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Age and Diagenesis of the Upper Floridan Aquifer and the 
Intermediate Aquifer System in Southwestern Florida 

By Lucy McCartan, Suzanne D. Weedman, G. Lynn Wingard, and Lucy E. Edwards, 
U.S. Geological Survey, and Peter J. Sugarman and Mark D. Feigenson, Rutgers University, and 

Marc L. Buursink and Julie C. Libarkin, U.S. Geological Survey 

ABSTRACT 

The age and diagenetic alteration of strata that consti­
tute the Upper Floridan aquifer and intermediate aquifer 
system in southwestern Florida are assessed on the basis of 
samples ~aken from 12 cores and 1 set of cuttings from the 
upper 300 meters. Data were integrated from hand sample 
analysis; optical and scanning electron microscopy; and X­
ray, isotopic, and paleontologic analyses. Diagenetic history 
is analyzed within a framework of past sea-level oscillations 
and modem ground-water chemistry. Both age and diage­
netic data are integrated for a better understanding of a 
genetic stratigraphic framework of the aquifer and aquifer 
system. 

Mollusk species and dinocyst assemblage distributions 
and 87Sr/86Sr values indicate that the "Suwannee" Lime­
stone is early Oligocene and the Hawthorn Group ranges 
from late (possibly early) Oligocene to Pliocene. Within the 
Hawthorn Group, the Arcadia Formation ranges from late 
(possibly early) Oligocene to middle to earliest late 
Miocene; its Nocatee Member is late Oligocene and its 
Tampa Member ranges from late Oligocene to early 
Miocene; and the Peace River Formation is Pliocene. 
Diagenetic textures indicate that much of the alteration was 
early but that a magnesium mineral diagenetic facies char­
acterized by dolomite, palygorskite, and sepiolite cross-cuts 
stratigraphy and may obscure stratigraphic correlations. 
Dolomite textures indicate a complex, multigenerational 
history; high saturation indices for dolomite in the modem 
Upper Floridan aquifer ground water suggest that modem 
dolomite precipitation, though volumetrically small, may be 
occurring. 

Age data reported here indicate extensive deposition in 
the study area during the late Oligocene, conventionally 
thought to be a time of subaerial exposure and nondeposi­
tion across much of the Florida platform, and an unconfor­
mity of ~10 m.y. between the Arcadia and Peace River 
Formations. The age data establish a framework that will 
help delineate a genetic stratigraphy based on depositional 
units rather than nongenetic lithostratigraphy. Diagenetic 
analysis indicates that most of the magnesium in the carbon-

ates and clays may have been introduced prior to the estab­
lishment of the modem ground-water regime and that the 
magnesium-rich diagenetic facies cross-cuts stratigraphy 
and obscures stratigraphic correlations. 

INTRODUCTION 

The carbonates and siliciclastics of the Tertiary System 
of the Florida platform host the fresh ground-water supply 
for the region in three aquifer systems: the Floridan, the 
intermediate, and the surficial. Currently, this interval is 
subdivided into lithostratigraphic units on the basis of litho­
logic properties. Some of those lithologic properties, how­
ever, may include diagenetic (postdepositional) alteration, 
which can obscure stratigraphic boundary identification. 
Additionally, the ages of the lithostratigraphic units are not 
well constrained, and their boundaries may cross regional 
unconformities. The long-range objective of our study in 
southern Florida is to identify and map depositional, uncon­
formity-bounded units in the subsurface, instead of nonge­
netic lithostratigraphic units; our focus is on the section that 
constitutes the upper portion of the Upper Floridan aquifer 
and the intermediate aquifer system. Delineating this 
genetic stratigraphy will enhance our ability to calibrate 
hydrologic models of the ground-water systems of Florida, 
as well as our understanding of part of the depositional his­
tory of the Florida platform. In addition, a genetic stratigra­
phy will provide the necessary geologic framework to 
predict hydrologic properties of aquifer rocks in areas that 
are sparsely drilled. 

The results presented in this paper document our initial 
steps toward a genetic stratigraphy and include constraints 
on the age and correlation of subsurface strata and an 
assessment of their diagenetic alteration. Three independent 
time indicators are used: 87 SrJ86Sr composition of shells, 
the distribution of mollusks species, and the distribution of 
dinocyst assemblages. Diagenetic alteration is examined 
petrographically with the scanning electron microscope 
(SEM) and by X-ray diffraction (XRD) and is compared 
with modem ground-water chemistry. This comparison 
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Figure 1. Map showing the location of boreholes in southwest Florida; cuttings only were examined from site W-15636. Cross sections 
A-A' and B-B' are discussed in the text and are shown in figures 2A and 2B; Sarasota and Arcadia quadrangles are outlined in bold lines and 
indicated on index map, lower left. 

allows identification of relict diagenetic features that 
formed in different water chemistries in the past and 
enhances our understanding of the freshwater diagenetic 
environment in the aquifer system. 
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GEOLOGIC FRAMEWORK 

The study area (fig. 1) is underlain by a sequence of 
sediment and rocks several kilometers thick, ranging in age 
from Mesozoic to Holocene; most of the sequence was 
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deposited in nearshore, relatively shallow marine environ­
ments (Mansfield, 1937; Petuch, 1982; Tedford and Hunter, 
1984; Webb, 1990; and Jones and others, 1991). The upper 
300-450 m of this sequence, which includes rocks of 
Eocene to Pliocene and Pleistocene age, is the subject of 
this report; we focus on Oligocene and Miocene deposits. 

The complex distribution patterns of the lithofacies in 
the study area are the consequence of paleoshoreline migra­
tion and the convergence of coastlines along the Atlantic 
and the Gulf of Mexico. Shoreline migration has been 
attributed to eustatic sea-level oscillations (Haq and others, 
1987; Dowsett and Cronin, 1990; Krantz, 1991; McCartan 
and others, 1991; Muhs and others, 1992), tectonic uplift (to 
the north, beneath the Ocala arch; inferred from distribution 
of Oligocene and Miocene rocks; Puri and others, 1967; 
Gohn, 1988) and subsidence (to the south; Herrick and 
Vorhis, 1963), and subsidence due to dissolution of carbon­
ate rocks (Beck and Sinclair, 1986). The position and con­
figuration of the Florida peninsula also has increased the 
complexity of the deposits, particularly during and since the 
late Oligocene. Longshore currents sweep siliciclastic sedi­
ment southward from river mouths in northern Florida and 
Georgia along both sides of the peninsula (Martens, 1928; 
McCartan and Owens, 1991); in the study area they interfin­
ger with locally produced carbonates and phosphates. 

In this paper, we use the lithostratigraphy of the Flor­
ida Geological Survey proposed by Scott (1988) as a frame 
of reference. Scott (1988) subdivided the section we have 
examined into the Ocala Group, the "Suwannee" Lime­
stone, and the Hawthorn Group (Arcadia and Peace River 
Formations). The Ocala Group consists largely of very 
porous limestone, thought to be late Eocene, that forms 
much of the Floridan aquifer system; it was first described 
by Dall and Harris (1892) near Ocala in Marion County, 
Fla., and is subdivided into a locally dolomitized, lower 
grainstone and an upper packstone/wackestone, typically 
containing large foraminifers (Miller, 1986). The Ocala 
Group includes the Crystal River and Williston Formations; 
few of the cores examined in this study penetrate the Ocala. 

Overlying the Ocala Group in the study area is a white 
to cream, vuggy molluscan and foraminiferal limestone that 
Scott (1988) refers to as the "Suwannee" Limestone with 
some uncertainty. Over the years, the age of the Suwannee 
Limestone has alternately been placed in either the early, 
the late, or the entire Oligocene. The Suwannee Limestone 
was originally named by Cooke and Mansfield (1936) for 
exposures along the Suwannee River from Ellaville to near 
White Springs, in northern Florida; they stated that the 
Suwannee "unconformably overlies white limestone con­
taining Vicksburg (Oligocene) fossils" (Cooke and Mans­
field, 1936, p. 71), implying that the Suwannee is 
Vicksburgian age or younger. In the present day, Vicksburg­
ian is restricted to the early Oligocene, but in 1936 the term 
"Vicksburg Group" was used by the U.S. Geological Survey 
(USGS) to refer to all Oligocene deposits in the gulf coast 

region (MacNeil, 1944, p. 1313). Further confusion 
occurred when MacNeil (1944) revised the concept of the 
Vicksburg by restricting its use to deposits of middle Oli­
gocene age; in his abstract and throughout his paper, he 
places the Suwannee Limestone in the upper Oligocene, 
overlying deposits of the Vicksburg Group. In an easily 
overlooked footnote, however, MacNeil concluded that the 
Suwannee may be equivalent in age to the Marianna Lime­
stone and Byram Formation, Vicksburg Group (subsequent 
studies, for example MacNeil and Dockery, 1984, indicate 
an early Oligocene age), as well as the late Oligocene 
Chickasawhay Limestone (MacNeil, 1944, p. 1313-1314, 
footnote 3). The confusion about whether the Suwannee 
Limestone is late or early Oligocene or whether .it spans the 
Oligocene continues to this day (see, for example, AAPG, 
1988). We agree with Scott (1988): in the study area, the 
limestone, which commonly has been identified as the 
Suwannee, may not be correlative with the Suwannee Lime­
stone from the type area. Until a correlation can be demon­
strated, or a new assignment made, we will retain Scott's 
usage of Suwannee in quotation marks. 

The Hawthorn Formation was raised to group status by 
Scott (1988) and includes the Arcadia and Peace River For­
mations. The Arcadia Formation encompasses the carbon­
ates and associated siliciclastics overlying the "Suwannee" 
Limestone and is thought to be early early to late early 
Miocene (Scott, 1988); the type section is in core W-12050 
(DeSoto County). The Arcadia Formation comprises lime­
stones and dolomites with different amounts of quartz sand, 
clay, and phosphate grains and in places is subdivided into 
two members, the Nocatee and the Tampa; the remainder is 
referred to as undifferentiated Arcadia Formation. The 
Nocatee Member, named by Scott (1988), is primarily a 
siliciclastic unit, which comprises quartz sand and clays, 
with some carbonates and locally abundant phosphate sand 
and fine gravel, and which occurs at, or near, the base of the 
Arcadia Formation. The Tampa Member, above or laterally 
adjacent to the Nocatee Member, is a limestone with differ­
ent amounts of quartz sand, dolomite, and clays and is dis­
tinguished from other Hawthorn Group carbonates by 
having less than 3 percent phosphate grains. Scott (1988) 
reduced the Tampa Formation as used by King and Wright 
(1979) to member status on the basis of its limited spatial 
extent and suggests that the Tampa Member may straddle 
the Oligocene-Miocene boundary (Paul Huddelstun, Geor­
gia Geological Survey, personal communication 1984, in 
Scott, 1988). The Tampa Member in its type area at Tampa 
and at other places around Tampa Bay (Ballast Point and 
Six Mile Creek, Tampa Bay, Fla.; Dall and Harris, 1892) 
differs in appearance from the Tampa Member elsewhere; 
therefore, a reference core (W-15166) in Manatee County 
has been proposed (Scott, 1988). 

Disconformably overlying the Arcadia Formation, in 
the uppermost Hawthorn Group, is the poorly indurated, 
siliciclastic Peace River Formation (upper Miocene, accord-
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ing to Scott, 1988). The Peace River Formation consists of 
interbedded quartz sand, clay, and carbonates ( <33 percent) 
as well as minor amounts of chert. The Bone Valley Forma­
tion (Altschuler and others, 1964 ), a clastic unit of pebble­
to cobble-sized phosphate clasts in a matrix of quartz and 
phosphate sand and clay, originally described by Matson 
and Clapp (1909) as the Bone Valley gravels, is now consid­
ered a member within the Peace River Formation (Scott, 
1988) and is not differentiated in this report. 

Joyner and Sutcliffe (1976) identified a clay bed (5-7 
m thick) at the base of the overlying Tamiami Formation 
(Pliocene) in central and southwestern Sarasota County. 
They informally referred to this bed as the Venice clay 
(Joyner and Sutcliffe, 1976; Sutcliffe and Thompson, 1983). 
Because of the informal nature of the stratigraphic name 
and the lack of a rigorous description, some uncertainty per­
sists in stratigraphic placement of this clay bed, and in 
whether several similar clay beds may be present. Lynn 
Barr (USGS, oral communication, 1993) mapped the extent 
of a clay unit (referred to in the field as the "Venice clay") 
as a confining layer near the top of the intermediate aquifer 
system. 

Deposits stratigraphically younger than ~he Hawthorn 
Group are composed of thin, overlapping sheets and lenses 
of sand and mud, with local concentrations of shells and 
phosphatic gravel of late Pliocene and Pleistocene age 
(Jones and others, 1991; McCartan and others, 1991). A few 
remnants of lower Pliocene deposits are known near the 
gulf coast (Jones and others, 1991), and Holocene swamp 
and eolian deposits have been recognized in patches at the 
surface (Watts, 1980; McCartan and Rubin, 1991). These 
deposits form the surficial aquifer system, and in this report, 
we do not differentiate among them. 

The complex diagenetic history of Tertiary rocks in 
west-central Florida has been noted and discussed by Ran­
dazzo and Zachos (1984), Randazzo and Cook (1987), 
Budd and others (1993), and Jones and others (1993). Budd 
and Jones and their colleagues focus on calcite diagenesis in 
the "Suwannee" Limestone in approximately the same 
study area as ours. Our study includes younger strata and 
places a greater emphasis on dolomite and fibrous magne­
sian clays, palygorskite and sepiolite, whose coincidence in 
these rocks has been noted previously (Randazzo and 
Zachos, 1984; McCartan and others, 1992). The postdeposi­
tional roles of magnesium and silica, critical in the forma­
tion of sepiolite and palygorskite, have been discussed by 
Callen (1984), Singer and Galan (1984), and Weaver 
(1984). 

HYDROGEOLOGIC FRAMEWORK 

Three major aquifer systems occur in the study area, 
and the rocks containing these aquifer systems have been 
classified into formal hydrogeologic units (Southeastern 

Geological Society 1986); however, it is important to note 
that the boundaries of the hydrologic systems do not coin­
cide with either lithostratigraphic or chronostratigraphic 
boundaries. The unconfined surficial aquifer system is 
found over most of the State and consists of unconsolidated 
to weakly consolidated siliciclastic deposits. The deeper 
intermediate aquifer system is found throughout the study 
area and consists of anastomosing, permeable siliciclastic 
and carbonate deposits with subregional, clayey upper con­
fining units, and other local zones of low permeability 
(Duerr and others, 1988). The Floridan aquifer system is 
typically divided into upper and lower parts; our study does 
not extend to the base of the Upper Floridan aquifer, so the 
term "Upper Floridan aquifer" in this report refers to the 
upper part of that aquifer. The Upper Floridan aquifer con­
sists mainly of limestones and dolomites that underlie the 
intermediate aquifer system in the study area, and has been 
studied as part of the USGS's Regional Aquifer System 
Assessment project by Ryder (1985), Miller (1986), Bush 
and Johnston (1988), Johnston and Bush (1988), Meyer 
(1989), and Sprinkle (1989). The configuration of the top of 
the Upper Floridan aquifer has been mapped in the study 
area by Buono and Rutledge (1979) and the thickness of the 
intermediate aquifer system has been mapped by Buono and 
others (1979). The hydrogeochemistry of Florida has been 
investigated further by Hanshaw and others (1971), Plum­
mer (1975), Wigley and Plummer (1976), Hanshaw and 
Back (1979), Katz (1992), and Swancar and Hutchinson (in 
press). 

FIELD AND LABORATORY METHODS 

Subsurface samples from 10 cores and from 1 set of 
cuttings, stored at the Florida Geological Survey, Tallahas­
see, and also from 1 core at the USGS, Reston, Va., were 
examined for age determinations, mineralogy, and petrogra­
phy; geophysical logs were obtained from 9 of those cores 
from the USGS and the Southwest Florida Water Manage­
ment District (table 1). 

87Sr/86Sr analyses were performed at Rutgers Univer­
sity on 16 mollusk shells and 1 foraminifer from the top 200 
m in the study area. Original aragonite or calcite, or slightly 
recrystallized calcite, shells were cleaned, crushed, and dis­
solved in a solution of 1.5 N HCl. Ion exchange (Hart and 
Brooks, 197 4) was used to separate strontium for analysis 
on a mass spectrometer, with an intrarun precision on this 
instrument of ±0.000008 and an interrun variability of about 
0.000026 to 0.000030 (Miller and others, 1991). The 
National Bureau of Standards strontium sample ratio at Rut­
gers University is 0. 710252 (2 cr standard deviation is 
0.000026; n=35) normalized to 86srJ88sr of 0.1194 (Miller 
and others, 1991). Numerical ages were estimated using the 
regression equations of Miller and others (1988, 1991), 
Hodell and others (1991), and Oslick and others (1992, 
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Table 1. Core locations and sample information 

[Dino=Dinocysts; Moll=Mollusks; Sr=Strontium isotope dating; Xrd=X-ray diffraction; Ts=Microscope and SEM; Litho=Lithologic logs; Geophy=Geo-
physical logs; *Cuttings only] 

Elevation Core Length Latitude Latitude 
Core County Dino Moll Sr XRD Ts Litho Geophy 

(m) (ft) (m) (ft) North West 

W-15166 .................... 2 8 193 634 Manatee 27°25'10" 82°34'57" X X 
W-16784 .................... 21 70 331 1088 Manatee 27°28'30" 82°12'45" 31 11 X X 

W-11946 .................... 20 67 143 470 Hardee 27°27'50" 81°41'45" 2 32 3 X 

W-17000 .................... 26 85 398 1304 Highlands 27°23'10" 81 °27'15" 2 52 12 X X 

W-15168 .................... 4 14 199 654 Sarasota 27°08'08" 82°27'05" 2 5 X X 
Walton site (USGS) .... 5 16 92 304 Sarasota 27°11'43" 82°24'03" 2 39 2 X X 

W-15636* .................. 5 15 276 906 Sarasota 27°09'19" 82°23'42" X X 

W-16782 .................... 3 11 177 580 Sarasota 27°08'04" 82°21'05" 5 63 13 X X 

W-16814 .................... 4 13 213 701 Sarasota 27°02'40" 82°23'57" 3 7 2 86 12 X X 

W-15303 .................... 7 22 436 1430 DeSoto 27°10'26" 82°49'30" 3 24 X X 

W-12050 .................... 19 62 183 600 DeSoto 27°10'00" 81°43'11" 1 4 28 5 X 

W-16578 .................... 13 41 345 1133 DeSoto 27°02'25" 81 °44'33" 3 X 

1994); stage boundaries are based on the time scale of Berg­
gren and others (1985). 

Dinocysts were separated from fine-grained unlithified 
samples in hydrochloric and hydrofluoric acids, and their 
occurrences were compared to published range data for the 
individual taxa. Emphasis was placed on ranges in the mid­
Atlantic region (Stover, 1977; Edwards, 1986, 1991; Ver­
teuil and Norris, 1992), but worldwide compilations also 
were used (Williams and Bujak, 1985; Haq and others, 
1987; Powell, 1992). Mollusks were analyzed primarily 
from internal and external molds or from latex casts of the 
molds. The large size of many of the preserved mollusks, 
relative to the core diameter, limits the investigation to time 
ranges of individual species rather than assemblages. 
Within the core studied, Turritella species are relatively 
abundant, easily identifiable and well preserved, even as 
molds or casts; are fairly widespread geographically; and 
appear to have evolved rapidly. These characteristics make 
the turritellids good biostratigraphic indicators. 

Samples for XRD were prepared from whole-rock sub­
samples or from the fraction finer than 2 micrometers that 
was concentrated by centrifuge-separation (Soller and 
Owens, 1991). Although these methods do not produce 
identical peak heights (intensities}-because the first inhib­
its parallel orientation of planar and fibrous minerals 
whereas the second enhances orientation-several duplicate 
test runs produced comparable results. Untreated centrifuge 
samples that exhibited approximately IS-nanometer peaks 
were treated with ethylene glycol; a peak shift to approxi­
mately 17 nanometers indicates illite/smectite mixed-layer 
clay, whereas dioctahedral vermiculite peaks do not shift 
with this treatment. Minerals were identified by matching 
one or more major peaks with published standards (Joint 
Commission on Powder Diffraction Standards, 1974, 1981). 

Geophysical logs are available for 9 of the 12 bore­
holes from the Southwest Florida Water Management Dis­
trict and the USGS. Logs from five of the nine boreholes 
have been included in various previously published reports, 
but four are presented here for the first time: Walton, W-
16782, and W-16814 were logged by the USGS, and W-
17000 was logged by Southwest Florida Water Manage­
ment District. The primary use of geophysical logs in south­
em Florida is as a tool for correlation of boreholes with and 
without cores. The electric logs, single point (SP) and resis­
tivity (Res), were run prior to casing the holes and natural 
gamma radiation logs were run after the hole was cased. 
The SP logging instrument was not available for W-16814. 
Electric logging was performed in three increments at W-
16782, between drilling and setting casings, to obtain as 
complete records as possible. On electric logs, electrical 
conductivity (for SP) and resistance values increase to the 
right, and natural gamma radiation values increase to the 
right on gamma logs. In all logs, the geophysical signature, 
which is the frequency and amplitude of spikes, was a char­
acteristic used in correlation of rock units. Of the three 
types of logs, gamma logs are considered potentially the 
most useful for tracking lithologic boundaries, so individual 
gamma spikes and groups of spikes were compared with 
lithologic contacts discerned in the cores. 

Blue-dyed, epoxy-impregnated thin sections from 58 
samples were examined with a petrographic microscope, 
and selected sample chips and polished thin sections were 
examined with the SEM. All thin sections were dyed with 
Alizarine red S to differentiate calcite from dolomite 
(method of Friedman, 1959). 

Unpublished water-chemistry data were obtained from 
19 water samples taken from 18 wells (within the study 
area) that are open in the stratigraphic and hydrologic 
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Table 2. 87Sr/86Sr age estimates1 

Core 
Depth 

87srj86sr 
Age 

(m) (ft) (Ma) Epoch 

W-12050 .......................... 25.0--26.5 82.0-87.0 0.708980±6 5.1 Pliocene 

W-17000 .......................... 95.4 313.0 0.708730±7 16.7 
W-15636 .......................... 88.4-89.9 290.0--295.0 0.708595±13 18.9 
W-12050 .......................... 57.3 188.0 0.708534±10 19.7 Miocene 
W-12050 .......................... 87.1 286.0 0.708379±4 22.3 
W-15166 .......................... 87.3 286.4 0.708342±8 22.9 

W-17000 .......................... 114.0 374.0 0.708216±9 25.3 
W-16782 .......................... 70.1 230.0 0.708192±6 26.0 
W-16782 .......................... 79.2 260.0 0.708182±6 26.3 
W-16814 .......................... 118.4 388.5 0.708166±5 26.8 
W-16782 .......................... 96.6 317.1 0.708163±8 26.8 Late Oligocene 

W-16782 .......................... 94.7 310.8 0.708153±6 27.1 
W-15168 .......................... 116.3 381.5 0.708127±5 27.9 
W-11946 .......................... 55.3 181.5 0.708101±18 28.6 

W-16814 .......................... 200.9 659.0 0.708042±5 30.3 
W-12050 .......................... 178.6 586.0 0.707927±8 33.6 Early Oligocene 
W-11946 .......................... 140.2 460.0 0.707853±8 35.8 

1 Regression curves for age estimates: Pliocene, Hodell and others. 1991: Miocene, Miller and others, 1991: Oslick and others, 1992, 
1994: Oligocene, Miller and others, 1988. Time scale for all regression curves from Berggren and others, 1985. 

intervals of interest. Saturation indices (SI) for calcite and 
ordered dolomite were calculated at the USGS, National 
Center, using a slightly modified version of the WATEQF 
program of Plummer and others ( 1978) (Niel Plummer and 
Eric Prestemon, USGS, written communication, 1993). 
These data were supplemented by similar SI data from 
seven wells reported by Swancar and Hutchinson (in press). 
WATEQF input requirements for a large number of ions and 
<30 percent error in charge balance eliminated more than 
2,500 of the chemical analyses available. The SI for a water 
sample with respect to a given mineral is defined as the 
following: 

S/=log [IAP/Ksp] 

where lAP is the measured ion activity product and Ksp is 
the calculated solubility product at equilibrium for the dis­
solution reaction of interest. An SI value of 0±0.5 is consid­
ered equal to 0, meaning that the water is exactly saturated 
with a given dissolved mineral species; Sl<-0.5 indicates 
undersaturation and that the mineral is susceptible to disso­
lution; Sl>0.5 indicates supersaturation and, from a thermo­
dynamic point of view, that precipitation of the mineral is 
possible (Stumm and Morgan, 1981). 

RESULTS 

The contributions of this study are age estimates 
for subsurface lithostratigraphic units and a regional 

understanding of diagenetic history. Strontium isotope and 
paleontologic age estimates for rocks in the upper 266 m in 
the study area constrain the time of deposition of the litho­
stratigraphic units of Scott ( 1988). Through investigation of 
mineralogy and texture, we differentiate primary and diage­
netic features, and we use modem water chemistry to iden­
tify relict diagenetic alteration. Strontium isotopic age 
estimates are given in table 2; lithostratigraphy is shown for 
all cores in two cross-sections in figures 2A and 2B; XRD 
mineralogy is given for W-16814 in table 3; the effects of 
diagenetic processes observed in selected thin sections are 
illustrated in figures 3 and 4 and are summarized for all 
samples in table 4; the distribution of diagenetic magne­
sium-rich minerals (from XRD data) is shown in figures SA 
and 58; and modem ground-water chemistry and SI analy­
ses are given in table 5. 

87SRf86SR AND PALEONTOLOGIC AGE 
ESTIMATES 

The 87 Sr/86Sr values of shell samples from the top 200 
m in the study area indicate numerical age estimates that 
range from 5.1 Main the Peace River Formation to 36.1 Ma 
in the "Suwannee" Limestone (table 2). The locations of the 
molluscan and dinocyst samples and the samples used in the 
strontium analysis are indicated on the cross-sections (figs. 
2A and 2B). 

The core at W-16814 provides our best integration of 
isotopic and paleontologic data (fig. 2B). Analysis of 
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Table 3. Mineralogy of the South Venice core (W-16814). Minerals identified by X-ray diffraction 

[liS, illite smectite mixed-layer clay; Se, sepiolite; P, palygorskite; I, illite; K, kaolinite;?, possible occurrence; T, trace:./, mineral present;,/,/, dominant 
XRD peak@, prepared with amyl acetate; cristobalite (opal-CT) is present at 57.2 m; L, light phase; D, dark phase. Empty cells mean mineral not detected. 
Depth in meters below surface.] 

Depth liS Se 

0.3.............. 92 

1................. 100 

1.5.............. 100 

2.7 ............ .. 

4.4.............. 100 

p 

? 

K 

8 

T 
T 

Q c 
./ ./ 
././ 
./ 
T 

4.7.............. T 53 47 ./ 
5.2@ ........ .. 

5.9 ............ .. 

6.6.............. 85 

7.0.............. 89 

7.2 ............. . 

7.5.............. 100 
8.1.............. 90 

12.2.............. 89 

14.5.............. 85 T 

18.6.............. 82 

21.7 .............. 51 42 

22.1.............. 46 43 

10 

14 

17 

7 
11 

24.7.............. 45 36 T 18 

25.9@ ......... . 

28.7@ ......... . 

30.2.............. 46 54 
31.9@ .......... T 
34.9@ .......... T 

37.8.............. 35 31 26 8 

38.3.............. 39 

40.6.............. 53 
42.5@ ........ .. 

45.1@ ........ .. 

47.5 ............. . 

48.5@ ......... . 

50.3@ ........ .. 

51.3@ ........ .. 

55.1@ ......... . 

55.7@ ......... . 

61.0@ ........ .. 

67.3@ ........ .. 

69.5L@ ....... . 

69.50@ ..... .. 

73.2@ ......... . 

79.3@ ......... . 

25 25 11 

16 23 8 

T 
32 68 

23 77 
T 

T 

100 
24 76 

T 
100 

T 

100 

100 

25 75 
82.9@ .......... 56 44 

87.6.............. 22 33 36 9 

././ 
100 

15 ./ 

11 

10 

T 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 
T 
./ 
./ 

./ 

./ 

./ 

./ 
? 

./ 

T 
? 

./ 
T 

./ 

./ 

././ 

./ 

./ 

D 

./ 

./ 

T 

././ 

././ 

./ 

././ 

././ 

./ 

././ 

././ 

././ 

././ 

././ 

././ 

././ 

././ 

././ 

././ 

././ 

././ 

././ 

././ 

./ 

Depth liS Se p 

88.9 .......... . 15 22 52 11 

90.9 ......... .. 31 63 6 

92.8 .......... . ? 36 61 3 
93.9@ ...... . 

97.9@ ..... .. 

101.9@ ...... . 

106.0@ ...... . T 
108.0@ ...... . 

109.3@ ..... .. 

112.1@ ..... .. 

112.9@ ...... . 

113.8 .......... . 100 
118.5@ ..... .. 

121.6@ ...... . T 

125.7@ ..... .. 

136.7@ ....... ? 
139.0@ ...... . 34 66 

142.6L ....... .. 100 T 
142.60 ....... . 100 T 
146.4@ ...... . 

149.7@ ...... . T 

152.1@ ...... . 

157.3@ ...... . T 
164.2@ ..... .. 

170.2@ ...... . 

173.9@ ...... . 75 25 

174.5@ ...... . 64 36 

179.6@ ...... . 72 28 
182.2@ ...... . T 
183.8@ ...... . 57 43 

184.9@ ...... . 72 28 

188.0@ ...... . 51 49 

190.3@ ...... . 82 18 

193.1@ ...... . 

194.2L@ .... . 65 35 

194.20@ ... . 68 32 

198.0@ ...... . 

201.0@ ...... . T 
202.1@ ...... . 

203.2@ ...... . 100 

205.3@ ...... . 

206.5@ ...... . 

212.3@ ..... .. 

K Q 

./ 

./ 

./ 

./ 

./ 

c D 

./ 

./ 

././ 
././ T 

././ 

././ T 

./ 
T ././ 

././ 

./ ./ ./ 
././ 
././ 

./ ././ 

./ ././ 

././ ./ 

././ ./ 

./ ./ ? 

./ 

./ 

./ 

./ 

./ 

././ 

./ 

./ 
? 
././ 

./ ./ ./ 
././ 
././ 

././ T 

./ ./ ./ 

./ ./ ./ ./ 

./ 

./ 

./ 

./ 

./ 
././ 
././ 

./ 

././ 

././ 

? 

././ 

./ 

./ ./ ./ ./ 

./ ./ ./ ./ 

./ 

./ 

./ 

./ 

./ 
T 

././ 

././ 

././ 

././ 

././ 

././ 
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Figure 3. See caption on facing page. 
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0.5mm 

Figure 3. Plane-polarized-light optical photomicrographs of 
diagenetic textures. (A) W-16782, 70.2 m, micritized foraminifer 
with intraparticle calcite cement (arrow) in porosity (p). (B) W-
16814, 193.1 m, blocky calcite cement predates shell dissolution 
and nearly fills primary porosity over geopetal infilling of 
leached bivalve, matrix is micrite. (C) W-11946, 57.1 m, mol­
lusk moldic porosity (p) is partially filled with postdissolution 
blocky calcite (arrow); dark micrite matrix holds quartz (white) 
and phosphate (speckled) grains; small dolomite rhombs occur in 
this sample but are not visible in this view. (D) W-12050, 182.9 
m, echinoid spine and fragments (arrows) with syntaxial calcite 
overgrowths into interparticle porosity (p ); fine calcite rim 
cement coats other grains. (£) W-16814, 122.6 m, fossil moldic 
porosity (p), (probably a benthic foraminifer) lined with limpid 
(inclusion-free) dolomite (arrow), matrix is brown dolomicrite, 
white grains are fine quartz sand. (F) W -17000, 126.4 m, sandy 

dinocyst assemblages from three depths indicates the fol­
lowing ages: (1) 24.9 m, middle Miocene, or slightly 
younger; (2) 38.1 m, early to middle Miocene; (3) 187.8-
187.9 m, latest early Oligocene or earliest late Oligocene 
(the Globoratalia opima opima zone). The shallowest 
dinocyst assemblage indicates that the beds referred to in 
the field as the "Venice clay" (L. Barr, oral communication), 
is middle Miocene or slightly younger and is a part of the 
Arcadia Formation. Molluscan data from W-16814 indicate 
that the Oligocene-Miocene boundary may be crossed 
between 97.7 and 102.7 m depth. Turritella cf. T. tarponen­
sis Mansfield, 1937, found at 97.7 m, and Turritella aff. T. 
pagodaeformis Heilprin, 1887, found at 97.8 m, resemble 
species generally considered to be early Miocene (Heilprin, 
1887; Mansfield, 1937). Turritella cf. T. tampae Heilprin, 
1887, was found from 100.6 to 101.5 m; T. tampae has long 
been considered early Miocene on the basis of its occur­
rence in the interval now designated the Tampa Member of 
the Arcadia Formation (Heilprin, 1887; Dall, 1892; Mans­
field, 1937; Cooke, 1945), but a revision in age of the 
Tampa Member considered herein would lower the range of 
Turritella tampae into the late Oligocene (this agrees with 
the observations of Ward, 1992, p. 119-120). Turritella cf. 

dolostone with partially filled molds of two echinoderm plates 
and other fossils, dolomite infilling at arrows is in optical conti­
nuity, but the echinoid has dissolved leaving a dolmicritic, 
microporosity filling of the original shell; white grains are quartz 
sand and silt; gray areas are dyed porosity-filling epoxy (p). (G) 
W-11946, 32.6 m, dyed epoxy-impregnated (forms gray back­
ground) claystone of palygorskite (confirmed by XRD) with 
floating etched dolomite (ed) rhombs; grains are quartz (white) 
and concentrically layered phosphate grains (speckled); dolomite 
rhombs show several etched layers (arrow, lower right). (H) W-
16784, 84.8 m, dolomicrite with leached phosphate grains (Ph, 
right arrow) that are white in the middle and dark around the 
margins, dyed porosity-filling epoxy is gray (p), matrix retains 
shape of the original phosphate clast; white botryoidal silica 
coats void surface (S, left arrow). 

T. bowenae Mansfield, 1937, was found at 103.0 m; T. 
bowenae is typical of the Suwannee Limestone (Mansfield, 
1937). A Trigoniocardia sp. from 118.4 m brackets that 
sample as Oligocene or younger (Keen, 1969). The most 
definitive mollusk was Turritella caelatura Conrad, 1848, 
found in samples from 197.9 to 200.9 m; this species has 
been reported only from the lower Oligocene (Vicksburg­
ian) Mint Springs Formation of Mississippi (MacNeil and 
Dockery, 1984). The paleontologic samples analyzed at W-
16814 agree with the 87Sr/86Sr age estimates of 30.3 Ma 
(early Oligocene) for samples from 200.9 m and 26.8 Ma 
(late Oligocene) for samples from 118.4 m. 

Dinocyst assemblage data from the core at W -15168 
indicate an early to middle Miocene age for samples from 
both 18.3 m and 21.6 m; samples from 14.8 m and 20.1 min 
the Walton core also indicate an early to middle Miocene 
age. The molluscan species Turritella cf. T. tampae Heil­
prin, 1887, was found at 69.2 min the core at W-16782; at 
69 m the 87Srj86Sr age estimate is 26.0 Ma (late Oligocene), 
an age that is consistent with the revised range for Turritella 
tampae. In the core at W-16578, Turritella cf. T. tampae 
Heilprin, 1887, was found at 99.1 m, and Turritella cf. T. 
bowenae Mansfield, 1937, was found at 100.6 m. The 
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100 ~m 

Figure 4. SEM images of selected sample chips. (A) W-17000, 
156.8 m, micritized foraminifer; sample is all calcite. (B) W-
11946, 32.6 m, dolomite rhomb with zoned etching and fibrous 
palygorskite. (C) W-16784, 91.3 m, dolomite (d) with etched 
outer surface in a palygorskite matrix. (D) W-16814, 61.0 m, 

10 ~m 

intergrown dolomite rhombs with etched centers, no clays 
present. (E) W-16814, 82.9 m, dolomite rhombs (not etched) and 
fibrous palygorskite. (F) Walton, 80.2 m, opal-CT lepispheres 
resting on an etched phosphate grain not on image. 
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Table 4. Petrographic observations of diagenetic alteration processes 

[l=shell micritization; 2=shell dissolution; 3=equant calcite cement; 4=calcite overgrowths on echinoid pieces; 5=dolomite; 6=dolomite replacement of, or 
overgrowths on, echinoid pieces; 7=etched dolomite; 8=phosphate grain dissolution; 9=amorphous silica cement] 

Sample 2 3 4 5 6 7 8 9 

W-11946 

32.6 ........... X X X X X X X 
57.1 ........... X X X X X 

140.3 ........... X X X 

W-12050 

64.1 ........... X X X X 
92.7 ........... X X X 

135.4 ........... X X X X 
162.0 ........... X X X X X 
182.9 ........... X X X X 

Walton 

27.5 ........... X X X X X 
80.2 ........... X X 

W-17000 

88.8 ........... X X 
94.6 ........... X X X X X X 

117.8 ............ X X X 
123.0 ........... X X X X 
126.5 ........... X X X X X X 
146.2 ........... X X X X 
156.8 ........... X X X X 
168.7 ........... X X X X 
175.7 ........... X X X X 

194.7 ........... X X X X 
210.4 ........... X 

W-16782 

30.6 ........... X X X X 
39.0 ........... X X X X X 
57.3 ........... X X X X X 
70.2 ........... X X X X 
74.9 ........... X X 

87.6 ........... X X 

occurrence of Turritella cf. T. tampae and T. cf. T. bowenae 
within a few meters of each other was seen at W -16814 as 
well as at W-16578 and may prove to be a significant bio­
stratigraphic marker. Turritella cf. T. halensis Dall, 1917, 
was found at 270.4 min W-16578 and at 70.7 m, 73.2 m, 
and 87.5 m in W-15303. Dall (1917) found Turritella 
halensis at Hale landing on the Flint River, Georgia; the age 
of these deposits has been placed from early Oligocene to 
early Miocene (Dall, 1917; Cooke, 1935; Cooke, 1959). 
Mansfield identified Turritella cf. T. halensis from the 
Suwannee Limestone near the type area. 

Sample 2 3 4 5 6 7 8 9 

W -16782-continued 

97.7 ............ X X X 
108.1 ............ X X 

122.6 ............ X 
126.3 ............ X 

154.3 ............ X 
171.7 ............ X X X 
176.4 ............ X 

W-16784 

52.5 ............ X X X 
62.7 ............ X 
84.8 ............ X X X X X X 
91.3 ............ X X 

95.6 ............ X X X 
103.2 ............ X X X X 

114.1 ............ X X X 
121.1.. .......... X X X 
216.1.. .......... X X X X 

265.0 ............ X X 

321.5 ............ X 

W-16814 

24.9 ............ X X X X 

61.0 ............ X X X X 

69.5 ............ X X X X X 

73.2 ............ X X X 

82.9 ............ X X X 

106.0 ............ X X X 

122.6 ............ X X X X 

136.6 ............ X X X 

146.4 ............ X X 

149.7 ............ X X X X 

157.3 ............ X 

193.1.. .......... X X X X 

LITHOLOGY AND MINERALOGY 

The cores examined are characterized by carbonate 
sequences that span several tens of meters, and interbedded 
carbonates and siliciclastics from less than a meter to tens 
of meters thick (figs. 2A and 2B). The limestones are mainly 
mudstones, wackestones, and packstones (classification of 
Dunham, 1962), commonly with phosphatic minerals 
(mainly hydroxyfluorapatite, collectively called "phos­
phate" in this paper), and quartz sand and silt. Many locally 
dolomitized limestones retain the original limestone 



14 

A 

8 

AGE AND DIAGENESIS OF THE UPPER FLORIDAN AQUIFER IN SW. FLA. 

West 

Sea 
level 

50 

100 

~ 
150 

Q) -Q) 

~ 
200 

250 

300 

350 

West 

Sea 
level 

50 

100 

~ 150 
Q) -Q) 

~ 
200 

250 

300 

350 

EXPLANATION 

I Dolomite 

D Palygorskite/sepiolite 

Aquifer system boundary 

Palygorskite/sepiolite data 
unavailable 

"Suwannee" Limestone 

EXPLANATION 

I Dolomite 

0 Palygorskite/sepiolite 

Aquifer system boundary 

Palygorskite/sepiolite 
data unavailable 

Mineralogical data 
unavailable 

Avon Park Formation 

W-17000 
East 

Avon Park 
Formation 

Intermediate 
aquifer 
system 

Upper Floridan 
aquifer (of the 
Floridan aquifer 
system) 

East 

D 
Intermediate 
aquifer 
system 

Upper Floridan 
aquifer (of the 
Floridan aquifer 
system) 



RESULTS 15 

Table 5. Water chemistry of the intermediate aquifer system and Upper Floridan aquifer, west-central Florida 

[m=meter; ppm=parts per million; IAS=intermediate aquifer system; LIA=lower intermediate aquifer; UIA=upper intermediate aquifer; UFA=Upper 
Floridan aquifer] 

Open Interval Saturation index 
Stratigraphic units3 

Name County Latitude Longitude Elevation Depth Field1 Mg++j Cl- Aquifer2 (Scott, 1988) 
North West (m) (m) pH ca++ (ppm) 

Calcite Dolomite 

ID 01 (TRG WELL TB3) .. DeSoto 27°15'12" 81°34'47" 27.5 28-92 8.20 0.316 148.0 lAS Arcadia ................ 0.989 1.839 

ID 02 (TRG WELL TB 1) .. De Soto 27°15'20" 81°39'42" 26.2 32-90 8.00 0.686 94.0 lAS Arcadia ................ 0.432 1.065 

ID 07 (GOLDEN "Suwannee"-
RAINBOW) .................. Manatee 27°18'02" 82°06'27" 22.6 153-467 7.60 0.428 17.0 UFA Avon Park (?) .. 0.373 0.735 

ID 08 (M.J. RANCH) ........ Manatee 27°18'12" 82°11'12" 16.8 153-244 7.50 0.362 11.0 UFA "Suwannee"-
Ocala(?) ......... 0.310 0.530 

ID 09 (ROMP 22) .............. Sarasota 27°18'13" 82°20'13" 10.7 72-83 7.55 0.627 150.0 L lA Arcadia ................ 0.245 0.640 

ID 11 (ROMP 22) .............. Sarasota 27°18'13" 82°20'13" 10.7 28-38 7.31 0.394 73.0 U IA Arcadia ................ 0.130 0.196 

ID 12 (AMOCO 1) ............ DeSoto 27°20'15" 81°39'29" 28.7 44-87 7.60 0.562 67.0 lAS Arcadia ................ --o.061 -0.015 

ID 24 (VERNA #7) ........... Sarasota 27°23'06" 82°18'27" 23.2 44-146 8.10 0.551 13.0 IAS-UFA(?) Arcadia ................ 0.712 1.525 

ID 25 (VERNA #19) ......... Sarasota 27°23'07" 82°17'18" 25.0 43-140 7.80 0.750 35.0 IAS-UFA(?) Arcadia-
"Suwannee" (?) 0.332 0.866 

ID 27 (VERNA 1A) .......... Manatee 27°23'56" 82°18'13" 25.0 126--146 7.30 0.500 10.0 IAS-UFA(?) Arcadia ................ --Q.065 --o.082 

ID 29 (COCA COLA) ....... Highlands 27°24'08" 82°23'25" 38.4 167-182 7.79 0.680 16.0 UFA "Suwannee" ......... 0.052 0.319 

ID 30 (PARKS D. WELL) Manatee 27°24'23" 82°05'19" 24.4 61-403 7.70 0.444 54.0 IAS-UFA Arcadia-Avon 
Park(?) ........... 0.427 0.882 

ID 31 (MANLEY FARMS) Manatee 27°26'43" 82°18'19" 24.7 61-305 7.20 0.569 13.0 IAS-UFA Arcadia-Ocala..... --o.087 0.074 

ID 32 (ROMP 032-2) ........ Manatee 27°28'14" 82°03'48" 31.7 171-183 8.80 0.524 20.0UFA "Suwannee" ......... 0.471 1.034 

ID 33 .................................. Highlands 27°29'20" 81°26'03" 40.3 171-430 8.30 0.325 6.4 UFA "Suwannee"-
Avon Park ....... 0.021 --o.079 

ID 34....... ... .. .. .... ... .. .. ..... .. .. Hardee 27°32'05" 81°49'20" 28.1 19-70 7.40 0.466 12.0 lAS Arcadia................ --o.372 --o.751 

ID 35 .................................. Hardee 27°32'12" 81 °37'22" 22.9 60-329 7.40 0.445 4.0 IAS-UFA Arcadia-Avon 
Park ................. --o.645 -1.259 

ID 36 .................................. Hardee 27°35'07" 81°44'47" 30.8 17-33 8.10 0.666 8.0 lAS Arcadia ................ 0.414 0.979 

ID 37 (AVON PARK) ........ Highlands 27°35'27" 81°31'08" 46.7 153-458 7.60 0.270 9.1 IAS-UFA Arcadia-Avon 
Park(?) . .. ......... --o.539 -1.299 

The following data are from Swancar and Hutchinson (in press): 

S&H1 (ROMP TR 3-1) .... Charlotte 26°56'38" 82°13'07" 2.1 183-189 7.48 0.718 410.0 UFA "Suwannee" ......... 0.098 0.437 

S&H2 (ROMP 10) ............. Charlotte 27°01'52" 82°00'28" 6.1 181-280 7.53 0.650 180.0 UFA "Suwannee" ......... 0.076 0.349 

S&H3 ................................. DeSoto 27°02'56" 8}047'28" 10.7 214-275 7.70 0.560 340.0 UFA "Suwannee" ......... 0.211 0.580 

S&H4 (ROMP TR 5-2) .... Sarasota 27°09'19" 82°23'42" 4.6 156--214 7.10 0.292 44.0UFA "Suwannee" ......... 0.188 0.234 

S&H5 (ROMP 16) ............. DeSoto 27°11'15" 81°46'27" 18.3 231-287 8.60 0.575 39.0 UFA "Suwannee" ......... 0.995 2.157 

S&H6 (ROMP 26) ............. De Soto 27°17'57" 81 °49'30" 22.9 177-403 7.45 0.520 14.0 UFA "Suwannee"-
Avon Park ...... 0.166 0.472 

S&H 10 (Zolfo Springs 1). Hardee 27°29'44" 81°47'40" 19.8 107-305 7.45 0.478 17.0 UFA "Suwannee"-
Avon Park ....... 0.082 0.252 

1 Lab pH used for S&H1, S&H2, S&H6, S&H 10. 
2 Aquifer penetrated is estimated from Buono and Rutledge, 1979. 
3 Stratigraphic unit penetrated is estimated from data in Scott (1988, and written communication, 1993) and Johnson (1986); Arcadia, Arcadia Formation; "Suwannee," 

"Suwannee" Limestone; Avon Park, Avon Park Limestone; Ocala, Ocala Group. 

~ Figure 5. Distribution of magnesian minerals in cores. 
Approximate depth intervals of the intermediate aquifer system 
and the Upper Floridan aquifer of the Floridan aquifer system 
are indicated on the right. Dolomite occurrence, detected 
within at least 5 m vertically by XRD, is indicated on the left of 
cores; sepiolite and palygorskite occurrences are shown on the 
right of cores. (A) Transect A-A' from figure 1; (B) transect B­
B' from figure 1; PR, Peace River Formation; T, Tampa Mem­
ber of the Arcadia Formation. Magnesian minerals are more 
abundant and are found in more of the section to the west and 
south. 

textures at the macroscopic scale and, in some places, rela­
tively unaltered shell material still exists. 

Limestone and dolomite grade vertically and, we 
assume, laterally in the study area into quartz sandstone and 
mudstone. The mudstone is composed mainly of quartz silt, 
illite-swectite mixed layer clay, illite, and the fibrous mag­
nesian clays, sepiolite and palygorskite, and forms beds that 
are a few centimeters to tens of centimeters thick. In addi­
tion, magnesian clays form a significant component of the 
fine-grained carbonate rocks (see table 4). 
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Quartz sandstone with variable amounts of phosphate 
grains is cemented by calcite or dolomite and is present in 
zones as thick as 60 m (W-16782). Quartz sand that is 
poorly consolidated or unconsolidated or sandstone that is 
cemented by silica is found mainly in beds less than 0.3 m 
thick. Silica-cemented quartz sand generally is accompa­
nied by phosphate grains and a small proportion of detrital 
carbonate grains. Feldspar is a minor component of most 
sandstones. 

Phosphate is present primarily as shiny sand-size 
grains or small black, brown, tan, and off-white pebbles; a 
small portion is present as cement in hardgrounds. The 
grains include phosphatic bone fragments and teeth, phos­
phatized fossil invertebrate fragments, phosphate-cemented 
quartz sandstone, and phosphate-cemented sandstone and 
siltstone composed mainly of detrital carbonate grains. Thin 
sections reveal concentric structures in the phosphate 
grains. 

Brecciated zones a few centimeters to over 30 em thick 
with veinlike interstitial fillings were observed singly or in 
groups of several beds on the order of a meter apart verti­
cally. These zones are especially notable in the Arcadia For­
mation. The broken bed lithologies and angular clasts are 
siliciclastic mudstone, limestone, or dolomite, and the inter­
stitial filling is detrital quartz and phosphate silt, limestone, 
or dolomite. In some of the brecciated zones, patches and 
stringers of black to tan chert are evident. The chert has 
replaced carbonate and siliciclastic clay and, in places, has 
filled voids caused by dissolution of carbonates. Chert also 
occurs as thin beds (0.1-2 em thick) and irregular patches in 
nonbrecciated rock. 

Geophysical logs are presented here for the first time 
for four boreholes (Walton, W-16782, W-16814, and W-
17000) (figs. 2A and 2B). 

DIAGENESIS 

Nine diagenetic processes are tracked in thin sections 
to determine the timing and regional extent of diagenetic 
alteration of the rocks in the study area: ( 1) shell micritiza­
tion, (2) shell dissolution, (3) precipitation of equant or 
blocky calcite cement in pore spaces, ( 4) syntaxial calcite 
overgrowths on echinoderm fragments, (5) precipitation of 
dolomite as a replacement of calcite or in pore spaces, ( 6) 
syntaxial dolomite replacement of echinoderm fragments 
and overgrowths, (7) partial dissolution of dolomite rhom­
bohedra, (8) partial dissolution of phosphate grains, and (9) 
precipitation of amorphous silica in pore linings with local 
alteration to opal-CT and quartz (figs. 3 and 4; table 4). 

Shell micritization is one of the earliest diagenetic pro­
cesses that affects the skeletal grains in the carbonates 
examined (figs. 3A and 4A); the shell structure is destroyed, 
but the shell shape is preserved. Micritization is observed in 
foraminifers, bryozoans, and red algae and is rare in echi-

noids and oysters. An early blocky calcite cement fonns a 
thin rind on grain and fossil surfaces in many samples, fill­
ing primary porosity in foraminifer chambers and articu­
lated pelecypods (fig. 3B). This generation of calcite 
cement predates shell dissolution. Moldic porosity, the con­
sequence of the dissolution of aragonitic and calcareous 
shells, also is common in most of the carbonates examined 
(fig. 3B), especially of the aragonitic mollusks and some 
soritid foraminifers. Dissolution of bryozoans, other fora­
minifers, ostracodes, calcitic molluscs (oysters and pect­
ens), and red algae is less common; dissolution of 
echinoderm fragments is very rare. In many samples, a sec­
ond generation of blocky calcite cement grows on the void 
surfaces (that is, on the cemented matrix material that 
packed around the fossil), rarely filling the void completely 
(fig. 3C). Syntaxial overgrowths of calcite are common on 
echinoid fragments, especially in packstones and grain­
stones, and extend into intergranular pore space and, in 
some cases, into nearby fossil molds (fig. 3D), indicating 
postdissolution precipitation. Shell micritization, shell dis­
solution, equant calcite cement, and calcite overgrowths on 
echinoderm fragments are observed at all depths in the 
cores examined and show no preferred depth or regional 
distribution (table 4). 

Dolomite occurs as pore-lining crystals (figs. 3£ and 
3F), as etched and nonetched rhombohedra (figs. 3G, 4B, 
4C, 4£, and 4F), as a replacement of calcareous fossils (red 
algae, foraminifers, bryozoans, and echinoderms) (see 
replaced echinoderm in fig. 3£), as syntaxial overgrowths 
on dolomitized echinoderm fragments, and as dolomicrite 
(fig. 3H). Dolomite is observed in three leached conditions: 
leached centers of rhombs (figs. 4£), leached zones (figs. 
3G and 4B), and etched surfaces (fig. 4C). Etched dolomite 
is observed only within the upper 95.8 m in the study area 
(table 4). 

Detrital phosphate grains are common constituents of 
both the siliciclastic and carbonate rocks examined. In most 
cases, several concentric zones that differ in color or texture 
can be seen in each grain (fig. 3G), indicating multiple gen­
erations of phosphate precipitation. Phosphate coatings are 
observed on fossil fragments, quartz grains, and cementing 
horizons or groups of grains. In a few samples, phosphate 
grains show evidence of leaching (fig. 3H); most examples 
are in the upper part of the undifferentiated Arcadia Forma­
tion, except at W-12050 and W-11946 where phosphate 
dissolution is observed in the Tampa Member. Most occur­
rences of amorphous silica, observed at the thin section 
scale, are associated with leached phosphate grains in the 
upper part of the undifferentiated Arcadia Formation (table 
4); however, occurrences are observed at W-17000 in the 
lower part of the undifferentiated Arcadia Formation and at 
W -16814 at the same stratigraphic horizon. Alteration of 
amorphous silica to opal-CT can be detected by XRD and 
observed only at the SEM scale, where it exhibits a fibrous 
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and bladed spheroidal habit (fig. 4G); these lepispheres 
were found only as cavity linings. 

Dolomite, palygorskite, and sepiolite are all magne­
sium-rich minerals and have very similar spatial distribu­
tions in the cores examined, as indicated by XRD analysis 
(figs. SA and 5B). Also, palygorskite and sepiolite typically 
occur with dolomite (figs. 3C, 3D, and 3F). These two mag­
nesian silicate minerals are wispy and fibrous, and encase 
both etched and nonetched dolomite rhombs. At site W-
16814, the most southwesterly as well as the most perva­
sively dolomitized core in the study area, the limestones and 
siliciclastics are dolomitized down to 203 m (see fig. 5B). 

All three minerals are more pervasive and extend through a 
greater stratigraphic interval in the southern and western 
parts of the study area than in the north and east. In the 
intermediate aquifer system, magnesian minerals are com­
mon along both cross-sections, but their occurrence 
declines toward the east. In the Upper Floridan aquifer, 
magnesian minerals occur near the top of the aquifer in the 
central and western portion of the southern cross-section 
only and are nearly absent in the northern cross-section. 

MODERN GROUND-WATER CHEMISTRY 

Modem ground-water analyses from the files of the 
USGS, Tampa, from 18 wells are analyzed by WATEQF for 
calculation of SI values with respect to calcite and dolomite 
(Plummer and others, 1978) and combined with published 
data from 7 other wells (Swancar and Hutchinson, 1992; 
WATEQF was also used in their study) (table 5). Included in 
the table are well locations, elevation of wellhead, open 
depth interval below the land surface, stratigraphic interval 
sampled, assumed regional aquifer sampled, chloride con­
tent, magnesium-calcium ratios, field pH, and SI values for 
calcite and ordered dolomite. In the study, in general, wells 
open to the Hawthorn Group are in the intermediate aquifer 
system, and wells open to the "Suwannee" Limestone and 
Ocala Group are in the Upper Floridan aquifer, with some 
exceptions. 

The pH of the ground water is greater than 7.0 at all 
sites, a finding that indicates that reaction with the carbon­
ate rocks has raised the pH from meteoric water values that 
are typically near 5.5. Most water samples are saturated 
with respect to calcite, indicated by a SI value within the 
interval -0.5 to +0.5. Exceptions are at sites 35 and 37, 
where the ground water is undersaturated, and sites 1 and 24 
and site S&H5 (Swancar and Hutchinson, in press), where 
the ground water is slightly supersaturated with respect to 
calcite. Ground water is supersaturated with respect to dolo­
mite at sites 1, 2, 7, 9, 24, 25, 30, 32, 36, S&H3, and S&H5 
and undersaturated at sites 34, 35, and 37. 

DISCUSSION 

AGE OF THE DEPOSITS 

Chronostratigraphic information is critical to this study 
because of the lateral variation and vertical repetition of 
rock and sediment types within the subsurface of the study 
area. Biostratigraphic and isotopic data were gathered inde­
pendently from lithostratigraphic data and from each other. 
This integrated method allows independent verification of 
published age ranges of mollusks, which are frequently tied 
to the strata in which they occur rather than to other primary 
chronostratigraphic indicators. The mollusks and dinocysts 
were initially identified, and ages were assigned based on 
reports in the published literature; the biostratigraphic data 
were integrated with age estimates based on 87 SrJ86Sr 
values. 

We note that good agreement exists between the bios­
tratigraphic and isotopic ages despite the differences in time 
resolution. In general, the time estimates based on the stron­
tium isotopic composition of unaltered shells are our best 
numerical time indicators, but they have an error of at least 
±1.5 m.y. This error is based on our assessment of the scat­
ter of data reported in Miller and others ( 1991 ). Error in 
assigning age estimates to fossil ranges is more difficult to 
assess. Dinocyst assemblage data have a greater time reso­
lution than individual species ranges of mollusks because 
dinocysts evolve more rapidly than mollusks and because 
assemblages, in general, have narrower time ranges than 
individual species. In the two places where fossils used for 
biostratigraphy and for isotopic dating were found close 
together (W-16814 at 200.9 m, and W-16782 at 69.2-70.1 
m) (figs. 2A and 2B), the ages estimates corroborate each 
other. It is significant also that multiple age indicators in 
single cores are in correct sequence with one exception (W-
16782 at 94.7 m and 96.7 m); that is, the numerical ages 
increase with depth. Therefore, we infer that the isotopic 
ages reflect the time of deposition of the strata from which 
the samples were taken, but we recognize that our data are 
sparse and require further corroboration from more closely 
spaced samples in individual cores. 

Age indicators provide us with a new basis for exami­
nation of the lithostratigraphy. The 87 Sr/86Sr analyses from 
the "Suwannee" Limestone in W-11946 and W-12050 sup­
port an early Oligocene age for the "Suwannee" Limestone. 
At the base of W -16814, both an early Oligocene strontium 
date and an early Oligocene Turritella at were found at 
::?.00.9 m, a few meters above the top of the "Suwannee" 
Limestone but within the lower undifferentiated part of the 
Arcadia Formation (T.M. Scott, written communication, 
1993). An early Oligocene age for the Arcadia Formation is 
anomalous and may be due to pervasive dolomitization in 
this core that has obscured the lithostratigraphic contact 
between the "Suwannee" Limestone and the Arcadia 
Formation. 
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The age indicators within the Arcadia Formation range 
from early Oligocene to middle, or earliest late, Miocene. 
For purposes of this discussion, the Arcadia can be broken 
into four parts: a lower undifferentiated part, the Nocatee 
Member, the Tampa Member, and an upper undifferentiated 
part. Age indicators found in the lower part of the undiffer­
entiated Arcadia are early to late Oligocene (30.3 to 26.8 
Ma); age indicators within the Nocatee Member are late 
Oligocene (27 .1 to 26.3 Ma); age indicators within the 
Tampa Member range from late Oligocene to middle 
Miocene (27.9 to 18.9 Ma); and age indicators within the 
upper part of the undifferentiated Arcadia Formation range 
from late Oligocene to middle Miocene (28.6 to 16.7 Ma). 
Overlapping age ranges of the Tampa and Nocatee Mem­
bers with the undifferentiated Arcadia Formation support 
Scott's (1988) assertion that the Arcadia Formation is com­
posed of several coeval lithofacies, at least at this time 
resolution. 

We think it is significant that tens of meters of rock are 
late Oligocene in age in southern Florida. Although the 
rocks in the study area have not been rigorously dated in the 
past, the assumption often has been made that because of 
the regional low sea-level stand thought to occur during late 
Oligocene time (for example, Haq and others, 1987), the 
duration of the unconformity between the "Suwannee" 
Limestone and the Hawthorn Group spanned the late Oli­
gocene, from about 30 to 25 Ma. 

87 Sr/86Sr from a mollusk very near the top of the Peace 
River Formation at W-12050 yields an age of 5.1 Ma. This 
age is nearly 10 m.y. younger than the shallowest age indi­
cator within the underlying Arcadia Formation and, if cor­
rect, expands the duration of deposition of the Hawthorn 
Group sediments, as they are now defined, to approximately 
25 m.y. No definitive late Miocene fauna are observed or 
reported in the cores examined nor are there any numerical 
ages from strontium isotopic analyses between 6 and 
16 Ma. 

As more numerical and biostratigraphic information 
becomes available for several of the cores, it may be possi­
ble to delineate depositional units separated by shorter term 
local and longer term regional hiatuses. Mapping of 
regional hiatuses or unconformities will clarify some of the 
complex lithostratigraphic relationships. 

GEOPHYSICAL LOGS 

Geophysical logs, singly or in groups, are widely used 
for correlating lithologic contacts among boreholes in south 
Florida, particularly where cores are not available. Electric 
logs are particularly sensitive to porosity of rocks and com­
position of pore fluid; gamma logs reflect detrital or diage­
netic concentrations of radioactive isotopes (Levine, 1988; 
Weinberg, 1991). In the study area, thick zones of relatively 
pure carbonates ("Suwannee" Limestone and Ocala Group) 

give a flat gamma signature, whereas alternating siliciclas­
tics and carbonates in the Hawthorn Group give an irregu­
lar, spiky signature. In the new logs from W-17000, three·of 
the four lithostratigraphic contacts coincide with notable 
changes in geophysical signature in all three logs, and the 
fourth contact, at the top of the Arcadia Formation, is just 
above a change in the gamma log. 

REGIONAL DIAGENETIC ALTERATION 

The processes observed in thin sections indicate in 
many samples that the strata have been alternately saturated 
with a range of water chemistries, such that calcite or dolo­
mite can precipitate in sites where calcareous fossils were 
previously leached. Also, many samples showed evidence 
for multiple generations of calcite or dolomite. Several of 
the processes documented are attributed to early marine and 
meteoric processes, are observed in nearly all rocks exam­
ined, and show no regional distribution, such as shell micri­
tization by boring marine algae and perhaps boring sponges, 
as well (Bathurst, 1964) (figs. 3A and 4A). Meteoric water 
entering the aquifer systems in recharge areas typically has 
a pH in the 5--6 range and low total dissolved solids; there­
fore, it has the capacity to dissolve aquifer minerals and 
enhance porosity and permeability (Sprinkle, 1989). Conse­
quently, with a sea-level drop and exposure to meteoric 
waters, all carbonate materials near the ground surface, 
especially the aragonitic mollusks, are susceptible to disso­
lution, and high-Mg calcite shells (echinoids, foraminifers, 
and red algae) are converted to low-Mg calcite, often with 
no loss of the details in shell structure (James and 
Choquette, 1983). Blocky calcite cements both pre- and 
postdate shell leaching and are generally attributed to 
precipitation from fresh water, with some exceptions (Folk, 
1974; Moore, 1989) (fig. 3C). The precipitation of syntaxial 
calcite overgrowths on echinoderm fragments, common at 
depths greater than 70 m in the study area, has been attrib­
uted to both shallow-marine phreatic diagenesis (Fiicht­
bauer, 1969) and to meteoric phreatic diagenesis (James and 
Choquette, 1984). 

Textural evidence supports a diagenetic origin for 
much of the dolomite as either the replacement of micrite 
and calcareous fossils or as precipitation in moldic porosity. 
Dolomite precipitation in carbonate and siliciclastic rocks 
of Florida and the Caribbean has been attributed by several 
authors to a mixing-zone process (Hanshaw and others, 
1971; Land, 1973; Folk, 1974; Folk and Land, 1975; Ran­
dazzo and Hickey, 1978; Morrow, 1982a, b). The mixing­
zone hypothesis states that the precipitation of slow-grow­
ing and well-formed, limpid rhombohedra of dolomite is 
facilitated in water chemistries with Mg/Ca ratios near 1 
and low ionic activity-conditions that are achieved with 
very dilute sea water in the subsurface mixing zone (Folk 
and Land, 1975). Commonly, water in the mixing zone is 
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saturated with respect to dolomite and undersaturated with 
respect to calcite, but the difference and magnitude of satu­
ration indices of both minerals vary with calcium and mag­
nesium concentrations and with C02 content (Wigley and 
Plummer, 1976). A case has been made, however, for dolo­
mite precipitation from water that is closer in composition 
to sea water (Land, 1985; Cander, 1991). In both hypothe­
ses, the source of magnesium is ultimately sea water; how­
ever, they differ in the timing and hydrology of the 
dolomitization process. 

Etched dolomite has been interpreted as a product of 
mixing-zone precipitation followed by meteoric dissolution 
of the more soluble, nonstoichiometric dolomite in the core 
(Randazzo and Cook, 1987). Evidence of dolomite replace­
ment of calcite in our samples includes the growth of dolo­
mite rhombs around calcite grains, dolomite rhombs 
floating in a calcite micrite matrix, and the replacement of 
fossils that were originally magnesian calcite, such as echi­
noderm fragments (fig. 3£) and red algae. 

The regional and depth distribution of the diagenetic 
processes shown in table 4 reflects the source and residence 
time of exposure to waters of different chemistries: mete­
oric water, marine water, and evolved formation water from 
both meteoric and marine sources. Early marine diagenetic 
features (micritization of shells and echinoderm fragment 
overgrowths) and meteoric diagenetic features (shell disso­
lution, equant calcite cement precipitation, and perhaps fur­
ther growth of echinoderm fragment overgrowths) are 
present at nearly all depths in the sampled cores in both 
transects shown in figures 2A and 2B. Dolomite rhomb 
etching, in contrast, is observed only in the upper 96 m of 
cores examined, suggesting a surface-down process of dis­
solution from meteoric water. Whole dolomite rhombs 
observed at greater depths in the cores may be either healed 
or may never have been leached. 

Age indicators for the entire section suggest at least 
one large regional unconformity may be at the contact 
between the Arcadia and Peace River Formations. The 
duration of the unrecorded interval may be as great as 
10 m.y. This long period of exposure could have been 
responsible for the leaching of dolomite rhombs in the 
upper 96 m as well as the extremely leached condition of 
some phosphate grains within the Arcadia (fig. 3H). 

.The diagenetic features that we are attributing to either 
marine or a mixed marine and meteoric water processes 
(that is, the precipitation of limpid dolomite and dolomite 
replacement of echinoderm overgrowths and perhaps pre­
cipitation of magnesian clays) have an asymmetric spatial 
distribution that cross-cuts stratigraphy: they are more per­
vasive and stratigraphically more extensive in the southern 
transect and in the western parts of both transects (figs. SA 
and 5B). Limpid dolomite is observed down to the base of 
the Arcadia Formation in all cores examined in thin section 
and by SEM in the southern transect (W-16814, W-16782, 
and W-12050) but diminishes in depth and stratigraphic 

range, as defined by age indicator or lithostratigraphy, to the 
north and east. 

SOURCES OF DIAGENETIC WATERS 

Palygorskite and sepiolite are diagenetic minerals on 
the basis of their common association with dolomite and 
their delicate branching form (fig. 4B). Although the mag­
nesian clays may have formed by direct precipitation from 
pore fluids at least in part (Callen, 1984; Esteoule-Choux, 
1984 ), it is unlikely that they formed in a sabkhalike envi­
ronment; they are not found precipitating with carbonates in 
modem sabkhas such as Coorong, Australia (Callen, 1984). 
Much of the clay was probably formed by addition of mag­
nesium to illite/smectite clay (Weaver, 1984). 

The large volume of diagenetic dolomite, palygorskite, 
and sepiolite, in the study area requires a significant source 
of magnesium. The largest source of nearby magnesium is 
the sea water of the Gulf of Mexico and the Atlantic Ocean. 
Water-quality data (table 5) show that both the intermediate 
aquifer system and the Upper Floridan aquifer, in the depths 
studied, are saturated with waters that have low chloride 
concentrations (< 150 parts per million, except in the far 
southern part of the study area) and low Mg/Ca ratios 
(<0.75), characteristic of fresh water. Therefore, none of the 
open intervals in wells for which we have water-quality data 
is currently in the coastal mixing zone or in saline ground 
water. The most reasonable mechanism for introducing 
magnesium into aquifer rocks is raising the sea level. 

Sea level has risen eustatically as much as 30.5-40 m 
above modem sea level since the Miocene (Dowsett and 
Cronin, 1990), and for at least 10 periods during the last 16 
m. y., sea level has been higher than at present. The highest 
sea level over this time span was probably during the period 
between 4 and 3 Ma (Webb and others, 1984). These high 
stands have been documented on the Atlantic Coastal Plain 
and in Florida by dating the marine deposits and in some 
cases by estimating the depth of water and the total uplift 
since deposition (Dowsett and Cronin, 1990; Krantz, 1991; 
McCartan and others, 1991). Maximum lowstands (draw­
downs below modem sea level) since the middle Miocene, 
based mainly on evidence from o18o and on the distribution 
of vertebrates, were as low as -20 to -60 m (Wardlaw and 
Quinn, 1991), or possibly -100 to-175m (Pitman, 1978; 
Haq and others, 1987; for better fit with data from Florida, 
see Prentice and Matthews, 1988; Quinn and Matthews, 
1990; and Krantz, 1991 ). 

Another source of reactive fluids is upwelling water 
from the lower part of the Floridan aquifer system, which 
contains high concentrations of dissolved solids from con­
tact with evaporite beds (Simms, 1984). That source seems 
unlikely, however, for the rocks of the intermediate aquifer 
system (primarily the Hawthorn Group) because the 
"Suwannee" Limestone, theoretically in the pathway of 
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upwelling saline waters in the study area, has very little 
dolomite. 

Magnesium and silica also can be derived through the 
dissolution of siliceous fossils, detrital clays (Altschuler and 
others, 1963; Weaver, 1984), and possibly volcanic ash. 
Diatoms and radiolarians are now rare in the study area 
rocks, but they are locally abundant in correlative units in 
northern Florida (Scott, 1983), South Carolina (Abbott and 
Andrews, 1979), Maryland (Andrews, 1988), and New Jer­
sey (Andrews, 1987) and may have provided a source of sil­
ica. In the Yucatan peninsula of Mexico, sepiolite and 
palygorskite are alteration products of volcanic ash (Isphor­
ding, 1984), which also may have been present in Florida; 
volcanic debris is present in Oligocene and Miocene units 
in Mississippi and the Virgin Islands (May, 197 4; Lidz, 
1984). 

ROCKS AND WATER CHEMISTRY OF THE INTERMEDIATE 
AQUIFER SYSTEM 

The intermediate aquifer system is locally confined by 
marine clays and carbonates of the Hawthorn Group and 
comprises a vertically and horizontally anastomosing net­
work of limestone, dolomite, clay, phosphatic clayey quartz 
sand, and calcite-cemented quartz sand. These lithologic 
facies have a wide range of hydraulic conductivities and 
consequently, an unpredictable hydraulic character (Duerr 
and others, 1988) that has a significant component of verti­
cal recharge within the study area (Ryder, 1985). 

Seven of the wells listed in table 5 are open only in the 
intermediate aquifer system: 1, 2, 9, 11, 12, 34, and 36; 
three others, 24, 25, and 27, are open mainly in the interme­
diate aquifer system. Well locations, approximate flow 
paths (from potentiometric map of Mularoni, 1992), and SI 
values of the ground water with respect to calcite and dolo­
mite are shown in figures 6A and 6B. Core locations from 
which mineralogical data are available are indicated. 

In general, ground-water flow is from the northeast to 
.the southwest from two potentiometric highs just north of 
Hardee and Manatee Counties. Water from sites 1 and 24 is 
supersaturated with respect to both calcite and dolomite. 
Water from sites 2, 9, 25, and 36 is supersaturated with 
respect to dolomite (though saturated with respect to cal­
cite) and yields three zones where ground water is saturated 
with respect to dolomite: eastern De Soto County, along the 
border between Sarasota County and Manatee County, and 
at well 36 in northern Hardee County. Dolomite is very 
common in the rocks that constitute the intermediate aquifer 
system; however, nearly all dolomite observed in that 
aquifer is etched dolomite (table 4), strongly suggesting that 
the etched surfaces on dolomite rhombs are relict dissolu­
tion features and that the dolomite was probably not precip­
itated from modem ground water. In fact, etched dolomite is 
observed only within the intermediate aquifer system and 

no deeper. The one negative SI calculated from data from 
site 34, where the well is open from 19 to 62 m depth, sug­
gests rapid infiltration by meteoric water, perhaps by way of 
sinkholes or other connections with the surficial aquifer. 

The flow directions indicated in figure 6B suggest that 
rocks that form the intermediate aquifer system from cores 
at W-12050, W-16782, Walton, W-16814, and W-11946 
are now in ground water that is supersaturated with respect 
to dolomite. Samples of the Hawthorn Group from the east­
em cores, W-17000, W-12050, and W-11946, however, 
have much less dolomite than the cores examined from the 
same stratigraphic units further west (figs. 3A and 3B). Very 
little dolomite was detected in samples from W-12050, just 
down-flow from sites 1 and 2, where ground water has 
dolomite saturation indices of 1.839 and 1.065, respectively, 
also suggesting that dolomite may not be precipitating there 
now despite supersaturation. 

ROCKS AND WATER CHEMISTRY OF THE UPPER FLORIDAN 
AQUIFER 

The rocks of the Upper Floridan aquifer are mainly 
limestone and dolomite (Ocala Group, "Suwannee" Lime­
stone, and some strata in the lower part of the Hawthorn 
Group in the western part of the study area). Fifteen wells in 
the study area are open in the upper portion of the Upper 
Floridan aquifer: Swancar and Hutchinson's (in press) sites 
(S&H) 1, 2, 3, 4, 5, and 6; and our sites 7, 8, 29, 30, 31, 32, 
33, 35, and 3T (table 5). The locations and SI values with 
respect to calcite and dolomite for these sites are shown in 
figures 6C and 6D. Core locations from which thin sections 
were made are indicated; sites S&H3 and our sites 29, 33, 
and perhaps 37, are in adjacent ground-water basins and are 
not considered in this discussion. 

Ground water, with the exception of that at site 35, is 
saturated with respect to calcite; note that site 35 is close to 
site 34, in the overlying intermediate aquifer system, and 
has an anomalously negative SI value for calcite. The water 
chemistry is consistent with the observation that pore-fill­
ing, equant calcite cement is common down to depths of 
more than 213 m in the upper portion of the Floridan aqui­
fer system. Pore-filling calcite examined with SEM is 
smooth and unetched (fig. 4A). Analysis of trace elements 
and stable isotopes of calcite cements in the Upper Floridan 
aquifer, however, strongly suggests that they were precipi­
tated very early and are probably not from modem water 
(Budd and others, 1993). 

The saturation indices for dolomite in all wells through 
the Upper Floridan aquifer, except sites 35 and 37, indicate 
saturation or supersaturation (fig. 6D). The highest values 
occur in a zone from southeastern Manatee County to cen­
tral De Soto County; however, the most abundant dolomite 
observed in XRD data and in thin sections examined is in 
the west at W -16782, and W -16814, where SI values are 
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INTERMEDIATE AQUIFER SYSTEM FLOW PATHS 

Saturation indices for calcite 

lMAN.ATEE I I HARDEE --:-:-hHiGHLANDS 
~ '\ .; 0 414 (36) 

""\)~""" _/ W-16784) (34J W-11~46 
\~ --- • -0372 • 

'::-\- -0.065(27)+ .W-17000 
SARASOTA o 712 (24) + + 0.332 (25) 

1J ( +O.T30/0.245 

A 

't\ 1) 

"~ Wa~to: 
~ W-16782 

DESOTO -0.061 

I 
! 

·w-12o5o 

\ W-1681r-4 ---I...----------··--~-----
\~ 

Saturation indices for dolomite 

~.f'"MANATEE / 'HARDEE + 1 !HIGHLANDS e::t '\ /0.979 (36) 

,,r=.._., _/ .W-16784) (34/ W-119;46 
.....-- -0751 • ' 0 -0.082 (27) + : 

\------++0.866(25) j .W-17000 
SARASOTA 1.525 (24) ----i 
~ I +0.196/0.640 DESOTO -0.015 (12t 

( ) + 1.839 (1) 
Walton 1.065 (2) +, 

• .W-15303 1 

• W-12050 

8 10 20 30 40 MILES 

10 20 30 40 KILOMETERS 

Figure 6. Maps of flow regimes and water chemistry of aquifer 
systems. (A) Flow paths within the intermediate aquifer system and 
saturated indices (SI) of ground water with respect to calcite; (B) 
Flow paths within the intermediate aquifer system and SI of 
ground water with respect to dolomite; (C) Flow paths within the 
Upper Floridan aquifer and SI of ground water with respect to cal­
cite; and (D) Flow paths within the Upper Floridan aquifer and SI 

near saturation. Dolomite distribution was detected by XRD 
at core site W-15303 (fig. 1). 

Saturation indices often are tracked along ground­
water flow paths constrained by potentiometric contours 
(Plummer, 1977; McCartan and others, 1992). Rising SI 
values along a flow path are interpreted as either continued 
dissolution along that path or mixing with water of a differ­
ent chemistry. A rapid decline along a flow path in SI values 
indicates precipitation of the mineral in question. A similar 
line of reasoning can be applied to the data set for dolomite 
in the study area. If the generalized flow paths are correct, 
ground water appears to enter study area at or below 
saturation with respect to dolomite, to increase in SI values 
within the central part of the study area, and then to drop 
back down to near saturation near S&H4 in the southwest. 
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of ground water with respect to ordered dolomite. Flow paths for 
the intermediate aquifer system are approximated from the potenti­
ometric map of Mularoni (1992); flow paths for the Upper Flori­
dan aquifer are approximated from potentiometric map in 
(Johnston and others 1980). Water chemistry from Swancar and 
Hutchinson (in press) indicated in table 5. 

The increase followed by decrease of SI for both minerals 
along the flow path suggests dissolution followed by pre­
cipitation, especially of dolomite. The distribution of dolo­
mite within the upper portions of the Upper Floridan aquifer 
shown in figures 3A and 3B shows that dolomite does not 
become abundant along the cross-section from east to west 
until site W-15303, a short distance "down-flow" from the 
highest SI values for ground water with respect to dolomite. 
This observation raises the possibility that dolomite could 
be precipitating today from modem water approximately in 
the zone of upward leakage of the Upper Floridan aquifer in 
southwest Florida (Ryder, 1985), noted also by an increase 
in magnesium and calcium (table 5). 

In summary, most waters in both the intermediate aqui­
fer system and the upper part of the Upper Floridan aquifer 
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are saturated with respect to calcite and dolomite. Rocks 
examined show evidence for numerous episodes of precipi­
tation and dissolution of both minerals as well as dissolu­
tion of aragonite shells, strongly suggesting that many 
diagenetic alterations, especially dissolution of calcareous 
fossils and dolomite rhomb surfaces, are relicts of past 
water chemistries. The etched nature of dolomite in the 
intermediate aquifer system cQ ... existing with water near sat­
uration with respect to dolomite suggests that the dolomite 
there is relict also. We think that this diagenetic history is 
best explained by repeated alternation of meteoric and 
marine water that occurs with sea-level oscillations, and 
magnesium-rich mineral diagenetic facies reflects the 
cumulative residence time of marine or mixed waters in the 
aquifer rocks. Also, in the western part of the study area, 
especially in the core at W-16814 where we have fairly 
good age and X-ray diffraction data, dolomitization is very 
extensive and may have obscured the lithostratigraphic con­
tact between the "Suwannee" Limestone and the Arcadia 
Formation. Within the upper portions of the Upper Floridan 
aquifer, dolomite distribution coincides with declining SI 
values along presumed flow paths, and the possibility exists 
of volumetrically small amounts of modem dolomite pre­
cipitation. The multigenerational nature of much of the 
dolomite suggests a complex precipitation history; if dolo­
mite precipitation is going on today, it is probably a small 
addition to dolomite precipitated at an earlier time. 

CONCLUSIONS 

Age indicators in the "Suwannee" Limestone in the 
study area are all early Oligocene. Because of the uncer­
tainty of the age of the type section of the Suwannee 
Limestone as defined by Cooke and Mansfield (1936) and 
the lack of rigorous correlation between the rocks of the 
type section and the study area, we retain the usage of 
"Suwannee" in quotation marks as suggested by Scott 
( 1988). The Hawthorn Group, previously reported to be 
Miocene, is shown to range in age from late (possibly early) 
Oligocene to Pliocene on the basis of strontium isotopic 
ratios, mollusks, and dinocyst assemblage distributions. 
Age indicators in the strata suggest the following ages: the 
Arcadia Formation ranges in age from late (possibly early) 
Oligocene to middle or earliest late Miocene; the Nocatee 
Member of the Arcadia Formation is late Oligocene; the 
Tampa Member of the Arcadia Formation ranges in age 
from late Oligocene to early Miocene; the Peace River For­
mation is Pliocene. Extensive carbonate deposition appears 
to have taken place in the study area during the late Oli­
gocene, conventionally thought to be a time of subaerial 
exposure and nondeposition across much of the Florida 
platform. 

Much of the diagenetic alteration of the aquifer rocks 
is early. Early calcite cementation of micrite matrix and 

internal porosity has preserved the shapes of leached fossils. 
Some dolomite cement preserves the shape of early leached 
aragonitic fossils. Dissolution of calcite and dolomite is 
consistent with dissolution from meteoric water. Modem 
aquifer water of meteoric origin, however, is saturated with 
respect to these two minerals. Therefore, dissolution must 
have occurred soon after deposition when the rocks were at 
very shallow depths where the ground water pH is closer to 
that of rain water. 

A magnesium-rich diagenetic facies characterized by 
dolomite, palygorskite, and sepiolite cross-cuts stratigraphy 
and may obscure stratigraphic boundaries. The magnesium 
minerals are more pervasive and extend through a greater 
stratigraphic interval in the western part of the study area. 
This distribution forms a diagenetic facies and may be due 
to the longer cumulative residence time of sea water near 
the coast during past sea-level fluctuations. Much of this 
dolomite has textures that suggest multiple generations and 
was probably precipitated prior to the establishment of the 
modem ground-water regime. High saturation indices for 
dolomite in the modem Upper Floridan aquifer water sug­
gest, however, that some dolomite precipitation may be 
occurring now. 

We recognize that data presented here are sparse and 
allow only tentative age determinations. They are sufficient, 
however, to indicate a need for a reassessment of subsurface 
stratigraphy. The next phase of this project uses the same 
integrated approach outlined here but with more closely 
spaced samples to delineate more accurately the deposi­
tional and diagenetic facies of the Upper Floridan aquifer 
and intermediate aquifer system of southern Florida. 
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