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Late Cenozoic Benthic Foraminifers of the
HLA Borehole Series, Beaufort Sea Shelf, Alaska

By Kiristin McDougall

ABSTRACT

Benthic foraminiferal faunas in 18 boreholes from the
eastern Beaufort Sea shelf were examined. Foraminiferal
data were integrated with sedimentologic, seismic, and other
microfossil data to identify marine transgressions, to deter-
mine age, and to interpret paleoecologic conditions of the
late Cenozoic on the Beaufort shelf. Eight marine transgres-
sions ranging in age from Pliocene to Pleistocene were rec-
ognized: Beringian, Anvillian, Fishcreekian, Wainwrightian,
Pelukian, Simpsonian, middle Wisconsin, and Flandrian.
Foraminiferal assemblages associated with each of these
transgressions indicate water depth, salinity, temperature,
and downslope transport.

Sediments identified as Beringian, Anvillian, and Fish-
creekian occur in one borehole (HLA 18). Questionable
Fishcreekian sediments were encountered in two other bore-
holes. Foraminiferal assemblages associated with the Berin-
gian and Anvillian transgressions in the HLA boreholes are
too limited to suggest regional paleoecologic conditions dur-
ing those transgressions. Assemblages from the Fishcreekian
transgression indicate cooler water temperatures and greater
water depths than at present; the foraminiferal assemblages
also suggest considerable erosion and reworking of older
material. Wainwrightian sediments and faunas are common
in the boreholes. The Wainwrightian assemblages suggest
that water depths were greater than at present and, for most
of the time, water temperatures- were warmer. Pelukian as-
semblages suggest that water depths were slightly greater
and water temperatures were warmer than at present, where-
as Simpsonian and middle Wisconsin assemblages suggest
that water depths were the same to slightly greater and
temperatures were slightly cooler than at present. Pelukian,
Simpsonian, and middle Wisconsin sediments and faunas
are strongly affected by river input. During the Pelukian and
Simpsonian transgressions, the sedimentation rate and
warmer low-salinity waters from the Sagavanirktok and
Shaviovik Rivers either excluded the benthic foraminiferal
faunas from the deltaic areas or extended the occurrence of

Approved for publication January 6, 1993.

nearshore Elphidium-dominated biofacies into deeper wa-
ters along the channels in deltaic areas. Sediments sampled
from the middle Wisconsin transgression were deposited in
channels cut by the Sagavanirktok and Shaviovik Rivers on
the Beaufort shelf. Faunas from the Flandrian transgression
occur in a thin veneer of clay and silt, usually in the near-
shore boreholes, and represent shallow inner neritic deposi-
tion or lag deposits. In addition to in situ species, the
Flandrian lag deposits contain many reworked older species
that represent the deeper marine conditions characteristic of
the Pelukian or Simpsonian transgressions. '
Faunas in the Beringian and Anvillian transgressions
contain the age-diagnostic species Elphidium ustulatum,
which ranges from the Pliocene to the Pleistocene
throughout the circum-Arctic region. Abundant E. ustula-
tum in Fishcreekian assemblages suggest an early Pleisto-
cene age (1.67-0.8 Ma). Age diagnostic species are not
common in the younger transgressions. Elphidiella groen-
landica, Elphidium asklundi, and E. incertum, which are
present in Wainwrightian and Pelukian assemblages, de-
crease in abundance in the younger transgressions, where
they appear primarily as reworked components. Elphidium
excavatum alba is rare in Wainwrightian and Pelukian as-
semblages but becomes more common in the younger
transgressions, where warmer water conditions prevail.

INTRODUCTION

Following the successful completion of eight shallow
boreholes in Prudhoe Bay in 1977 and 1978, the U.S.
Geological Survey, in association with Harding-Lawson As-
sociates (HLA), participated in the study of 20 boreholes
drilled on the Beaufort Sea shelf, Alaska (fig. 1). Core.and
wash samples from 18 of the boreholes were retained by the
U.S. Geological Survey. Sediments were examined, de-
scribed, and then subdivided for stratigraphic, geochrono-
logic, and paleontologic studies. This paper describes the
foraminiferal assemblages and interprets the age, environ-
ment, and stratigraphy of the HLA boreholes on the basis of
benthic foraminifers. In several samples the foraminifers
were absent or not diagnostic, so data from ostracodes was
used. The Pliocene and Quaternary geologic history of the
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2  LATE CENOZOIC BENTHIC FORAMINIFERS OF THE HLA BOREHOLE SERIES, BEAUFORT SEA SHELF, ALASKA

Beaufort shelf is discussed in light of these interpretations.
Stratigraphic and lithologic data including interpretations of
the lithologic facies, stratigraphic units, and relative age
assignments from amino acid racemization, as well as inte-
gration with the seismic-reflector record of the Beaufort
shelf, are from P.A. Smith, (1985a, b, and oral commun.,
1984 through 1986). Ostracode interpretations are based on
preliminary data provided by E.M. Brouwers (written com-
muns., 1980 through 1986).

LOCATION, MATERIALS, AND METHODS

The 18 boreholes used for this study are on the Beaufort
Sea shelf, northern Alaska (fig. 1). The boreholes are land-
ward of the 15-m isobath between the mouth of the Can-
ning River and the eastern edge of the Jones Islands chain.
Eleven boreholes are seaward of the barrier island chain,
and seven are in the protected shallow waters landward of
the island chain.

At the time of drilling, detailed lithologic logs were com-
piled for each of the 20 boreholes. The location and sample
depths for each borehole except HLA 1 and HLA 2 are given
in appendix 1; measurements of sea-ice thickness, depth to

mudline (sediment-water interface), and total depth are also
listed. Boreholes HLA 1 and HLA 2 were not sampled for
microfossils, and no data are available. Depths used through-
out this paper are meters below mudline unless otherwise
indicated. Depth below mudline can be converted to depth
below sea level by referring to appendix 1. Lithology, sample
locations, and stratigraphic and paleontologic interpretations
of the borehole data are shown in figures 8 to 42.

All microfossil samples were air dried or dried in an oven
at low temperatures (<50°C). Where available, 100 g (dry
weight) of sediment was soaked for 4 to 12 hr in water before
being washed through a 230-mesh screen (63 microns). Fo-
raminifers, ostracodes, and representative amounts of associ-
ated organic material were picked from the washed residues.
Foraminiferal species identified in these faunas are listed in
appendix 2 and in tables 2 to 19, where abundance is shown
as a percentage of the total benthic foraminiferal fauna,
which is the total number of specimens per 100 g of sedi-
ment. The abundances of selected species are graphed on
figures 8 through 42. Relative abundance terms for the num- -
ber of specimens per sample and diversity terms used in this
paper are “abundant” or “high” (>500 specimens or >20
species), “common” or “moderate” (101-500 specimens or
11-20 species), “few” or “low” (10-101 specimens or 2-10
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Figure 1. Arctic Coastal Plain showing locations of HLA boreholes (solid circles) on Beaufort Sea shelf, Alaska.
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species), and “rare” (<10 specimens or 1 species). When
discussing an individual fauna, the terms “abundant”
(>10%), “common” (6-10%), “few” (1-5%), and “rare”
(<1%) refer to the percentage of the total fauna in that
sample. Foraminiferal slides and residues are on file with the
Branch of Paleontology and Stratigraphy in Menlo Park,
Calif. Ostracodes were examined by E.M. Brouwers, U.S.
Geological Survey in Denver, Colo.; ostracode slides and
preliminary reports are on file with the Branch of Paleontolo-
gy and Stratigraphy.

CHRONOSTRATIGRAPHY

Late Cenozoic deposits of the Arctic Coastal Plain and
adjacent Beaufort Sea shelf record a complex history of
eustatic sea-level changes related to glacial advances and
retreats. Glacial chronology developed to the south in the
Brooks Range, Alaska, document four major glacial epi-
sodes: (1) the Gunsight Mountain glaciation (late Tertiary),
(2) the Anaktuvuk River glaciation (Pliocene? and early
Pleistocene), (3) the Sagavanirktok River glaciation (multi-
ple advances, middle Pleistocene), and (4) the Itkillik glaci-
ation (multiple advances, Wisconsin glacial stage, late
Pleistocene) (Detterman and others, 1958; Hamilton and
Porter, 1975; Hamilton and Hopkins, 1982; Hamilton, 1979,
1982, 1983, 1986; Thorson, 1986). The stratigraphic frame-
work developed for the intervening interglacial stages and
interstades is based on a sequence of marine transgressions
identified in western Alaska and on islands in the Bering Sea
and named by Hopkins (1967, 1973). Hopkins’ scheme has
been modified and refined by further study in northern Alas-
ka and by the development of new dating techniques
(Brigham, 1985a, b; Brouwers and others, 1984; Carter and
others, 1986a; Smith, 1985a, b). The chronostratigraphic
framework used here was developed as a result of these
Alaska studies and correlations with Pacific and Atlantic
Pliocene and Pleistocene marine deposits (figs. 2, 3).

Northern Alaskan marine transgressions are (in order of
decreasing age) Beringian, Anvillian, Fishcreekian, Wain-
wrightian, Pelukian, Simpsonian, middle Wisconsin, and
Flandrian. The Beringian, Anvillian, and Pelukian transgres-
sions were originally identified by Hopkins (1967) from
deposits near Nome, in western Alaska, and from various
deposits along the Alaskan coastline including the Beaufort
Shelf. Carter and others (1986) proposed the names Colvil-
lian and Bigbendian, which may correlate with the Beringian
and Anvillian transgressions, respectively, to identify the two
oldest transgressions on the Arctic Coastal Plain. Amino acid
alle/Ile ratios from mollusks are generally required to dif-
ferentiate the Colvillian and Bigbendian transgressions
(Carter and Galloway, 1985). (These are ratios of D-alloiso-
leucine and L-isoleucine amino acids in both the free or
naturally hydrolyzed and total or free plus peptide-bound
amino acid assemblage fractions; see Brigham, 1985.) The
western Alaskan names are retained in this paper for the two
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Figure 2. Estimates of age ranges, sea-level changes, and cli-
matic conditions of late Cenozoic marine transgressions in north-
ern Alaskan compared to present conditions. Data from Hopkins
(1967), McCulloch (1967), Brouwers and others (1984), Brigham
(1985a, b), Smith (1985a, b), and Carter and others (1986a).
Dashed line where uncertain.
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oldest transgressions. Fishcreekian, Wainwrightian, and
Simpsonian are names proposed by Carter and others (1979,
1986a). The Fishcreekian transgression is represented by
marine deposits that were not previously recognized from
the Chukchi and Beaufort Sea coasts in western Alaska (P.A.
Smith, written commun., 1986). The Wainwrightian trans-
gression identified by Carter and others (1986a) is probably
a composite of transgressions that include most deposits
previously assigned to the Kotzebuan transgression of west-
ern Alaska (P.A. Smith, written commun., 1986). Sediments
and faunas from the Arctic Coastal Plain identified as Kot-
zebuan have a broad range of absolute and relative ages.
Sediments dated as 158 ka (Carter and Galloway, 1985)
along the south shore of the Kogru River southeast of Barrow
may be part of the same high stand as those of the Kotzebuan
transgression of Hopkins (1967), whereas the Karmuk unit
near Wainwright (540 ka; Brigham, 1985a, b) and sediments
at Cape Simpson (209 ka; Brigham, 1985a, b), both south-
west of Barrow, represent older high stands within the same
transgression. Because the sediments and faunas are similar,
the Wainwrightian transgression is envisioned as a major
transgression that spans a broad range of time with numerous
eustatic sea-level changes. The Kotzebuan transgression
(170-175 ka) of Hopkins (1967) probably represents a young
high sea-level stand within the Wainwrightian transgression.

Criteria and definitions of the Simpsonian, middle Wis-
consin, and Flandrian transgressions were discussed in an
earlier study (McDougall and others, 1986). Briefly, the
Simpsonian transgression (Carter and others, 1986a) oc-
curred near the end of the Sangamon interglaciation and
continued into the early Wisconsin; the middle Wisconsin
transgression occurred between the Itkillik I and Itkillik II
glaciations during the Wisconsin glacial interval; and the
Flandrian transgression followed the late Wisconsin glacial
maxima. Climatic conditions and sea-level changes are
summarized in figure 2, are discussed in the original refer-
ences, and are summarized by McDougall and others
(1986) and Smith (1985a, b).

Opinions differ over the ages of these marine transgres-
sions. The chronostratigraphic framework developed for
this paper correlates the Alaskan marine transgressions
with widespread climatic events that have been recognized
in the Pacific and Atlantic Oceans and relies on absolute
and relative age determinations from paleomagnetic, po-
tassium-argon (K-Ar), thermoluminescence (TL), and ami-
no acid racemization (A) data. Amino acid analyses cited
in this publication were performed at the Amino Acid Lab-
oratory, INSTAAR, University of Colorado, Boulder, Co-
lo. (P.A. Smith, written commun., 1986), and are based on
the foraminifers Elphidium clavatum and Elphidium orbic-
ulare. Amino acid stratigraphy is discussed more fully in
Brigham (1985a, b). Extinctions or evolutionary trends of
organisms were used whenever possible to determine the
age of the transgressions in this paper. Faunal composi-
tion, ecologic interpretations, and Arctic first and last ap-

pearances that are primarily controlled by climatic
conditions were also considered.

Cold events of worldwide importance are noted at approx-
imately 5.2t04.7,3.0t0 2.8,+2.4t0 1.8, 1.3 t0 1.2, 0.9, and
0.7 Ma (Kent and others, 1971; Shackleton and Opdyke,
1973, 1976, 1977, Keller, 1978; Berger, 1982; Keller and
Barron, 1983; Shackleton and Hall, 1984; Shackleton and
others, 1984) (fig. 3). Numerous short cold events have
occurred since 0.7 Ma. The intervening warm events can be
described relative to the present conditions. The early Plio-
cene warm event, 4.7 to 3.0 Ma, was a period of warm water
temperatures (Keller, 1978), and no ice accumulated in the
Northern Hemisphere from 3.5 to 3.2 Ma (Shackleton and
Opdyke, 1977). The late Pliocene warm event (2.8 to £2.4
Ma) was slightly cooler than the preceding event but warmer
than at present (Keller, 1978) and was terminated by the onset
of Northern Hemisphere glaciation at about 2.4 Ma (Shack-
leton and Hall, 1984; Shackleton and others, 1984). Temper-
atures during the early Pleistocene warm event (1.8-0.7 Ma)
were cooler than at present (Jansen and others, 1989). Ter-
mination of major ice accumulation was highly variable
following the cold event (2.4-1.8 Ma), and short glacial
intervals were common from 1.8 to 1.2 Ma. Low-amplitude
oxygen isotope changes imply more uniform, cool tempera-
tures during this event than during previous warm events
(Shackleton and Opdyke, 1977). Short intense cold events at
1.3 to 1.2, 0.9, and 0.7 Ma mark the end of this quiescent
period (Berger, 1982). The change in climatic conditions may
be related to the onset of midlatitude glaciation (Kent and
others, 1971). The interval between 0.7 Ma and the present
consists of a series of warm events interrupted by short
intense cold events that correspond to the even-numbered
oxygen isotope stages of Shackleton and Opdyke (1973,
1976, 1977). The warm events, corresponding to isotope
stages 5 and 1, are commonly known as the Sangamon
interglaciation stage and the Holocene, respectively.

The Beringian transgression occurred during the Gauss
Normal-Polarity Chron (3.40-2.48 Ma) on the basis of pa-
leomagnetic data (Hopkins, 1967). The lower age limit of
the Beringian transgression was originally constrained by
the first occurrence of North Pacific mollusks in the North
Atlantic, dated at 3.0 Ma (Einarsson and others, 1967; Glad-
enkov, 1981) and indicating the opening of the Bering Strait
(Hopkins, 1967). The lower age limit of the Beringian trans-
gression has subsequently been estimated as less than 3.8
Ma (aminozone 5, Brigham, 1985a, b) and less than 3.5 Ma
(Colvillian transgression of Carter and Galloway, 1985; Car-
ter and others, 1986a). An upper age limit of 2.2 Ma (Hopkins,
1967) was based on a lava flow overlying sediments of the
second Beringian transgression on St. George Island in the
Bering Sea (Hopkins and others, 1974; Repenning, 1983;
Brouwers and others, 1984). The second Beringian trans-
gression is now recognized as the Anvillian transgression;
thus the upper limit of the Beringian is unknown but is prior
to 2.2 Ma. Molluscan faunas in the Atlantic (Einarsson and
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others, 1967; Gladenkov, 1981) suggest warm climatic con-
ditions during the Beringian; thus the upper limit is assumed
to be prior to the cold event at 3.0 to 2.8 Ma. Given these
data, the Beringian transgression is correlated with the latter
part of the early Pliocene warm event (3.0 to about 3.8 Ma).

Potassium-argon ages on lava flows overlying sediments
of the Anvillian transgression (second Beringian transgres-
sion on St. George Island) indicate an upper age limit of 2.2
to 2.0 Ma for this transgression (D.M. Hopkins in Brouwers
and others, 1984; Carter and others, 1986a). A lower age limit
of less than 2.4 Ma was proposed by Repenning (1983) on
the basis of marine mammals in an exposure of the Anvillian
(Bigbendian) sediments at Ocean Point on the Colville River.
The stratigraphic placement of these mammals is in question
because one of the specimens was found as float (Carter and
Galloway, 1985) and because subsequent amino acid analysis
has indicated the presence of two transgressions at Ocean
Point (Carter and others, 1986a). The K-Ar and amino acid
ages and the warm faunas (Repenning, 1983; Carter and
others, 1986a) and floras (Nelson, 1981; Nelson and Carter,
1985s) suggest correlation of the Anvillian transgression
with the late Pliocene warm event (2.8-2.4 Ma).

Amino acid ages indicate that the Fishcreekian transgres-
sion occurred between 2.48 to 1.5 Ma (Carter and others,
1986a) and 1.4 to 1.0 Ma (aminozone 3, Brigham, 1985a,
b). An age of 1.2 Ma was proposed on the basis of a corre-
lation between deposits at Skull Cliff west of Barrow and
on the Pribilof Islands in the Bering Sea (D.M. Hopkins in
Brouwers and others, 1984). An age of 2.4 Ma, based on
proposed vertebrate and ostracode lineages, was suggested
by Repenning and others (1987). Their age interpretation is
not accepted here, however, as the lineages used to determine
the age were based on the assumption that the Fish Creek
section (south of Harrison Bay between Barrow and the
study area) was late Pliocene in age and that the problems
of reworking and environmental control were insignificant.
Strontium isotope analyses of deposits at Fish Creek and at
Skull Cliff suggest an age range of 1.7 to 0.5 Ma (Kaufman
and others, 1990). Paleomagnetic study of the Fish Creek
beds (Carter and Galloway, 1985) show that the basal part
has normal magnetic polarity (result considered questionable
by Carter and others, 1986a) and that the remainder of the
section has reversed magnetic polarity. On the basis of amino
acid ratios, strontium isotopes, and paleomagnetic data, dep-
osition of the Fishcreekian sediments probably occurred dur-
ing the Matuyama Reversed-Polarity Chron and correlates
with the latest Pliocene to early Pleistocene warm event (1.8—
0.7 Ma). Correlation of foraminiferal faunas from the type
Fishcreekian deposits with faunas from the Beaufort-Mack-
enzie Basin, Canada (McNeil, 1989), suggests a latest Plio-
cene to early Pleistocene age (1.8-0.7 Ma) based on the
occurrence of Elphidium ustulatum and other age-diagnostic
species (McDougall, unpub. data). The faunas, floras, and
sediments suggest that air temperatures were cold, while
water temperatures were warm (Carter and others, 1986b;

Repenning and others, 1987). Carter and others (1986b)
believe that the limit of seasonal sea ice was at or north of
their Fish Creek and Ocean Point localities and that perennial
sea ice was severely restricted or absent. Striated boulder
pavements at Skull Cliff are interpreted by Hopkins (in
Carter and others, 1986b) as the result of stranded icebergs.
Benthic foraminiferal faunas indicate that water tempera-
tures were only slightly warmer than at present. Worldwide
cool temperatures are also suggested for this warm event
(Gartner, 1988; Jansen and others, 1989).

The Wainwrightian transgression appears to represent
multiple transgressions or high sea-level stands (P.A.
Smith, written commun., 1986). Ages from Wainwrightian
deposits range from 540 to greater than 158 ka (Hopkins,
1967; aminozone 2, Brigham, 1985a, b; Brouwers and oth-
ers, 1984; Carter and Galloway, 1985; Carter and others,
1986a; P.A. Smith, written commun., 1986). Strontium iso-
tope analysis of Wainwrightian deposits at Skull Cliff sug-
gest an age range of 1.1 to 0.3 Ma (Kaufman and others,
1990). The Wainwrightian transgression correlates with the
rapidly oscillating glacial-interglacial cycles occurring be-
tween 0.7 and about 0.2 Ma (oxygen isotope stages 18 to 6
of Shackleton and Opdyke, 1976). Sediments correspond-
ing to the 0.9- to 0.7-Ma warm interval have not yet been
identified in Alaska and may be lumped with the underly-
ing Fishcreekian or overlying Wainwrightian sediments.

The Pelukian and Simpsonian transgressions have been
previously recognized as correlative with the Sangamon
interglacial stage and oxygen isotope stage 5 (Hopkins,
1982; Carter and others, 1986a). Ages given for the Pe-
lukian transgression are 130 to 100 ka (Hopkins, 1973),
140 to 108.5 ka with an average of 125 ka (Carter and
others, 1986a), 134 to 119 ka with an average of 124 ka
(L.D. Carter in Carter and Ager, 1989), 125 ka (aminozone
1, Brigham, 1985a, b), and 0.7 to 0.0 Ma (Kaufman and
others, 1990). Ages given for the Simpsonian transgression
are 86 to 50 ka (thermoluminescence analysis, Carter and
others, 1986a; Carter and Ager, 1989), 75 ka (uranium se-
ries, J.L. Bischoff in Carter and others, 1986), and an av-
erage age of 70 ka (Carter and others, 1986a).

An unnamed middle Wisconsin transgression is recog-
nized in several areas on the Arctic Coastal Plain (McDou-
gall and others, 1986; Carter and Ager, 1989) between the
end of the Itkillik I glaciation at 60 ka and the beginning
of the Itkillik I glaciation at 25 ka (Hamilton, 1986). Ages
for this transgression are 48 to 41.5 ka (thermolumines-
cence analysis, Carter in Carter and Ager, 1989) and
29.39+0.24 ka (radiocarbon analysis, Carter and Ager,
1989). The assumed age of 50 to 24 ka (McDougall and
others, 1986) for the middle Wisconsin transgression cor-
relates with the slight warming observed in oxygen iso-
tope stage 3 (64-32 ka; Shackleton and Opdyke, 1976).

The correlations summarized in figures 2 and 3 are the
chronostratigraphic framework upon which this study is
based. Lithostratigraphic and biostratigraphic criteria for
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recognizing the transgressive units were developed as a
result of previously published papers (McDougall and oth-
ers, 1986; Smith, 1985a, b) and numerous unpublished re-
ports by McDougall and E.M. Brouwers (1980 to 1986).

LITHOSTRATIGRAPHY

The sediments exposed in the eastern boreholes (HLA 13
to HLA 20) were divided into 12 informally named sedimen-
tary units ranging in age from Pliocene to Holocene (P.A.
Smith, 1985a; written commun., 1986). These sedimentary
units have been tentatively assigned to boreholes HLA 9
through HLA 12 (P.A. Smith, written commun., 1986). Al-
though sediments in boreholes HLLA 3 to HLLA 8 are illustrat-
ed and discussed, sedimentary units were not determined for
these boreholes by Smith. The lithology, distribution, and
age of these sedimentary units as determined by Smith
(1985a, b; written commun., 1986) is summarized below.
Seismic analyses and the resulting paleogeographic interpre-
tations are summarized from Wolfe and others (1985, 1986).

Sedimentary unit boundaries are defined on the basis of
erosional features apparent on seismic profiles, evidence of
disconformities in core samples, or changes in lithology.
Often two or more of these characters are present at or near
unit boundaries. The general age of each unit was deter-
mined by amino acid alle/Ile ratios from foraminiferal tests
(Elphidium clavatum and E. orbiculare), by comparisons of
the relative sea level to worldwide sea-level curves, by the
presence or absence of ice-bonded permafrost, and by the
degree of sediment compaction. The sedimentary units were

given informal names (Smith, 1985a) and represent subdi-
visions of the Gubik Formation of northern Alaska.

Eight of the sedimentary units are marine (Camden Bay,
Brunlow Point, Staines River, Leffingwell Lagoon, Ma-
guire Islands, Cross Island, Mikkelsen Bay, and Stefansson
Sound units), while the remaining four are nonmarine
(North Star, Newport, and Duchess sand units, and Shavio-
vik gravel unit) (figs. 4, 5). The marine units range from
beach sands and gravels to clay and silty clay. Nonmarine
units are dominated by sand, sandy gravel, and gravels. Silt
and clayey silt are present but rare in the nonmarine units
(figs. 4, 5). Distribution and correlation of the sedimentary
units in the boreholes are shown in figures 6 and 7.

The oldest marine units, the Camden Bay and Brunlow
Point units, occur only in borehole HLA 18 (Smith, 1983a;
fig. 7). The Camden Bay unit is represented by olive-black
shelly clay and black, fine to coarse sand. An abrupt
change to sandy gravel marks the upper boundary of this
unit. The overlying Brunlow Point unit consists of clayey
silt ranging in color from olive black or black at its base to
dark greenish gray at its top. The basal 0.6 m of the unit
contains abundant gravel and wood fragments and is inter-
preted as a beach facies. Occasional pebbles, rare shell
fragments, and thin lenses of fine sand occur throughout
the unit. Both the Camden Bay and Brunlow Point units
represent shallow marine deposition. Smith (1985b) pro-
posed a late Pliocene age for the Camden Bay unit and a
late Pliocene to early Pleistocene age for the Brunlow
Point unit. These units were correlated with the Beringian
and Anvillian transgressions of Hopkins (1967). A sample
(18-34) submitted for amino acid racemization analysis
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yielded an alle/Ile ratio of 0.113 (aminozone 4 of Brigham,
1985a), attesting to the old age of the Brunlow Point unit.
The North Star sand unit is 18 m thick in borehole HLA
18 and at least 39.2 m thick in HLA 12 (figs. 5, 34). This
unit is composed of silty sand with seams of clayey silt,
peat, and detrital wood. Minor gravel lenses occur near the
base in HLA 18 and near the top in HLA 12. The upper
boundary of the North Star sand unit in both HLA 12 and

HLA 18 is placed at the change from sand to clayey silt or
silt (Staines River unit). The North Star sand unit is be-
lieved to be late Pliocene to early Pleistocene in age, as it
occurs between marine units interpreted as late Pliocene to
early Pleistocene in age. The North Star sand unit may
correlate with the Newport sand unit.

The Newport sand unit, found only in the nearshore
borehole HLA 15, is composed of approximately 22 m of
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Figure 6. Correlation of lithostratigraphic units in nearshore HLA boreholes, Beaufort Sea shelf, Alaska. R, seismic reflection surface.
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silty sand and sandy silt with woody fragments. The lower
boundary was not observed, and the upper boundary ap-
proximates the change from sand (Newport sand unit) to
cobble-sized material (Shaviovik gravel unit). Both the
Newport sand and North Star sand units are interpreted as
alluvium and are believed to have been deposited during a
low stand of sea level. _

The next oldest marine unit, the Staines River unit, over-
lies the nonmarine North Star sand unit in both HLA 18 and
HLA 12 (Smith, 1985a; fig. 7). Sediments questionably as-
signed to the Staines River unit in HLA 5 overlie sands and
gravels identified by Smith as “undifferentiated Pleistocene
and Pliocene.” In HLA 18, the Staines River unit is 21.7 m
thick and consists of a layer of fine sand and sandy silt that
separates lower and upper layers of clayey silt; woody frag-
ments occur near the base. In HLA 12, only the silty sand
and sandy silt layer is present. Shell fragments are scattered
throughout the Staines River unit, which was deposited dur-
ing a time of fluctuating sea level. Higher sea levels are
reflected by the finer sediments at the base and top, whereas
lower sea levels are represented by the somewhat coarser
sediments in the middle part of the unit. Alternative expla-
nations for the coarser material are (1) a greater influx of

Figure 7. Correlation of lithostratigraphic units in offshore HLA boreholes, Beaufort Sea shelf, Alaska. R, seismic reflection surface.

sand from an ancestral Canning or Staines River or (2)
shoaling and development of a barrier island system similar
to that seen today (P.A. Smith, oral commun., 1985).

Two amino acid racemization analyses were run on sam-
ple 18-28 from the Staines River unit. Alle/Ile ratios ranging
from 0.096 to 0.113 (aminozones 3 and 4 of Brigham,
1985a) were obtained from the benthic foraminifer Elphid-
ium clavatum. Examination of the specimens from this sam-
ple and other samples used for amino acid analyses indicates
that the higher ratio results when poorly preserved, re-
worked specimens are included. The higher ratio is, there-
fore, not accepted. Two additional analyses from a shallow
marine mollusk, Portlandia, found near sample 18-28 yield-
ed ratios of 0.30 to 0.36. Because rates of racemization in
mollusks and foraminifers are different, the results should
not be compared directly. Nevertheless, both groups indicate
a relatively old age for the unit. The Staines River unit is
believed to be early Pleistocene in age and correlates with
the Fishcreekian transgression of Carter and others (1986a).

The next youngest nonmarine unit is the Duchess sand unit
(fig. 5), which is present in boreholes HLA 12, 18, 19, 20 and
possibly HLA 8. The thickness of this unit varies from 14.3 m
in HLA 12t0 4.0 m in HLA 20. The unit is composed of dark-
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gray silty fine sand overlain by grayish-black silt. Deposition
of the sand is believed to have occurred in a thaw lake, and the
silts probably represent fluvial or alluvial deposition. No age
estimates are available for the Duchess sand unit. It overlies
an early Pleistocene marine unit, but whether the contact is
conformable or erosional is not clear from the sediments.
Seismic data from the inner Beaufort Sea shelf do not provide
any useful information about the nature of the lower bound-
ary. A tentative age of middle Pleistocene is assigned.

The Shaviovik gravel unit is found in most of the near-
shore boreholes (fig. 6), and gravel is the primary constitu-
ent. The recorded thickness of the unit varies from 3.8 m in
HLA 11 to 50.1 m in HLA 15. The base of this unit was
only reached in borehole HLLA 15, so other thicknesses rep-
resent a minimum. The Shaviovik gravel unit may correlate
in part with the Duchess sand unit.

The Leffingwell Lagoon unit (figs. 4 and 5) is the oldest
marine unit in most of the eastern offshore boreholes, where
it ranges in thickness from 17.2 m in HLA 12 to 10.5 m in
HLA 17 (fig. 7). The base of the unit was not reached in
borehole HLA 17 and, according to seismic records, is
about 2 m below the bottom of the hole. The Leffingwell
Lagoon unit is represented by a much reduced section in the
nearshore boreholes HLA 10 and HLA 11 (fig. 6) where it is
approximately 5.8 m thick. The basal part of the unit is a lag
or beach deposit of sand with peat, gravel, and shell frag-
ments. The remainder of the unit is composed of micaceous
silt and clayey silt. Shell fragments, sandy layers, and peb-
bles are present in the silt. The pebbles occur more frequent-
ly near the top of the unit and may indicate ice rafting.

Seismic reflector R3 (surface 3 of Wolf and others, 1985)
occurs at or within a few meters of the base of the Leffing-
well Lagoon unit in all holes having that unit. This reflector
is the strongest and most widespread reflector on the inner
Beaufort shelf and can be traced to the outer shelf. It trun-
cates underlying reflectors and represents an erosional sur-
face formed during a low stand of sea level in the middle to
late Pleistocene (Dinter, 1985; Smith, 1985b, oral com-
mun., 1986; Wolf and others, 1985, 1986). Contour lines
drawn on surface 3 suggest a broad, low-relief flood plain
with two embayments that formed during the lower sea
level preceding the Wainwrightian transgression. The em-
bayments probably mark the ancestral Canning River (near
borehole HLA 17) and Sagavanirktok River (near borehole
HLA 12) drainages (Wolf and others, 1985, figs. 15 and
16). Marine sediments assigned to the Leffingwell Lagoon
unit and the Wainwrightian transgression are generally con-
formable with surface 3 and dip gently northeast. In the
boreholes, R3 coincides with the lithologic change from
gravel and sand to silt and clay. Although R3 is assumed to
define an erosional surface, beach and nearshore sands as-
signed to the Leffingwell Lagoon unit lie stratigraphically
below R3 in HLA 8, 12, 16, and 18. Gravels and sands
interpreted as fluvial deposits and assigned to the Duchess
sand unit in boreholes HLA 19 and 20 may be part of the

overlying Leffingwell Lagoon unit. Although the bulk of
sediments in the Leffingwell Lagoon unit are silt and clay,
sandier sediments reappear in the upper part of the Leffing-
well Lagoon unit just below the seismic reflector R4.

Eight samples were submitted for amino acid racemiza-
tion from the Leffingwell Lagoon unit: three from HLA 19,

" two from HLA 18, and one each from HLA 16, HLA 17,

and HLA 20. Except for sample 19-18, the alle/Ile ratios
range from 0.052 to 0.089, with a mean value of 0.071
(aminozone 2 of Brigham, 1985a). Sample 19-18 includes
numerous reworked specimens, thus the ratio is not consid-
ered reliable. On the basis of the postulated temperature
history of the Arctic coastal plain (J.K. Brigham, oral com-
mun., 1985; P.A. Smith, oral commun., 1985), the other
seven ratios are interpreted as representing an interglacial
stage older than the Sangamon (Pelukian transgression).
The Leffingwell Lagoon unit is considered to be middle to
late Pleistocene in age (Smith, 1985a, b), and in this paper
it is correlated with the Wainwrightian transgression of
Carter and others (1986). Future studies may find that this
unit correlates in part with the early Pelukian transgression.

Overlying the Leffingwell Lagoon unit in all of the bore-
holes is a nonmarine to shallow marine or deltaic unit, the
Maguire Islands unit or its lithologic equivalent (figs. 4-7).
This unit is composed of laminated or thinly bedded silt with
minor clayey or sandy silt, occasional seams of organic silt
or peat, and a few scattered granules. In several boreholes a
beach or lag deposit of sandy gravel occurs at the base of
the unit. Sandier sediments are common above the beach
deposits in the eastern part of the study area between the
Canning River and the Shaviovik River, whereas clays and
sandy clays are dominant in the remainder of the boreholes.
Thickness of the unit ranges from 4.9 m (HLA 19) to 20.4
m (HLA 17) in the offshore boreholes and from 3.7 m (HLA
11) to 14.2 m (HLA 14) in the nearshore boreholes. The
Maguire Islands unit probably correlates with unnamed ma-
rine strata (Qp) in the western part of the study area (fig. 6).

Seismic reflector R4 (surface 4 of Wolf and others, 1985,
1986) is at or near the base of the Maguire Islands unit in each
borehole where it is identified. Although R4 is not a strong
reflector, and there is no evidence of a prolonged erosional
event, it does truncate underlying reflectors, indicating that
the Maguire Islands unit is not a continuation of the underly-
ing unit. Contours on surface 4 indicate that it strikes west-
northwest, roughly parallel to the present coastline, and dips
gently offshore (Wolf and others, 1985). The ancestral Can-
ning River drainage was larger than today and was slightly
west of the site of borehole HLA 17. A topographic high was
north of what is now Flaxman Island. The numerous cut-and-
fill channels and steeply dipping strata that overlie surface 4
between boreholes 17 and 20 suggest that the Shaviovik and
Canning Rivers were active during the Pelukian transgres-
sion. A series of discontinuous reflectors that slope gently
seaward within the Maguire Islands unit suggests that the
unit represents prodelta front and delta topset deposits.
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Seven amino acid analyses are available for the Maguire
Islands unit (P.A. Smith, written commun., 1986). Two of
these analyses are rejected because of the questionable re-
sults. The remaining five analyses had alle/lle ratios rang-
ing from 0.051 to 0.078 (aminozone 1 of Brigham,
1985a), with a mean value of 0.065. This value is slightly
lower than the mean of 0.071 from the Leffingwell La-
goon unit, but it is close enough to suggest that the two
units are probably not separated by a long time span. The
Maguire Islands unit was probably deposited during the
Pelukian transgression and is late Pleistocene in age. Ice-
bonded sediments within this unit and the overlying unit
rule out a Holocene age for the deposits.

Overlying the Maguire Islands unit in all of the eastern
boreholes except HLA 14, 15, and 19 is a marine unit
composed of pebbly silt to clay, informally named the
Cross Island unit (figs. 4-7). The Cross Island unit is cor-
related with unnamed sediments (Qs) in the western part of
the study area. Thickness of this unit ranges from 0.5 m
(HLA 16) to 16.2 m (HLA 9). Pebble lithologies (dolo-
mite, quartzite, red granite, and diabase) conform closely
to those of the Flaxman Member of the Gubik Formation
(Leffingwell, 1919; Dinter, 1985). Exposures of the Flax-
man have been dated at 100,000 years B.P. by thermolumi-
nescence (TL) dating (Carter and Galloway, 1985), which
places this unit within the early Wisconsin, Simpsonian
transgression. The Cross Island unit is, therefore, correlat-
ed with the Simpsonian transgression of late Pleistocene
age. P.A. Smith (oral commun., 1985) recognized a seismic
reflector (surface R5’) near the base of this unit in several
boreholes (figs. 6, 7). This reflector was not recognized by
Wolf and others (1985, 1986) and is only recognized in a
limited area. Sediment thickness and distribution suggest
that during the lower sea level event following the Peluki-
an transgression and during the Simpsonian transgression,
the ancestral Sagavanirktok River was active. The absence
of the upper part of the Maguire Islands unit (Pelukian) in
boreholes HLA 9, HLA 10, and HLA 11 suggests that the
channel initially formed by the Sagavanirktok River was
filled during the Simpsonian transgression with deltaic sed-
iments of the Cross Island unit. Boreholes HLA 10 and 9
appear to be the primary sites of deltaic sedimentation.

The Mikkelsen Bay unit was identified in boreholes HLA
11 and HLA 19 (figs. 6, 7). In HLA 11, the unit is 29 m
thick and composed of a soft silty sand with platy dolomite
gravel in the upper meter. In HLA 19, it is 11 m thick and
composed of a basal gravel lag with some dolomite peb-
bles, sand, and silty sand. This unit appears to represent
channel deposits probably formed during the middle Wis-
consin, as this unit overlies sediments of the Simpsonian
transgression and underlies Holocene sediments.

The Stefansson Sound unit occurs in boreholes HLA 10,
HLA 14, and HLA 15, where it is 2.8 to 6.7 m thick (fig.
6). Thinly laminated to mottled clayey silt, sandy silt, or silty
sand, rich in organic detritus and black in color, is the pre-

dominant sediment in the unit. Occasional gravel lenses and
scattered shells and twigs may be present as well. The Ste-
fansson Sound unit is probably equivalent to the unnamed
deposits (Qf) in the western boreholes and correlative with
the Flandrian marine unit identified in the Prudhoe Bay
boreholes (McDougall and others, 1986). Surficial lag de-
posits in most boreholes may be partially correlative with
the Stefansson Sound unit. Reflector RS, thought to repre-
sent the Holocene reflector of Wolf and others (1985, 1986),
is present at the base of the unit in boreholes HLA 14 and 15.

BIOSTRATIGRAPHY

Biostratigraphic analysis of the PB boreholes in Prudhoe
Bay identified four benthic foraminiferal assemblages that
correlate with the Pelukian, Simpsonian, middle Wisconsin,
and Flandrian transgressions (McDougall and others, 1986).
Environmental conditions suggested by those benthic fo-
raminiferal assemblages correspond to conditions suggested
by analysis of the sediments and ostracode assemblages
(McDougall and others, 1986). Pelukian foraminiferal fau-
nas have moderate numbers of specimens and moderate
diversities, and they include species which indicate that wa-
ter conditions were deeper and warmer than those presently
occurring at the site. Elphidiella groenlandica and Elphidi-
um asklundi are common in the Pelukian, whereas Elphidi-
um excavatum alba is rare. The moderate numbers of
specimens and the low diversities of Simpsonian faunas
indicate water conditions that were shallower and cooler
than in the Pelukian but deeper and warmer than at present.
Although specimen numbers and diversities are low, the
middle Wisconsin faunas are similar to those of the Flandri-
an transgression (Holocene). Water conditions during the
middle Wisconsin transgression were approximately the
same as at present but slightly cooler and less saline; El-
phidium clavatum is a common component. Flandrian fau-
nas have high foraminiferal numbers and moderate to low
species diversities. Elphidium excavatum alba is common.

Elphidiella groenlandica, Elphidium asklundi, E. clava-
tum, and E. excavatum alba are the most useful species for
biostratigraphic interpretation. Elphidiella groenlandica
and Elphidium asklundi are common in sediments of the
Pelukian and older transgressions. Rare to few specimens
of these species occur in younger transgressions (Simpso-
nian to Flandrian); poor preservation of the tests suggests
that the specimens are reworked. Elphidium excavatum al-
ba, which appears only rarely in the older transgressions,
becomes abundant in the Flandrian transgression. Unfortu-
nately, considerable reworking of older marine sediments
and faunas obscures first or last appearances of many spe-
cies. Foraminiferal interpretations of age, stratigraphic po-
sition, and marine transgressions must, therefore, rely
heavily on paleoecologic analysis of the benthic foraminif-
eral assemblages and be carefully integrated with the inter-
pretations based on sediments and other fossil groups.
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PALEOECOLOGY

Because most Pliocene and Pleistocene benthic forami-
niferal species are living today, Holocene foraminiferal bio-
facies can be used to interpret the paleoenvironment.
Foraminiferal biofacies, which are related to the environ-
ment, suggest physiochemical conditions such as water
depth, temperature, and salinity. The abundance and occur-
rence of selected species refine the paleoecological interpre-
tations further by suggesting conditions such as downslope
transport or the presence of ice. The foraminiferal biofacies
used to interpret the borehole faunas are derived from stud-
ies of Holocene benthic foraminifers in the Arctic.

Ecologic studies of Holocene Arctic benthic foramini-
fers (Vilks, 1969; Vilks and others, 1979; Knebel and oth-
ers, 1974; Lagoe, 1979, 1980) were integrated with data
from the Beaufort Sea (R.J. Echols, written commun.,
1976; McDougall, unpub. data, 1991) to produce a se-
quence of benthic foraminiferal biofacies related to depth
and physiochemical properties of seawater. Physiochemi-
cal properties include (1) organic matter, (2) sediment
grain size, (3) ice gouging, and (4) water-mass characteris-
tics including salinity and temperature (Coachman and Aa-
gaard, 1974). These properties can be related to specific
depths on the Beaufort Sea shelf and slope and to faunal
changes. The resulting foraminiferal biofacies include a
shallow and a deep inner neritic biofacies (0~10 m and
10-20 m), a middle neritic biofacies (1540 m), an outer
neritic biofacies (£35-200 m), and an upper bathyal biofa-
cies (200-1,500 m) (table 1). Depth, physiochemical prop-
erties, and faunas characteristic of these modern biofacies
are summarized here.

Inner neritic biofacies faunas are generally found at
depths of 0 to 20 m and within the Arctic Surface Water
mass (temperature —1 to —2°C; salinity 27 to 34.5 per mil).
The shallow inner neritic biofacies (0~10 m) is dominated
by elphidiums, especially E. orbiculare, E. clavatum, and
E. excavatum alba. These faunas are associated with low-
salinity waters, highly variable temperatures, and abundant
suspended organic matter. The deep inner neritic biofacies
(10-20 m) is controlled by slightly higher salinities, more
equitable temperatures, and a slight reduction in the quan-
tity of suspended organic matter. In the deep inner neritic
biofacies, Buccella frigida constitutes at least 5 percent of
the fauna, and elphidiums occur in reduced numbers. A
narrow band of slightly higher abundances of miliolids
(Gordiospira, Quinqueloculina, Scutuloris, and Triloculi-
na) occurs near the deeper limit of this biofacies.

The middle neritic biofacies, generally found at depths
of 15-40 m, is recognized by the dominance of cassidulin-
ids (Cassidulina islandica and C. norcrossi). Elphidium
bartletti is more common in this biofacies, whereas other
elphidiums are reduced in number. Although influenced by
the Arctic Surface Water mass (temperature ~1 to —2°C;
salinity 27 to 34.5 per mil), faunas in the middle neritic

Table 1. Species diagnostic of modern benthic foraminiferal
biofacies, Beaufort Sea shelf, Alaska.

INNER NERITIC BIOFACIES (0-20 m)

Shallow (0-10 m) Deep (10-20 m)

Buccella frigida (rare to few)
Elphidium albiumbilicatum
Elphidium clavatum'
Elphidium excavatum alba
Elphidium orbiculare
Elphidium incertum
Elphidiella groenlandica’
Polymorphinids

Reophax regularis

Buccella frigida (common)
Discorbis baccata
Gordiospira arctica
Triloculina oblongata
Triloculina trihedra
Scutuloris tegminis
Quingueloculina seminulum
Quinqueloculina stalkeri

MIDDLE NERITIC BIOFACIES (15-40 m)

Cassidulina islandica
Cassidulina norcrossi
Cyclogyra involvens
Eiphidium bartletti

OUTER NERITIC BIOFACIES (+35~200 m)

Alveolophragmium crassimargo
Alveolophragmium jeffreysii
Ammodiscus minutissimus
Astrononion gallowayi
Cibicides lobatulus

Quinqueloculina agglutinata
Recurvoides turbinatus
Reophax arctica

Reophax curtus
Spiroplectammina biformis

Eggerella advena Stainforthia complanata
Melonis zaandamae Stainforthia concava
Psammosphaera fusca Textularia torquata

Pyrgo williamsoni Trochammina nana

UPPER BATHYAL BIOFACIES (200-1,500 m)

Nonionella labradorica
Patellina corrugata
Reophax guttifer
Saccorhiza ramosa
Stainforthia fusiformis
Trochammina bullata

Bolivina pacifica
Cassidulina crassa
Cassidulina teretis
Epistominella arctica
Nonionella auricula
Nonionella digitata

IReworked? in Beaufort Sea assemblages

biofacies respond to an increase in sediment grain size and
intensification of ice gouging.

The outer neritic biofacies (£35-200 m) is associated
with the outer limit of ice gouging (37-41 m) and with the
distribution of a subsurface Arctic Surface Water mass in
which salinity increases gradually between 30 and 300 m
and temperature decreases between 50 and 200 m (Coach-
man and Aagaard, 1974). Diagnostic outer neritic faunas
include rare calcareous forms such as Stainforthia concava,
Astrononion gallowayi, and Melonis zaandamae as well as
in situ and transported species with upper depth limits in
shallower water. Arenaceous faunas characteristic of the
warmer Bering Sea Water are found at about 50 m. This
fauna includes the species Eggerella advena, Reophax arc-
tica, Spiroplectammina biformis, and Textularia torquata.
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The upper bathyal biofacies (200-1,500 m) contains
common calcareous and arenaceous species (table 1). The
faunal distribution is controlled primarily by the presence
of the warm Atlantic Water mass and associated warmer
temperatures (—1 to 0.5°C) and higher salinities (approxi-
mately 34.5 per mil).

BOREHOLE HLA 3 (Mf5720)

Borehole HLA 3, the westernmost borehole, was drilled
4.8 km north of Long Island (Jones Islands chain, fig. 1).
The sediment recovered at this site consists of 23.3 m of
gravel and pebbly sand overlain by 6.0 m of marine sand,
gravel, silty clay, and sandy silt (fig. 8). The lower gravels
and pebbly sands (below 6.0 m) are interpreted as undif-
ferentiated Pleistocene outwash, and the overlying marine
sediments represent two transgressions. The older trans-
gression is represented by 1.2 m of gravel, 1.2 m of sand
and gravelly sand, and 2.0 m of silty clay and sandy silt.
Sediments of the younger transgression include 0.6 m of
gravelly sand and 1.0 m of clayey gravelly silt. These ma-
rine sediments were deposited during the Simpsonian and
Flandrian transgressions (P.A. Smith, oral commun.,
1985). Depths of stratigraphic units in the borehole follow.

HLA 3
Depth, in meters
Stratigraphic unit below mudline
Top Bottom
Qf (Flandrian transgression)......c...oceveuun... 0.0 1.6
Qs (Simpsonian transgression) ................... 1.6 6.0
Undifferentiated Pleistocene outwash......... 6.0 29.3

Benthic foraminifers from the older transgression occur in
three samples in the marine portion of HLA 3 (fig. 9, table 2).
Samples 3-3 and 3-2 represent the Simpsonian transgression.
Sample 3-1, which is 0.1 m below the Flandrian (Holocene)
beach gravels, has a reworked or mixed fauna containing
specimens from the Simpsonian and older transgressions.

The Simpsonian faunas in samples 3-3 and 3-2, are
characterized by common to abundant, low-diversity fo-
raminiferal faunas. The oldest sample, 3-3, is dominated
by Elphidium orbiculare (53%) and E. incertum (43%).
Similar dominances are observed in sample 3-2, where E.

orbiculare (12.3%), E. incertum (4.6%) and Elphidium

spp. (juveniles of E. orbiculare and E. incertum, 81.8%)
form the bulk of the assemblage. This association indi-
cates deposition in the shallow inner neritic biofacies (less
than 10 m) and cold, low-salinity water.

The benthic foraminiferal fauna in sample 3-1 contains
common and moderately diverse benthic foraminifers. This
fauna is dominated by elphidiums and thus indicates shallow,
inner neritic water biofacies (0~10 m) and low salinities.

Poorly preserved specimens of Elphidiella groenlandica
dominate sample 3-1 (30%). This species is usually common
in Pelukian or older beach and nearshore deposits; its pres-
ence in sample 3-1 suggests reworking of older marine inner
neritic deposits. Rare middle neritic (Cassidulina norcrossi)
and bathyal species (Nonionella sp.) in sample 3-1 have
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gressions summarized in figures 2 and 3.

moderately well preserved to poorly preserved tests and
suggest that older deep marine sediments are also being
reworked. Many of these elphidiums have worn or broken
tests that may result from in situ reworking of the tests or the
reworking of older inner neritic species.

BOREHOLE HLA 4 (Mf5721)

Borehole HLA 4 was drilled north of Reindeer Island in
the western part of the study area (fig. 1). Borehole HLA
4 penetrated 30.9 m of sediment (fig. 10). The basal 12.6
m of sediment grades from gravel to sandy gravel and
pebbly sand and is interpreted as Pleistocene outwash.
This is overlain by three marine units that are interpreted
as representing the Pelukian, Simpsonian, and Flandrian
transgressions (P.A. Smith, oral commun., 1985). The Pe-
lukian is represented by gravels that grade upward to a
fine silty pebbly sand and pebbly silt and by marine silt
and silty clay. Overlying these sediments is a layer of oxi-
dized silt that is interpreted as a paleosol. Sediments of the
Simpsonian transgression include a basal muddy gravel
(0.6 m thick) and stiff silty clay with coarse sand grains
and organic silt (2.0 m thick). The youngest transgression,
the Flandrian, is represented by 1.0 m of gravel and peb-

bly sand, 1.8 m of stiff clay, and 2.4 m of fine sand and
silty sand that contains shells, twigs, and lumps of rede-
posited overconsolidated clay. The upper meter of sand in
HLA 4 may be a lag deposit. Depths of stratigraphic units
in the borehole follow.

HLA 4

Depth, in meters

Stratigraphic unit below mudline

Top Bottom
Qf (Flandrian transgression) ............c.ececeve 0.0 52
Qs (Simpsonian transgression) .................. 5.2 7.6
Paleosol ........couecvireverneeerercnenenenrenaeeernenns 7.6 7.8
Qp (Pelukian transgression)...........c.cveveeees 7.8 18.3
Undifferentiated Pleistocene outwash........ 18.3 309

Sixteen samples from borehole HLA 4 contain benthic
foraminifers that are diagnostic of late Pleistocene and
Holocene deposition (fig. 11, table 3). Two additional sam-
ples, 4-10A and 4-10B were not examined for foraminifers
and ostracodes. The transgressions recognized in borehole
HLA 4 are Pelukian, Simpsonian, and Flandrian.

The Pelukian faunas in samples 4-16 to 4-11 are charac-
terized by abundant and moderately diverse (average 15)



14 LATE CENOZOIC BENTHIC FORAMINIFERS OF THE HLA BOREHOLE SERIES, BEAUFORT SEA SHELF, ALASKA

foraminiferal assemblages. Samples taken just above the
beach gravels and sands contain moderate abundances of
Elphidium orbiculare, E. clavatum, and E. incertum, and
common to rare specimens of Cassidulina islandica, C.
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Figure 10. Lithology, sample locations, paleoenvironments, and
ages of borehole HLA 4, Beaufort Sea shelf, Alaska. Paleoenvi-
ronment contacts dashed where approximate. Lithostratigraphic
units and transgressions summarized in figures 4 and 5 and in
figures 2 and 3, respectively.

norcrossi, -and Buccella frigida. The elphidiums indicate
cool, shallow water. Cassidulinids and Buccella increase in
abundance upsection, indicating an increase in water
depths from shallow inner neritic (0—10 m, sample 4-16)
to middle neritic (15-40 m, samples 4-15 to 4-11). Rare
occurrences of Stainforthia concava, Triloculina trihedra,
and various species of Fissurina and Lagena suggest that
water depths approach outer neritic depths (£35-200 m)
during the middle of the Pelukian interval (sample 4-11).

Simpsonian samples, 4-10 to 4-5 overlie a paleosol. Fo-
raminifers in this interval are abundant, diversities are
moderate (average 13 species), and elphidiums dominate.
The abundance of Buccella frigida increases slightly in
this interval, representing 3 to 12 percent of the assem-
blage. Cassidulinids and other middle and outer neritic
species are few or absent. Elphidiella groenlandica is
present but rare in most of these samples, suggesting that
temperatures were warmer than at present. These associa-
tions indicate that deposition occurred in the deep inner
neritic biofacies (10-20 m) and that water temperatures
were approximately the same as or slightly warmer than at
present and salinity was low.

The uppermost group of samples, 4-4 to 4-1, is separated
from the underlying groups by a beach deposit at 5.2 to 4.2
m in the borehole. The fauna in these upper samples indi-
cates a Holocene age and shallow inner neritic deposition.
Foraminifers are abundant and moderately diverse (average
15 species). Elphidium clavatum dominates the lower two
samples (£50%), whereas E. orbiculare dominates the up-
per two samples (average 43%). Other species also have
slight changes in abundances between the upper and lower
samples, but they are not as great as in the elphidiums. The
presence of Buccella frigida (5-7%) and cassidulinids indi-
cate the deeper inner neritic biofacies having water depths
of 10 to 20 m and more normal marine salinities.

BOREHOLE HLA 5 (Mf5722)

Borehole HLA 5 was drilled in the western part of the
study area, 7.2 km north of Stump Island, between HLA 3
and HLA 4 (fig. 1). This borehole penetrated 91.4 m of
sediment that is interpreted as outwash, thaw lake, beach,
and marine deposits (P.A. Smith, oral commun., 1985; fig.
12). Sediments identified as outwash were found from the
base of the hole (91.4 m) to 74.4 m, from 65.8 to 21.0 m,
and from 15.9 to 8.5 m; they are characterized by pebbly
sand and sandy gravel. Thaw-lake deposits between the
two oldest outwash sequences are characterized by clayey
silt with seams of fine sand and laminae of detrital peat
and may correlate with the Fishcreekian Staines River
unit. The marine sediments found from 21.0 to 15.9 m and
from 8.5 m to the mudline are interpreted as representing
the Wainwrightian, Pelukian, Simpsonian, and Flandrian
transgressions. The oldest marine sediments, tentatively
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identified as Wainwrightian, consist of 0.4 m of sand with  sonian sediments are 5.8 m thick and grade from sand
shell fragments overlain by 4.7 m of silty sand. Pelukian  with wood and shells at the base to sandy silt to black silt
sediments consist of 0.3 m of gravelly sand overlain by  at the top. These sediments are overlain by 0.3 m of fine
2.1 m of silty sand with occasional shell fragments. Simp-  sand that is interpreted as a Holocene lag deposit (P.A.
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Smith, oral commun., 1985). Depths of stratigraphic units
in the borehole follow.

HLA 5

Depth, in meters

Stratigraphic unit below mudline
Top Bottom
Qf (Flandrian transgression) ..............ceveuene 0.0 0.3
Qs (Simpsonian transgression) ............cevee 3 6.1
Qp (Pelukian transgression)..........ccceouveenne 6.1 8.5
Undifferentiated Pleistocene outwash........ 8.5 15.9
Qw? (Wainwrightian transgression?)......... 15.9 21.0
Undifferentiated Pleistocene outwash........ 21.0 65.8
Thaw 1aKe......ccccouverimreeirnsereerrnereesnsniesesens 65.8 744
Undifferentiated Pleistocene outwash........ 74.4 914

Eight samples were submitted for microfossil analysis.
A single juvenile ostracode was found in sample 5-8.
Samples 5-7 to 5-4 are barren of microfossils. Samples 5-3
to 5-1 contain benthic foraminifers (fig. 13, table 4) that
represent the late Pleistocene Simpsonian transgression.

The ostracode species Sarsicytheridea bradii in sample
5-8 is a common long-ranging eurytopic species, capable of
living in estuarine and normal marine environments (E.M.
Brouwers, written commun., 1985). Sediments in sample 5-8
are, however, interpreted by P.A. Smith (written commun.,
1986) as thaw-lake deposits. This interpretation is supported
by lithology, abundant plant debris, and lack of benthic
foraminifers and other marine organisms. The single speci-
men of S. bradii found in this sample may be reworked or
transported rather than representative of in situ deposition.

Faunas from samples 5-3 to 5-1 represent the Simpsonian
transgression. Foraminiferal number and diversity are low
to moderate and increase upsection. Increasing temperatures
are suggested by changes in dominance patterns of benthic
foraminiferal species: Elphidium incertum dominates sam-
ple 5-3, and E. clavatum dominates the upper two samples.
The shift in dominance may reflect a change from cold
waters associated with ice to warmer waters without ice.
Increasing water depths are also indicated by the foraminif-
eral assemblages. The common occurrence of Cassidulina
islandica and C. norcrossi (average 25%) in the upper sam-
ples suggests that deposition occurred in the middle neritic
biofacies, where water depths range from 15 to 40 meters.

BOREHOLE HLA 6 (Mf5723)

Borehole HLA 6 was drilled northeast of Reindeer Island
between Argo and Cross Islands, in the western part of the
study area (fig. 1). This borehole penetrated 31.2 m of sedi-
ment consisting of 9.4 m of sandy gravel interpreted as
glacial outwash and 21.8 m of marine deposits (P.A. Smith,
oral commun., 1985; fig. 14) that represent three transgres-
sions: Wainwrightian, Pelukian, and Flandrian. Sediments
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assigned to the Wainwrightian transgression consist of a
3.1-m-thick beach deposit of sandy gravel and gravelly
sand, a 1.8-m-thick section of silty fine sand with abundant
twigs and wood chips, and 4.7 m of silty sand and sandy silt
with some detrital plant debris and a few pebbles. The
Wainwrightian sediments are overlain by a fine sand that is
interpreted as a paleosol. The Pelukian sediments consist of
silt, silty clay, and clay. Most of the Flandrian sediments
consist of stiff sandy silt with some organic debris; the
upper 0.3 m is a fine sand interpreted as a Holocene lag
deposit. Depths of stratigraphic units in the borehole follow.

HLA 6

Depth, in meters

Stratigraphic unit below mudline
Top Bottom
Qf (Flandrian transgression).........cccoueeeeus 0.0 2.0
Qp (Pelukian transgression).........ccoccvveeense 2.0 12.0
Paleosol........ccccirrriiemneccniniiccensnenesieennenes 12.0 12.2
Qw (Wainwrightian transgression .............. 12.2 21.8
Undifferentiated Pleistocene outwash........ 21.8 31.2

Nine samples were analyzed for microfossils between
17.5 and 1.1 m in borehole HLA 6. Benthic foraminifers
are present in all samples (fig. 15, table 5) except 6-8,
which contains only ostracodes. Three marine transgres-
sions are recognized in the borehole: Wainwrightian, Pe-
lukian, and Flandrian.

The fauna in sample 6-9 contains few benthic foramini-

- fers (33 specimens) and rare ostracodes (8 specimens); the

fauna in sample 6-8 is composed entirely of ostracodes
(245 specimens). The foraminiferal assemblage in sample
6-9 is dominated by species that prefer cold, low-salinity
waters and commonly characterize the initial phases of a
transgression. The dominance of Elphidium incertum
(49%) indicates the presence of ice; E. clavatum (27%)
and E. orbiculare (18%) indicate shallow, low-salinity wa-
ter.  The single specimen of Cassidulina norcrossi was
probably reworked from an older transgression. The ostra-
code specimens in sample 6-9 are entirely nonmarine,
whereas the abundant ostracode specimens in sample 6-8
include five nonmarine species and a single estuarine to
shallow-marine species, Paracyprideis pseudopunctillata
(1.6% of the fauna; E.M. Brouwers, written commun.,
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1985). The ostracode assemblages suggest this interval is
nonmarine. The presence of foraminiferal specimens sug-
gests either that foraminifers are reworked (or transported)
into a nonmarine environment or that nonmarine ostra-
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codes are reworked (or transported) into a marine environ-
ment. The preservation of thin-shelled ostracode specimens
favors the first alternative (E.M. Brouwers, written com-
mun., 1985), whereas the abundance of foraminiferal spec-
imens characteristic of cold, low-salinity water and the
presence of identifiable reworked foraminiferal specimens
(Cassidulina norcrossi) support the latter alternative. Dep-
osition of samples 6-9 and 6-8 probably occurred during
the Wainwrightian transgression at a time of lower but ris-
ing sea levels. :

Sample 6-7 contains abundant and diverse foraminifers
that represents the Wainwrightian transgression. Although
inner neritic species of Elphidium are common, Cassiduli-
na islandica and C. norcrossi (20%) and associated Buc-
cella frigida (4%) indicate that deposition occurred in a -
middle neritic biofacies (1540 m). The presence of outer
neritic species (Cassidulina crassa, Epistominella arctica,
E. vitrea, and Stainforthia concava) indicates that water
depths may have been greater or that water temperatures
were warmer, as most of these species are today associat-
ed with the warmer Atlantic water mass on the upper slope
of the Beaufort Sea.

Samples 6-6 to 6-3 from the Pelukian transgression con-
tain abundant benthic foraminifers and are stratigraphi-
cally above the paleosol identified at 12 m. Benthic
foraminifers from sample 6-6 suggest that deposition oc-
curred in the deeper inner neritic biofacies (1020 m). Be-
cause the abundance of Buccella frigida decreases from 7
percent in sample 6-6 to less than 5 percent in the three
overlying samples, and because the elphidiums become
slightly more diverse and abundant in the upper samples,
water depths may have shallowed upsection. An increase
in downslope transport may also account for these changes
and is the preferred interpretation. In sample 6-3, abundant
Elphidium albiumbilicatum makes up 16 percent of the
fauna. Abundant occurrences of this species have been
previously attributed to the influx of low salinity water
and downslope transport (Knudsen, 1978; Guilbault,
1980). The foraminifers indicate that deposition occurred
in the deep inner neritic biofacies (10-20 m) and that the
amount of transported material varied from abundant to
rare. The presence of Cassidulina islandica in samples 6-6
and 6-3 may be the result of in situ deposition or rework-
ing from older marine sediments.

Abundant and diverse benthic foraminifers in samples
6-2 and 6-1, assigned to the Flandrian transgression, sug-
gest that deposition occurred in the deeper inner neritic
biofacies (10-20 m). Elphidium clavatum, E. orbiculare,
and E. incertum dominate the foraminiferal assemblages.
Buccella frigida averages 8 percent of the fauna, and few
to common cassidulinids are present. These assemblages
are typical of the deep inner neritic biofacies (10-20 m).
The occurrence of Spiroplectammina biformis in sample
6-1 implies the presence of a slightly warmer water mass,
probably with its origin in the Bering Sea.
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BOREHOLE HLA 7 (Mf5724)

Borehole HLA 7 was drilled approximately 15 km north
of Prudhoe Bay midway between Heald Point and Cross

19

Island, and shoreward of the island chain that borders
most of northern Alaska (fig. 1). Drilling at this site pene-
trated 30.5 m of sediment identified as outwash and ma-
rine sediments of the Pelukian, Simpsonian, and Flandrian
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approximate. Transgressions summarized in figures 2 and 3.
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transgressions (P.A. Smith, oral commun., 1985; fig. 16).
Although sandy gravel occurs at the base (30.5-29.6 m)
and sporadically between 25.5 and 20.2 m, the outwash
consists primarily of gravel. Pelukian sediments include a
1.3-m-thick beach and nearshore deposit of pebbly sand
and sandy gravel and a 9.0-m unit of sediment that grades
from pebbly silty sand with wood fragments to silty sand
and stiff clayey silt with occasional organic debris. The
Simpsonian sediments consist of a clayey silt with com-
mon shell fragments. Sediments assigned to the Flandrian
transgression grade from a sandy silt at the base to a clay
and clayey silt near the top that are overlain by 0.2 m of
fine sand (Holocene lag deposit). Depths of stratigraphic
units in the borehole follow.

HLA 7

Depth, in meters

Stratigraphic unit below mudline
Top Bottom

Qf (Flandrian transgression)........ccoeeveurvenes 0.0 6.4
Qs (Simpsonian transgression)............eve..s 6.4 19.9
Qp (Pelukian transgression).........c.ccceeueuenee. 9.9 20.2
Undifferentiated Pleistocene outwash ........ 20.2 305

Benthic foraminifers are present in 13 of the 14 samples
submitted for microfossil analysis from borehole HLA 7
(fig. 17, table 6). Faunas range in age from late Pleisto-
cene to Holocene and represent parts of the Pelukian
(samples 7-13 to 7-11), Simpsonian (samples 7-10 to 7-8)
and Flandrian (samples 7-6 to 7-1) transgressions. Sample
7-7 contains a mixture of Flandrian and Simpsonian spe-
cies. Sample 7-14 at 17.8 m, taken approximately 1 m
above sediments interpreted as Pelukian beach deposits, is
barren of foraminifers and ostracodes.

Pelukian samples, 7-13 to 7-11, contain abundant and
diverse benthic foraminifers. In samples 7-13 and 7-12,
Cassidulina islandica and C. norcrossi compose more than
25 percent of the benthic foraminiferal assemblage, Buccel-
la frigida averages S percent, and elphidiums are common,
indicating that deposition occurred in the middle neritic bi-
ofacies (15-40 m). Rare occurrences of Stainforthia conca-
va, Triloculina trihedra, and various species of Fissurina,
Lagena, and Oolina suggest proximity of the outer shelf
water mass (subsurface Arctic Surface Water mass).

The number of foraminiferal specimens (37,504 speci-
mens per 100 grams) is anomalously high in sample 7-11.
Diversity (14 species) is similar to that in the older samples,
but the composition shifts to the distinctive shallow inner
neritic (0-10 m) Elphidium-dominated assemblage. The
abundance of E. incertum (15%) suggests cold, low-salinity
waters. The high number of foraminifers with little apparent
reworking or transport of faunas could indicate a time of low
sediment input such as during the brief cold regression that
separates the Pelukian and Simpsonian transgressions. This
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Figure 16. Lithology, sample locations, paleoenvironments,
and ages of borehole HLA 7, Beaufort Sea shelf, Alaska. Paleo-
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interval may also represent deteriorating climatic conditions

during the final stages of the Pelukian transgression.
Simpsonian faunas in samples 7-10 to 7-8 contain abun-

dant foraminiferal fauna of low to moderate diversity. The
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benthic foraminiferal assemblages contain rare cassidulin-
ids, few Buccella frigida (<6%), and abundant elphidiums,
suggesting that deposition occurred in the deep inner nerit-
ic biofacies (1020 m). The presence of rare deeper water
species suggests reworking of older Pleistocene sediments.
The abundance of Elphidium incertum in sample 7-8 indi-
cates an increase in cold, low-salinity water.

The foraminiferal assemblage in sample 7-7 is marked
by a high specimen number and a moderate increase in

diversity. The high specimen number is attributed to the
addition of middle neritic and shallower calcareous spe-
cies, presumably reworked from older deposits, and arena-
ceous species such as Spiroplectammina biformis and
Ammotium cassis. The arenaceous species are common to-
day in the warmer Bering Sea water mass and are occa-
sionally found in protected embayments along the Arctic
Coast. This assemblage probably represents a mixing of
Simpsonian and Flandrian faunas during the onset of the
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. Flandrian transgression, despite the lithologic placement of
the Flandrian-Simpsonian boundary just above this sample.

The Flandrian samples, 7-6 to 7-1, contain abundant and
moderately diverse foraminifers. Elphidiums are abundant,
Buccella frigida makes up between 6 and 9 percent of the
assemblage, and cassidulinids are rare. This composition
suggests that deposition occurred in the inner shelf biofacies
(1020 m). The rare occurrence (less than 1%) of
Spiroplectammina biformis in samples 7-3 and 7-4 may in-
dicate a time when warmer water from the Bering Sea
reached this part of the shelf. Elphidium albiumbilicatum
reaches abundances of greater than 5 percent in samples
7-6, 7-2, and 7-1 and suggests an increase in low-salinity
waters.

BOREHOLE HLA 8 (Mf5725)

Borehole HLLA 8 was drilled north-northeast of Cross
Island, approximately 25 km offshore (fig. 1). The 30.6 m
recovered at the site include gravel interpreted as glacial
outwash, thaw-lake deposits of organic silt with abundant
wood fragments, and marine deposits that are interpreted
as representing four transgressions: Wainwrightian, Peluki-
an, Simpsonian, and Flandrian (P.A. Smith, oral commun.,
1985; fig. 18). The Wainwrightian sediments include 1.3 m
of beach gravel, 2.0 m of silty sand and pebbly sand, 10.0
m of stiff overconsolidated clay, and 1.0 m of clay with
wood and shell fragments. Seismic reflectors R3 and R4
(P.A. Smith, oral commun., 1985) correspond to seismic
reflector surfaces 3 and 4 of Wolfe and others (1985). Pe-
lukian sedimerits consist of 1.5 m of slightly sandy, clayey
silt with shell and wood fragments and 5.3 m of silty clay.
The base of the Simpsonian transgression is placed at 6.0
m, where shell fragments appear in a clayey silt that ex-
tends from 6.0 to 1.5 m in the hole. Flandrian sediments
include 1.0 m of silt and 0.5 m of pebbly clayey silt with
sand which is part of the Holocene lag deposit that blan-
kets the area. Depths of stratigraphic units and seismic re-
flectors in the borehole follow.

HLA 8

Depth, in meters

Stratigraphic unit or seismic reflector below mudline

Top Bottom
Qf (Flandrian transgression)............ccc........ 0.0 1.8
Qs (Simpsonian transgression) ................... 1.8 6.0
Qp (Pelukian transgression).........ceceevssencens 6.0 12.8
Qw (Wainwrightian transgression)............. 12.8 271
R ...ttt s 18.0
R et 24.0
Thaw 1aKe.......ccvvveceniicrnriecnneneencenens 27.1 29.3
Undifferentiated Pleistocene outwash ........ 29.3 30.6

Nine samples were submitted for microfossil analysis.
Except for sample 8-9, which is barren of benthic foramin-
ifers, the samples'contain common to abundant benthic fo-
raminifers that range in age from middle Pleistocene to
Holocene and represent the Wainwrightian, Pelukian, Simp-
sonian, and Flandrian transgressions (fig. 19, table 7). Re-
worked faunas are particularly evident in samples 8-3 and
8-2.

A single juvenile ostracode specimen (Candona sp.)
was found in sample 8-9. This long-ranging ostracode ge-
nus probably reflects deposition during a regressive cycle
or glacial interval (E.M. Brouwers, written commun.,
1985). Deposition of these sediments in a thaw lake is
suggested by lithology (P.A. Smith, oral commun., 1985)
and is compatible with the presence of the nonmarine ge-
nus Candona.

Samples from the Wainwrightian transgression (8-8 and
8-7) are stratigraphically above the beach and nearshore
sediments. Benthic foraminifers are common and moder-
ately diverse (average 15%). In sample 8-8, the foraminif-
eral assemblage is dominated by Elphidium clavatum
(26%) and E. orbiculare (24%). In sample 8-7, the number
of specimens increases slightly; Elphidium clavatum be-
comes more abundant (59%), and the abundance of E. or-
biculare declines (16%). Few Buccella frigida are present
(average 2.2%). Although not abundant, Cassidulina is-
landica and C. norcrossi appear in samples 8-8 and 8-7.
Moderate abundances of these species in association with
common to abundant elphidiums indicate the middle nerit-
ic biofacies (1540 m). The greater abundance of cassid-
ulinids in sample 8-8 than in sample 8-7 implies that water
depth decreases upsection. A decrease in water depth from
middle neritic (15-40 m) to inner neritic (1020 m) is also
indicated by an increase in B. frigida and elphidiums be-
tween samples 8-8 and 8-7.

Low to moderate diversities and abundant foraminifers
characterize the Pelukian assemblages in samples 8-6 to
8-4. Foraminiferal assemblages indicate water depths of
less than 10 m and the presence of low-salinity cold water.
This interpretation is supported by (1) the abundant el-
phidiums, particularly E. clavatum, E. orbiculare, and E.
incertum, (2) few to common specimens of Buccella frigi-
da, and (3) the absence of any middle neritic or deeper
water species.

Foraminifers from Simpsonian samples 8-3 and 8-2 are
similar to those in the underlying Pelukian assemblages.
Elphidiums are abundant, and Buccella frigida averages
less than 5 percent of the assemblage. Elphidiums include
the abundant E. clavatum (average 49%), common E. in-
certum (average 14%), and rare E. orbiculare (average
0.5%). This faunal composition indicates cold, low-salinity
water and water depths of less than 10 m. The rare deeper
water species present are believed to be reworked from
Pelukian sediments during the Simpsonian transgression.



The Flandrian transgression is represented by an abun-
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BOREHOLE HLA 9 (Mf6107)

dant but low diversity foraminiferal assemblage in sample

8-1. This Elphidium-dominated assemblage indicates shal-
low, low-salinity water (0~10 m). The presence of Buccel-
la frigida (1%) suggests, however, that water depths were

probably 10 to 20 meters.

Borehole HLA 9 was drilled in shallow water on the
shoreward side of the barrier island chain, 5.6 km east of
the mouth of the Sagavanirktok River and 4.8 km northwest
of Duck Island (fig. 1). Sedimentary units penetrated in this
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hole consist of (oldest to youngest) Shaviovik gravel unit,
Maguire Islands unit, Cross Island unit, and a Holocene lag
deposit (fig. 20). Seismic reflector R4, observed at 23.5 m
near the base of the Maguire Islands unit, marks the basal
part of the Pelukian transgression (P.A. Smith, oral com-
mun., 1985). Depths of stratigraphic units and seismic re-
flectors in the borehole follow.

HLA 9

Depth, in meters

Stratigraphic unit or seismic reflector below mudline

Top Bottom

Qf (Flandrian transgression).........c.coereunaee 0.0 0.5

Cross Island unit........cccoveereseeninviesencnnnas 5 16.7

Maguire Islands unit.........cocovvervnrirneiinnnne 16.7 23.2
Ra ..ot nsaesessssessasssins 235

" Shaviovik gravel Unit...........coevevsreererseonecens 232 39.6

Of the seven samples submitted for microfossil analysis,
four contain only ostracodes (samples 9-7, 9-6, 9-2, and
9-1), one sample (9-5, table 8) contains both foraminifers
and ostracodes, and two samples (9-4 and 9-3) are barren
of both foraminifers and ostracodes. All of the samples are
assigned to the Simpsonian transgression, although sam-
ples 9-2 and.9-1 may represent the Flandrian transgression.

Ostracode faunas in samples 9-7 to 9-5 have low diver-
sity and abundance. Species present indicate shallow inner
neritic depths and marked seasonal fluctuations of temper-
ature and salinity (E.M. Brouwers, written commun.,
1985). Benthic foraminifers occur only in sample 9-5,
where Elphidium clavatum dominates. This species indi-
cates that deposition occurred in the shallow inner neritic
biofacies (less than 10 m) in a low-salinity water mass.
The presence of foraminifers in sample 9-5 suggests a
slight increase in water depth and a possible increase in
salinity between sample 9-5 and the underlying samples
(9-7 and 9-6). The low-abundance ostracode assemblages
in samples 9-2 and 9-1 contain only two species and sug-
gest a cold estuarine environment for which E.M. Brouw-
ers (written commun., 1985) suggests a Holocene age;
however, in this paper, the samples are assigned to the
Simpsonian transgression on the basis of lithology.

BOREHOLE HLA 10 (Mf5726)

Borehole HLA 10 was drilled 6.4 km east of Cross Is-
land and Narwhal Island, and seaward of the barrier island

«d Figure 19. Benthic foraminiferal abundance (dot or num-
ber) and diversity (cross) and distribution of selective species in
borehole HLA 8, Beaufort Sea shelf, Alaska. See table 7 for
foraminiferal values. Paleoenvironment contacts dashed where
approximate. Transgressions summarized in figures 2 and 3.

chain (fig. 1). Drilling at this site recovered 32.9 m of sed-
iments that consist of (oldest to youngest) Leffingwell La-
goon unit, Maguire Islands unit, Cross Island unit,
Stefansson Sound unit, and a Holocene lag deposit (P.A.
Smith, oral commun., 1985; fig. 21). Depths of strati-
graphic units and seismic reflectors in the borehole follow.

HLA 10

Depth, in meters

Stratigraphic unit or seismic reflector below mudline

Top " Bottom
Qf (Flandrian transgression) ..........ccoeeeene 0.0 0.5
Stefansson Sound unit..........ccceverrrevevnnnnee. 5 33
Cross Island unit ..........cecovererrereeenereruennne 33 18.6
Maguire Islands unit ..........coecvvureenrvenecnnns 18.6 27.0
Leffingwell Lagoon unit..........c.cccccoveeennne 27.0 329

Benthic foraminifers are present in two intervals: The
three lowest samples (21.6-19.1 m) and the two highest
samples (4.0-3.7 m) (fig. 22, table 9). The lower group
represents the Pelukian transgression, whereas the upper
group represents the Simpsonian transgression (appendix
1). The interval from 16.4 to 4.8 m, which is largely bar-
ren of microfossils, represents deltaic sedimentation that
occurred during the Simpsonian transgression (P.A. Smith,
written commun., 1986). Although this interval is barren
of benthic foraminifers, ostracodes in samples 10-9, 10-8
and 10-5 indicate the shallow inner neritic biofacies (less
than 10 m) (E.M. Brouwers, written commun., 1982).

The Pelukian samples, 10-12 to 10-10, contain few to
abundant foraminiferal faunas of low to moderate diversi-
ty. The high foraminifer number, few Buccella frigida,
abundant cassidulinids (C. norcrossi and C. islandica), and
rare species of Lagena, Fissurina, and Triloculina suggest
that sample 10-12 was deposited in the middle neritic bio-
facies (1540 m). The decrease in foraminiferal number
and the increase in elphidiums, especially E. clavatum and
E. incertum, toward the top of this interval, indicate shal-
lowing and cooling associated with the end of the Peluki-
an transgression. The shallow inner neritic biofacies (0~10
m) is suggested for samples 10-11 and 10-10.

Only ostracodes are present in Simpsonian samples
10-9, 10-8, and 10-5, whereas both foraminifers and ostra-
codes are present in Simpsonian samples 10-2 and 10-1.
The intervening samples are barren. The three ostracode
species found in samples 10-9, 10-8, and 10-5 are repre-
sented by few specimens, which suggests an estuarine en-
vironment; however, reworking of older sediments cannot
be ruled out (E.M. Brouwers, written commun., 1985). Fo-
raminiferal faunas in samples 10-2 and 10-1 are abundant
and moderately diverse. Elphidium clavatum and E. exca-
vatum alba dominate. These species together with Buccel-
la frigida (average 7%) suggest that deposition occurred at
water depths of 10 to 20 m. Abundant E. clavatum and
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E. incertum (average 11%) suggest cold-water tempera-
tures. The abundant E. excavatum alba in these samples
suggest that material has been transported from warmer,
more nearshore areas or that icebergs were present. The
abundant and moderately diverse ostracodes in samples
10-2 and 10-1 also suggest that deposition occurred in the
inner neritic biofacies. Because the ostracode adult/juve-
nile ratios suggest life assemblages (E.M. Brouwers, writ-
ten commun., 1985), these assemblages were probably not
transported.

BOREHOLE HLA 11 (Mf6108)

Borehole HLA 11 was drilled 8.0 km northeast of Point
Brower, shoreward of the barrier island chain (fig. 1), and
penetrated 29.0 m of sediment. Sedimentary units recog-
nized in this hole include (oldest to youngest) Shaviovik
gravel unit, Leffingwell Lagoon unit, Maguire Islands unit,
Cross Island unit, and Mikkelsen Bay unit (P.A. Smith,
oral commun., 1985). A thaw lake and Holocene lag de-
posits were also identified (fig. 23). Fine sands at 5.0 and
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3.4 m in the hole are interpreted as paleosols (P.A. Smith,
oral commun., 1985). Seismic reflectors R3 and R4, noted
at 25.2 and 19.5 m, respectively, correspond to surfaces 3
and 4 of Wolfe and others (1985) (P.A. Smith, oral com-
mun., 1985). These reflectors also approximate the base of
the Leffingwell Lagoon unit (R3) and the Maguire Islands
unit (R4). Sediments range in age from the middle Pleisto-
cene to Holocene and represent the Wainwrightian, Peluki-
an, Simpsonian, middle Wisconsin, and Flandrian
transgressions. Depths of stratigraphic units and seismic
reflectors in the borehole follow.

HLA 11

Depth, in meters

Stratigraphic unit or seismic reflector below mudline

Top Bottom
Qf (Flandrian transgression) 0.0 0.5
Mikkelsen Bay unit..........ccooeevercenrniievecraenns 5 34
Paleosol......coccerimeiineierrecre et teeee 34
Thaw 1ake......cccocoimreerieninienirncrinseneiens 34 5.0
Paleosol ....coueceimiireieenirie e eeereeeee 5.0
Cross Island Unit ...........coorvrreeeeeeersannrenneenee 5.0 15.8
Maguire Islands unit........cccoceeernevnreriereenens 15.8 19.5
R ..ottt sessaan s 19.5
Leffingwell Lagoon unit..........cccoeccuiviien 19.5 25.2
R et 25.2
Shaviovik gravel unit........ccooeeeerirevcrnicnnenns 25.2 29.0

Seven microfossil samples were analyzed from the
Maguire Islands and Cross Island units and from thaw-lake
deposits. Benthic foraminifers occur in samples 11-7 to
11-3, and 11-1 (fig. 24, table 10). Samples 11-7 to 11-5
represent the Pelukian transgression; samples 11-4 and 11-3
represent the Simpsonian transgression; sample 11-2 is bar-
ren of foraminifers and ostracodes; and sample 11-1 is ques-
tionably assigned to the middle Wisconsin transgression.

The Pelukian samples were taken stratigraphically above
a fine sand (beach or nearshore deposit) and contain di-
verse, common to abundant foraminiferal assemblages. The
foraminiferal assemblage in sample 11-7 includes abundant
Elphidium clavatum (32%) and E. orbiculare (24%), and
few specimens of Buccella frigida (3%). Cassidulinids are
moderately abundant (22%) in this assemblage, and the fis-
surinids, Triloculina trihedra, and Nonionella sp. are rare,
suggesting that deposition occurred in the middle neritic
biofacies (15-40 m). From sample 11-6 to sample 11-5, the
foraminiferal numbers increase dramatically and species
diversity is greater. The abundance of most elphidiums
decrease, whereas that of Cassidulina islandica increases;
outer shelf species increase in diversity and abundance.
These changes suggest that water depths increased, al-
though deposition still occurred in the middle neritic biofa-
cies (15-40 m).

A sharp reduction in both foraminiferal number and di-
versity occurs in Simpsonian samples 11-4 and 11-3. El-
phidium clavatum dominates the foraminiferal assemblages,
averaging 73 percent. A single, poorly preserved specimen
of Cassidulina in sample 11-4 is believed to be reworked
from underlying sediments. Foraminifers in this interval in-
dicate water depths of less than 10 meters and low salinities.

The youngest interval sampled (4.9-3.8 m) lies between
two paleosols (at 5.0 m and 3.4 m). Sediments in this inter-
val are believed to represent deposition in a thaw lake (P.A.
Smith, oral commun., 1985). Sample 11-2 is barren of ben-
thic foraminifers and ostracodes. Sample 11-1 contains a
single benthic foraminifer, Elphidium clavatum, and a few
ostracodes (19 specimens, 3 species). Elphidium clavatum
indicates cold, shallow (0-10 m), low-salinity waters. The
occurrence of this species in thaw-lake deposits is possible,
either in situ or as a reworked fauna. Ostracodes in this
sample include two marine and one nonmarine species
(E.M. Brouwers, written commun., 1985); which could also
represent an in situ or a reworked fauna. Deposition of this
assemblage occurred during the Wisconsin glacial stage or
during the middle Wisconsin transgression.

BOREHOLE HLA 12 (Mf5727)

Borehole HLA 12 was drilled north of Narwhal Island,
approximately 6 km offshore (fig. 1). Sedimentary units
recognized in this hole consist of (oldest to youngest) North
Star sand unit, Staines River unit, Duchess sand unit, Leffin-
gwell Lagoon unit, Maguire Islands unit, Cross Island unit,
and a Holocene lag deposit (P.A. Smith, oral commun.,
1985; fig. 25). Seismic reflector surfaces 3 and 4 of Wolf and
others (1985) are recognized at 29.0 m (R3) and 18.5 (R4) in
the hole (P.A. Smith, oral commun., 1985; fig. 25). Reflector
R3is 6.7 m above the base of the Wainwrightian sediments.
Reflector R4 coincides with the boundary between the Leff-
ingwell Lagoon and the Maguire Islands units at the begin-
ning of the Pelukian transgression. Depths of stratigraphic
units and seismic reflectors in the borehole follow.

HLA 12

Depth, in meters

Stratigraphic unit or seismic reflector below mudline

Top Bottom
Qf (Flandrian transgression) ..........c..c.c...... 0.0 0.5
Cross Island unit ..........ccccveieveeeceevnnennennnns 5 2.9
Maguire Islands unit .........cccooceivincnninne 2.9 18.5
R4 oottt ere e ne 18.5
Leffingwell Lagoon unit.......c.cccocoevvrirunennnn 18.5 35.7
R3 s 29.0
Duchess sand unit ..........coccoveevereeerreerennenn 35.7 50.0
Staines River unit.......cocvevecceivceirnncenenen 50.0 52.5
North Star sand unit.........ccceceeveereveerrennnne. 525 91.7
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Sixteen microfossil samples were taken from the clayey
silts and micaceous silts of the Leffingwell Lagoon, Ma-
guire Islands, and Cross Island units between 29.1 and 1.4

m in the borehole. Benthic foraminifers are present through-
out the sample interval (fig. 26, table 11). The four benthic
foraminiferal assemblages recognized in borehole HLA 12
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represent deposition during the Wainwrightian, Pelukian,
and Simpsonian transgressions.

Wainwrightian faunas, samples 12-16 to 12-11, are char-
acterized by abundant and moderately to highly diverse
foraminiferal assemblages. The lowest samples are domi-
nated by Elphidium orbiculare (sample 12-16), E. nanum
(sample 12-15), and E. clavatum (sample 12-15). The
colder water species E. incertum is common in sample
12-16 and decreases in the overlying samples. These as-
semblages indicate shallow inner neritic depths and cold,
low-salinity water.

Foraminiferal assemblages in samples 12-14 to 12-12

contain a well-developed middle neritic fauna. Dominant
foraminiferal species include Cassidulina norcrossi and C.
islandica (average 47%) and common elphidiums. Rare
outer neritic and upper bathyal species, which make up
less than 5 percent of the fauna, include species such as
Stainforthia concava and Epistominella vitrea and species
of Lagena, Fissurina, and Parafissurina. Today these
forms are most commonly associated with the outer shelf
and upper slope water masses. These assemblages also
contain rare occurrences of Eggerella advena, which today
signifies the presence of the warmer Bering Sea water
mass (common at middle and outer neritic depths). Al-
though few in number, the outer neritic to upper bathyal
species suggest that deposition may have occurred in the
deeper part of the middle neritic biofacies and possibly at
depths greater than 40 m.

An abundant, low-diversity foraminiferal assemblage
dominated by elphidiums characterizes sample 12-11. This
assemblage suggests deposition occurred as water depths

_decreased to inner neritic depths during the climatic cool-
ing near the end of the Wainwrightian transgression.

Pelukian faunas in samples 12-10 to 12-3 include abun-
dant, highly to moderately diverse foraminifers. The basal
sample in this group (12-10) is characterized by a high
foraminiferal number and high diversity. Species present
are common to either the Wainwrightian or Pelukian as-
semblages. This faunal composition suggests that the sam-
ple represents the early part of the Pelukian transgression,
when erosion of older Wainwrightian sediments resulted in
mixing of the older faunas with the in situ Pelukian fau-
nas. The remaining Pelukian samples are characterized by
abundant elphidiums and cassidulinids (average 24%), few
Buccella frigida (average 5%), and rare outer neritic spe-
cies. The assemblage indicates that deposition occurred in
the middle neritic biofacies (1540 m) and that there was
considerable transport from the inner neritic biofacies.

Simpsonian faunas in samples 12-2 and 12-1 are charac-
terized by abundant foraminiferal assemblages and moder-
ate species diversities. Foraminiferal assemblages contain
abundant elphidiums, few Buccella frigida (average 6.1%),
and few cassidulinids (4.2%). Elphidium clavatum is par-
ticularly abundant in these assemblages, averaging 65 per-
cent of the fauna. The assemblages indicate that deposition

occurred in the inner neritic biofacies at water depths of
10 to 20 m.

BOREHOLE HLA 13 (Mf6109)

Borehole HLA 13 was drilled 4.0 km northeast of Point
Brouwer on the shoreward side of the barrier island chain
(fig. 1). A total of 30.9 m of sediment was recovered at
this site (fig. 27). Sedimentary units recognized include
(oldest to youngest) Shaviovik gravel unit, Maguire Is-
lands unit, and Cross Island unit (P.A. Smith, written com-
mun., 1985). Seismic reflector R4 (surface 4 of Wolf and
others, 1985) is present at 15.2 m in the hole in sediments
assigned to the Pelukian transgression. A second seismic
reflector (R?) is noted at 13.5 m also in sediments as-
signed to the Pelukian transgression but does not seem to
correlate with any previously identified reflectors. Depths
of stratigraphic units and seismic reflectors in the borehole
follow.

HLA 13

Depth, in meters

Stratigraphic unit or seismic reflector below mudline

Top . Bottom
Cross Island unit ......cccccoceereevenencnciicnennns 0.0 9.8
Maguire Islands unit .......ccoeeceerieriniccnnnne 9.8 17.0
Rttt sereenens 13.5
R oo 15.2
Shaviovik gravel unit...........ccccovuvniirenenne 17.0 30.9

Five samples were examined for microfossils: two from
the Maguire Islands unit, and three from the Cross Island
unit. Benthic foraminifers are present in all the samples
except 13-2, which is barren of microfossils (fig. 28, table
12). The two lower samples represent the Pelukian transgres-
sion, and the others represent the Simpsonian transgression.

The two species of benthic foraminifers in the oldest
Pelukian sample at 13.6 m are represented by 23 speci-
mens. Elphidium excavatum alba (9%) and E. frigidum
(91%) indicate a shallow nearshore marine environment
with water depths of less than 10 m and low salinities.
The presence of aberrant forms of E. frigidum suggests
that the environment was marginal marine. Two nonma-
rine ostracode species (four specimens) that were also
found in sample 13-5 indicate a cold temperate climate,
warmer than today (E.M. Brouwers, written commun.,
1982). Deposition is interpreted as occurring in a thaw
lake or a very shallow nearshore marine environment.

Sample 13-4, which also represents the Pelukian trans-
gression, contains abundant and diverse benthic foramini-
fers. The foraminiferal assemblage is dominated by
Elphidium clavatum (43%) and Cassidulina islandica
(33%). Few Buccella frigida (4%) and E. orbiculare (7%)



BOREHOLE HLA 13 (Mf6109) 35

N
o

~ z
o 1S4 -
BOREHOLE | & | ¢ | .| 3
= ZE )
HLA 13 Ocx < S gh w o W
20 Gt wza 2 T
(Mf6109) ah e3 40k €5 1
(Tl =5 g oW <5
[/ 1] < > : =z
i = £z <
SAMPLE & » = «
LITHOLOGY NUMBER L
E o
T3 &
© ) —
2| Ee| g
° i a
@ g E
» - ]
[——— []
—— o
8 +——H
w — 2
Figure 27. Lithology, sample loca- |Z10 Middle by
tions, lithostratigraphic units, paleoen- |3 ° (orise
vironments, and ages of borehole HLA |3 ° Noarchore |
13, Beaufort Sea shelf, Alaska. Paleo- 2 s earshore
environment contacts dashed where ap- |0 2= . °'I )
proximate. Lithostratigraphic units and |z l——R? o5 | thew lake
transgressions summarized in figures 4 |®@ 14 7 5 |nearshore
and 5 and in figures 2 and 3, respective- |2 .4 R4 g c
ly. R, seismic reflector surface. W 2 o
G 16 5 Beach o
= »
- 2
[}
z ; 2
__ 18 -3 a
Pl
Q.
w
a

Middie

Shaviovik gravel unit
Outwash
\\\\\\\\\\\\ Pelukian

Mudline 5.6 m below sea level

*Barren of microfossils

are also present. The remainder of the assemblage is repre-
sented by numerous species with few to rare specimens.
These species are common to the middle neritic and shal-
lower biofacies. This composition suggests that deposition
occurred in the middle neritic biofacies at water depths of
15 to 40 m.

Foraminiferal assemblages in the Simpsonian samples
13-3 and 13-1 contain few to rare specimens and have a

low diversity. These assemblages indicate that deposition
occurred in the shallow inner neritic biofacies (0—10 m).
Elphidium clavatum dominates sample 13-3. Other species
present include E. excavatum alba and E. nanum. Elphidi-
um clavatum and Elphidium spp. (probably a juvenile
specimen of E. orbiculare) compose the entire fauna of
sample 13-1. These Elphidium species are not age diag-
nostic, but because borehole HLA 13 was drilled in a
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boulder patch having little to no Holocene sediment (P.A.
Smith, oral commun., 1985), samples 13-3 to 13-1 are as-
signed to the Simpsonian transgression.

BOREHOLE HLA 14 (Mf5728)

Borehole HLA 14 was drilled 6.9 km northwest of Tig-
variak Island near the mouth of the Shaviovik River,
shoreward of the barrier island chain (fig. 1). Sedimentary
units encountered in borehole HLA 14 consist of (oldest to
youngest) Shaviovik gravel unit, Maguire Islands unit, and

Stefansson Sound unit (P.A. Smith, written commun.,
1986; fig. 29). The lower boundary of the Maguire Islands
unit coincides with the position of seismic reflector R4
(surface 4 of Wolf and others, 1985). A faint seismic re-
flector (R?) is also noted at 13.6 m, just below sediments
identified as a thaw lake (13.6-8.8 m). This reflector is
stratigraphically lower in the section than the unnamed re-
flector in HLA 13 and is not correlative with it. The basal
Holocene seismic reflector (Wolf and others, 1985) is rec-
ognized at 4.5 m in the hole (RS) and is near the lower
boundary of the Stefansson Sound unit. Depths of strati-
graphic units and seismic reflectors in the borehole follow.
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HLA 14 Eight samples from borehole HLA 14 were examined
for microfossils. Samples 14-7 and 14-4 to 14-1 contain
benthic foraminifers and ostracodes, whereas samples 14-6
and 14-5 contain only ostracodes (fig. 30, table 13). Sam-

Depth, in meters

Stratigraphic unit or seismic reflector below mudiine

_ Top Bottom ple 14-6A (13.6 m) is barren of calcareous microfossils
Stefansson Sound unit ..........ccoeveerierieenneins 0.0 49 but contains abundant plant fragments. The fossiliferous
assemblages are late Pleistocene to Holocene in age and

19.1 represent the Pelukian and Flandrian transgressions.

Benthic foraminifers in the oldest Pelukian sample, 14-7,
are few in number (54 specimens) and have low diversity
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elphidiums (43 specimens, 80%), rare Buccella frigida (5
specimens, 9%), and rare cassidulinids (1 specimen, 2%).
Elphidiums are dominated by Elphidium orbiculare (20%)
and E. incertum (20%). Also present are E. clavatum (15%)
and questionable E. excavatum alba (11%), although the
latter may actually be worn specimens of E. clavatum. This
assemblage suggests that deposition occurred in the inner
neritic biofacies (020 m), probably shallow inner neritic
biofacies (0~10 m) and cold water.

Stratigraphically higher Pelukian samples 14-6 and 14-5
contain abundant plant fragments and rare ostracodes. Os-
tracodes in sample 14-6 include fragments of a nonmarine

species, fragments of two eurytopic species, and one middle
neritic species. The composition of the ostracode assem-
blage in sample 14-5 is evenly divided between the middle
neritic (Krithe glacialis, two specimens) and shallow inner
neritic to estuarine species (Paracyprideis pseudopunctilla-
ta, two specimens) (E.M. Brouwers, written commun.,
1985). Brouwers believes the middle neritic species are in
place and the other specimens are transported or reworked.
The absence of benthic foraminifers, and the abundance of
plant material and sand with minor amounts of clay and silt,
suggests instead that the middle neritic species are reworked
into thaw lake or shallow marine or estuarine deposits.
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In Pelukian samples 14-4 and 14-3, foraminifers are
common, and species diversity is low to moderate. Forami-
niferal assemblages include abundant elphidiums, particu-
larly E. clavatum (average 29%) and E. orbiculare (average
38%), abundant cassidulinids (22%), and few Buccella
frigida (average 1.6%). This faunal composition suggests
middle neritic water biofacies (1540 m) with considerable
downslope transport of shallow inner neritic material.

Flandrian faunas in samples 14-2 and 14-1 are character-
ized by abundant, low diversity foraminiferal assemblages.
The foraminiferal assemblages are dominated by elphidiums
(E. clavatum, 66%); cassidulinids are absent. Abundant el-
phidiums (average 87%) and common Buccella frigida (av-
erage 10%) suggest that deposition occurred within the inner
neritic biofacies with water depths of 10 to 20 meters and
variable salinities. Abundant Elphidium incertum (average
12%) indicate cold water and the possible presence of ice.

BOREHOLE HLA 15 (Mf5731)

Borehole HLLA 15 was drilled 4.8 km east of Tigvariak
Island and shoreward of the barrier island chain (fig. 1).
Sedimentary units encountered in HLA 15 consist of (old-
est to youngest) an unnamed sandy gravel unit, Newport
sand unit, Shaviovik gravel unit, Maguire Islands unit, and
Stefansson Sound unit (P.A. Smith, written commun., 1986;
fig. 31). The oldest unit is composed of fine- to coarse-
grained sand mixed with subrounded to subangular gravel
and represents an early Pleistocene or older glacial out-
wash. This unit is not recognized in any other boreholes.
Seismic reflector R4 (surface 4 of Wolf and others, 1985) is
identified at 15.5 m, a few meters above the base of the
Maguire Islands unit in a layer of frozen sediments (fig.
31). A second seismic reflector R? is identified at 10.5 m, at
the same level as a lithologic change from gravel to sand.
The basal Holocene seismic surface of Wolf and others
(1985, 1956) is recognized at 6.7 m in the hole (RS) ap-
proximately at the boundary chosen on lithologic criteria
for the base of the Stefansson Sound unit. Depths of strati-
graphic units and seismic reflectors in the borehole follow.

HLA 15

Depth, in meters

Stratigraphic unit or seismic reflector below mudline

Top Bottom
Stefansson Sound unit ........cccceeereinirineinne 0.0 6.7
Maguire Islands unit........cccoeevvvcinicnnenes 6.7 18.4
RS sttt aees 6.7

10.5

15.5
Shaviovik gravel unit...........ccoeevevccrnennenee 18.4 65.8
Newport sand unit.........cccccererercenrencrceneenenns 65.8 87.9
UnKNOWN UNIE ....oveveerienieeerinnnennreseencreeens 87.9 914

Twelve microfossil samples were analyzed from bore-
hole HLA 15. Samples 15-12 to 15-7 from the Newport

sand unit are barren. Of the six samples in the upper part
of the hole, sample 15-5 is barren and only ostracodes
were recovered from sample 15-6. Benthic foraminifers
and ostracodes were recovered from samples 15-4 to 15-1
(fig. 32, table 14). A late Pleistocene or older age is indi-
cated for sample 15-6, whereas samples 15-4 to 15-1 are
Holocene in age and represent the Flandrian transgression.

Sample 15-6 contains abundant nonmarine ostracodes in-
cluding Candona rectangulata, Eucypris foveata, Illyocypris
bradii, Limnocythere liporeticulata, and L. platyforma. Ilyo-
cypris bradii and L. liporeticulata dominate and suggest a
pond or shallow lake, or a low-energy stream, and water
temperatures of less than 20°C. The minimum age of the
sample is established by Eucypris foveata, which has not
been found in sediments younger than 20,000 years B.P;
thus the age is no younger than late Pleistocene (E.M. Brou-
wers, written commun., 1982). The presence of seismic re-
flector R4 (15.5 m) slightly below sample 15-6 suggests that
these deposits represent the Pelukian transgression.

Samples 15-4 to 15-1 represent the Flandrian transgres-
sion and contain abundant benthic foraminifers. Foraminif-
eral diversity and the amount of reworked material
generally increase upsection. In samples 15-4 and 15-3,
abundant elphidiums and common Buccella frigida (aver-
age 10%) indicate that deposition occurred within the deep-
er inner neritic biofacies (1020 m). In the upper samples
(15-2 and 15-1), a decrease in the abundance of Buccella
frigida, and increases in the abundance of Elphidium orbic-
ulare and E. clavatum suggest a decrease in water depth (0—
10 m) and a decrease in salinity. The upper benthic forami-
niferal assemblages (15-2 and 15-1) also contain two agglu-
tinated species, Reophax curtus and Trochamminella
atlantica, and rare occurrences of Elphidium cf. E. asklun-
di, Cassidulina islandica, C. norcrossi, and Elphidiella
groenlandica. The presence of agglutinated species is prob-
ably a response to an increase in organic matter and an
increase in the silt-size particles. The calcareous species are
believed to be reworked from older deposits.

BOREHOLE HLA 16 (Mf5623)

Borehole HLA 16 was drilled 4.8 km northwest of the
west end of Alaska Island, seaward of the barrier island
chain (fig. 1), and penetrated 33.5 m of sediment. Sedimen-
tary units in HLA 16 consist of (oldest to youngest) Leffing-
well Lagoon unit, Maguire Islands unit, Cross Island unit,
and a Holocene lag deposit (P.A. Smith, written commun.,
1986; fig. 33). Seismic reflector R3 (surface 3 of Wolf and
others, 1985, 1986) is recognized at 29.8 m, just above a
3.7-m-thick sequence of rounded to subangular gravel inter-
preted as beach deposits in the Leffingwell Lagoon unit.
Seismic reflector R4 (surface 4 of Wolf and others, 1985), is
identified at 17.8 m and coincides with the base of the
Maguire Islands unit. Seismic reflector R5’, near the base of
the Cross Island unit, is not the basal Holocene reflector
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identified by Wolf and others (1985). Reflector RS’ is found
at greater depths in most holes than the basal Holocene
reflector and is seen primarily in the boreholes seaward of
the barrier island chain. Depths of stratigraphic units and
seismic reflectors in the borehole follow.

HLA 16

Depth, in meters

Stratigraphic unit or seismic reflector below mudline

Top Bottom
Qf (Flandrian transgression)...........eevveeenee 0.0 0.6
Cross Island unit 1.2
RS et sesesesesasaesstsssaesessssnenens
Maguire Islands unit . 17.8
RA .ttt e
Leffingwell Lagoon unit . 335
R3 et ereanenas

Amino acid ratios (alle/Ile) based on benthic foraminifers
were calculated for three samples from this borehole. The

ratio of 0.085 for sample 16-11 is within the range deter-

mined for the Wainwrightian transgression (0.052-0.089)

and somewhat greater than the average (0.073) (Brigham,

1985b; P.A. Smith, written commun., 1986). The ratio of
0.051 to 0.054 for sample 16-10 is somewhat less than the

average for the Pelukian transgression (0.066) but within

the range of values for it (0.053-0.078) (Brigham, 1985b;

P.A. Smith, written commun., 1986). Assignment of these

two samples to the Wainwrightian and Pelukian transgres-
sions agrees with the lithologic and stratigraphic interpreta-
tions of these samples. The stratigraphic position and
lithology of sample 16-1 suggest that this sample represents
the Simpsonian transgression. An alle/Ile ratio of 0.081 in-.
dicates, however, that specimens from the Wainwrightian or
older transgressions were included in the analysis.

Twelve microfossil samples examined from borehole
HLA 16 range in age from middle to late Pleistocene and
represent the Wainwrightian, Pelukian, and Simpsonian
transgressions (fig. 34, table 15). Foraminifers were recov-
ered from all samples except 16-9, 16-7, and 16-6.
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Faunas diagnostic of the Wainwrightian transgression
(samples 16-11 and 16-12) include common to abundant and
diverse foraminifers. These assemblages indicate middle ne-
ritic water biofacies and include several species associated

with Atlantic water masses. In the older foraminiferal assem-
blage, abundant cassidulinids (23%), Buccella frigida (20%),
and rare Stainforthia concava and Bolivina pseudopunctata
suggest that deposition occurred in the middle neritic
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Figure 34, Benthic fo-

raminiferal abundance (dot
or number) and diversity
(cross) and distribution of
selective species in bore-
hole HLA 16, Beaufort Sea
shelf, Alaska. See table 15
for foraminiferal values.
Paleoenvironment contacts
dashed where approximate.
Transgressions summarized
in figures 2 and 3.
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biofacies (1540 m). The presence of Gordiospira arctica
and Bolivina pseudopunctata in this interval indicates the
influx of warmer Atlantic waters. In sample 16-11, the abun-
dance of elphidiums and the decline or absence of middle
neritic species indicates a decrease in water depth to probably
shallow inner neritic depths (0~10 m). The slight increase
of Elphidium incertum suggests that water temperatures have
may been declining also.

The oldest Pelukian sample, 16-10, overlies beach grav-
els and contains abundant benthic foraminifers. Although
elphidiums dominate the foraminiferal assemblages, abun-
dant cassidulinids (34%) and a few outer neritic species
(Epistominella vitrea and Stainforthia concava) suggest
that deposition occurred at middle neritic (1540 m) or pos-
sibly outer neritic (35-200 m) biofacies. The rare Epistom-
inella vitrea (<1%) indicates the presence of the warmer
Atlantic water mass, which is presently found at depths of
200 m and more (Lagoe, 1979). Eggerella advena (<1%),
which also appears in sample 16-10, characterizes the
warmer Bering Sea Water mass and is currently found at
depths of 40 to 60 m on the Beaufort Sea shelf (R.J. Echols,
written commun., 1978). These warmer water species sug-
gest that deposition may have occurred at outer neritic
depths under the influence of the warmer water masses.
These species are rare, so deposition in the deeper part of
the middle neritic biofacies is believed to be most probable.

Foraminifers are scarce in samples 16-8 and 16-5 and
absent in samples 16-9, 16-7 and 16-6. Deltaic and near-
shore conditions that may have prevailed during deposition
of the interval from 12.7 to 5.6 m (P.A. Smith, written
commun., 1986) would account for the sparsely fossiliferous
to barren samples. Low specimen numbers and low diversity
characterize the foraminiferal assemblages in samples 16-8
and 16-5. Elphidiums (E. clavatum), which dominate these
assemblages, suggest that deposition occurred at water
depths of less than 10 m and in lower salinities. Sparse
ostracode assemblages in samples 16-9, 16-8, and 16-5 sug-
gest shallow water depths and cold, seasonally fluctuating
temperatures (E.M. Brouwers, written commun., 1985).

Samples 16-4 and 16-3 are indicative of the latest phase
of the Pelukian transgression, when water depths and tem-
peratures were decreasing. Foraminifers are not abundant,
and diversity is low (average 9). The elphidiums (average
56%), Cassidulina norcrossi (average 33%), and rare Buc-
cella frigida suggest that deposition occurred in the middle
neritic biofacies (1540 m). Elphidium incertum (average
14%) suggests that water temperatures were cold. Elphidi-
ella groenlandica indicate that considerable transport or re-
working has occurred.

The foraminiferal assemblage in sample 16-2, from a silty
sand at approximately the same depth as seismic reflector
R5’ (1.1 m), is a mixture of Pelukian and Simpsonian fau-
nas. Elphidium incertum and E. orbiculare continue at the
same abundance, cassidulinids decrease, and rare E. albium-
bilicatum appears in sample 16-2. The abundant elphidiums
and few cassidulinids suggest that deposition occurred in

cold, shallow water (0~20 m). Elphidium albiumbilicatum,
present in this sample, is often associated with increasing
temperatures and an influx of warmer, low-salinity water
(Knudsen, 1978; Guilbault, 1980). Mixing of faunas from
the Pelukian and Simpsonian transgressions explains the
presence of those species characteristic of cold conditions
and those characteristic of warming conditions.

Sample 16-1, taken from the silty sand 0.2 m above sam-
ple 16-2, is interpreted as representing the Simpsonian
transgression. An abundant and diverse foraminiferal as-
semblage is present. An increase in shallower water species
and the appearance of quinqueloculinids and Elphidium
bartletti indicate that deposition occurred at 15 to 20 m,
where these species are common. The few E. albiumbilica-
tum and rare E. frigidum indicate warming conditions and
the influx of warmer low-salinity water, probably from local
rivers. Elements of this fauna may be reworked. The strati-
graphic position and lithology of sample 16-1 suggest that
this sample represents the Simpsonian transgression; how-
ever, the alle/lle ratio of 0.081 for sample 16-1 indicates
that the Simpsonian assemblage here includes reworked
Wainwrightian or older material. The presence of common
cassidulinids and few Elphidiella groenlandica and Elphidi-
um asklundi may be faunal evidence of reworking.

BOREHOLE HLA 17 (Mf5624)

Borehole HLA 17 was drilled 6.4 km north of the eastern
end of Alaska Island, seaward of the barrier island chain
(fig. 1). Sedimentary units recognized in borehole HLA 17
consist of (oldest to youngest) Leffingwell Lagoon unit,
Maguire Islands unit, Cross Island unit, and a Holocene lag
deposit (P.A. Smith, written commun., 1986; fig. 35). A
strong seismic reflector R3 (surface 3 of Wolf and others,
1985), which marks the base of the Leffingwell Lagoon
unit, is present at 48 m below sea level, nearly 2 m below
the bottom of the hole. Seismic reflector R4 (surface 4 of
Wolf and others, 1985) is recognized at 17.0 m in the hole,
above the sands and gravels that mark the base of the Ma-
guire Islands unit and the base of the Pelukian transgression
in this borehole. Seismic reflector RS’, at 2.5 m in the hole,
is below the Cross Island unit and the base of Simpsonian
transgression at 1.2 m. Depths of stratigraphic units and
seismic reflectors in the borehole follow.

HLA 17

Depth, in meters

Stratigraphic unit or seismic reflector below mudline

Top Bottom
Qf (Flandrian transgression)........cc...c.ceu.u.. 0.0 0.4
Cross Island unit 4 1.2
Maguire Islands unit 1.2 21.6
RS ceeecvercersreesiesenne 2.5
Ra .o 17.0
Leffingwell Lagoon unit 21.6 31.6




BOREHOLE HLA 17 (Mf5624)

Benthic foraminifers are present in all 20 samples ana-
lyzed from borehole HLA 17 (fig. 36, table 16). Three foram-
iniferal assemblages are recognized and correspond to the
Wainwrightian, Pelukian, and Simpsonian transgressions.

The oldest Wainwrightian foraminiferal assemblage (sam-
ple 17-20) is dominated by Elphidium clavatum and contains
abundant E. incertum as well as other Elphidium species,

45

Quinqueloculina seminulum, and two agglutinated species.
This association indicates that deposition occurred during the
initial phases of the transgression when the waters were cool,
of low salinity, and shallow (0-10 m). In the overlying
sample 17-19 elphidiums decrease in abundance while
cassidulinids (31%) and Buccella frigida (4%) increase. A
few middle and outer neritic species, such as Stainforthia
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concava and Cassidulina-norcrossi, appear. This assemblage
indicates that water depths had increased, and deposition was
occurring in the middle neritic biofacies (1540 m). Cool
temperatures are suggested by the increased abundance of
Elphidium incertum (21%). The youngest sample in the
Wainwrightian interval, 17-18, suggests that water depths
had decreased because the abundance of middle and outer
neritic species declines, cassidulinids decrease to 10 percent,
and elphidiums increase to 84 percent. Cold temperatures and
lower salinity waters are indicated by the dominance of E.
incertum (65%). Although Buccella frigida is not abundant
(1%), the assemblage suggests deep inner neritic conditions
(1020 m). '

The Pelukian foraminiferal assemblages (samples 17-17
to 17-4) are from sediments above beach and nearshore
sands between 21.6 and 17.0 m that are assigned to the
Pelukian transgression. The foraminiferal assemblages are
abundant (average 4,710 specimens) and diverse (average
17 species). Although the assemblages are dominated by
elphidiums, Buccella frigida (average 4%) and cassidulin-
ids (average 11%) appear in sufficiently high numbers to
indicate that deposition occurred in the deeper inner neritic
to middle neritic biofacies (10-20 to 1540 m) and that the
shallow inner neritic species are transported. Outer neritic
species are rare, occurring only in sample 17-16. Abundant
Elphidium incertum in samples 17-17 to 17-10, indicate
cool temperatures and the probable presence of ice. The
dominance of Elphidium clavatum in samples 17-9 to 17-4
indicates a slight increase in water temperatures. Warmer
conditions are also suggested by an overall increase in the
abundance of Elphidium excavatum alba in samples 17-8 to
17-5. Elphidiums and other shallow inner neritic species
that are more abundant in the upper samples 17-14 to 17-4
suggest a decrease in water depth upsection. This proposed
decrease in water depth also corresponds to an increase in
sand beginning at 9 m. Sediments between 9 and 1.2 m
have been interpreted as deltaic (P.A. Smith, written com-
mun., 1986). The occurrence of Elphidium albiumbilicatum
in samples 17-14 to 17-5, with greater abundances in sam-
ples 17-12, 17-9, 17-7 and 17-6, suggests an influx of lower
salinity water, possibly from rivers.

Faunal assemblages in samples 17-3 to 17-1 represent
the Simpsonian transgression. The diverse foraminiferal
assemblages, which are dominated by elphidiums and con-
tain abundant cassidulinids (average 13.5%) and few Buc-
cella frigida (average <4%), suggest that deposition
occurred in the deep inner neritic biofacies. Common El-
phidium incertum (average 10%) indicate cooler waters.

- Figure 36. Benthic foraminiferal abundance (dot or num-
ber) and diversity (cross) and .distribution of selective species in
borehole HLA 17, Beaufort Sea shelf, Alaska. See table 16 for
foraminiferal values. Paleoenvironment contacts dashed where
approximate. Transgressions summarized in figures 2 and 3.

The abundance of the various species, which is similar to
the underlying Pelukian interval, suggests a similar envi-
ronment. These benthic foraminifers have no anomalously
high or low abundance values or different preservational
states that would suggest reworked older material.

BOREHOLE HLA 18 (Mf5625)

Borehole HLA 18 was drilled 1.6 km north of Flaxman
Island in the eastern end of the study area and seaward of
the barrier island chain (fig. 1). Nine sedimentary units are
recognized in borehole (fig. 37). The Camden Bay unit,
Brunlow Point unit, and North Star sand unit were recog-
nized only in this borehole, whereas the younger Staines
River unit, Duchess sand unit, Leffingwell Lagoon unit,
Maguire Islands unit, and Cross Island unit are also recog-
nized in other boreholes (P.A. Smith, written commun.,
1986). A Holocene lag deposit is also present in HLA 18.
Seismic reflector R3 (surface R3 of Wolf and others,
1985) is recognized at 29.4 m, above the base of the
Leffingwell Lagoon unit, and seismic reflector R4 (surface
4 of Wolf and others, 1985) is at 16.7 m, just above the
slightly coarser basal sediments of the Maguire Islands
unit. Seismic reflector R5’ is between the thinly laminated
clayey silts of the upper part of the Maguire Islands unit
and the silty organic-rich sand of the Cross Island unit
(fig. 37). Depths of stratigraphic units and seismic reflec-
tors in the borehole follow.

HLA 18

Depth, in meters

Stratigraphic unit or seismic reflector below mudline

! Top Bottom

Qf (Flandrian transgression).............cec...... 0.0 0.7

Cross Island unit ..........cccceveeeevnnennneenes 7 2.1
RS ettt 2.1

Maguire Islands unit ...........ccccovnicinicnnnnnns 2.1 18.9
R .ot 16.7

Leffingwell Lagoon unit 18.9 30.2
29.4

30.2 37.0

37.0 58.7

58.7 76.7

Brunlow Point unit..........cccocevereerenennereennn 76.7 91.5

Camden Bay unit.........cccoeevveerriceererernrenrinnne 91.5 924

Seven transgressive marine sequences are recognized in
microfossil assemblages of HLA 18 and range in age from
late Pliocene to Holocene: Beringian; Anvillian; Fish-
creekian; Wainwrightian; Pelukian; Simpsonian; and Flan-
drian (fig. 38, table 17). Samples 18-36, 18-33, 18-32,
18-12, 18-11, and 18-6 are barren, and samples 18-17 and
18-7 contain some ostracodes but no foraminifers. These
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samples may represent nonmarine or very shallow marine
deposits.

The Beringian sample, 18-37, includes common and di-
verse foraminifers. The abundance of the elphidiums
(48%), Buccella frigida and B. inusitata (4%), and cassid-
ulinids (5%) suggests that deposition occurred in the deep
inner neritic biofacies (1020 m). The abundance of Quin-
queloculina seminulum (35%) and Scutuloris tegminis
(1%) indicates that deposition occurred in the deeper part
of this biofacies where the water is turbid and has less
organic material. )

The Anvillian faunas, samples 18-35 and 18-34, include
a diverse and common to abundant foraminiferal assem-
blage. Elphidiums are abundant, and Buccella frigida (av-
erage 11%) and cassidulinids (average 18%) are common.
Together these faunal characteristics indicate that deposi-
tion occurred no shallower than the deep inner neritic bio-
facies (10-20 m) and probably within the middle neritic
biofacies (15-40 m). Common polymorphinids and la-
genids indicate calm, less turbulent waters. A rare outer
neritic species, Melonis zaandamae, appears in sample
18-34. This species may be reworked from older sedi-
ments but probably represents the in situ fauna as this
form has been found at shallow shelf depths in fine-
grained organic sediments associated with winnowing and
more intense current regimes (Jansen and others, 1983;
Osterman and Nelson, 1989).

Two age-diagnostic species appear in the Anvillian as-
semblages, Elphidiella? brunnescens and Elphidium ustu-
latum. Several specimens identified as Elphidiella?
brunnescens in samples 18-35 and 18-34 are probably re-
worked. This species has been recognized in the Nuwok
Member of the Sagavanirktok Formation southeast of the
study area along Carter Creek (Todd,1957). The Nuwok
has subsequenty been interpreted as late Oligocene in age
(McNeil and Miller, 1990), in the Oligocene to Miocene
Cibicidoides Assemblage Zone of the Beaufort-Mackenzie
Basin in western Arctic Canada (McNeil, 1989). Younger
occurrences of this species are unknown, thus its presence
in borehole HLA 18 is assumed to indicate reworking of
older sediments. Elphidium ustulatum was originally iden-
tified from the Nuwok Member along Carter Creek (Todd,
1957). The range of this species is now recognized as late
Pliocene to Pleistocene, and it is most abundant in latest
Pliocene to earliest Pleistocene (1.8-0.8 Ma) sediments
throughout the circum-Arctic region and North Sea (Fey-
ling-Hanssen, 1985; Young and McNeil, 1984; McNeil,
1989). Elphidium ustulatum is present in the Beringian
and Anvillian assemblages of borehole HLA 18 and com-
mon in the Fishcreekian assemblages (table 17). The An-
villian assemblages in borehole HLA 18 are therefore
considered late Pliocene in age. The Anvillian faunas are
separated from the overlying Fishcreekian faunas by an in-
terval of fine- to coarse-grained sand and peat (76.7-58.7
m). Abundant plant material and the absence of foramini-

fers or ostracodes in samples 18-33 and 18-32 from the
sand and peat interval suggest nonmarine conditions.

Foraminiferal assemblages assigned to the Fishcreekian
transgression (samples 18-31 to 18-28) are abundant and
highly diverse. These assemblages indicate that deposition
probably occurred in the deep inner neritic to middle nerit-
ic biofacies (1540 m). Elphidiums (average 70%) domi-
nate the assemblages, which also contain moderate
percentages of Buccella frigida (average 7%) and cassid-
ulinids (average 12%). Rare Melonis zaandamae, an outer
neritic species, suggests either that deposition occurred in
the deeper part of the middle neritic biofacies or that a
cooler water mass was present in the middle shelf. Deep
inner neritic and middle neritic species decrease slightly in
abundance in sample 18-28, implying a slight decrease in
water depth. Common Elphidium incertum (average 17%)
suggest that cooler, less saline waters and ice were present
throughout the Fishcreekian transgression. Amino acid ra-
tios based on the foraminifer Elphidium clavatum from the
Fishcreekian samples yield ratios between 0.096 and
0.113. The smaller ratios result when only well-preserved
specimens of E. clavatum are analyzed, whereas the higher
ratios result when specimens are randomly chosen. The
higher ratios are believed to indicate contamination of the
Fishcreekian assemblages by Anvillian, Beringian, or older
specimens of E. clavatum. The abundance and diversity of
the Fishcreekian faunas may reflect the reworking of many
older specimens.

The age of the Fishcreekian samples is suggested by the
presence of common Elphidium ustulatum, which is most
common in circum-Arctic sediments between 1.8 and 0.8
Ma (Feyling-Hanssen, 1985; Young and McNeil, 1984;
McNeil, 1989). The early Pleistocene age suggested for
the Fishcreekian transgression is compatible with this age
range.

Five benthic foraminifers and moderately abundant os-
tracodes are present in sample 18-27. The foraminiferal
assemblage is composed entirely of elphidiums and indi-
cates cold, shallow water and low salinity. This assem-
blage may represent the in situ fauna or may be reworked
from the underlying Fishcreekian faunas. The ostracode
assemblage is composed entirely of nonmarine species that
suggest a fresh-water environment (E.M. Brouwers, writ-
ten commun., 1982).

Wainwrightian faunas include abundant and diverse fo-
raminiferal assemblages. Abundance fluctuates consider-
ably in this interval (samples 18-26 to 18-21) and peaks in
samples 18-25 and 18-23. Because the abundance in sample
18-25 results from the presence of similar-sized shallow-
water species, it is probably related to downslope transport.
The abundance in sample 18-23 appears to be related to an
increase in middle neritic specimens, which probably repre-
sent a period of less intense current movement.

Wainwrightian foraminiferal assemblages contain abun-
dant elphidiums, abundant cassidulinids (averaging 21%),
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and usually few Buccella frigida ($6%). This composition
suggests middle neritic biofacies (1540 m). Although rep-
resenting less than 3 percent of the assemblage, the outer
neritic species Stainforthia concava and the upper bathyal
species Cassidulina crassa suggest a deeper middle neritic
biofacies. The persistent occurrence of Elphidium incertum
(average 18%) throughout this interval indicates that the
surface water mass was cold and ice was present.

In most of the Pelukian samples (18-20 to 18-6), foram-
inifers are few to rare and diversity is low. Samples 18-12
and 18-11 are barren, and sample 18-17 contains only os-
tracodes. The abundance of elphidiums, particularly E.
clavatum, throughout most of the Pelukian suggests that
water depths were probably less than 10 m. The abun-
dance of E. albiumbilicatum in sample 18-13 suggests an
influx of low-salinity water, which usually accompanies
warmer temperatures. Samples 18-20 and 18-19 contain
abundant and moderately diverse foraminiferal assemblag-
es. These samples are just above the sediment identified as
a lag deposit, and considerable reworking of the underly-
ing Wainwrightian faunas is probable. Elphidium clavatum
dominates and probably represents the in situ fauna. Sedi-
ments in this interval are believed to represent deltaic dep-
osition (P.A. Smith, written commun., 1986).

Samples 18-7 and 18-6 may be part of the Pelukian
transgression. Sample 18-7 contains only two ostracode
specimens, and 18-6 is barren (E.M. Brouwers, written
commun., 1982). Both samples contain abundant plant
fragments and could represent thaw-lake deposits.

In the four Simpsonian samples (18-5 to 18-2), foramin-
ifers are rare to common and the diversity is generally
low. The elphidiums, which dominate, indicate that depo-
sition occurred in the shallow inner neritic biofacies (0~10
m) having lower or variable salinities and cool water tem-
peratures. Sample 18-5 contains several specimens that are
probably reworked from older material. Sample 18-2 con-
tains a moderately abundant foraminiferal assemblage that
suggests slightly deeper water depths.

The Flandrian transgression is represented by sample
18-1. The abundant and moderately diverse foraminiferal
assemblage is characterized by abundant and diverse el-
phidiums; Elphidium clavatum (56%) and E. orbiculare
(17%) dominate. The few specimens of Quinqueloculina
seminulum indicate turbid waters.

BOREHOLE HLA 19 (Mf5729)

Borehole HLA 19 was drilled 3.2 km north of Pole Is-
land, seaward of the barrier island chain (fig. 1). Sedimen-
tary units in borehole HLA 19 consist of (oldest to
youngest) Duchess sand unit, Leffingwell Lagoon unit,
Maguire Islands unit, and Mikkelsen Bay unit (P.A. Smith,
written commun., 1985; fig. 39). A Holocene lag deposit is
present at the top of the hole. Seismic reflectors R3 and

R4 (surfaces 3 and 4 of Wolf and others, 1985), are recog-
nized in HLA 19. Seismic reflector R3, just below the
change to clayey silt at 29.4 m, coincides with the bound-
ary between the Duchess sand and Leffingwell Lagoon
units. Seismic reflector R4 coincides with the boundary
between the Leffingwell Lagoon and Maguire Islands units
at the change from clay to silt at 16.5 m. Depths of strati-
graphic units and seismic reflectors in the borehole follow.

HLA 19

Depth, in meters

Stratigraphic unit or seismic reflector below mudline

Top Bottom
Qf (Flandrian tranSgression) ...........eveerne 0.0 0.6
Mikkelsen Bay unit...........cocvvevnireuniinnan, .6 11.6
Maguire Islands unit .........cccccecvecvnneccrncnne 11.6 16.5
R4 cooetricnivrecinisesecnetsense s estsessessssenss 16.5
Leffingwell Lagoon unit...........cocceeeiucunneee 16.5 29.5
R3 oeenrenisessnsesste et sisesessssssmesesesnene 29.4
Duchess sand unit .........cocoovrveviereiireerennnene 29.5 355

Nineteen samples ranging in age from middle Pleisto-
cene to Holocene were examined for microfossils from
borehole HLA 19. Benthic foraminiferal faunas are charac-
teristic of the Wainwrightian, Pelukian, and middle Wiscon-
sin transgressions and a Holocene lag deposit (fig. 40, table
18). Sample 19-19 is barren of foraminifers and ostracodes.

Faunas considered diagnostic of the Wainwrightian trans-
gression (samples 19-18 to 19-11) include abundant and
moderately diverse foraminiferal assemblages. Foraminif-
eral assemblages in samples 19-18 and 19-17 are dominat-
ed by elphidiums and contain abundant cassidulinids, few
Buccella frigida (average 5%), and rare outer neritic spe-
cies. Middle neritic and deeper water foraminiferal species
make up approximately 39 percent of the assemblages in
samples 19-18 and 19-17. These samples were taken from
coarse-grained sediments interpreted as a beach deposit
(sample 19-18) and from silty clays 1.4 m above the beach
deposit (sample 19-17). Because the sedimentary difference
between these two samples is not reflected in the foraminif-
eral assemblage, particularly in the abundance of the deeper
water species, the presence of the deeper water species may
be due to reworking of older material. This interpretation is
supported by amino acid ratios based on foraminifers. Alle/
Ile ratios of 0.140 to 0.147 and 0.075 are given for these
samples by PA. Smith (written commun., 1986). She re-
ports that the ratio of 0.075 is about average for Wain-
wrightian sediments (0.073), whereas the ratio of 0.140 to
0.147 is too high and suggests contamination by older ma-
terial. Excluding the deeper water species, which are proba-
bly reworked, these samples appear to have been deposited
in the shallow inner neritic biofacies. Common to abundant
Elphidium orbiculare and E. incertum in the assemblages
indicate a cold, shallow, low-salinity water mass.
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Foraminiferal assemblages in samples 19-16 to 19-14
are dominated by the shallow inner neritic Elphidium clav-
atum and E. orbiculare. In samples 19-13 and 19-12, el-
phidiums decrease in abundance while deep inner and
middle neritic species increase. Sample 19-12 includes
abundant cassidulinids (33%), common Buccella frigida
(9%), and rare to common outer neritic and deeper water
species (Astrononion gallowayi, Nonionella auricula, and
Cassidulina crassa). This assemblage indicates at least
middle neritic and probably outer neritic biofacies (35-200
m) as well as the presence of a warmer water mass. The
increased abundance of elphidiums in sample 19-11 sug-
gests a return to shallower water depths or an increase in
downslope transport. Reworked specimens are rare in
samples 19-16 to 19-11.

Few foraminifers occur in the Pelukian sumples 19-10
and 19-9, but a more abundant, low-diversity foraminiferal
assemblage occurs in Pelukian sample 19-8. Elphidium
clavatum, which is the only elphidium in sample 19-10 and
the only foraminifer in sample 19-9, indicates cool, shallow
inner neritic depths (0-10 m). Elphidium orbiculare, which
dominates sample 19-8, indicates shallow inner neritic
depths and low salinities. In this sample it is associated with
Buccella frigida, which indicates slightly greater depths,
and with Elphidium albiumbilicatum, which indicates an
influx of low-salinity water and a trend toward warmer wa-
ter temperatures. The four specimens of Cassidulina island-
ica in this sample have probably been reworked.

Faunas assigned to the middle Wisconsin transgression
(samples 19-7 to 19-2) include common to abundant and
low to moderately diverse foraminifers. Benthic foraminif-
eral assemblages increase in abundance upsection in the
middle Wisconsin interval. Elphidium clavatum dominates
sample 19-7 but is replaced as the dominant species by E.
orbiculare in samples 19-6 to 19-2. Both of these species
indicate the shallow inner neritic biofacies. The presence
of Buccella frigida in abundances greater than 5 percent
(samples 19-5, 19-3, and 19-2) suggests that deposition oc-
curred in the deep inner neritic biofacies (10-20 m). El-
phidium albiumbilicatum in samples 19-6 to 19-4 indicates
the influx of low-salinity water. The occurrence of E. exca-
vatum alba in abundances greater than 25 percent in sam-
ples 19-5 to 19-2 suggests that water temperatures were
nearly as warm as today. Rare deeper water (middle neritic
to upper bathyal) foraminifers that occur throughout this
interval indicate reworking of older material. Foraminifers,
therefore, indicate that deposition occurred in the shallow
inner neritic biofacies for samples 19-7 and 19-6 and in the
deeper inner neritic biofacies for samples 19-5 to 19-2.

In the Holocene lag deposit, sample 19-1, foraminifers
are abundant and moderately diverse. Moderate abundan-
ces of Buccella frigida (12%) suggest that deposition oc-
curred in the deep inner neritic biofacies. However, the
occurrence of these specimens in lag deposits suggest that
they may be entirely reworked from underlying deposits.

BOREHOLE HLA 20 (Mf5730)

Borehole HLA 20 was drilled 4.8 km north of Karluk
Island, seaward of the barrier island chain (fig. 1). Sedi-
mentary units in HLA 20 include (oldest to youngest)
Duchess sand unit, Leffingwell Lagoon unit, Maguire Is-
lands unit, and Cross Island unit (P.A. Smith, written com-
mun., 1986; fig. 41). An additional 0.3 m of sediment at
the bottom of this hole is a gravel that may be part of the
Shaviovik gravel unit. Unfortunately not enough of the
unit was encountered to be certain of this interpretation.
Seismic reflectors R3, R4, and RS’ are located at 30.2 m,
16.0 m, and 6.7 m, respectively. (P.A. Smith, written com-
mun., 1986). Depths of stratigraphic units and seismic re-
flectors in the borehole follow.

HLA 20

Depth, in meters

Stratigraphic unit or seismic reflector below mudiine

Top Bottom
0.0 7.0
6.7
7.0 16.3

16.0

16.3 30.2

30.2

30.2 343

343 34.6

Microfossil faunas sampled in borehole HLA 20 range
from middle to late Pleistocene in age and represent the
Wainwrightian, Pelukian, and Simpsonian transgressions
(fig. 42, table 19). Sample 20-18 contains ostracodes but
no foraminifers.

Wainwrightian faunas (samples 20-17 to 20-9) contain
abundant and diverse foraminifers in all samples except
20-12, which has few foraminifers. Elphidiums dominate
the foraminiferal assemblages. This genus generally de-
clines in abundance upsection in this interval, except for
the higher abundances noted in samples affected by in-
creased downslope transport. The abundant Elphidium in-
certum, E. orbiculare, and E. clavatum in samples 20-17
and 20-16 indicate the proximity of a cold, low-salinity
water mass. Despite the common cassidulinids in samples
20-17 and 20-16, deposition probably occurred in the inner
neritic biofacies (0~10 m). The abundance of Cassidulina
islandica and C. norcrossi (average 51%) in the foraminif-
eral assemblages, particularly in samples 20-15 to 20-11,
indicates that water depths increased and that deposition
occurred in the middle neritic biofacies (1540 m). Low
percentages of other middle neritic and deeper species such
as Epistominella vitrea and Stainforthia concava are
present in these assemblages. The increased abundance of
elphidiums coupled with an increase in Buccella frigida



Figure 41. Lithology, sample loca-
tions, lithostratigraphic units, paleoen-
vironments, and ages of borehole HLA
20, Beaufort Sea shelf, Alaska. Paleo-
environment contacts dashed where ap-
proximate. Lithostratigraphic units and
transgressions summarized in figures 4
and 5 and in figures 2 and 3, respective-
ly. R, seismic reflector surface.
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and a decrease in cassidulinids in samples 20-10 and 20-9
suggests that water depths decreased, probably to the deep
inner neritic biofacies (10-20 m).

Pelukian samples 20-8 to 20-4 contain abundant and
moderately to highly diverse foraminiferal assemblages
that have high proportions of middle neritic species. Abun-
dant cassidulinids suggest the middle neritic biofacies (15—
40 m), and abundant elphidiums suggest that currents and
downslope transport supplied considerable shallow-water
material. The consistent but low percentages of Episto-
minella vitrea, Fursenkoina schreibersiana, and Stainforthia
concava indicate that water depths may have been greater,
with deposition actually occurring in the outer neritic bio-
facies (35-200 m). The presence of Epistominella indicates
the presence of a warmer Atlantic water mass. The decline
in cassidulinid abundance in sample 20-5 and the corre-
sponding increase in elphidiums suggest that water depths
decreased or that downslope transport sharply increased.
The latter interpretation is favored because diversity and
foraminiferal number remain high, and middle to outer ne-
ritic species continue to appear.

Samples 20-3 to 20-1 represent the Simpsonian transgres-
sion and contain very abundant and moderately diverse fo-
raminiferal assemblages. Foraminifers in sample 20-3
contain abundant cassidulinids, rare outer neritic species,
and abundant elphidiums. This sample is immediately above
a sandy interval that may represent a barrier island (P.A.
Smith, written commun., 1985); thus, much of the foraminif-
eral assemblage may have been reworked from older marine
deposits. The dominant species in this assemblage are El-
phidium orbiculare and E. clavatum, which are characteris-
tic of cold, shallow, low-salinity waters. The cold-water
species Elphidium incertum and the warmer water species E.
excavatum alba are equally abundant in this sample. Buccel-
la frigida is absent, and cassidulinids, which are probably
reworked, make up 16 percent of the assemblage.

The two uppermost samples, 20-2 and 20-1, contain a
shallow inner neritic foraminiferal assemblage with abun-
dant elphidiums, few Buccella frigida, and few cassidulinids.
The increased abundances of Quinqueloculina, Fissurina,
Glandulina, and Guttulina suggest nearly normal marine
salinities and the presence of less organic material.

LATE CENOZOIC MARINE
TRANSGRESSIONS

Eight marine transgressions, Beringian, Anvillian, Fish-
creekian, Wainwrightian, Pelukian, Simpsonian, middle

-4 Figure 42, Benthic foraminiferal abundance (dot or num-
ber) and diversity (cross) and distribution of selective species in
borehole HLA 20, Beaufort Sea shelf, Alaska. See table 19 for
foraminiferal values. Paleoenvironment contacts dashed where
approximate. Transgressions summarized in figures 2 and 3.

Wisconsin, and Flandrian, are recognized in the HLA bore-
holes and range in age from Pliocene to Holocene. Marine
sedimentary units corresponding to these transgressions
have been informally named (Smith, 1985a, b; figs. 4-7).
Sediments assigned to the oldest transgressions, the Berin-
gian (Camden Bay unit) and Anvillian (Brunlow Point
unit), are restricted to HLA 18 located at the east end of
the study area. The Fishcreekian (Staines River unit) is rec-
ognized in HLA 18 and HLA 12 and is questionably rec-
ognized in HLA 5, but foraminiferal assemblages were
analyzed only from HLA 18. Sediments assigned to the
Wainwrightian transgression (Leffingwell Lagoon unit) are
common in most of the offshore boreholes. Although the
Leffingwell Lagoon unit is recognized on the basis of li-
thology in nearshore boreholes HLA 10 and 11, the inter-
vals were not sampled for microfossils. Sediments of the
Pelukian transgression (Maguire Islands unit) are the most
pervasive and occur in most of the offshore and nearshore
boreholes. The generally thick Simpsonian sediments
(Cross Island unit) are common to most of the western
boreholes (offshore and nearshore); they are thin or absent
in the eastern boreholes. The middle Wisconsin transgres-
sion is represented by sediments (Mikkelsen Bay unit) in
boreholes HLA 19 and HLA 11. Sediments assigned to the
Flandrian transgression (Stefansson Sound unit) occur in
the western part of the study area and in two nearshore
boreholes. Lag deposits at the top of many boreholes are
probably correlative with the Flandrian transgression. Fau-
nas from these deposits are often a mixture of Flandrian
and older specimens. Age and paleoecologic interpretations
based on benthic foraminiferal assemblages in the HLA
boreholes, as well as implications to the geologic history of
the eastern Beaufort shelf, are summarized below.

BERINGIAN TRANSGRESSION

Beringian foraminiferal assemblages in the Camden Bay
unit are long-ranging species, except for Elphidium ustula-
tum that first appears in the Pliocene and ranges into the
early Pleistocene. The Pliocene age suggested for the Ber-
ingian transgression is compatible with this age range.

The single Beringian foraminiferal assemblage in HLA 18
indicates that-water depths were 10 to 20 m (deep inner neritic
biofacies), probably closer to 20 m because of the abundance
of miliolids. This assemblage is too sparse to develop an
ecological comparison with the modern environment.

ANVILLIAN TRANSGRESSION

Anvillian foraminiferal assemblages in the Brunlow
Point unit contain numerous long-ranging species as well as
the species Elphidium ustulatum, which has a Pliocene to
early Pleistocene range. The late Pliocene age suggested for
the Anvillian transgression is compatible with this range.
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Species present in the Anvillian foraminiferal assem-
blages indicate water depths of 15 to 40 m (middle neritic
biofacies). Although species characteristic of warmer and
deeper water masses are common, the Anvillian assem-
blages contain a few cold, shallow-water species such as
Elphidium incertum, which indicate that water tempera-
tures were cooler than during the Beringian. The mixture
of shallow- and deep-water species suggests more down-
slope transport than in the Beringian transgression.

FISHCREEKIAN TRANSGRESSION

Benthic foraminifers from the Fishcreekian transgres-
sion are present only in HLA 18. The abundance of El-
phidium ustulatum suggests that these assemblages are
early Pleistocene in age (1.67-0.8 Ma) because sediments
of this age in the circum-Arctic region contain common to
abundant E. ustulatum. The composition and condition of
the foraminiferal assemblages and the amino acid ratios
suggest that some material has been reworked. The re-
working in the Fishcreekian assemblages implies extensive
erosion of older material, which may have resulted from a
longer glacial-interglacial cycle or a cycle in which sea
level vacillated.

The benthic foraminiferal assemblages of the Fish-
creckian transgression indicate deep inner neritic (10-20
m) to middle neritic depths (15-40 m). Benthic foraminif-
eral faunas contain reworked middle to outer neritic spe-
cies, in association with transported inner neritic species,
and in situ deep inner neritic to middle neritic fauna.
Cooler water temperatures are indicated by the common
occurrence of Elphidium incertum without corresponding
increases in other shallow- or cold-water species, which
suggests that icebergs, shore ice or pack ice may have
been present during this transgression. Striated  boulder
pavements in Fishcreekian strata found by Hopkins (in
Carter and others, 1986), may have been produced by

stranded icebergs.

WAINWRIGHTIAN TRANSGRESSION

Age-diagnostic species are absent from the neritic as-
semblages of the Wainwrightian transgression. Few Elphi-
diella groenlandica and Elphidium asklundi are present in
the Wainwrightian samples. These species range through
the Pliocene and most of the Pleistocene on the north
slope of Alaska. Their presence, coupled with the low
abundance of Elphidium excavatum alba, suggests a trans-
gression older than Wisconsin in age. The absence of Plio-
cene and early Pleistocene elphidiums implies a middle
Pleistocene or younger age, although this absence is not a
definitive age criteria.

Paleoecological analysis of the Wainwrightian benthic
foraminiferal assemblages from the Leffingwell Lagoon

unit suggests that marine conditions were generally warm-
er than in the preceding transgression. The abundance of
Elphidium incertum suggests that ice was present during
much of this transgression. Analysis of the benthic forami-
niferal faunas suggests that sea level was at least 20 m
higher than at present during the maximum high stand of
the Wainwrightian transgression and that the greatest water
depths were in the area of boreholes HLA 12, HLA 20,
and HLA 19 as suggested by contouring seismic surface 3
(Wolf and others, 1985, 1986) (fig. 43).

The first benthic foraminiferal assemblages recognized
above the beach deposits in most of the Wainwrightian
sediments represent the shallow inner neritic biofacies (fig.
44). These faunas are characterized by abundant elphidi-
ums, particularly E. clavatum, E. orbiculare, and E. incer-
tum. Also common are deeper inner and middle neritic
specimens of Cassidulina that have been reworked from
the underlying marine deposits. The abundant elphidiums
suggest low-salinity, cold, shallow water. Upsection, the
abundance of Elphidium clavatum, E. orbiculare, and E.
incertum declines, while Buccella frigida and Cassidulina
increase in abundance, indicating a change to the warmer,
more saline waters of the deep inner neritic and middle
neritic biofacies (10-20 and 15-40 m). In boreholes HLA
12, HLA 20 and HLA 19, species that are characteristic of
the ‘outer neritic biofacies (35-200 m) indicate the pres-
ence of the more saline but slightly cooler subsurface Arc-
tic Water mass. The decline of Buccella frigida and the
cassidulinids and the increase in the elphidiums in the up-
per part of the Leffingwell Lagoon unit indicate a decrease
in water depths. In most boreholes Elphidium incertum is
common in the youngest Wainwrightian samples and indi-
cates an increase in ice.

The succession of benthic foraminiferal biofacies, cou-
pled with the seismic and sedimentary data, suggests that
at the onset of the Wainwrightian transgression, marine
waters penetrated the Arctic coastal plain along the former
drainage channels and then spread laterally as sea level
rose. The initial water mass was characterized by low tem-
peratures and low salinity. Ice in some form was common-
place at this time. Erosion and reworking of sediments
also marked this early phase of the transgression. As the
transgression proceeded, water depths increased in the vi-
cinity of the offshore boreholes. Although the surface-wa-
ter mass generally became warmer and more saline, a cold
subsurface Arctic Water mass penetrated the coastal plain
along the former drainage channels. During the maximum
sea-level stand, water depths were at least 20 m higher
than at present. As the regression began and sea level
dropped, water temperatures declined and ice once again
affected the marine faunas along the coastal plain. Erosion
during the subsequent glacial event removed much of the
Wainwrightian sediments and faunas from the nearshore
region and from the Canning River channel which re-
mained near borehole HLA 17 (fig. 44).
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PELUKIAN TRANSGRESSION

Foraminiferal assemblages assigned to the Pelukian
transgression occur in most of the boreholes (figs. 45-48).
Age-diagnostic species are not common in this transgres-
sion. The presence of Elphidiella groenlandica and El-
phidium asklundi and the low abundance of E. excavatum
alba suggest a transgression older than the Wisconsin gla-
ciation. Although not definitive criteria, the absence of Pli-
ocene and early Pleistocene elphidiums implies a middle
Pleistocene or younger age.

Paleoecologic analysis of the Pelukian benthic forami-
niferal faunas indicates that water depths were only slight-
ly greater (+7 to 10 m) than at present and that water
temperatures may have been slightly warmer. The initial
foraminiferal faunas to develop were dominated by elphid-
iums, indicative of shallower inner neritic conditions (fig.
45), cooler water temperatures and lower salinities. During
the maximum sea-level rise, the distribution of the benthic
foraminiferal biofacies (fig. 46) indicate that water depths
were slightly greater than at present.

Samples with species reworked from older, deeper water
assemblages are not as common in the initial phases of the
Pelukian transgression as in the Wainwrightian transgres-
sion. Reworked species are observed primarily at the base
of the Maguire Islands unit in borehole HLA 12. The effects
of a prograding delta and considerable transport of shallow
marine and nonmarine material across the shelf are evident
in the Pelukian faunas, which are represented by mixed

assemblages. These mixed assemblages are composed of
transported shallower water species and in situ deeper spe-
cies (borehole HLA 17, figs. 35, 36, 48). Transported shal-
low-water faunas make up the entire fauna in some samples
that are adjacent to samples with in situ deeper water faunas
(borehole HLA 16, figs. 33, 34). This mixture of assembla-
ges indicates that the Sagavanirktok, Shaviovik, and Can-
ning Rivers were active during the Pelukian transgression.
Benthic foraminiferal biofacies indicate that Pelukian water
depths were slightly greater than at present during the maxi-
mum sea-level rise and that the prograding deltas and the
high influx of low-salinity water and sediment affected the
faunas for considerable distances seaward of the probable
shoreline (fig. 46). Mixed and transported assemblages de-
cline in the upper part of the Maguire Islands unit. Elphidi-
um incertum generally becomes more abundant in the upper
part, suggesting the return of colder water.

SIMPSONIAN TRANSGRESSION

Foraminiferal assemblages assigned to the Simpsonian
transgression do not include age-diagnostic species. The
presence of Elphidiella groenlandica and Elphidium ask-
lundi and the absence of Pliocene and early Pleistocene
elphidiums suggests a late early to early late Pleistocene
transgression older than the Wisconsin glaciation. Elphidi-
um excavatum alba is slightly more abundant than in as-
semblages of the previous transgressions.
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Figure 43. Distribution of benthic foraminiferal biofacies during maximum sea-level rise of the Wainwrightian transgression,
Beaufort Sea shelf, Alaska. Foraminiferal biofacies are superimposed on contour map showing depth of seismic reflector surface

R3 (modified from Wolf and others, 1985).
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The distribution and thickness of sediments assigned to  vanirktok River continued throughout the Simpsonian
the Simpsonian transgression (Cross Island unit; figs. 49,  transgression and that a channel which had developed in
50) indicate that the Sagavanirktok River was active prior  the vicinity of boreholes HLA 9, HLA 10, and HLA 11
to the initiation of this transgression. Sedimentologic and  was filled during this transgression. Foraminiferal facies in
foraminiferal data indicate that the activity of the Saga-  those boreholes suggest that the high influx of river water
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and sediment frequently obliterated the marine faunas or
mixed considerable amounts of shallow-water material
with in situ faunas. Paleoecologic analysis of the Simpso-
nian benthic foraminiferal faunas indicate that water

depths during the maximum sea-level rise were approxi-
mately the same or slightly deeper than at present and
temperatures were cooler. Faunas from sediments filling
the Canning River channel are dominated by elphidiums.
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DEPTH, IN METERS BELOW SEA LEVEL

MIDDLE WISCONSIN TRANSGRESSION nostic species are not common in the younger transgres-

sions; however, Elphidium excavatum alba is more

Foraminiferal assemblages assigned to the middle Wis-  abundant than in previous transgressions, and Elphidiella
consin transgression (Mikkelsen Bay unit) are restricted to  groenlandica and Elphidium asklundi are rare. Paleoeco-
boreholes HLA 11 and HLA 19 (figs. 49, 50). Age-diag-  logic analysis of the benthic foraminiferal assemblages
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suggests that changes in environmental conditions during
this transgression and the foraminiferal response to them
were similar to those seen in previous transgressive events.
Marine waters first encroached on the shelf along the chan-

63

nels developed by rivers during the preceding glacial
event. The initial waters were shallow and cool with low
salinities. During the middle Wisconsin transgression the
waters warmed slightly, salinity remained low, and water
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Figure 48. Cross section through offshore HLA boreholes showing the distribution of the sediments and foraminiferal biofacies of the Pelukian
transgression, Beaufort Sea shelf, Alaska. R, seismic reflector surface.
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depths were about the same to slightly deeper than at  unit (HLA 10, HLA 14, and HLA 15), the unnamed unit
present. (Qf) in HLA 3, HLA 4, HLA 6, HLA 7, and HLA 8, and
by the coarser lag deposits found in most offshore and

many nearshore boreholes (figs. 49, 50). Benthic foraminif-

FLANDRIAN TRANSGRESSION eral assemblages from the Stefansson Sound unit and the

unnamed unit are primarily shallow inner neritic species.

Sediments assigned to the Flandrian transgression are ~ Some reworked older species are present. Foraminiferal as-
represented by the clays and silts of the Stefansson Sound  semblages associated with the lag deposits were sampled
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Figure 49. Cross section through nearshore HLA boreholes showing distribution of sediments and foraminiferal biofacies of the
Simpsonian and younger transgressions, Beaufort Sea shelf, Alaska. R, seismic reflector surface.
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in boreholes HLA 7, HLA 18, and HLA 19, where re-
worked older material representing deeper biofacies are
mixed with the in situ inner neritic species. Benthic foram-
inifers from the early Flandrian deposits suggest slightly
cooler conditions than those suggested by living assem-
blages from the same areas (R.J. Echols, written commun.,
1978). The increased abundance of Elphidium excavatum
alba upsection and the decline in E. clavatum indicate an
increase in water temperatures and a post Wisconsin age.
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78 LATE CENOZOIC BENTHIC FORAMINIFERS OF THE HLA BOREHOLE SERIES, BEAUFORT SEA SHELF, ALASKA

Table 12. Borehole HLLA 13, benthic foraminifers distribution and abundance,
Beaufort Sea shelf, Alaska.

[Abundance of each species is a percentage of the total foraminifer species in 100 g of sediment.
Foraminiferal number is the number of specimens per 100 g of sediment, and diversity is the number

of species per sample)
Taxa Sample number
13-1 133 134 135
Astrononion gallowayi Loeblich and Tappan ......... - - 0.1 -
Buccella frigida (Cushman) .......c..cc.ecovenmeecuececensnens - - 3.7 -
Cassidulina islandica Norvang .............cccueeececnnne. - - 334 -
C. norcrossi Cushman - - 0.5 -
Cyclogyra involvens (Reuss) .............cccouueeereecnnne. - - 0.3 -
Dentalina baggi Galloway and Wissler - - 0.3 -
D. frobisherensis Loeblich and Tappan .. - - 0.1 -
Elphidium albiumbilicatum (Weiss) .............ccruene. - - 03 -
E. asklundi Brotzen - - 1.3 -
E. bartletti Cushman - - 1.2 -
E. clavatum Cushman 500 919 432 -
E. excavatum alba Feyling-Hanssen ..................... - 27 1.3 8.7
E. frigidum Cushman - - - 93
E. incertum (Williamson) - - 1.3 -
E. nanum Vilks - 54 1.3 -
E. orbiculare (Brady) - - 6.8 -
E. spp. 50.0 - 0.3 -
Esosyrinx curta (Cushman and Ozawa) - - 0.3 -
Fissurina lucida (Williamson) ...........ccceevveerereenene - - 0.1 -
F. marginata (Montagu) - - 0.6 -
Guttulina lactea (Walker and Jacob) ... - - 038 -
Lagena distoma Parker and Jones ...........ccccevnen. - - 0.3 -
L. gracillima (Sequenza) - - 0.1 -
L. lasvis (Montagu) - - 0.6 -
L sp. - - 0.1 -
Miliolinella chukchiensis Loeblich and Tappan ..... - . 04 -
Parafissurina tectulostoma Loeblich and Tappan . - - 0.4 -
Polymorphina suboblonga (Cushman and Ozawa) - - 0.3 -
Pyrulina cylindroides (Roemer) ..........cccccceveurunne - - 0.6 -
Triloculina trihedra Losblich and Tappan - - 0.1 -
Foraminiferal number 2 37 778 23

Diversity 2 3 29 - 2




TABLES 2-19

Table 13. Borehole HLA 14, benthic foraminifers distribution and abundance, Beau-
fort Sea shelf, Alaska.

[Abundance of each species is a percentage of the total foraminifer species in 100 g of sediment. Foraminiferal
number is the number of specimens per 100 g of sediment, and diversity is the number of species per sample]

Sample number

Taxa
14-1 142 143 144 147
Buccella frigida (Cushman) .......ccccccceereeeterrenennne 13.2 74 3.2 T 9.3
B. inusitata Andersen - - 0.5 - -
Cassidulina islandica NOTVang ............cceeeeeerrerses - - 9.3 8.8 1.9
C. norcrossi Cushman - - 134 132 -
Discorbis baccata (Heron-Allen and Earland) ....... - - 14 - -
Elphidiumn asklundi Brotzen ................ccceeereneeennnns - 0.4 0.5 - -
E. bartietti Cushman - 0.2 - - 5.6
E. clavatum Cushman 66.2  65.1 329 250 148
E. excavatum alba Feyling-Hanssen ..................... - - 0.5 29 141
E. frigidum Cushman - - 0.5 - 5.6
E. incertum (Williamson) 109 128 3.2 29 204
E. nanum Vilks 3.0 29 3.2 - -
E. orbiculare (Brady) 49 66 301 456 204
E. spp. - - - - 1.9
Guttulina glacialis (Cushman and Ozawa) . . 0.1 0.5 0.9 - -
Oolina lineata (Williamson) ...........ccovecerereereirenns - - 0.5 - -
Polymorphina suboblonga (Cushman and Ozawa) 1.7 4.1 - - 9.3
Pyrulina cylindroides (Roemer) ...........cccooueeene.. . 04 - -
Triloculina trihedra Loeblich and Tappan .............. - - - 1.5 -
Foraminiferal number 14080 17952 432 136 54

Diversity 7 10 14 7 10
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Table 14. Borehole HLA 15, benthic foraminifers distribution and abundance,
Beaufort Sea shelf, Alaska.

[Abundance of each species is a percentage of the total foraminifer species in 100 g of sediment.
Foraminiferal number is the number of specimens per 100 g of sediment, and diversity is the numb

of species per sample] .
Taxa Sample number

151 152 153 154
Buccella frigida (Cushman) ...........ccooiemvemnneseenenes 6.2 57 115 8.6
B. inusitata Andersen ' - 0.6 . -
Cassiduling islandica NOVANG ............veceessscssrsess 26 09 - 14
C. norcrossi Cushman : 0.3 - - -
Dentalina ittai Loeblich and Tappan .... 0.3 - - -
Elphidiella groenlandica (Cushman) .... 0.3 0.3 - 0.2
Elphidium albiumbilicatum (Weiss) ...........cc.ccecur... 3.1 18 13 23
E. cf. E. asklundi Brotzen . 0.6 - - 0.2
E. bartletti Cushman ' 28 0.6 0.6 0.7
E. clavatum Cushman ' 418 301 268 320
E. excavatum alba Feyling-Hanssen ................... 77 117 213 206
E. frigidum Cushman - 0.9 - -

E. incertum (Williamson) 65 148 76 93
E. nanum Vilks 1.1 66 213 8.8
E. orbiculare (Brady) 202 139 5.1 8.4
E. spp. 3.1 09 13 19
Glandulina laevigata (d'Orbigny) ......... - 0.6 - -
Guttulina dawsoni Cushman and Ozawa 0.3 - - -
G. lactea (Walker and Jacob) .................... reensanens 0.9 0.3 1.6 1.2
G. sp. - 0.3 - -

. Lagena hexagona (Williamson) .........cccccvvivvccncnes 0.3 - - 0.2
Polymorphina suboblonga (Cushman and Ozawa) - 48 1.6 28
Pullenia sp. - - - 0.2
- Quinqueloculina seminulum (Linne) ..........coceuenee 0.6 0.3 - 0.5
Reophax curtus Cushman ............crveeerenrseserneennne 0.3 - - -
Trochamminella atlantica Parker ..............cccewueent 1.1 48 . 0.7
Foraminiferal number 5632 5312 5024 862

Diversity 20 19 1 18




TABLES 2-19

Table 15. Borehole HLA 16, benthic foraminifers distribution and abundance, Beaufort Sea shelf, Alaska.

[Abundance of each species is a percentage of the total foraminifer species in 100 g of sediment. Foraminiferal number is the number of specimens per
100 g of sediment, and diversity is the number of species per sample] '

Sample number

Taxa
16-1 162 163 164 165 16-8 16-10 16-11 16-12
Bolivina pseudopunctata Hoeglund ....................... - - - . - < - - 0.1
Buccella frigida (Cushman) ...........corueeiersunnsucuenens - 0.6 - 1.3 - - 21 1.1 2.0
B. inusitata Andersen 03 - - - - - - - -
Cassidulina islandica NOIVang .........c..eesenacons 28 0.6 - 2.6 - - 2941 3.7 188
C. norcrossi Cushman 16.1 98 222 397 - - 49 - 4.1
Cibicides mckannai Galloway and Wissler ............ 0.3 - - - - - - - -
Cyclogyra involvens (Reuss) .................... . 0.3 - - e - - - 0.5 0.3
Dentalina baggi Galloway and Wissler - - - . - . - - 0.1
D. frobisherensis Loeblich and Tappan . 0.3 - - - - - - -
Eggerella advena (Cushman) ..........c.ccecevemvcrsuennee - - - - - - 0.2 - -
Elphidiella groenlandica (Cushman) ...........c.eeenee 47 4.6 111 2.6 - - - 1.3 0.1
Elphidium albiumbilicatum (Weiss) .........c..ceerreenes 33 35 - 1.3 - . - - 0.2
E. asklundi Brotzen 58 - - - - - - - -
E. cf. E. asklundi Brotzen - - - - L. - - 0.3 -
E. bartietti Cushman 10.0 8.7 5.8 5.1 - - - - 0.7
E. clavatum Cushman 4.4 8.1 - 7.7 100.0 846 422 593 387
E. excavatum alba Feyling-Hanssen .................... 28 5.2 5.6 6.4 - 5.7 2.1 - 0.7
E. frigidum Cushman 28 - - - - . - 0.3 -
E. incertum (Williamson) 72 179 167 115 - - - 8.2 7.6
E. nanum Vilks - - = - - - 0.2 9.0 169
E. orbiculare (Brady) 317 324 389 192 - - 7.7 3.7 5.6
E. spp. 1.1 1.2 . . - - - - .
Epistominella vitrea Parker ..............cccceeevcrsinicenec - - - - - - 0.2 - -
Esosyrinx curta (Cushman and Ozawa) ............... 0.6 - - . - - 0.2 0.3
Fursenkoina schreibersiana (Czjzek) .................... 0.3 - - - - - - - -
Glandulina laevigata (d'Orbigny) ....... . - - - - - - - 0.3 .
Gordiospira arctica Cushman ............ . . - - - - - - - 0.1
Guttulina lactea (Walker and Jacob) ...........c.cecee. - - - - - 0.6 1.3 1.1 0.8
G. sp. - - - - - - - - 0.5
Miliolinella chukchiensis Loeblich and Tappan ..... - - - - - 9.1 - - 0.4
Oolina caudigera (Wiesner) ...........ccoecveevcecsrecnns - - - - - - 1.7 - -
Parafissurina lateralis carinata (Buchner) ............. - - - - - - 1.1 - -
Polymorphina suboblonga (Cushman and Ozawa) 1.9 1.7 - - - - 0.2 2.1 0.7
P. spp. 0.3 - - - - - - - -
Quinqueloculina arctica Cushman ..........ccoceuvensee 0.3 - - - - - - -
Q. seminulum (Linne) 28 58 - 2.6 - - - 71 1.5
Scutuloris tegminis Loeblich and Tappan ............. - - - - - - - 1.6 -
Stainforthia concava (Hoeglund) ..........cececccineunne - - - - - - 0.4 - 0.1
Trochamminella atlantica Parker ................cccuuene. - - - - - - 0.6 - -
Tniloculina trihedra Loeblich and Tappan .............. - - - - - - 5.6 0.3 -
Foraminiferal number 720 173 18 78 15 175 1868 378 910

Diversity ’ 22 13 6 1 1 4 17 17 21
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Table 16. Borehole HLA 17, benthic foraminifers distribution and abundance, Beaufort Sea shelf, Alaska.

[Abundance of each species is a percentage of the total foraminifer species in 100 g of sediment. Foraminiferal number is the number of

Sample number

Taxa

171 17-2 173 17-4 175 176 17-7 178
Bolivina sp. : - - - - - - . -
Buccella frigida (Cushman) ...........ccccvvverreeerrveccnen. 3.2 42 3.2 42 5.7 3.1 23 5.0
B. sp. - - - - - - - -
Cassidulina islandica NOIvang ............ccoeoveeeeereine 114 154 105 110 6.6 10.3 5.8 74
C. norcrossi Cushman 1.2 08 1.0 - 0.2 0.3 0.1 0.3
Cyclogyra involvens (Reuss) ................coveeerermrencn. - 0.3 - - - - - -
Dentalina ittai Loeblich and Tappan ..........cccccccun.ee - - 0.2 - - - - -
Discorbis baccata (Heron-Allen and Earland) ....... 0.3 1.4 2.0 0.6 16 23 0.9 1.2
Elphidiella groenlandica (Cushman) ........c.ceeovuene. 0.6 08 0.2 - 002 - 0.5 0.3
Elphidium albiumbilicatum (Weiss) ...........c.ceeveneee - - - - 1.1 46 23 -
E. asklundi Brotzen - 1.7 0.2 0.3 - 0.3 - -
E. cf. E. asklundi Brotzen - - - - - - - -
E. bartletti Cushman 0.9 1.4 0.5 - 1.6 2.3 5.3 27
E. clavatum Cushman 579 402 589 542 467 410 331 52.2
E. excavatum alba Feyling-Hanssen ..................... 0.9 1.4 0.2 1.3 5.9 1.7 141 5.3
E. incertum (Williamson) 6.7 17.7 6.6 15.6 6.8 22.2 8.9 74
E. orbiculare (Brady) 10.2 79 7.1 58 129 46 16.5 77
E. spp. - - - - - - 11 4.1
Fissurina cucullata Silvestri ................cocoveeeeruernena. - - - - - - - -
F. marginata (Montagu) - 0.3 1.0 0.6 - 0.3 0.3 -
F. spp. . . . N . .
Fursenkoina schreibersiana (Czjzek) .................... - - - - - - - -
Glandulina laevigata (d'Orbigny) . 2.6 1.1 2.0 1.6 2.5 14 49 1.8
Gordiospira arctica Cushman ...... - - - - 0.2 - - -
Guttulina austriaca d'Orbigny .........c.cceveeeeeerueenencs 23 2.2 2.0 2.3 25 14 1.6 29
G. dawsoni Cushman and Ozawa ........c.cccecerueee - 03 10 - 0.9 0.3 04 0.3
G. sp. - - - - - - - -
Lagena gracillima (Sequenza) .............cweeenns - - 0.2 - - - - -
L. hexagona (Williamson) - - - - - 0.3 - -
L sp. - . - - - - - -
Laryngosigma hyalascidia Loeblich and Tappan .. - - 0.2 - - - - -
Miliolinella chukchiensis Loeblich and Tappan ..... - 1.4 0.5 - 0.5 - 0.3 -
Oolina lineatopunctata (Heron-Allen and Earland) - - - - - . - 0.3
Parafissurina sp. - - - - - - - -
Polymorphina spp. - - - - - - - -
Pyrgo williamsoni (SIIVeStri) ............ccceevrueerecrrerenns 0.6 - - - - - - -
Quinqueloculina arctica Cushman 0.6 0.3 - 0.6 0.5 - 0.4 0.3
Q. seminulum (Linne) 0.3 0.8 - 0.3 0.7 0.9 0.9 0.9
Reophax spp. - - - - - . - -
Scutuloris tegminis Loeblich and Tappan 0.3 - 1.2 1.0 0.5 0.6 0.3 -
Stainforthia concava (Hoeglund) ......... - 0.3 - - - -

Triloculina trihedra Losblich and Tappan

Foraminiferal number 5472 28@8 3272 4928 3528 11232 12048 5424
Diversity 16 20 21 15 20 19 21 18




TABLES 2-19

specimens per 100 g of sediment, and diversity is the number of species per sample}

83

Sample number

17-9 1710 17-11 1712 1713 17-14 17-15 17-16 17-17 17-18 17-19 17-20
- - - - - 1.1 - 04 . . .
6.3 25 22 27 33 38 93 30 . 37 11 4.0 -
. - - B - . 21 1938 0.3 - 6.5 -
101 156 15t 78 119 119 53 146 156 97 227 03
- .02 06 0.3 05 06 .66 .. 78 -
03 05 - 0.3 - : . . . )
2.7 1.3 19 45 30 16 16 - 03 1.4 - 03
. 0.6 . - . 0.6 . - 03 1.1 04 09
6.0 10 15 42 05 09 - 08 27 o7 18 134
0.3 - 02 03 0.6 . . - - 09
. . . . . - . - . - 12
- 29 19 06 1.8 0.6 . . . . -2
3228 203 129 418 422 386 165 236 143 145 224 511
. - - 03 0.9 1.9 - 03 07 0.4 1.8
306 425 487 275 184 333 551 226 422 651 213 140
77 54 5.4 15 25 1.3 48 96 96 33 94 49
. . . - 108 - . - 07 - 04 24
. - . ‘ . - 05 06 07 - .
0.3 . - . . 11 02 0.3 -
. - . 0.5 . - 02 03 - 0.3
. . - 03 . - - .
14 25 0§ 15 03 - . . - -
38 58 30 30 . 03 02 1.0 0.7 1.4 .
- 03 05 . . - - 08 . 0.4 2.7
0.3 - . - - 02 -
. . - - - - 03 .
- .. 05 09 22 0.5 - 07 0.9
- - . . 0.3 - 0.3 - . .
- - - 0.3 . . . . 0.4 -
0.3 - . . - 0.6 - - - - . -
- 08 07 - 03 . . - - 1.8
. . R . R . . R . . 0.3
. 0.3 . 0.3 13 - - 03 0.4 - 08
. - - - - - - 06 . - 1.4 .
14 03 15 2.1 0.5 1.3 03 22 - - -
2928 2520 3288 5360 1584 1274 3008 4000 4816 4304 8864 5264
13 16 17 18 15 17 15 17 19 14 13 18
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Table 17. Borehole HLA 18, benthic foraminifers distribution and abundance, Beaufort Sea shelf, Alaska.

[Abundance of each species is a percentage of the total foraminifer species in 100 g of sediment. Foraminiferal number is the number of specimens per 100 g of sediment, and diversity

Taxa Sample number .
181 182 183 184 185 188 189 1810 1813 18-14 1815 18-16
Buccella frigida (Cushman) ...........cccoceeeeenrcencnnns 39 05 - - 45 - - - - - - -
B. inusitata ANdersen ..............ccveinsennncesensses 03 - - - - - - - - - - -
Cassidulina crassa d'Orbigny . - - - - - - - . - R - -
C. islandica Norvang ........... . - - - - - - - - - 14.3 - -
C. norcrossiCushman ... - - - - 45 - 1.7 - - - - -
Cibicides lobatulus (Waker and Jacob) ................ - - - - 45 - - - - - - -
Cyclogyra involvens (Reuss) ...............ccoeceveinene. 0.6 s - - - - - . - - - -
Dentalina frobisherensis Loeblich and Tappan ..... - - - - - - - . - - . -
D. ittai Loeblich and Tappan .........cceeeeeververncinnns - - - - - - - - - - - -
D. pauperata d'Omigny .........c.c.ovvvviinininennesisnannie - 1.0 - - - - - - - - - .
Elphidiella? brunnescens Todd ..... . - - Co- - - - - - - - . -
Elphidiella groenlandica (Cushman) ..................... 13 115 - 43 - 1.0 - - - - - -
Elphidium albiumbilicatum (Weiss) ..........ccc.cccee.... - 1.0 - - - - - - 128 - - -
E. asklundiBrotzen .............ccccoceernievcniicnrencrenane. - - - - - - - - - - - -
E. cf. E. asklundiBrotzen ..................cccvuieeeirnniie 0.3 05 - - - - - - - - - R
E. bartlettiCushman ....... . 26 29 - 43 - - 17 - - - - -
E. clavatum CUShMAN ........ocorermrciirenercssnenenmsonee 56.2 57 286 87 318 560 793 153 426 286 667 €53
- E. excavatum alba Feyling-Hanssen ..................... 03 612 429 435 364 270 103 - 2.1 - - -
E. cf. frigidum Cushman ..........cccoevmivnccnvensinns - - - - - - - - - - -
E. incertum (Williamson) ............ccccvcevevvneenerrrenne 7.7 14 - - - - - - - - - 23
E. nanum Viks ............ . 1.0 - - - - - - - 10.6 - - .
E. orbiculare (Brady) ............cceeeeirienrnsisisennccerures 167 105 286  39.1 182 130 52 0.3 - - - -
E. spp. .ot rerreeeeneanennaeieans - - - - - - - . - - - .
E. ustulatum Todd ..........cccovcremecvsneniccsnressessonens - - - - - - - - - - - -
Fissurina serrata (Schlumberger) ..........ccoccccemneuee. - - - - - - - - - - - .
F. marginata (Montagu) .............cc..... - - - - - - - - - - . .
Fursenkoina schreibersiana (Czjzek) ... - - - - - - - - - - - .
Glandulina laevigata (d’Orbigny) ...... . - - - - - - - - - - - .
GIOBUNNG SP. ...evvvveeeeeererieerenenririasesreseeseesssaseseseanes 0.6 - - - - - - - - - - .
Gordiospira arctica Cushman .............ccccccovvcene. - - - - - - - . - - - -
Guttulina austriaca d'Orbigny .... - - - - - - - - - - . -
G. dawsoni Cushman and Ozawa . 0.6 - - - - - - - - - - -
G. glacialis (Cushman and Ozawa) .. . 0.3 - - - - - - - - - - .
G. lactea (Walker and Jacob) ...........c..ceervveenrunne. 03 10 - - - 1.0 - 0.7 - 143 - -
G. SP. ottt e et et b s s - - - - - - - - - . . .
Lagena gracillima (Sequenza) ...............cccoeeeeenene - - - - - - - - - . - -
L. laevis (Montagu) .........c..cceoeereveeneeceineerereererenin, - - - - - - . . - . . R
L. parriLoeblich and Tappan ................ - - - - - . - R . - - -
Melonis zaandamae (van Voorthuysen) ... . - - - - - - - - - - - -
Miliolinella chukchiensis Loeblich and Tappan ..... 19 05 - - - - - 78.6 234 429 333 -
Pateoris hauerinoides (Rhumbler) ........................ - - - - - - - 0.3 - - - -
Parafissurina lateralis carinata (Buchner) ............. - - - - - - - - . - - .
Polymorphina subobionga (Cushman and Ozawa) 1.6 - - - - 20 - - - - -
Pyrgo williamsoni (Silvestri) .............ccoevcvcneereninnes - - - - - - - - - - - -
Quinqueloculina arctica Cushman ...............cceccen.. - 24 - - - - - - - - - -
Q. seminulum (LinNe) ........cccuernne 35 - - - - - - 48 6.4 - - -
Q. stalkeri Loeblich and Tappan ........... - - - - - - - - 21 - - .
Scutuloris tegminis Loeblich and Tappan . 0.0 - - - - - 17 - - - - 23
Sigmomorphina SP. ........cccoeereervievenveeerereressnessenans - - - - - - - - - - - -
Stainforthia concava (Hoeglund) .........ccocooeererenece - - - - - - - - - - - -
Triloculina trihedra Loeblich and Tappan .............. - - - - - - - - - - - -
Foraminiferal number 2489 209 7 23 22 100 58 294 47 7 3 43
Diversity 19 13 3 5 6 6 6 6 7 4 2 3




TABLES 2-19

is the number of species per sample]

Sample number

18-18 18-19 18-20 18-21 18-22 18-23 18-24 18-25 18-26 18-27 18-28 18-29 18-30 1831 1834 1835 18-37

- 21 06 24 19 21 19 55 64 - 35 104 75 60 164 56 18
- - - - - - - 15 04 - 12 08 27 16 43 - 18
- - - 04 02 - - - - - - - - - - - -
- 06 29 133 13 271 85 18 71 - 23 51 39 178 160 188 45
- - 14 19 98 38 104 - 308 - 08 122 77 - - 07 08
- - - - - - - - - - - . -0 - 07 -
- - - - . - - - 04 - - - - . - - -
- - - 02 . - - . . - - 03 04 - 03 . -
. - - . . - 04 - - - - - - . - - -
- - - - . - - - - - - - - - 15 13 -
- - - 02 66 06 34 03 - - 06 05 13 23 19 13 36
- - - - 04 18 21 - 23 400 08 03 14 06 - - -
- - - - a9 - 06 09 - - 18 05 - o - - -
. - - 06 02 44 55 119 03 - 103 69 86 16 12 03 -
981 853 724 410 435 218 226 334 98 - 267 257 338 217 96 240 357
- - - 186 - - 09 - 01 - 04 - 02 10 - - -
. . . . . . - - . . - - - 15 09 - -
- 06 18 101 159 165 196 205 160 200 349 53 - 87 - 23 27
- 51 108 30 04 09 06 - 10 - - 31 18 19 22 - .
- 51 76 123 127 126 177 106 217 200 131 92 166 138 207 207 89
- 03 - 02 15 29 13 36 06 200 27 23 13 12 52 07 .
- - - - - - - - - - - 56 95 70 56 53 09
- - - - . - - - - - - 03 o2 - . - -
- - - - - - 04 - - - - - 02 01 03 03 -
- - . . - 15 - - - - - 15 - - - - .
. - - - 02 - - - - - . . - . - - -
- . - - . - - - - - - 03 - - . - .
- - - - - - - - - - - - - 28 - 13 -
- - - - - - 04 - 03 - . - - - 06 03 18
- 06 - 04 - 03 06 - - - - 28 - 01 - . -
. - 02 - - - 15 - - . . . - - 80 - -
- - 04 10 04 06 - 03 07 - 08 25 14 68 - 79 18
. . - - - - - - . - - - - - 09 . -
- - - . - - - X - . - - - - - -
- . - - - - - - - - - - - 06 06 - -
- - - - - - - - 04 - - 08 - 01 - 03 -
. - - - - - . - - - - 15 11 03 15 - -
- - - 08 - - - - - - - - - - - 18 -
- - . . - - - - - - - . - 15 15 03 -
- - - - . - - - 01 - - - - - - . -
- - 10 . - - - 03 - . - . - - - - -
- - - - - - - - - - - - - 01 03 03 -
. - - 02 - - 02 - 01 - - 13 - - 03 59 -
- - 04 02 - 03 - 03 - - 02 10 04 23 - - 348
1.9 - 02 - . - - - - - - - 02 03 - - 09
- - - . - - . . - . . - -0 - - -
- - 02 - - 29 11 - 20 . - . - - - - -
- 03 - - - - - . . - - - - - . - -
216 1332 1960 3960 3768 10880 1876 5264 1384 5 513 3144 4472 687 1206 304 112

2 9 13 18 15 16 20 13 20 4 15 24 20 28 22 21 13
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Table 18. Borehole HLA 19, benthic foraminifers distribution and abundance, Beaufort Sea shelf, Alaska.

[Abundance of each species is a percentage of the total foraminifer species in 100 g of sediment. Foraminiferal number is the number of specimens per

Sample number

Taxa
191 192 193 . 19-4 195 196 197 198 199
Astacolus hyalacrulus Loeblich and Tappan ......... - - - - - - - - -
Astrononion gallowayi Loeblich and Tappan ......... - - - - - - - - -
Buccella frigida (Cushman) ............c.ccoecervvevvernernns 120 8.7 11.6 2.1 7.2 0.5 - 2.2 -
Cassidulina crassa d'Orbigny ............ccceuevecvevireneas - - - - - - - - -
C. islandica Norvang - 03 - 1.0 1.3 09 - 0.6 -
C. norcrossi Cushman ............ccc.ocovveeeeeeecenevennnne 03 - - 0.3 04 0.5 - - -
Cibicides sp. . R - - - - 0.4 - - - -
Dentalina ittai Loeblich and Tappan ...........cccceeveen. - - - - - - - - -
Discorbis baccata (Heron-Allen and Earland) ....... 0.3 10 - - 04 - - - -
Elphidiella groenlandica (Cushman) - 0.3 - - - 09 - - -
Elphidium albiumbilicatum (Weiss) - - - 89 3.0 28 - 130 -
E. asklundi Brotzen - - - - 04 0.5 - - -
E. cf. E. asklundiBrotzen ...............cceeevreeerverronsnnn 03 - - - - - - - -
E. bartletti Cushman - - - 1.7 0.6 - - - -
E. clavatum Cushman ..............c.cocoverereevurensicnnrens 18.7 206 7.2 - 23 134 964 1.2 100.0
E. excavatum alba Feyling-Hanssen ..................... 48.1 43.2 46.9 357 26.1 - 3.0 0.3 -
E. incertum (Williamson) ................. - - - - - 1.4 - - -
E. nanumVilks .............. - - - - - - - - -
E. orbiculare (Brady) ................. [P 16.5 251 329 48.5 56.7 75.9 0.6 824 -
E. SPP. ettt - - - - - - - - -
E.cf E. ustulatum Todd ..........ccccoveveeeemreecnnrnnnnn - - - - - - - - -
Epistominella arctica Green .............ccoceeevevrrernene - - - - - - - - -
E. vitrea Parker ..........coccecveiinreeiteenesennreesiennens - - - - - - - - -
Fissurina marginata (Montagu) ........... - - - - - - - -
F. spp. .. reerertt s - - - - - - - - -
Guttulina austriaca d'Orbigny ... 06 - 0.7 0.3 0.4 09 - 0.3 -
G. dawsoni Cushman and Ozawa ... 1.9 - - - - - - -
G. glacialis (Cushman and Ozawa) .. - - - - - - - - -
Gl SP. ettt e 0.3 - - - - - - - -
Lagena costata (Williamson) ............ccccececvurveerennnne - - - - - - - - -
L. gracillima (Sequenza) ..............cc.ocovvvvveveenencn. - - - - - - - - -
L. laevis (Montagu) e - - - - - - - - -
L. sulcata laevicosta Cushman and Gray .............. - - - - - - - - -
Miliolinella chukchiensis Loeblich and Tappan ... - - - - - - - - -
Nonionella auricuia Heron-Allen and Earland ....... - - - - - - - - -
Nodosaria spp. - - - - - - - - -
Pateoris hauerinoides (Rhumbler) ........................ - - - - - 09 - - -
Parafissurina tectulostormna Loeblich and Tappan . - - - - - - - - -
Polymorphina suboblonga (Cushman and Ozawa) - - - - - - - - -
P. spp. 0.3 0.7 0.7 14 0.6 0.5 - - -
Pyrulina cylindroides (RoBmer) .............ccccerrrernenes - - - - - - - - -
Pyrgo williamsoni (Silvestri) ............. - - - - - 05 - - -
Quinqueloculina seminulum (Linne) ... - - - - - - - - -
Q. stalkeri Loeblich and Tappan ............. 06 - - - - - - - -
Scutuloris tegminis Loeblich and Tappan ... - - - - - - - - -
Stainforthia concava (Hoeglund) ................ - - - - - 05 - - -
Triloculina trihedra Loeblich and Tappan .............. - - - - - - - - -
Foraminiferal number 2528 4592 2336 582 471 432 168 648 17

Diversity 12 8 6 9 13 14 3 7 1




TABLES 2-19

100 g of sediment, and diversity is the number. of species per sample]

Sample number

19-10 19-11 19-12 19-13 19-14 1915 19-16 19-17 19-18

. - Q.3 - - - - . -
. - 1.0 - - - - - -
6.2 9.2 1.5 1.8 0.2 - 4.0 6.8
- 03 - - . - - -
22 105 84 59 0.2 - 177 178
10 225 0.4 0.7 - - 168 218
- - - - - - - 0.2 0.6
- - 1.9 - - - - 0.7 1.7
- 1.0 - 0.8 04 0.5 0.3 0.4 .
. - 1.0 - - - - . 0.6
- 0.2 0.3 - - - ‘. 1.3 -
- - - - - . - 24 0.6
333 511 197 357 467 376 234 173 ' 68
- - - 38 07 0.7 46 22 1.4
- 7.0 49 33 - 5.4 9.7 8.2
- 190 12.2 - - 5.2 - -
- 105 305 183 382 600 557 243 317
. - 03 . . - . - -
- - - 8.0 - - 4.1 - -
- - 0.3 - - - - -
- - 0.6 . - - - - -
- - - - - - - 0.2 0.3
- - 0.3 - - - - -
333 - - 0.4 0.4 1.8 0.8
. - - 0.8 - - . - -
- - 0.3 0.4 - - - - -
- - - - - - 0.2 -
- 0.3 04 - - - - -
0.2 - - - - - -

0.2 - - - - -
- - 0.4 - - 0.2 0.3
- 03 . . - .
- - - - - - 0.3
- - - - - - - 0.2 -
- 0.2 - - - - - - -
- 05 - 1.1 - - 0.5 - -
33.3 . - - - - - - 03
- 0.5 0.3 1.9 - - - - .
- - - - - - - 0.2 -
- - - 04 - 0.4 0.8 - -
- - - 1.1 1.1 - - - 0.3
- - - - 04 - - - -

3 3208 2520 1052 17408 8800 2944 1808 2824
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Table 19. Borehole HLA 20, benthic foraminifers distribution and abundance, Beaufort Sea shelf, Alaska.

[Abundance of each species is a percentage of the total foraminifer species in 100 g of sediment. Foraminiferal number is the number of

Taxa Sample number
201 202 203 204 205 206 207 208
Astrononion gallowayi Loeblich and Tappan ......... - - - - - - - -
Buccella frigida (Cushman) ........ . 15 13 - 75 21 42 16 5.0
B. Inusitata Andersen .............. . - - - 13 - - - -
Cassidulina crassa d'Orbigny .............ccccecvvenecuennn - - - - - - - -
C. islandica Norvang ...........eccecvueeceemmivcnenecncsennaens 44 6.5 103 175 24 227 215 208
C. norcrossiCushman .............c.couu.n.. 07 23 57 122 21 23 22 12
Cibicides lobatulus (Waker and Jacob) .... . - - - - - - - -
Cyclogyra involvens (Reuss) ................. . - 06 - - 03 - 03 -
Dentalina ittai Loeblich and Tappan .. . - - - - - 0.1 - -
D. SPP. ettt et s s ssranens - - 0.2 - - - - -
Discorbis baccata (Heron-Allen and Earand) ....... - - - 04 - 37 3.0 1.6
Elphidiella groenlandica (Cushman) .............c...... 04 - 0.7 - 07 0.3 - 0.3
Elphidium albiumbilicatum (Weiss) .... - - 05 1.1 - - 05 -
E. cf. E. albiumbilicatum (Weiss) ... . - - - - - - - -
E. asklundiBrotzen .................... .. - - 17 0.2 - - 03 -
E. cf. E. asklundiBrotzen . - - 0.2 - - - - -
E. bartlettiCushman ............ . - - 8.4 2.1 14 22 08 19
E. cf. E. bartlettiCushman .............ccccocecervccenuenne 0.2 - - - - - - -
E. clavatum Cushman ..........ccceceevvirirmeennecnncnens 618 463 232 370 596 439 457 422
E. excavatum alba Feyling-Hanssen ..................... 29 - 42 0.6 3.4 - - -
E. incertum (Williamson) ..........cccccvveevenreereeceveinene 35 139 42 - 14 1.0 0.3 1.9
E. nanum Viks ........... 6.4 03 - 15 55 94 155 127
E. ombiculars (Brady) ..............cceuveeereeirnsiesrensnrnens 143 107 382 160 16.1 56 49 75
E. SPP. v reveeeneren s - - - - - - - -
Epistominella vitrea Parker ..............coovecrceuevenns - - - - - 0.1 05 16
Fissurina danica (Madsen) ...........ccceeeiinirvenens - - - 0.2 - 0.6 - 0.3
F. marginata (Montagu) ...........ccceecvererenercniecnnnnnes - 0.3 - - - 0.1 - -
F. semimarginata (ReUSS) ............c.ccoevirenuinseiennnes - 03 - 0.2 - - - -
F. ventricosa (Wiesner) .............c...... - - - - - - - -
Fursenkoina schreibersiana (Czjzek) - 1.0 0.2 0.6 - 0.4 0.8 0.6
Glandulina laevigata (d’Orbigny) ....... . - 55 0.2 0.2 - 04 - 03
Globulina inaequalis Reuss ............c..oceceverereerene 0.2 - - - - - - -
G. SP. vt s e saaanenes - - - - - 0.1 - -
Gordiospira arctica Cushman ............cccoeveevveennene - - - - 0.7 - - -
Guttulina dawsoni Cushman and Ozawa .............. - - - - - - - -
G. gfacialis (Cushman and Ozawa) .............cceeur.. 0.2 29 . 05 - 03 04 05 0.9
G. lactea (Walker and Jacob) ..........ccoeeeeenennee. - - - 0.2 - - - -
G. problema d'Omigny ..........ccccveinirenireeresrennnnn. - - - - - - -
Lagena gracillima (Sequenza) ..............cccceerunecne - 0.3 - - - - - -
- L. [2evis (Montagu) ............ccceeeruicereesnnuninecssnneenes - - - - 0.3 - - -
L. SP. cocrerteiiecerieie st seaes et sasnnesssneresrebanbenen - - - - - - 0.3 -
Miliolinella chukchiensis Loeblich and Tappan ..... - 03 - - - - - -
Nonionella labradorica (Dawson) ................ccceeu. - - - - - - - -
NONION SP. ..oveveeviririeririrrecsssisesennine . - - - - - - - -
Pateoris hauverinoides (Rhumbler) ...........ccco.c...... - 0.3 - - 0.7 0.1 - -
Parafissurina tectulostoma Loeblich and Tappan . - - - - - 0.1 - -
Polymorphina suboblonga (Cushman and Ozawa) - - - - 0.7 - - -
Pseudopolymorphina norvangliae (Cushman) ...... - - - - - - - -
Pyrulina cylindroides (Roemer) ........c..cceecvreuvuenee - - 0.7 0.2 - - - 0.6
Pyrgo williamsoni (Silvestri) ............cocovvirencnnennns - - - 0.2 - 0.1 - -
Quinqueloculina arctica Cushman ............ccooeeu. - 5.2 0.2 - 03 0.1 - 03
Q. seminulum (LINNE) .......coeervreriricrcnmnnensrneresins 1.3 0.3 - - 0.7 0.1 - -
Scutuloris tegminis Loeblich and Tappan 20 13 - - 14 - - -
Stainforthia concava (Hoeglund) .......... - 05 0.2 - 03 08 03
Triloculina trihedra Loeblich and Tappan .............. 0.2 0.3 - 0.4 - 13 05 -
Foraminiferal number 1820 1236 25984 14976 4672 5472 23552 10304

Diversity 15 20 18 21 19 25 18 18




TABLES 2-19

specimens per 100 g of sediment, and diversity is the number of species per sample]

Sample number

209 20-10 20-11 20-12 20-13 20-14 20-15 20-16 20-17

- - 1.0 - - - - - -
29 55 53 34 0.3 45 27 09 76
- - - - - - - - 0.7
40.9 20 188 241 111 261 340 60 125
42 33 104 483 737 8.0 - 15 152
- - 03 - - - - - -

- - - - 0.3 - - - -

- - - - - - 1.5 0.1 -

- 0.7 0.3 - - - - 0.1 -

- 0.7 - - - 0.2 - - 1.7

- - 08 - - - - - -

- 0.7 1.8 - - - - 0.3 05
1.0 03 25 - - 1.4 05 - 20
36.1 564 287 207 47 376 337 386 208
- 07 05 - - 07 - 07 25
1.0 26 5.8 34 06 71 30 186 167
32 23 15 - - 45 124 135 29
77 218 193 - 16 40 65 144 142
- - - - - - 05 . -

- - - - - 0.2 - 1.0 -

- 03 - - - - - - -

- - - - - 0.2 - - -

- - 0.3 - - - - - -

- - 03 - 73 14 0.2 0.1 1.0

- 07 - - - - - 0.9 -

- - - - - - - 0.3 05
26 2.0 13 - 0.3 05 05 1.0 1.0
- . - - - - - 0.1 -

- - 03 - - - - - -

- 03 - - - - - - 02

- - 0.3 - - - - - -

- - 0.3 . - - - - -

- - - - - - 07 0.1 -

- - - - - 0.9 - - -

- - 03 - - - 0.2 0.1 -

- - - - - - 0.2 - -

- - - - - - - 0.4 -

- - - - - - 0.2 - -
03 - . - - - - - -
- - - - 26 1.7 1.0 -

03 - 0.3 - - - 12 - -

626 2456 3152 29 632 13600 6448 10992 13056
1 16 22 5 9 16 17 21 16
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APPENDIX 1. REGISTER OF MICROFOSSIL LOCALITIES,
BEAUFORT SEA SHELF, ALASKA

[Field number reflects depth (in feet) of sample below mudline (sediment-water interface). Comments indicate those samples that contain foraminifers (F), or ostracodes (O);
those that are barren (B) of either or both; and those that were not examined (nx) for either or both.]

Sample  Weight Field No. Depth (meters)
No. (grams) (=depth Below Below sea level
in feet) mudline (at base)

Comments

Sample  Weight Field No. Depth (meters) Comments
No. (grams) (=depth Below Below sea level
mudline (at base)

in feet)

Borehole HLA 3 (Mf5720)

Latitude 70°31'54.48" N. Longitude 148° 53'53.50"W.
Mudline 13.5 m below sea level

Sea ice 1.9 m thick
Total depth 42.8 mbelow sea level

Borehole HLA 7 (Mf5724)

Latitude 70°27'12.14" N. Longitude 148°05'16.51" W. Sea ice 1.3 m thick
Mudline 7.7 m below sea level Total depth 38.2 mbelow sealevel

3-1.... 25 5.5 1.7 152 F O

3-2.... 50 10.5 3.2 16.7 F O

33.... 100 15.0-17.0 4.6-52 18.7 F O
Borehole HLA 4 (Mf5721)

Latitude: 70°30'16.33" N.  Longitude 148°22'42.92" W.
Mudline 8.5 m below sea level

Sea ice 1.5 m thick
Total depth 39.4 m below sea level

4-1...... 100 45 1.4 9.9
4-2..... 100 9.5-11.0 29-34 113
4-3.... 100 13.5 4.1 12.6
4-4.... 100 13.9 42 127
4-5...... 50 18.8 5.7 14.2
4-6...... 100 19.2-20.0 5.9-6.1 14.5
4-7...... 100 21.5-21.6 6.6 15.0
48...... 100 22.0-22.1 6.7 15.2
49...... 50 23.3-234 71 15.6
4-10..... 100 24.4-24.5 7.4-1.5 16.0
4-10A.. 100 26.0 8.0 16.5
4-10B.. 100 28.0 8.6 17.1
4-11 100 35.5-35.6 10.8 193
4-12..... 100 37.0 113 19.8
4-13..... 50 38.1-38.2 11.6 20.1
4-14..... 50 40.0 122 20.7
4-15.... 100 40.5-41.1 12.3-12.5 21.0
4-16..... 50 45.0-46.5 13.7-14.2 22.7

F O
E O
F O
F O
EO
F O
F O
F O
F O
F, O
nxF, nxO
nxF, nxO
FO
EO
F O
F O
F O
F O

Borehole HLA 5 (Mf5722)

Latitude 70°30'41.05" N. Longitude 148°37'49.53" W.
Mudline 12.8 m below sea level

Sea ice 1.4 m thick
Total depth 104.2 mbelow sealevel

5-1...... 100 3.0-5.0 09-1.5 143 FO
5-2...... 50 7.5-10.0 2.3-3.1 15.9 F O
5-3...... 100 15.0-16.5 4.6-5.0 17.0 F O
5-4... 100 58.5-60.0 7.8-18.3 30.3 B
5-5...... 100 118.5-120.0 36.1-36.6 48.6 B
5-6...... 100 200.0-200.5 61.0 739 B
5-7...... 50 2195 66.9 79.7 B
5-8...... 100 239.5-240.0 73.0-73.2 86.0 O, BF
Borehole HLA 6 (Mf5723)
Latitude 70°29'35.37" N. Longitude 148°07'42.51" W. Sea ice 1.4 m thick
Mudline 11.1 m below sea level Total depth 42.3 mbelow sealevel
6-1...... 100 3.6 1.1 122 F O
6-2...... 100 4.1 13 124 F O
6-3...... 50 10.0 3.1 142 F, nxO
6-4..... 50 135 4.1 152 F, nxO
6-5...... 25 23.0 7.0 18.1 F, nxO
6-6...... 50 265 8.1 19.2 F, nxO
6-7...... 50 46.5 142 253 F BO
6-8...... 100 56.5 172 283 B
6-9...... 100 57.5 17.5 28.6 F O

7-1...... 50 0.0-0.2 0.0-0.1 7.8 F, O
7-2..... 50 1.0-1.3 0.3-04 8.1 F O
7-3...... 100 3.7-6.0 1.1-1.8 9.5 F O
T-4... 100 6.8 21 9.8 F, 0
7-5...... 50 8.3-84 2526 10.3 F, O
7-6...... 100 142-14.8 4.3-45 122 F, O
7-7..... 50 21.0-23.5 6.4-72 149 F, O
7-8...... 100 24.1 7.4 15.1 F O
79...... 100 25.1-25.3 1.7 154 F, nxO
7-10.... 50 26.7-26.8 8.1-8.2 15.9 F O
7-11... 100 338-343 10.3-10.5 18.2 F, nxO
7-12.... 50 40.8-40.9 12.4-12.5 202 F O
7-13... 100 47.6-47.7 14.5 222 F O
7-14.... 100 583 17.8 25.5 B
Borehole HLA 8 (Mf5725)

Latitude 147°53'21.44" N.

Mudline 14.0 m below sea level

Longitude 70°30'01.82" W.

Sea ice 1.6 m thick

Total depth 44.6 mbelow sealevel

81...... 50 55 1.7 15.6 F, O
8-2...... 25 14.5-16.0 A 44 184 F O
8-3...... 100 14.5-16.0 B 49 18.9 F, nxO
84..... 50 20.0-23.0 6.1-7.0 210 F O
8-5...... 50 37.0-38.0 11.3-11.6 25.6 F, O
8-6...... 100 38.0-40.0 11.6-12.2 26.2 F O
8-7...... 100 47.4-475 14.4-14.5 28.5 F O
8-8...... 100 67.0-68.5 20.4-20.9 349 FO
8-9..... 100 955 29.1 431 O, BF
Borehole HLA 9 (Mf6107)
Latitude 70°22'48.26" N.  Longitude 147°52'42.32" W. Sea ice 1.3 m thick
Mudline 5.3 m below sea level Total depth 44.9 mbelow sealevel
9-1...... 100 25 0.8 6.1 BF, O
9-2...... 100 57538 1.7-1.8 71 BE O
9-3...... 100 13.0-13.5 4.0-4.1 9.4 B
9-4.... 100 13.5-14.0 4.1-43 9.6 B
9-5...... 100 29.5-30.0 9.0-9.2 144 FO
9-6..... 100 365 11.1 16.4 O, BF
9-7...... 100 40.5-42.0 12.3-12.8 18.1 O, BF
Borehole HLA 10 (Mf5726)

Latitude 70° 27'07.64" N.

Mudline 6.5 m below sea level

Longitude 147°48'28.15" W.

Sea ice 1.6 m thick

Total depth 39.4 mbelow sealevel

12.1-12.2
12.5-13.0
15.6-15.7
22.0-225
279
30.0
355
42.0
539
62.5
63.0-63.5
70.7-70.9

37
3.8-4.0
43
6.7-6.9
8.5
9.1
10.8
12.8
16.4
19.1
19.2-19.5
216

10.2
10.5
113
134
15.0
15.6
17.3
19.3
22.9
25.6
25.8
28.1

F O
F, O
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APPENDIX 1. REGISTER OF MICROFOSSIL LOCALITIES,
BEAUFORT SEA SHELF, ALASKA—CONTINUED

Sample  Weight Field No. Depth (meters) Comments Sample  Weight Field No. Depth (meters) Comments
No. (grams) (=depth Below Below sea level No. (grams) (=depth Below Below sea level
in feet) mudline (at base) in feet) mudline (at base)
Borehole HLA 11 (Mf£6108) Borehole HLA 15 (Mf5731)
Latitude 70°23'00.43" N. Longitude 147°41'00.11" W. Sea ice 1.4 m thick Latitude 70°13'18.37" N. Longitude 147°0020.90" W. Sea-ice 1.5 m
Mudline 7.5 m below sea level Total depth 36.5 mbelow sea level Mudline 5.5 m below sea level Total depth: 96.9 m below sea level
11-1.... 100 12.3-12.5 38 11.3 F O 15-1..... 100 5.2 1.6 7.1 F O
11-2..... 50 13.6-13.7 4249 124 B 15-2.... 100 6.0-6.6 1.8-2.0 75 F O
11-3..... 100 23.6-23.7 7.2 147 F O 15-3..... 100 16.5-16.7 5.0-5.1 10.5 F O
114... 100 40.0-40.7 12.2-12.4 19.8 F O 15-4..... 100 19.0 58 11.3  F, O, slump?
11-5..... 50 56.0 17.1 246 F O 15-5..... 50 25.6-25.7 7.8 133 B
11-6..... 50 60.5 18.4 259 F O 15-6..... 100 49.5 15.1 20.6 O, BF
11-7..... 100 64.0 19.5 27.0 nxF, O 15-7..... 100 227.5-229.0 69.3-69.8 753 B
15-8..... 100 237.5 724 719 B
Borehole HLA 12 (Mf5727) 159..... 100 248.5 75.7 81.2 B
15-10... 100 258.0 78.7 84.1 B
Latitude 70°26'39.66" N. Longitude 147°3026.03" W. Sea ice 1.4 m thick 15-11... 100 267.0-268.5 81.4-81.8 87.3 B
Mudline 15.2 m below sea level Total depth 106.9 mbelow sea level 15-12... 100 277.5-278.0 84.6-84.7 90.2 B
12-1..... 100 45 14 16.6 m F O Borehole HLA 16 (Mf5623)
12-2.... 100 56 17 169m EO Latitude 70°16'11.75" N.  Longitude 146°4246.36" W.  Sea ice 1.4 m thick
123..... 100 12.0-12.5 3738 189 m F,0 Mudline 9.2 m below sea level Total depth 42.7 mbelow sea level
124.... 100 19.5-20.0 5961 213m FO
12-5..... 100 21.0-21.5 64-66 21.8m F,0 16-1..... 100 25-3.0 0809 100 EO
12-6..... 100 27.5-28.0 84-85 237m FO 16-2..... 100 3.6-4.0 L1-12 104 FO
12-7..... 50 34.0 104 25.6 m FO 16-3..... 100 5.0-6.5 1.5-2.0 11.2 F O
12-8..... 100 54.5 166 31.8m F,0 16-4..... 100 7.0 2.1 11.3 FO
12:9..... 100 55.0 16.8 320m FO 16-5..... 100 18.2-18.4 5.5-5.6 14.8 F O
12-10... 100 60.5 184 33.6 m F O 16-6..... 100 25.5-26.0 7.8-79 17.1 B
12-11... 100 65.5 20.0 352 m F. O 16-7..... 100 26.8-27.0 8.2 174 B
12-12... 50 70.5 215 36.7 m F, 0O 16-8..... 100 34.5-374 10.5-11.4 20.6 F O
12-13.. 100 80.5 245 397 m F O 1699..... 100 39.5-41.5 12.1-12.7 219 O, BF
12-14.. 100 85.5 26.1 413 m F, nxO 16-10... 100 48.0-48.5 14.6-14.8 240 F O
12-15.. 100 90.5 276 428m  F,nxO 16-11... 100 67.5 206 29.8 F0
12-16.. 100 95.5 291 43m  FEmO 16-12... 100 72.5 221 313 F O
Borehole HLA 17 (Mf5624)
Borehole HLA 13 (Mf6109) Latitude 70°1608.53" N.  Longitude 146°2731.56" W, Sea ice 1.6 m thick
Latitude 70°18'57.67" N. Longitude 147°38'48.46" W. Sea ice 1.7 m thick Mudline 14.5 m below sea level Total depth 46.1 mbelow sealevel
Mudline 5.6 m below sea level Total depth: 36.7 mbelow sealevel 17-1.... 50 20 0.6 15.1 130}
13-1.. 100 28-3.0 09 6.5 FO 17-2..... 100 2.0-2.7 0.6-0.8 152 F O
132 100 8.0-8.2 2425 8.1 B 17-3..... 100 3.0-3.1 0.9 154 FO
133... 100 187192 5759 115 FO 17-4.... 100 53 17 162 EO
13-4 100 34.0 104 16.0 EO 17-5.... 100 7.0-8.3 2.1-2.5 16.8 F, O
135, 100 44'5 13‘6 19'2 F, o 17-6..... 100 8.0-8.2 2425 17.0 F O
""" ) ’ ’ ! 17-7..... 50 9.5 29 174 F O
17-8..... 100 10.0 3.1 17.6 F, O
Borehole HLA 14 (Mf5728) 179.... 100 135 41 186 F,0
Latitude 70°1635.96" N. Longitude 147°23'42.38" W. Seaice 15m  17-10.. 100 150 45 19.0 FO
Mudline 6.5 m below sea level Total depth 37.2 mbelow sealevel 17-11... 100 175 53 19.8 FO
- 17-12... 100 18.5 5.6 20.1 F O
14-1..... 100 6.0-6.5 1.8-2.0 8.5 F O 17-13... 100 20.5 6.3 20.8 F O
14-2..... 100 7.5-7.8 23-24 8.9 F O 17-14... 100 27.0 8.2 22.7 F O
14-3..... 50 18.0 5.5 129 F O 17-15... 100 37.0 11.3 25.8 F O
14-4.... 50 28.0-28.5 8.5-8.7 15.2 F O 17-16... 100 420 12.8 273 F O
14-5..... 50 31.0 9.5 16.0 BF, O 17-17... 100 51.5-52.0 15.7-15.8 303 F, O
14-6..... 100 33.0-33.5 10.1-10.2 16.7 BF, O 17-18... 100 73.5 224 36.9 F O
14-6A... 100 44.5 13.6 20.1 B 17-19... 100 82.0 25.0 395 F O

14-7..... 100 54.5 16.5 23.0 F O 17-20... 100 103.0 314 459 FO
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APPENDIX 1. REGISTER OF MICROFOSSIL LOCALITIES,
BEAUFORT SEA SHELF, ALASKA—CONTINUED

Sample  Weight Field No. Depth (meters) Comments Sample  Weight Field No. Depth (meters) Comments
No. (grams) (=depth Below Below sea level No. (grams) (=depth Below Below sea level
in feet) mudline (at base) in feet) mudline (at base)
Borehole HLA 18 (Mf5625) Borehole HLA 19 (Mf5729)
Latimde 70°12'37.40" N.  Longitude 146°02'35.85" W. Seaice 20 mthick  Latitude 70°18'48.96" N. Longitude 146°58'03.03" W. Seaice 1.7 m
Mudline 11.3 m below sea level Total depth 103.7 mbelow sealevel Mudline 10.5 m below sea level Total depth: 46.0mbelow sea level
18-1..... 100 0.0 0.0 11.3 F O 19-1.... 100 0.7-1.0 0.2-0.3 10.8 F. O
18-2..... 100 25 0.8 12.1 F O 19-2.... 100 15 0.5 11.0 F, nxO
18-3..... 100 40 12 125 FO 19-3..... 100 44 1.3 11.8 F O
18-4..... 100 55 1.7 13.0 F, O 19-4.... 100 212 6.5 17.0 F. 0
18-5. 100 6.0 1.8 13.1 F O 19-5..... 100 26.3-26.5 8.0-8.1 18.6 F O
18-6..... 100 75 23 136 B 19-6.... 50 32.3-32.4 9.8-9.9 204 F.O
18-7..... 50 11.0 34 147 BF, O 19-7.... 100 355 10.8 213 F O
18-8..... 100 13.0 40 15.3 F O 19-8..... 100 39.0 11.9 224 F O
189..... 100 14.3-14.8 4445 158 F O 199.... 100 46.5 142 24.7 F O
18-10... 100 21.6-22.0 6.6-6.7 18.0 F, O 19-10... 100 51.1-51.3 15.6 26.1 F, nxO
18-11... 100 23.0 7.0 183 B 19-11... 100 57.6 17.6 28.1 F O
18-12... 100 26.5 8.1 19.4 B 19-12.. 100 62.3 19.0 29.5 F O
18-13 100 27.5 8.4 197 F,O 19-13.. 100 67.0 204 309 F O
18-14 100 30.0-30.5 9.1-9.3 20,6 F O 19-14.. 100 715 218 324 F O
18-15.. 100 30.5-32.0 9.3-9.8 21.1 F, nxO 19-15.. 100 76.2-76.4 232233 338 F O
18-16... 100 36.5 11.1 224 F, nxO 19-16... 100 77.0-71.3 235236 340 EF O
18-17 100 40.5-42.0 12.3-12.8 241 BF, nxO 19-17... 100 92,0 28.0 38.5 F O
18-18... 100 45.5-47.0 139-143 256 F, nxO 19-18... 100 96.5 29.4 399 F O
18-19... 100 50.5-52.0 154-158 271 F, nxO 19-19... 100 115.4 352 45.7 B
18-20... 25 55.5-57.0 169-174 287 F,0
18-21... 100 65.5-67.0 20.0 313 F O Borehole HLA 20 (Mf5730)
18-22... 100 70.5-720 215220 333 EO Latitude 70°21'59.76" N.  Longitude 147°14'38.90" W.  Sea ice 1.5 m thick
18-23... 100 75.5-11.0 23.0-23.5 348 F, O Mudline 11.3 m below sea level Total depth: 45.9 mbelow sealevel
18-24.. 1 80.5-82.0 245250 363 F O
18-25... 1% 85.5-27.0 26.1265 318 EO 20-1.... 100 40 12 125 F,0
1826 100 92,0 280 193 EO 20-2..... 100 14.6-15.0 4546 159 F O
1827 100 1115 340 453 EO 20-3..... 100 20.5-21.0 6.3-6.4 17.7 F O
1828 100 122.0 372 485 O 204..... 100 27.5 8.4 19.7 F O
1829.. 100  132.0-132.5 402404 517 FO 20-5.... 100 400 22 235 EO
1830.. 100 1425 434 547 EO 20-6..... 100 415 127 24.0 E O
1831.. 100  1820-1830 555558  67.1 FO 20-7..... 30 42.5 130 243 EO
1832 100 2125 648 76.1 B 20-8..... 100 49.0 14.9 262 FO
1833 100 2515 767 380 B 209..... 100 54.0 16.5 27.8 F, 0
18-34.. 100 26152630 79.1-802 915 EO 20-10.. 100 37.5 175 2838 EO
18-35.. 100 273.0 832 945 FO 20-11... 100 64.0 195 308 F. 0
1836.. 100 29152930  88.9-89.3 1006 B igg :gg _‘;g'g ;;'g ;‘g; ";;B:
18-37... 100  301.5-303.0  91.9-924 103.7 F O 20.14 100 790 1 354 FO
20-15 100 84.0 256 36.9 F O
20-16 100 89.0 27.1 38.4 F O
20-17 100 97.5 297 410 F O
20-18 100 99.0 30.2 415 BF, O
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APPENDIX 2. TAXONOMIC NOTES,
BENTHIC FORAMINIFERS

Ammotium cassis (Parker) — Loeblich and Tappan, 1953, Smith-
sonian Misc. Coll., v. 121, no. 7, p. 33-34, pl. 2, figs. 12-18.
— McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 52.

Astacolus hyalacrulus Loeblich and Tappan, 1953, Smithsonian
Misc. Coll., v. 121, no. 7, p. 52-53, pl. 9, figs. 14.

Astrononion gallowayi Loeblich and Tappan, 1953, Smithsonian
Misc. Coll., v. 121, no. 7, p. 90-92, pl. 17, figs. 4-7.

Bolivina pseudopunctata Hoeglund — Loeblich and Tappan,
1953, Smithsonian Misc. Coll., v. 121, no. 7, p. 111, pl. 20,
figs. 13-14.

Bolivina sp. — These specimens are juveniles that cannot be
identified to species.

Buccella frigida (Cushman) = Pulvinulina frigida Cushman,
1922, Contr. Canadian Biol. (1921), No. 9, p. 12. = Buccella
frigida (Cushman) — Loeblich and Tappan, 1953, Smithso-
nian Misc. Coll, v. 121, no. 7, p. 115, pl. 22, figs. 2, 3. —
McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 52, pl. 1, fig. 2. — This paper, pl. 1, fig. 1.

Buccella inusitata Andersen, 1952, Washington Acad. Sci. Jour.,
v. 42, p. 148, tfs. 10, 11. — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 116, pl. 22, fig. 1.
— McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 52.

Buccella sp. — McDougall and others, 1986, U.S. Geological
Survey Bull. 1598, p. 52. — These specimens are probably
juveniles of Buccella frigida.

Cassidulina crassa d’Orbigny — Cushman, 1936, Geological
Society of America Bull., v. 47, p. 434, pl. 5, fig. 12.

Cassidulina islandica Norvang, 1945, Zoology of Iceland, v. 2,
pt. 2, p. 41, tfs. 7, 8d-f. — Loeblich and Tappan, 1953, Smith-
sonian Misc. Coll., v. 121, no. 7, p. 118-120, pl. 24, fig. 1. —
McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 52, pl. 1, fig. 3. — This paper, pl. 1, fig. 2.

Cassidulina norcrossi Cushman, 1933, Smithsonian Misc. Coll.,
v. 89, no. 9, p. 7, pl. 2, fig. 7. — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll.,, v. 121, no. 7, p. 120, pl. 24, fig. 2.
— McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 52, pl. 1, fig. 4. — This paper, pl. 1, fig. 3.

Cibicides lobatulus (Walker and Jacob) — Feyling-Hanssen,
1971, Geological Society of Denmark Bull., v. 21, p. 260, pl.
9, figs. 9-14. — This paper, pl. 1, fig. 4.

Cibicides mckannai Galloway and Wissler, 1927, Jour. of Paleon-
tology, v. 1, p. 65, pl. 10, figs. S, 6.

Cibicides sp. — Specimen that cannot be identified to species.

Cyclogyra involvens (Reuss) = Cornuspira involvens (Reuss) —
Loeblich and Tappan, 1953, Smithsonian Misc. Coll., v. 121,
no. 7, p. 49, pl. 7 figs. 4, 5. = Cyclogyra involvens (Reuss) —
McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 52, pl. 1, fig. 6. — This paper, pl. 1, fig. 5.

Cyclammina spp. — Specimens are broken or poorly preserved
individuals of Cyclammina.

Dentalina baggi Galloway and Wissler — Feyling-Hanssen,
1971, Geological Society of Denmark Bull, v. 21, p. 199,
pl. 3, fig. 1. — Loeblich and Tappan, 1953, Smithsonian Misc.
Coll., v. 121, no. 7, p. 54-55, pl. 9, figs. 10-15.

Dentalina frobisherensis Loeblich and Tappan, 1953, Smithso-
nian Misc. Coll,, v. 121, no. 7, p. 55-56, pl. 10, figs. 1-9. —
McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 52, pl. 1, fig. 7. — This paper, pl. 1, fig. 6.

Dentalina ittai Loeblich and Tappan, 1953, Smithsonian Misc.
Coll., v. 121, no. 7, p. 56-57, pl. 10, figs. 10-12. — McDou-
gall and others, 1986, U.S. Geological Survey Bull. 1598, p.
52, pl. 1, fig. 9. — This paper, pl. 1, fig. 7.

Dentalina pauperata d’Orbigny — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 57-58, pl. 9, figs. 7-
9. — McDougall and others, 1986, U.S. Geological Survey
Bull. 1598, p. 52. — This paper, pl. 1, fig. 8.

Dentalina spp. — These specimens are broken or poorly pre-
served individuals of Dentalina.

Discorbis baccata (Heron-Allen and Earland) = Discorbina bac-
cata Heron-Allen and Earland, 1913, Royal Acad. Proceed-
ings, v. 31, sec. 3, p. 124. — This paper, pl. 1, fig. 9.

Eggerella advena (Cushman) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll,, v. 121, no. 7, p. 36-37, pl. 3, figs. 8-
10. — This paper, pl. 1, fig. 10.

Elphidiella? brunnescens Todd, 1957, U.S. Geological Survey
Prof. Paper 294-F, p. 230, pl. 28, fig. 18. — This paper, pl. 1,
figs. 11, 12.

Elphidiella groenlandica (Cushman) = Elphidium groenlandicum
Cushman, 1933, Smithsonian Misc. Coll., v. 89, no. 9, p. 4,pl. 1,
fig. 10. = Elphidiella groenlandica (Cushman) — Loeblich and
Tappan, 1953, Smithsonian Misc. Coll., v. 121, no. 7, p. 106—
107, pl. 19, figs. 13, 14, — McDougall and others, 1986, U.S.
Geological Survey Bull. 1598, p. 52, pl. 1, fig. 10. — This paper,
plL 1, fig. 13.

Elphidium albiumbilicatum (Weiss) = Nonion pauciloculum albi-
umbilicatum Weiss, 1954, U.S. Geological Survey Prof. Paper
254-G, p. 157, pl. 32, figs. 1, 2. = Elphidium albiumbilicatum
(Weiss) — McDougall and others, 1986, U.S. Geological Sur-
vey Bull. 1598, p. 52, pl. 1, fig. 11. — This paper, pl. 2, fig. 1.

Elphidium cf. E. albiumbilicatum (Weiss) — These specimens
exhibit some but not all of the distinguishing characteristics of
Elphidium albiumbilicatum.

Elphidium asklundi Brotzen — Feyling-Hanssen, 1971, Geologi-
cal Society of Denmark Bull., v. 21, p. 270, pl. 10, figs. 20~
21; pl. 11, figs. 1-5. — McDougall and others, 1986, U.S.
Geological Survey Bull. 1598, p. 52, pl. 1, fig. 12. — This
paper, pl. 2, fig. 2.

Elphidium cf. E. asklundi Brotzen — McDougall and others,
1986, U.S. Geological Survey Bull. 1598, p. 52, pl. 1, fig. 13.
— These specimens are worn and poorly preserved. Their
presence in Holocene assemblages is assumed to result from
reworking of older material.

Elphidium bartletti Cushman, 1933, Smithsonian Misc. Coll.,
v. 89, no. 9, p. 4, pl. 1, fig. 9. — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 96-98, pl. 18, figs. 10~
14. — McDougall and others, 1986, U.S. Geological Survey
Bull. 1598, p. 52, pl. 2, figs. 1-3. — This paper, pl. 2, fig. 3.

Elphidium cf. E. bartletti Cushman — These specimens exhibit
some but not all of the distinguishing characteristics of El-
phidium bartletti.

Elphidium clavatum Cushman, 1930, U.S. National History Mu-
seumn Bull, no. 104, pt. 7, p. 20, pl. 7, fig. 10. — Loeblich
and Tappan, 1953, Smithsonian Misc. Coll., v. 121, no. 7,
p. 98-99, pl. 19, figs. 8-10. — McDougall and others, 1986,
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U.S. Geological Survey Bull. 1598, p. 53, pl. 2, figs. 4, 8. —
This paper, pl. 2, figs. 4, 5.

Elphidium excavatum alba Feyling-Hanssen, 1972, Micropaleon-
tology, v. 18, p. 340-341, pl. 3, figs. 1-9. — McDougall and
others, 1986, U.S. Geological Survey Bull. 1598, p. 53, pl. 2,
fig. 6. — This paper, pl. 2, fig. 6.

Elphidium frigidum Cushman, 1933, Smithsonian Misc. Coll,,
v. 89, no. 9, p. 5, pl. 1, fig. 8. — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 99-100, pl. 18, figs.
4-9. — McDougall and others, 1986, U.S. Geological Survey
Bull. 1598, p. 53, pl. 2, figs. 5, 9. — This paper, pl. 2, fig. 7.

Elphidium cf. E. frigidum Cushman — Aberrant forms that have
characteristics similar to E. frigidum.

Elphidium incertum (Williamson) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 100-102. — Mc-
Dougall and others, 1986, U.S. Geological Survey Bull. 1598,
p. 53, pl. 2, fig. 7. — This paper, pl. 2, fig. 9.

Elphidium cf. E. incertum (Williamson) — These specimens ex-
hibit some but not all of the distinguishing characteristics of
Elphidium incertum.

Elphidium nanum Vilks = Protelphidium nanum Vilks — Vilks
and others, 1979, Geological Survey of Canada Bull., v. 303,
p. 35, pl. 1, figs. 1-4. — This paper, pl. 2, fig. 8.

Elphidium orbiculare (Brady) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 102-103, pl. 19, figs.
1-4. — McDougall and others, 1986, U.S. Geological Survey
Bull. 1598, p. 53, pl. 2, fig. 10. — This paper, pl. 2, fig. 10.

Elphidium sp. — Small specimens that are probably juveniles.

Elphidium spp. — These specimens are broken or poorly pre-
served individuals of Elphidium.

Elphidium ustulatum Todd, 1957, U.S. Geological Survey Prof.
Paper 294-F, p. 230-231, pl. 28, fig. 16. — Cribroelphidium
ustulatum (Todd) — McNeil, 1989, Geological Survey of Can-
ada Paper 89-1G, p. 213-215, pl. 1, fig. 2. — This paper,
pl. 2, figs. 11, 12.

Elphidium cf. E. ustulatum Todd — Poorly preserved individuals
that resemble E. ustulatum.

Entosolenia spp. — These specimens are juveniles of unknown
species of Entosolenia.

Epistominella arctica Green, 1959, U.S. Air Force Cambridge
Research Center, Geophysics Research Papers, v. 1, p. 78-79,
pl. 1, fig. 4.

Epistominella vitrea Parker, 1953, Cushman Foundation for Fo-
raminiferal Research, Spec. Pub. 2, p. 9, pl. 4, figs. 34-36.

Esosyrinx curta (Cushman and Ozawa) = Pseudopolymorphina
curta Cushman and Ozawa, 1930, U.S. National Museum Pro-
ceedings, v. 77, art. 6, p. 105, pl. 27, fig. 3. = Esosyrinx curta
(Cushman and Ozawa) — Loeblich and Tappan, 1953, Smith-
sonian Misc. Coll., v. 121, no. 7, p. 85-86, pl. 15, figs. 1-5.
— McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 53, pl. 2, fig. 11.

Fissurina cucullata Silvestri — Parker, 1964, Jour. of Paleontol-
ogy, v. 38, p. 625, pl. 98, fig. 7.

Fissurina cucurbitasema Loeblich and Tappan, 1953, Smithso-
nian Misc. Coll., v. 121, no. 7, p. 76, pl. 14, figs. 10-11.

Fissurina danica (Madsen) — Feyling-Hanssen, 1971, Geologi-
cal Society of Denmark Bull., v. 21, p. 228, pl. 6, figs. 6-7. —
This paper, pl. 3, fig. 1.

Fissurina lucida (Williamson) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 76-77, pl. 14, fig. 4.

Fissurina marginata (Montagu) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 77, pl. 14, figs. 6-9.
— McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 53, pl. 2, fig. 12.

Fissurina semimarginata (Reuss) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 78, pl. 14, fig. 3. —
This paper, pl. 3, fig. 2.

Fissurina spp. — Broken and poorly preserved specimens that
cannot be identified to species.

Fissurina serrata (Schlumberger) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 78, pl. 14, fig. 5. —
This paper, pl. 3, fig. 3.

Fissurina ventricosa (Wiesner) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 79, pl. 14, fig. 15.
Fursenkoina loeblichi (Feyling-Hanssen) = Virgulina loeblichi
Feyling-Hanssen, 1971, Geological Society of Denmark Bull.,

v. 21, p. 238, pl. 7, figs. 1-5. — This paper, pl. 3, fig. 4.

Fursenkoina schreibersiana (Czjzek) = Virgulina schreibersiana
Czjzek — Feyling-Hanssen, 1971, Geological Society of Den-
mark Bull., v. 21, p. 240, pl. 7, figs. 6-8.

Glandulina laevigata (d’Orbigny) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no.. 7, p. 81-82, pl. 16, figs.
2-5. — McDougall and others, 1986, U.S. Geological Survey
Bull. 1598, p. 53. — This paper, pl. 3, fig. 5.

Globulina inaequalis Reuss — Feyling-Hanssen, 1971, Geologi-
cal Society of Denmark Bull,, v. 21, p. 216, pl. 5, fig. 3.

Globulina landesi (Hanna and Hanna) — Feyling-Hanssen, 1971,
Geological Society of Denmark Bull., v. 21, p. 217, pl. §, fig. 4.

Globulina sp. — These specimens can be subdivided into two
groups: Those of the first group may be variants, and those of
the second group are juveniles of one of the Globulina species
named above.

Gordiospira arctica Cushman, 1933, Smithsonian Misc. Coll,,
v. 89, n0. 9, p. 3, pl. 1, figs. 5-7. — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 49-50, pl. 7, figs. 1-
3. — McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 53, pl. 3, figs. 2, 3. — This paper, pl. 3, fig. 6.

Guttulina austriaca d’Orbigny — Feyling-Hanssen, 1971, Geo-
logical Society of Denmark Bull., v. 21, p. 211-212, pl. 4,
figs. 8, 9. — McDougall and others, 1986, U.S. Geological
Survey Bull. 1598, p. 53.

Guttulina dawsoni Cushman and Ozawa, 1930, U.S. National
Museum Proceedings, v. 77, art. 6, p. 47-48, pl. 12, figs. 1, 2.
— This paper, pl. 3, fig. 7.

Guttulina glacialis (Cushman and Ozawa) — Feyling-Hanssen,
1971, Geological Society of Denmark Bull., v. 21, p. 213, pl. 4,
figs. 11-13. — This paper, pl. 3, fig. 8.

Guittulina lactea (Walker and Jacob) — Feyling-Hanssen, 1971,
Geological Society of Denmark Bull,, v. 21, p. 214, pl. 4, figs.
14-18. — McDougall and others, 1986, U.S. Geological Sur-
vey Bull. 1598, p. 53, pl. 3, fig. 4.

Guttulina problema d’Orbigny — Feyling-Hanssen, 1971, Geo-
logical Society of Denmark Bull,, v. 21, p. 215, pl. 5, figs. 1,
2. — McDougall and others, 1986, U.S. Geological Survey
Bull. 1598, p. 53.

Guttulina sp. — These specimens can be subdivided into two
groups: Variants, and juveniles of one of the above-named
species of Guttulina.

Lagena costata (Williamson) = Oolina costata (Williamson) —
Loeblich and Tappan, 1953, Smithsonian Misc. Coll., v. 121,
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no. 7, p. 68, pl. 13, figs. 4-6. = Lagena costata (Williamson)
— McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 53, pl. 3, fig. 5. — This paper, pl. 3, fig. 9.

Lagena distoma Parker and Jones — Chapman and Parr, 1937,
Australasian Antarctic Exped. 1911-1914, Sci. Repts., ser. C
(Zool. Bot.), v. 1, p. 65, pl. 7, fig. 7.

Lagena gracilis Williamson, 1848, Natural History Annual Mag.,
ser. 2, v. 1, p. 13, pl. 1, fig. 5.

Lagena gracillima (Sequenza) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 60-61, pl. 11, figs.
1-4. — McDougall and others, 1986, U.S. Geological Survey
Bull. 1598, p. 53, pl. 3, fig. 6. — This paper, pl. 3, fig. 10.

Lagena hexagona (Williamson) = Oolina hexagona (Williamson)
— Loeblich and Tappan 1953, Smithsonian Misc. Coll., v. 121,
no. 7, p. 69, pl. 14, figs. 1, 2. — McDougall and others, 1986,
U.S. Geological Survey Bull. 1598, p. 54. — This paper, pl. 3,
fig. 11.

Lagena laevis (Montagu) — Loeblich and Tappan, 1953, Smith-
sonian Misc. Coll,, v. 121, no. 7, p. 61-62, pl. 11, figs. 5-8.
~ This paper, pl. 3, fig. 12.

Lagena mollis Cushman — Loeblich and Tappan, 1953, Smithso-
nian Misc. Coll,, v. 121, no. 7, p. 63-64, pl. 11, figs. 25-27.
— This paper, pl. 3, fig. 13.

Lagena parri Loeblich’ and Tappan, 1953, Smithsonian Misc.
Coll,, v. 121, no. 7, p. 64, pl. 11, figs. 11-13.

Lagena sulcata laevicosta Cushman and Gray — Feyling-Hans-
sen, 1971, Geological Society of Denmark Bull., v. 21, p. 210,
pl. 4, figs. 4-5.

Lagena sp. — These specimens are juveniles of various species
of Lagena. — This paper, pl. 3, fig. 14.

Laryngosigma hyalascidia Loeblich and Tappan, 1953, Smithso-
nian Misc. Coll., v. 121, no. 7, p. 83-84, pl. 15, figs. 6--8.

Melonis zaandamae (van Voorthuysen) = Nonion zaandamae
(van Voorthuysen) — Loeblich and Tappan, 1953, Smithso-
nian Misc. Coll,, v. 121, no. 7, p. 87-90, pl. 16, figs. 11, 12.
— This paper, pl. 4, fig. 1.

Miliolinella chukchiensis Loeblich and Tappan, 1953, Smithso-
nian Misc. Coll, v. 121, no. 7, p. 47, pl. 6, fig. 7. — This
paper, pl. 3, fig. 15.

Nodosaria spp. — These specimens are juveniles.

Nonion sp. — Specimens are juveniles that cannot be identified to
species.

Nonionella auricula Heron-Allen and Earland — Loeblich and
Tappan, 1953, Smithsonian Misc. Coll., v. 121, no. 7, p. 92—
93, pl. 16, figs. 6-10. — This paper, pl. 4, fig. 2.

Nonionella labradorica (Dawson) — Feyling-Hanssen, 1971,
Geological Society of Denmark Bull., v. 21, p. 262, pl. 10,
figs. 1, 2. — Loeblich and Tappan, 1953, Smithsonian Misc.
Coll., v. 121, no. 7, p. 86-87, pl. 17, figs. 1, 2.

Nonionella sp. — Specimens are juveniles.

Oolina caudigera (Wiesner) — Loeblich and Tappan, 1953, Smith-
sonian Misc. Coll., v. 121, no. 7, p. 67-68, pl. 13, figs. 1-3.
Oolina lineata (Williamson) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 70, pl. 13, figs. 11-
13. — McDougall and others, 1986, U.S. Geological Survey

Bull. 1598, p. 54, pl. 3, fig. 8.

Oolina lineatopunctata (Heron-Allen and Earland) — Loeblich
and Tappan, 1953, Smithsonian Misc. Coll., v. 121, no. 7,
p. 70-71, pl. 13, fig. 8. — This paper, pl. 4, fig. 3.

Oolina melo d’Orbigny — Loeblich and Tappan, 1953, Smithso-
nian Misc. Coll,, v. 121, no. 7, p. 71-72, pl. 12, figs. 8-15. —
McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 54. — This paper, pl. 4, fig. 4.

Oolina sp. — These specimens are juveniles.

Parafissurina arctica Green, 1959, U.S. Air Force Cambridge
Research Center, Geophysics Research Papers, v. 1, p. 76-78,
pl. 1, figs. 2a, b.

Parafissurina fusuliformis Loeblich and Tappan, 1953, Smithso-
nian Misc. Coll., v. 121, no. 7, p. 79-80, pl. 14, figs. 18, 19.
Parafissurina lateralis carinata Buchner — Feyling-Hanssen,
1971, Geological Society of Denmark Bull., v. 21, p. 233,
pl. 6, figs. 12, 13. — McDougall and others, 1986, U.S. Geo-

logical Survey Bull. 1598, p. 54.

Parafissurina sp. — Specimens could not be identified to species.

Parafissurina tectulostoma Loeblich and Tappan, 1953, Smithso-
nian Misc. Coll,, v. 121, no. 7, p. 81, pl. 14, fig. 17.

Pateoris hauerinoides (Rhumbler) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 4245, pl. 6, figs. 8—
12, tf. 1. — McDougall and others, 1986, U.S. Geological Sur-
vey Bull. 1598, p. 54, pl. 3, fig. 10. — This paper, pl. 4, fig. 5.

Polymorphina suboblonga (Cushman and Ozawa) = Pseudopoly-
morphina suboblonga Cushman and Ozawa, 1930, U.S., Na-
tional Museum Proceedings, v. 77, art. 6, p. 91, pl. 23, fig. 3.
= Polymorphina suboblonga (Cushman and Ozawa) — Mc-
Dougall and others, 1986, U.S. Geological Survey Bull. 1598,
p. 54, pl. 3, figs. 11-13. — This paper, pl. 4, fig. 6.

Polymorphina spp. — Specimens are broken or poorly preserved
and cannot be identified to species.

Pseudopolymorphina novangliae (Cushman) — Feyling-Hanssen,
1971, Geological Society of Denmark Bull., v. 21, p. 217,
pl. 5, figs. 5, 6.

Pseudopolymorphina soldanii (d’Orbigny) — Feyling-Hanssen,
1971, Geological Society of Denmark Bull, v. 21, p. 218,
pl. §, fig. 7.

Pullenia sp. — Specimens are juveniles.

Pyrgo williamsoni (Silvestri) — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 4849, pl. 6, figs. 1-
4. — McDougall and others, 1986, U.S. Geological Survey
Bull. 1598, p. 54, pl. 4, fig. 2.

Pyrulina cylindroides (Roemer) = Polymorphina (Polymorphien)
cylindroides Roemer, 1938, Neues Jahrb. Mineral. Geogn.
Geol. Petref.-Kunde, p. 385, pl. 3, figs. 27a, b.

Quingueloculina agglutinata Cushman — Cushman and Valen-
tine, 1930, Stanford University, Dept. of Geology Contribu-
tions, v. 1, p. 9-10, pl. 1, fig. 7.

Quinqueloculina arctica Cushman, 1933, Smithsonian Misc.
Coll., v. 89, no. 9, p. 2, plL. 1, fig. 3. — Loeblich and Tappan,
1953, Smithsonian Misc. Coll., v. 121, no. 7, p. 40, pl. §, figs.
11, 12. — McDougall and others, 1986, U.S. Geological Sur-
vey Bull. 1598, p. 54, pl. 4, fig. 3. — This paper, pl. 4, fig. 7.

Quingueloculina seminulum (Linne) — Feyling-Hanssen, 1971,
Geological Society of Denmark Bull., v. 21, p. 194, pl. 1, figs.
18-20. — McDougall and others, 1986, U.S. Geological Sur-
vey Bull. 1598, p. 54, pl. 4, fig. 4. — This paper, pl. 4, fig. 8.

Quinqueloculina spp. — Specimens are broken or poorly pre-
served individuals.

Quinqueloculina stalkeri Loeblich and Tappan, 1953, Smithso-
nian Misc. Coll,, v. 121, no. 7, p. 4041, pl. 5, figs. 5-9. —
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McDougall and others, 1986, U.S. Geological Survey Bull.
1598, p. 54. — This paper, pl. 4, fig. 9.

Reophax curtus Cushman, 1920, U.S. National Museum Bull.,,
v. 104, pt. 2, p. 8-9, pl. 2, figs. 2, 3. — Loeblich and Tappan,
1953, Smithsonian Misc. Coll., v. 121, no. 7, p. 22-23, pl. 2,
figs. 1-4.

Reophax spp. — Specimens are broken or poorly preserved. —
This paper, pl. 4, fig. 10.

Scutuloris tegminis Loeblich and Tappan, 1953, Smithsonian
Misc. Coll,, v. 121, no. 7, p. 41-42, pl. §, fig. 10. — McDou-
gall and others, 1986, U.S. Geological Survey Bull. 1598,
p. 55. — This paper, pl. 4, fig. 11.

Sigmomorphina sp. — A single specimen that cannot be identi-
fied to species.

Spiroplectammina biformis (Parker and Jones) — Loeblich and
Tappan, 1953, Smithsonian Misc. Coll., v. 121, no. 7, p. 34—
35, pl. 4, figs. 1-6. — This paper, pl. 4, fig. 12.

Stainforthia concava (Hoeglund) = Bulimina exilis Brady —
Loeblich and Tappan, 1953, Smithsonian Misc. Coll., v. 121,

no. 7, p. 110, pl. 20, figs. 4, 5. = Stainforthia concava (Hoe-
glund) — McDougall and others, 1986, U.S. Geological Sur-
vey Bull. 1598, p. 55, pl. 4, fig. 9. — This paper, pl. 4, fig. 13.

Triloculina trihedra Loeblich and Tappan, 1953, Smithsonian Misc.
Coll,, v. 121, no. 7, p. 45, pl. 4, fig. 10. — McDougall and others,
1986, U.S. Geological Survey Bull. 1598, p. 55, pl. 4, fig. 10.

Trochammina rotaliformis Wright — Loeblich and Tappan, 1953,
Smithsonian Misc. Coll., v. 121, no. 7, p. 51-52, pl. 8, figs. 6—
9. — McDougall and others, 1986, U.S. Geological Survey
Bull. 1598, p. 55, pl..4, fig. 12. — This paper, pl. 4, fig. 14.

Trochammina sp. — These specimens could not be identified to
genus.

Trochamminella atlantica Parker, in Parker and others, 1953, Jour.
of Paleontology, v. 38, p. 409, pl. 4, figs. 17-19. — Loeblich
and Tappan, 1953, Smithsonian Misc. Coll., v. 121, no. 7, p. 52,
pl. 7, figs. 6, 7.

Valvulineria arctica Green, 1959, U.S. Air Force Cambridge Re-
search Center, Geophysics Research Papers, v. 1, p. 76-78,
pl. 1, figs. 3a~c.
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71,72,73,74,75, 76,78, 79, 80, 81, 82,
84, 86, 88, 93; pl. 2
Colvillian, 3, 4
complanata, Stainforthia, 11
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concava, Stainforthia, 11, 14, 15, 18, 19, 20, 21,
31, 33, 34, 42, 43, 44, 45, 49, 51, 53, 54,
56, 57,71, 72,73, 75, 76, 81, 82, 84, 86,
88,96; pl. 4
Cornuspira involvens, 93
corrugata, Patellina, 11
costata,
Lagena, 72,73, 76, 86, 94, 95; pl. 3
Oolina, 94
crassa, Cassidulina, 11, 18, 49, 51, 54, 72, 76,
84, 86, 88, 93
crassimargo, Alveolophragmium, 11
Cribroelphidium ustulatum, 93
Cross Island unit, 6, 7, 8, 10, 25, 26, 27, 29, 30,
31, 32, 34, 35, 39, 41, 42, 44, 45, 47, 48,
54, 55, 57, 60, 62, 63, 64, 65
cucullata, Fissurina, 82, 94
cucurbitasema, Fissurina, 75, 94
curta,
Esosyrinx, 78, 81, 94
Pseudopolymorphina, 94
curtus, Reophax, 11, 39, 80, 96
Cyclammina spp., 76, 93
Cyclogyra involvens, 11,71, 73, 74, 76, 78, 81,
82, 84, 88,93; pl. 1
cylindroides
Polymorphina (Polymorphien), 95
Pyrulina, 74,75, 78, 79, 86, 88, 95

D

danica, Fissurina, 76, 88, 94; pl. 3
dawsoni, Guttulina, 72, 75, 80, 82, 84, 86, 88,
94; pl. 3
Dentalina
baggi, 70,71, 73, 76, 78, 81, 93
frobisherensis, 70, 71, 72, 76, 78, 81, 84, 93;
pl. 1
irtai, 71, 80, 82, 84, 86, 88, 93; pl. 1
pauperata, 84, 93; pl. 1
spp-, 76, 88, 93
digitata, Nonionella, 11
Discorbina baccata, 93
Discorbis baccata, 11,71, 72, 73, 74, 75, 79,
82, 86, 88,93; pl. 1
distoma, Lagena, 18, 95
Duchess sand unit, 6, 7, 8, 9, 30, 32, 47, 48, 49,

51, 54, 55, 60

Eggerella advena, 11, 34, 44, 76, 81, 93; pl. 1

Elphidiella groenlandica, 1, 10, 11, 12, 13, 14,
39, 44, 58, 59, 62, 70, 71, 72, 73, 74, 75,
76, 80, 81, 82, 84, 86, 88,93; pl. 1

Elphidiella? brunnescens, 50, 84, 93; pl. 1

Elphidium '

albiumbilicatum, 11, 18, 21, 22, 44, 47, 49,

54,71,72,73, 74,75, 76, 78, 80, 81, 82,
84, 86, 88, 93; pl. 2
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Elphidium—Continued
asklundi, 1, 10, 39, 44, 58, 59, 62, 71, 72,
73,74, 75,76, 78, 79, 80, 81, 82, 84,
86, 88, 93; pl. 2 )
bartletti, 11, 44,70, 71, 72, 73, 74, 75, 76,
78,79, 80, 82, 84, 86, 88,93; pl. 2
clavatum, 4, 6, 8, 10, 11, 13, 14, 15, 16, 17,
18, 19, 21, 22, 24, 25, 28, 30, 31, 33,
34, 35, 36, 38, 39, 41, 43, 44, 45, 46,
47, 49, 50, 51, 53, 54, 56, 57, 58, 65,
70,71, 72,73, 74, 75,76, 78, 79, 80,
81, 82, 84, 86, 88, 93; pl. 2
excavatum alba, 1, 10, 11, 25, 29, 34, 35,
38, 41, 47, 49, 53, 54, 57, 58, 59, 62,
65,70,71,72,73,74,75,76,78, 79,
80, 81, 82, 84, 86, 88,94; pl. 2
frigidum, 34, 36, 44,71, 72, 73, 75, 76, 78,
79, 80, 81, 84,94; pl. 2
groenlandicum, 93
incertum, 1, 11, 12, 13, 14, 15, 17, 18, 19,
20, 21, 24, 25, 28, 29, 31, 33, 34, 36,
38, 39, 41, 43, 44, 45, 46, 47, 49, 50,
51, 53, 54, 56, 57, 58, 59, 70, 71, 72,
73,74,75,76, 78,79, 80, 81, 82, 84,
86, 88,94; pl. 2
nanum, 34, 35,71, 72, 73, 74, 75,76, 78, 79,
80, 81, 84, 86, 88, 94, pl. 2
orbiculare, 4, 6, 11, 12, 13, 14, 15, 17, 18,
19, 21, 22, 24, 28, 30, 31, 33, 34, 35,
36, 38, 39, 41, 43, 44, 46, 49, 51, 53,
54, 56, 57, 58,70, 71,72, 73, 74, 75,
76, 78, 79, 80, 81, 82, 84, 86, 88, 94,
pl.2
sp., 71,72, 73, 94
spp., 12, 13, 35, 70, 71, 72, 73, 75, 76, 78,
79, 80, 81, 82, 84, 86, 88, 94
ustulatum, 1, 5, 50, 57, 58, 84, 86, 94; pl. 2
elphidiums, 11, 12, 13, 14, 18, 20, 21, 22, 25,
30, 34, 37, 38, 39, 44, 45, 47, 50, 51, 54,
57, 58, 59, 61
Entosolenia spp., 73, 94
Epistominella
arctica, 11, 18, 19, 53, 72, 86, 94
vitrea, 18, 19, 31, 33, 34, 43, 44, 53, 54, 56,
57,70,72,74,75, 76, 81, 86, 88, 94
Esosyrinx curta, 78, 81, 94
Eucypris foveata, 39
excavatum alba, Elphidium, 1, 10, 11, 25, 29,
34, 35, 38, 41, 47, 49, 53, 54, 57, 58,
59, 62, 65,70, 71, 72,73, 74,75, 76,
78, 79, 80, 81, 82, 84, 86, 88, 94; pl.
2
exilis, Bulimina, 96

F

Fishcreekian, 1, 3, 4, 5,7, 8, 14, 16, 47, 48, 49,
50, 57, 58
Fissurina, 14, 20, 25, 34, 57
cucullata, 82, 94
cucurbitasema, 75, 94
danica, 76, 88,94, pl. 3
lucida, 76, 78, 94
marginata, 71,73, 75, 76, 78, 82, 84, 86, 88,
94
semimarginata, 76, 88, 94; pl. 3
spp., 74, 75, 76, 82, 86, 94
serrata, 73,75, 84, 94; pl. 3

Fissurina—Continued
ventricosa, 71, 74, 88, 94
fissurinids, 30
Flandrian, 1, 3, 4,6, 7, 8, 10, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28,
29, 30, 31, 32, 33, 37, 38, 39, 40, 41, 42,
43,45, 46, 47, 48, 49, 51, 52, 53, 57, 64,
65

Flaxman Member, 10
foveata, Eucypris, 39
frigida,
Buccella, 11, 13, 14, 15, 17, 18, 19, 20, 21,
22,23, 24, 25, 28, 30, 31, 33, 34, 36,
37, 38, 39, 41, 42, 43, 44, 45, 46, 47,
49, 50, 51, 53, 54, 56, 57, 58,70, 71,
72,73, 74,75, 76, 78, 79, 80, 81, 82,
84, 86, 88,93; pl. 1
Pulvinulina, 93
frigidum, Elphidium, 34, 36, 44, 71,72, 73, 75,
76,78, 79, 80, 81, 84,94; pl. 2
frobisherensis, Dentalina, 70, 71, 72, 76, 78, 81,
84,93; pl. 1
Fursenkoina
loeblichi, 76, 94; pl. 3
schreibersiana, 57,71, 81, 82, 84, 88, 94
fusca, Psammospheara, 11
Susiformis, Stainforthia, 11
fusuliformis, Parafissurina, 76, 95

G

gallowayi, Astrononion, 11, 54, 73, 75, 78, 86,
88,93
Gauss Normal-Polarity Chron, 3
Gilbert Reversed Normal-Polarity Chron, 3
glacialis,
Guttulina, 70,71, 72, 73, 74, 75, 76, 79, 84,
© 86,88,94;pl.3
Krithe, 38
Glandulina, 57
laevigata, 76, 80, 81, 82, 84, 88, 94; pl. 3
Globulina
inaequalis, 88, 94
landesi, 15, 94
sp., 74, 76, 84, 88, 94
Gordiospira, 11
arctica, 11, 44,72,73, 74, 75, 81, 82, 84, 88,
94;pl.3
gracilis, Lagena, 72, 95
gracillima, Lagena, 71, 72,75, 76, 78, 82, 84,
86, 88,95;pl. 3
groenlandica, Elphidiella, 1, 10, 11, 12, 13, 14,
39, 44, 58, 59, 62, 70, 71, 72, 73, 74, 75,
76, 80, 81, 82, 84, 86, 88,93; pl. 1
groenlandicum, Elphidium, 93
Gubik Formation, 10
Gunsight Mountain glaciation, 3
guttifer, Reophax, 11
Guttulina, 57, 94
austriaca, 75, 82, 84, 86, 94
dawsoni, 72, 75, 80, 82, 84, 86, 88,94, pl. 3
glacialis, 70,71, 72,73, 74,75, 76, 79, 84,
86,88,94;pl. 3
lactea, 75, 76, 78, 80, 81, 84, 86, 94
problema, 88, 94
sp., 70, 71, 72, 73, 74, 76, 80, 81, 82, 84, 86,
94

H

" hauerinoides, Pateoris, 11, 74, 75, 84, 86, 88,

95;pl. 4
hexagona,
Lagena, 76, 80, 82, 95; pl. 3
Oolina, 95
hyalacrulus, Astracolus, 72, 86, 93
hyalascidia, Laryngosigma, 75, 76, 82, 95

I

Ilyocypris bradii, 39
inaequalis, Globulina, 88, 94
incertum, Elphidium, 1, 11, 12, 13, 14, 15, 17,
18, 19, 20, 21, 24, 25, 28, 29, 31, 33, 34,
36, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50,
51, 53, 54, 56, 57, 58, 59, 70, 71, 72, 73,
74,175,176, 78, 79, 80, 81, 82, 84, 86, 88,
94;pl. 2
inusitata, Buccella, 50, 72, 73, 74, 79, 80, 81,
84, 88,93
involvens,
Cornuspira, 93
Cyclogyra, 11,71, 73, 74, 76, 78, 81, 82, 84,
88,93;pl. 1
islandica, Cassidulina, 11, 14, 15, 16, 17, 18,
19, 20, 21, 22, 24, 25, 28, 30, 31, 33,
34, 36, 38, 39, 41, 43, 46, 49, 53, 54,
56,71, 72,73, 74,75, 76, 78, 79, 80,
81, 82, 84, 86, 88, 93; pl. 1
Itkillik glaciation, 3, 4 '
Itkillik 1, 4, 5
Itkillik I1, 4, 5
ittai, Dentalina, 71, 80, 82, 84, 86, 88, 93; pl. 1

J
Jeffreysii, Alveolophragmium, 11
K

Kotzebuan, 4
Krithe glacialis, 38

L

labradorica, Nonionella, 11, 88, 95
lactea, Guttulina, 75, 76, 78, 80, 81, 84, 86, 94
laevicosta, Lagena sulcata, 76, 86, 95
laevigata, Glandulina, 76, 80, 81, 82, 84, 88,
94;pl. 3
laevis, Lagena, 71, 76, 78, 84, 86, 88, 95; pl. 3
Lagena, 14, 20, 25, 34
costata, 72, 73, 76, 86, 94, 95; pl. 3
distoma, 78, 95
gracilis, 72, 95
gracillima, 71, 72,75, 76, 78, 82, 84, 86, 88,
95; pl. 3
hexagona, 76, 80, 82, 95; pl. 3
laevis, 71, 76, 78, 84, 86, 88, 95; pl. 3
mollis, 13, 76, 95; pl. 3
parri, 84,95
sulcata laevicosta, 76, 86, 95
sp., 71, 76, 78, 82, 88, 95; pl. 3
lagenids, 50
landesi, Globulina, 75, 94



Laryngosigma hyalascidia, 75, 76, 82, 95
lateralis carinata, Parafissurina, 81, 84, 95
Leffingwell Lagoon unit, 6, 7, 8, 9, 10, 25, 27,
" 29,30, 31, 32, 39, 41, 42, 44, 45, 47, 48,
51, 52, 54, 55, 57, 58, 60, 62, 63

Limnocythere

liporeticulata, 39

platyforma, 39
lineata, Oolina, 79, 95
lineatopunctata, Oolina, 76, 82, 95; pl. 4
liporeticulata, Limnocythere, 39
lobatulus, Cibicides, 11, 71, 76, 84, 88, 93; pl. 1
loeblichi,

Fursenkoina, 76, 94; pl. 3
loeblichi—Continued

Virgulina, 94
lucida, Fissurina, 76, 78, 94

M

Maguire Islands unit, 6, 7, 8, 9, 10, 25, 26, 27,
29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 41,
42, 44, 45, 48, 51, 52, 54, 55, 57, 59, 60,
62, 63, 64, 65

marginata, Fissurina, 71, 73,75, 76, 78, 82, 84,
86, 88, 94

Matuyama Reversed-Polarity Chron, 3, 5

mckannai, Cibicides, 81, 93

melo, Oolina, 76, 95; pl. 4

Melonis zaandamae, 11, 49, 50, 84, 95; pl. 4

middle Wisconsin, 1, 3, 4, 5, 7, 8, 10, 29, 30, 31,
52, 53, 54, 57, 62, 63

Mikkelsen Bay unit, 6, 7, 8, 10, 29, 30, 51, 52,
57, 62

miliolids, 11

Miliolinella chukchiensis, 49, 75, 78, 79, 81, 82,
84, 86, 88, 95; pl. 3

minutissimus, Ammodiscus, 11

mollis, Lagena, 73, 76, 95; pl. 3

N

nana, Trochammina, 11
nanum,
Elphidium, 34, 35,71, 72,73, 74,75, 76, 78,
79, 80, 81, 84 86, 88, 94, pl. 2
Protelphidium, 94
Newport sand unit, 6, 7, 8, 39, 40
Nodosaria spp., 86, 95
Nonion
pauciloculum albiumbilicatum, 93
sp., 71, 76, 88, 95
zaandamae, 95
Nonionella
auricula, 11, 54,71, 72,75, 76, 86, 95; pl. 4
digitata, 11
labradorica, 11, 88, 95
sp., 12, 30, 70, 75, 95
norcrossi, Cassidulina, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21,22, 24, 25, 28, 31,
33, 34, 36, 38, 39, 41, 43, 44, 46, 47,
49, 53, 54,56, 70,71, 72, 73, 74, 75,
76, 78, 79, 80, 81, 82, 84, 86, 88, 93;
pl. 1
North Star sand unit, 6, 7, 8, 30, 32, 47, 48

INDEX

novangliae,
Pseudopolymorphina, 76, 88, 95
Nuwok Member, 50

()]

oblongata, Triloculina, 11
Oolina, 20
caudigera, 73, 75, 81, 95
costata, 94
hexagona, 95
lineata, 79, 95
lineatopunctata, 76, 82, 95; pl. 4
melo, 76,95; pl. 4
sp., 76, 95 )
orbiculare, Elphidium, 4, 6, 11, 12, 13, 14, 15,
17, 18, 19, 21, 22, 24, 28, 30, 31, 33,34,
35, 36, 38, 39, 41, 43, 44, 46, 49, 51, 53,
54, 56, 57, 58,70, 71,72, 73, 74, 75, 76,
78,79, 80, 81, 82, 84, 86, 88,94; pl. 2

pacifica, Bolivina, 11
Paracyprideis pseudopunctillata, 17, 38
Parafissurina, 34
arctica, 74, 75, 95
Sfusuliformis, 76, 95
lateralis carinata, 81, 84, 95
sp., 82,95
tectulostoma, 71, 74, 76, 78, 86, 88, 95
parri, Lagena, 84, 95
Patellina corrugata, 11
Pateoris hauerinoides, 71, 74, 75, 84, 86, 88,
95;pl. 4
pauciloculum albiumbilicatum, Nonion, 93
pauperata, Dentalina, 84, 93; pl. 1
Pelukian, 1, 3,5,6,7,8,9, 10, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40,41, 42, 43, 44, 45, 46, 47, 48, 49,
51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62,
63, 64, 65
platyforma, Limnocythere, 39
Polymorphina
(Polymorphien) cylindroides, 95
spp., 72, 75, 81, 82, 86, 95
suboblonga, 70, 71, 72, 73, 74, 75, 76, 78,
79, 80, 81, 84, 86, 88,95; pl. 4
polymorphinids, 11, 50
Portlandia, 8
problema, Guttulina, 88, 94
Protelphidium nanum, 94
Psammospheara fusca, 11
Pseudopolymorphina
curta, 94
novangliae, 76, 88, 95
soldanii, 75, 95
suboblonga, 95
pseudopunctata, Bolivina, 42, 44, 81, 93
pseudopunctillata, Paracyprideis, 17, 38
Pullenia sp., 80, 95
Pulvinulina frigida, 93
Pyrgo williamsoni, 11, 72,75, 82, 84, 86, 88, 95
Pyrulina cylindroides, 74, 75, 78, 79, 86, 88, 95
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Q

Quinqueloculina, 11, 57

agglutinata, 11, 76, 95

arctica, 70, 71, 73, 81, 82, 84, 88, 95; pl. 4

seminulum, 11, 45, 50, 51, 70, 71, 72, 73,
74,75, 76, 80, 81, 82, 84, 86, 88, 95;
pl. 4 '

spp., 71,72, 74, 95

stalkeri, 11, 71, 72, 73, 74, 76, 84, 86, 95;
pl. 4

quinqueloculinids, 44

ramosa, Saccorhiza, 11
rectangulata, Candona, 39
Recurvoides turbinatus, 11
regularis, Reophax, 11
Reophax

arctica, 11

curtus, 11, 39, 80, 96

guttifer, 11

regularis, 11

spp., 73, 82, 96; pl. 4
rotaliformis, Trochammina, 73, 96; pl. 4

Saccorhiza ramosa, 11
Sagavanirktok Formation, 50
Sagavanirktok River glaciation, 3
Sangamon interglacial, 4, 5, 9
Sarsicytheridea bradii, 16
schreibersiana,
Fursenkoina, 57,71, 81, 82, 84, 88, 94
Virgulina, 94
Scutuloris, 11
tegminis, 11, 50, 71, 72, 73, 74, 75, 76, 81,
82, 84, 86, 96; pl. 4
semimarginata, Fissurina, 76, 88, 94; pl. 3
seminulum, Quinqueloculina, 11, 45, 50, 51, 70,
71, 72,73, 74,75, 76, 80, 81, 82, 84, 86,
88,95;pl. 4
serrata, Fissurina, 73, 75, 84, 94; pl. 3
Shaviovik gravel unit, 6, 7, 8, 9, 25, 26, 29, 30,
34, 35, 36, 37, 39, 40, 54, 55, 60, 63
Sigmomorphina sp., 84, 96
Simpsonian, 1,3, 4,5, 6,7, 8, 10, 12, 13, 14, 15,
16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 41, 42,
43,44 45, 46, 47, 48, 49, 51, 54, 55, 56,
57, 59, 60, 61, 62, 63, 64, 65
soldanii, Pseudopolymorphina, 75, 95
Spiroplectammina biformis, 11, 18, 21,22, 72,
73,96; pl. 4
Staines River unit, 6, 7, 8, 30, 32, 47, 48, 54
Stainforthia
complanata, 11
concava, 11, 14, 15, 18, 19, 20, 21, 31, 33,
34,42, 43, 44, 45, 49, 51, 53, 54, 56,
57,71,72,73, 75, 76, 81, 82, 84, 86,
88, 96; pl. 4
fusiformis, 11
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stalkeri, Quinqueloculina, 11, 71, 72, 73, 74, 76,
84, 86,95; pl. 4 A
Stefansson Sound unit, 6, 7, 10, 25, 27, 36, 37,
39, 40, 57, 64
suboblonga,
Polymorphina, 70,71, 72,73, 74,75, 76, 78,
79, 80, 81, 84, 86, 88, 95; pl. 4
Pseudopolymorphina, 95
sulcata laevicosta, Lagena, 76, 86, 95

T

tectulostoma, Parafissurina, 71, 74, 76, 78, 86,
88, 95

tegminis, Scutuloris, 11, 50,71, 72,73, 74, 75,
76, 81, 82, 84, 86, 96; pl. 4

teretis, Cassidulina, 11

Textularia torquata, 11

torquata, Textularia, 11

trihedra, Triloculina, 11, 14, 20, 30, 71, 72, 73,
74,775, 76, 78, 79, 81, 82, 84, 86, 88, 96

Triloculina, 11, 25

oblongata, 11

trihedra, 11, 14, 20, 30, 71, 72, 73, 74, 75,

76,78, 79, 81, 82, 84, 86, 88, 96

Trochammina

bullata, 11

nana, 11

rotaliformis, 73, 96; pl. 4

sp., 72, 96
Trochamminella atlantica, 39, 71, 80, 81, 96
turbinatus, Recurvoides, 11

U
ustulatum,
Cribroelphidium, 93
Elphidium, 1, 5, 50, 57, 58, 84, 86, 94; pl. 2
A"/

ventricosa, Fissurina, 71, 74, 88, 94

Virgulina .
loeblichi, 94
schreibersiana, 94
vitrea, Epistominella, 18, 19, 31, 33, 34, 43, 44,
53, 54, 56, 57, 70, 72, 74, 75, 76, 81, 86,
88, 94
Valvulineria arctica, 74, 96

w

Wainwrightian, 1, 3,4,5,6,7, 8,9, 14, 16, 17,
18,19, 22, 23, 24, 27, 28, 29, 30, 31, 32,
33, 34,41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
62,63

Wisconsin glacial, 3, 4, 10, 30, 58, 59, 65

williamsoni, Pyrgo, 11, 72,75, 82, 84, 86, 88, 95

Z
zaandamae,

Melonis, 11, 49, 50, 84, 95; pl. 4
Nonion, 95






‘PLATE 1
Figure 1.
2.

3.

10.
11.

12.

13.

Buccella frigida (Cushman)

Borehole HLA 4, sample 4-2. Bar equals 100 um
Cassidulina islandica Norvang

Borehole HLA 18, sample 18-21. Bar equals 100 pm.
Cassidulina norcrossi Cushman

Borehole HLA 17, sample 17-2. Bar equals 200 pm.

. Cibicides lobatulus (Walker and Jacob)

Borehole HLA 18, sample 18-5. Bar equals 200 um. A

. Cyclogyra involvens (Reuss)

Borehole HLA 18, sample 18-1. Bar equals 200 um.

. Dentalina frobisherensis Loeblich and Tappan

Borehole HLA 4, sample 4-11. Bar equals 200 pm.

. Dentalina ittai Loeblich and Tappan

Borehole HLA 4, sample 4-13. Bar equals 100 Hm.

. Dentalina pauperata d’Orbigny

Borehole HLA 18, sample 18-24. Bar equals 1 mm.

. Discorbis baccata (Heron-Allen and Earland)

Borehole HLA 4, sample 4-3. Bar equals 40 um
Eggerella advena (Cushman)

Borehole HLA 12, sample 12-12. Bar equals 100 pm.
Elphidiella? brunnescens Todd

Borehole HLA 18, sample 18-35. Bar equals 200 pm.
Elphidiella? brunnescens Todd

Worn specimen. Borehole HLA 18, sample 18-34. Bar

equals 100 pm, '
Elphidiella groenlandica (Cushman)

Borehole HLA 4, sample 4-8. Bar equals 200 pm.
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BUCCELLA, CASSIDULINA, CIBICIDES, CYCLOGYRA, DENTALINA, DISCORBIS,
EGGERELLA, ELPHIDIELLA?, AND ELPHIDIELLA




PLATE 2

Figure 1. Elphidium albiumbilicatum (Weiss)

2.

3.

10.

11.

12.

Borehole HLA 4, sample 4-2. Bar equals 100 um.
Elphidium asklundi Brotzen

Borehole HLA 4, sample 4-2. Bar equals 100 pm,
Elphidium bartletti Cushman

Borehole HLA 18, sample 18-1. Bar equals 200 um.

. Elphidium clavatum Cushman

Borehole HLA 18, sample 18-1. Bar equals 100 pm.

. Elphidium clavatum Cushman

Borehole HLA 4, sample 4-1. Bar equals 100 pm.

. Elphidium excavatum alba Feyling-Hanssen

Borehole HLA 19, sample 19-3. Bar equals 100 pm.

. Elphidium frigidum Cushman

Borehole HLA 4, sample 4-2. Bar equals 100 pm.

. Elphidium nanum Vilks

Borehole HLA 4, sample 4-3. Bar equals 100 um.

. Elphidium incertum (Williamson)

Borehole HLA 6, sample 6-1. Bar equals 100 pm.
Elphidium orbiculare (Brady)
Borehole HLA 18, sample 18-21. Bar equals 100 pm.
Elphidium ustulatum Todd
This form has very short slits along suture lines as in
E. incertum. Borehole HLA 18, sample 18-30. Bar
equals 100 pm.
Elphidium ustulatum Todd
This form has slits along the suture line, but these are
not as broad as in typical E. ustulatum. Borehole HLA 18,
sample 18-31. Bar equals 100 um.
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Figure 1.
2.

3.

10.
11.
12.
13.
14.

15.

Fissurina danica (Madsen)
Borehole HLA 12, sample 12-7. Bar equals 100 pm.
Fissurina semimarginata (Reuss)
Borehole HLA 20, sample 20-4. Bar equals 100 pm.
Fissurina serrata (Schlumberger)
Borehole HLA 18, sample 18-30. Bar equals 100 pm.

. Fursenkoina loeblichi (Feyling-Hanssen)

Borehole HLA 12, sample 12-10. Bar equals 100 pm.

. Glandulina laevigata (d’ Orbigny)

Borehole HLA 12, sample 12-3. Bar equals 200 pm.
Gordiospira arctica Cushman
Borehole HLA 18, sample 18-31. Bar equals 100 um.
Guttulina dawsoni Cushman and Ozawa
Borehole HLA 18, sample 18-1. Bar equals 200 pm.
Guttulina glacialis (Cushman and Ozawa)
Borehole HLA 18, sample 18-1. Bar equals 100 pm.
Lagena costata (Williamson)
Borehole HLA 6, sample 6-2. Bar equals 100 um.
Lagena gracillima (Sequenza)
Borehole HLA 4, sample 4-13. Bar equals 200 pm.
Lagena hexagona (Williamson)
Borehole HLA 12, sample 12-3. Bar equals 100 um.
Lagena laevis (Montagu)
Borehole HLA 18, sample 18-31. Bar equals 200 pm.
Lagena mollis Cushman
Borehole HLA 7, sample 7-13. Bar equals 100 um.
Lagena sp.
Borehole HLA 4, sample 4-13. Bar equals 100 pm.
Miliolinella chukchiensis Loeblich and Tappan
Borehole HLA 18, sample 18-10. Bar equals 100 pm.
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PLATE 4

Figure 1. Melonis zaandamae (van Voorthuysen)

2.

3.

10.

11.

12.

13.

14.

Borehole HLA 18, sample 18-31. Bar equals 200 um.
Nonionella auricula Heron-Allen and Earland ’

Borehole HLA 12, sample 12-10. Bar equals 200 pm.
Oolina lineatopunctata (Heron-Allen and Earland)

Borehole HLA 17, sample 17-8. Bar equals 100 pm.

. Oolina melo &’ Orbigny

Borehole HLA 12, sample 12-7. Bar equals 100 pm.

. Pateoris hauerinoides (Rhumbler)

Borehole HLA 18, sample 18-31. Bar equals 200 pm.

. Polymorphina suboblonga (Cushman and Ozawa)

Borehole HLA 12, sample 12-2. Bar equals 200 pm.

. Quinqueloculina arctica Cushman

Borehole HLA 4, sample 4-2. Bar equals 200 pm.

. Quinqueloculina seminulum (Linne)

Borehole HLA 17, sample 17-5. Bar equals 100 pm.

. Quinqueloculina stalkeri Loeblich and Tappan

Borehole HLA 6, sample 6-3. Bar equals 100 pm.
Reophax spp.

Borehole HLA 7, sample 7-1. Bar equals 200 pm. -
Scutuloris tegminis Loeblich and Tappan

Borehole HLA 18, sample 18-1. Bar equals 100 pm.
Spiroplectammina biformis (Parker and Jones)

Borehole HLA 6, sample 6-1. Bar equals 100 pm.
Stainforthia concava (Hoeglund)

Borehole HLA 4, sample 4-11. Bar equals 200 pm.
Trochammina rotaliformis Wright

Borehole HLA 7, sample 7-1. Bar equals 100 pm.
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MELONIS, NONIONELLA, OOLINA, PATEORIS, POLYMORPHINA, QUINQUELOCULINA, REOPHAX,
SCUTULORIS, SPIROPLECTAMMINA, STAINFORTHIA, AND TROCHAMMINA
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Periodicals

Earthquakes & Volcanoes (issued bimonthly).
Preliminary Determination of Epicenters (issued monthly).

Technical Books and Reports

Professional Papers are mainly comprehensive scientific re-
ports of wide and lasting interest and importance to professional
scientists and engineers. Included are reports on the results of
resource studies and of topographic, hydrologic, and geologic
investigations. They also include collections of related papers
addressing different aspects of a single scientific topic.

Bulletins contain significant data and interpretations that are of
lasting scientific interest but are generally more limited in scope or
geographic coverage than Professional Papers. They include the
results of resource studies and of geologic and topographic investi-
gations, as well as collections of short papers related to a specific
topic.

Water-Supply Papers are comprehensive reports that present
significant interpretive results of hydrologic investigations of wide
interest to professional geologists, hydrologists, and engineers. The
series covers investigations in all phases of hydrology, including
hydrogeology, availability of water, quality of water, and use of
water.

Circulars present administrative information or important sci-
entific information of wide popular interest in a format designed for
distribution at no cost to the public. Information is usually of short-
term interest.

Water-Resource Investigations Reports are papers of an inter-
pretive nature made available to the public outside the formal USGS
publications series. Copies are reproduced on request unlike formal
USGS publications, and they are also available for public inspection
at depositories indicated in USGS catalogs.

Open-File Reports include unpublished manuscript reports,
maps, and other material that are made available for public consul-
tation atdepositories. They are a nonpermanent form of publication
that may be cited in other publications as sources of information.

Maps

Geologic Quadrangle Maps are multicolor geologic maps on
topographicbasesin 7 1/2- or 15-minute quadrangle formats (scales
mainly 1:24,000 or 1:62,500) showing bedrock, surficial, or engi-
neering geology. Maps generally include brief texts; some maps
include structure and columnar sections only.

Geophysical Investigations Maps are on topographic or plani-
metric bases at various scales; they show results of surveys using
geophysical techniques, such as gravity, magnetic, seismic, or
radioactivity, which reflect subsurface structures that are of eco-
nomic or geologic significance. Many maps include correlations
with the geology.

Miscellaneous Investigations Series Maps are on planimetric
or topographic bases of regular and irregular areas at various scales;
they present a wide variety of format and subject matter. The series
also includes 7 1/2-minute quadrangle photogeologic maps on
planimetric bases that show geology as interpreted from aerial
photographs. Series also includes maps of Mars and the Moon.

Coal Investigations Maps are geologic maps on topographic or
planimetric bases at various scales showing bedrock or surficial
geology, stratigraphy, and structural relations in certain coal-resource
areas.

Oil and Gas Investigations Charts show stratigraphic informa-
tion for certain oil and gas fields and other areas having petroleum
potential.

Miscellaneous Field Studies Maps are multicolor or black-and-
white maps on topographic or planimetric bases on quadrangle or
irregular areas at various scales. Pre-1971 maps show bedrock
geology in relation to specific mining or mineral-deposit problems;
post-1971 maps are primarily black-and-white maps on various
subjects, such as environmental studies or wilderness mineral inves-
tigations.

Hydrologic Investigations Atlases are multicolor or black-and-
white maps on topographic or planimetric bases presenting a wide
range of geohydrologic data of both regular and irregular areas;
principal scale is 1:24,000, and regional studies are at 1:250,000
scale or smaller.

Catalogs

Permanent catalogs, as well as some others, giving comprehen-
sive listings of U.S. Geological Survey publications are available
under the conditions indicated below from the U.S. Geological
Survey, Books and Open-File Reports Sales, Federal Center, Box
25286, Denver, CO 80225. (See latest Price and Availability List.)

"Publications of the Geological Survey, 1879-1961" may be
purchased by mail and over the counter in paperback book form and
as a set of microfiche.

""Publications of the Geological Survey, 1962-1970'' may be
purchased by mail and over the counter in paperback book form and
as a set of microfiche.

""Publications of the Geological Survey, 1971-1981" may be
purchased by mail and over the counter in paperback book form (two
volumes, publications listing and index) and as a set of microfiche.

Supplements for 1982, 1983, 1984, 1985, 1986, and for subse-
quent years since the last permanent catalog may be purchased by
mail and over the counter in paperback book form.

State catalogs, "List of U.S. Geological Survey Geologic and
Water-Supply Reports and Maps For (State)," may be purchased by
mail and over the counter in paperback booklet form only.

""Price and Availability List of U.S. Geological Survey Pub-
lications," issued annually, is available free of charge in paperback
booklet form only.

Selected copies of a monthly catalog "New Publications of the
U.S. Geological Survey" are available free of charge by mail or may
be obtained over the counter in paperback booklet form only. Those
wishing a free subscription to the monthly catalog "New Publica-
tions of the U.S. Geological Survey" should write to the U.S.
Geological Survey, 582 National Center, Reston, VA 22092.

Note.--Prices of Government publications listed in older cata-
logs, announcements, and publications may be incorrect. Therefore,
the prices charged may differ from the prices in catalogs, announce-
ments, and publications.



