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APPLICATIONS OF VELOCITY-STACK METHODS 
TO SEISMIC DATA PROCESSING 

By Myung W. Lee and Warren F. Agena 

ABSTRACT 

A velocity stack is originally defined as the summation 
of a seismic event along a hyperbolic moveout trajectory, but 
this definition is extended to include both linear and para­
bolic moveouts in this report. Thus, our velocity stack can be 
used for modeling events with a variety of moveouts. The 
ability to model via a velocity stack provides us a number of 
applications in the area of seismic data processing, such as 
multiple suppression, coherency filtering, trace interpola­
tion, and velocity analysis. To take advantage of the compu­
tational efficiency in the frequency domain, only linear and 
parabolic moveouts are considered here. 

Velocity stacking can be accomplished through the use 
of either a transpose operator, such as in conventional veloc­
ity analysis, or by an inverse operator. These operators 
depend only on the source-receiver offsets of seismic traces 
and the range of velocities. The choice between the transpose 
and the inverse operator for computational purposes is imma­
terial because either operator need only be computed once. 
Some advantages in using the inverse operator over the trans­
pose operator include preserving the input waveform (the 
transpose operator tends to bias the frequency content toward 
lower frequencies) and minimizing any mixing effects. These 
favorable properties of the inverse operator also allow for 
better coherency filtering and trace interpolation. 

Because velocity stacking works well at all source­
receiver offsets, its performance in suppressing multiples is 
better than two-dimensional filtering in the frequency-wave­
number domain. When working with good-quality seismic 
data, using an inverse operator for velocity analysis has sig­
nificant advantages over a transpose operator. However, as 
the quality of the data decreases with the addition of more 
noise, the use of the inverse operator is only marginally better. 

INTRODUCTION 

Normal moveout (NMO) correction and stacking are 
standard, industry, seismic-data-processing sequences. 
Combining these two processes is identical to stacking along 

a family of hyperbolic curves and is described as a velocity 
stack using a transpose operator (Thorson, 1984; Thorson 
and Claerbout, 1985). Conventional constant velocity analy­
sis is one form of velocity stack using a transpose operator. 
It is a linear transformation and maps the data into velocity 
space. One problem in using a transpose operator is the 
smearing effect it has on the data. To better discriminate sig­
nal and noise in velocity space, Thorson ( 1984) proposed an 
inverse op~rator, which essentially deconvolves the spatial 
mixing effect of the transpose operator. 

Thorson ( 1984) described two approaches in estimating 
an inverse operator: the generalized inverse and stochastic 
inverse. The original formulation of Thorson ( 1984) requires 
inversion of a large matrix. Hampson ( 1986) showed that, 
for a typical 96-trace seismic shot of 3-s duration, the matrix 
order would be 150,000 by 150,000. Thorson and Claerbout 
(1985) suggested an iterative solution using a conjugate-gra­
dient method, which is still time consuming but more effi­
cient. In order to reduce computational time in estimating an 
inverse operator further, Hampson (1986) proposed a para­
bolic trajectory rather than a hyperbolic trajectory. The par­
abolic trajectory is not a physically observable traveltime 
curve in the offset domain, but it can be approximated by 
using NMO corrections with appropriate velocities. This 
approximation enables the use of the Fourier transform, and 
a computationally efficient method can be derived. 

Computing an inverse operator is more time consuming 
than computing a transpose operator. However, because both 
computations depend only on offset and number of velocities 
(or slownesses ), these operators need only be computed 
once, and, hence, the choice between the two methods based 
on computing time alone is immaterial. 

To a first-order approximation, seismic data in the off­
set domain can be considered as a linear superposition of 
many events whose traveltimes describe certain trajecto­
ries. The collection of events are defined as a model in the 
velocity domain. The inverse operator allows us to accu­
rately estimate such a model from seismic data contami­
nated with random noise, and it provides us with a number 
of processing techniques, such as multiple removal, coher­
ency filtering, trace interpolation, and velocity analysis. 
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The performances of both the inverse and transpose opera­
tors for each application are compared, and the advantages 
of the inverse operator are discussed. 

Thorson (1984) described m!lltiple suppression by 
stacking along the primary velocity in velocity space. He uti­
lized the property of better velocity discrimination of an 
inverse operator in his multiple suppression. Another 
approach to multiple suppression is to model the multiple 
energy by an inverse operator and subtract this multiple 
energy from the original data. This approach of multiple sup­
pression by velocity stack is described well by Hampson 
(1986), and the actual performance for a field data set is doc­
umented by Geist and others (1990). This paper employs 
Hampson's approach and uses models to quantify the perfor­
mance of multiple suppression-we emphasize the use of 
static corrections for better multiple elimination. 

The random noise in seismic data cannot be modeled as 
coherent events using a velocity stack. By transforming the 
data into model space and back to the offset domain, random 
noise will be reduced. This property can be used as a coher­
ency-filtering or a signal-enhancement technique. Kong and 
others (1985) and Monk (1992) described nonlinear, coher­
ency-filtering techniques using the invertible Radon trans­
form or 't-p transform. Seismic events can also be predicted 
along various moveouts in model space, and this property 
can be used in trace interpolation. An inverse operator used 
for coherency filtering and trace interpolation produces data 
with reduced trace mixing (smearing) and preserves the 
high-frequency components. 

The compact response, or reduced side lobes, of an 
inverse operator in the slowness domain is ideally suited for 
high-resolution velocity analysis (Thorson, 1984 ). However, 
noise introduced into real data sets degrades the performance 
of an inverse operator. This limitation in the presence of 
noisy data will be discussed later. 
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THEORY 

Detailed theoretical development of inverse velocity 
stacking can be found in Thorson (1984) and Hampson 
(1986). To a first-order approximation, considering only 
arrival times, seismic data can be modeled as a superposition 
of laterally coherent events. For example, a plane-wave 
response of dipping layers consists of laterally coherent 
events whose stepout times are linear with distance. Also, a 
seismic event recorded on a horizontal-receiver spread from 

a shot can be modeled as an event whose traveltime is repre­
sented by a hyperbolic curve. The only difference between 
the above two examples is the functional relationship of 
arrival times with respect to the appropriate coordinate sys­
tem. In the data space or offset space, we use offset, h, and 
two-way time, t, as variables, and in the model space or 
velocity space we use slowness, p, and zero-offset time, 't. 

Therefore, the seismic data d(h,t) can be represented by: 

d (h, t) = J J u (p, 1:) () (f(t, h, 1:, p)) dpdt + n (h, t) 
(1a) 

where 
d(h,t) is the measured seismogram at offset, h, and two­

way time, t, 
u(p,'t) are seismic models with slowness, p, and zero-off­

set time, 1:, 

() is the Dirac delta function, 
flt,h,'t,p) is the traveltime relationship between data and 

model spaces, and 
n(h,t) is the measurement noise at offset, h, and two-way 

·time, t. 
Three functional relationships, flt,h,'t,p), in equation 

1a are considered by numerous authors. Stoffa and others 
(1981) usedflt,h,'t,p) = 1:-(t-ph) as their functional relation­
ship (this is the well-known slant stack or 1:-p operation), 
whereas Thorson (1984) used a hyperbolic relationship, 

flt,h,'t,p) = 1:-J?- p
2
h

2
, for his inverse velocity stack. 

Hampson (1986) used a parabolic approximation to a 

hyperbolic traveltime curve (which isflt,h,'t,p) = 't-(t-sh2), 

with a new parameter, s) in his study of inverse velocity 
stack for multiple removal. The meaning of s will be dis­
cussed later. In this section, it is treated as a parameter 
similar to slowness, p. 

Thorson (1984) defined the integral relationship in 
equation 1 a without a noise term as an operator, L, such that 
d(h,t) = Lu(p,'t) and defined a transpose operator, LT, as 
u(p,'t) = LTd(h,t). Or: 

T 
u (p, 1:) = L d (h, t) = 

f f d (h, t) () (f(t, h, 't, p)) dhdt (lb) 

In the operator L, the variable 1: is expressed as a function of 

t, and in the operator L T, the variable tis expressed as a func­
tion of 1:. Equation 1 b indicates that performing normal 
moveout correction and stacking, or stacking along the 
moveout defined by flt,h,'t,p), are methods of transforming 
data into velocity space or model space. Under what condi­
tions is this operation invertible? In other words, what oper­
ator will correctly invert the velocity space into the data 
space? As pointed out by Thorson (1984), the transpose oper­
ator defined in equation 1 b does not work well for a truncated 
data set, such as any real data set. The purpose of this section 
is to derive an efficient inverse operator that performs better 
than the transpose operator defined in equation 1 b. 
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A computationally efficient inverse operator is diffi­
cult to derive if a hyperbolic moveout is assumed in equa­
tion lb. But, for a linear moveout or parabolic moveout, an 
efficient method can be derived in the frequency domain 
(Hampson, 1986). If we use a parabolic relationship for fin 
equation 1 a, then: 

d(h,t) = IIu(s,t)O(t- (t-sh
2
))dsdt+n(h,t) 

= Iu(s,t-sh
2
)ds+n(h,t) (2) 

Equation 2 indicates that the seismic data can be modeled 
by summing the model along a parabolic trajectory. Equa­
tion 2 also indicates that the data space can be modeled by 
a convolution of the model u(p,t) with the parabolic trajec­
tory in the time domain. This convolutional property using 
the parabolic or linear traveltime curve in equation 1 is use­
ful in the frequency domain because convolution in the 
time domain can be represented by multiplication in the 
frequency domain. 

D (hp ro) 
-iros1h: -iros2h: 

e e 

D (h2, ro) 
-iros 1 h~ -iros2h~ 

e e 

D (hN, ro) 
-iros 1 h~ -iros2h~ 

e e 

·e 

·e 

Let us take a Fourier transform of equation 2, and let 
upper-case variables represent the Fourier-transformed 
variables. Then: 

I -irot 
d(h, t) e dt = 

D (h, ro) = I I u (s, t) e-irote -irosh
2

dsdt + N (h, ro) 

J 
-irosh

2 

= U (s, ro) e ds + N (h, ro) (3) 

Equation (3) is valid for a continuous variable in h and s. 
Let us assume that the offset, h, has only discrete values 
ht.h2, .... ,hN, and s has discrete values St.S2, .... ,sM. Then 

equation 3 can be written, using a matrix notation (a matrix 
is denoted as a bold-faced, upper-case letter) as: 

D = LU+N (4) 

where 

D is a column vector of (D(ht.ro),D(h2,ro), .... ,D(hN,ro)) 
with dimension N, 

U is a column vector of (U(st.ro),U(s2,ro), .... ,U(sM,ro)) 
with dimension M, 

N is a column vectorof(N(ht.ro),N(h2,ro), .... ,N(hN,ro)), and 

L is an NxM matrix with element of Lnm = e-irosmh
2
n. 

Explicitly, equation 4 can be written: 

-irosMh: 
U(spro) N (hp ro) 

-irosMh~ 
U (s2, ro) N(h2, ro) 

+ (5) 

-irosMh~ 
·e U (sM, ro) N(hN' ro) 
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Now the question is how to compute model space, U, 
from the noisy discrete data, D, while minimizing the misfit 
function or noise, N. Thorson and Claerbout (1985) demon­
strated that this problem can be solved as an overdeter­
mined linear system. The standard least-squares solution to 
equation 4 is: 

(6) 

Equation 6 shows the desirable inverse operator, G = 

(LTL )-1 L~ in the velocity stack. 

The meaning of the s in the parabolic moveout is not as 
straightforward as the p in the linear or hyperbolic moveout 
because this is not a physically observable moveout. The lin­
ear relationship between the time variables ( 't and t) makes 
possible the frequency domain operation in equation 1. 
Under which circumstances can a hyperbolic moveout be 
approximated by a parabolic moveout that is linear in 't and 
t? The hyperbolic-moveout equation can be expanded using 
a Taylor series: 

J2 22 J 22 2 't + p h = 't 1 + (p h I 't ) 

If (p2h2!t2) << 1, dropping higher order terms can be justi­
fied. The only adjustable variable that will satisfy this con­
dition is the slowness variable, p, and this adjustment can be 
accomplished by applying a normal moveout (NMO) cor­
rection with a slowness, Pc• as shown in Hampson (1986). 
Therefore the time (t') after the NMO correction with Pc can 
be written using equation 7: 

Therefore, if Pr is very small or p is close to Pc• a parabolic 
approximation can be justified. The parameter s defined in 

equation 2 is (p,2/2't), and, strictly speaking, it is not a slow­

ness parameter. Because the coefficient h2 in the parabolic 
approximation is a function of zero-offset time, the shape of 
a parabola for a given s is a function of zero-offset time, dif­
ferent from the slant stack. Also, smearing can be expected 
as events deviate from the ideal parabolic form. 

INVERSE AND TRANSPOSE OPERA TORS 

Denoting the element of inverse operator G as G ij• 
equation 6 can be written as: 

U(sp ro) G11 G12 · G1M D (hp ro) 

U (s2, ro) G2I G22 · G2M D (h2, ro) 

= (9) 

GNIGN2 

For a given frequency, each element of G is a complicated 
function of h and s, which is easily seen from equation 5, 
but does not involve actual data. In other words, for the 
same field geometry (same offset) and range of slownesses, 
the same inverse operator can be applied to the data set to 
compute U or D. Therefore, we can pre-compute an inverse 
operator or a transpose operator before applying it to the 
data. Because we only have to compute the operator once, 
the fact that computing an inverse operator is more expen­
sive that computing the transpose operator is rather trivial. 

Figure 1A shows the elements of an inverse operator, 
Gu, convolved with a zero-phase band-pass wavelet for a 
parabolic moveout, and figure 1B shows the transpose oper­
ator. The operators were computed with 12 offsets and nine 
slownesses. The near-offset and far-offset distances shown 
in figure 1 are 0 m and 275m, respectively, and the moveout 
time at the far offset ranges from -60 ms to 60 ms. As can be 
seen from figure 1, the elements of the transpose operator is 
essentially a band-pass wavelet located at a trajectory of the 
parabolic moveout, whereas those of the inverse operator are 
a very complicated function of offset and slowness along the 
parabolic moveout trajectory. Notice the waveform changes, 
including polarity reversal, for the inverse operator. The 
waveforms of the transpose operator are identical for all off­
sets and slowness values, so the application of a transpose 
operator is the same as straight stacking along a parabolic 
moveout. The waveforms of the inverse operator are all dif­
ferent from each other, so the application of an inverse oper­
ator is similar to a weighted stack along a parabolic moveout. 

If the numerical values of D in equation 9 are identical 
for all offsets, as for a horizontal event with the same wave­
lets, the model or velocity space can be derived by sum­
ming the rows of the inverse operator or summing along the 
offsets. Summing along the offsets is the same operation as 
summing each slowness panel in figure 1. The output of 
model space for the operators shown in figure 1 is shown in 
figure 2A for the inverse operator and is shown in figure 2C 
for the transpose operator. The output of the inverse opera­
tor is symmetrical in time, but this is not true for the trans­
pose operator. The amplitude of the inverse operator decays 
quickly with increasing moveout time, whereas the ampli­
tude of the transpose operator decays slowly with increas­
ing moveout time. The increased lateral spread of the 
transpose operator in the slowness domain causes lateral 
smearing in the velocity stack. 
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MOVEOUT TIME AT FAR OFFSET. IN MILLISECONDS 
-60 -45 -30 -15 0 15 30 45 60 

I 

I 
I _I .I 

I ! 

r ) 
) 

en ~ 
~( ( l( • ( 

0 ~ u • UJ 
en 
::::::i t _.. 
~ 
o· 
C) 
N 

l 
A 

I I I 
I 

r • 
en c 
z , c 
u • UJ en • ::::::i _.. 
~ 
C) 
C) 
N 

l 
B 

Figure 1. A, Inverse operator; B, Transpose operator convolved with a zero-phase band-pass wavelet of 4/6-851100 Hz for a para­
bolic moveout with moveout time of -60 ms to 60 ms at the far offset. For each moveout time at the far offset, 12 offsets are shown; 
these consist of, from left to right, the near offset (equal to 0 m) to the far offset (equal to 275m). 

The difference in performance between the inverse and 
the transpose operator can be easily examined by summing 
U over all slownesses. The result is shown in figure 2B for 
the inverse operator and in figure 2D for the transpose oper­
ator. Equation 3 indicates that integration with respect to 
slowness in the model space with h = 0 will result in the 
zero-offset data in the offset domain. Therefore, if accurate 
U is modeled from D (data in the offset domain), a summa­
tion of the model U along the slowness will reproduce the 
input data. The result of this operation for the inverse opera­
tor, shown in figure 2B, clearly shows the waveform as iden­
tical to the input, which is a zero-phase band-pass wavelet 
with 4/6-851100 Hz, but the result of the transpose operator 

shows a bias toward lower frequency. This is one reason 
why the conventional velocity-analysis method, summing 
along the assumed velocity trajectory, shows a lack of reso­
lution, as mentioned in Thorson (1984). For horizontal 
events, this result can be represented by: 

M M N 

D (h = 0, ro) = L u (sm, ro) = L L Gnm (10) 
m=l m=ln=l 

This equation can be used to examine whether the computed 
inverse operator, G, is correct or not. 

An application of inverse and transpose operators in 
creating a model space is shown in figure 3. Figure 3A shows 
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Figure 2. Response of inverse and transpose operator using parabolic moveout trajectory for a horizontal event. A, Response in slowness 
domain of inverse operator; B, Summation of response of inverse operator with respect to slowness; C, Response in slowness domain of 
transpose operator; D, Summation of response of transpose operator with respect to slowness. Note difference of the waveform in Band D. 

the noise-free input data; figure 3B shows the modeled data 
using the inverse operator; and figure 3C shows the result of 
applying the transpose operator. As indicated in figure 2, the 
result of the transpose operator fails to model the higher fre­
quency part of the input data. Loss of the high-frequency 
component is evident at the far offsets. Results from using an 
inverse operator, however, show an almost perfect reproduc­
tion of the input data. 

APPLICATIONS 

The ability to extract model space from a noisy data set 
can be used for a variety of seismic-data-processing tech­
niques, and a number of applications of inverse velocity 
stack, such as velocity analysis, is discussed in Thorson 
(1984). Hampson (1986) presented an application to remove 
multiples using a parabolic approximation. In this paper, 
applications of the inverse and transpose operators will be 
discussed in the area of multiple suppression, coherency fil­
tering, velocity analysis, and spatial interpolation. 

MULTIPLE SUPPRESSION 

The methodology of multiple suppression using the 
velocity stack can be summarized in the following five steps: 
1. Apply NMO correction using stacking velocities of 

multiples. 
2. Model the multiple event using the inverse or trans­

pose operator. 
3. Subtract the modeled multiple events in step 2 from 

the original data. 
4. Remove the NMO correction applied in step 1. 
5. Stack with the primary velocity. 

The performance of multiple suppression outlined above is 
analyzed using models and a real data set. 

MODEL DESCRIPTION 

In order to analyze the performance of the multiple sup­
pression technique by a velocity stack, a 24-channel com­
mon midpoint (CMP) gather, with near offset of 400 m and 
far offset of 2, 700 m, was generated. Figure 4 shows the syn­
thetic model filtered with a 4/6-42/54-Hz symmetrical 
wavelet. Figure 4A shows the multiple model, and figure 4B 
shows a primary model. In figure 4A, the event near 2 s at the 
near offset represents a reference trace to measure the perf or­
mance of the multiple suppression technique, and events 
below 2.5 s represent multiple energy. The average root­
mean-square (RMS) amplitude of multiple energy is very 
close to the RMS amplitude of the reference trace. The RMS 
velocity of multiples is modeled by a linearly increasing 
function with depth: 1,400 m/s at 2,500 ms and 1,600 m/s at 
4,500 ms. Four primary events with identical amplitude and 
polarity are chosen and shown in figure 4B. The amplitude 
of the primaries in figure 4B is 20 percent of the reference 
amplitude in figure 4A, and the locations and RMS velocities 
of four primaries in figure 4B are: 3,000 ms with 1,600 m/s; 
3,420 ms with 1,800 m/s; 3,800 ms with 2,000 m/s; and 
3,950 ms with 2,200 m/s. 

In our model study, figure 4A was mixed with figure 4B 
for a variety of scale factors. Three synthetic models were 
generated for the analysis. 

Modell: Multiple strength 14 dB higher than primaries. 

Model 2: Multiple strength almost equal to primaries. 

Model3: Multiple strength 20 dB higher than primaries. 

Figure 5A shows model 1, and figure 5B shows model 
2. Notice that, in modell, primary events cannot be observed 
by the eye. The amplitude relationship in figure 5A is similar 
to the field data example presented later. Figure 5C is model 
1 with random noise added and will be used later. 
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Figure 3. Example of performance of inverse and transpose operator. A, Original input; B, Modeling by an inverse operator; C, Modeling 
by a transpose operator. 

NOISE-FREE MODEL 

The results of straight stacking for noise-free models 
are shown in the "a" parts of figure 6, and results of multiple 
suppression by a velocity stack using the inverse operator 
(inverse velocity stack) are shown in the "c" parts of figure 
6. The results for the noise-free model (the "c" parts of fig. 
6) indicate that multiple suppression by the inverse velocity 
stack suppresses the multiple energy enough to recognize the 

primaries. Also, the result shown for model2, "a" part, indi­
cates that straight stacking will be sufficient to suppress mul­
tiples when the multiple strength is almost the same as that 
of the primaries (model 2). However, it demonstrates that, if 
the multiple strength is more than 14 dB higher than the pri­
maries, straight stacking is not enough to enhance the prima­
ries (fig. 6, models 1 and 3, "a" parts), and some kind of pre­
stack multiple-suppression technique, such as an inverse 
velocity stack, is required. 
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Figure 4. Synthetic model filtered with a 4/6--42/54-Hz sym­
metrical wavelet. A, Multiple model except the event at 2 s, which 
serves as a reference amplitude; B, Primary model with four 
events. See text for additional explanation. 

In order to see the details of multiple suppression, an 
amplitude analysis of the result of velocity stack for model 2 
(fig. 6, model 2, "a" part) was performed, and the result is 
shown in figure 7 A. This figure indicates that the velocity 
stack suppressed the multiple energy on the order of 40 dB. 
Notice the five peaks near the -10-dB line in figure 7A, indi­
cating almost perfect primary recovery. On the other hand, a 
straight stack only suppress the multiple energy on the order 
of 12 dB. Approximately a 28-dB enhancement is achieved 
by the velocity stack. 

The above analysis is for the ideal case in which we 
know exact multiple and primary velocities. For this ideal 
case, there is neither random nor other coherent noise, and 
each channel has an identical waveform. These ideal condi­
tions are never met with real data. 

NOISE MODEL 

In order to evaluate the performance of the velocity 
stack in a "real" data situation, noise in the form of random 
static shifts, in the range of 4 ms, and random amplitude with 

Gaussian random noise were introduced into the CMP 
gather. The static shift was chosen for our noise model for 
the following reasons: 

1. The velocity stack or other multiple-suppression tech­
nique keys on the alignment of signal and coherent 
noise, so the performance depends on the degree of 
misalignment. 

2. Other kinds of misalignment, such as waveform 
changes due to different ghosting, can be modeled 
approximately by a static shift. 

3. The effect of inaccurate multiple velocities can be 
treated as a static problem. 

4. Static shifts account for a variation of streamer depth 
during data acquisition . 

The performance of velocity stack with static shifts is 
also shown in figure 6. The "b" parts of figure 6 represent 
the results of straight stacking, and the "d" parts of figure 6 
represent the results of multiple suppression by the inverse 
velocity stack. Notice that static shifts on the order of 4 ms 
does not significantly affect the performance of straight 
stacking (compare the "a" parts with the "b" parts of fig. 6). 
However, the performance of the inverse velocity stack is 
highly dependent on the static shift. In the "d" parts of fig­
ure 6, the primaries are still recognizable for model 1, but 
not for model 3. The performance of the velocity stack 
under the influence of static shifts is shown in figure 7 B. 
The strength of primary events in figure 7A (noise free) and 
figure 7B (static noise) are similar, but the amount of multi­
ple suppression under the static shifts is on the order of 20 
dB (it is about 40 dB in the noise-free case). In other words, 
if the multiple energy contaminated by static shifts is more 
than approximately 20 dB higher than that of primaries, it 
is difficult to enhance primaries over multiples using the 
inverse velocity stack. 

Notice that the strength of multiple energy is almost the 
same as that of the primaries in figure 6, model 3, "d" part, 
after multiple suppression. Recalling that the multiple 
strength before the multiple suppression for model 3 is 20 dB 
higher than the primary, the signal-to-noise ratio for model3 
can be considered as a threshold for recognizing the prima­
ries. However, in order to differentiate primaries from mul­
tiples, the amplitudes of primary events after multiple 
suppression should be a couple of decibels higher than those 
of the multiples. Figure 6, modell, "d" part, whose multiple 
strength is about 14 dB higher than the primaries, clearly 
shows the primaries after multiple suppression even though 
there are 4-ms static shifts. Therefore, in processing real data 
sets, we could not enhance the primaries if the strength of 
multiples is about 17 dB greater than that of the primaries 
(see fig. 6, model1, "d" part and fig. 6, model3, "d"·part). 

Approximately a 20-dB loss of performance of the 
velocity stack for the noise model is due to small static shifts. 
In theory, static shifts can be computed and static corrections 
can be applied before the velocity stack. One of the results of 
applying static shifts computed by non-surface-consistent 
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Figure 5. Models for multiple suppression. A, Multiple modell: The multiple strength is about 14 dB higher than primaries; B, Multiple 
model2: The multiple strength is almost the same as primaries; C, Additive random noise to model!. The ratio of primary signal to random 
noise (not coherent multiple noise) is about 1. 

static, or "trim static" in industry terminology, is shown in 
figure 8 for model3. As expected, the result (fig. 8D) is com­
parable to the result for the noise-free model (fig. 8B). 

The effect of random-amplitude noise in multiple sup­
pression is analyzed using model 1 by adding Gaussian ran­
dom noise with maximum amplitudes to those of primaries 
(fig. 5C). The result of multiple suppression using an 
inverse operator is shown in figure 9. Figure 9A shows the 

result of straight stacking with random noise, and figure 9B 
shows the result of straight stacking with both random 
noise and static shifts in the range of 4 ms. There is not 
much difference between figures 9A and 9B. Both are too 
noisy to recognize primary events. The result of applying 
an inverse operator to the random noise section without 
static shifts is shown in figure 9C. All primary events are 
clearly observable. The effect of both random-amplitude 
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Figure 6. Multiple suppression for three multiple models with and without static shifts in the range of 4 ms using an inverse operator in 
the velocity stack: a, Straight stack without static shifts. b, Straight stack with static shifts. c, Multiple suppression without static shift. d, 
Multiple suppression with static shifts. 

noise and static shifts is shown in figure 9D, and the result 
of application of static correction is shown in figure 9 E. 
Comparing with figure 6 for model 1, it is obvious that 
noise in the form of 4-ms static shifts has a more pro­
nounced effect than an equal amount of random noise. 

The result of multiple suppression using the transpose 
operator is shown in figure 10. In comparing figures 9C and 
9E with figures IOC and IOE, the advantage of the inverse 
operator over the transpose operator is evident. But when 
there is too much noise, the results shown in figure 9D and 
figure 1 OD imply that there is not much difference between 
the inverse and transpose operators. Hence, for high-quality 
input data, the inverse operator works better than the trans­
pose operator. But, as the amount of noise (particularly in the 
form of static time shifts) increases, the advantage of the 
inverse operator over th~ transpose operator decreases. 

REAL DATA EXAMPLE 

Figure 11 shows an original stacked section generated 
using a standard processing sequence. This data set was 
acquired in Lake Baikal using a tuned air-gun array as a 

source. Unstacked data consists of 24-fold CMP gathers 
with a near offset distance of 400 m and a far offset dis­
tance of 2, 775 m. 

Our model study indicates that correcting for static 
shifts is a very important step in suppressing multiple 
energy. Thus, one additional step was added to the steps out­
lined at the outset of the multiple suppression section: static 
computation and application after step 1. The static compu­
tation was performed in the CMP domain. 

Figure 12 shows the result of multiple suppression. Fig­
ure 12A is the result of applying two-dimensional velocity 
filtering, or F-K filtering, a technique similar to the one 
described by Ryu (1982), and figure 12B shows the result of 
the application of the inverse velocity stack. For the inverse 
velocity stack, the multiples are modeled with seven slow­
nesses, and the range of parabolic moveouts is -20 ms to 40 
ms at the far offset. Both techniques performed adequately 
for the multiple suppression below about 4,600 ms. Overall 
signal-to-noise ratio, however, is better in the section pro­
duced by the application of inverse velocity stack. The 
details of figure 12 near CMP 2,500 is shown in figure 13, 
and this figure clearly demonstrates that the inverse velocity 
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Figure 7. Amplitude analysis of multiple suppression for model2 using an inverse operator in the velocity stack. Each dot represents a 
root-mean-square (RMS) amplitude within 16ms, and solid lines are running medians ofthree amplitudes. A, Without static shift; B, With 
static shift in the range of 4 ms. 

stack outperforms the F-K operation in multiple suppression. 
Notice much stronger and clearer dipping events are imaged 
in figure 13B. 

We tested many seismic profiles using the inverse 
velocity stack versus the F-K domain approach. In almost 
every case, the inverse velocity stack worked better than 
the F-K domain approach, particularly for data sets with 
high noise and low frequency. A similar conclusion was 
reached by Geist and others (1990) in their study of long­
period (> 1 s), first-order, multiple removal over a conti­
nental slope. Better performance of the inverse velocity 
stack for the lower frequency range has an important impli­
cation for deep crustal studies. As mentioned in Hampson 
(1986), the better performance of the inverse velocity stack 
is due to the fact that inverse operators work well for all 
offsets, whereas the F-K approach leaves significant multi­
ple energy on the near-offset traces. 

COHERENCY FILTERING 

It is well known that stacking suppresses random noise 
proportional to the root of the number of traces in the stack. 
If all reflections are horizontal, this is a good method for 
enhancing signal-to-noise ratio (this is the fundamental con­
cept applied in CMP stacking). In the stacked section, this is 
not an appropriate method because there are numerous non­
horizontal events. In order to enhance dipping events, stack­
ing should be done along different moveouts. Stacking along 
the linear moveouts can be effectively implemented using a 
slant stack in the 't-p domain. This kind of coherency filter­
ing is necessary for data with a low signal-to-noise ratio. 

In this section we will discuss coherency filtering in the 
context of model extraction from noisy data. As indicated in 
equation 6, the model space can be estimated by applying the 
inverse operator to the offset-domain data set. This estimated 
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Figure 8. Multiple suppression for model 3 using an inverse op­
erator in the velocity stack. A, Straight stack without static shift; 
B, Multiple suppression without static shift; C, Multiple suppres­
sion with static shift in the range of 4 ms; D, Multiple suppression 
with static shift after correction with "trim static" (see text) in the 
CMPdomain. 
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Figure 9. Multiple suppression for model 1 with random­
amplitude noise and static shifts using an inverse operator in the 
velocity stack. Primary signal-to-random-noise ratio is about 1, 
and the range of static shifts is ±4 ms. A, Straight stack with ran­
dom noise only; B, Straight stack with random noise and static 
shift; C, Multiple suppression with random noise only; D, Multi­
ple suppression with random noise and static shift; E, Multiple 
suppression with random noise and static shift after static correc­
tion with "trim static" (see text) in the CMP domain. 
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Figure 10. Multiple suppression for model 1 with random­
amplitude noise and static shifts using a transpose operator in the 
velocity stack. Primary signal-to-random-noise ratio is about 1, 
and the range of static shifts is ±4 ms. A, Straight stack with ran­
dom noise only; B, Straight stack with random noise and static 
shift; C, Multiple suppression with random noise only; D, Multi­
ple suppression with random noise and static shift; E, Multiple 
suppression with random noise and static shift after static correc­
tion with "trim static" (see text) in the CMP domain. 
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Figure 11. Straight stacked section of a profile acquired at Lake 
Baikal in the fall of 1992. Notice strong, first-order, water-bottom 
multiple and pegleg multiples after 4,600 ms. See text for acquisi­
tion parameters. 
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Figure 12. Multiple suppression after applying static correction to data shown in figure 11. A, Multiple suppression using two­
dimensional frequency-wavenumber domain filtering; B, Multiple suppression using an inverse operator in the velocity stack. 

model or signal can be inverse-transformed back to the offset 
domain data set using equation 4 without the noise term. The 
presence of the noise in equation 4 indicates that the trans­
form generated by equation 6 is not a complete space. Some 
of the noise, n(h,t), that has not been included in U is lost 
when transforming back to the offset domain. This operation 
can be written as: 

(11) 

where 
fi is the coherency-filtered output. 

Figure 14A shows the result of applying an inverse 
operator as a coherency filter to the section shown figure 
12B, and figure 14B shows the result of applying a transpose 
operator. The inverse or transpose operator was designed 
using linear moveout with 11 slowness steps and five offsets. 
The range of linear moveout at the far offset is ±24 ms (the 

offset of the center trace is 0 m). The output is estimated at 
the center trace. Both figures 14A and 14B show a reduction 
of background random noise or the enhancement of local 
coherency estimated within five traces. Details of coherency 
filtering in the time domain are shown in figure 15, and fig­
ure 16 shows the frequency-wavenumber domain represen­
tation of the data shown in figure 15. The low-frequency 
enhancement and mixing effects produced by the transpose 
operator are apparent in figures 15 and 16. 

TRACE INTERPOLATION 

The concept of coherency filtering by inverse velocity 
stack can be applied to trace interpolation. The only differ­
ence is the application of the L operator in equation 11. In 
equation 11, the element of L applying to model space U to 
transform back to the offset domain is the same element used 
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Figure 13. Expanded plot of figure 12 near CMP 2,500. A, Multiple suppression using two-dimensional frequency-wavenumber 
domain filtering; B, Multiple suppression using an inverse operator in the velocity stack. 

for computing G. But in trace interpolation, a different L can 
be used for the output. In other words, a different offset 
value, not included in the input data, can be used for the 
interpolation. Assume that a trace is interpolated using two 
input traces, and the interpolation is done at the middle of 
two traces using linear moveout. Then the L used for com­
puting G can be written as: 

(12) 

The element L* for the interpolation can be written as: 

l -iws 1h1* -iws2h 1*) L* = e e (13) 

where 
h* =(hi+ h2)/2 

An example of trace interpolation using an inverse 
operator is given in figure 17. The trace interval of figure 17 
is 25 m, and five traces were used for the interpolation. An 
inverse operator was designed to pass seismic events whose 
linear moveouts are within ±4 ms per trace. Highly dipping 
events at the left side and random noises are reduced in the 
interpolated section (fig. 17 B). Also, trace mixing, which is 
obvious when using the transpose operator, is not apparent in 
the interpolated section. 

VELOCITY ANALYSIS 

Moveouts in the CMP domain depend on the interval 
velocities of the layered Earth, and the model space is esti­
mated in the slowness domain. Thus, the inverse velocity 
stack is a logical choice for velocity analysis. When using 
hyperbolic moveouts, the slowness can be directly related to 
the Earth's velocity. But, in using parabolic moveouts, it 
only provides a pseudo or apparent velocity after NMO cor­
rection with velocity, Vc (or slowness, Pc-see eq. 8). 

Parameter "sh2" in parabolic moveouts is presented as 
the moveout time at the far-offset distance; thus, a relation­
ship is required to derive an actual velocity from the velocity 
stack using parabolic moveouts. The relationship between 
apparent and true velocity can be derived from equation 8: 

Using the parameters: 

2 
v 

1 1 
-+-

2 2 2 
v vr vc 

(14) 

Because the parameter is given by the moveout time at the 
far offset, equation 14 can be written as: 
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Figure 14. Example of coherency filtering of the section shown in figure 12B. Coherency filter was designed using five offsets with 
the moveout time at the far offset of ±24 ms. The offset at the center trace is 0 m, and the trace interval is 50 m. A, Inverse operator; B, 

Transpose operator. 

v = 

where 

Mt is moveout time at the far offset, and 

hmax is the far-offset distance. 

(15) 

As indicated in equation 15, the true velocity depends on the 
zero-offset time as well as the correction velocity for NMO 
and moveout time. 

A velocity analysis for the noise-free model shown in 
figure 5B is given in figure 18 with linearly increasing veloc­
ity ofvc = 1,500 m/s at 2,500 ms and Vc = 1,700 m/s at 4,500 
ms. The range of moveout times at the far offset is -240 ms 
to 120 ms, with a 12-ms interval. The output of the applica­
tion of the inverse operator, shown in figure 18A, clearly 

shows linearly increasing velocity for the multiples and four 
primary events. The moveout time of P4 is -168 ms at two­
way time of 3,950 ms. Putting this number into equation 15, 
the correct velocity by a parabolic moveout is 2,197 m/s, 
which is very close to the input velocity of 2,200 m/s. How­
ever, the output from the transpose operator or conventional 
velocity analysis, shown in figure 18B, show a smearing 
effect of the adjacent moveouts. The above analysis was 
applied to the noisy model, random noise (primary signal-to­
random-noise ratio of about 2), and static shifts (in the range 
of 4 ms), and the result is shown in figure 19. Although the 
result from the inverse operator is better than the result from 
the transpose operator, the difference is not as dramatic as 
that shown in figure 18. 

An application to a real data set is shown in figure 20. 
The result using the application of an inverse operator (fig. 
20A) produces better resolution but is noisier than the result 
produced by the transpose operator (fig. 20B) 



2.275 2.475 2.675 

5.00 

6.00 
en 
0 z 
0 u 
UJ 
en 
z -
L..iJ 
::E 
i= 

7.00 

A 

2.275 

B 

COMMON MIDPOINT 
2.475 2,675 2.275 2.475 2.675 

c 

Figure 15. Detailed plot for coherency filtering near CMP 2,500 shown in figure 14. A, Original data without coherency filtering; B, Coherency filtering by an inverse operator; 
C, Coherency filtering by a transpose operator. 

;J> 
::g 
t""' ....... 
n 
;J> 
>-3 ....... 
0 z en 

"""' ......,J 



18 APPLICATIONS OF VELOCITY -STACK METHODS TO SEISMIC DATA PROCESSING 

20.00 

15.00 
q 

~· 
N 

li: 
~~I U.J 

:I: 
z 
;:. 10.00 

I ~~ . ~ ~ (_) 

z I 
U.J 

~~ ~ :::::> 

~· 0 
U.J 
a: 
u.. 

5.00 

0.00 

-0.5 0.0 0.5 -0.5 

A B 

I 

,, II II, 

Itt, 

0.0 
WAVENUMBER 

0.5 -0.5 0.0 0.5 

c 
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DISCUSSION 

Many conventional seismic processing methods are 
based on the transpose operator or conjugate operator 
(Claerbout, 1992). Although the transpose operator applied 
to perfect data generally gives an imperfect result, some­
times the transpose operator performs better than the 
inverse operator because the conjugate operator tolerates 
imperfections of input data owing to the limited aperture, 
truncation, nonstationary noise, missing data, etc. On the 
other hand, an inverse operator gives a perfect result for a 
perfect data set but has the possibility of noise amplifica­
tion when using actual data and requires more information 
to do a better job. As can be seen from equation 6, the 
transpose operator is the first step of inversion, and, if 
(LTL)-1 is close to an identity matrix, the inverse operator 
can be approximated by a transpose operator. 

To reduce noise amplification of the inverse operator 
applied to an imperfect data set or to stabilize the inverse 
operator, a random noise factor, A, such as the one used for 
spiking deconvolution, can be applied. When implementing 

a computer program for equation 6, (LTL+A)-1 is used for 
the computation of the inverse operator. All examples in this 
paper are generated by adding 1 percent of each diagonal ele­
ment to the diagonal terms. The amount of noise can be 
adjusted to tune the performance of the inverse operator. 
Thorson and Claerbout (1985) defined this form of inverse 
as "stochastic inverse" (Aki and Richards, 1980) and suggest 
using the ratio of noise variance to variance of the points in 
the model space for A. The method proposed by Thorson 
and Claerbout (1985) may provide an optimum inverse oper­
ator for each data set, but the operator cannot be pre-com­
puted because A cannot be determined without data. 

Two basic assumptions in inverse velocity stacking are 
that, along various moveouts, events are aligned and have 
uniform amplitudes. Multiple suppression using real data 
sets shows improved results after static time corrections are 
applied to improve alignment. However, the improvements 
were marginal in most cases. One example is shown in figure 
21. This suggests that simple static corrections alone will not 
suffice in certain cases. This is because our waveform 
changes in a CMP gather. This waveform change violates the 
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Figure 17. Example of trace interpolation using an inverse operator. Trace interval is 25 m, and five traces are used for the interpolation. 
A, Input data; B, Interpolated data. 

basic assumptions of inverse velocity stacking. Thus, pre­
processing, such as amplitude balancing and waveform 
deconvolution, will be beneficial to the performance of the 
inverse operator. 

When inverse velocity stacking is applied for irregular 
offset gathers similar to land data or in a marine data set, 
whose CMP fold is less than the number of channels, it is 
impractical to compute different inverse operators for each 
offset gather. For example, 24-fold marine data acquired 
with 96 channels have 4 sets of offsets in the CMP domain, 
and 4 sets of inverse operators are required. To handle irreg­
ular geometries, one effective method is to apply differential 
NMO correction to a reference offset gather. 

The estimation of model space from the noisy input 
data by means of the velocity stack is defined as a process of 
coherency filtering. Coherency filtering improves the signal­
to-noise ratio, as shown in figure 15, and helps subsequent 
processing steps, such as migration. Most signal-enhance­
ment techniques use weighted velocity stacks. Kong and 

others (1985) proposed a nonlinear signal estimator by mul­
tiplying semblance (Taner and Koehler, 1969) to the slant­
stacked data and inverse-transforming the weighted slant­
stack data. Monk (1992) presented a diversity slant stack, 
which is a weighted slant stack based on the power in the 
slant-stack domain. Both Kong and others (1985) and Monk 
(1992) applied a transpose operator in equation 11. In order 
to preserve the original frequency content, which is altered 
by applying a transpose operator, Monk (1992) and Kong 
and others (1985) applied an appropriate Rho filter (Claer­
bout, 1984) to the output. The main purpose of weighting, 
proposed by Monk (1992), is to reduce the smearing effect 
of the transpose operator and to modify the transpose opera­
tor, more or less, to look similar to an inverse operator. A 
weighted slant stack using an inverse operator provides an 
alternative to the conventional approach to signal enhance­
ment. The price we have to pay for a weighted slant stack for 
coherency filtering in this formulation is that U should be 
converted in the 't-p domain to compute and apply weight. 
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Figure 18. Example of velocity analysis using the noise-free model shown in figure 5B. The range of moveout time at the far offset is 
between -240 ms and 120 ms, with a 12-ms interval. The correction velocities for NMO to approximate parabolic moveouts are linearly 
increasing velocities with 1,500 rnls at 2,500 ms to 1,700 rnls at 4,500 ms. A, Inverse operator; B, Transpose operator. 

The interpolation method presented here by means of 
the velocity stack implicitly uses a local coherency and dip 
estimation (or slowness in this paper) and is subject to the 
aliasing problem when interpolation distance is too large. 
The formulation of interpolation is cast as a prediction in 
the offset domain in this paper, but the essential operation 
is similar to interpolating the amplitude along the direction 
of lateral coherence of each event (Barden, 1987; Lamer 
and others, 1981). This approach differs from Spitz (1991), 
who derived a method based on the fact that linear events 
may be interpolated exactly, regardless of spatial interval, 
without any information regarding their true dip. He inter­
polated traces using forward-backward, one-step prediction 
filters in the frequency domain. However, the proposed 

method has the ability to keep high-frequency components 
(as opposed to other interpolation methods based on the 
transpose operator). 

One problem for the velocity analysis of real data using 
an inverse operator is low signal-to-noise ratio compared to 
the output by a transpose operator. One way to overcome this 
difficulty is to adjust the random noise component when 
deriving the inverse operator. More random noise in the 
design of the inverse operator increases the signal-to-noise 
ratio but also increases lateral smearing. An optimum trade­
off between resolution and smearing can be found by trial 
and error. Figure 22 shows a velocity analysis with an 
inverse operator using 2 percent noise for A, instead of 1 per­
cent used for figure 20A with static corrections. The output 
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Figure 19. Example of velocity analysis for a noise model. The noise model was generated by adding random-amplitude noise and 
static shifts to the noise-free model shown in figure 5B. Primary signal-to-random-noise ratio is about 2, and the range of static shifts is 
±4 ms. The range of moveout time at the far offset is between -240 ms and 120 ms, with a 12-ms interval. The correction velocities for 
NMO to approximate parabolic moveouts are linearly increasing velocities with 1,500 rn!s at 2,500 ms and 1,700 rn!s at 4,500 ms. A, 
Inverse operator; B, Transpose operator. 
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APPLICATIONS OF VELOCITY -STACK METHODS TO SEISMIC DATA PROCESSING 
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Figure 20. Example of velocity analysis for real data having 24 folds and near-offset distance of 400 m and far-offset distance of 2,777 m. 
The constant correction velocity of 1,500 m/s is used for NMO to approximate parabolic moveouts, and the range of moveout time at the far 
offset is between -100 ms and 100 ms, with a 10-ms interval. A, Inverse operator; B, Transpose operator. 

Figure 21 (facing page). Example of multiple suppression with 
and without static correction using an inverse operator. A, Straight 
stack; B, Multiple suppression without static correction; C, Multiple 
suppression with static correction. 
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Figure 22. Plot showing the effect of random noise and static correction in a velocity analysis using the inverse operator. This figure is the 
same as figure 20A except that ( 1) the amount of random noise in the inverse operator is 2 percent instead of 1 percent, as used in figure 20A, 
and (2) static correction was applied to the input data. 

of the transpose operator with static corrections is not much 
different from the result shown in figure 20B. However, the 
result shown in figure 22 demonstrates that the improved 
performance of the inverse operator can be obtained with 
static corrections and by tuning the inverse operator with 
varied random noise. 

CONCLUSIONS 

A number of applications of velocity stack, such as 
multiple suppression, coherency filtering, trace interpola­
tion, and velocity analysis, are described in this paper. The 
advantage of using an inverse operator over a transpose 
operator is in its ability to accurately estimate the model 
space from noisy seismic data. A transpose operator has a 
bias toward lower frequencies and more spread in the slow­
ness domain. These properties result in trace mixing or 
smearing in the velocity stack. However, the advantage of 
using an inverse operator over the transpose operator 
decreases as noise increases. Based on this study, the follow­
ing conclusions can be derived. 
1. Because of the effectiveness of velocity stack at all 

offsets using an inverse operator, multiple suppres­
sion by velocity stack is better than the frequency­
wavenumber domain approach. 

2. Because velocity stack relies on the alignment of seis­
mic events along the moveouts, static correction of 
the CMP gathers is important in multiple suppression. 
Model studies indicate that about 4-ms static shifts in 
a gather degrades multiple suppression about 20 dB. 

3. Coherency filtering or trace interpolation by an 
inverse operator can be considered as a high-resolu­
tion method and minimizes trace mixing inherent to 
output by the transpose operator. 

4. Velocity analysis by an inverse operator shows high 
discrimination ability of close velocities, but the 
amount of noise, such as static shifts, controls the per­
formance rather dramatically. To obtain high-resolu­
tion velocity analysis for field data, pre-processing, 
such as static correction and amplitude adjustment, 
should be applied. 
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