/0 NAP N Appalachian basin N160/1-29 
Devonian-Detroit Riverffraverse(?)----------- II c Oil MBA Michigan basin 305/4-6 
Exshaw-Madison(.) II c Oil NRW Sweetgrass arch 500fl,l0,11 

Montana folded belt 505 
Marcellus-Bass Islands(.)----------------------- III c Gas NAP N Appalachian basin N160/21,27 
Marcellus-Onondaga(.)------------------------- III c Gas NAP N Appalachian basin N160/21 ,22,28 
Marcellus-Oriskany(.)-------------------------- III s Gas NAP N Appalachian basin N160 
Monroe(?)--------------------------------------- III c Gas GC Arkla basin 230/9 
New Albany-Chester(.)------------------------- II s Oil MBA Illinois basin 315fl-12,19-21 
Ohio-Big Injun(.)-------------------------------- II s G/0 NAP N Appalachian basin N160/1-3,7-9,16,17 
Ohio/Chattanooga-Corniferous(?)-------------- III c 0/G SAP S Appalachian basin S160/18 

MBA Cincinnati arch 300/24,25 
Ohio Shale(!)------------------------------------ II s G/0 NAP N Appalachian basin N160 

SAP S Appalachian basin S160 
Ohio/Sunbury-Greenbriar/Newman(?) -------- III c Gas NAP N Appalachian basin N160/1,2 

SAP S Appalachian basin S160/18,21 
Ohio-Weir(?) ----------------------------------- II s Gas NAP N Appalachian basin N160/l-3,7-14 

SAP S Appalachian basin S160/18-24 
Woodford/Chattanooga-Paleozoic(.)----------- II s Oil MC Forest City basin 335 

SSMC Arkoma basin 345!3-5 
TOT S Oklahoma folded belt 350/6 

Chautauqua platform 355 
Anadarko basin 360 
Cherokee basin 365 
Nemaha anticline 370/26 
Sedgwick basin 375 
Central Kansas uplift 385 
Chadron arch 390!15 
Amarillo arch 440 
Las Animas arch 450 

Woodford-Silurian/Devonian(.)---------------- II s Oil SSMC Permian basin 430/18-21 
Woodford-Sycamore(!)------------------------ II c Oil TOT S Oklahoma folded belt 350/6 

Silurian 

Cabot Head-Medina(.)-------------------------- I s Oil NAP N Appalachian basin N160/21 
Rose Hill-Keefer(?) ---------------------------- I s Gas NAP N Appalachian basin N160 

SAP S Appalachian basin S160/18 
Salina "A-1 "-Niagaran(!)----------------------- II c Oil MBA Michigan basin 305/3-6,15 
Salina-Newburg(?)----------------------------- I c Oil NAP N Appalachian basin N160fl ,8,15,16,20 

Ordovician 

Athens-Trenton/Knox(?)----------------------- I c Oil NAP N Appalachian basin N160/1-5 
SAP S Appalachian basin S160/11-15,17-26 

Glenwood-Rose Run(?)------------------------- I s Oil NAP N Appalachian basin N160/1,2,7,9,16,17,20,21 
SAP S Appalachian basin S160/16-18 

Glenwood-Trempealeau(?) -------------------- I c Gas NAP N Appalachian basin N160/15 
Ordovician-Prairie du Chien II c Oil MBA Cincinnati arch 300/14-17 

/Black Riverffrenton(?) Michigan basin 305/2-6,15 
Point Pleasant-Clinton(!)------------------------ II s Oil NAP N Appalachian basin N160/15-16 
Simpson-Ellenberger/Simpson(.) --------------- II c G/0 SSMC Permian basin 430/19-21 
Simpson-Viola( I)-------------------------------- I c Oil MC Forest City basin 335 

SSMC S Oklahoma folded belt 350/6 
TOT Chautauqua platform 355/1,2 

Anadarko basin 360/27 
Cherokee basin 365 
Nemaha anticline 370/26 
Sedgwick basin 375/25 

Simpson-Viola/Hunton(.) ----------------------- I c Oil MC Forest City basin 335/21 
Nemaha anticline 370/10,18,20 

Trenton( I) --------------------------------------- c Oil MBA Cincinnati arch 300/13,14 
Illinois basin 315fl-12,19-21 

U tica-Beekmantown(l) ------------------------- II s Gas NE New England 100/6 
Adirondack uplift 110/1 

See footnote at end of table. 
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Table 1. Identified petroleum systems within the United States as revised and reorganized by age of source rock 
(modified from Magoon, 1989b, table 2)-Continued 

Petroleum systems Source Res Pet Region Province 
[source-reservoir(certainty)] type1 lith type code 

Name CSD/C 

Ordovician 

Utica-Trenton(!)-------------------------------- I c Gas MBA New England 100/1,3 
NAP Adirondack uplift 11011 
NE N Appalachian basin N160 

Cincinnati arch 300/13,14,16-18 
Viola(!)------------------------------------------ II c Oil TOT S Oklahoma folded belt 350/6 
Winnipeg-Red River(!)------------------------- II c Oil NRW Williston basin 395/13-20,23 

Cambrian 

Conasauga-Knox(?) ---------------------------- II c Gas PBR Piedmont Blue Ridge 150/3-6 
SAP S Appalachian basin S160!25,26 

Conasauga-Knox(?) ---------------------------- II c Oil SAP S Appalachian basin S160/1-8 
TOT Warrior basin 200117.18 

Conasauga-Rome(.)----------------------------- II s Oil NAP N Appalachian basin N160/1-4,7-14,17,18 
SAP S Appalachian basin S160/11-24 

EauClair-Knox(?)------------------------------- II c Gas MBA Illinois basin 315/8-12,19-21 

Precambrian 

Nonesuch-Keweenawan(?)-------------------- II s Gas MC Wisconsin arch 310/20 
NMC Sioux uplift 320/12,13 

Iowa shelf 32513,4,12,14 
Nemaha anticline 370/10,20 
Salina basin 380/17 

Unknown 

Unknown-Eocene(?) --------------------------- II s Oil GC Mid-Gulf Coast basin 210 
Gulf Coast basin 220/10 
Arkla basin 230/8 
East Texas basin 260/5 

Unknown-Eutaw/Selma(?)--------------------- II s Oil GC Mid-Gulf Coast basin 210/13,14,16,28 
Gulf Coast basin 220/10 
Arkla basin 230 
East Texas basin 260/6 

Unknown-San Miguel/Olmos(?)---------------- II s Oil GC Gulf Coast basin 220/1 
SSMC Ouachita tectonic belt 400/16 

1Refers to organic matter type, either I, II, or III, and is distinguished on the basis of the hydrogen and oxygen indices of the kerogen 
when plotted on the van Krevelen diagram. See Tissot and Welte (1984) for further explanation. 

COSUNA CHART INDEX MAP 

Figure 5. Index map of regions for the Correlation of strati­
graphic units of North America (COSUNA) charts. See 
table 1 for region names and references. 
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Table 2. Name and level of certainty revisions of U.S. petroleum systems 

[See text for sources of information leading to these revisions] 

Magoon, 1989b This publication 

Aneth/Elbert-McCracken(?)------------------------Aneth-Elbert/McCracken(?) 

New Albany(.)----------------------------------------- New Albany-Chester(.) 

Pennsy lv ani an coals(!)------------------------------ Pennsy lv ani an coals(?) 

Pennsylvania-Late Paleozoic(!)------------------- Pennsylvania-Late Paleozoic(?) 

Salina A-1-Niagaran(!)------------------------------Salina "A-1 "-Niagaran(!) 

with at least one basin because the basin contains the 
overburden rock that provided the burial depth (heat) to 
mature the source rock. Only systems that contain micro­
bial gas have little need for overburden rocks. 

When the sedimentary basin of a source rock is on 
a continental scale, such as the Late Devonian of the 
United States, that organic-rich interval can be the 
source rock for more than one petroleum system. How­
ever, the stratigraphic nomenclature for this Upper De­
vonian source rock is different depending on the location 
(in parenthesis): the Ohio Shale and Devonian black 
shale (Appalachian area), the Antrim Shale (Michigan 
basin), the New Albany Shale (Illinois basin), the Wood­
ford Shale (mid-Continent provinces), the Aneth Forma­
tion (Paradox basin; Kent and others, 1988), the Pilot 
Shale (Great Basin), the Bakken Formation (Williston 
basin), and the Exshaw Formation (Sweetgrass arch). 
Wherever this organic-rich rock is, or is thought to be, 
buried enough by overburden rock to generate oil or gas, 
a petroleum system exists. The petroleum systems that 
include these Upper Devonian source rocks are listed in 
table 1 under Devonian. 

What matures this Upper Devonian organic-rich in­
terval is overburden rock deposited in smaller, post-De­
vonian basins (successor basins) located on or along the 
edge of the North American craton. Sedimentary basins 
on the craton are sags or rifts, whereas basins at the edge 
of the craton are foreland basins. Unless the sediments 
are created in situ (carbonates, evaporites, and coals), the 
provenance for the sediments dumped into all three ba­
sins is the craton, or the provenance for the foreland ba­
sin, both craton and the fold and thrust belt. The 
reservoir and seal rocks are either in the Upper Devonian 
strata or are part of the overburden rock. The trap- and 
petroleum-forming processes occur during deposition of 
the overburden rock. 

On a continental scale, the duration of these petro­
leum systems with Upper Devonian source rocks varies 
with the location of the system. Along the eastern and 
southern edge of the North American craton, these late 
Paleozoic foreland basins include the Appalachian, War­
rior, and Anadarko and received only a minor amount of 
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post-Paleozoic sediments. Since the present-day petrole­
um accumulations had to have been generated and mi­
grated by the end of Permian time or earlier, when 
maximum burial was achieved, the duration of these pe­
troleum systems with Upper Devonian source rocks 
ranged from Late Devonian through Permian time. The 
preservation time extended through the Mesozoic and 
Cenozoic. In contrast, the western edge of the craton in­
cludes foreland basin sedimentary rocks as young as 
Cretaceous or early Tertiary, and one of the cratonic in­
terior basin sags may be as young as Tertiary. The dura­
tion of these systems can range from Late Devonian 
through Cretaceous or Tertiary, respectively. 

Another organic-rich interval that is involved in 
many petroleum systems is the Miocene of California 
(table 1). Here, numerous strike-slip basins formed in the 
Miocene and continue to develop to the present day. At 
first, the basins were conducive to the formation and 
preservation of organic matter along with abundant biog­
enous silica and relatively little siliciclastic material. 
Deposition of coarser siliciclastic material became pro­
gressively more rapid during Pliocene to Pleistocene 
time; this sediment provided the necessary overburden to 
generate hydrocarbons in petroleum systems within the 
Los Angeles basin, Ventura basin (Santa Barbara off­
shore), Santa Maria basin, San Joaquin basin, and sever­
al other coastal basins. Again, what started out as 
organic-rich deposits over a large area eventually devel­
oped into smaller sedimentary basins that acquired suffi­
cient overburden rock to generate hydrocarbons, and 
thus form separate petroleum systems. 

SOURCE ROCK INTERVALS BY TIME 

Meissner and others (1984) used a map of the inte­
rior part of the United States to show the distribution of 
hydrocarbon source rocks over nine time intervals. These 
intervals are as follows: Middle Ordovician, latest Siluri­
an to Late Devonian, Late Devonian to mid-Mississippi­
an, Late Mississippian, Pennsylvanian, Permian to 
Triassic, Jurassic, Cretaceous, and latest Cretaceous to 



Table 3. Distribution of petroleum systems by age and hydrocarbon 
type 

[Age of petroleum system is based on the oldest age of the source rock. Information on 
age of source rock is from table 1 1 

Age No. Oil 

Cenozoic undif. ------- 2 1 

Pleistocene------------- 0 NA 

Pliocene ---------------- 2 0 

Miocene ----------·------ 8 7 

Oligocene -------------- 0 NA 

Eocene ------------------ 8 6 

Paleocene--------------- 0 NA 

Cretaceous-------------- 33 13 

Jurassic ----------------- 7 5 

Triassic ----------------- 3 3 

Permian----------------- 3 3 

Pennsylvanian-------- 9 7 

Mississippian--------- 9 4 

Devonian--------------- 21 9 

Silurian ----------------- 4 3 

Ordovician ------------- 13 9 

Cambrian--------------- 4 2 

Precambrian------------ 1 0 

Unknown--------------- 3 3 

Total-----------------130 75 

early Tertiary. Dividing the geological time scale into 13 
segments, Ulmishek and Klemme (1990) inventoried the 
important source rock intervals in the world and found 
that six intervals account for 90 percent of the known oil 
and gas reserves. These six stratigraphic intervals are as 
follows: Silurian, Late Devonian to Tournaisian (Missis­
sippian), Pennsylvanian to Early Permian, Late Jurassic, 
mid-Cretaceous, and Oligocene to Miocene. 

The distribution of U.S. petroleum systems by age 
shown in table 1 are summarized by age and hydrocar­
bon type in table 3. The most common age of the source 
rock is Cretaceous, whereas the Oligocene and Pleisto­
cene contain none (table 3). The most to least common 
source-rock ages are as follows: Cretaceous (33), Devo­
nian (21), Ordovician (13), Mississippian (9), Pennsylva­
nian (9), Eocene (8), Miocene (8), and Jurassic (7). The 
remainder of the age brackets have fewer than five. For 
the 130 petroleum systems, 85 were oil or mostly oil and 

Oil/Gas Gas/Oil Gas 

1 0 0 

NA NA NA 

0 0 2 

0 0 1 

NA NA NA 

1 0 1 

NA NA NA 

4 1 15 

0 0 2 

0 0 0 

0 0 0 

0 0 2 

2 0 3 

2 3 7 

0 0 1 

0 1 3 

0 0 2 

0 0 1 

0 0 0 

10 5 40 

45 were gas or mostly gas; a ratio of 2:1. Evidently, oil 
from Ordovician (13) and Eocene (8) source rocks in the 
United States are unimportant on a worldwide scale 
(Ulmishek and Klemme, 1990). 

SUMMARY 

A petroleum system includes all the hydrocarbons 
that originated either from a pod of mature source rock 
or, in the case of microbial gas, from an immature 
source rock. More simply, sedimentary organic matter 
must be heated over time or acted upon by microbes to 
generate petroleum. Sedimentary rock matter dumped 
into basins is the framework into which this organic 
matter and the resultant petroleum products move and 
reside. As discussed above, the areal distribution of or­
ganic matter for any particular geologic age can range 
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from local to continental, and these rock intervals are 
unevenly distributed over geologic time. On a worldwide 
scale only six source-rock intervals generated over 90 
percent of known oil and gas (Ulmishek and Klemme, 
1990). The amount, type, and thermal maturity of this 
organic matter must have determined the amount and 
type of petroleum generated. 

The observation that laterally continuous source 
rocks are commonly involved in more than one petrole­
um system is important, because then regional studies of 
organic-rich rocks between systems can be used to better 
predict the amount and type of organic matter within a 
system where it is presently overmature. An organic-rich 
rock between systems is immature and is frequently pen­
etrated by exploratory wells or is exposed at the surface 
where it can be examined, sampled, and analyzed. In 
contrast, the same organic-rich rock within a system is 
mature to overmature at maximum burial depth, is com­
monly too deeply buried to be sampled, and when ana­
lyzed can give a geochemical profile of a depleted 
source rock. 

By examining a source rock at different levels of 
maturity between and within petroleum systems, and 
comparing these results with the amount and type of re­
coverable hydrocarbons (cumulative production plus 
known reserves), then the efficiency of different petrole­
um systems can be compared to better assess the ulti­
mate hydrocarbon potential of a system. For example, a 
map showing the richness, type, and thermal maturity of 
Upper Devonian organic-rich rocks for North American 
is necessary if reasonable calculations to determine the 
amount of hydrocarbons generated are to be compared to 
recoverable hydrocarbons by the petroleum system meth­
od. Properly done, this exercise may provide a reason­
able estimate of total amount of ultimately recoverable 
hydrocarbons by system. 

The uneven distribution of source rocks over geo­
logic time indicates that only certain intervals need to be 
mapped over large areas. Certainly in the United States, 
strata in the Late Devonian, Cretaceous, and possibly the 
Ordovician intervals need to be addressed on a continen­
tal scale. Tertiary source rocks need to be addressed on a 
much smaller scale, such as the Miocene of California. 
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A Concise Historical and Current Perspective 
on the Kinetics of Natural Oil Generation 

By Michael D. Lewan1 

Kinetics is the branch of chemistry that studies the 
time dependency of reactions and the factors controlling 
reaction rates. The importance of time as well as temper­
ature in oil-shale retorting (Franks and Goodier, 1922; 
Maier and Zimmerley, 1924) and natural coalification 
(Huck and Karweil, 1955; Karweil, 1955) was estab­
lished long before it was recognized as being important 
in oil generation. Habicht (1964) showed the importance 
of oil-generation kinetics in identifying effective source 
rocks in the Gifhom trough. His approach was theoreti­
cally based on the Arrhenius kinetic parameters and 
first-order reaction rate suggested by Abelson (1964 ). 
Subsequently, Philippi (1965) showed the importance of 
time in assessing the amount of oil generated in the Ven­
tura and Los Angeles basins. His approach was empiri­
cally based on organic geochemical data from subsurface 
wells. Although neither of these studies established an 
explicit method for evaluating oil-generation kinetics, 
they demonstrated the importance of time as well as 
temperature in natural oil generation. 

Tissot (1969) presented an explicit kinetic model 
for oil generation, which was later enhanced by Tissot 
and Espitalie (1975). This approach assumed an overall 
reaction of partial decomposition of kerogen to oil by 
means of six parallel, first-order reactions. Changes in 
the rate of each of these reactions with temperature were 
described by the Arrhenius equation, in which each of 
the six reactions had its own activation energy and fre­
quency factor. In addition to presenting six sets of kinet­
ic parameters for type II kerogens, Tissot and Espitalie 
(1975) also presented six sets of kinetic parameters for 
type I and type III kerogens. Each of the six parallel re­
actions has an assigned activation energy that is the 
same for all three major kerogen types, but the frequen­
cy factor and amount of kerogen consumed for each of 
the six parallel reactions vary among the three major 
kerogen types. This discrete distribution of activation en­
ergies assumes that only six types of bonds with known 
bond strengths are cleaved during oil generation. Tissot 
and Welte (1978, p. 504-505) stated that these prescribed 

1 U.S. Geological Survey, Denver, Colo. 
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kinetic parameters are based on extractable bitumen from 
naturally and experimentally matured source rocks, but 
the rationale and methods by which these values were 
determined were not presented. Although the derivation 
of kinetic parameters in this approach is not explicit, it 
revealed the possibility that one time-temperature rela­
tionship may not be sufficient to describe oil generation 
from all three major kerogen types. 

During this same time period, another approach 
based on coalification was being developed. A kinetic 
model for changes in reflectivity of vitrinite macerals 
with increasing coal rank was presented by Lopatin 
( 1971) and later modified by Lopatin and Bostick 
(1973). This model was calibrated with naturally ma­
tured coals and was based on the premise that the reac­
tion rate doubled for every 1 0°C increase in temperature. 
The time-temperature indices derived from this approach 
were then deductively related to stages of oil generation 
by Hood and others (1975) and Lopatin (1976). The rea­
sonable predictions the Lopatin approach gave for vitri­
nite reflectances without computer support made it 
particularly popular in petroleum exploration applica­
tions (Waples, 1980). However, its inherent premise that 
bond cleavage (thermal cracking) in oil generation from 
all types of kerogen is the same as bond formation (aro­
matic condensation) in vitrinite maturation was clearly 
an oversimplification. Although this approach may be 
considered a good measure of thermal stress experienced 
within a subsiding sedimentary basin, it is not necessari­
ly a good measure of oil generation. 

Although an unspecified amount of experimental 
pyrolysis data were included in the kinetic model by Tis­
sot and Espitalie (1975), both Arrhenius and Lopatin 
models were primarily dependent up to this time on 
available subsurface well data. Uncertainties in these 
natural data concerning paleotemperatures and gradients, 
uplift and erosion events, and rock unit ages encouraged 
the use of laboratory pyrolysis in developing kinetic 
models. In the years following 1975, the emphasis on 
laboratory pyrolysis in organic geochemical research in­
creased significantly as recorded by the sharp increase in 
number of publications on the subject (Barker and 
Wang, 1988). 



Three categories under which these laboratory py­
rolysis experiments may be grouped include open anhy­
drous pyrolysis, closed anhydrous pyrolysis, and hydrous 
pyrolysis. Open anhydrous pyrolysis involves removing 
vaporized products from the pyrolysis chamber in which 
they are generated in the absence of liquid water. The 
product is removed by either a carrier gas that sweeps 
the vapor products into an external detector (Barker, 
1974; Claypool and Reed, 1976) or an external cold trap 
that condenses liquids from self-purging vapor products 
(Heistand, 1976; Wildeman, 1977). Closed anhydrous 
pyrolysis maintains pyrolysis products in the pyrolysis 
chamber with no liquid water being present. Obtaining a 
liquid product by this method usually requires extracting 
the sample with an organic solvent after the experiment 
has been completed (Harwood, 1977). Hydrous pyrolysis 
involves pyrolyzing a sample in the presence of liquid 
water in a closed reactor. If the proper time and temper­
ature conditions are applied to a potential source rock, 
this method generates an expelled oil that accumulates 
on the water surface (Lewan and others, 1979; Winters 
and others, 1983). 

In the late 1970's and early 1980's, the prolifera­
tion in pyrolysis studies was primarily focused on under­
standing the processes involved in petroleum formation 
and on evaluating hydrocarbon potential of source rocks. 
It was not until the mid-1980's that emphasis was pl~ced 
on laboratory pyrolysis in the derivation of kinetic mod­
els for oil generation. The two major pyrolysis approach­
es employed during this time were non-isothermal 
experiments with open anhydrous pyrolysis (Ungerer, 
1984; Braum and Burnham, 1987) and isothermal experi­
ments with hydrous pyrolysis (Lewan, 1985). 

The non-isothermal approach using open anhy­
drous pyrolysis for natural oil-generation kinetics was 
first presented by Ungerer (1984) and later enhanced by 
Ungerer and others (1986). In the latest version of this 
approach (Ungerer and Pelet, 1987), aliquots of isolated 
kerogen are subjected to Rock-Eval pyrolysis at three 
different heating rates (for example, 0.34, 4.5, and 56°C/ 
min) that span at least two orders of magnitude. The 
flame-ionization responses to the volatile hydrocarbons 
generated at the three different heating rates are modeled 
by assuming that as many as 20 parallel first-order reac­
tions are responsible for the resulting yield curves. These 
hypothetical reactions are assigned regularly spaced acti­
vation energies at 2 kcaVmol intervals between 40 and 
80 kcal/mol. A nonlinear optimization computer program 
(OPTIM) calculates a frequency factor and amount of 
kerogen consumed for each activation-energy interval 
that best reproduces the hydrocarbon-generation curves 
for all three heating rates. Results of this approach pre­
sented by Tissot and others (1987) showed narrow acti­
vation-energy distributions for oil-prone kerogens, with 
over 70 percent of hydrocarbon generation from type II 

kerogens being described by only two parallel reactions 
within 4 kcaVmol of one another and over 85 percent of 
hydrocarbon generation from type I kerogen being de­
scribed by a single parallel reaction within a 2 kcal/mol 
interval. This kinetic approach has been shown to model 
changes in hydrocarbon yields as determined by Rock­
Eval pyrolysis in the Mahakam Delta (Ungerer and Pe­
let, 1987), but the relationship between total 
hydrocarbon yields from Rock-Eval pyrolysis and gener­
ation of expelled oil in nature needs further clarification. 

Braum and Burnham (1987) discussed the impor­
tance of using a distribution of activation energies in de­
scribing hydrocarbon generation from non-isothermal 
experiments. In addition to the discrete distribution em­
ployed by Ungerer and others (1986), they also consid­
ered the use of a Gaussian distribution in their 
discussion. This latter approach assumes that hydrocar­
bon generation consists of a number of first-order paral­
lel reactions, which have the same frequency factor but 
different activation energies that collectively have a 
Gaussian distribution. Burnham and others (1987) com­
pared these curve-fitting approaches with data generated 
by Rock-Eval pyrolysis. The discrete distribution fits the 
experimental data better than the Gaussian distribution, 
and when extrapolated to geological conditions, the 
Gaussian distribution predicts major hydrocarbon gener­
ation 1 0°C to 15°C lower than the discrete distribution. 
Burnham (1991) also did a similar comparison of curve­
fitting approaches with a modified Fischer assay appara­
tus. This type of open anhydrous pyrolysis generates a 
condensable oil, which may be kinetically described 
through a series of isothermal experiments. Unfortunate­
ly, the amount of oil generated is inversely dependent of 
heating rate, which when extrapolated to geological heat­
ing rates results in the total absence of a generated oil. 
In addition to questioning the validity of employing open 
anhydrous pyrolysis in determining kinetics for natural 
oil generation, extrapolating the curve-fitting kinetic 
models from non-isothermal experiments to geological 
conditions has also been questioned (Lakshmanan and 
others, 1991). 

The approach using isothermal hydrous-pyrolysis 
experiments for natural oil-generation kinetics was first 
presented by Lewan (1985). Aliquots of a rock sample 
are subjected to hydrous pyrolysis at temperatures typi­
cally in the range of 300°C to 365°C for 72-hour dura­
tions. A first-order rate constant is determined from the 
amount of expelled oil generated at each temperature 
and plotted on Arrhenius coordinates (natural log of rate 
constant versus reciprocal of absolute temperature). The 
resulting plots are adequately described by a straight 
line, which provides an activation energy and frequency 
factor in the classical kinetic approach (Lewan, 1985; 
Lewan and Buchardt, 1989). Extrapolation of these ki­
netic parameters to lower temperatures and longer dura-
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tions gives reliable predictions of oil generation from 
.source rocks subsiding in sedimentary basins (Hunt and 
others, 1991). Two important concepts that emerged 
from this experimental approach were that (1) rates of 
oil generation may vary significantly for type II kero­
gens and (2) rates of oil generation from type II kero­
gens increase in part with their organic sulfur content. 
The former concept further accentuated the limitations of 
the Lopatin approach as discussed by Wood (1988), and 
the latter concept was also deduced from natural data by 
Orr (1985). 

Unlike kinetics based on total hydrocarbon evolu­
tion from kerogen decomposition by Rock-Eval pyroly­
sis, hydrous pyrolysis more closely simulates nature and 
determines the kinetics of oil generation from the partial 
decomposition of bitumen (Lewan, in press a). As noted 
by Burnham and others (1987), the inability of Rock­
Eval pyrolysis to distinguish between bitumen, oil, and 
gas results in a broader oil window than that derived 
from hydrous pyrolysis kinetics. Another consideration 
is the importance of rapid vaporization of pyrolysis 
products in obtaining a volatile product from open anhy­
drous pyrolysis. Lewan (in press b) noted that this proc­
ess is not operative in subsiding sedimentary basins, but 
formation of an immiscible oil as observed under hy­
drous pyrolysis is operative in subsiding sedimentary ba­
sins. The importance of water in the natural generation 
and expulsion of oil is continually becoming more evi­
dent, and further research on the kinetics of oil genera­
tion by hydrous pyrolysis is needed. As stated by 
Gardiner (1969), "If you should find that chemical kinet­
ics is an underdeveloped science compared with other 
aspects of chemistry, be tolerant and recognize that time­
dependent problems are intrinsically more difficult than 
equilibrium ones, or be challenged and spend some of 
your scientific lifetime improving the situation." 
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Role of Microbial Processes in Petroleum Systems 

By jerry L. Clayton 1 

Microorganisms are ubiquitous in most natural 
aquatic systems and pore waters of shallowly buried sed­
iments (burial depths equivalent to temperatures less 
than about H>0°C). It is widely recognized that microor­
ganisms play major roles in global chemical cycles (for 
example, carbon, sulfur, iron, nitrogen, and manganese) 
(Blackburn, 1983; J~rgensen, 1983; Krumbein and 
Swart, 1983; Nealson, 1983; Burdige and Nealson, 1986; 
Aller and Rude, 1988; Lovley and Phillips, 1988; Lovley 
and others, 1987, 1989a,b, 1990). This report reviews 
the roles of bacteria in the following processes that are 
important components of petroleum systems: (1) sedi­
ment diagenesis, (2) degradation of crude oil, and (3) 
formation of crude oil and natural gas. 

The focus of this paper is on bacteria that mediate 
coupled oxidation-reduction reactions using both organic 
and inorganic substrates as a means of obtaining both 
carbon and the energy necessary for metabolic processes. 
These types of bacteria obtain carbon from pre-existing 
organic matter (heterotrophy) or C02 (autotrophy) and 
use either organic or inorganic reactions as a source of 
energy. Some bacteria obtain carbon from dissolved C02 

and energy from photosynthesis via anaerobic pathways. 
Because of the light requirement imposed by photosyn­
thesis, such bacteria are restricted to the phototrophic 
zone of the water column or to the uppermost sediment 
layers where the water is shallow enough to allow nearly 
unimpeded light penetration. Green and purple sulfur 
bacteria (Chlorobiaceae and Chromatiaceae) are impor­
tant groups of anaerobic photosynthetic bacteria. Aerobic 
photosynthesis is carried out by blue-green bacteria liv­
ing in the upper, phototrophic water column and on the 
surface of bottom sediments. 

Classical methods of classifying bacteria are based 
on morphology, gram stain reaction, cultural characteris­
tics (that is, the kind of growth on media of different 
compositions), and biochemical reactions such as sugar 
fermentations and amino acid and vitamin requirements. 
More recent classification methods are based on the 
composition of nucleic acids (Fox and others, 1980). For 
understanding bacterial effects in petroleum systems, a 

1 U.S. Geological Survey, Denver, Colo. 
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classification based on energy and carbon source is con­
venient, because this type of classification groups the or­
ganisms according to inorganic products released into 
the sediment. These inorganic products are important in 
the formation or degradation of petroleum in that they 
play a role in mineral diagenesis or affect the carbon 
budget of the system. Accordingly, bacteria can be clas­
sified into two major groups of importance in petroleum 
systems (table 4). The two groups listed in table 4 in­
clude both aerobic and anaerobic types. Autotrophic bac­
teria use C02 as a source of carbon for synthesis of 
biomolecules and obtain the energy necessary for synthe­
sis from light (photosynthesis) or from oxidation of inor­
ganic substrates (chemosynthesis). These bacterial 
process are important in organic matter and sediment di­
agenesis. Heterotrophic bacteria generally use pre-exist­
ing organic compounds and are particularly important in 
degradation of petroleum. 

In sediments, bacterial activity generally decreases 
with increasing depth of burial owing to depletion of nu­
trients, changing pH or oxidation-reduction potential, ac­
cumulation of toxic by-products of metabolism, or 
increasing temperature. Within this overall trend of de­
creasing activity, zonation occurs in which different 
types of bacteria inhabit successive sediment layers in 
response to changing environmental conditions (Pon­
namperuma, 1972; Claypool and Kaplan, 1974; Yoshida, 
1975; Champ and others, 1979; Froelich and others, 
1979; Winfrey and others, 1981; Reeburgh, 1983). This 
succession of bacterial populations can be divided into 
three zones: (1) the aerobic zone; (2) the anaerobic sul­
fate-reducing zone; and (3) the methanogenesis zone 
(Claypool and Kaplan, 1974; Rice and Claypool, 1980; 
Lovley and Goodwin, 1988). It is important to note that 
aerobic metabolism may occur also in porous rocks at 
greater depth where hydrodynamic conditions allows in­
flux of oxygenated, meteoric water. This is the condition 
that allows aerobic, bacterial degradation of petroleum in 
a reservoir. 

SEDIMENT DIAGENESIS 

Chemical diagenesis in sediments includes authi­
genic mineral precipitation, replacement, and solution. 



Table 4. Classification of bacteria according to energy source and source of nutrition (carbon) 

Bacteria Energy source Carbon source 

Autotrophs ----------------------Photosynthesis (light energy) -------------------------------- C02 

Chemosynthesis (oxidize inorganics) ----------------------- C02 

Heterotrophs -------------------Oxidation (oxidize organics)--------------------------------- Organic compounds 
(some use C<>2,) 

Bacterial processes can play a major role in diagenetic 
reactions involving not only organic materials, but inor­
ganic mineral phases as well. These processes are impor­
tant in petroleum systems because they can affect 
reservoir properties. 

In general, bacterial metabolism under anaerobic 
conditions increases pore water alkalinity and decreases 
Eh. In the sulfate-reducing zone, SO/- (sulfate), HS­
(sulfide), and HC03- (bicarbonate) are among the most 
important dissolved species (Claypool and Kaplan, 1974; 
Goldhaber and Kaplan, 1974). In the methanogenesis 
zone, CH4 and H2 are among the most common dis­
solved species. Precipitation of iron sulfides and carbon­
ate minerals are common diagenetic effects of 
accumulation of bacterial end-products in pore waters. 
Additional bacterial processes of importance in diagene­
sis are iron and manganese reduction (Aller and Rude, 
1988; Lovley and others, 1987, 1988, 1989a,b, 1990; 
Lovley and Phillips, 1988). Iron, sulfate, and carbonate 
reduction are particularly important because these reac­
tions affect pore water concentrations of species in­
volved directly in mineral reactions. However, bacterial 
processes in general affect the pore water pH, Eh, and 
ionic strength even though the inorganic substrates may 
or may not participate directly in mineral diagenetic re­
actions. Therefore, mineral stabilities in pore waters of 
organic-rich sediments can be affected indirectly by bac­
terial activity. 

PETROLEUM DEGRADATION 

Bacterial degradation can significantly diminish the 
economic value of a petroleum accumulation because of 
increased recovery and refinery costs. In addition, bacte­
rial alteration of petroleum can be so extensive that geo­
chemical evaluation of thermal maturity, source 
correlation, and secondary migration becomes nearly im­
possible. 

Effects of biodegradation of petroleum are summa­
rized by Connan (1984) and references therein. Accord­
ing to Connan (1984), the requirements for aerobic 
biodegradation of petroleum include (1) moving water 
(meteoric), (2) oil-water contact since bacteria live in the 

aqueous phase, (3) supply of nutrients such as nitrogen 
and phosphorus, and (4) proper temperature (less than 
about 100°C). 

FORMATION OF CRUDE OIL 
AND NATURAL GAS 

Bacteria play important roles in the accumulation 
of sedimentary organic matter (formation of potential pe­
troleum source rocks) and in generation of methane nat­
ural gas resources. In well-oxygenated sedimentary 
environments, oxidation of organic matter by aerobic 
bacteria contributes to poor preservation of organic mat­
ter of the type contained in effective petroleum source 
rocks (hydrocarbon-generating organic matter). Inhibi­
tion of aerobic decay by lower oxygen levels can con­
tribute to preservation of better quality (more lipid-rich 
or oil-prone) organic matter. Harvey and others (1986) 
showed that degradation and mineralization of organic 
matter proceeds more rapidly under aerobic than under 
anaerobic conditions. Further, Harvey and others (1986) 
presented evidence that high organic carbon content in 
sediments inhibits bacterial degradation of lipids, so that 
in organic-rich sediments positive feedback may occur 
between preservation of large amounts of organic matter 
and depressed bacterial degradation of lipids. 

It is important to note, however, that complete oxi­
dation of organic matter is possible in anaerobic sedi­
ments by bacteria using nitrate, sulfate, iron, or 
manganese as the sole electron acceptor (Pfenning and 
others, 1981; Starns and others, 1985; Szewzyk and 
Pfenning, 1987; Lovley and Phillips, 1988). Other fac­
tors also affect preservation of organic matter, such as 
rate of organic productivity in the water column, sedi­
mentation rate, sediment particle size, and bioturbation, 
but bacteria are clearly important components in the 
overall process. 

Bacterial generation of gas is thought to account 
for about 20 percent or more of the world's resource of 
natural gas (Rice and Claypool, 1980). Methane genera­
tion is accomplished not by a single organism, but rather 
by a consortium of bacteria. Anaerobic bacteria produce 
extracellular enzymes that hydrolyze carbohydrates and 
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proteins to produce simple sugars and amino acids. The 
sugars and amino acids are then converted to ketoacids 
(pyruvate), hydroxy acids (lactate) and fatty acids (for­
mate, acetate, propionate), C02, and H2• Proton-reducing 
bacteria convert protons to hydrogen gas, which in tum 
is used by the methanogenic bacteria as a reducing 
agent. Methanogenic bacteria reduce the C02 by reaction 
with H2 or split acetate produced from the preceding re­
actions to form methane and C02• 

The methanogens are a diverse group of bacteria 
that exhibit a wide tolerance of environments including 
virtually every habitat in which anaerobic degradation of 
organic matter occurs (Jones and others, 1983). Metha­
nogens have been isolated from freshwater and marine 
sediments, and extreme environments such as geothermal 
springs and deep-sea hydrothermal vents (Huber and oth­
ers, 1982; Jones and others, 1983). Methanogenic bacte­
ria are most active at pH 6.5 to 8.0 and at temperatures 
of 4°C to 45°C (Zeikus and Winfrey, 1976). This "cos­
mopolitan" status of methanogens is attributable to their 
unique mode of metabolism (methane generation) and 
the fact that the compounds that serve as substrates are 
end products of other metabolic processes (Jones and 
others, 1983). 

ROLE IN EXPLORATION 

Besides their importance in sedimentary processes 
that form some rocks or reservoirs and in petroleum al­
teration, bacteria contribute biological marker com­
pounds to sedimentary organic matter. These biomarkers 
are present in petroleum as well and can be useful indi­
cators of thermal maturity and the depositional setting of 
the source rock or can be used for oil-source rock or oil­
oil correlation studies to identify petroleum systems. 

FURTHER WORK 

A number of studies have demonstrated that bacte­
ria thrive in both oxygenated and anoxic marine and 
freshwater sediments, and isotopic evidence indicates 
clearly that bacterial metabolites are involved in various 
mineral reactions. Despite these field studies and anum­
ber of laboratory studies in which bacteria have been 
studied under a wide range of growth conditions, consid­
erable uncertainty remains with respect to constraints on 
bacterial activities in sedimentary environments. The 
principal limitations are certainly availability of nutri­
ents, temperature, pH, Eh, osmotic pressure, toxicity of 
metabolic products, and competition among various bac­
teria for common substrates. The porosity, permeability, 
and hydrodynamic regime of a particular setting are also 
important because these factors influence the growth fac-
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tors listed above. However, the precise interplay of these 
factors with respect to either individual or cumulative 
bacterial processes is imperfectly understood. Improved 
understanding of the ecological requirements of various 
bacterial communities and their effects on the accumula­
tion and composition of sedimentary organic matter is 
important for correlations and source-rock studies in pe­
troleum systems. 

The depth in a sedimentary basin over which bac­
teria remain active or viable is poorly established. Meth­
anogens are known to remain active at temperatures as 
high as 85°C (Postgate, 1984) if other suitable growth 
factors are present, and some sulfate-reducing bacteria 
have been reported at 100°C (Stetter and others, 1987). 
Another question is whether bacteria remain viable, even 
though inactive, during relatively deep burial (accompa­
nied by high temperatures) so that when erosion occurs 
and the environment becomes more hospitable bacterial 
growth might be revitalized. 

Inorganic computer models of diagenetic reactions 
leave out possible effects of bacterial processes. Bacteri­
al processes could introduce a large uncertainty into 
these models because metabolic pathways sometimes fa­
vor reactions (via coupled or multiple biochemical path­
ways) not predicted by thermodynamics. These bacterial 
processes could dramatically affect the pore water com­
position during early diagenesis in an unpredictable 
manner. Furthermore, as discussed previously, pore wa­
ter Eh and pH can be significantly shifted by bacterial 
metabolism. Therefore, computer models of mineral dia­
genesis in organic-rich sediments need to allow for com­
positional changes in reactions mediated by bacteria. 
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Coalbed Methane 

By Ben E. Law1 

INTRODUCTION 

Estimates of coalbed methane resources in-place in 
the United States range from 72 to 860 trillion cubic feet 
(tcf), with most estimates ranging from 300 to 500 tcf 
(Rightmire, 1984). Cumulative gas production from coal. 
beds through January 1991 was about 400 billion cubic 
feet. Commercial coal bed gas production in the United 
States began in about 1977 from the San Juan basin of 
New Mexico and Colorado and the Black Warrior basin 
of Alabama. Since 1989, gas production has expanded 
into the Piceance basin of Colorado, the Powder River 
basin of Wyoming, and the Cherokee basin of Kansas. In 
the Raton basin of Colorado and New Mexico, gas pro­
duction is awaiting pipelines, and in the northern Appa­
lachian region, where a few coalbed gas wells have been 
producing gas since the 1940's, the issue of gas owner­
ship is a large obstacle to exploration and production. 
Additional areas with production potential, such as the 
Green River basin of Wyoming, have been hampered by 
environmental problems related to water disposal. 

Internationally, there is a growing interest in coal­
bed methane as an energy source. Exploration for coal­
bed methane has been initiated in Canada, Australia, 
China, Russia, and several European countries. Ironical­
ly, in some of these countries activity has been spurred 
by a desire to alleviate environmental problems associat­
ed with coal mining and the direct utilization of coal. 

The continued expansion of coalbed methane ex­
ploration and production into additional coal-bearing re­
gions will require an improved understanding of these 
accumulations, as well as favorable economic conditions. 
Nearly all of the current research in the United States is 
in the Black Warrior and San Juan basins, where there is 
an emphasis on engineering and production aspects. The 
geologic variables that have been determined to be im­
portant in coalbed-methane accumulation and production 
include rank, pressure, temperature, permeability, and 

1U.S. Geological Survey, Denver, Colo .. 
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moisture. Although the roles of these geologic criteria 
are known in a general way, there is a need to determine 
the relative importance of these variables in different 
coal-bearing basins. 

RANK 

It is well known that gas content increases with in­
creasing coal rank (Juntgen and Karweil, 1966; Meiss­
ner, 1984). Low-rank coals (lignite through high-volatile 
C bituminous) contain as much as 80 standard cubic feet 
per ton (scf/ton), whereas higher rank coals contain as 
much as 700 scf/ton. The gas in low-rank coal is usually 
biogenic and gas in high-rank coal is thermogenic. 
Low-rank coals are usually normal or under-pressured 
and high-rank coals are commonly over- or underpres­
sured. In areas of high-rank coals, such as the San Juan 
basin, economically recoverable gas accumulations are 
pervasive and are independent of structural and 
stratigraphic traps. Since most coal-gas research 
has been conducted in high-rank coals, there is some 
uncertainty regarding the nature of coalbed methane 
accumulations in low-rank coals. Additional research is 
needed to more accurately determine the relationships 
among coal rank, gas generation, gas content, and gas 
composition. 

PRESSURE AND TEMPERATURE 

The amount of gas contained in coal of a given 
rank is related to pressure and temperature (Juntgen and 
Karweil, 1966; Meissner, 1984); with increasing pres­
sure, gas content increases and with increasing tempera­
ture, gas content decreases. In general, overpressured 
coals are more productive than normal or underpressured 
coals, and it is usually necessary to reduce formation 
pressure to initiate gas production. 

Current research is mainly on engineering aspects 
of pressure that include refining methods of measuring 
the adsoption capacity of coal and the effects of confin­
ing pressure on coal permeability. Geologically, there 
are only a few pressure and temperature studies related 
to coal-gas (Meissner, 1984; Kaiser and others, 1991). 



Additional research is needed to examine and relate the 
pressure and temperature histories of coal to present-day 
conditions. 

PERMEABILITY 

The principal permeability pathway in coal is 
through the cleat system (fractures). The cleat system in 
coal is defined by an approximately orthogonal set of 
fractures referred to as face and butt cleats. Face cleats 
constitute the dominant set and butt cleats the subordi­
nate set. Due to the better development of face cleats, 
permeability in coal commonly exhibits varying degrees 
of anisotropy, with the better development parallel to the 
face cleat direction. In the absence of effective cleat per­
meability, economic levels of gas production from coal 
beds would be impossible. 

The origin of cleats is unknown, although hypothe­
ses have been made that include tectonic deformation, 
shrinkage due to moisture loss, and extension related to 
the relaxation of stress (Moore, 1922; Price, 1966; Ting, 
1977). The factors that are known to affect the characteris­
tics of cleats include bed thickness, coal quality (ash and 
maceral content), rank, and tectonic deformation (Macrae 
and Lawson, 1954; Ammosov and Eremin, 1960; Ting, 
1977). While these studies and more recent basinwide 
studies in the Piceance and San Juan basins (Grout, 1991; 
Tremain and others, 1991) facilitate characterization of the 
cleat system, they do not necessarily characterize the per­
meability of cleats under in situ confining pressures; at 
depth, permeability may be ineffective due to high confm­
ing pressures and a closed cleat system. 

MOISTURE 

One of the largest obstacles to economic recovery 
of coal bed methane is water. The presence of water in­
hibits desorption of gas from the coal and flow to the 
wellbore (Joubert and others, 1973). Consequently, coal 
beds are commonly dewatered to a point at which gas 
begins to desorb from the matrix. The period of time 
necessary to accomplish sufficient dewatering is highly 
variable and in some cases is never reached. The success 
of dewatering efforts depends on development of the 
cleat system and on the source of water, which may be 
from recharge at the outcrop, from adjacent aquifers, or 
from inherent moisture in coal. In those cases where the 
source of water can be determined, the feasibility of a 

dewatering program can be evaluated more objectively. 
However, current methods of determining the source of 
water are unreliable. 
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Turbidity Current Processes 

By William R. Normark1 and David j.W. Piper2 

INTRODUCTION 

Generalized facies models for turbidite deposits 
provide only a first-order interpretation of the detailed 
evolution of turbidite sequences and their relationship to 
sea-level fluctuations and source-area tectonism. A more 
powerful approach is to analyze a turbidite depositional 
system in terms of its sediment source, the processes 
controlling initiation of turbidity flows, how the result­
ing turbidity currents evolved during flow, the relation 
of flow characteristics to morphologic development of 
both the pathway(s) and depositional areas, and how 
these flows relate to depositional facies. 

Although our understanding of flow processes has 
been hampered by the difficulty of direct observation or 
monitoring turbidity currents at sea, recent advances in 
both field observation and numerical modeling indicate 
that the variety of turbidity-current flows has been un­
derestimated in the past. An increasing body of evidence 
shows that many, if not most, recognizable turbidites 
were deposited from quasi-steady flows that last for 
many tens of hours. This conclusion is radically different 
from the catastrophic, high-density surges (volume con­
centration as much as 6 x 10-1

) envisaged by earlier 
workers (Kuenen, 1950; Heezen and Ewing, 1952). Bag­
nold (1962) showed that grain-to-grain collisions prevent 
turbulent transport of sediment above sediment concen­
trations of 9 x 10-2 (volume concentration). Recent work 
further shows that much of the sediment transport takes 
place in flows with sediment concentrations that are well 
below this limiting value or that approach it only near 
the base of the flow. 

Pertinent research from the last two decades (see 
review in Norm ark and Piper, in press) that exemplifies 
the broad range in the character of turbidity currents is 
summarized in three sections that reflect both the nature 
of the data and the degree of change in our understand-

1U.S. Geological Survey, Menlo Park, Calif. 

2 Atlantic Geoscience Centre, Geological Survey of Canada, 
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ing of the processes and products of these currents. 
These sections are (1) initiation processes, including flu­
id-flow and sediment-failure mechanisms; (2) the flow of 
turbidity currents in channels, recognizing that the 'chan­
nel properties reflect a rather limited range of flow con­
ditions that might exist within any given turbidite 
system; and (3) inferences of flow processes from the 
deposits left by turbidity currents. This review concludes 
with the implications for facies distribution in the result­
ing turbidite deposits. Figure 6 and the expanded refer­
ence section parallel the text organization. 

INITIATION 

Significant new insights on processes that generate 
sustained turbidity currents have come from studies of 
flows generated by the injection of concentrated sedi­
ment suspensions that result either from river discharge 
or storm surges, and flows that evolve from mass fail­
ures on deltaic and basin slopes. Both the grain-size dis­
tribution and the volume of material available to form a 
turbidity current reflect the primary source area and the 
effects of any intermediate staging areas where sediment 
may temporarily accumulate before being remobilized. 
In addition, flow characters such as the speed, thickness, 
and sediment distribution within the flow itself reflect 
the source characteristics. Figure 6A shows our under­
standing of the relation between initiation processes for 
turbidity currents and sediment input parameters. Differ-

~Figure 6. Schematic representation of the principal 
factors controlling initiation, transport, and deposition in 
turbidite systems (developed from figures in Normark and 
Piper, in press). A, Typical total sediment volume and pe­
trology/grain-size distribution for various types of flow ini­
tiation. B, Principal processes acting during channelized 
phases of sediment transport. Cross section shows general 
characteristics of sandy, mixed, and muddy turbidity cur­
rents; note that each of these types can show great varia­
tion in total size and thus flow thickness and duration. C, 
Typical sediment deposits resulting from different types of 
flow in a simple channel/levee system leading to a deposi­
tional lobe. 
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ent initiation processes involve different volumes and 
grain-size compositions and reflect the local geographic 
settings. Turbidity currents from reef-edge failures are 
generally much smaller but with a larger proportion of 
coarser sediment than those generated by failures on pas­
sive-margin slopes (fig. 6A). 

Initiation by River Discharge 

The direct, or hyperpycnal, flow of turbid rivers and 
tailings discharge into lakes has long been known to result 
in turbidity currents (Gould, 1951; Lambert and others, 
1976; Normark and Dickson, 1976; Weirich, 1984). For a 
turbidity current to develop from an initial suspension 
flow, the suspension flow must maintain a sufficient veloc­
ity (through inertial effects or external forcing) until there 
is a sufficient gradient for a turbidity current to be self­
sustaining. Experimental studies and observations of flows 
into lakes and fjords have identified those conditions in 
which the gradient and suspended sediment concentration 
are sufficient for the turbidity-current flow to accelerate. 
Under these conditions, the flow can erode and put more 
sediment into suspension, thus providing additional power 
to the current This positive feedback situation is referred 
to as "ignition" (Parker, 1982). 

Initiation of Currents by Storms 

Ignitive flow of coastal sand down submarine can­
yons has been documented where rip currents associated 
with storm surges catastrophically remove sand from 
canyon heads (Fukushima and others, 1985). This mech­
anism is potentially significant wherever there is a nar­
row shelf and canyons intersect the littoral-drift system; 
thus, such environments would have been more common 
during Pleistocene low stands of sea level. 

Data from a suite of displaced current-meter moor­
ings indicate that turbidity currents formed as a result of 
a storm surge across a reef front related to the passage of 
Hurricane Iwa through the Hawaiian Islands on 23 No­
vember 1982 (Dengler and others, 1984a,b). Carbonate 
turbidites and debris flows are common along carbonate 
margins, and many adjacent basinal turbidites show mul­
tiple entry points (Mullins, 1983), consistent with a 
storm-surge trigger for the flows; the data do not ex­
clude, however, initiation resulting from seismic shaking. 

Sediment Failure Initiation Processes 

Most turbidity currents are commonly thought to 
result from seismically triggered mass failures, but there 
are remarkably few studies that document the relation 

24 The Petroleum System-Status of Research and Methods, 1992 

between sediment failure and turbidity-current flow. 
Some of the issues involved in the seismic initiation of 
turbidity currents are more clearly defined from recent 
studies of the 1929 Grand Banks turbidity current. The 
1929 event on the Laurentian Fan off eastern Canada has 
long been regarded as a type example of a catastrophic, 
seismically triggered turbidity current (Heezen and Ew­
ing, 1952; Heezen and others, 1954). Numerous authors 
(the earlier ones reviewed by Menard, 1964; the more 
recent ones by Kirwan and others, 1986) have attempted 
to model the flow as a surge, but this is inconsistent with 
the evidence for prolonged and quasi-steady flow provid­
ed by the regular gravel bedforms and scours on the val­
ley floor and by the sediment-flux requirements (Hughes 
Clarke and others, 1990). Failure did not take place in a 
single large slide; rather, there were numerous shallow 
slides, separated by less disturbed areas of seabed. 
Hughes Clarke (1988) argued that to maintain flow over 
a period of several hours, there must have been a contin­
uous process of transformation of debris flows to turbidi­
ty currents. Silty sediment put into suspension following 
widespread slope failure could have flowed ignitively 
(Piper and others, 1991). The convergent valley pattern 
on the slope above the Laurentian Fan would aid in the 
concentration, maintenance, and acceleration of such ig­
nitive flow. 

Turbidity currents triggered by large earthquakes 
may be recognized from their synchronous development 
in several different drainage basins (Adams, 1989; Anas­
tasakis and Piper, 1991). In ancient basin-plain sequen­
ces, amalgamated beds may be evidence of large 
seismically triggered turbidity currents. Earthquakes are 
not the only triggers for failure of upper-slope sediment, 
where failure also may be induced by storm waves. Not 
all failures, however, will result in ignitive flow produc­
ing turbidity currents. 

Turbidity Current Initiation on Deltas 

Because sediment strength and seabed slope are 
important in determining whether sediments fail, rapidly 
accumulating deltaic sediment, which tends to be under­
consolidated and has relatively low strength, is particu­
larly susceptible to failure, especially where the deposit 
is prograding across steep slopes. Such deltaic environ­
ments also may be the site of hyperpycnal inflow of sed­
iment-laden river discharge that can form a turbidity 
current directly. The high sediment concentrations asso­
ciated with high-bedload-discharge rivers suggest that 
they may be the most likely to initiate turbidity currents. 
Recent case studies of fjord deltas off British Columbia 
and Baffin Island, Canada, provide our best evidence to 
date to evaluate hyperpycnal flow and slumping mecha­
nisms for generating turbidity currents (Prior and others, 



1981, 1982, 1986, 1987; Syvitski and Rein, 1991; 
Syvitski and others, 1987). 

TRANSPORT 

Turbidity currents vary in the total amount of sedi­
ment transported, duration, grain-size distribution of 
transported sediment, velocity, and thickness. Smaller 
currents tend to deposit their load in more proximal en­
vironments; larger currents may transport sediment to 
distal environments. The morphology of deep-sea fan 
systems reflects the cumulative erosional and deposition­
al effects of a large number of turbidity currents, each of 
which interacts with channel conditions in different 
ways. The ,volume of large turbidite beds cannot be 
equated directly to the volume of sediment released in a 
single initiating event; an accelerating large current may 
erode sediment from the floor of any conduits and trans­
port substantial amounts of deep-water sediment, includ­
ing that deposited by previous, probably smaller, 
currents. 

Channel overflow, erosion of channel walls, lateral 
migration of channels, and large-scale depositional bed­
forms are just some of the features that provide insight 
to flow characters that can be used to deduce flow con­
ditions (fig. 6B). Limited field evidence shows that tur­
bidity currents that transport a large proportion of sand 
are thinner than those that are predominantly of mud and 
also that there is a vertical gradient in the grain size of 
sediment transported by a turbidity current. These two 
general trends are a consequence of the dynamics of tur­
bidity-current flow and are accentuated by entrainment 
of water at the top of the flow and erosion of sediment 
under ignitive conditions at the base. They are confirmed 
by flume experiments (Parker and others, 1987) and can 
be predicted by physical modeling (Stacey and Bowen, 
1988a,b). 

Different flows react in different ways to sea-floor 
relief (fig. 6B). A small flow may be confined within a 
fan valley system; a larger flow may be essentially chan­
nelized, but spill over the levees (Hay, 1987b ). Thick 
flows may experience flow-stripping of the upper part of 
the flow at abrupt bends in the channel (Piper and Nor­
mark, 1983), and a very thick flow may move down­
slope with the fan valley acting merely as a local 
roughness element (in cases where the flow thickness 
greatly exceeds the channel depth). 

The role of the Coriolis force, which is a geo­
strophic effect of the Earth's rotation that is proportional 
to latitude and· flow velocity, also reflects flow charac­
ters. Slow, muddy turbidity currents that exceed channel 
relief can develop a significant cross-flow gradient af­
fecting deposition throughout the basin; the effect of 
thin, fast, sandy flows in controlling deposition is more 

pronounced immediately downslope from the channel 
termination zone. 

On mature passive-margin fans such as the Ama­
zon and the Mississippi, there are highly sinuous fan 
channels with continuous levees (Flood and Damuth, 
1987; Kastens and Shor, 1985). Such channels appear in 
equilibrium with bankfull or smaller flows: there is no 
evidence for slightly larger flows that would be expected 
to breach levees on sharp bends, although the possibility 
of very thick flows oblivious to channel relief cannot be 
excluded. This suggests that flows are relatively slow, 
hence of relatively low density and long duration. Tur­
bidity currents initiated by seismic failure (such as the 
Holocene deposits of Navy Fan and Cascadia Channel), 
or by bedload delta processes such as hyperpycnal flow 
or mouth-bar failure (such as Var Fan, late Pleistocene 
deposits of Navy Fan) appear to be much more variable 
in size, and variably erode or deposit on different parts 
of the fan system, thus yielding a more complex mor­
phology (Piper and Normark, 1983; Savoye and Piper, 
1990). 

The deposition of sediment waves on levees (Nor­
mark and others, 1980) requires flow thicknesses sub­
stantially greater than channel depth, in order that 
channel processes do not interfere with the uniformity 
and continuity of the sediment waves. 

DEPOSITION 

Flow Processes Implied from Turbidite Bedforms 

Bedforms in turbidite systems provide evidence for 
the importance of prolonged turbulent fluid flow in the 
deposition of turbidite beds. They also have the potential 
for providing quantitative information on the characteris­
tics of the flow, as has been done in studies of fluvial 
flow. Large-scale scours within turbidite deposits are, 
perhaps, the prime example of features that went unob­
served because of their scale; in outcrop studies, erosion­
al features of this size are generally misidentified as 
channels (Mutti and Normark, 1987). All of the scour 
examples referenced occur in, or immediately downslope 
from, areas of the turbidite deposits where the fan or 
channel gradients indicate that flows could be supercriti­
cal using layer-averaged flow models. In addition, all oc­
cur in areas within or downslope from regions where 
rapid flow expansion is implied, associated with an in­
creased turbulence within the flow. 

The imaging of many deep-sea fans by sidescan 
sonar systems in the last decade has shown that coarse 
fan-valley and lobe sediments have a variety of large­
scale depositional bedforms. These include grayel waves, 
whose wavelength may be a measure of bed shear stress 
(velocity), and regular, large-scale sediment waves 
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developed in predominantly fine-grained sediments 
(principally on levees) and for which the significance of 
size variation is poorly understood. 

Implications for Facies Distribution in Turbidite 
Systems 

The variability in source materials, initiating proc­
esses, and flow characteristics of turbidity currents leads 
to corresponding variability in deposits (fig. 6C). The ar­
chitectural element approach, originally developed for 
fluvial systems (Miall, 1985), has more recently been ap­
plied to turbidite systems (Mutti and Normark, 1987). 
The channel element is a site of both erosion by fast 
ignitive flows, in part through large scours, and rapid 
deposition from smaller flows that have lost their upper 
parts by flow stripping. Ultimate preservation depends 
on base-level fluctuations and fan aggradation. On 
levees, flow expansion of smaller overbank flows leads 
either to erosion or to irregular deposition; thicker, mud­
dy flows lack significant flow expansion across the levee 
and deposit uniform silty muds, in some cases associated 
with large-scale mud waves. 

Smaller muddy and mixed flows undergo flow ex­
pansion at the end of a channel-levee system, depositing 
on a small lobe that may aggrade steadily and be pro­
graded over by the channel-levee system. Larger sandy 
flows tend to erode proximal lobe deposits, and thick 
muddy flows generally undergo little modification in 
passing through the channel-lobe transition zone. 

The deposition of sediment on distal parts of tur­
bidite systems is very dependent on upstream flow be­
havior of turbidity currents: the majority of turbidity 
currents in a system never reach the distal part of a basin 
(Piper and Normark, 1983). It is only the very large 
flows that control the accumulation of distal fan sedi­
ment. Vertical flow expansion resulting from gradient 
changes probably provides the major control on deposi­
tion (Piper and Stow, 1991). 

Allocyclic Changes In the Basin 

The role of eustatic sea level change is to alter the 
types of flow-initiation process and hence the types of 
turbidity currents flowing into a basin. Falling sea level, 
if accompanied by fluvial incision, may promote hyper­
pycnal flow of turbidity currents into basins; if canyon 
incision occurs, the resulting increase in local slopes 
may trigger slumps and promote ignitive flow processes 
ahd conduit flushing, leading to mixed or muddy flows 
of variable size. Eustatic low stands provide the time of 
maximum direct input of fluvial sediment, which in 
sandy fans leads to flushing out of the channel systems. 
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During rising sea level, seismic triggering of flows pre­
dominates, resulting in some thick muddy flows (fig. 
6C). 

Sea-level changes may also influence coastal mor­
phology, so that the locus of sediment supply is 
changed. For example, the northern Ascension Canyon 
source for Monterey fan intercepts littoral-drift sediment 
at low stands of sea level, but during high stands, this 
canyon is bypassed and sediment is intercepted primarily 
by· the more deeply incised Monterey Canyon itself 
(Hess and Normark, 1976). On Navy Fan at times of 
lowered sea level, the Tijuana River supplied sediment 
directly to the canyon head that leads to the fan whereas 
during high stands, this sediment was trapped on the 
shelf and the only turbidity currents to reach the fan re­
sult from seismically triggered failure of older prodeltaic 
sediments (Piper and Normark, 1983). 

Tectonic Settings of Turbidite Sequences 

The concept of variation in source material and 
type of turbidity current in determining basin architec­
ture permits a broad classification of turbidite sequences. 

1. Young passive-margin systems with a narrow 
shelf and steep gradients have a dominance of sand sup­
ply. Rapid progradation of delta-mouth sediment leading 
to oversteepening, possible hyperpycnal flow of sandy 
river bedload, and seismic triggering of prodeltaic slides 
are likely on such margins, yielding mostly small turbid­
ity currents of rather sandy composition (fig. 6A). 

2. Mature passive-margin systems have low sand­
to-mud ratios in their sediment supply, and fan morphol­
ogy suggests that hyperpycnal flow from rivers is 
important in fan evolution, yielding uniform low-veloci­
ty flows that steadily build narrow levees that prograde 
over uniformly aggrading lobes. Sea-level changes pre­
dominate in triggering sediment failure; the resulting 
very large flows lead to basin aggradation. 

3. Active-margin systems resemble those of young 
passive margins but may have a more mature fluvial 
supply and a greater proportion of mud. Steep slopes and 
large magnitude earthquakes lead to seismic triggering 
predominating, at least during eustatic high stands: re­
sulting turbidity currents tend to be large and of variable 
composition. 

4. Carbonate-margin systems receive sediment both 
from catastrophic failure of reef fronts and from storm­
driven flows across the shelf break. The latter may lead 
to more stable channel systems that may be occupied by 
mixed clastic-carbonate turbidity currents at low stands 
of sea level. Shelf-break failure results in aprons of de­
bris-flow deposits with thin distal fine-grained turbidites 
lacking well-developed channels. 



SUMMARY 

Predictive stratigraphic analysis of deep marine ba­
sins requires an understanding of the processes through 
which individual turbidity currents interact with and 
modify basin physiography. Overall basin shape and size 
are principally a consequence of regional tectonism, but 
many of the morphologic features that control turbidite 
depositional patterns result from the erosional and depo­
sitional effects of previous turbidity currents. The steady 
flow of turbidity currents over tens of hours interacts in 
a predictable way with basin physiography. The charac­
ter of these flows depends on the nature of the sediment, 
the initiating process(es), and the physiographic setting 
in the source area. These parameters can be stochasti­
cally predicted from a knowledge of source-area tecton­
ics, climate change, and eustasy. 
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Porosity 

By James W. Schmoker1 

The discussion of porosity presented in this forum 
two years ago by Schmoker and Gautier (1989a) noted 
that, although porosity has often been inversely correlat­
ed to burial depth, plots of porosity versus thermal matu­
rity offer an alternative to the prediction of porosity 
change during burial that may better integrate effects of 
burial history upon porosity modification. The present 
discussion reviews the growing body of literature deal­
ing with relations between porosity and time-temperature 
exposure (thermal maturity). 

The idea that porosity change in the subsurface is 
controlled in part by time-temperature exposure has been 
present in the literature for some time. Maxwell (1964), 
working with a large body of data, found temperature to 
be an important variable affecting porosity loss in 
quartzarenites during burial. Maxwell also noted that 
time played a role in porosity modification because, all 
else being equal, older rocks in his data set tended to 
have lower porosities. The earliest reference I have 
found that specifically links porosity evolution in the 
subsurface to time-temperature exposure is an abstract 
by van de Kamp (1976). Lyons (1978, 1979) and Cassan 
and others ( 1981) expanded upon the idea that the poros­
ity of sedimentary rocks can be advantageously consid­
ered in terms of thermal maturity. McCulloh and others 
(1978) reviewed processes of burial diagenesis affecting 
the porosity of clastic rocks and emphasized the impor­
tance of temperature upon most of these processes. They 
envisioned a certain order and predictability behind the 
complex details of porosity modification during burial, 
likening the typical net loss of porosity to the progres­
sive alteration of kerogen with increasing thermal matu­
rity. Siever (1983) regarded integrated time-temperature 
history as the relevant parameter for subsurface reaction 
kinetics. 

Schmoker (1984) presented data indicating that po­
rosity loss in carbonate rocks can be empirically repre­
sented as a function of integrated time-temperature 
history. Dixon and Kirkland (1985) investigated sand-

1 U.S. Geological Survey, Denver, Colo. 
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stones in relatively young basins of southern California 
and found that the porosity of these rocks can be corre­
lated with the thermal gradient. In laboratory experi­
ments, Porter and James (1986) found that temperature 
had a significant influence on quartz solubility and thus 
on pressure solution. 

Within the last few years, studies describing poros­
ity change in terms of integrated time-temperature histo­
ry have become more common in the literature. 
Ehrenberg (1987) and Harris (1988) reported that porosi­
ties of Jurassic sandstones of the North Sea depend 
strongly upon thermal maturity. Bloch and others (1990) 
observed that porosity of the Mississippian Kekiktuk 
Formation of the North Slope of Alaska can be better 
predicted as a function of integrated burial history than 
of depth. Earlier, van de Kamp (1988) had linked the 
porosity of Ellesmerian-sequence sandstones of the 
North Slope (Carboniferous to lowermost Cretaceous) to 
thermal maturity as represented by vitrinite reflectance. 
Surdam and others (1989) and Jansa and Noguera Urrea 
(1990) discussed organic/inorganic reactions and conse­
quent porosity change in terms of thermal maturity. 

The common thread running through the diverse 
set of references cited is that porosity change in the sub­
surface results from processes that can be advantageous­
ly treated as functions of time-temperature exposure. 

Porosity decrease in the subsurface was represent­
ed by Schmoker and Gautier (1988, 1989b) and Schmok­
er and Hester ( 1990) as a power function of 
time-temperature exposure: 

(1) 

where 0 is porosity, A and B (a negative number) are 
constants, and M is a measure of integrated time-temper­
ature history. This equation treats porosity as evolving 
through time and responding to changes in temperature 
even if depth is unchanged. 

The practical problem exists of how best to numer­
ically represent time-temperature exposure (M) in rela­
tions such as equation 1. The ideal index would closely 
reflect the kinetics of porosity-affecting processes, but 
such an index is unknown and is unlikely to be devel­
oped in the near future because of the great diversity of 
subsurface processes. 
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A number of indices measuring time-temperature 
exposure have been put forward in connection with kero­
gen maturation. Among these, Lopatin's time-temperature 
index of thermal maturity (ITI) (described by Waples, 
1980) and vitrinite reflectance <Rc,) are probably the best 
known of the mathematical and laboratory indices, re­
spectively. Til and R0 have been used in porosity mod­
els as convenient if somewhat imperfect measures of M. 

The use of ITI and R0 in the context of porosity 
prediction does not necessarily imply that porosity 
change is causally related to kerogen maturation. In the 
broader sense, TTl and Ra are simply general measures 
of time-temperature exposure. However, because TTl 
and Ra are commonly used to define stages of hydrocar­
bon generation, relations such as equation 1 can serve to 
place porosity change and petroleum generation in a mu­
tual context. 

Plots reproduced here of sandstone porosity versus 
R0 (fig. 7) and carbonate porosity versus ITI (fig. 8) are 
of typical data sets and illustrate the correlation between 
time-temperature exposure and porosity change in the 
subsurface. The range of porosities about the regression 
lines of figures 7 and 8 is shown by box diagrams. Such 
porosity variability is common and probably is due to 
geologic heterogeneity within the rocks under consider-
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Figure 8. Carbonate porosity versus Lopatin's time-temperature index OTI) illustrating power-function relation of equation 
1. Regression line is fit to median porosity (50th porosity percentile). Data represent Lower Cretaceous to Eocene lime­
stones and dolomites in 15 wells of South Florida basin (from Schmoker and Gautier, 1989b). 
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ation. Research on relations between porosity variability 
and localized geologic heterogeneity, as well as on de­
tails of the particular subsurface processes responsible 
for generalized porosity-maturity trends such as are 
shown in figures 7 and 8, is likely to be active in the 
next several years. 
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Facies, Permeability, and Heterogeneity 
in Sandstone Reservoirs 

By Christopher J. Schenk1 

INTRODUCTION 

The seven principal types of siliciclastic sandstone 
reservoir hetePogeneity are related to (1) sandstone body 
geometry, (2) mudstone baffles to fluid flow, (3) facies 
and facies associations, (4) sedimentary structures, (5) 
laminae, (6) diagenesis, and (7) fracturing (Weber, 1986; 
Schenk, 1988}. The purpose of this paper is to review cur­
rent research on heterogeneity related to facies architecture 
of sandstone reservoirs (third type of heterogeneity) and 
the relation of architecture to patterns of permeability. 

Architecture, defined as the patterns of facies that 
make up the internal construction of a reservoir, largely 
controls fluid flow in a reservoir because flow parameters 
such as permeability are strongly facies dependent. A 
knowledge of fluid flow patterns in a reservoir sandstone 
is required for successful field development, secondary 

·and enhanced hydrocarbon recovery operations, and deter­
mination of hydrocarbon recovery factors (Tyler and Fin­
ley, 1989; Weber and van Geuns, 1990). Permeability 
measurements by facies are becoming an integral compo­
nent of architectural studies of reservoir sandstones (Chan­
dler and others, 1989; Dreyer and others, 1990). 

The objective of analyzing sandstone architecture is 
to determine the spatial distribution and geometry of facies 
in a reservoir sandstone. Facies analysis can be done using 
outcrop or borehole log and core data, but for detailed ex­
amination of lateral facies transitions and facies geometry 
outcrops are essential, but not always available. Lateral 
profiling of outcrops documents the scales, types, com­
plexity, and patterns of sandstone architecture that may be 
encountered or predicted in the subsurface (Miall, 1988, 
1989). 

Detailed studies of the lateral and vertical juxtaposi­
tion of sandstone facies, combined with permeability data 
by facies, provide realistic input to numerical models for 
reservoir simulation (Hearn and others, 1986; Krause and 
others, 1987; Rayenne and others, 1989; van de Graaff and 
Ealey, 1989). Facies comprising the major depositional en-

1 U.S. Geological Survey, Denver, Colo. 

vironments are well known (Walker, 1984a), but more 
quantitative data are needed on the geometries of sandstone 
facies and the scale over which measured permeabilities 
are valid in sandstone reservoirs. 

EOLIAN SANDSTONE RESERVOIRS 

Eolian sandstone reservoirs can be broken down into 
eolian dune (dune foreset and bottom-set), interdune, clas­
tic sabkha, and sand sheet facies. Eolian-dune deposits are 
present in most sandstones recognized as eolian and are 
the most common petroleum-producing facies. The propor­
tions of the other four facies vary considerably. 

Studies of permeability by facies in eolian sand­
stones have documented that eolian-dune foreset sand­
stones have the highest permeabilities whereas dune 
bottom-set, interdune, and sabkha sandstones have the 
lowest permeabilities (Andrews and Higgins, 1984; Weber, 
1987; Lindquist, 1988; Chandler and others, 1989; Krys­
tinik, 1990). 

Permian sandstones in the upper part of the Minnelu­
sa Formation in the Powder River Basin, Wyoming, con­
tain eolian-dune and clastic-sabkha deposits, but 
sand-sheet and interdune deposits are absent (Fryberger 
and others, 1983). The predominance of eolian-dune sand­
stone in the producing horizons make these Permian sand­
stones a relatively simple matter to develop and produce 
(Jorgensen and James, 1988). Permeability contrast within 
this sandstone is mainly between eolian ripple and ava­
lanche strata. 

In contrast, the Jurassic Nugget Sandstone in the 
Overthrust Belt of Wyoming and Utah contains eolian­
dune, interdune, and clastic-sabkha deposits (Lindquist, 
1988). The eolian-dune sandstones produce oil, but these 
sandstones are separated by nonproductive interdune and 
clastic-sabkha sandstones, making development and en­
hanced recovery difficult (Lindquist, 1988; White and oth­
ers, 1990). Permeabilities between eolian-dune and 
interdune or sabkha sandstones can vary by several orders 
of magnitude. Prediction of the lateral distribution. and ver­
tical arrangement of nonproductive and productive facies 
in the Nugget Sandstone, along with the distribution of 

Facies, Permeability, and Heterogeneity in Sandstone Reservoirs 35 



fractures, greatly assists in determining the proper method 
of field development and reservoir stimulation procedures 
(Krystinik and Schenk, 1989). 

Eolian-dune sandstones of the Jurassic Norphlet For­
mation at Hatter's Pondfield, Mobile County, Alabama, 
exhibit facies-related permeability variations (Mancini and 
others, 1990) similar to those in the Nugget Sandstone; eo­
lian-dune sandstones have the highest permeabilities, inter­
dune sandstones the lowest, and sand-sheet sandstones 
slightly higher than interdune sandstones. 

FLUVIAL SANDSTONE RESERVOIRS 

Facies of fluvial deposits have been defined and de­
scribed in many studies (Allen, 1978, 1983; Miall, 1978, 
1988; Miall and Turner-Peterson, 1989), and the complexi­
ty of fluvial facies associations is well known. 

Walton and others (1986) divided fluvial sandstones 
of the Cherokee Group (Pennsylvanian) into five facies. 
Permeability is correlated to these facies, and the juxtapo­
sition of facies has produced a strongly layered reservoir 
with respect to fluid flow. Cross-stratified channel sand­
stones have the highest permeabilities, but permeability in 
all facies was a function of compaction and clay content. 
Ebanks and Weber (1987) also demonstrated a strong cor­
relation between facies and permeability in heavy-oil-bear­
ing fluvial sandstones of the Cherokee Group in Missouri. 
Their study illustrates the extreme sedimentologic com­
plexity of the fluvial reservoirs within the field, which 
would be difficult to unravel without the large number of 
wells with borehole logs and conventional core. 

Ravenne and others (1989) mapped the three-dimen­
sional architecture of fluvial sandstones along cliff expo­
sures in England as an analog for Jurassic fluvial 
reservoirs in the North Sea. Reservoir simulation models 
were built from lateral profiles of large outcrops, dimen­
sions of fluvial sandstone bodies were mapped, and perme­
ability variations by facies were measured. This study is 
an excellent example of combining architectural and per­
meability data to produce an analog for actual reservoir 
simulations. 

Atkinson and others ( 1990) measured permeability 
differences between several braided fluvial facies in sand­
stone reservoirs of the Ivishak Formation (Permian-Trias­
sic), Prudhoe Bay field, Alaska. Here, the largest 
permeability differences were between fluvial and deltaic 
facies. In another study, Hastings (1990) found that 
fluvial-channel sandstones had higher permeabilities than 
flvvial channel margin sandstones in reservoirs of the 
Pennsylvanian Tyler Formation, North Dakota. 

In a study of Statfjord reservoirs in the North Sea, 
Henriquez and others (1990) stressed the importance of 
describing quantitatively sandstone body morphology, fa­
cies architecture, and hydraulic connectedness in develop-
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ing simulation models of fluvial reservoirs. They conclud­
ed that the available architectural data for fluvial deposits, 
including fluvial-channel thickness, width, length, and ori­
entation, were a principal limitation to modeling fluvial 
reservoirs, in spite of the body of work available on fluvial 
deposits. 

DELTAIC SANDSTONE RESERVOIRS 

Deltaic sandstones are an important group of hydro­
carbon reservoirs, but surprisingly few studies are avail­
able on the relationship between deltaic facies and patterns 
of permeability. 

Moslow and Tillman (1986) identified 12 facies in 
gas-productive wave-dominated deltaic sediments in the 
Cretaceous Frontier Formation along the Moxa arch, Wyo­
ming. Permeability was strongly controlled by facies. Dis­
tributary channel facies had the best combination of 
porosity and permeability and formed the best reservoirs. 
Clay content (determined petrographically) was a critical 
factor in whether a distributary channel sandstone was a 
reservoir or not. Although facies dimensions could not be 
measured with borehole data from widely spaced wells, 
the sedimentologic model developed from the facies asso­
ciations led Moslow and Tillman (1986) to conclude that 
typical well spacings in the Moxa arch area would not 
contact all of the isolated distributary channel sandstones. 

In Oklahoma, Boyer (1985) described six facies from 
fluvial-dominated deltaic sandstones in the Pennsylvanian 
part of the Springer Formation. Permeability in these deltaic 
sandstones strongly correlated to facies; proximal delta-front 
sandstones had the best combination of porosity and perme­
ability. Other facies had higher clay and cement contents, 
resulting in poor fluid-flow properties. 

Tillman and Jordan (1987) found a relation between 
facies associations and permeability in Permian deltaic 
sandstones in the El Dorado field, Kansas. Of the six fa­
cies associations, the distributary channel and the splay­
beach associations had the highest permea~ility and 
porosity. 

In a study of wave-dominated deltaic sandstones of 
the Brent Group in the North Sea, Scotchman and Johnes 
(1990) found that deltaic distributary channel sandstones 
had the highest permeabilities whereas delta-front and cre­
vasse-splay sandstones had the lowest permeabilities. 

INTERDELTAIC SANDSTONE RESERVOIRS 

Facies of strand-plain and barrier sandstones are well 
known, consisting of sandstones from lower, middle, upper 
shoreface and foreshore environments (McCubbin, 1982; 
Snedden and Jumper, 1990). However, strand-plain sand­
stones can be associated with wave-dominated delta-front, 



distributary channel, delta fringe, crevasse splay, and fine­
grained marsh and levee deposits (Tyler and Ambrose, 
1985). The architecture of a strand-plain sandstone reser­
voir can be complex if constructed from these facies, but 
strand-plain sandstones in general make better reservoirs 
than deep-water or fluvial sandstones because of the gen­
eral lack of mudstones or shale layers within the sandstone 
that impede fluid flow (Ambrose and Tyler, 1989). 

In a study of barrier sandstones of the Cretaceous 
Muddy Sandstone, Bell Creek field, Wyoming, Sharma 
and others (1990) found that upper and middle shoreface 
sandstones had much higher permeabilities than lower 
shoreface and overlying valley fill sandstones. Barrier 
sandstones can also be intercalated with tidal-inlet fills, 
flood- and ebb-tidal deltas, estuarine sandstones, washo­
ver-barrier flat sandstones, and back-barrier eolian sand­
stones, and can be nearly encased in fme-grained deposits 
(Galloway and Cheng, 1985; Fryberger and others, 1988). 
The presence of tidal-inlet deposits serves to disrupt 
the continuity of the barrier sandstones, resulting in a 
semi-compartmentalized reservoir sandstone that would 
not have been predicted using a simple barrier model for 
the reservoir (Galloway and Cheng, 1985). Studies of 
facies-related permeability are needed for these types of 
reservoirs. 

MARINE SHELF SANDSTONE RESERVOIRS 

Marine shelf sandstone facies are known in detail 
(Walker, 1984b), particularly the Cretaceous shelf sand­
stones of Wyoming (Tillman and Martinsen, 1984; Jack­
son and others, 1987). Shelf sandstones typically form 
lens-shaped bodies encased in marine mudstones, although 
facies associations and interbedding of reservoir and non­
reseJVoir rock may be complex (Borer and Harris, 1991). 
Facies of the sandstones range from clean, cross-stratified 
sandstone to bioturbated muddy sandstone. Hearn and oth­
ers (1986) identified five facies in the Cretaceous Shannon 
Sandstone Member of Wyoming, similar to Shannon facies 
interpreted by Tillman and Martinsen (1984, 1987). Hearn 
and others (1986) found that the reservoir sandstone could 
be divided into five flow units based on groupings of per­
meability data. The boundaries of the flow units generally 
matched the facies boundaries, but the match was imper­
fect. The flow units based on permeability, together with 
facies distributions and sandstone body thickness, were 
used to develop a layered reservoir simulation model for 
enhanced oil recovery. 

DEEP-WATER SANDSTONE RESERVOIRS 

Deep-water sandstones deposited in submarine fan 
and related environments contain many of the same facies 

as fluvial deposit:s--<;hannels, sediment gravity flows, lat­
eral accretion deposits, fine-grained levee deposits, and 
laminated sand sheets-but the proportions of the facies 
may be quite different than in fluvial deposits (Normark, 
1990). The abundance of fme-grained layers in deep-water 
environments suggests that more mudstone layers are pres­
ent within each facies and that deep-water sandstone reser­
voirs may be more compartmentalized by mudstones than 
fluvial sandstones (Phillips, 1987; Ambrose and Tyler, 
1989; Hall and Link, 1990; Kulpecz and van Geuns, 
1990). 

Scott and Tillman (1981) illustrated many examples 
of clay clasts and clay laminae that separate otherwise per­
meable beds of sandstone in the Stevens sand (Miocene), a 
subsurface unit in the San Joaquin basin, California. Clay­
free medium- to coarse-grained channel sandstones form 
the best reseJVoir facies. Hall and Link (1990) also found 
that channel sandstones in Miocene turbidite reservoirs 
had higher permeabilities than sandstones of turbidite dep­
ositional lobe and channel/lobe facies. Berg and Royo 
(1990), in a study of Miocene turbidite reservoirs in the 
Yowlumne field, California, found that turbidite sand­
stones of the central channel facies had higher permeabili­
ties than sandstones of channel margin and other facies. 

SUMMARY 

This review has illustrated some recent work relating 
facies to permeability in reservoirs representing several 
depositional environments. More studies are needed on the 
relation between facies, facies geometry, and permeability. 
In general, the architectural complexity of sandstone reser­
voirs increases as the sandstones assume channelized 
forms (that is, strand-plain and eolian sandstones are not 
as complex as fluvial sandstones, channelized submarine­
fan sandstones, or valley-fill complexes). 

Additionally, as the number of mudstone layers and 
lenses in the depositional system increases, the more po­
tential reservoir sandstones are compartmentalized into 
discrete packages that may not be in fluid communication. 
Isolated reservoir pods will not be swept in a typical drill­
ing pattern. Drilling must be more closely spaced and lo­
cations chosen carefully using a detailed sedimentologic 
model in these types of compartmentalized reservoirs to 
increase hydrocarbon recovery. 
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Approaches to Characterizing Fluid-Flow Heterogeneity in 
Carbonate Reservoirs 

By Christopher J. Schenk1 

INTRODUCTION 

This report reviews recent research on approaches 
to characterize fluid-flow heterogeneity within carbonate 
reservoirs. Fluid-flow heterogeneity is defined as the in­
ability of a rock matrix to allow fluid to flow evenly in 
all directions because the connections between pores is 
unevenly distributed. As a reservoir characteristic, car­
bonates exhibit extreme heterogeneity with respect to 
fluid flow (Jardine and others, 1977; Jardine and 
Wilshart, 1987; Kittridge and others, 1990; Wardlaw, 
1990a). When attempting to produce hydrocarbons from 
these reservoirs during any stage of recovery (primary, 
secondary, or tertiary), fluid-flow heterogeneity dictates 
production strategy and economics. 

Carbonate reservoirs consist of a diversity of parti­
cle types, sizes, and compositions that are highly suscep­
tible to interparticle and intraparticle diagenesis, 
including dolomitization, cementation, dissolution (in­
cluding vugs and karstification; Kerans, 1989), recrystal­
lization, and fracturing. Spatial variations in depositional 
and diagenetic textures and fabrics, or the alteration of 
original porosity within carbonate reservoirs create fluid­
flow heterogeneity. In this respect, carbonate reservoirs 
differ from siliciclastic reservoirs, in that interparticle di­
agenesis dominates the evolution of porosity (House­
knecht, 1987; Jardine and Wilshart, 1987). 

HETEROGENEITY EVOLUTION 

Fluid capacity and fluid-flow potential in reservoir 
rocks are generally stated in terms of porosity and per­
meability, respectively. For carbonate reservoirs, detailed 
descriptions of porosity have evolved (Choquette and 
Pray, 1970; Wardlaw, 1979; Lucia, 1983), based on vi­
sual, petrographic, and scanning electron microscope ex­
amination. Carbonate porosity is complex and difficult to 

1 U.S. Geological Survey, Denver, Colo. 
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relate to permeability (Lucia, 1983; Lucia and Fogg, 
1990). Because carbonate particle type, size, and compo­
sition are related to depositional environment (Moore, 
1979), most studies of carbonate reservoir rocks begin 
with defining and describing sedimentary facies, fre­
quently in great detail (Bebout and others, 1987; Moshi­
er and others, 1988). Many studies have demonstrated a 
relation between facies and ranges of porosity (Keith and 
Pittman, 1983; Wiggins and Harris, 1984; Jardine and 
Wilshart, 1987; Dawson, 1988). 

However, the modification of depositional (origi­
nal) porosity through diagenesis makes anything but a 
general porosity prediction difficult in carbonate reser­
voirs (Schmoker and Halley, 1982), and reservoir-scale 
porosity is impossible to accurately predict. Overprint­
ing of depositional fabrics by dolomitization is common, 
and for many reservoirs dolomitization is critical for 
generating effective porosity. The uniformity of pore ge­
ometry created by dolomitization means the difference 
between reservoir and nonreservoir facies in many car­
bonate rock units (Wardlaw, 1979, 1990a; Bliefnick and 
Mariotti, 1988). 

Permeability is less related to facies than to porosi­
ty, because diagenetic alterations cause great spatial 
variability in p~re geometry. Thomeer (1983) showed 
that, for a given porosity, carbonates can exhibit any 
permeability because of possible combinations of pore­
throat size distributions resulting largely from diagenetic 
variations. This is the reason many porosity-permeability 
cross-plots exhibit a "shotgun blast" pattern. 

However, if pore-throat sizes exhibit a narrow 
range of sizes, then permeability shows a better correla­
tion to porosity. Lucia (1983) demonstrated that perme­
ability in a given carbonate reservoir can be correlated to 
certain types of porosity, not total porosity. Visual de­
scriptions of porosity, especially the recognition of vugs, 
are essential in the process of attempting to correlate po­
rosity with permeability. Bebout and others (1987) docu­
mented a relation between mean permeability and 
carbonate facies within the Permian Grayburg Formation 
in the Permian basin, but the range of permeability with­
in each facies meant that permeability predictions based 
on mean values were impossible at a local scale. 



MEASURING HETEROGENEITY 

Scanning electron microscope analysis of pores 
and pore casts has been used to determine the size distri­
bution of pores (Wardlaw, 1976, 1990b; Wardlaw and 
Li, 1987). In general, the lower the ratio of pore size to 
pore-throat size, the higher the porosity and permeability 
(Wardlaw, 1976, 1979) and the better the reservoir quali­
ty. Groupings of pore-throat sizes in carbonate reservoirs 
have been related to ranges of porosity and permeability 
(Lindsay, 1988), and this approach may be useful in pro­
viding a predictive capability for ranges of porosity and 
permeability for a given reservoir. These ranges may or 
may not follow facies boundaries, but may define reser­
voir flow units, which is the first step in defining fluid 
flow patterns and unraveling heterogeneity in reservoirs 
(Major and Holtz, 1990). 

A common approach to understanding fluid-flew 
heterogeneity in carbonate reservoirs is to measure pore­
throat size from mercury injection-capillary analyses 
(Keith and Pittman, 1983; Wiggins and Harris, 1984; 
Kent and others, 1988). This technique provides data 
that allow the calculation of size distributions of pore 
throats. The attractiveness of this approach is that the 
pore-throat size distribution integrates the effects of 
complex diagenetic alterations, including dolomitization, 
into a measurable quantity. Combining mercury injec­
tion-capillary pressure analyses with petrographic image 
analyses of pore geometries is a powerful method to 
quantify both the types of pores and the distribution of 
pores within a reservoir rock (Etris and others, 1988). 
Reservoir rocks with similar pore geometries may have 
similar permeabilities, and thus this technique may help 
to define flow units. 

Mercury injection-capillary pressure data will pro­
vide information on the pore geometry of the rock ma­
trix, including the contribution of vugs to porosity, but in 
many carbonate reservoirs the flow paths and permeabili­
ty depend on fractures. Fractures can be simple to ex­
tremely complex (Ijirigho, 1981), and fractures commonly 
are missed when samples are prepared for injection anal­
yses. The contribution of fractures and brecciation to the 
permeability network of any carbonate rock must be care­
fully considered when defining flow units. 

INTRAWELL HETEROGENEITY STUDIES 

Intrawell studies demonstrate an approach that 
characterizes heterogeneity in carbonate reservoirs using 
pqre-throat and pore sizes to define flow units. Subsur­
face information available to the investigator include 
core and log data. 

Keith and Pittman (1983) used mercury injection 
curves to define sizes of pore throats in the Lower Creta-

ceous Rodessa Limestone, Running Duke field, East 
Texas basin. Pore-throat size and distribution were relat­
ed to facies; skeletal limestone had a unimodal size dis­
tribution of pore-throat radii, whereas ooid limestone had 
a bimodal size distribution of pore-throat radii. Because 
micropores hold bound water in one part of the bimodal 
pore network, the ooid facies produced water-free gas 
compared to production from the unimodal-sized skeletal 
facies. They developed borehole log-based cross-plot 
techniques for identifying these types of pore systems 
throughout the field where core data were not available, 
and for allowing this type of heterogeneity to be traced 
throughout the field. 

Wiggins and Harris (1984), in a study of the Low­
er Cretaceous Pettit Limestone in the East Texas basin, 
recognized four major pore types and their associated 
pore-throat sizes. They related specific diagenetic alter­
ations to each class of pore-throat size. Pore-throat size 
was the parameter that limited fluid access between 
pores and thus was a critical measurement for determin­
ing possible patterns of fluid flow. In addition, the ex­
amination of pore-throat sizes provided a perspective 
from which the importance of specific diagenetic effects 
on fluid flow in the reservoir were assessed. Wiggins 
and Harris (1984) found that reservoir quality depended 
on the proportions of blocky calcite spar cement to mi­
crospar cement because these cements controlled the siz­
es of pore throats. 

In a study of grainstone reservoirs of the Upper Ju­
rassic Smackover Formation, Mississippi and Alabama, 
Bliefnick and Mariotti (1988) documented a correlation 
between increasingly dolomitized rock and improved 
reservoir quality. Pore-throat sizes determined from mer­
cury injection became larger with increasing degree of 
dolomitization, as did the size of dolomite crystals. They 
concluded that fluid-flow heterogeneity in the Smack­
over Formation was a product of extreme lateral facies 
variability and irregular dolomitization. 

Kent and others (1988) described pore systems 
from 10 carbonate reservoirs in Mississippian rocks of 
the northern Williston basin. They documented the de­
gree of size uniformity of pore-throat radii in each reser­
voir, and they related families of pore-throat sizes to 
individual cr combinations of porosity types. They found 
that dolomi1ization produced a rather uniform pore-throat 
size distrib lltion, and so dolomites made better reser­
voirs. They also found that carbonate reservoirs with 
similar porosities can exhibit vastly different pore-throat 
size distributions, again demonstrating that porosity cor­
relations do not necessarily lead to flow-unit definition. 

Lindsay (1988) related ranges of pore-throat radii 
to ranges of porosity and permeability in Mississippian 
carbonate r1~servoirs of the Mission Canyon Formation, 
North Dakota. He developed a model of four pore types 
and two pore-throat sizes for the Mission Canyon, and 
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concluded that understanding heterogeneity meant know­
ing (1) all sizes of pore throats and pores, (2) how pores 
are connected, and (3) how fluids with different viscosi­
ties move through the pore system. Combinations of the 
four types of pores and pore throats create complex pore 
systems. 

Inden and others (1988) found that porosity alone 
did not differentiate reservoir from nonreservoir carbon­
ate rock in the upper part of the Interlake Formation 
(Upper Ordovician and Silurian) in the Nesson anticline 
area, Williston basin. They found that the variability in 
morphology of pore connections, pore sizes, and pore 
distributions caused differences in permeability that had 
to be carefully examined, along with water saturations, 
to determine the spatial distribution of flow units. 

INTERWELL HETEROGENEITY STUDIES 

The intrawell studies demonstrate an approach that 
characterizes heterogeneity in carbonate reservoirs using 
pore-throat and pore sizes to define flow units. The prin­
cipal difficulty is to make the step from core or log data 
to interwell correlations of flow units defined from stud­
ies of pore systems in several wells. 

Jardine and Wilshart (1987) studied fluid-flow het­
erogeneity of several Devonian carbonate reservoirs in 
the western Canada basin for the purpose of observing 
the progress of enhanced recovery techniques. Their res­
ervoir analysis of reef carbonate of Judy field is particu­
larly instructive. They grouped several carbonate facies 
into three classes of porosity and permeability to define 
three major flow units in reefal carbonate reservoirs. 
Borehole logs from 4 7 wells were used to construct 
cross sections depicting the three-dimensional configura­
tion of the flow units in the field. The interlayering and 
juxtapositioning of the three flow units with relatively 
impermeable rock resulted in an extremely heterogene­
ous reservoir with respect to fluid flow. This study is an 
excellent example of an attempt to determine the inter­
well correlation of flow units and the degree of three­
dimensional fluid-flow heterogeneity in a carbonate 
reservoir. 

Lucia and Fogg (1990) used geostatistical tech­
niques to determine the scale over which core permeabil­
ities were valid in the Permian Grayburg Formation, 
Dune field, west Texas. Using a combination of core 
analysis, rock fabric, and log data, statistical techniques 
were used to determine interwell correlation of perme­
able carbonate units. Statistical techniques indicated a 
possible correlation of permeability values over vertical 
length scales of 4 to 5 feet and 12 to 13 feet, and a 
correlation of permeability values over horizontal length 
scales of 2,000 and 1,000 feet (parallel and perpendicu­
lar to the main grainstone trend, respectively). 
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Another approach to understanding carbonate fluid­
flow heterogeneity is to directly measure the three-dimen­
sional distribution of permeability and determine the 
statistical correlation lengths of permeability in a grid 
placed on an outcrop. This approach focuses on determin­
ing the statistical length scales over which measured per­
meabilities are valid in the reservoir being investigated. 

Kittridge and others (1990), in a study of dolomite 
reservoir facies of the Lower Permian San Andres For­
mation, Permian basin, west Texas, compared vertical 
and horizontal permeabilities from outcrop and subsur­
face samples. They reported over four orders of magni­
tude variation in permeability, in bed-to-bed 
measurements and also within beds. The scale of spatial 
correlation of permeability varied with the spacing of 
measurements. They reported a correlation length of 3 to 
5 feet for permeabilities measured 0.5 feet apart and a 
correlation length of 0.25 feet for measurements taken 1 
to 0.5 inch apart. Given typical oil-field well spacings, 
these length scales suggest that interwell correlation of 
permeable units will be difficult. Although few of these 
types of studies have been completed, the value of using 
outcrops of carbonates to understand three-dimensional 
heterogeneity has been demonstrated (Waters and others, 
1989). 

SUMMARY 

Permeability variations in carbonates are controlled 
by variations in pore geometry, thus measuring the pore 
geometry directly is an attractive approach to begin to 
understand fluid-flow heterogeneity. Flow units defined 
from data on the geometry and distribution of pore sys­
tems, along with facies, porosity, permeability, and frac­
ture data, may possibly be correlated well to well using 
stratigraphic or statistical techniques. 
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Mineral Transformations in Tar Sand and Heavy Oil Reservoirs 
Induced by Thermal Recovery Methods 

By Christopher j. Schenk1 

INTRODUCTION 

This paper reviews research on mineral transforma­
tions that occur when heavy oil and tar are produced 
from sand reservoirs using thermal recovery methods. 
Tar sands, more appropriately termed natural asphalts 
(Meyer and deWitt, 1990), exhibit viscosities greater 
than 10,000 centipoises (cP). Heavy and extra heavy oils 
have viscosities less than 10,000 cP, and also generally 
have API gravities of 10 to 20 degrees and less than 10 
degrees API, respectively (Cornelius, 1987). Viscosities 
of this order dictate that some method must be used that 
will reduce the viscosity so that the hydrocarbons can be 
mobilized and recovered. The most common method 
used is heating (thermal recovery), but chemical recov­
ery methods are also beginning to be used. In situ ther­
mal recovery technology is of two major types; steam 
injection and combustion. In either process, heat is trans­
ferred to the hydrocarbons to decrease viscosity and pro­
vide mobility. 

Steam Injection 

Steam injection is accomplished by one of two 
main processes: cyclic steaming or continuous injection. 
In cyclic steaming (also called steam soak or huff-and­
puff), steam is injected into a pay zone, then the well is 
shut-in for a period of time, commonly 40 to 90 days, 
after which the hydrocarbons are recovered from the 
same well until recovery becomes uneconomic. The 
process is then repeated. In continuous steaming, steam 
is continuously injected into one well, and other wells in 
the pattern serve as recovery wells. 

Conditions of steaming vary, but steam is generally 
introduced at temperatures ranging from 300°C to 
350°C, and at pressures as high as 14 megapascals 
(MPa). The ratio of water to rock is high during the 
steaming process, and is relatively lower during combus-

1 U.S. Geological Survey, Denver, Colo. 
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tion. Recoveries of heavy oil or natural asphalt from the 
steam process rarely exceed 20 to 25 percent of the orig­
inal oil-in-place (OOIP) (Carrigy, 1983), although recov­
eries of 60 percent have been noted from small zones in 
core (Hutcheon, 1984). 

In Situ Combustion 

In situ combustion is achieved by pumping air or 
oxygen down a well into a pay zone, and igniting the 
hydrocarbons by electrical or other means (Moore and 
others, 1989). The burning hydrocarbon front creates a 
zone of mobile oil that is then produced. Conditions of 
combustion are complex (Hutcheon, 1984); temperatures 
can reach 800°C in the immediate zone of combustion, 
but decrease rapidly away from the zone. Pressures are 
generally less than 20 MPa. The water-to-rock ratio is 
extremely low compared to steam injection, in part be­
cause combustion vaporizes formation water. Exceptions 
to this are combustion projects combined with water­
flooding ("wet combustion"). Recoveries from pilot 
combustion tests vary, but recoveries as high as 67 per­
cent of the OOIP (for natural asphalt deposits) have been 
reported (Carrigy, 1983). 

Mineral Transformations Studies 

Maximum temperatures associated with thermal re­
covery processes (300-350°C for steaming, 800°C for 
combustion) enhance chemical reactions between the 
reservoir rock, formation fluids, and injected fluids 
(Hutcheon, 1984). Important factors to consider in terms 
of diagenesis produced by thermal recovery ("artificial 
diagenesis" of Hutcheon, 1984) include changes in de­
trital framework mineralogy, authigenic mineralogy, dis­
tribution of authigenic minerals in a pore system, 
temperature distribution, length of exposure to maximum 
temperature, pore-fluid chemistry, injected fluid chemis­
try, the water-to-rock ratio, and the timing of diagenesis 
relative to permeability loss and hydrocarbon mobiliza-



tion. Only a few of these factors are known in detail for 
thermal recovery processes. Studies of artificial diagene­
sis are based on either ( 1) closely spaced cores taken be­
fore and after pilot tests of thermal recovery processes or 
(2) experimental steaming or burning of samples taken 
from field cores. 

STEAM INJECTION-FIELD STUDIES 

A detailed examination of cores from the Creta­
ceous Clearwater Formation in the Cold Lake area, Al­
berta, before and after 2 years of continuous 
steamflooding (maximum of 260°C for 1 year) was con­
ducted by the Sedimentology Research 'Group (1981). 
The pre-steam pay sandstones were dominantly feld­
spathic litharenites, with chert, volcanic rock fragments, 
and shale composing the lithic fraction. Less than 10 
percent matrix was present. Pre-steam diagenesis was 
complex, and included quartz and feldspar overgrowths, 
minor zeolites, calcite and dolomite cements, kaolinite, 
illite, chlorite, and minor smectite. 

Post-steam analysis illustrated that most of the illite, 
chlorite, and kaolinite was removed, whereas coarse smec­
tite coatings (4 to 20 J.Lm) and analcime formed in the pore 
system. Dissolution of the surfaces of detrital quartz, feld­
spar, and lithic grains was observed. Chert recrystallized to 
a coarser texture. The main chemical change appeared to 
be kaolinite plus quartz plus feldspar went to coarse smec­
tite. Smectite growth and possibly some compaction asso­
ciated with oil removal from these shallow reservoirs 
resulted in a 25 percent loss of porosity. The formation of 
pore-bridging smectite and the migration of clays and zeo­
lites served to block pore throats, reducing visual perme­
ability relative to pre-steam samples. 

Lefebvre and Hutcheon (1986) examined pre- and 
post-steamflood cores from a heavy oil reservoir in the 
Lower Cretaceous Sparky Formation, Lloydminster area, 
Saskatchewan. Pre-flood mineralogic analysis showed 
the sandstones to be dominantly quartz arenites, with 
less than 5 percent feldspar and lithic grains. Diagenetic 
minerals included quartz and feldspar overgrowths, kao­
linite, siderite, and ankerite. 

Post-steam analysis indicated that illite and chlorite 
formed at the expense of kaolinite, detrital quartz, and 
feldspar. Chlorite may have formed from a reaction be­
tween siderite and kaolinite. Illite occurred as a replace­
ment of potassium feldspar, and also as thin linings in 
pores and on kaolinite. However, these post-steam min­
eralogic changes-are minor when compared to the chang­
es observed in lithic sands of the Clearwater Formation. · 

A similar comparison was made of pre- and post­
steamflood mineralogic changes between quartz arenites 
of the Clearwater Formation from the Cold Lake area 
and lithic arenites of the Sparky Formation from the 

Lloydminster area (Hutcheon and others, 1989b). The 
extent of artificial diagenesis was less in quartz arenites 
than lithic arenites. As in previous studies, Hutcheon and 
others (1989b) found that smectite and analcime formed 
in the lithic arenites, whereas only minor diagenesis oc­
curred in the quartz arenites. 

An important aspect of Hutcheon and others 
(1989b) is the documentation that the chemistry of pro­
duced waters reflects chemical reactions occurring in the 
reservoir during steaming, and that modeling of the wa­
ter chemistry can be used qualitatively to predict chemi­
cal reactions. This use of water chemistry is an active 
area of research (Gunter and others, 1989; Russell and 
Bird, 1989; Hallam and others, 1990). 

C02 was documented as an important by-product 
of carbonate mineral dissolution during steaming in both 
formations. Cathles and others (1990) also documented 
the release of C02 from carbonate minerals during 
steaming. Hutcheon and others (1990) suggest that reac­
tions involving natural asphalt, in addition to carbonate 
dissolution, may produce C02 during steam stimulation. 

STEAM INJECTION-EXPERIMENTAL STUDIES 

To understand the effect of steaming on reservoir 
mineralogy, many studies have experimentally steamed 
core in laboratory autoclaves. In an excellent early study 
of experimental steaming, Day and others (1967) 
steamed core recovered from 10 different reservoirs 
within the United States and documented all mineralogic 
changes. The most critical mineralogic change related to 
steaming that occurred in nearly all reservoirs was the 
formation of smectite at the expense of dolomite and ka­
olinite. Smectite that forms in a reservoir pore system 
can adversely affect permeability. 

Boon and Hitchon (1983a, b) experimented with 
tar sands from the Lower Cretaceous McMurray Forma­
tion in the Athabasca deposit, Alberta, Canada. They 
concluded that a major reaction in these deposits was il­
lite plus kaolinite plus quartz converted to smectite. 
They also documented the dissolution of quartz and the 
formation of colloids. Colloids such as these produced 
experimentally might be missed in field studies of artifi­
cial diagenesis because of sampling problems. 

Boon and others (1983) steamed cores of lithic 
sandstones of the Clearwater Formation from the Cold 
Lake area of Alberta, which was the same reservoir rock 
studied in field cores by the Sedimentology Research 
Group (1981) and Hutcheon and others (1989a,b). Boon 
and others (1983) observed the dissolution of quartz, do­
lomite, and kaolinite and the formation of smectite, chlo­
rite, and calcite. Smectite and chlorite grew as pore 
linings and bridges that were interpreted to cause the re­
duction in permeabilities from pre-steam values. Reac-
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tions were controlled by pH, temperature, and salinity. 
All experiments demonstrated the translocation of 
"fines" (probably clays) through the pore system, clog­
ging pore throats and "significantly reducing" permeabil­
ity. They suggested that all mineral reactions may not 
have a negative effect on hydrocarbon recovery; some 
reactions may result in a reduction of permeability in 
steam thief zones, decreasing steam losses and improv­
ing recovery. 

Bird and others (1986) experimented with what ap­
pear to be quartz arenites from the Lower Cretaceous Mc­
Murray Formation in the Athabasca area, Alberta, to 
document the process of quartz dissolution. Upon cooling, 
solutions charged with excess silica from quartz dissolu­
tion led to the formation of quartz cements, amorphous sil­
ica, and minerals including zeolites and smectite. High 
silica concentrations can also produce complex silica col­
loids during steaming (Potter and Dibble, 1983). Colloids 
can be disastrous to thermal recovery operations, as they 
can plug pumps, piping, and other equipment, but colloids 
may also be beneficial in plugging highly permeable steam 
thief zones. Colloids have been reported from nearly all 
experimental thermal studies (Boon and Hitchon, 1983a,b; 
Bird and others, 1986), and they should be expected to 
occur in field situations. 

Kirk and others ( 1987) steamed lithic sandstones 
of the Clearwater Formation from the Cold Lake area, 
Alberta. Pre-steam mineralogy included minor smectite, 
illite, kaolinite, zeolites, feldspar overgrowths, and py­
rite. Post-steam analysis indicated that quartz, dolomite, 
and kaolinite dissolved, C02 was produced, smectite 
content doubled, and calcite cement formed. Post-steam 
fluids were supersaturated with respect to silica. Smec­
tite was deposited as thick rims around framework 
grains, and was the cause of permeability reduction from 
50 to 98 percent of pre-steam permeability values. They 
concluded that (1) solution pH and temperature were the 
most important variables controlling diagenesis, and (2) 
solution kinetics were more rapid than expected. 

Gunter and Bird (1988) steamed chert-bearing sub­
lithic arenites from the Cretaceous Grand Rapids Forma­
tion from the Cold Lake area, Alberta. Pre-steam 
authigenic minerals included kaolinite, calcite, minor il­
lite, and smectite. Post-steam analysis showed that cal­
cite was totally removed, much of the kaolinite and illite 
was removed, and some dissolution of quartz occurred. 
The smectite content increased by 35 percent. The main 
reaction appeared to be calcite plus quartz plus kaolinite 
converted to Ca-smectite plus C02• They noted that solu­
tion kinetics, especially the dissolution of calcite and the 
release of C02, were extremely rapid. 

This and other studies of artificial diagenesis have 
noted the production of C02 during steam injection. C02 

appeared to be a product mainly of carbonate mineral 
dissolution. C02 may actually improve recovery during 
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thermal stimulation by (1) further reducing hydrocarbon 
viscosity and (2) by causing swelling of the oil (by in­
cluded gas) that results in higher oil saturations and in­
creased recovery of the OOIP. 

Monin and Audibert ( 1988) heated heavy crude oil 
to 350°C in the presence of reservoir minerals to observe 
changes in the character of the oil. An important and 
detrimental by-product of heating was the rapid forma­
tion and deposition of insoluble organics (pyrobitumen). 
These experiments simulated steam conditions, and sug­
gested that pyrobitumen could form rapidly as the oil 
was heated, possibly plugging permeability in a reservoir 
undergoing steam stimulation. 

Bizon and others (1984) experimentally steamed 
natural-asphalt-bearing carbonate rock from the Devoni­
an Grosmont Formation of Alberta. Pre-steam mineralo­
gy showed the samples to be 98 percent dolomite, the 
remainder being quartz, feldspar, diopside, kaolinite, 
smectite, and pyrite. Post-steam analysis showed dissolu­
tion of dolomite, quartz, diopside, feldspars, and possi­
bly kaolinite. Calcite formed, as did amorphous 
Mg-Ca-Al silicates. 

In an extension of this study, Kubacki and others 
(1984) experimentally steamed carbonate rock of the 
Grosmont Formation with an initial mineralogy of 98 
percent dolomite, 1 percent quartz, and 1 percent illite 
and kaolinite. They reported the formation of calcite, 
amorphous Mg- and Mg-Al silicates, hydromagnesite, 
margarite, huntite, and amorphous Fe compounds. They 
also reported having trouble measuring permeability, but 
concluded that overall permeability had decreased during 
the experiments largely because of translocation of fines 
in the pore system. 

Hutcheon and Oldershaw (1985) experimentally 
flooded carbonate rock of the Grosmont Formation with 
solutions at 180°C. Pre-steam mineralogy of the carbon­
ate rock was mainly dolomite, but included calcite, 
quartz, feldspar, illite, and kaolinite. Post-flood analyses 
indicated that smectite formed at the expense of dolo­
mite and kaolinite. The formation of amorphous sili­
cates as in the previous studies of carbonates was not 
reported. Authigenic smectite constituted less than 1 per­
cent of the total rock mass, but smectite reduced perme­
ability as much as 25 percent of pre-steam values, 
whereas porosity increased slightly. Although carbonate 
rocks do not appear to be as affected by steaming as sili­
clastic rocks, an increase in smectite content of about 1 
percent was enough to significantly impede the perme­
ability in the complex pore system of the carbonate rock. 

COMBUSTION-FIELD STUDIES 

Many field pilot tests of in situ combustion have 
been made in the last 30 years (Moore and others, 1989), 



but few studies have documented the details of mineral­
ogic changes induced by combustion. Lefebvre and 
Hutcheon (1986) examined quartz arenites from the 
Lower Cretaceous Sparky Formation in the Lloydminster 
heavy oil deposit, Saskatchewan, Canada, before and af­
ter combustion. Pre-fireflood mineralogy included 
quartz, feldspar, kaolinite, siderite, and ankerite. Post­
fireflood analysis indicated combustion temperatures had 
reached somewhat higher than 540°C. Illite, chlorite, and 
minor potassium feldspar and hematite formed in the 
burned zone, and kaolinite was removed. In general, 
fireflooding did not have much of an effect on the min­
eralogy of the sandstones, in part due to the lack of an 
aqueous phase compared to steamflooding. No smectite 
formed, and only a minor reduction in porosity was re­
ported. However, Hutcheon (1984) noted that reservoir 
heterogeneity had a strong effect on the efficiency of 
fireflood sweep. 

COMBUSTION-EXPERIMENTAL STUDIES 

Perry and Gillott (1979) formed smectite in a sim­
ulated wet combustion process using mixtures of quartz, 
kaolinite, and dolomite. In the actual combustion zone, 
where much less water was present than in the surround­
ing zones, they documented the decomposition of kaolin­
ite at 500°C to 550°C and the decomposition of smectite 
at about 650°C. They used lithic sandstones from the 
Cretaceous Clearwater Formation of the Cold Lake area, 
Alberta. Perry and Gillott (1982) expanded their frretube 
experiments to include other minerals, and determined 
the temperatures at which common minerals such as do­
lomite, kaolinite, illite, chlorite, and smectite decom­
posed in a combustion zone. Although this study has 
been criticized because the sandstones were disaggre­
grated and repacked before ignition (Hutcheon, 1984), it 
is one of the few laboratory studies that reports the ef­
fects of combustion on mineralogy. Hutcheon (1984) 
concluded that porosity may actually increase during 
combustion, and that overall much less permeability-re­
ducing diagenesis occurs with dry combustion than with 
steam injection. 

Moore and others (1989) summarized the state of 
the art of combustion technology, and cited over 220 
firetube experiments using rock from 46 different reser­
voirs. However, these experiments were run primarily to 
investigate the operational aspects of fireflooding, such 
as temperature distribution, timing of bum, and the mo­
bilization of hydrocarbons. Details of mineralogic chang­
es are not provided. This is true of reservoir studies 
within the United States, where early firetube experi­
ments were directed toward understanding fireflood tech­
nology rather than mineralogic changes (Burger and 
Sahuquet, 1973). 

SUMMARY 

More artificial diagenesis occurs during steam in­
jection compared to combustion, probably because more 
water is present during steaming. However, more studies 
of the effects of combustion on mineralogy are needed 
and, in particular, studies on mineralogic changes that 
occur during wet combustion. In general, the more com­
plex the pre-thermal mineralogy, the more artificial dia­
genesis can be expected in the reservoir rock. This 
review shows that few generalizations can be made in 
terms of specific mineralogic changes during thermal 
stimulation, except that smectite is commonly formed at 
the expense of dolomite, kaolinite, and illite. Carbonate 
reservoirs containing viscous hydrocarbons appear to be 
less damaged by thermal stimulation than siliciclastic 
reservoirs, but even minute growth of smectite signifi­
cantly reduces permeability in carbonate pore systems. 

More information is needed on the timing of artifi­
cial diagenesis, its effect on porosity and permeability, 
and the timing of hydrocarbon mobilization. Although 
many studies have documented permeability reduction 
related to the growth of smectite or colloids, the un­
known factor is the timing of the growth of these phases 
relative to oil mobilization. If they form after oil is mo­
bilized and recovered, then most artificial diagenesis is 
not detrimental. If they form before or during oil mobili­
zation, then any permeability reduction greatly affects 
recovery. The relatively low recoveries associated with 
steaming compared to combustion is a signal that dia­
genesis does have an effect on recovery. 

In a study of cores from a conventional reservoir 
that bears on this problem, Sayegh and others (1990) ex­
perimentally flooded sandstones with COrbearing water, 
and found that permeability decreased rapidly as fines 
were mobilized with high flow rates (similar to steam­
ing), and partially plugged pore throats. However, as the 
experiment proceeded, permeability increased to about 
7 5 percent of initial values as carbonate minerals were 
dissolved. This study illustrated the dynamics of the 
chemical and flow system, and this type of experimenta­
tion needs to be done using cores containing heavy oil or 
natural asphalt to determine timing of oil mobilization 
relative to permeability changes. 
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Biomarkers as Thermal Maturity Indicators 

By Paul G. Lillis1 

Biological markers (biomarkers) are organic com­
pounds in sedimentary rocks and petroleum that can be 
linked to biological precursor molecules derived from 
living organisms (Eglinton and Calvin, 1967; Speers and 
Whitehead, 1969). Biomarkers in rock extracts, pyroly­
sates, and petroleum are measured by gas chromatogra­
phy-mass spectrometry, usually expressed as the relative 
abundance or ratios of specific biomarker compounds. 
Biomarkers are essentially molecular fossils and have 
been used as indicators of paleoecology, depositional en­
vironment, and paleogeography (Huang and Meinschein, 
1979; Didyk and others, 1978; Brassell and others, 1983; 
Brassell and others, 1987; see Clayton, 1989, for a bric!f 
literature review). 

Biomarkers rarely retain their original chemical 
structure because of diagenetic alterations in the water 
column and shallow sediments and the effects of temper­
ature with deeper burial. Consequently, it is often diffi­
cult to correlate a biomarker found in the geosphere wilh 
a specific source organism. However, in some cases the 
biomarker reaction pathway from the biological fonn 
through several diagenetic steps to the most stable fonn 
has been studied in great detail (such as steroids; see de 
Leeuw and Baas, 1986, for details). 

Early studies revealed systematic changes in bio­
marker composition with increasing depth of burial 
(Philippi, 1965; Ensminger and others, 1974). Certain bi­
omarker ratios were compared with the thermal matura­
tion of organic matter, that is, changes in coal ranllc, 
vitrinite reflectance, or the generation of petroleum 
(Didyk and others, 1975; Mackenzie and others, 1980; 
Mackenzie and Maxwell, 1981; Radke and others, 1980), 
and consequently have been utilized as thermal maturity 
indicators for petroleum and source rocks in sedimentary 
basins. 

Biomarker ratios that systematically change wilh 
increasing burial (temperature and time) are a function 
of one or more geochemical reactions. In some cases a 
biomarker ratio has been attributed to a specific reaction 
(Mackenzie and McKenzie, 1983) (table 5) while most 
ratios are probably influenced by several reactions oe-

1 U.S. Geological Survey,_ Denver, Colo. 

curring simultaneously or in series. The rate of the spe­
cific or overall reaction is assumed to follow frrst-order 
kinetics, so the Arrhenius equation may be applied 
(Mackenzie and McKenzie, 1983; Alexander and others, 
1986). The Arrhenius equation can be expressed as: 

k' = A exp ( -EIRD 
where: 

k' = rate constant, 
A = frequency factor ( 1/s), 
E = activation energy (kJ/mol), 
R = gas constant, and 
T =temperature (K). 

(1) 

The extent of a reaction as expressed by a biomar­
ker ratio (table 5) is proportional to exp ( -k' t) where t is 
elapsed time and k' is a function of temperature (equa­
tion 1). When the kinetic constants (A and E) are deter­
mined for the reaction, then the biomarker ratio may be 
used to help define the thermal history of sedimentary 
rocks (Beaumont and others, 1985; Hong and others, 
1986; Mackenzie and others, 1988; Chiaramonte and 
others, 1988). The thermal history may in tum be ap­
plied to quantitative models for petroleum generation 
and migration (Tissot and others, 1987; Suzuki, 1990). 

Several approaches have been utilized to determine 
the kinetic constants (A and E) using natural samples or 
laboratory experiments. Data from natural samples 
(downhole trend) may be used assuming a known sedi­
ment burial and thermal history, no significant facies 
variation downhole, and no sample contamination from 
migrated hydrocarbons. In determining the kinetic con­
stants from a downhole trend, Mackenzie and McKenzie 
(1983) used an isothermal time-step model whereas Al­
exander and others ( 1986) used a linear heating rate 
function. On the other hand, Lewan and others (1986) 
and Rullkl>tter and Marzi (1988) derived the kinetic con­
stants from a series of isothermal hydrous pyrolysis ex­
periments which have the advantages of no facies 
variation (using replicate samples) and precisely known 
time and temperature conditions. However, hydrous py­
rolysis conditions (high temperature, short time, closed 
system) differ from natural conditions, and the derived 
kinetics may not be applicable. Marzi and others (1990) 
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Table 5. Selected maturity ratios based on an apparent biomarker reaction (from Mackenzie, 1984) 

Apparent reaction Ratio End value 

Isomerization of C17a.,21~(H) homohopanes at C-22 chiral center ---------------
22S 

22S+22R 

20S 

20S+20R 

0.6 

Isomerization of 5a.(H)14a.(H)17a.(H) C29sterane at C-20 chiral center ---------
0.54 

Triaromatic Aromatization of C-ring monoaromatic sterane to triaromatic steroid------------- -------
Tri- + Monoaromatic 1.0 

C-C bond cleavage of C28 triaromatic steroid to C20 triaromatic steroicfl -------
C2o triaromatic 

(C2o+C2s) tri- 1.0 

·M~ckenzie (1984) stated that apparent catbon cleavage reaction may actually be a reflection of higher stability of the C20 

triarornatic steroid. 

suggested that more precise kinetic parameters may be 
derived from combining natural data with experimental 
data. 

Specific biomarker reactions are far from the ideal 
thermal maturity indicator (see Curiale and others, 1989 
for discussion) because they generally have a narrow dy­
namic range of maturity, and many reach the endpoint or 
equilibrium point before the main stage of petroleum 
generation (Mackenzie, 1984). Also, biomarker concen­
trations decrease significantly at higher maturity (eventu­
ally reaching the instrument detection limits), which 
increases the chance of contamination or alteration ef­
fects. Because biomarker reactions are typically meas­
ured as the relative abundance or ratio of the reactant 
and the product, the actual concentrations are not known. 
Therefore an apparent transformation may actually be 
one compound being destroyed at a faster rate than the 
other (Requejo, 1989) or be the combined effects of re­
lease reactions from a "bound" state and destruction re­
actions (Abbott and others, 1990). Competing reactions 
may be the cause of observed reversals in some biomar­
ker maturity trends (Lewan and others, 1986; Strachan 
and others, 1989; Peters and others, 1990). 

Biomarker ratios need not be representative of a 
specific reaction to be useful as thermal maturity indica­
tors. For example, Alexander and others (1986) defined 
some aromatic maturity indicators by determining the ki­
netics of the overall pseudo-reactions. Biomarker ratios 
that change systematically with burial may be used on a 
relative maturity basis or may be empirically calibrated 
with vitrinite reflectance (Radke and Welte, 1983) or a 
maturity index (van Grass, 1990). However, empirical 
calibrations are influenced by variations in stratigraphy, 
thermal history, and biomarker reaction kinetics; and the 
maturity parameter should be applied with caution to 
other areas. Changes in vitrinite reflectance are con-
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trolled by a complex series of reactions with the result­
ing large dynamic range in maturity (Burnham and 
Sweeney, 1989). Separate calibrations for an array of 
heating rates would be required to correlate the behavior 
of vitrinite maturation with a biomarker maturity ratio. 

Some biomarker ratios are sensitive not only to 
maturity but to composition of organic matter (Seifert 
and Moldowan, 1978; ten Haven and others, 1986), to 
pH or redox potential in the depositional environment 
(Moldowan and others, 1986), or to rock matrix effects 
(Lu and others, 1989; Strachan and others, 1989). Al­
though some source and matrix effects are minor, these 
ratios should be used with caution if the effects cannot 
be taken into account. 

Despite all the above complications, biomarkers 
are a useful tool for determining the thermal maturity of 
oils and source rocks, and research continues to refine 
the technique. One promising area might be to use a dis­
tribution of activation energies to model a biomarker 
maturity parameter that describes a diversity of reactions 
(Burnham, 1989) analogous to some kinetic models ap­
plied to petroleum generation. For a more extensive dis­
cussion on the application of biomarkers as thermal 
maturity indicators, refer to Curiale and others (1989) 
and Mackenzie (1984). 
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Fission-Track Analysis in Sedirnentary Basins---1992 

By Nancy D. Naeser1 

INTRODUCfiON 

Fission tracks in apatite and zircon have been used 
in a wide range of studies in sedimentary basin analysis 
(reviewed in N.D. Naeser, 1989a; N.D. Naeser and oth­
ers, 1989b). The annealing of fission tracks and the re­
sulting effect on fission-track age and track lengths, 
particularly in apatite, have been used to reconstruct th~e 
thermal history of basins from the deposition and buri~l 
of sediments through subsequent cooling related to uplift 
and erosion. Annealing is also used to constrain local­
ized temperature anomalies, such as those related to in­
trusions and to the passage of high-temperature fluids 
through a basin. Fission-track analysis of detrital zircons 
helps set limits on maximum paleotemperatures in basins 
and determine the provenance of sediments (C.W. Naes­
er, 1979b; Gleadow and others, 1983, 1986a, 1986b; 
N.D. Naeser and others, 1987b, 1989b; Green and oth­
ers, 1989a; Hurford and Carter, 1991). Fission-track 
analysis is useful in sedimentary basin studies because it 
provides both temperature and time information over a 
temperature range that coincides with hydrocarbon gen­
eration (Gleadow and others, 1983; N.D. Naeser and oth­
ers, 1989b) and burial diagenetic processes (for example, 
clay diagenesis and conodont color alteration) and with 
paleothermal anomalies associated with some mineral 
deposits (C.W. Naeser and others, 1980; Cunningham 
and Barton, 1984; C.W. Naeser and Cunningham, 1984; 
Beaty and others, 1988). 

Apatite fission-track analysis has been used to clar·· 
ify the thermal history of more than 40 sedimentary ba­
sins worldwide, including North America (Briggs and 
others, 1979, 1981; Dokka, 1982; Lakatos and Miller, 
1983; Crowley and others, 1985, 1986; Johnsson, 1985, 
1986; Giegengack and others, 1986, 1990; Miller and 
others, 1986, 1990; N.D. Naeser, 1986, 1989b; Zimmer·· 
mann, 1986; Duddy and others, 1987; N.D. Naeser and 
others, 1987a, 1989a, 1989b, 1990a, 1990b; Crowley and 
Kuhlman, 1988; Dumitru, 1988, 1989; O'Sullivan, 1988:; 
Geving and others, 1989, 1990, 1991; O'Sullivan and 

1 U.S. Geological Swvey, Denver, Colo. 

others, 1989, 1990; Arne and others, 1990a, 1990b; 
Kelley and Blackwell, 1990; Kohn and others, 1990b; 
Kveton, 1990; Roden and others, 1990; Crowley, 1991; 
Kelley and others, 1991; McMillen and O'Sullivan, in 
press; among others), Australia (Duddy and Gleadow, 
1982, 1985; Gleadow and others, 1983; Gleadow and 
Duddy, 1984; Marshallsea, 1986; Duddy and others, 
1987; Arne and others, 1989, 1990b; Green and others, 
1989a; Gleadow, 1990), New Zealand (Green and White, 
1985; Seward, 1989; Kamp and Green, 1990), Europe 
(Green, 1986, 1989a, 1989b; Qvale and others, 1990), 
and elsewhere (Duddy and others, 1984; Corrigan and 
Crowley, 1989; Feinstein and others, 1989; Hansen, 
1990; Hill, 1990; Kohn and others, 1990a). These studies 
have produced extensive information on fission tracks 
and their response to the thermal history of sedimentary 
rocks and in many areas have provided information on 
thermal history that would be difficult to obtain other­
wise. At the same time, these studies have highlighted 
several questions that remain to be resolved before the 
full potential of apatite fission-track analysis in basin 
studies can be realized. 

ANNEALING KINETICS 

Although temperature is the dominant controlling 
factor in annealing, time cannot be ignored in interpret­
ing thermal history. The temperature range for annealing 
of any given mineral depends on the duration of heat­
ing-the shorter the heating, the higher the temperature 
required for annealing. More research has been devoted 
to determining the annealing kinetics of apatite than of 
any other mineral, both by laboratory heating experi­
ments (for example, C.W. Naeser and Faul, 1969; Mark 
and others, 1973; Zimmermann and Gaines, 1978; Crow­
ley, 1985; Green and others, 1985, 1986, 1989b; Crow­
ley and Cameron, 1987; Laslett and others, 1987; Duddy 
and others, 1988; Green, 1988; Crowley and others, 
1990, 1991; Hughes and others, 1990) and by empirical 
observations of annealing behavior in drill holes (C.W. 
Naeser, 1979a, 1981; Gleadow and Duddy, 1981). How­
ever, uncertainties still remain. At least nine laboratories 
are currently involved in research to more accurately de-
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fine the kinetics of apatite annealing and thus improve 
the practical application of apatite annealing models. 

APATITE COMPOSITION 

Laboratory studies and observations from drill 
holes have established that Cl-apatite anneals at tempera­
tures up to about 30°C higher than other common apatite 
varieties (F-, Sr-F-, and OR-apatite), affecting the varia­
tion in both age and track lengths with progressive an­
nealing (Green and others, 1985, 1989a; Crowley and 
Cameron, 1987; Crowley and others, 1990; Hughes and 
others, 1990). Fortunately, apatite suites are commonly 
so dominated by F-apatite with insignificant amounts of 
chlorine (for example, Berry and Mason, 1959; Deer and 
others, 1962; N.D. Naeser and others, 1987a) that most 
samples can be reasonably interpreted using F-apatite 
annealing data. Composition may pose a problem, how­
ever, for interpreting thermal history in basins where the 
detrital apatites have a wide and variable range in Cl­
content. Apatite composition is normally determined by 
electron microprobe. An ongoing challenge is to develop 
an altemati ve, routine method for determining composi­
tion (particularly Cl-content) in individual apatite grains 
that will eliminate the need for electron microprobe anal­
ysis (Siddall and Mendelssohn, 1990; C.W. Naeser, oral 
commun., 1991). 

INHERITED AGE AND THERMAL HISTORY OF 
DETRITAL APATITE 

It is obvious that detrital minerals entering a depo­
sitional basin carry with them previous! y formed fission 
tracks that reflect the thermal history of the sediment 
source. Furthermore, detrital apatites in sedimentary 
rocks are typically derived from parent rocks of widely 
varying age and thermal history. Thus, the observed var­
iations in apatite age and track-length distribution with 
depth in any given sedimentary basin will reflect the 
age(s) and thermal history(s) of the parent rocks, as well 
as the thermal history of the depositional basin and the 
compositional variability of apatite. These factors, com­
bined with the variation between sedimentary basins in 
annealing caused by differences in heating histories, 
must be considered when interpreting apatite fission­
track data from sedimentary rocks. Models that assume 
that variation in age and track lengths is only related to 
the thermal history of the sedimentary basin, or that all 
apatites came into the depositional basin with a simple 
(volcanic) track-length distribution, can produce signifi­
cant errors in interpreted thermal history, particularly in 
sedimentary rocks that have not been exposed to temper­
atures sufficient to totally anneal apatite. 
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RELATION BETWEEN TRACK LENGTH AND 
TRACK DENSITY 

The relation between the reduction in mean track 
length and fission-track age (track density) with progres­
sive annealing is unclear. Some workers have deter­
mined a 1: 1 correlation between reduced density and 
reduced track length in apatite during the early (low­
temperature) stages of annealing (Green, 1988), but 
some research suggests otherwise (C.W. Naeser and oth­
ers, 1989). Accurate determination of this relation is crit­
ical to the practice of some laboratories of "correcting" 
apatite fission-track ages based on the extent of track­
length reduction (for example, Kamp and Green, 1990). 
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Vitrinite and Solid Bitumen Reflectance: 
Some Correlations and Applications 

By Mark J. Pawlewicz and j. David King1 

The rudiments of coal petrography/petrology were 
established in the late 1800's when microscopy was first 
used to prove that most coal formed from the remains of 
terrestrial plants (Stach and others, 1982). From this be­
ginning, coal petrography/petrology advanced through 
the observation of thin sections of coal, primarily for pa­
leobotanical considerations, to the study of polished coal 
blocks with oil immersion techniques at about 1925. Im­
provements in optics and the discovery that vitrinite re­
flectance increases with increasing coal rank were 
instrumental in achieving great advances in the knowl­
edge of coal. Equipment improvements were marked by 
progressions in the application for technological purpos­
es, such as the determination of the coking quality of 
coal, as well as for academic purposes. The history of 
the application of reflectance analysis to exploration for 
oil and gas dates from the work of M. Teichmuller 
(1958) with her reflectance measurements of fine­
grained coaly inclusions in sedimentary rocks. 

Determination of vitrinite reflectance (Rm) has ad­
vantages and disadvantages in assessing thermal maturity 
with respect to generation of oil and gas. One advantage 
is the relative mechanical ease of analysis using prepared 
slides and pellets of coal and organic material (OM) con­
centrated from sedimentary rocks. Stach and others 
(1982) and Bustin and others (1983) presented excellent 
summaries on the aspects of coal petrology /petrography. 
Davis (1978) discussed the analytical methods for coal 
reflectance determination. All three references are rec­
ommended as they provide good crossover information 
for the observation and measurement of dispersed organ­
ic material. 

Vitrinite reflectance is used as a quick index to 
evaluate the level of thermal maturation of sedimentary 
rocks (Sikander and Pittion, 1978). Reflectance is cor­
relative to a specific rank of coal, while Rm of dispersed 
organic matter (OM) is considered in terms of thermal 
maturity, or relation to the hydrocarbon (HC) generation 

1 U.S. Geological Survey, Denver, Colo. 

58 The Petroleum System-Status of Research and Methods, 1992 

window. Generally only the "window" of peak genera­
tion is used; 0.6 to 1.2 percent Rm for oil, and 1.2 to 2.0 
percent Rm for wet gas; greater than 2.0 percent for dry 
gas. Dow's (1977) correlation chart places the HC gener­
ation range between at 0.5 and 3.2 percent. Of course, 
this is not always the case. Reflectance values below this 
threshold would most likely be the result of the type of 
organic material (Waples, 1985), or some process, yet 
unexplained, operating on the OM (Graham and Wil­
liams, 1985; Price and others, 1986). Higher values can 
be partially explained by the high bireflectance of vitri­
nite, where a paucity of OM in rocks of high thermal 
maturity usually results in a wide histogram and a some­
what indeterminate mean value. More succinctly, Waples 
(1985) states, "Effective generation of HC requires that 
the generated products be expelled from the source-rock 
matrix and migrated to a trap. Timing and efficiency of 
expulsion depend on a number of factors, including rock 
physics and organic-geochemical considerations." 

Samples processed for their organic material can 
commonly have several distinct populations of vitrinite. 
For this reason the selection of vitrinite for reflectance 
measurement is possibly the most error-prone and incon­
sistent factor in thermal maturity determinations; prob­
lems and criteria related to this selection are discussed 
by Dembicki (1984), Barker and Pawlewicz (1986), Tox­
opeus (1983), and Powell and others (1982). Walker 
(1982) and Walker and others (1983) found anomalously 
low reflectance values, 0.2 to 0.3 percent Rm, in an off­
shore California HC producing sequence. Price and 
Barker (1985) provided much insight into these unex­
pected low Rm values. Local variations in OM type (see 
Tissot and Welte, 1984, for discussion of kerogen types 
and relation to HC generation), chemistry of the OM, 
and other factors determine the values for the "oil win­
dow" and affect the probability of any generation having 
taken place. 

A disadvantage of vitrinite reflectance is the lack 
of precision in predicting thermal maturity at the low 
end of the reflectance scale, between 0.2 and 0.45 per­
cent Rm. Stach and others (1982) illustrated this in chart 
form as it applies to coal at the lignite and subbitumi-



nous levels. Low rank coals are sensitive to the physical 
environment, such that an increase in the moisture con­
tent alone can cause variations in reflectance of 0.1-0. tS 
percent Rm. This is an important consideration because~, 
due to ease of preparation, coal is the preferred material 
when working with borehole profiles. This problem is 
mitigated because the real interest lies at a higher reflec­
tance level. Concentrated OM may or may not be as sen­
sitive to changes in moisture content, but a certain 
awareness of this problem should be part of any maturity 
determination done on low rank material. 

An advantage of the technique is the direct correla­
tion of reflectance to maximum temperature (Barker and 
Pawlewicz, 1986). Rm analysis of samples from borehole 
profiles is used to establish reflectance gradients. The 
gradients are then used to recognize the upper. and lowe.r 
thermal maturity boundaries of the oil/gas window. 
Knowing the upper and lower boundaries of the oil win­
dow could be used to determine the volume of the 
source rocks, useful for determining HC resources. 

Burial history reconstruction is widely used to il­
lustrate the geologic history of various stratigraphic 
units. Related to this reconstruction is the use of thermal 
maturation profiles to estimate the amount of erosion, 
both at the top and within a sequence. This exercise is 
predicated on the belief that the reflectance value for vit­
rinite at the Earth's surface before burial is 0.2 percent 
By extrapolating a regression line through a plot of 
depth versus vitrinite reflectance to the 0.2 percent R1111 

intercept, the amount eroded is the difference between 
ground level and the intercept point (Dow, 1977). This 
simple exercise is complicated by the lack of an accept­
ed surface baseline value. For example, Katz and others 
(1988) use 0.25 percent Rm in their examples, whereas 
Vellutini and Bustin (1990) use 0.15 percent Rm. 

Burial history reconstruction of Paleozoic basins, 
which have cooled from their maximum temperatures, 
presents another problem. Vitrinite reflectance. records 
the maximum temperature (Barker and Pawlewicz, 
1986), and it is irreversible. Drawing a regression line 
on this maximum will yield unrealistically high esti[­
mates of erosion. For the Anadarko basin in Oklahoma, 
the erosional estimate derived in this manner is greate~r 
than the entire Mesozoic and Cenozoic section 
(Pawlewicz, 1989). This approach is useful in Paleozoic 
basins, however, for studying the evolution of a basin, 
determining the timing of igneous intrusions and the on­
set of overpressuring and overthrusting, and for inter­
preting discontinuous Rm profiles (Katz and others, 
1988; Law and others, 1989). 

Coal is made of up to 90 percent or more vitrinite. 
Most coal is formed from plant material by diagenetic 
alteration involving bacteria, chemical activity, pressure 
and, primarily, heat. Though there is evidence for land 
plants existing from the pre-Silurian (Gray and others, 

1982), vitrinite is, at best, rare and unequally distributed 
in lithology and facies regardless of age. For this reason 
additional organic entities are analyzed to broaden the 
application of petrography for thermal maturation deter­
mination. Some of these entities are chitinozoans (Goo­
darzi, 1985), graptolites (Kurylowicz and others, 1976; 
Goodarzi and Norford, 1985; Kemp and others, 1985; 
Goodarzi, 1984), scolecodonts, and solid bitumens (Curi­
ale, 1986; Bertrand, 1990). Bertrand and Heroux (1987) 
compared the former three and found a depth-reflectance 
relation for each type of zooclast, but not between the 
individual zooclasts. They noted that reflectance results 
for the zooclasts should not be pooled for the evaluation 
of thermal maturity. Refining earlier work, Bertrand 
(1990) found that (1) chitinozoan and telinite (cell wall 
of structured vitrinite) reflectances are similar, (2) 
scolecodonts are always less reflecting than chitinozo­
ans, and (3) zooclast reflectances converge and become 
similar to that of vitrinite with increasing maturation. 
Bustin and others (1989), in a laboratory study, demon­
strated a direct correlation between maximum and ran­
dom reflectance of graptolites and vitrinite. 

Solid bitumens are ubiquitous in distribution and 
variety (Gentzis and Goodarzi, 1990). During burial, sol­
id bitumens undergo irreversible chemical changes anal­
ogous to those of vitrinite. However, correlation of 
reflectance of solid bitumens and of vitrinite is impre­
cise. Regression lines for vertical profiles for solid bitu­
men and vitrinite intersect near 1.0 to 1.1 percent 
reflectance. Below 1.0 percent the reflectance of solid 
bitumen is less than, and above that value more than vit­
rinite. A susceptibility to alteration by deasphalting, wa­
ter washing, biodegradation, and oxidation (weathering) 
reduces the utility of bitumen for maturation studies, as 
does its tendency to form fine-grained mosaic structures 
during rapid heating. The mosaic structures ruin the sur­
face for reflectance measurements. Despite numerous 
shortcomings, the measurement of reflectance of solid 
bitumen is useful. Because vitrinite reflectance is the 
benchmark maturity indicator, mathematical equations 
have been derived to approximate the relation among 
vitrinite, bitumen, and zooclast reflectance (Bertrand and 
Heroux, 1987). 
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Clay Minerals as Geothermolneters-
lndicators of Thermal Maturity for Hydrocarbon Exploration 

By Richard M. Pollastro1 

INTRODUCTION 

Clay minerals provide information on the burial 
and thermal history of sedimentary rocks that is useful in 
the exploration, evaluation, and production of hydrocar­
bons. Over the past decade or so, empirical relations be­
tween clay minerals and temperature have provided a 
basis for their use as geothermometers. The utility of 
clay-mineral geothermometry has been applied mainly to 
diagenetic, hydrothermal, and metamorphic settings, in 
an attempt to better understand the thermal histories of 
ore and mineral formation, migrating hydrothermal flu­
ids, and hydrocarbon source beds. Several clay minerals, 
particularly illite, mixed-layer illite/smectite (I/S), chlo­
rite, kaolinite, and corrensite, are indicators of specific 
temperatures or temperature ranges (Hoffman and How­
er, 1979). This report only discusses the current research 
status and activities related to clay-mineral geothermom­
etry. In addition, I will demonstrate the utility of the 
method by presenting a case history where the 1/S ge:o­
thermometer has been applied successfully to a known 
petroleum system, the Niobrara(!) in the Denver basin 
and adjacent areas (table 1). In this example, the I/S ge:o­
thermometer is applied regionally to correlate and pre­
dict the various degrees of thermal maturity in a 
formation that is both a petroleum source and reservoir 
rock and currently a major target for horizontal drilling. 

CURRENT RESEARCH AND EVENTS 

In USGS Bulletin 1912 (Magoon, 1989), I di[s­
cussed briefly the state of research and presented an ex­
tensive bibliography on applications of clay mineralogy 
with particular attention to clay-mineral geothermome­
ters (Pollastro, 1989). Since publication of Bulletin 
1912, additional studies have been published, and sym­
posia have been organized, on the subject of clay-mineral 

1 U.S. Geological Survey, Denver, Colo. 

geothermometry; at the end of this report, an updated 
"Selected References" includes papers on this subject 
omitted from Pollastro (1989). 

Following a special symposium held at the Rocky 
Mountain Section meeting of AAPG in October 1989, 
Nuccio and Barker (1990) published a volume entitled 
Applications of Thermal Maturity Studies to Energy Ex­
ploration. In that volume, I reviewed the concept, meth­
ods, and basic temperature models of the 1/S 
geothermometer (Pollastro, 1990). 

Two symposia have been organized recently on the 
reactions, processes, and applications of clay minerals 
for geothermometry. In July 1990, a conference on 
"Phyllosilicates as Indictors of Very Low Grade Meta­
morphism and Diagenesis" was held at the University of 
Manchester, United Kingdom. The conference was co­
sponsored by the International Geological Correlation 
Programme (IGCP), Project 294 (Very Low Grade Meta­
morphism), and the Clay Minerals and Metamorphic 
Studies Groups. About 35 oral and 18 poster papers 
were presented to over 120 participants. The conference 
focused on the chemical and physical processes related 
to expandability, illitization, and "crystallinity" measure­
ments of illite and 1/S, all which are common measure­
ments used in clay-mineral geothermometry. Few papers 
were presented on specific temperature models for clay­
mineral geothermometry or on comparison of tempera­
tures derived from clay minerals to those for the 
maturity of organic matter. Selected papers from the 
conference will appear in future issues of Clay Minerals 
and Journal of Metamorphic Geology. 

In October 1991, a special symposium at the 28th 
Annual Meeting of the Clay Minerals Society in Hous­
ton, Texas, entitled "Clay Geothermometers and Geo­
chronometers," was convened by Eric Eslinger and Reed 
Glasmann. Titles for the program included presentations 
on case-history studies, reaction kinetics and mecha­
nisms, and clay-isotope geothermometers. A total of 28 
oral and 20 poster papers were presented. 

In my recent review of the concept and utility of 
1/S geothermometry (Pollastro, 1990), I proposed two 
simple models for the I/S geothermometer: (1) a short-
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life geothermal model (<2 million years of heating) typi­
cal of very young sediments and modern hydrothermal 
systems, and (2) the model of Hoffman and Hower 
(1979), which pertains to older rocks and geothermal 
settings, particularly long-term, progressive burial diage­
netic sequences and basins ranging in age from about 2 
to 300 million years. Several case histories were present­
ed in the paper to develop and support the temperature 
models. 

Most recently, Elliot and others (1991) studied the 
smectite-to-illite reaction in bentonites from cores and 
outcrops of the Upper Cretaceous Mowry Shale and Nio­
brara Formation, Denver basin. They found that both the 
percent illite layers and K-Ar ages of 1/S increase with 
increasing depth of burial. Mathematical models showed 
an overall fifth-order kinetic expression for the forma­
tion of illite. They concluded that, for most of the basin, 
the data are compatible with 1/S having been formed in 
response to increased temperature from progessive burial 
because the oldest K-Ar ages of I/S are from the deepest 
buried 1/S along the basin axis. In addition, 1/S from 
bentonites in core from the Wattenberg gas field was the 
most illitic and among the oldest measured; these data 
are in agreement with anomalously high temperatures 
suspected in the Wattenberg field from previous studies 
of geothermometers based on organic matter (Rice, 
1984; Higley and others, 1985, this volume)· and clay 
minerals (Pollastro and Scholle, 1986a, b). 

APPLICATION TO THE NIOBRARA 
FORMATION, DENVER BASIN 

The utility of I/S geothermometry is best shown 
using a study on the Niobrara Formation for the follow­
ing reasons: (1) the Niobrara Formation in the Denver 
basin and adjacent areas is both a petroleum source and 
reservoir rock; (2) well-documented, progressive diage­
netic changes occur relative to increased depth of burial 
and temperature that affect both the reservoir quality of 
the chalks and the type of indigenous hydrocarbons (mi­
crobial gas versus oil) produced (Pollastro and Scholle, 
1986a); and (3) within the past five years, the overall 
success of the many horizontal wells drilled, particularly 
in fractured, organic-rich, thermally mature chalk or 
chalky shale reservoirs, has rekindled interest in the Nio­
brara Formation throughout the Rocky Mountain region 
as an exploration target for oil. 

Although an earlier version of an 1/S geothermom­
etry map of the Niobrara in the Denver basin and adja­
cent areas has been published (Pollastro and Scholle, 
1986a, b; Pollastro, 1990), I have recently updated, mod­
ified, and added data from about 20 wells to the current 
version (fig. 9). For example, data from the Silo field in 
southeastern Wyoming, where several horizontal wells in 
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the Niobrara are at various stages of completion, are in­
cluded in this revised version. Additionally, localities 
where transitional stages of 1/S occur are identified. 

The concept and the model used in this study are 
simple; 1/S in bentonite beds from the Niobrara Forma­
tion and basal Pierre Shale is used to predict the type of 
hydrocarbons sourced by organic-rich chalk and chalky 
shale of the Niobrara. On the basis of X-ray powder dif­
fraction profiles and the model of Hoffman and Hower 
(1979), randomly interstratified 1/S (commonly referred 
to as RO 1/S) is assumed stable below temperatures of 
about 100°C. At burial temperatures of about 100-
11 0°C, random or RO 1/S is converted to a short-range 
ordered 1/S (referred to as R1 1/S); thus, only ordered 
(R>O) 1/S is present above this temperature range in old­
er (>2 million years) basin settings (see review by Pol­
lastro, 1990). This study, and that recently reported by 
Elliott and others (1991), found few inconsistencies in 
1/S ordering among the several hundred samples from 
numerous well and outcrop localities. 

The temperature range of 100-110°C for the ran­
dom-to-ordered 1/S transition is generally coincident 
with temperatures for the onset of peak (or main phase) 
oil generation in rocks of Late Cretaceous through early 
Tertiary age (Tissot and Welte, 1984, p. 180). These re­
lations provide much of the basis for predicting hydro­
carbon maturity within the Niobrara from 1/S 
geothermometry. Additionally, microbial methane (an 
immature gas generated at low temperatures by the de­
composition of organic matter by anaerobic microorgan­
isms) is produced from the Niobrara in areas where 
burial temperatures never exceeded 7 5°C (Rice and 
Claypool, 1981). The I/S geothermometer is, therefore, 
especially useful for Niobrara rocks because it outlines 
areas of different degrees of thermal maturity as related 
to hydrocarbon generation. Areas with little or no poten­
tial, that is, those where maximum burial conditions 
were either too hot for microbial gas or too cool for 
thermogenic oil and( or) gas production, and probably be­
tween about 75°C and H>0°C, can also be interpolated 
from 1/S ordering and well production data. Areas that 
are potential targets for horizontal wells in thermally 
mature, fractured, Niobrara oil reservoirs should, there­
fore, contain only ordered 1/S in bentonites. 

Figure 9 is the updated version of the 1/S geother­
mometry map applied to maturity of hydrocarbons gen­
erated within the Niobrara Formation. Random 1/S in 
bentonite indicates areas of maxim urn burial tempera­
tures for Niobrara rocks <100°C, whereas ordered 1/S in­
dicates areas where the Niobrara has been buried to 
temperatures > 100°C and is thermally mature with re­
spect to oil generation. Similarly, transitional 1/S [locali­
ties where 1/S is in the initial or transitional stage of 
converting from random to ordered 1/S (see Pollastro and 
Martinez, 1985; Whitney and Northrop, 1988)] probably 
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Figure 9. Geothermometry map as an indicator of thermal maturity and hydrocarbon type for the 
Niobrara Formation, Denver basin, Colorado. Temperature determined from the degree of ordering of 
illite/smectite (1/S) clay in bentonite as interpmted from X-ray powder diffraction profiles from samples 
of outcrop (open symbols) and core (solid symbols). Area of current microbial gas production from the 
Niobrara Formation is shown. Small arrows point to areas targeted for horizontal wells. 
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indicates maximum burial temperatures near HX>°C (per­
haps about 90--l00°C) and can be interpreted as margin­
ally mature with respect to oil generation. The area of 
current microbial gas production from Niobrara rocks is 
also indicated on figure 9 as the area of immature gas 
production. 
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Influence of Regional Heat Flow Variation 
on Thermal Maturity of the Lower Cretaceous 
Muddy ("J") Sandstone, Denver Basin, Colorado 

By Debra K. Higley, Donald L. Gautier, and Mark j. Pawlewicz1 

INTRODUCTION 

Vitrinite isoreflectance (Rm) contours delimit re­
gional variation in levels of thermal maturity for hydro­
carbon (HC) source rocks adjacent to the Lower 
Cretaceous Muddy ("J") Sandstone in the Denver basin 
(fig. 10). Variation results from areal differences in buri­
al depth, heat flow, and basin hydrodynamics. Thermal 
maturity trends also suggest the occurrence of one or 
more heating events, one of which may be associated 
with the Late Cretaceous Laramide orogeny. 

The Denver basin is an asymmetrical Laramide 
structural basin with a gently dipping eastern flank and a 
steeply dipping western flank; isoreflectance contours 
terminate against the Front Range uplift (fig. 10). The 
basin axis is approximated by a line connecting Denver, 
Colorado, and Cheyenne, Wyoming. Most Muddy ("J") 
Sandstone oil and gas fields are located on the shallow 
eastern flank of the basin. The Wattenberg gas field is 
enclosed by the 0.9 percent Rm contour and is located 
along the northeastern extension of the Colorado Miner­
al Belt (Sonnenberg and Weimer, 1981). 

The "J" sandstone is an informal economic unit of 
the Muddy Sandstone. About 90 percent of the 800 mil­
lion barrels of oil and 1.2 trillion cubic feet of gas (tcfg) 
produced from the Denver basin has been from the "J" 
sandstone. This predominantly nearshore marine, deltaic, 
and valley-fill sandstone was deposited about 99 to 97 
million years ago (Ma) during a regression of the Creta­
ceous epicontinental seaway (Kauffman, 1977, Obradov­
ich and Cobban, 1975, Weimer, 1984, Weimer and 
others, 1986). The Muddy ("J") Sandstone is bounded 
by marine shales, which are probably the main source 
rocks for oil and gas produced from the Muddy ("J") 
'Sandstone (Clayton and Swetland, 1980). These are the 
underlying Skull Creek, and overlying Mowry and Gran-

1 U.S. Geological Survey, Denver, Colo. 
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eros Shales; these shales were sampled at 14 outcrop lo­
cations and from cores of 42 wells for Rm analysis (Hig­
ley and others, 1985). 

Acknowledgments.-Roy Gallop of Core Laborato­
ries, Denver, Colorado, supplied core data. Many oil 
companies generous! y released well data. Sources of Rm 
include unpublished data from Ernest Jones, Dudley 
Rice, and Jerry Clayton; their assistance is appreciated. 

ISOREFLECTANCE TRENDS 

Thermal maturation of HC source rocks depends 
largely on increasing depth of burial and areal variation 
in Denver basin heat flow. Rm increases almost exponen­
tially with increasing burial depth in the Colorado por­
tion of the basin, ranging from 0.41 percent at 4,900 ft 
(1,500 m) depth to 1.51 percent at 7,800 ft (2,400 
m)(Higley and others, 1985). The correlation coefficient 
for the linear regression of depth versus log Rm is -0.64 
for the Colorado samples (fig. 10). There is no correla­
tion between depth and Rm for samples located in Ne­
braska and Wyoming ( +0.26). Correlations are 0.86 to 
0.93 for the least-squares regressions of down-hole depth 
versus log Rm for the four wells shown on figure 11. 
Differences in slopes of the lines result mainly from are­
al difference in heat flow. Poorer correlations for the 
Muddy ("J") Sandstone data than for the four wells re­
sults from variable rates of current and probable paleo­
heat flow across the basin, and also from influence of 
different thicknesses of eroded Tertiary sediment on 
computed maximum burial. 

In oil-prone types of organic matter, an Rm range 
of about 0.6 to 1.35 percent is commonly considered to 
be the main zone of oil generation. Thermogenic gas is 
the predominant product above an Rm of approximately 
1.35 percent (Waples, 1980). Source rocks with Rm val­
ues less than 0.60 percent are usually considered to be 
thermally immature for oil generation in the types II and 
III kerogen from which Muddy ("J") Sandstone oil and 



gas is produced (Clayton and Swetland, 1980). The 0.6 
percent isoreflectance contour line corresponds to a pres­
ent-day depth of about 6,000 ft (1 ,800 m) in the Denver 
basin. Oil and gas production in areas of lesser Rm val­
ues suggests migration of oil from deeper and hotter 
areas of the basin. Studies of Cretaceous oils by Clayton 
and Swetland (1980) show that much of the Muddy ("J") 
Sandstone oil in the southeastern quarter of figure 10 
originated deeper in the basin. 

In general, the lowest Rm values are on the shal­
lower eastern flank of the basin and at the Muddy Sand­
stone outcrops along the western flank (excluding th~e 

area directly west of the Wattenberg field). Cretaceous 
and older rocks that crop out on the west side of the 
basin were uplifted during the Laramide orogeny, which 

105° 

0 

0 

began about 68 Ma and ended about 50 Ma {Trimble, 
1980; Tweto, 1975, 1980). Because this uplift preceded 
the maximum burial depth attained in other parts of the 
basin, Rm values of outcrop samples are generally much 
less than in samples immediately basinward. Maximum 
burial for Muddy ("J") Sandstone source rocks in most 
of the basin was attained during the late Tertiary {Taint­
er, 1984; Higley and Gautier, 1988). Erosion of Tertiary 
and Upper Cretaceous rocks across the basin is associat­
ed with broad uplift of the Great Plains during the last 7 
to 10 million years (Epis, 1973, Izett, 1973, Lachenbruch 
and Sass, 1977, Taylor, 1973, Zoback and Zoback, 
1980). During this period of time a minimum 1,000 ft 
(300 m) and as much as 5,500 to 6,500 ft (1,700--1,900 
m) of rock was removed (Higley and Schmoker, 1989; 
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Figure 10. lsoreflectance contour map of the Lower Cretaceous Muddy ("J") 
Sandstone in Denver basin. Wattenberg field is approximately in "bulls eyr.-" of 
0.9 to 1.5 percent Rm. Contour interval is 0.1 percent Rm. Small solid dots are 
Rm sample locations; large symbols are locations for Sohio well No. 12-7 
Whitehead (triangle) and Amoco we~lls Nos. 1 Champlin 562A-1 (square) and 
1 Champlin 401 A and 344A-1 (dots). Dashed line is western boundary of 
Denver basin. Northeasterly trend of Colorado Mineral Belt (CMB) is shown. 
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L.C. Price, oral commun., 1991). Estimates of erosion 
are based on stratigraphic reconstruction and on down­
hole thermal maturity plots of Cretaceous through Ter­
tiary strata (fig. 11). 

The highest Rm values are in the Wattenberg gas 
field. The 1.3 percent Rm contour line approximates the 
onset of thermogenic gas generation; higher Rm values 
suggest that some of the gas is thermogenic in origin. 
Gas-prone type III kerogen also contributes to the more 
than 0.57 tcfg (to 1/89) produced from the Wattenberg 
field. Samples collected within the gas generation zone 
range from depths of 7,000 to 8,000 ft (2,100-2,400 m). 

Values of Rm in the Wattenberg field are anoma­
lously high when compared to surrounding areas, even 
when reconstructed to maximum depths (Higley and 
Schmoker, 1989). In addition, the geothermal gradients 
are also anomalously high. This high heat flow probably 
results from several processes; three of these are (1) in­
fluence of lateral and upward moving fluids (Meyer and 
McGee, 1985), (2) possible effect of broad regional up­
lift, and (3) areal variation in heat conductivity of rocks 
and pore fluids. 

There is evidence of one or more heating events, 
probably associated with Laramide reactivation of north­
east-trending Precambrian basement faults of the Colora-
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Figure 11. lsoreflectance sample depths and correlation 
curves (extrapolated above ground surface) for Sohio well 
No. 12-7 Whitehead (triangles) and Amoco wells Nos. 1 
Champlin 562A-1 (squares) and 1 Champlin 344A-1 and 
401 A (dots) (modified from Tainter, 1984). Extrapolation of 
curves to a postulated above-surface Rm of 0.25 percent 
yields about 2,000 to 8,000 ft (6] 0-2,400 m) of eroded 
sediment thickness. Correlation curve (thin line) of "J" 
sandstone data set is also shown. 
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do Mineral Belt. Reactivation of these faults during and 
following the Laramide orogeny (Haun, 1968, Hoblitt 
and Larson, 1979, Sonnenberg and Weimer, 1981, Wei­
mer, 1984) may have influenced the thermal maturity of 
overlying sediments, both through increased heat flow 
and by more efficient heat transfer through associated 
fracture and fault systems. Additional support for the 
mineral belt heat source includes this evidence: (1) 
Anomalously large Rm values occur in outcrop samples 
directly west of the Wattenberg field; (2) isoreflectance 
contours in Paleozoic formations of southwest Nebraska 
mimic the Muddy ("J") Sandstone source rock anomaly 
(J. Clayton, oral commun., 1990) and are on trend with 
the mineral belt; (3) laccolithic intrusions along the min­
eral belt are dated Laramide and younger (Armstrong, 
1969; Bryant and Naeser, 1980; Hoblitt and Larson, 
1975); and (4) conodonts of the Mississippian Leadville 
Limestone exhibit anomalously high color alteration in­
dex (CAl) values within the mineral belt. This CAl 
anomaly may be associated with Laramide hydrothermal 
flow (Bridges and McCarthy, 1990). 

While basin Rm trends are apparent, scatter in data 
is considerable. Some of the scatter results from uncer­
tainty in the measure of vitrinite reflectance. Values of 
Rm may be affected by the presence of oxidized or recy­
cled organic matter and inertinite macerals, which have 
reflectance levels greater than vitrinite. These macerals 
are common in the Nebraska and Wyoming samples (fig. 
10) and may have influenced Rm values. Some of the 
anomalous Rm data may be due to sampling; oil fields in 
the Rocky Mountain region are hotter than adjacent non­
producing areas (Meyer and McGee, 1985); this may be 
related to basin hydrodynamics and to the low thermal 
conductivity of hydrocarbons. Effects of the basin deep 
west of Cheyenne, Wyoming, are undocumented because 
of lack of data. However, clay mineral and radiometric 
work by Elliott (1988) suggests that source rocks here 
are within the oil generation window and may be within 
the gas generation window. 
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Thermal Maturity of the Mesaverde Group, 
Uinta Basin, Utah 

By Vito F. Nuccio andThomas D. Fouch1 

INTRODUCTION 

The level of thermal maturity achieved by hydro­
carbon sourc'e rocks is one of the most important factors 
controlling petroleum generation. Thermal maturity stud­
ies also play an important role in assessing reservoir dia­
genesis, timing of structural movement, burial history 
reconstruction, fluid movement, and porosity prediction. 
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UINTA MOUNTAINS 

This paper summarizes the thermal maturity of the Me­
saverde Group (Upper Cretaceous) in the Uinta basin, 
Utah (fig. 12). Using vitrinite reflectance (Rm), two maps 
show the Rm of rocks at the base and top of the Mesav­
erde Group. A map of elevation to 0.75 percent Rm illus­
trates the position for onset of gas generation for type III 
kerogen and the formation in which it occurs. Cross sec­
tions illustrate the stratigraphy, types of kerogen, levels 
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Figure 12. Index map of Uinta and Piceance basins in Utah and Colorado. Locations of cross sections A-A' (fig.13), B-8' 
(fig. 14), and Book Cliffs are shown. 

1 U.S. Geological Survey, Denver, Colo. 
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of thermal maturity, and the position of hydrocarbon­
producing zones of lower Tertiary and Upper Cretaceous 
formations within the Uinta basin. 

This study is based on data collected as part of the 
U.S. Department of Energy's Western Tight Gas Pro­
gram and the U.S. Geological Survey's Onshore Oil and 
Gas and Evolution of Sedimentary Basins Programs. The 
data base comprises several hundred core and cutting 
samples of coal and carbonaceous shale that were ana­
lyzed for vitrinite reflectance and Rock-Eva! pyrolysis. 
A large part of the present study is based on Johnson 
and Nuccio (in press), Nuccio and Johnson (1986, 1988), 
and the first author's unpublished data. 

KEROGEN TYPE AND SOURCE ROCK 
POTENTIAL 

Several models have been developed relating the 
generation of hydrocarbons to types of kerogen and ther­
mal maturity (Tissot and others, 1974; Dow, 1977, Wa­
ples, 1980, 1985). Three general types of kerogen have 
the potential, under optimum conditions, to generate hy­
drocarbons: type I, alginite-sapropelic or lipid-rich; 
type II, exinite-phytoplankton, zooplankton, and othe:r 
microorganisms, and type III vitrinite-huminite (terres­
trial plant debris). 

Type I kerogen is hydrogen-rich, occurs primarily 
in marine and lacustrine rocks, and generates mainly oill 
during catagenesis. The onset of oil generation from type 
I kerogen varies depending on the model one chooses. 
There is no absolute point at which hydrocarbon begins to 
be generated, and it probably begins over a range of Rm 
values depending on the specific type of organic matter. 
Dow (1977) used 0.50 percent Rm as the onset of oil gen­
eration for type I kerogen, while Anders and Gerrild 
(1984) and Tissot and Welte (1984) used 0.70 percent Rm. 

Type II kerogen occurs mainly in marine rocks, but 
can occur in lacustrine rocks as well, and generates 
mostly oil during catagenesis. Waples (1985) states tha.t 
oil generation begins over a range of Rm values of about 
0.45 to 0.50 percent for high-sulfur kerogen to 0.60 per­
cent for "typical" type II kerogen. 

Huminite and vitrinite or type III kerogen is oxy­
gen-rich and hydrogen-poor, occurs mainly in terrestrial, 
marginal lacustrine, or marginal marine rocks, and gen­
erates mainly methane gas during maturation. For typ1~ 
III kerogen, vitrinite reflectance is the best and most 
widely used measure of thermal maturity. Two important 
Rtn thresholds, 0.75 and 1.10 percent, are used to defin1~ 
regions of gas generation from type III kerogen. An Rm 
of 0. 7 5 percent represents the maturity required for the. 
onset of significant gas generation (Juntgen and Karweil, 
1966; Juntgen and Klein, 1975). Gas accumulations 
found in rocks with an Rm less than 0.75 percent contain 

either early microbial gas or thermal gas migrated in 
from more mature source rocks. In the Piceance basin, it 
appears that low-permeability Mesaverde rocks have 
negligible gas production where the Mesaverde has an 
Rm less than 0.73 percent (Johnson, 1989; Johnson and 
others, 1987). An Rm of 1.10 percent represents the level 
of maximum gas expulsion from type III kerogen 
(Meissner, 1984). The upper limit of maturity for gas 
preservation is still unknown, but could be as high as 4.0 
percent Rm (Waples, 1980). 

Types I, II, and III kerogen are present in the 
Green River Formation (Eocene), and these rocks have 
generated large amounts of oil and gas in the Uinta basin 
(cross section A-A', fig. 13; B-B', fig. 14). The thick 
Mancos Shale (Upper Cretaceous) is probably similar to 
the Mancos in the Piceance basin, where it contains sig­
nificant amounts of types II and III kerogen and has gen­
erated oil and gas (Johnson and Rice, 1990). The 
nonmarine to nearshore marine Mesaverde Group con­
tains dominantly type III kerogen and has the potential 
to generate large amounts of methane gas (Pitman and 
others, 1987). 

RM MAP OF BASE OF MESAVERDE GROUP 

The Rm map at the base of the Mesaverde Group 
shows a trend of increasing maturity from south to north 
(fig. 15). This trend generally follows the structural con­
figuration of the base of the Mesaverde; this indicates 
maturity was set prior to or during early stages of struc­
tural movement. In some areas, however, the Rm lines 
cut across structure indicating that maturity continued 
during or for some time after structural movement. V ari­
ation in heat flow could cause this crossing of Rm lines, 
but most likely toward the deepest part of the basin 
where the Tertiary overburden is thickest, and where the 
effects of structural movement and erosion are less, ther­
mal maturity at the base of the Mesaverde continued 
during or after uplift and erosion which began 10 Ma. 
On the flanks of the basin, however, maturity may have 
been "frozen" at pre-structural levels. 

Four Rm lines and three zones of hydrocarbon gen­
eration are shown in figure 15. The 0.65 percent Rm ref­
erence line shows the thermal maturity at the base of the 
Mesaverde around the edge of the basin. The areas of 
the basin that are not mature enough for significant gas 
generation (<0.75 percent Rm) are shown by the light 
stipple pattern. The 0. 75 percent Rm line indicates the 
maturity for onset of significant gas generation from 
type III kerogen at the base of the Mesaverde. The area 
between 0.75 percent and 1.10 percent Rm (darker stip­
ple) is the area of potential gas generation and accumu­
lation in Mesaverde reservoirs. The area north of 1.10 
percent Rm (darkest pattern) is the zone of maximum gas 
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generation and expulsion. The upper limit of gas genera­
tion in the northern and deepest, undrilled part of the 
basin is currently unknown. The 0.65 percent and 1.50 
percent Rm lines are for reference only. 

The base of the Mesaverde is greater than 0.75 
percent Rm over a large area of the Uinta basin. Except 
for the margins of the basin, where subsidence and 
amount of deposition were less, gas was probably being 
generated in Paleocene or early Eocene time as Tertiary 
sediments were being deposited. This generation contin­
ued until 10 Ma, when uplift and erosion caused regional 
cooling. Effects of uplift and erosion were not as great 
in the deepest part of the basin, and if temperatures were 
still great enough, and kerogen was available (not 
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"cooked out"), gas generation may have continued after 
10 Ma and may be actively generating today. It is likely 
that this gas was trapped in "tight reservoirs" throughout 
the generation history of the Mesaverde, and the areas of 
overpressuring in the basin today may mark the areas of 
active generation. 

RM MAP OF TOP OF MESAVERDE GROUP 

The Rm map at the top of the Mesaverde Group 
also shows a trend of increasing maturity from south to 
north (fig. 16). Rm lines generally follow the structural 
configuration of the top of the Mesaverde, suggesting 
that the observed maturity was reached prior to or during 
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Figure 13. Generalized cross section A-A' from outcrops on southwest flank of Uinta basin, through Duchesne and 
Altamont-Bluebell oil fields, to north-central part of Uinta basin, Utah (modified from Fouch, 1975). Figure also contains 
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the early stages of final structural movement 10 Ma. As 
with the map for the base of the Mesaverde (fig. 15), Rm 
lines in some areas cut across structure. This indicates 
continued maturation during or after structural move­
ment. Rm lines on the top of the Mesaverde Group 
equivalent to those at the base are located farther to the 
north, suggesting a larger area of less mature rock at the 
top of the Mesaverde. This pattern is a direct result of 
less depth of burial (up to several thousand feet) on the 
top of the Mesaverde. 
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Five Rm isoreflectance lines and three zones of hy­
drocarbon generation are shown in figure 16. The 0.50 
percent and 0.60 percent Rm lines are for reference, and 
show the general maturity for the top of the Mesaverde 
where it crops out around the edge of the basin. For the 
area south of the 0.75 percent Rm line (light stipple pat­
tern), one would not expect significant gas generation 
from source rocks located near the top of the Mesaverde. 
The area between the 0.75 percent and 1.10 percent Rm 
(medium stipple pattern) lines is the zone of significant 

Figure 15. Vitrinite reflectance (RnJ map showing thermal maturity at base of Mesaverde Group, Uinta basin, Utah. Map 
indicates areas of no gas generation (<0.75 percent Rm or light stipple pattern), onset of significant gas generation (0.75-
1.1 0 percent Rm or medium stipple pattern), and maximum gas generation and expulsion (> 1.10 percent Rm or dark 
pattern). Black dots indicate location of bore-hole or outcrop sample. 
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gas generation, and the area north of the 1.10 percent B~ 
line (darkest pattern) is the zone of maximum generation 
and expulsion for type III kerogen source rocks near the 
top of the Mesaverde. The 2.0 percent Rm line is for ref­
erence only, but indicates maturity at the top of the M~e­
saverde in the most deeply drilled part of the basin. As 
discussed earlier for the base of the Mesaverde, the up­
per limit for gas preservation is poorly defined. 

The areal extent of rocks with greater than 0.75 
percent Rm is less for the top than that at the base of the 
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Mesaverde and occurs further north in the deeper part of 
the basin. Again this pattern is due to less depth of buri­
al on the top of the Mesaverde. Therefore, gas genera­
tion for the top of the Mesaverde began later than for the 
base, probably not until Eocene or Oligocene time. This 
timing agrees with Pitman and others (1987), who con­
strained timing of gas generation from the Upper Creta­
ceous Neslen and Blackhawk Formations to Oligocene 
and Miocene time. As with the base of the Mesaverde, 
gas generation continued through the Tertiary and was 

Figure 16. Vitrinite reflectance (Rm) map showing thermal maturity at top of Mesaverde Group, Uinta basin, Utah. Map 
indicates areas of no gas generation (<0.75 percent Rm or light stipple pattern), onset of significant gas generation (0.75-
1.1 0 percent Rm or medium stipple pattern), and maximum gas generation and expulsion (> 1.10 percent Rm or dark 
pattern). Black dots indicate location of bore-hole or outcrop sample. 
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being emplaced into nearby reservoirs. Since 10 Ma, gas 
generation ceased at the top of the Mesaverde horizon in 
many parts of the basin; however, in the deeper parts, 
active generation is still possible today. 

MAP SHOWING ELEVATION TO 0.75 
PERCENT RM 

Figure 17 is a map showing the elevation from sea 
level to the 0.75 percent Rm line; the threshold for sig-
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nificant gas generation. The 0.75 percent R.n line cuts 
across formation boundaries; it moves up stratigraphi­
cally to the north. For example, in the southernmost part 
of the basin, 0.75 percent Rm occurs in the Mancos 
Shale, whereas in the northern part of the basin near Al­
tamont, 0.75 percent Rm occurs between the middle and 
carbonate markers of the Green River Formation (fig. 
14). The reason for this upsection movement is related 
generally to the structural movements and variations of 
burial depth in the basin. After final movement, the ba­
sin flanks were higher, and due to erosion there was less 
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Figure 17. Elevation (in feet) relative to sea level of 0.75 percent Rm line (onset of significant gas generation), Uinta 
basin, Utah. Shaded area indicates where 0.75 percent Rm line occurs in Mesaverde Group. South and east of shaded 
area, line is in pre-Mesaverde Group rocks. North of shaded area, line falls within Tertiary rocks. Black dots indicate 
location of bore-hole or outcrop sample. 
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overburden present. However in the center of the basin, 
where the effect of uplift and erosion was less, and more 
overburden was present, the rocks continued to mature. 
This caused an apparent raising of the Rm lines to stmti­
graphically higher positions. 

The shaded pattern in figure 17 represents the area 
where the elevation of the 0.75 percent Rm line occurs in 
the Mesaverde Group. This map is useful in that it ap­
proximates the elevation (easily converted to depth) one 
would drill to encounter the threshold for significant gas 
generation, and which formation it could be found in. 

CROSS SECTION SHOWING RM LINES AND 
PRODUCTION 

Figure 14 shows Rm lines superimposed on a strati­
graphic cross section through the Uinta basin. The cross 
section B-B' extends from the Altamont-Bluebell area 
(deepest part of the basin) southeastward to the Island 
gas field. As discussed earlier, the Rm lines climb strati­
graphically going northward, toward the deeper part of 
the basin. The 0.50 percent Rm line shows where types I 
and II kerogens should be mature enough for oil genera­
tion. It is interesting to note that the oil-producing zones 
are found where mixed types I, II, and III kerogen and 
the optimum maturity range for oil generation (>0.50 
percent Rm) occur. The 0.75 percent Rm line indicates 
where the onset of significant gas generation for type HI 
kerogen should occur. Not surprisingly, the gas-produc­
ing zones coincide with type III kerogen and an ~ of 
around 0.75 percent. The 1.10 percent ~ line shows 
where maximum gas generation and expulsion would be 
found for type III kerogen. The 2.0 percent Rm line rep­
resents the level of thermal maturity for the top of tne 
Mesaverde in the deeper part of the basin. 
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NERSL-National Energy Research Seismic Library 

By David J. Taylor1 

Geology, a science dealing with the history of the 
Earth as recorded in its rocks, strives to visualize sub:mr­
face structure and stratigraphy. Early geologic infonna­
tion came mainly from extrapolation of surface geology 
into the subsurface and from rock samples brought up 
during drilling operations. The application of physic8 to 
geologic science offered new and better ways to see be­
low ground level. The evolution of modem geophysical 
techniques, especially multichannel seismic-reflection 
imagery, now supplies earth scientists with clearer pic­
tures of subsurface geology. The U.S. Geological Survey 
(USGS) started collecting multichannel seismic-reflec­
tion data in the early 1970's to provide its programs with 
suitable subsurface information. Much of this data, ac­
quired directly or through contract, is information avail­
able in the public domain. 

In the early 1980's Federal budgets for earth sci­
ence research began to shrink, and money needed to ac­
quire new seismic-reflection data became increasingly 
scarce. The inability to acquire new seismic data has 
started to jeopardize the ability of the USGS to thor­
oughly fulfill some of its key missions. A 1988 National 
Research Council (NRC) study of USGS energy-related 
programs recommended that the USGS develop a net­
work of seismic-reflection data from both presently 
available and newly acquired seismic data (National 
Academy Press, 1988). The NRC report specifically stat­
ed that the USGS develop a scheme to catalog available 
seismic data and provide a means to access the data. In 
response to the NRC recommendations and the need to 
develop a data management policy for its digital mul­
tichannel seismic-reflection data inventory, the USGS 
established the National Energy Research Seismic Li­
brary, or NERSL, in late 1989. 

A reliable picture of the subsurface is usually helpful 
when solving most geologic problems. The purpose of the 
NERSL is to provide earth scientists in government, indiUs­
try, and academia with data needed to construct these pic­
tures. Several critical USGS research programs, such as 
the Deep Continental Studies program, the Offshore Geo-

1 U.S. Geological Survey, Denver, Colo. 

logic Framework program, the Evolution of Sedimentary 
Basins program, the Geologic Risk Assessment program, 
and the Onshore Oil and Gas program, have benefited 
from having seismic data available to them. The aim in 
establishing a national seismic library is to supply re­
searchers throughout the scientific community with data 
that are necessary but usually hard to obtain. 

The NERSL being a repository for unprocessed and 
processed multichannel seismic-reflection data can provide 
raw materials not only to those trying to solve specific ge­
ologic problems but also to those who are conducting re­
search in the development of new reflection seismic data 
processing techniques. Finding solutions to unusual geo­
logic problems often drives the development of new tech­
nology. Therefore, supplying the data needed to solve 
geologic problems and stimulate development of new tech­
nology is another goal of the NERSL. 

Regional grids of seismic-reflection data have pro­
vided USGS scientists with information leading to the 
formulation of new geologic concepts and the enhance­
ment of previous work. A good example is the San Juan 
basin tectonic framework study under the Evolution of 
Sedimentary Basins program. Through purchase of pro­
prietary information and contributions from private in­
dustry, USGS scientists were able to build a modest 
regional grid of seismic lines in the basin. Initially, a 
fault map of the thrusted northwestern edge of the basin 
was produced from the reprocessing and interpretation of 
the data (Taylor and Huffman, 1988). Using the larger 
grid of proprietary seismic data allowed this original in­
terpretation to be extended and resulted in the creation 
of a basement fault map covering most of the basin area. 
This fault map was used to develop a story for the evo­
lution of the San Juan basin and surrounding area (Huff­
man and Taylor, 1989). Correlation of the basement 
faults with the location of hydrocarbon production in the 
San Juan basin hints that movement along these faults 
through time may have influenced deposition creating 
the conditions needed to form accumulations of mineral 
and petroleum resources (Phelps and others, 1986; Huff­
man and Taylor, 1990). Similar USGS studies are in 
progress wherever seismic databases are available, and 
the objective of the NERSL is to supply the seismic data 
bases necessary to carry out these investigations. 
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Other government and nongovernment agencies have 
large multichannel seismic-reflection data libraries. Cornell 
University's Consortium for Continental Reflection Profil­
ing (COCORP) makes available to the public its inventory 
of deep seismic reflection data (Nelson, 1988). Most gov­
ernment-collected geophysical data is offered to the public 
through the National Oceanic and Atmospheric Adminis­
tration's (NOAA) National Geophysical Data Center 
(NGDC). There are also many small data brokerage firms 
operating that sell limited grids of proprietary seismic-re­
flection data. There has never been an attempt made to 
establish a national repository containing both field and 
processed digital seismic-reflection data collected from gov­
ernment and nongovernment sources which allows public 
access. All data released through COCORP, ~OAA-NGDC, 
or private industry is distributed on some form of magnetic 
tape, and costly processing systems are usually required to 
read these tapes. A design objective for the NERSL is to 
allow those owning inexpensive computer systems access 
to the seismic data base. Since the repository will hold the 
actual unprocessed field data, and its corresponding proc­
essed version, there needs to be a widely available low-cost 
way for the scientist to examine the data. Therefore, proc­
essed data will be distributed on commonly used compact 
disks with read-only memory, or CD-ROM' s. 

Low-cost CD-ROM readers that can be attached to 
standard personal computers are now available. Software 
accessible on the CD-ROM will allow the scientist to dis­
play, in color or black and white, the processed seismic 
sections with a map showing the location of the data. The 
software will also let the user scale the data, zoom in to 
produce a detailed display on a chosen part of the data, 
and plot the data to a ·low-cost dot-matrix printer. A de­
scription of the data and instructions on using the software 
resides on the disk in a file that can be displayed or print­
ed. This information is also available as a USGS Open­
File Report (Hutchinson and others, 1990). 

The NERSL CD-ROM has been designed to hold 
the actual processed digital information and not just 
scanned images of paper displays. The major advantage 
compared to the COCORP atlas or NOAA-NGDC notic­
es is that digital data can be downloaded from the NER­
SL CO-ROM's. The COCORP atlas, for example, 
contains only small scale paper copies of processed data, 
including information on buying magnetic tapes contain­
ing the original field data. The NERSL CD-ROM pro­
vides processed data already in an industry standard 
format on compact high-capacity media at a greatly re­
duced cost. 

After retrieving the digital information from the 
NERSL CD-ROM, the user can immediately process or 
redisplay the data using systems offering more advanced 
capabilities. Being able to use inexpensive hardware and 
public domain software to view and access large 
amounts of seismic-reflection data should provide users 
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throughout government, academia, industry, and the sci­
entific community in general with information needed to 
carry on a variety of important research projects. 

Future enhancements to the NERSL CD-ROM 
products may include the addition of public domain well 
information located on or near the seismic lines residing 
on the disk. Appended software will allow the user to 
convert the well data into a synthetic seismogram which 
can be correlated with the actual seismic data. The well 
data would reside on the CD-ROM in an industry stand­
ard format so that it could be accessed and used by most 
commercial well log processing software packages. This 
feature would provide the scientist with the data and 
tools to correlate actual geologic information to seismic­
reflection events. 

NERSL developers are exploring the feasibility of 
using CD-ROM media for the storage and distribution of 
the original unprocessed field data. This may provide a 
solution to potential NERSL data storage problems and 
simultaneously provide the researcher raw data in a com­
pact format which can be processed using the newest 
techniques. Occasional reprocessing of older data using 
state-of-the-art technology often supplies innovative so­
lutions to geologic problems. 
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Figure 1. Burial history chart shows critical 
moment for Deer-Boar(.) petroleum system. 
Rock unit names are fictitious. Lithologies 
shown: conglomerate-Thick, Placer, and Elk 
Formations (Fm.); shale-George Shale (Sh.); 
sandstone-Boar Sandstone (Ss.). 

Figure 2. Geographic extent of Deer-Boar(.) 
petroleum system at critical moment. 
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Figure 3. Geologic cross section showing 
stratigraphic extent of Deer-Boar(.) petroleum 
system at critical moment. 

Figure 4. Events chart for Deer-Boar(.) petrole­
um system. 




