DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY
CHARLES D. WALCOTT, DIRECTOR

CATALOGUE AND INDEX
OF THE
PUBLICATIONS OF THE UNITED STATES GEOLOGICAL SURVEY
1901 to 1903
BY
PHILIP CRELING WARMAN

WASHINGTON
GOVERNMENT PRINTING OFFICE
1903
CONTENTS.

Letter of transmittal .. 5
Introduction ... 7
Catalogue of Survey publications, 1901–1903 9
 Annual Reports ... 9
 Monographs .. 11
 Professional Papers .. 12
 Bulletins ... 13
 Water-Supply and Irrigation Papers 15
 Mineral Resources ... 17
 Geologic Atlas of United States 20
 Topographic maps of United States 21
 Topographic atlas sheets, by States 21
 Index to topographic atlas sheets 27
 General, special, and economic maps 29
 Miscellaneous publications .. 30
 Special reports on Alaska ... 30
 Cape Nome and Norton Bay regions 30
 Copper River district ... 30
 Logarithm tables .. 30
 Regulations .. 30
 Instructions .. 31
 List of publications .. 31
 Classification of Professional Papers, Bulletins, and Water-Supply and Irrigation Papers .. 32
Index to Survey publications, 1901–1903 35
LETTER OF TRANSMITTAL.

Department of the Interior,
United States Geological Survey,
Washington, D. C., June 1, 1903.

Sir: I have the honor to transmit herewith the manuscript for a catalogue and index of the publications of the United States Geological Survey issued between March, 1901, and June, 1903, and to request that it be published in the Bulletin series.

Very respectfully,

P. C. Warman,
Editor.

Hon. Charles D. Walcott,
Director of United States Geological Survey.
INTRODUCTION.

This catalogue and index are supplemental to those published in 1901 as Bulletin No. 177. These begin where those end; but there will be found in this index some entries—additional and corrective—which refer to papers covered by Bulletin No. 177. The two bulletins constitute a general catalogue and index of the publications of the Geological Survey from its organization, in 1879, to the present time. It is hoped that within the next few years someone will have the time and the inclination to combine the two and bring the work down to date.

The indexing has been done in a desultory manner, as opportunity arose; and in the work the writer has had the assistance of other members of the editorial corps, viz, Messrs. Charles A. Mansuy, Laurence F. Schmeckebier, and George M. Wood.

P. C. W.
PUBLICATIONS CATALOGUED AND INDEXED HEREIN.

Annual Reports:
 Twenty-second, four parts.
 Twenty-third.

Monographs:
 Nos. XLI to XLV.

Professional Papers:
 Nos. 1 to 13.

Bulletins:
 Nos. 177 to 214.

Water-Supply and Irrigation Papers:
 Nos. 46 to 80.

Mineral Resources:
 For calendar year 1900.
 For calendar year 1901.

Geologic Atlas of United States:
 Folios Nos. 71 to 90.

Topographic Maps:
 About 180 atlas sheets and other separate maps.

Miscellaneous Publications:
 Six.
CATALOGUE AND INDEX OF PUBLICATIONS OF THE UNITED STATES GEOLOGICAL SURVEY, 1901-1903.

By P. C. Warman.

CATALOGUE.

ANNUAL REPORTS.

8°. 4 vols. 464 pp., 58 pls.; 888 pp., 82 pls.; 763 pp., 53 pls.; 690 pp., 65 pls.
Pt. I. Director's report and a paper on asphalt and bituminous rock deposits.
452 pp., 58 pls.
Director's report, pp. 1-207, pls. i-xxiv.
Index, pp. 453-464.
Pt. II. Ore deposits. 888 pp., 82 pls.
Old tungsten mine at Trumbull, Conn., by W. H. Hobbs, pp. 7-22, pls. i-v.
Geology and ore deposits of Elkhorn mining district, Jefferson County, Mont., by W. H. Weed, with an appendix on the microscopical petrography, by J. Barrell, pp. 399-550, pls. xlii-lxii.
Index, pp. 867-888.
Pt. III. Coal, oil, cement. 763 pp., 53 pls.
Coal fields of the United States, by C. W. Hayes, pp. 1-24, pl. i.
Pennsylvania anthracite coal field, by H. H. Stoek, pp. 55-117, pls. vi-x.
Northern Appalachian coal field, by M. R. Campbell, David White, and R. M. Haseltine, pp. 119-226, pls. xi-xii.
Southern Appalachian coal field, by C. W. Hayes, pp. 227-263, pls. xiii-xv.
Eastern Interior coal field, by G. H. Ashley, pp. 265-305, pls. xvi-xix.
Northern Interior coal field, by A. C. Lane, pp. 307-331, pls. xx-xxi.
Western Interior coal field, by H. F. Bain, pp. 333-366, pls. xxii-xxiv.
Southwestern coal field, by J. A. Taff, pp. 367-413, pls. xxv-xxviii.
Coal resources of Alaska, by A. H. Brooks, pp. 515-571, pl. xxxv.
Chalk of southwestern Arkansas, by J. A. Taff, pp. 687-742, pls. xlvii-xlvi.

Pt. IV. Hydrography. 690 pp., 65 pls.
Hydrography of the American isthmus, by A. P. Davis, pp. 507-630, pls. xxxvii-1.
Index, pp. 671-690.

217 pp., 26 pls. An administrative report only.

A law of Congress approved May 16, 1902, requires the annual report of the Director to be confined to one volume. Such papers as have heretofore appeared in the Annual Report series are now published in the series of Professional Papers, Bulletins, and Water-Supply and Irrigation Papers.
MONOGRAPHS.

XLI. Glacial formations and drainage features of the Erie and Ohio basins, by Frank Leverett. 1902. 802 pp., 26 pls. Price, $1.75.

XLII. Carboniferous ammonoids of America, by J. P. Smith. 1903. 211 pp., 29 pls. Price, 85 cents.

XLIII. The Mesabi iron-bearing district of Minnesota, by C. K. Leith. 1903. 316 pp., 33 pls. Price, $1.50.

XLV. The Vermilion iron-bearing district of Minnesota, with atlas, by J. M. Clements. 1903. 463 pp., 13 pls. Price, —.
PROFESSIONAL PAPERS.

4°. 13 brochures, "granite" covers.
1. Preliminary report on the Ketchikan mining district, Alaska, with an introductory sketch of the geology of southeastern Alaska, by A. H. Brooks. 1902. 120 pp., 2 pls.
2. Reconnaissance of the northwestern portion of Seward Peninsula, Alaska, by A. J. Collier. 1902. 70 pp., 11 pls.
4. The forests of Oregon, by Henry Gannett. 1902. 36 pp., 7 pls.
5. The forests of Washington, a revision of estimates, by Henry Gannett. 1902. 38 pp., 1 pl.
8. Forest conditions in the northern Sierra Nevada, California, by J. B. Leiberg. 1902. 194 pp., 12 pls.
11. Clays of the United States east of the Mississippi River, by Heinrich Ries. 1903. 298 pp., 9 pls.

12
BULLETINS.

8°. 38 pamphlets, "granite" covers.

184. Oil and gas fields of the Western Interior and northern Texas coal measures and of the Upper Cretaceous and Tertiary of the western Gulf Coast, by George I. Adams. 1901. 64 pp., 10 pls. (Out of stock.)

190. A gazetteer of Texas, by Henry Gannett. 1902. 162 pp., 8 pls.

192. A gazetteer of Cuba, by Henry Gannett. 1902. 113 pp., 8 pls.

193. The geological relations and distribution of platinum and associated metals, by J. F. Kemp. 1902. 95 pp., 6 pls. (Out of stock.)

196. Topographic development of the Klamath Mountains, by J. S. Diller. 1902. 69 pp., 13 pls.

197. The origin of certain place names in the United States, by Henry Gannett. 1902. 280 pp. (Out of stock.)

198. The Berea grit oil sand in the Cadiz quadrangle, Ohio, by W. T. Griswold. 1902. 43 pp., 1 pl.

13
200. Reconnaissance of the borax deposits of Death Valley and Mohave Desert, by M. R. Campbell. 1902. 23 pp., 1 pl.
205. Mollusca of the Buda limestone, by G. B. Shattuck, with an appendix on the corals of the Buda limestone, by T. W. Vaughan. 1903. 94 pp., 27 pls.
207. The action of ammonium chloride upon silicates, by F. W. Clarke and George Steiger. 1902. 57 pp.
208. Descriptive geology of Nevada south of the fortieth parallel and adjacent portions of California, by J. E. Spurr. 1903. 229 pp., 8 pls.
209. The geology of Ascutney Mountain, Vermont, by R. A. Daly. 1903. 122 pp., 7 pls.
210. The correlation of geological faunas: a contribution to Devonian paleontology, by H. S. Williams. 1903. 147 pp., 1 pl.
211. Stratigraphy and paleontology of the Upper Carboniferous rocks of the Kansas section, by G. I. Adams, G. H. Girty, and David White. 1903. 123 pp., 4 pls.
212. Oil fields of the Texas-Louisiana Gulf Coastal Plain, by C. W. Hayes and William Kennedy. 1903. 174 pp., 11 pls.
WATER-SUPPLY AND IRRIGATION PAPERS.

8°. 35 pamphlets, "terra-cotta" covers.

46. Physical characteristics of Kern River, California, by F. H. Olmsted; and Reconnaissance of Yuba River, California, by Marsden Manson. 1901. 57 pp., 8 pls.

55. Geology and water resources of a portion of Yakima County, Wash., by G. O. Smith. 1901. 68 pp., 7 pls.

56. Methods of stream measurement. 1901. 51 pp., 12 pls.

57. Preliminary list of deep borings in the United States, Part I, by N. H. Darton. 1902. 60 pp. (Out of stock.)

58. Storage of water on King River, California, by J. B. Lippincott. 1902. 100 pp., 32 pls. (Out of stock.)

59. Development and application of water in southern California, Part I, by J. B. Lippincott. 1902. 95 pp., 11 pls. (Out of stock.)

60. Development and application of water in southern California, Part II, by J. B. Lippincott. 1902. 96-140 pp. (Out of stock.)

63. Hydrography of the Southern Appalachian Mountain region, Part II, by H. A. Pressey. 1902. 96-190 pp., pls. 26-44. (Out of stock.)

64. Accuracy of stream measurements, by E. C. Murphy. 1902. 99 pp., 4 pls. (Out of stock.)

67. The motions of underground waters, by C. S. Slichter. 1902. 106 pp., 8 pls.

70. Geology and water resources of the Patrick and Goshen Hole quadrangles, Wyoming, by G. I. Adams. 1902. 50 pp., 11 pls.

72. Sewage pollution in the metropolitan area near New York City and its effect on inland water resources, by M. O. Leighton. 1902. 75 pp., 8 pls.

73. Water storage on Salt River, Arizona, by A. P. Davis. 1902. 54 pp., 25 pls.

77. Water resources of Molokai, Hawaiian Islands, by Waldemar Lindgren. 1903. 62 pp., 4 pls.

MINERAL RESOURCES.

Department of the Interior United States Geological Survey
Charles D. Walcott, Director
Mineral resources of the United States
Calendar year 1900
David T. Day chief of division of mining and mineral resources
[Survey design]
Washington Government Printing Office 1901

8°. 927 pp. Bound in black cloth. By act of Congress approved March 3, 1901, the report on mineral resources was again made an independent publication.

Introduction, pp. 11-12.
Summary of the mineral production of the United States in 1900, pp. 13-38.
Iron and steel at the close of the nineteenth century, by James M. Swank, general manager of the American Iron and Steel Association, pp. 69-104.
Gold and silver, by George E. Roberts, Director of the Mint, pp. 105-113.
Manganese ores, by John Birkinbine, pp. 115-140.
Copper, by Charles Kirchhoff, pp. 141-190.
Lead, by Charles Kirchhoff, pp. 191-211.
Aluminum and bauxite, by Joseph Hyde Pratt, pp. 229-231.
Platinum, pp. 233-234.
Quicksilver, pp. 235-238.
Lithium, pp. 239-243.
Nickel and cobalt, pp. 245-249.
Antimony, by Joseph Hyde Pratt, pp. 251-255.
Tungsten, molybdenum, uranium, and vanadium, by Joseph Hyde Pratt, pp. 257-265.
Coal, by Edward W. Parker, pp. 273-457.
Coke, by Edward W. Parker, pp. 459-536.
Petroleum, by F. H. Oliphant, pp. 537-627.
Natural gas, by F. H. Oliphant, pp. 629-651.
Asphaltum and bituminous rock, by Edward W. Parker, pp. 653-660.
Stone, pp. 661-692.
Slag cement in Alabama, by Edwin C. Eckel, pp. 747-748.
Precious stones, by George F. Kunz, pp. 749-778.
Talc and soapstone, by Joseph Hyde Pratt, pp. 779-786.
Phosphate rock, by Edward W. Parker, pp. 803-814.
Sulphur and pyrite, by Edward W. Parker, pp. 815-826.
Gypsum, by Edward W. Parker, pp. 827-833.

Bull. 215—03——2
Salt, by Edward W. Parker, pp. 835-847.
Mica, pp. 849-856.
Fluorspar, by Edward W. Parker, pp. 857-859.
Lithographic stone, by S. J. Kubel, pp. 869-873.
Graphite, by Joseph Hyde Pratt, pp. 875-877.
Mineral paints, by Edward W. Parker, pp. 879-890.
Barytes, by Edward W. Parker, pp. 891-892.
Fuller's earth, pp. 893-894.
Flint and feldspar, p. 895.
Chromite, or chromitic iron ore, by Joseph Hyde Pratt, pp. 897-898.
Index, pp. 907-927.

Department of the Interior United States Geological Survey

8°. 996 pp. Bound in black cloth.
Summary of the mineral production of the United States in 1901, pp. 15-41.
Iron ores, by John Birkinbine, pp. 43-72.
Gold and silver, by George E. Roberts, Director of the Mint, pp. 117-126.
Manganese ores, by John Birkinbine, pp. 127-155.
Platinum, by Joseph Struthers, pp. 231-233.
Quicksilver, by Joseph Struthers, pp. 235-238.
Lithium, by Joseph Hyde Pratt, pp. 239-240.
Antimony, by Joseph Struthers, pp. 251-256.
Arsenic, by Joseph Struthers, pp. 257-258.
Tungsten, molybdenum, uranium, and Vanadium, by Joseph Hyde Pratt, pp. 261-270.
Titanium ores, by W. O. Snelling, pp. 271-278.
Coal, by Edward W. Parker, pp. 279-449.
Coke, by Edward W. Parker, pp. 451-523.
Petroleum, by F. H. Oliphant, pp. 525-611.
Natural gas, by F. H. Oliphant, pp. 613-632.
Asphaltum and bituminous rock, by Joseph Struthers, pp. 633-640.
Cement, pp. 721-728.
Precious stones, by George F. Kunz, pp. 729-771.
Talc and soapstone, by Joseph Hyde Pratt, pp. 773-780.
Phosphate rock, by Joseph Struthers, pp. 811-822.
Sulphur and pyrite, by Joseph Struthers, pp. 829–842.
Borax, by Joseph Struthers, pp. 869–872.
Graphite, by Joseph Struthers, pp. 897–900.
Mineral paints, by Joseph Struthers, pp. 901–914.
Fuller's earth, pp. 921–934.
Flint and feldspar, by Heinrich Ries, pp. 935–939.
Chromite or chromitic iron ore, by Joseph Hyde Pratt, pp. 941–948.
Mineral waters, pp. 961–966.
Ores of economic importance, by Edmund O. Hovey, pp. 967–973.
Index, pp. 975–996.
GEOLOGIC ATLAS OF UNITED STATES.

Department of the Interior United States Geological Survey
Charles D. Walcott, Director Geologic Atlas of the United States
Spanish Peaks folio Colorado [-Cranberry Tennessee] Index map
[Map] List of sheets description topography historical geology
igneous geology economic geology structure sections artesian
water columnar sections special illustrations Folio 71 [-90]
Library edition [or Field edition] Spanish Peaks [-Cranberry]
Washington, D. C. Engraved and printed by the U. S. Geological
Survey George W. Stose, editor of geologic maps S. J. Kübel,
chief engraver 1901 [-1903]
Folio. 20 numbers (71-90).

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of folio</th>
<th>State</th>
<th>Limiting meridians</th>
<th>Limiting parallels</th>
<th>Area</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Spanish Peaks</td>
<td>Colorado</td>
<td>104° 30'-105°</td>
<td>37°-37° 30'</td>
<td>950</td>
<td>25</td>
</tr>
<tr>
<td>72</td>
<td>Charleston</td>
<td>West Virginia</td>
<td>81° 30'-82°</td>
<td>38°-38° 30'</td>
<td>968</td>
<td>25</td>
</tr>
<tr>
<td>73</td>
<td>Coos Bay</td>
<td>Oregon</td>
<td>124°-124° 30'</td>
<td>43°-43° 30'</td>
<td>871</td>
<td>25</td>
</tr>
<tr>
<td>74</td>
<td>Coalgate</td>
<td>Indian Territory</td>
<td>96°-96° 30'</td>
<td>34°-34° 35'</td>
<td>980</td>
<td>25</td>
</tr>
<tr>
<td>75</td>
<td>Maynardville</td>
<td>Tennessee</td>
<td>89° 30'-84°</td>
<td>36°-36° 30'</td>
<td>963</td>
<td>25</td>
</tr>
<tr>
<td>76</td>
<td>Austin</td>
<td>Texas</td>
<td>97° 30'-98°</td>
<td>30°-30° 30'</td>
<td>1,090</td>
<td>25</td>
</tr>
<tr>
<td>77</td>
<td>Raleigh</td>
<td>West Virginia</td>
<td>81°-81° 30'</td>
<td>37° 20'-38°</td>
<td>944</td>
<td>25</td>
</tr>
<tr>
<td>78</td>
<td>Rome</td>
<td>Georgia</td>
<td>85°-85° 30'</td>
<td>34°-34° 30'</td>
<td>986</td>
<td>25</td>
</tr>
<tr>
<td>79</td>
<td>Atoka</td>
<td>Indian Territory</td>
<td>96°-96° 30'</td>
<td>34°-34° 30'</td>
<td>986</td>
<td>25</td>
</tr>
<tr>
<td>80</td>
<td>Norfolk</td>
<td>Virginia</td>
<td>75° 30'-76° 30'</td>
<td>36° 30'-37°</td>
<td>1,913</td>
<td>25</td>
</tr>
<tr>
<td>81</td>
<td>Chicago:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riverside</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chicago</td>
<td>Illinois</td>
<td>87° 30'-88°</td>
<td>41° 30'-42°</td>
<td>892</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Desplaines</td>
<td>Indiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calumet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Masontown-Uniontown</td>
<td>Pennsylvania</td>
<td>78° 30'-80°</td>
<td>30° 45'-40°</td>
<td>458</td>
<td>25</td>
</tr>
<tr>
<td>83</td>
<td>New York City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paterson</td>
<td>New York</td>
<td>73° 45'-74° 15'</td>
<td>40° 30'-41°</td>
<td>906</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Harlem</td>
<td>New Jersey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Staten Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brooklyn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Ditney</td>
<td>Indiana</td>
<td>87°-87° 30'</td>
<td>38°-38° 30'</td>
<td>988</td>
<td>25</td>
</tr>
<tr>
<td>85</td>
<td>Oelrichs</td>
<td>South Dakota</td>
<td>103°-103° 30'</td>
<td>43°-43° 30'</td>
<td>871</td>
<td>25</td>
</tr>
<tr>
<td>86</td>
<td>Ellensburg</td>
<td>Washington</td>
<td>120° 30'-121°</td>
<td>46° 30'-47°</td>
<td>820</td>
<td>25</td>
</tr>
<tr>
<td>87</td>
<td>Camp Clarke</td>
<td>Nebraska</td>
<td>103°-103° 30'</td>
<td>41° 30'-42°</td>
<td>892</td>
<td>25</td>
</tr>
<tr>
<td>88</td>
<td>Scotts Bluff</td>
<td>Nebraska</td>
<td>103° 30'-104°</td>
<td>41° 30'-42°</td>
<td>892</td>
<td>25</td>
</tr>
<tr>
<td>89</td>
<td>Port Orford</td>
<td>Oregon</td>
<td>124°-124° 30'</td>
<td>42° 30'-43°</td>
<td>878</td>
<td>25</td>
</tr>
<tr>
<td>90</td>
<td>Cranberry</td>
<td>Tennessee</td>
<td>81° 30'-82°</td>
<td>36°-36° 30'</td>
<td>963</td>
<td>25</td>
</tr>
</tbody>
</table>
TOPOGRAPHIC MAPS.
ATLAS SHEETS.
Atlas sheets, 1901-1903, arranged by States.

ALABAMA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet.</th>
<th>Area covered.</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>FT.</td>
<td>Degree</td>
<td>FT.</td>
</tr>
<tr>
<td>Wedowee (Ga.-Ala.)</td>
<td>33 00</td>
<td>85 00</td>
<td>1/4</td>
<td>degree</td>
<td>50</td>
</tr>
<tr>
<td>Wetumka</td>
<td>32 30</td>
<td>86 00</td>
<td>1</td>
<td>do.</td>
<td>50</td>
</tr>
</tbody>
</table>

ARIZONA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet.</th>
<th>Area covered.</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>FT.</td>
<td>Degree</td>
<td>FT.</td>
</tr>
<tr>
<td>Bisbee</td>
<td>31 15</td>
<td>109 45</td>
<td>1/8</td>
<td>degree</td>
<td>50</td>
</tr>
<tr>
<td>Bradshaw Mountains</td>
<td>34 00</td>
<td>112 00</td>
<td>1/8</td>
<td>degree</td>
<td>100</td>
</tr>
<tr>
<td>Clifton</td>
<td>33 00</td>
<td>109 15</td>
<td>1/8</td>
<td>degree</td>
<td>100</td>
</tr>
<tr>
<td>Florence</td>
<td>33 00</td>
<td>111 00</td>
<td>1/8</td>
<td>degree</td>
<td>100</td>
</tr>
<tr>
<td>Globe</td>
<td>33 15</td>
<td>110 45</td>
<td>1/8</td>
<td>degree</td>
<td>50</td>
</tr>
</tbody>
</table>

ARKANSAS.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet.</th>
<th>Area covered.</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>FT.</td>
<td>Degree</td>
<td>FT.</td>
</tr>
<tr>
<td>Camden</td>
<td>33 30</td>
<td>92 30</td>
<td>1/8</td>
<td>degree</td>
<td>50</td>
</tr>
<tr>
<td>Eureka Springs (Ark.-Mo.)</td>
<td>36 00</td>
<td>93 30</td>
<td>1/8</td>
<td>do.</td>
<td>50</td>
</tr>
<tr>
<td>Gurdon</td>
<td>33 30</td>
<td>93 30</td>
<td>1/8</td>
<td>do.</td>
<td>50</td>
</tr>
<tr>
<td>Winslow (Ark.-Ind. T.)</td>
<td>35 30</td>
<td>94 00</td>
<td>1/8</td>
<td>do.</td>
<td>50</td>
</tr>
</tbody>
</table>

CALIFORNIA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet.</th>
<th>Area covered.</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>FT.</td>
<td>Degree</td>
<td>FT.</td>
</tr>
<tr>
<td>Calabasas</td>
<td>34 00</td>
<td>118 30</td>
<td>1/8</td>
<td>degree</td>
<td>50</td>
</tr>
<tr>
<td>Camulos</td>
<td>34 00</td>
<td>118 30</td>
<td>1/8</td>
<td>degree</td>
<td>100</td>
</tr>
<tr>
<td>Capistrano</td>
<td>33 00</td>
<td>117 30</td>
<td>1/8</td>
<td>do.</td>
<td>100</td>
</tr>
<tr>
<td>Corona</td>
<td>33 30</td>
<td>117 30</td>
<td>1/8</td>
<td>do.</td>
<td>100</td>
</tr>
<tr>
<td>Deep Creek</td>
<td>34 15</td>
<td>117 00</td>
<td>1/8</td>
<td>degree</td>
<td>50</td>
</tr>
<tr>
<td>Fairoaks</td>
<td>38 30</td>
<td>121 15</td>
<td>1/8</td>
<td>do.</td>
<td>10</td>
</tr>
<tr>
<td>Hesperia</td>
<td>34 15</td>
<td>117 15</td>
<td>1/8</td>
<td>do.</td>
<td>50</td>
</tr>
<tr>
<td>Mount Lyell</td>
<td>37 30</td>
<td>119 00</td>
<td>1/8</td>
<td>do.</td>
<td>100</td>
</tr>
<tr>
<td>Napa</td>
<td>38 00</td>
<td>122 00</td>
<td>1/8</td>
<td>do.</td>
<td>100</td>
</tr>
<tr>
<td>Randsburg</td>
<td>35 15</td>
<td>117 30</td>
<td>1/8</td>
<td>degree</td>
<td>50</td>
</tr>
<tr>
<td>Redding</td>
<td>40 30</td>
<td>122 00</td>
<td>1/8</td>
<td>degree</td>
<td>100</td>
</tr>
<tr>
<td>Redlands</td>
<td>34 00</td>
<td>117 00</td>
<td>1/8</td>
<td>degree</td>
<td>50</td>
</tr>
<tr>
<td>Rock Creek</td>
<td>34 15</td>
<td>117 45</td>
<td>1/8</td>
<td>do.</td>
<td>50</td>
</tr>
<tr>
<td>San Antonio</td>
<td>34 15</td>
<td>117 30</td>
<td>1/8</td>
<td>do.</td>
<td>50</td>
</tr>
<tr>
<td>San Gorgonio</td>
<td>34 00</td>
<td>116 30</td>
<td>1/8</td>
<td>degree</td>
<td>100</td>
</tr>
<tr>
<td>San Luis Rey</td>
<td>33 00</td>
<td>117 00</td>
<td>1/8</td>
<td>do.</td>
<td>100</td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>37 00</td>
<td>122 00</td>
<td>1/8</td>
<td>do.</td>
<td>100</td>
</tr>
<tr>
<td>Santa Susana</td>
<td>34 15</td>
<td>118 30</td>
<td>1/8</td>
<td>degree</td>
<td>50</td>
</tr>
<tr>
<td>Tejon</td>
<td>34 20</td>
<td>118 30</td>
<td>1/8</td>
<td>degree</td>
<td>100</td>
</tr>
</tbody>
</table>

21
COLORADO.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Greeley</td>
<td>40 00 104 30</td>
<td>½ degree</td>
<td>Feet 20</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Needle Mountains</td>
<td>37 30 107 30</td>
<td>¼ degree</td>
<td>100</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
</tbody>
</table>

CONNECTICUT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Millbrook (N. Y.-Conn.)</td>
<td>41 45 73 30</td>
<td>¼ degree</td>
<td>20</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
</tbody>
</table>

DELWARE.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean City (Md.-Del.)</td>
<td>38 15 75 00</td>
<td>1/6 degree</td>
<td>10</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Pittsville (Md.-Del.)</td>
<td>38 15 75 15</td>
<td>do</td>
<td>10</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Salisbury (Md.-Del.)</td>
<td>38 15 75 30</td>
<td>do</td>
<td>10</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
</tbody>
</table>

GEORGIA.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wedowee (Ga.-Ala.)</td>
<td>33 00 85 00</td>
<td>¼ degree</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
</tbody>
</table>

IDAHO.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamilton (Idaho-Mont.)</td>
<td>46 00 114 00</td>
<td>1/6 degree</td>
<td>100</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Rathdrum</td>
<td>47 30 116 30</td>
<td>do</td>
<td>100</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Sandpoint</td>
<td>48 00 116 30</td>
<td>do</td>
<td>100</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Spokane (Idaho-Wash.)</td>
<td>47 30 117 00</td>
<td>do</td>
<td>100</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
</tbody>
</table>

ILLINOIS.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cahoka (Mo.-Iowa-Ill.)</td>
<td>40 00 52 30</td>
<td>¼ degree</td>
<td>20</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Mineral Point (Wis.-Ill.)</td>
<td>42 30 90 00</td>
<td>do</td>
<td>20</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>O’Fallon (Mo.-Ill.)</td>
<td>38 30 90 30</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Rock Island (Iowa-Ill.)</td>
<td>41 30 90 30</td>
<td>do</td>
<td>20</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
</tbody>
</table>

INDIAN TERRITORY.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Addington</td>
<td>34 00 97 30</td>
<td>¼ degree</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Alikchi</td>
<td>34 00 95 00</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Antlers</td>
<td>34 00 95 30</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Ardmore</td>
<td>34 00 97 00</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Denison (Ind. T.-Tex)</td>
<td>33 30 98 30</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Gainesville (Ind. T.-Tex)</td>
<td>33 30 97 00</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Lukfata</td>
<td>34 00 94 30</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Nowata</td>
<td>36 30 95 30</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Nuyaka</td>
<td>35 30 96 00</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Pauls Valley</td>
<td>34 30 97 00</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Rush Springs</td>
<td>34 30 97 30</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
<tr>
<td>Winslow (Ark.-Ind. T.)</td>
<td>35 30 94 00</td>
<td>do</td>
<td>50</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
</tbody>
</table>
INDIANA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of S.E. corner of sheet</th>
<th>Area covered.</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boonville</td>
<td>Lat. 38 00, Long. 87 15</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Dego尼亚 Springs</td>
<td>Lat. 38 00, Long. 87 00</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Ditney</td>
<td>Lat. 38 00, Long. 87 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Haubstadt</td>
<td>Lat. 38 00, Long. 87 30</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>New Harmony</td>
<td>Lat. 38 00, Long. 87 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Owensboro (Ind.-Ky.)</td>
<td>Lat. 37 45, Long. 87 00</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Petersburg</td>
<td>Lat. 38 15, Long. 87 15</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Princeton</td>
<td>Lat. 38 15, Long. 87 30</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>St. Meinrad</td>
<td>Lat. 38 15, Long. 87 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Tell City (Ky.-Ind.)</td>
<td>Lat. 37 45, Long. 87 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Velpen</td>
<td>Lat. 38 15, Long. 87 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

IOWA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of S.E. corner of sheet</th>
<th>Area covered.</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elk Point (S. Dak.-Nebr-Iowa)</td>
<td>Lat. 41 00, Long. 91 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Elkader (Iowa-Wis.)</td>
<td>Lat. 42 00, Long. 91 00</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Kahoka (Mo.-Iowa-Ill.)</td>
<td>Lat. 40 00, Long. 91 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Oelwein</td>
<td>Lat. 42 00, Long. 91 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Rock Island (Ill.-Iowa)</td>
<td>Lat. 41 00, Long. 90 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Stanwood</td>
<td>Lat. 41 00, Long. 91 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Winthrop</td>
<td>Lat. 42 00, Long. 91 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

KENTUCKY.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of S.E. corner of sheet</th>
<th>Area covered.</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenova (Ky.-W. Va.-Ohio)</td>
<td>Lat. 38 00, Long. 82 30</td>
<td>1/6 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Owensboro (Ind.-Ky.)</td>
<td>Lat. 37 45, Long. 87 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Tell City (Ky.-Ind.)</td>
<td>Lat. 37 45, Long. 86 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

MAINE.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of S.E. corner of sheet</th>
<th>Area covered.</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangor</td>
<td>Lat. 45 45, Long. 68 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Castine</td>
<td>Lat. 44 15, Long. 68 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Orono</td>
<td>Lat. 44 45, Long. 68 30</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

MARYLAND.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of S.E. corner of sheet</th>
<th>Area covered.</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belair (Md.-Pa.)</td>
<td>Lat. 39 30, Long. 76 15</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Bloodsworth Island</td>
<td>Lat. 38 00, Long. 76 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Chestertown</td>
<td>Lat. 39 30, Long. 76 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Crisfield (Md.-Va.)</td>
<td>Lat. 37 45, Long. 75 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Deal Island</td>
<td>Lat. 38 00, Long. 75 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Green Run (Md.-Va.)</td>
<td>Lat. 38 00, Long. 75 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Hancook (Md.-W. Va.-Pa.)</td>
<td>Lat. 39 30, Long. 78 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Nanticoke</td>
<td>Lat. 38 15, Long. 75 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Ocean City (Md.-Del.)</td>
<td>Lat. 38 15, Long. 75 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Parkton (Md.-Pa.)</td>
<td>Lat. 39 30, Long. 76 30</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Pittsville (Md.-Del.)</td>
<td>Lat. 38 15, Long. 75 15</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Princess Anne (Md.-Va.)</td>
<td>Lat. 38 00, Long. 75 30</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Salisbury (Md.-Del.)</td>
<td>Lat. 38 15, Long. 75 30</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Snow Hill (Md.-Va.)</td>
<td>Lat. 38 00, Long. 75 15</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>
MINNESOTA

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoka</td>
<td>46 00 90 15 ¼ degree</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>White Bear</td>
<td>45 00 90 00 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
</tbody>
</table>

MISSOURI

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Soto</td>
<td>38 00 90 30 ½ degree</td>
<td>Feet</td>
<td>50</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>Edina</td>
<td>40 00 90 00 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>Eureka Springs (Ark.-Mo.)</td>
<td>36 00 90 30 do</td>
<td>Feet</td>
<td>50</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>Kahoka (Mo.-Iowa-Ill.)</td>
<td>40 00 90 30 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>O’Fallon (Mo.-Ill.)</td>
<td>38 30 90 30 do</td>
<td>Feet</td>
<td>50</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>Sullivan</td>
<td>38 00 90 00 do</td>
<td>Feet</td>
<td>50</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
</tbody>
</table>

MONTANA

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aladdin (Wyo.-S. Dak.-Mont.)</td>
<td>44 30 104 00 ¼ degree</td>
<td>Feet</td>
<td>50</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>Bonner</td>
<td>46 30 115 30 do</td>
<td>Feet</td>
<td>100</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>Browning</td>
<td>48 30 115 00 do</td>
<td>Feet</td>
<td>100</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>Coopers Lake</td>
<td>47 00 112 30 do</td>
<td>Feet</td>
<td>100</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>Hamilton (Idaho-Mont.)</td>
<td>46 00 114 00 do</td>
<td>Feet</td>
<td>100</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
</tbody>
</table>

NEBRASKA

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elk Point (S. Dak.-Nebr.-Iowa)</td>
<td>42 30 96 30 ¼ degree</td>
<td>Feet</td>
<td>20</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>Gothenburg</td>
<td>40 30 100 00 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>North Platte</td>
<td>41 00 100 30 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>Weeping Water</td>
<td>40 30 96 00 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
</tbody>
</table>

NEW JERSEY

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navesink</td>
<td>40 00 74 00 ¼ degree</td>
<td>Feet</td>
<td>20</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
</tbody>
</table>

NEW YORK

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandria Bay</td>
<td>44 15 75 45 ¼ degree</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Babylon</td>
<td>40 30 75 15 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Big Moose</td>
<td>43 45 74 45 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Broadalbin</td>
<td>43 00 74 00 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Canandaigua</td>
<td>42 45 77 15 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Clayton</td>
<td>44 00 76 00 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Clyde</td>
<td>43 00 76 45 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Cortland</td>
<td>42 30 76 00 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Geneva</td>
<td>42 45 76 45 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Genoa</td>
<td>42 30 76 30 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Grindstone</td>
<td>44 15 76 00 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Hammondsport</td>
<td>42 15 77 00 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Kinderhook</td>
<td>42 15 78 30 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Luzerne</td>
<td>43 15 73 45 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Mettawee (N. Y.-Vt.)</td>
<td>43 00 73 00 ¼ degree</td>
<td>Feet</td>
<td>40</td>
<td>1 : 125000</td>
<td>5 cents</td>
</tr>
<tr>
<td>Millbrook (N. Y.-Conn.)</td>
<td>41 45 78 30 ¾ degree</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
<tr>
<td>Morrisville</td>
<td>42 45 75 30 do</td>
<td>Feet</td>
<td>20</td>
<td>1 : 62500</td>
<td>5 cents</td>
</tr>
</tbody>
</table>
NEW YORK—Continued.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naples</td>
<td>Lat. 40, Long. 70</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Newburg</td>
<td>Lat. 40, Long. 74</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Northport</td>
<td>Lat. 40, Long. 75</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Norwich</td>
<td>Lat. 40, Long. 76</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Owego</td>
<td>Lat. 40, Long. 77</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Penn Yan</td>
<td>Lat. 40, Long. 77</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Phelps</td>
<td>Lat. 40, Long. 74</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Phoenicia</td>
<td>Lat. 40, Long. 74</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Pultneyville</td>
<td>Lat. 40, Long. 76</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Raquette Lake</td>
<td>Lat. 40, Long. 77</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Richfield Springs</td>
<td>Lat. 40, Long. 76</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Saratoga</td>
<td>Lat. 40, Long. 76</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Schunemunk</td>
<td>Lat. 40, Long. 75</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Sodus Bay</td>
<td>Lat. 40, Long. 75</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Theresa</td>
<td>Lat. 40, Long. 76</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Waverly</td>
<td>Lat. 40, Long. 76</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Weedsport</td>
<td>Lat. 40, Long. 76</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
</tbody>
</table>

NORTH CAROLINA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenly</td>
<td>Lat. 35, Long. 78</td>
<td>0 degree</td>
<td>10 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Parmele</td>
<td>Lat. 35, Long. 77</td>
<td>0 degree</td>
<td>10 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Tarboro</td>
<td>Lat. 35, Long. 77</td>
<td>0 degree</td>
<td>10 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Williamston</td>
<td>Lat. 35, Long. 77</td>
<td>0 degree</td>
<td>10 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
</tbody>
</table>

OHIO.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fostoria</td>
<td>Lat. 41, Long. 88</td>
<td>0 degree</td>
<td>10 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Guyandot</td>
<td>Lat. 38, Long. 82</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Kenova</td>
<td>Lat. 38, Long. 82</td>
<td>0 degree</td>
<td>100 Cents.</td>
<td>1 : 125000</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Oberlin</td>
<td>Lat. 41, Long. 82</td>
<td>0 degree</td>
<td>10 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Put-in-Bay</td>
<td>Lat. 41, Long. 82</td>
<td>0 degree</td>
<td>10 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Wheeling (W. Va.-Ohio-Pa.)</td>
<td>Lat. 40, Long. 80</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
</tbody>
</table>

OREGON.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker City</td>
<td>Lat. 44, Long. 117</td>
<td>0 degree</td>
<td>100 Cents.</td>
<td>1 : 125000</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Sumpter</td>
<td>Lat. 44, Long. 118</td>
<td>0 degree</td>
<td>100 Cents.</td>
<td>1 : 125000</td>
<td>5 Cents.</td>
</tr>
</tbody>
</table>

PENNSYLVANIA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belair (Md.-Pa.)</td>
<td>Lat. 39, Long. 76</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Boyertown</td>
<td>Lat. 40, Long. 75</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Brownsville</td>
<td>Lat. 40, Long. 79</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Chambersburg</td>
<td>Lat. 39, Long. 77</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Connellsburg</td>
<td>Lat. 40, Long. 79</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Everett</td>
<td>Lat. 40, Long. 78</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Hancock (Md.-W. Va.-Pa.)</td>
<td>Lat. 39, Long. 78 00</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
<tr>
<td>Indiana (Md.-W. Va.-Pa.)</td>
<td>Lat. 40, Long. 79 00</td>
<td>0 degree</td>
<td>20 Cents.</td>
<td>1 : 62500</td>
<td>5 Cents.</td>
</tr>
</tbody>
</table>
PENNSYLVANIA—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kittanning</td>
<td>Lat. o, Long. 45</td>
<td>Feet 79</td>
<td>20</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Latrobe</td>
<td>Lat. 45, Long. 79</td>
<td>Contour 15</td>
<td>20</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Mercersburg</td>
<td>Lat. 39, Long. 77</td>
<td>Contour 45</td>
<td>20</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Morgantown (W. Va.-Pa.)</td>
<td>Lat. 39, Long. 79</td>
<td>Contour 45</td>
<td>20</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Parkton (Md.-Pa.)</td>
<td>Lat. 39, Long. 76</td>
<td>Contour 30</td>
<td>20</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Slatton</td>
<td>Lat. 40, Long. 75</td>
<td>Contour 30</td>
<td>20</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Tioga</td>
<td>Lat. 41, Long. 77</td>
<td>Contour 00</td>
<td>20</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Wernersville</td>
<td>Lat. 40, Long. 76</td>
<td>Contour 00</td>
<td>20</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Wheeling (W. Va.-Ohio-Pa.)</td>
<td>Lat. 40, Long. 80</td>
<td>Contour 30</td>
<td>20</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
</tbody>
</table>

SOUTH DAKOTA.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aladdin (Wyo.-S. D.-Mont.)</td>
<td>Lat. 44, Long. 104</td>
<td>Degree 30</td>
<td>50</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Edgemont</td>
<td>Lat. 43, Long. 103</td>
<td>Degree 30</td>
<td>50</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Elk Point (S. Dak.-Nebr.-Iowa)</td>
<td>Lat. 42, Long. 96</td>
<td>Degree 30</td>
<td>20</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Newcastle (Wyo.-S. Dak.)</td>
<td>Lat. 43, Long. 104</td>
<td>Degree 30</td>
<td>50</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
</tbody>
</table>

TEXAS.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerro Alto</td>
<td>Lat. 31, Long. 105</td>
<td>Degree 30</td>
<td>50</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Denison (Ind. T.-Tex.)</td>
<td>Lat. 33, Long. 96</td>
<td>Degree 30</td>
<td>50</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Gainesville (Ind. T.-Tex.)</td>
<td>Lat. 33, Long. 97</td>
<td>Degree 00</td>
<td>50</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
</tbody>
</table>

UTAH.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalville</td>
<td>Lat. 40, Long. 111</td>
<td>Degree 30</td>
<td>100</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
</tbody>
</table>

VERMONT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mettawee (N. Y.-Vt.)</td>
<td>Lat. 43, Long. 78</td>
<td>Degree 30</td>
<td>40</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
</tbody>
</table>

VIRGINIA.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crisfield (Md.-Va.)</td>
<td>Lat. 37, Long. 75</td>
<td>Degree 45</td>
<td>100</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Green Run (Md.-Va.)</td>
<td>Lat. 38, Long. 75</td>
<td>Degree 30</td>
<td>10</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Princess Anne (Md.-Va.)</td>
<td>Lat. 38, Long. 75</td>
<td>Degree 30</td>
<td>10</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Snow Hill (Md.-Va.)</td>
<td>Lat. 38, Long. 75</td>
<td>Degree 15</td>
<td>10</td>
<td>1:62500</td>
<td>5 Cents</td>
</tr>
</tbody>
</table>

WASHINGTON.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chelan</td>
<td>Lat. 47, Long. 120</td>
<td>Degree 30</td>
<td>100</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Ellensburg</td>
<td>Lat. 46, Long. 120</td>
<td>Degree 30</td>
<td>100</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Snoqualmie</td>
<td>Lat. 47, Long. 121</td>
<td>Degree 30</td>
<td>100</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
<tr>
<td>Spokane (Idaho-Wash.)</td>
<td>Lat. 47, Long. 117</td>
<td>Degree 00</td>
<td>100</td>
<td>1:125000</td>
<td>5 Cents</td>
</tr>
</tbody>
</table>
WARMAN.

TOPOGRAPHIC MAPS.

Atlas sheets, 1901-1903, arranged by States—Continued.

WEST VIRGINIA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet.</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarksburg</td>
<td>39 15</td>
<td>80 15</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>Fairmont</td>
<td>39 15</td>
<td>80 00</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>Guyandot (W. Va.-Ohio)</td>
<td>38 15</td>
<td>82 15</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>Hancock (Md.-W. Va.-Pa.)</td>
<td>39 30</td>
<td>78 00</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>Kenova (Ky.-W. Va.-Ohio)</td>
<td>38 00</td>
<td>82 30</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>Milton</td>
<td>38 15</td>
<td>82 00</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>Morgantown (W. Va.-Pa.)</td>
<td>39 30</td>
<td>79 45</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>Wheeling (W. Va.-Ohio-Pa.)</td>
<td>40 00</td>
<td>80 30</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
</tbody>
</table>

WISCONSIN.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet.</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briggsville</td>
<td>43 30</td>
<td>89 30</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>Denzer</td>
<td>43 15</td>
<td>89 45</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>Elkader (Iowa-Wis.)</td>
<td>42 30</td>
<td>91 00</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>Mineral Point (Wis.-Ill.)</td>
<td>42 30</td>
<td>90 00</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>Poynette</td>
<td>43 15</td>
<td>89 15</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
<tr>
<td>The Dells</td>
<td>43 30</td>
<td>89 45</td>
<td>30</td>
<td>½ degree</td>
<td>62500</td>
</tr>
</tbody>
</table>

WYOMING.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet.</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aladdin (Wyo.-S. D.-Mont.)</td>
<td>44 30</td>
<td>104 00</td>
<td>30</td>
<td>½ degree</td>
<td>125000</td>
</tr>
<tr>
<td>Fort McKinney</td>
<td>44 00</td>
<td>106 30</td>
<td>30</td>
<td>½ degree</td>
<td>125000</td>
</tr>
<tr>
<td>Mount Leidy</td>
<td>43 30</td>
<td>110 00</td>
<td>30</td>
<td>½ degree</td>
<td>125000</td>
</tr>
<tr>
<td>Newcastle (S. Dak.-Wyo.)</td>
<td>43 30</td>
<td>104 00</td>
<td>30</td>
<td>½ degree</td>
<td>125000</td>
</tr>
</tbody>
</table>

Index to foregoing list of topographic atlas sheets.

<p>| Addington, Ind. T | 22 | Capistrano, Cal | 21 |
| Aladdin, Wyo.-S. D.-Mont. | 24 | Castine, Me | 23 |
| Alexandria Bay, N. Y | 24 | Cerro Alto, Tex. | 26 |
| Allikhi, Ind. T | 22 | Chambersburg, Pa. | 25 |
| Anoka, Minn | 24 | Chelan, Wash | 26 |
| Antlers, Ind. T | 22 | Chestertown, Md | 23 |
| Ardmore, Ind. T | 22 | Clarksburg, W. Va | 27 |
| Babylon, N. Y | 24 | Clayton, N. Y | 24 |
| Baker City, Oreg. | 25 | Clifton, Ariz | 21 |
| Bangor, Me | 23 | Clyde, N. Y | 24 |
| Belair, Md.-Pa. | 23 | Coalville, Utah | 26 |
| Big Moose, N. Y | 24 | Connellsville, Pa | 25 |
| Bisbee, Ariz | 21 | Coopers Lake, Mont | 24 |
| Bloodsworth, Md. | 23 | Corona, Cal | 21 |
| Bonner, Mont | 24 | Cortland, N. Y | 24 |
| Boonville, Ind. | 23 | Crisfield, Md.-Va | 23 |
| Boyertown, Pa. | 25 | Deal Island, Md | 23 |
| Bradshaw Mountains, Ariz | 21 | Deep Creek, Cal | 21 |
| Briggsville, Wis | 27 | Degonia Springs, Ind | 23 |
| Broaddinb, N. Y | 24 | Denison, Ind. T.-Tex | 22 |
| Browning, Mont | 24 | Denzer, Wis | 27 |
| Brownsville, Pa | 25 | DeSoto, Mo | 24 |
| Calabasas, Cal | 21 | Ditney, Ind | 23 |
| Camden, Ark | 21 | Edgemont, S. Dak | 26 |
| Camulos, Cal | 21 | Edina, Mo | 24 |
| Canandaigua, N. Y | 24 | Elk Point, S. Dak.-Nebr.-Iowa | 28 |</p>
<table>
<thead>
<tr>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elkader, Iowa-Wis</td>
<td>26</td>
</tr>
<tr>
<td>Ellensburg, Wash</td>
<td>26</td>
</tr>
<tr>
<td>Eureka Springs, Ark.-Mo</td>
<td>25</td>
</tr>
<tr>
<td>Everett, Pa</td>
<td>24</td>
</tr>
<tr>
<td>Fairmont, W. Va</td>
<td>23</td>
</tr>
<tr>
<td>Fairbanks, Cal.</td>
<td>22</td>
</tr>
<tr>
<td>Florence, Ariz.</td>
<td>22</td>
</tr>
<tr>
<td>Fort McKinney, Wyo</td>
<td>21</td>
</tr>
<tr>
<td>Fostoria, Ohio</td>
<td>21</td>
</tr>
<tr>
<td>Gainesville, Ind. T.-Tex</td>
<td>21</td>
</tr>
<tr>
<td>Geneva, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Genoa, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Gothenburg, Nebr</td>
<td>21</td>
</tr>
<tr>
<td>Greedley, Colo</td>
<td>21</td>
</tr>
<tr>
<td>Green Run, Md.-Va</td>
<td>21</td>
</tr>
<tr>
<td>Grindstone, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Gurdon, Ark</td>
<td>21</td>
</tr>
<tr>
<td>Guyandot, W. Va.-Ohio</td>
<td>21</td>
</tr>
<tr>
<td>Hamilton, Idaho-Mont</td>
<td>21</td>
</tr>
<tr>
<td>Hammondport, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Hancock, Md.-W. Va.-Pa</td>
<td>21</td>
</tr>
<tr>
<td>Haubstadt, Ind.</td>
<td>21</td>
</tr>
<tr>
<td>Hesperia, Cal.</td>
<td>21</td>
</tr>
<tr>
<td>Indiana, Pa</td>
<td>21</td>
</tr>
<tr>
<td>Kahoka, Mo.-Iowa-III</td>
<td>21</td>
</tr>
<tr>
<td>Kenly, N. C</td>
<td>21</td>
</tr>
<tr>
<td>Kenova, Ky.-W. Va.-Ohio</td>
<td>21</td>
</tr>
<tr>
<td>Kinderhook, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Klittanning, Pa</td>
<td>21</td>
</tr>
<tr>
<td>Latrobe, Pa</td>
<td>21</td>
</tr>
<tr>
<td>Luklata, Ind. T</td>
<td>21</td>
</tr>
<tr>
<td>Luzerne, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Mercersburg, Pa</td>
<td>21</td>
</tr>
<tr>
<td>Mettelawee, N. Y-Vt</td>
<td>21</td>
</tr>
<tr>
<td>Millbrook, N. Y.-Conn</td>
<td>21</td>
</tr>
<tr>
<td>Milton, W. Va</td>
<td>21</td>
</tr>
<tr>
<td>Mineral Point, Wis.-Ill</td>
<td>21</td>
</tr>
<tr>
<td>Morgantown, W. Va.-Pa</td>
<td>21</td>
</tr>
<tr>
<td>Morrisville, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Mount Ledy, Wyo</td>
<td>21</td>
</tr>
<tr>
<td>Mount Lyell, Cal</td>
<td>21</td>
</tr>
<tr>
<td>Nanticoke, Md.</td>
<td>21</td>
</tr>
<tr>
<td>Napa, Cal</td>
<td>21</td>
</tr>
<tr>
<td>Naples, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Navesink, N. J.</td>
<td>21</td>
</tr>
<tr>
<td>Needle Mountains, Colo</td>
<td>21</td>
</tr>
<tr>
<td>Newburg, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Newcastle, Wyo.-S. Dak</td>
<td>21</td>
</tr>
<tr>
<td>New Harmony, Ind.</td>
<td>21</td>
</tr>
<tr>
<td>North Platte, Nebr</td>
<td>21</td>
</tr>
<tr>
<td>Northport, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Norwich, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Nowata, Ind. T</td>
<td>21</td>
</tr>
<tr>
<td>Nuyaka, Ind. T</td>
<td>21</td>
</tr>
<tr>
<td>Oberlin, Ohio</td>
<td>21</td>
</tr>
<tr>
<td>Ocean City, Md.-Del</td>
<td>21</td>
</tr>
<tr>
<td>Oelwein, Iowa</td>
<td>21</td>
</tr>
<tr>
<td>O’Fallon, Mo.-Ili</td>
<td>21</td>
</tr>
<tr>
<td>Orono, Me.</td>
<td>21</td>
</tr>
<tr>
<td>Owego, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Owensboro, Ind.-Ky</td>
<td>21</td>
</tr>
<tr>
<td>Parkton, Md.-Pa</td>
<td>21</td>
</tr>
<tr>
<td>Parmelee, N. C</td>
<td>21</td>
</tr>
<tr>
<td>Pataps Valley, Ind. T.</td>
<td>21</td>
</tr>
<tr>
<td>Penn Yan, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Petersburg, Ind</td>
<td>21</td>
</tr>
<tr>
<td>Phelps, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Phoenix, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Pittsville, Md.-Del</td>
<td>21</td>
</tr>
<tr>
<td>Poynette, Wis</td>
<td>21</td>
</tr>
<tr>
<td>Princess Anne, Md.-Va</td>
<td>21</td>
</tr>
<tr>
<td>Princeton, Ind</td>
<td>21</td>
</tr>
<tr>
<td>Pulntneyville, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Put-in-Bay, Ohio</td>
<td>21</td>
</tr>
<tr>
<td>Rallsburg, Cal.</td>
<td>21</td>
</tr>
<tr>
<td>Raquette Lake, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Rathdrum, Idaho</td>
<td>21</td>
</tr>
<tr>
<td>Redding, Cal.</td>
<td>21</td>
</tr>
<tr>
<td>Redlands, Cal.</td>
<td>21</td>
</tr>
<tr>
<td>Richfield Springs, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Rock Creek, Cal.</td>
<td>21</td>
</tr>
<tr>
<td>Rock Island, Iowa-III</td>
<td>21</td>
</tr>
<tr>
<td>Rush Springs, Ind. T.</td>
<td>21</td>
</tr>
<tr>
<td>Sallisbury, Md.-Del</td>
<td>21</td>
</tr>
<tr>
<td>Sandpoint, Idaho</td>
<td>21</td>
</tr>
<tr>
<td>San Antonio, Cal</td>
<td>21</td>
</tr>
<tr>
<td>San Gorgonio, Cal.</td>
<td>21</td>
</tr>
<tr>
<td>San Luis Rey, Cal.</td>
<td>21</td>
</tr>
<tr>
<td>Santa Cruz, Cal.</td>
<td>21</td>
</tr>
<tr>
<td>Santa Susana, Cal.</td>
<td>21</td>
</tr>
<tr>
<td>Saratoga, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Schunemunk, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Sherrington, Pa</td>
<td>21</td>
</tr>
<tr>
<td>Snow Hill, Md.-Va.</td>
<td>21</td>
</tr>
<tr>
<td>Snoqualmie, Wash</td>
<td>21</td>
</tr>
<tr>
<td>Sodus Bay, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Spokane, Idaho-Wash</td>
<td>21</td>
</tr>
<tr>
<td>Stanwood, Iowa</td>
<td>21</td>
</tr>
<tr>
<td>St. Meinrad, Ind.</td>
<td>21</td>
</tr>
<tr>
<td>Sullivan, Mo.</td>
<td>21</td>
</tr>
<tr>
<td>Sumpter, Oreg</td>
<td>21</td>
</tr>
<tr>
<td>Tarboro, N. C</td>
<td>21</td>
</tr>
<tr>
<td>Tecumseh, Cal.</td>
<td>21</td>
</tr>
<tr>
<td>Tell City, Ind.-Ky</td>
<td>21</td>
</tr>
<tr>
<td>Theresa, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>The Dells, Wis</td>
<td>21</td>
</tr>
<tr>
<td>Tioga, Pa.</td>
<td>21</td>
</tr>
<tr>
<td>Velpen, Ind.</td>
<td>21</td>
</tr>
<tr>
<td>Waverly, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Wedowee, Ga.-Ala.</td>
<td>21</td>
</tr>
<tr>
<td>Weedsport, N. Y</td>
<td>21</td>
</tr>
<tr>
<td>Weeping Water, Nebr.</td>
<td>21</td>
</tr>
<tr>
<td>Wernersville, Pa</td>
<td>21</td>
</tr>
<tr>
<td>Wetumka, Ala.</td>
<td>21</td>
</tr>
<tr>
<td>Wheeling, W. Va.-Ohio-Pa</td>
<td>21</td>
</tr>
<tr>
<td>White Bear, Minn.</td>
<td>21</td>
</tr>
<tr>
<td>Williamson, N. C</td>
<td>21</td>
</tr>
<tr>
<td>Winslow, Ark.-Ind. T.</td>
<td>21</td>
</tr>
<tr>
<td>Winthrop, Iowa</td>
<td>21</td>
</tr>
</tbody>
</table>
GENERAL, SPECIAL, AND ECONOMIC MAPS.

ARIZONA:
- Bisbee Special. Scale, 1:12000; contour interval, 20 feet. Shows location of copper mines in the Bisbee district.
- Globe Special. Scale, 1:12000; contour interval, 20 feet. Shows location of mines and smelters in the Globe district.

CALIFORNIA:
- Southern California. Scale, 1:250000; contour interval, 250 feet. Covers the southern part of the State, on reduced scale. Latitude, 33° 30'-34° 30'; longitude, 116° 30'-118° 30'.

COLORADO-WYOMING:
- Encampment Special. Scale, 1:90000; contour interval, 100 feet. Latitude, 41°-41° 15'; longitude, 106° 45'-107° 15'.

IDAHO-MONTANA:
- Coeur d'Alene Special. Scale, 1:62500; contour interval, 50 feet. Coeur d'Alene region, chiefly in northern Idaho.

INDIAN TERRITORY:
- Map of the Territory. Scale, 1:600000; contour interval, 100 feet.

MISSOURI-KANSAS:
- Joplin district. Scale, 1:62500; contour interval, 10 feet. Covers the region around Joplin for a north-south distance of about 15 miles and an east-west distance of about 25 miles.

MONTANA:
- Marysville Special. Scale, 1:31250; contour interval, 50 feet. Covers the region around Marysville for a north-south distance of about 8 miles and an east-west distance of about 5 miles.

NEW YORK:
- Niagara River and vicinity. Scale, 1:62500; contour interval, 20 feet. Covers portions of Niagara Falls, Tonawanda, Wilson, and Buffalo quadrangles.

TEXAS:
- Terlingua Special. Scale, 1:50000; contour interval, 25 feet. Covers the region extending 12 miles eastward and 3 miles westward from Terlingua and about 5 miles in a north-south direction.

UTAH:
- Bingham mining map. Scale, 1:20000; contour interval, 50 feet. Covers part of Tooele Valley quadrangle, in the vicinity of Bingham Canyon.
- Park City Special. Scale, 1:25000; contour interval, 50 feet. Covers the region extending about 4 miles southward and 3 miles eastward and westward from Park City.

WISCONSIN:
- Marathon Special. Scale, 1:125000; contour interval, 20 feet. Latitude, 44° 45'-45° 15'; longitude, 89° 45'-90° 15'.
- Wausau Special. Scale, 1:125000; contour interval, 20 feet. Latitude, 44° 45'-45° 15'; longitude, 89° 15'-89° 45'.
MISCELLANEOUS PUBLICATIONS.

SPECIAL REPORTS ON ALASKA.

CAPE NOME AND NORTON BAY REGIONS.

Department of the Interior United States Geological Survey
Charles D. Walcott, Director
Reconnaissances in the Cape Nome and Norton Bay regions, Alaska, in 1900
By Alfred H. Brooks, George B. Richardson, Arthur J. Collier and Walter C. Mendenhall
Washington Government Printing Office 1901

Royal 8°. 222 pp., 23 pls. "Granite" cover. Published by authority of concurrent resolution of Congress of February 13, 1901. The documentary issue is House Doc. No. 547, 2d session, 56th Congress.

COPPER RIVER DISTRICT.

Department of the Interior United States Geological Survey
Charles D. Walcott, Director
The geology and mineral resources of a portion of the Copper River district, Alaska
By Frank Charles Schrader and Arthur Coe Spencer
Washington Government Printing Office 1901

Royal 8°. 94 pp., 13 pls. "Granite" cover. Published by authority of concurrent resolution of Congress of February 13, 1901. The documentary issue is House Doc. No. 546, 2d session, 56th Congress.

For other reports on Alaska, published within the time covered by this catalogue, see Twenty-second Annual, Pt. III, p. 515; Professional Papers, Nos. 1, 2, and 10; and Bulletin No. 187.

LOGARITHM TABLES.

Department of the Interior United States Geological Survey
Charles D. Walcott, Director
Five-place logarithms of natural numbers and circular functions expressed in arc and time
Washington Government Printing Office 1901

Large 8°. 69 pp. Bound in brown cloth.

REGULATIONS.

United States Geological Survey
Charles D. Walcott, Director
Regulations of the United States Geological Survey third edition
approved December 27, 1902, to take effect January 1, 1903.
Washington Government Printing Office 1903

INSTRUCTIONS.

United States Geological Survey Charles D. Walcott, Director
Instructions relating to the work of the United States Geological Survey to take effect May 1, 1903 Washington Government Printing Office 1903

LIST OF PUBLICATIONS.

8°. 47 pp. Blue cover.
Classification of Professional Papers, Bulletins, and Water-Supply Papers.

[PP = Professional Paper; B = Bulletin; WS = Water-Supply Paper.]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B21</td>
<td>B23</td>
<td>B3</td>
<td>B1</td>
<td>B9</td>
<td>B5</td>
<td>B2</td>
<td>PP3</td>
<td>WS2</td>
<td>WS33</td>
<td>WS1</td>
<td>WS8</td>
<td>WS6</td>
<td>WS24</td>
<td>WS4</td>
<td>WS11</td>
</tr>
<tr>
<td>2</td>
<td>B46</td>
<td>B33</td>
<td>B4</td>
<td>B8</td>
<td>B14</td>
<td>B6</td>
<td>B7</td>
<td>PP5</td>
<td>WS5</td>
<td>WS40</td>
<td>WS8</td>
<td>WS22</td>
<td>WS25</td>
<td>WS6</td>
<td>WS5</td>
<td>WS15</td>
</tr>
<tr>
<td>6</td>
<td>B138</td>
<td>B53</td>
<td>B16</td>
<td>B28</td>
<td>B36</td>
<td>B50</td>
<td>B75</td>
<td>PP9</td>
<td>WS17</td>
<td>WS68</td>
<td>WS41</td>
<td></td>
<td></td>
<td>WS69</td>
<td>WS26</td>
<td>WS85</td>
</tr>
<tr>
<td>7</td>
<td>B139</td>
<td>B57</td>
<td>B18</td>
<td>B38</td>
<td>B42</td>
<td>B70</td>
<td>B91</td>
<td></td>
<td>WS18</td>
<td>WS73</td>
<td>WS42</td>
<td></td>
<td></td>
<td>WS30</td>
<td>WS36</td>
<td>WS86</td>
</tr>
<tr>
<td>8</td>
<td>B143</td>
<td>B58</td>
<td>B19</td>
<td>B59</td>
<td>B47</td>
<td>B72</td>
<td>B99</td>
<td></td>
<td>WS19</td>
<td>WS86</td>
<td></td>
<td></td>
<td></td>
<td>WS31</td>
<td>WS37</td>
<td>WS87</td>
</tr>
<tr>
<td>9</td>
<td>B164</td>
<td>B67</td>
<td>B22</td>
<td>B61</td>
<td>B52</td>
<td>B76</td>
<td>B100</td>
<td></td>
<td>WS23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS34</td>
<td>WS38</td>
<td>WS88</td>
</tr>
<tr>
<td>10</td>
<td>B178</td>
<td>B104</td>
<td>B24</td>
<td>B62</td>
<td>B64</td>
<td>B115</td>
<td>B127</td>
<td></td>
<td>WS26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS35</td>
<td>WS39</td>
<td>WS89</td>
</tr>
<tr>
<td>12</td>
<td>B182</td>
<td>B119</td>
<td>B30</td>
<td>B74</td>
<td>B60</td>
<td>B117</td>
<td>B131</td>
<td></td>
<td>WS70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS56</td>
<td>WS48</td>
<td>WS99</td>
</tr>
<tr>
<td>13</td>
<td>B184</td>
<td>B137</td>
<td>B31</td>
<td>B79</td>
<td>B64</td>
<td>B118</td>
<td>B135</td>
<td></td>
<td>WS71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS57</td>
<td>WS49</td>
<td>WS80</td>
</tr>
<tr>
<td>14</td>
<td>B193</td>
<td>B144</td>
<td>B34</td>
<td>B89</td>
<td>B68</td>
<td>B122</td>
<td>B140</td>
<td></td>
<td>WS74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS60</td>
<td>WS51</td>
<td>WS81</td>
</tr>
<tr>
<td>15</td>
<td>B198</td>
<td>B155</td>
<td>B37</td>
<td>B107</td>
<td>B73</td>
<td>B123</td>
<td>B146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS61</td>
<td>WS82</td>
</tr>
<tr>
<td>16</td>
<td>PP1</td>
<td>B159</td>
<td>B41</td>
<td>B109</td>
<td>B78</td>
<td>B154</td>
<td>B149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS67</td>
<td>WS86</td>
</tr>
<tr>
<td>17</td>
<td>B200</td>
<td>B165</td>
<td>B43</td>
<td>B125</td>
<td>B90</td>
<td>B160</td>
<td>B156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS68</td>
<td>WS87</td>
</tr>
<tr>
<td>18</td>
<td>B202</td>
<td>WS70</td>
<td>B51</td>
<td>B136</td>
<td>B92</td>
<td>B166</td>
<td>B162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS69</td>
<td>WS88</td>
</tr>
<tr>
<td>19</td>
<td>PP2</td>
<td>B199</td>
<td>B36</td>
<td>B150</td>
<td>B94</td>
<td>B169</td>
<td>B172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS70</td>
<td>WS90</td>
</tr>
<tr>
<td>20</td>
<td>PP10</td>
<td>PP1</td>
<td>B63</td>
<td>B157</td>
<td>B95</td>
<td>B170</td>
<td>B177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS71</td>
<td>WS91</td>
</tr>
<tr>
<td>21</td>
<td>PP11</td>
<td>PP2</td>
<td>B69</td>
<td>PP3</td>
<td>B96</td>
<td>B171</td>
<td>B188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS72</td>
<td>WS92</td>
</tr>
<tr>
<td>22</td>
<td>PP12</td>
<td>PP3</td>
<td>B71</td>
<td>B209</td>
<td>B103</td>
<td>B174</td>
<td>B189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS73</td>
<td>WS93</td>
</tr>
<tr>
<td>23</td>
<td>B212</td>
<td>PP10</td>
<td>B77</td>
<td>B112</td>
<td>B115</td>
<td>B181</td>
<td>B183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS74</td>
<td>WS94</td>
</tr>
<tr>
<td>24</td>
<td>B213</td>
<td>PP11</td>
<td>B80</td>
<td>B113</td>
<td>B114</td>
<td>B183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WS75</td>
<td>WS95</td>
</tr>
<tr>
<td>25</td>
<td>PP12</td>
<td>PP12</td>
<td>B81</td>
<td></td>
<td>WS76</td>
<td>WS96</td>
</tr>
<tr>
<td>26</td>
<td>PP13</td>
<td>B82</td>
<td></td>
<td>WS77</td>
<td>WS97</td>
</tr>
<tr>
<td>27</td>
<td>B208</td>
<td>B86</td>
<td></td>
<td>WS78</td>
<td>WS98</td>
</tr>
<tr>
<td>28</td>
<td>B209</td>
<td>B84</td>
<td></td>
<td>WS79</td>
<td>WS99</td>
</tr>
<tr>
<td>29</td>
<td>WS78</td>
<td>B85</td>
<td></td>
<td>WS80</td>
<td>WS100</td>
</tr>
<tr>
<td>30</td>
<td>B86</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>B87</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>B88</td>
<td></td>
</tr>
</tbody>
</table>
INDEX.

[Abbreviations: Ann=Annual Report; Mon=Monograph; PP=Professional Paper; Bull=Bulletin; WS=Water-Supply and Irrigation Paper; GF=Geologic Folio; N and N=Cape Nome and Norton Bay pamphlet, and Copper-Copper River pamphlet, both catalogued on page 33 of this bulletin; i=part i, ii=part ii, etc.; p=page, pp=pages.]

Abrasives, publications on .. Bull 213, pp 439-440
 statistics of .. MR 1900, pp 787-801; MR 1901, pp 781-809
Abrasives, artificial, production of MR 1901, pp 805-809
Adamellite, analysis of, from Tyrol PP 12, p 77
 in Arizona, Globe district .. PP 12, pp 75-78
Adams (G. I.), geology and water resources of Patrick and Goshen Hole quadrangles, eastern Wyoming and western Nebraska WS 70
 oil and gas fields of Upper Cretaceous and Tertiary formations of western Gulf Coast ... Bull 184, pp 31-62
 oil and gas fields of Western Interior and northern Texas Coal Measures ... Bull 184, pp 5-29
 work in charge of .. Ann 22, i, p 78; Ann 23, p 33
 zinc and lead deposits of northern Arkansas Bull 213, pp 187-196
Adams (G. I.), Bain (H. F), and Van Hise (C. R.), preliminary report on the lead and zinc deposits of the Ozark region Ann 22, ii, pp 23-227
Adams (G. I.), Girty (G. H.), and White (D.), stratigraphy and paleontology of the Upper Carboniferous rocks of the Kansas section .. Bull 211
Admire shales of Kansas, fauna of Bull 211, p 53
Ægirite, action of ammonium chloride on Bull 207, pp 46-47
 analysis of, from Arkansas, Magnet Cove Bull 207, p 47
Africa, almandite in, occurrence of MR 1901, p 746
 diamonds in, occurrence and statistics of MR 1900, pp 751-782; MR 1901, pp 731-794
 petroleum in ... MR 1901, pp 610-611
Aganiididae of America .. Mon xlii, pp 112-128
Agate, occurrence and statistics of MR 1901, pp 754, 770
Agawa formation of Minnesota, Vermilion district Mon xlv, pp 324-335
Agiapuk region, Alaska, gold in N and N, pp 125-126
Agoniatitidae of America ... Mon xliv, pp 32-33
Alabama; Alabama River, flow of, measurement of WS 48, pp 168-170; WS 65, pp 281-282; WS 75, pp 93-94
 bauxite from, statistics of MR 1900, p 231; MR 1901, p 227
 Big Sandy Creek, flow of, measurement of WS 65, p 273; WS 75, p 83
 Black Warrior River, flow of, measurement of Ann 22, iv, p 207;
 WS 48, pp 170-172; WS 65, pp 283-285; WS 75, pp 95-96
 borings, deep, in, list of .. WS 57, pp 10-11
 building stone from, statistics of MR 1900, p 692 et seq; MR 1901, p 643 et seq
 Cahaba River, flow of, measurement of WS 65, p 283
 Cahaba River and tributaries, discharge measurements of WS 63, p 180
Alabama; Chattahoochee River, flow of, measurement of.............. WS 48, pp 158-160; WS 49, p 208
clay deposits and industry of.. PP 11, pp 48, 64, 67-78
clay products of, statistics of....................................... PP 11, p 78; MR 1900, p 695 et seq; MR 1901, p 674 et seq
coal area and statistics of... Ann 22, iv, p 13; MR 1900, pp 276 et seq, 358, 359-363; MR 1901, p 287 et seq, 355-359
coal field; summary of knowledge.................................... Ann 22, iv, pp 243-263
coke in, manufacture of.. MR 1900, pp 462 et seq, 487-489; MR 1901, pp 454 et seq, 479-481
Coosa River, flow of, measurement of.............................. Ann 22, iv, p 200; WS 48, pp 164-166; WS 49, p 210; WS 65, pp 279-280; WS 75, p 91
corundum in... Bull 180, p 79
geography of Gadsden quadrangle...................................... GF 35, p 1
of Rome quadrangle.. GF 78, p 1
of Stevenson quadrangle... GF 19, p 1
geologic and paleontologic work in.................................. Ann 22, i, p 106; Ann 23, p 63
gold and silver from, statistics of.................................. MR 1900, pp 110-113; MR 1901, p 120 et seq
Hillabee Creek, flow of, measurement of.......................... WS 48, pp 172-173; WS 65, pp 271-272; WS 75, p 82
iron and steel from, statistics of.................................... MR 1900, pp 43, 54, 57, 96; MR 1901, pp 45, 58, 63, 76, 91
limestone production of.. MR 1900, pp 662, 685, 686, 687; MR 1901, pp 643, 644, 667, 668, 669, 670
manganese ore from, statistics of.................................. MR 1900, pp 115, 116; MR 1901, pp 127, 128, 132
maps, geologic and topographic, of. (See Map.)
marble production of.. MR 1900, pp 662, 683, 684; MR 1901, pp 643, 664, 665
mineral springs of... MR 1900, pp 901, 902; MR 1901, pp 963, 984
phosphate rock in, statistics of.................................... MR 1900, p 805; MR 1901, p 813
quartz, smoky, in.. MR 1901, p 750
rainfall and run-off in Tallapoosa River Basin..................... WS 75, pp 86-88
Rome quadrangle, geology of... GF 78
sandstone production of... MR 1900, pp 662, 670, 671, 672, 673; MR 1901, pp 643, 644, 656, 657, 658, 659
slag cement in.. MR 1900, pp 747-748; MR 1901, pp 727-728
Talladega Creek, flow of, measurement of.......................... WS 48, p 174; WS 65, p 281; WS 75, p 92
survey of.. Ann 22, iv, pp 201-204
Tallapoosa River and tributaries, flow of, measurement of....... WS 49, p 210; WS 63, p 181
Tennessee River, shoals in.. Ann 22, iv, pp 229-230
Tombigbee River, flow of, measurement of........................... WS 48, pp 175-176; WS 65, p 286; WS 75, p 98
topographic work in.. Ann 22, i, pp 137, 138, 154, 171; Ann 23, pp 127, 140-141
cooperation of State in.. Ann 22, i, p 19
topography of Gadsden quadrangle..................................... GF 35, p 1
of Rome quadrangle.. GF 78, p 1
of Stevenson quadrangle.. GF 19, p 1
Alabama River, flow of, measurement of............................. WS 48, pp 168-170; WS 65, pp 281-282; WS 75, pp 93-94
Alaska; Agiapuk region, economic geology of....................... PP 2, pp 56-59
Agiapuk region, gold in.. N and N, pp 125-126
Alaska; Alaska Peninsula, coal beds on ... Ann 22, III, pp 546-547
Alexander Archipelago, coal in, localities of Ann 17, i, pp 772-783; Ann 22, III, pp 539-541
Allen River, course and character of .. PP 10, p 24
 reconnaissance from Fort Hamlin to Kotzebue Sound, by way of
 Dall, Kanuti, and Kowak rivers and .. PP 10
Annette Island, economic geology of ... PP 1, pp 108-109
Anvil Creek, gold on .. N and N, pp 73-75
Arctic region, economic geology of ... PP 2, pp 51-53
authorities on geographic names in ... Bull 187, pp 18-58
Bendeleben Mountains, character, geology, etc., of N and N, pp 17, 36, 45-46, 49, 96-98, 194
Bluestone River region, gold in .. N and N, pp 127-132
Bonanza copper claim ... Copper, p 86
Cape Lisburne, coal near ... Ann 22, III, pp 561-563
Chistochina gold field, preliminary report on .. Bull 213, pp 71-75
Cholmondeley Sound, economic geology of ... PP 1, pp 86-88
Chugach peneplain, uplift and erosion of ... Copper, pp 64-70
Cleveland Peninsula, economic geology of ... PP 1, pp 55-60
climate of Dall, Kowak, and Koyukuk valleys PP 10, pp 53-55
climatic notes on Nome region .. N and N, pp 154-163
Controller Bay, coal beds near .. PP 10, p 49
 attempts to mine, in .. MR 1901, p 359
 in Copper River region, notes on ... Copper, pp 91-92
 in Norton Bay region .. N and N, p 214
 in Yukon Basin ... Bull 213, pp 276-283
coal resources of, summary of knowledge ... Ann 22, III, pp 515-571
Cook Inlet region, placer gold mining in .. Bull 213, p 48
copper in Copper River district .. Copper, pp 42, 82-89
 in Mount Wrangell region ... Bull 213, pp 141-148
 in Prince William Sound ... Copper, pp 88-89
Copper River district, geography of ... Copper, pp 25-31
geology and mineral resources of portion of .. Copper, pp 82-92
placard gold mining in ... Bull 213, p 48
railroad construction in, practicability of ... Copper, p 92
terraces of ... Copper, pp 75-76, 80-81
topography of .. Copper, pp 26-31
corundum on Copper River ... Bull 180, p 88
Cripple River and Penny River regions, gold in N and N, pp 91-96
Dall Head and Seal Bay, economic geology of PP 1, pp 68-73
Dall River, course and character of ... PP 10, pp 21-22
 reconnaissance from Fort Hamlin to Kotzebue Sound, by way of
 Kanuti, Allen, and Kowak rivers and .. PP 10
Dexter Creek, gold on .. N and N, pp 75-76
Dolomi, economic geology of ... PP 1, pp 79-84
Eldorado River Basin, gold in ... N and N, p 99
fish and game in Kowak, Koyukuk, and Kanuti valleys PP 10, pp 55-56
 in Seward Peninsula ... N and N, p 215
Fish River, reconnaissance along, in 1900 ... N and N, pp 188-190, 195-196
Fort Hamlin, reconnaissance from Kotzebue Sound to PP 10
game and fish in Kowak, Koyukuk, and Kanuti valleys PP 10, pp 55-56
 in Seward Peninsula ... N and N, p 215
Alaska; geographic dictionary of ... Bull. 187
geography of Prince William Sound and the Copper River district Ann 20,
vii, pp 372-373
of region along Chandlar and Koyukuk rivers Ann 21, ii, p 462
of region from Pyramid Harbor to Eagle City Ann 21, ii, pp 344-353
of region from Resurrection Bay to Tanana River . Ann 20, vii, pp 295-300
of region north of Yukon River .. PP 10, pp 20-30
of Seward Peninsula, northwestern portion PP 2, pp 11-14
of southeastern portion .. PP 1, pp 14-16
of Tanana and White River basins Ann 20, vii, pp 443-445
geologic formations in, correlation of Copper, p 33
geologic investigations in ... Copper; N and N
glacial deposits of Seward Peninsula N and N, pp 143-144
glaciation in Copper River district Copper, pp 76-82
in Norton Bay region ... N and N, p 208
Glacier Creek, gold on .. N and N, p 75
Gladhaugh copper mine .. Copper, p 89
Glenn Creek gold-mining district, preliminary report on Bull 213, pp 49-56
gold along Dall, Allen, Kanuti, and Kowak rivers and Kotzebue Sound PP 10, pp 50-51
in Copper River district .. Copper, pp 90-91
in Nome region, quartz veins .. N and N, pp 143-144
in Norton Bay region ... N and N, pp 212-213
gold and silver from, statistics of MR 1900, pp 109-113; MR 1901, p 119 et seq
gold fields of Cape Nome, Seward Peninsula, reconnaissance of, in 1900 N and N, pp 1-180
Grantley Harbor region, economic geology of PP 2, pp 44-46
gold in .. N and N, p 126
grossularite in .. MR 1901, pp 745-746
Hetta Inlet, economic geology of PP 1, pp 104-107
itinerary from Valdes via Kotsina River, Strlelna Creek, Chitina River, Tana Glacier, Tana River, Taral, and Orea to Port Valdes Copper, pp 10-17
Kanuti River, course and character of PP 10, pp 22-23
reconnaissance from Fort Hamlin to Kotzebue Sound, by way of Dall, Allen, and Kowak rivers and PP 10
Karta Bay, economic geology of .. PP 1, pp 93-94
Kasaan Peninsula, economic geology of PP 1, pp 96-104
Kenai Peninsula, coal beds on ... Ann 22, iii, pp 544-546
Ketchikan mining district, preliminary report on PP 1
Kigluaik Mountains, description of, glaciation in, etc N and N, pp 17, 36, 43-45, 48, 194
Kitkun Bay, economic geology of PP 1, pp 84-86
Kok River, coal deposits along .. Ann 22, iii, p 563
Kotzebue Sound, gold near .. PP 10, pp 50-51
reconnaissance from Fort Hamlin to PP 10
Kowak River, coal on .. Ann 22, iii, p 500
course and character of .. PP 10, pp 25-27
reconnaissance from Fort Hamlin to Kotzebue Sound, by way of Dall, Kanuti, and Allen rivers, and PP 10
Kowak Valley, natives of ... PP 10, p 52
Alaska; Koyuk River, reconnaissance along, in 1900. N and N, pp 191–192, 198, 199

Kruzgamepa region, gold in. N and N, pp 114–119

Kugruk Plateau, physiography of. PP 2, pp 35–36

Kugruk region, gold in. N and N, pp 119–125

Kuzitrin Basin, economic geology of. PP 2, pp 59–68

Latouche Island, copper on. Copper, p 89

maps, geologic and topographic, of. (See Map.) marble production of. MR 1901, pp 644, 664, 665

mineral resources of Copper River district. Copper, pp 82–92

mining methods in Nome region, notes on. N and N, pp 151–154

Moira Sound, economic geology of. PP 1, pp 78–79

molybdenum in. MR 1901, p 267

natives of Norton Bay region. N and N, p 215

of Yukon and Kowak valleys. PP 10, pp 51–52

Niblack Anchorage, economic geology of. PP 1, pp 74–78

nickel in. MR 1901, p 244

Nikolai copper mine. Copper, pp 86–87

Nome region; Anvil Creek, gold on, discovery of. N and N, pp 25–26

development of. N and N, pp 64–69

economic geology of. N and N, pp 70–91

placers of. N and N, pp 70–91, 140–151

recording districts in. N and N, pp 178–180

Nome and Seward Peninsula, gold fields of, reconnaissance of, in 1900. N and N, pp 1–180

Nome River and tributaries, gold on. N and N, pp 73–80

Norton Bay region, reconnaissance in, in 1900. N and N, pp 181–218

routes and means of transportation in. N and N, pp 216–217

Nuluk Plateau, physiography of. PP 2, p 35

petroleum in Copper River region. Copper, p 92

physiography of Copper River district. Copper, pp 62–76

placer gold output from Seward Peninsula in 1900. N and N, p 69

placers, beach, of Nome region. N and N, pp 85–91

placers, gravel plain, of Nome region. N and N, pp 80–85

plants collected in northern. PP 10, pp 58–65

Porcupine district, placer gold mining in. Bull 213, p 48

Seal Bay and Dall Head, economic geology of. PP 1, pp 68–73

Seward Peninsula, coal on, indications of. Ann 22, iii, p 560

Darby Mountains. N and N, pp 17, 194

geographic features of. N and N, pp 15–19, 193–199

gold fields of, reconnaissance of, in 1900. N and N, pp 1–180

history of exploration of. N and N, pp 19–26

physiography of. N and N, pp 48–64

placer gold mining in. Bull 213, pp 44–46

reconnaissance of northwestern portion of. PP 2

Shishmaref Inlet, gold on. N and N, pp 138–139

Shishmaref region, economic geology of. PP 2, pp 53–56

Shumagin Islands, coal beds on. Ann 22, iii, pp 547–548

silver in Norton Bay region. N and N, pp 213–214

Sinuk Basin, gold in. N and N, p 96
Alaska; Skowl Arm, economic geology of .. PP 1, pp 94–96
Solomon River Basin, gold in .. N and N, pp 99–102
southeastern, geology of, sketch of ... PP 1, pp 14–35
Sushitna River, coal beds on ... Ann 22, iii, p 543
surveys in .. Ann 22, i, pp 166–175; Ann 23, pp 57, 71–82, 161
terraces of Copper River district ... Copper, pp 75–76, 80–81
Thorne Arm, economic geology of .. PP 1, pp 64–68
timber in Copper Basin ... Copper, p 92
in Seward Peninsula, notes on ... N and N, p 164
Tongass Narrows, economic geology of ... PP 1, pp 60–63
Topkok (Cape) region, gold in .. N and N, pp 102–106
topography of Chitina River Basin and Skolai Mountains Ann 21, ii, pp 408–411
of Kuskokwim region .. Ann 20, viii, pp 68–70
of Prince William Sound and the Copper River district Ann 20, viii, pp 373–400
of region along Chandlar and Koyukuk rivers Ann 21, ii, pp 462–471
of region from Resurrection Bay to Tanana River Ann 20, viii, pp 295–297
of region from Tyonek to Sushitna-Kuskokwim divide Ann 20, viii, pp 63–64
of Sushitna Basin and adjacent territory .. Ann 20, viii, pp 7–14
of Tanana and White River basins .. Ann 20, viii, pp 445–451
trails in Copper River district .. Copper, pp 17–25
triangulation in ... Ann 22, i, p 144
Tubutulik River, reconnaissance along, in 1900 ... N and N, pp 190–191, 196–197
tundra of Seward Peninsula ... N and N, pp 16, 164
Twelvemile Arm, economic geology of ... PP 1, pp 88–93
Unuk River, economic geology of ... PP 1, pp 107–108
Vallenar Bay, economic geology of .. PP 1, pp 73–74
vegetation along Dall, Kanuti, Allen, and Kowak rivers PP 10, pp 56–65
of Seward Peninsula, notes on .. N and N, pp 164–174
Wrangell, Mount, region, copper deposits of Bull 213, pp 141–148
York Plateau, physiography of .. PP 2, pp 36–39
York region, economic geology of .. PP 2, pp 47–51
gold in .. N and N, pp 132–138
stream, tin, in ... MR 1900, pp 267–271
Yukon Basin, coal resources of ... Ann 22, iii, pp 555–559; Bull 213, pp 276–283
Yukon Valley, natives of .. PP 10, pp 51–52
Alaska Peninsula, coal beds on ... Ann 22, iii, pp 546–547
Albany division of Texas ... Ann 22, iii, p 404
Alden moraine, New York, distribution, topography, etc., of Mon xli, pp 701–708
Albirupean series of deposits and flora .. Ann 16, i, pp 473–474, 531–532
Alcovy River, Georgia, flow of, measurement of WS 65, pp 280–281; WS 75, p 69
Alden (W. C.), geology of Chicago district GF 81
stone industry in vicinity of Chicago, Illinois Bull 213, pp 357–360
work in charge of ... Ann 22, i, p 75; Ann 23, pp 33–34
Alden moraine, New York, distribution, topography, etc., of Mon xli, pp 684–685
Alexander Archipelago, coal in, localities of Ann 22, iii, pp 539–541
Alge, influence of, on surface waters ... WS 79, p 20
Algeria; copper from, statistics of ... MR 1900, pp 184, 185; MR 1901, p 194
gypsum production of ... MR 1901, p 851
phosphate rock production of ... MR 1901, p 822
platinum in .. Bull 193, p 82
Algonkian rocks; Agawa formation of Minnesota, Vermilion district. Mon xlv, pp 324, 335

Animikie group of Lake Superior region Ann 10, i, pp 402-406

Animikie quartzite of Minnesota Bull 8, pp 17, 18

Animikie series of Great Lakes region Bull 8, pp 35-37

of Minnesota, Vermilion district Mon xlv, pp 374-396

Baraboo quartzite of Northwestern States Ann 5, pp 198-199

of Wisconsin Bull 8, pp 33-34

Biwabik formation of Minnesota, Mesabi district Mon xlIII, pp 100-168

Cacaquabic granite of Minnesota, Vermilion district Mon xlv, pp 364-369

Chippewa Valley quartzites of Wisconsin Ann 5, pp 197-198

Chuar series of Nevada Bull 208, p 18

clays of Maryland PP 11, pp 134-135

Duluth gabbro of Minnesota, Mesabi district Mon xlIII, pp 57-59, 182-185, 272-274

of Minnesota, Vermilion district Mon xlv, pp 397-422

Embarrass granite of Minnesota, Mesabi district Mon xlIII, pp 186-188

Flattop schist of Tennessee, Cranberry quadrangle GF 90, p 4

Giants Range granite of Minnesota, Vermilion district Mon xlv, pp 353-361

Grand Canyon group of Nevada Bull 208, p 19

Gunflint formation of Minnesota, Vermilion district Mon xlv, pp 374-390

Huronian rocks of Minnesota, Mesabi district Mon xlIII, pp 72-181

of Minnesota, Vermilion district Mon xlv, pp 275-396

Ignacio quartzite of Colorado, Silverton quadrangle Bull 182, p 35

Keweenaw rocks of Lake Superior region, enlargements in Bull 8, pp 38-39

of Minnesota, Mesabi district Mon xlIII, pp 182-188

Vermilion district Mon xlv, pp 397-424

Keweenawan sandstones of Northwestern States, enlargements of feldspar fragments in Ann 5, pp 237-240

Keweenawan series of Lake Superior region Ann 10, i, pp 437-438; Bull 8, p 20

Knife Lake slates of Minnesota, Vermilion district Mon xlv, pp 293-296, 335-352

Linville metadiabase of Tennessee GF 90, pp 3-4

Logan sills of Minnesota, Vermilion district Mon xlv, pp 397-422

Marquette series of Michigan Bull 8, pp 27-30

Montezuma schist of Tennessee, Cranberry quadrangle GF 90, p 4

of Colorado Bull 182, p 35

of Montana, Elkhorn district Ann 22, ii, pp 434-435

of North America Ann 12, i, pp 541-545

of States. (See, also, formation names under this heading.)

of Tennessee, Cranberry quadrangle GF 90, pp 3-4

Ogishke conglomerate of Minnesota, Vermilion district Mon xlv, pp 284-293, 309-324

Penokee-Gogebic iron belt of Northwestern States Ann 5, pp 194-196

Penokee series of Wisconsin Bull 8, pp 30-32

Pokegama quartzite of Minnesota, Mesabi district Mon xlIII, pp 90-99

Rove slate of Minnesota, Vermilion district Mon xlv, pp 390-396

St. Louis slates of Minnesota Bull 8, pp 32-33

slate belt of Minnesota, St. Louis and Mississippi rivers Ann 5, pp 196-197

Snowbank granite of Minnesota, Vermilion district Mon xlv, pp 361-364

Spokane shale. (See Turnley hornstones.)

Turnley hornstones of Montana Ann 22, ii, pp 434-435

Unkar formation of Nevada Bull 208, p 23

Virginia slate of Minnesota, Mesabi district Mon xlIII, pp 168-177

Algonkian and Archean rocks of Alabama, clays of PP 11, pp 67-68
Algonkian system, definition of .. Ann 14, i, p 43
Alkaline conditions of water and soil in Kings River delta, California WS 58, pp 82–85
Alkalinity of river water, determination of WS 76, pp 76–86
Allegheny formation of Erie and Ohio basins Mon xli, p 64
of Maryland, coal field ... Ann 22, iii, pp 202, 204
section of ... PP 11, p 137
of Ohio, bituminous field .. Ann 22, iii, pl xii, p 216
of Pennsylvania .. GF 82, pp 7–8
bituminous field ... Ann 22, iii, pp 136–138
Allegheny Plateaus, structure, drainage, relief, etc., of GF 72, pp 1; GF 77, p 1; GF 82, pp 1–2
Allegheny River, fall of, rate of ... Mon xli, pp 125–127
quality of water of .. WS 79, pp 119–124
rock floor, altitude of, and valley of, description of Mon xli, pp 127–129
Allegheny River Coal Measures of Pennsylvania Ann 22, iii, p 66
Allegheny River series of Pennsylvania, Ohio, and West Virginia, bituminous
coal field of ... Bull 65, pp 99–178
Allegheny River system, preglacial and present features of Mon xli, pp 129–138
Allegheny Valley, Pennsylvania, coal field of, recent work in Bull 213, pp 272–274
Allen River, Alaska, course and character of PP 10, p 24
reconnaissance from Fort Hamlin to Kotzebue Sound by way of Dall,
Kanuti, and Kowak rivers and ... PP 10
Allophane, analyses of, from Missouri, Aurora, Bowyer mine Ann 22, ii, p 118
Alluvial deposits in Iowa, northeastern .. Ann 11, i, pp 234, 417–425
in Nebraska, Camp Clarke quadrangle .. GF 87, p 3
Scotts Bluff quadrangle ... GF 88, p 3
in Oregon, Coos Bay quadrangle .. GF 73, p 4
Port Orford quadrangle ... GF 89, p 3
in Washington, Yakima County ... WS 55, p 22
in West Virginia, Charleston quadrangle .. GF 72, p 5
Almandite, occurrence of ... MR 1901, p 746
Alpreston quartzite of Montana .. Ann 22, ii, p 435
Altamont limestone of Kansas .. Ann 22, iii, p 342
Alton fire clay of Pennsylvania .. PP 11, p 213
Alum, preparation of, from slags .. Bull 213, p 229
Aluminum, ores of .. MR 1901, p 968
Aluminum and bauxite, statistics of .. MR 1900, pp 229–231; MR 1901, pp 225–229
Alunite, analysis of, from Colorado, Silverton quadrangle Bull 182, p 235
Amargosa Valley, California, geology of .. Bull 208, pp 194–195
Amber, occurrence of ... MR 1901, p 762
American Fork, Utah, flow of, measurement of WS 51, pp 417–418; WS 66, p 124; WS 75, p 195
irrigation data relating to ... WS 52, pp 504–505
American isthmus, hydrography of .. Ann 22, iv, pp 507–630
American River, California, flow of, measurement of WS 51, p 480
forest conditions in basin of .. PP 8, pp 145–173
American rock cement, statistics of .. MR 1900, pp 745–748
Americus limestone of Kansas, synonymy, character, and fauna of Bull 211, pp 53–54
Ames limestone of Ohio ... Bull 65, pp 90–91
Amethyst, occurrence and statistics of ... MR 1901, pp 751–754, 770
Ammonia in water, determination of .. WS 79, pp 24–25
Ammonium chloride, action of, upon silicates Bull 207
Ammonoids, Carboniferous, of America .. Mon xlii
Amphibole-schist of Oregon, Coos Bay quadrangle GF 73, pp 2, 5
of Oregon, Port Orford quadrangle .. GF 89, p 3
Amphibolite of Alaska, Ketchikan district PP 1, p 48
Analcite, action of ammonium chloride on Bull 207, pp 8-16
analysis of, from Colorado, Golden ... Bull 207, p 11
from Nova Scotia, Wassons Bluff ... Bull 207, p 8
Andesite, analysis of, from Montana, Elkhorn Mountain Ann 22, ii, p 525
analyses of, from Oregon, Crater Lake PP 3, p 94
of Alaska, Copper River district ... Copper, pp 57, 58
of Montana, Elkhorn district, petrography of Ann 22, ii, pp 523-531
of Oregon, Blue Mountains .. Ann 22, ii, pp 591-592
Mount Mazama ... PP 3, pp 23-31
of Washington, Ellensburg quadrangle GF 86, pp 2, 4

Yakima County ... WS 55, p 22
thin sections of, from Oregon, Crater Lake National Park PP 3, pp 76, 80, 98
Andesitic breccia, analysis of, from Colorado, Silverton quadrangle ... Bull 182, p 125
of Colorado, Silverton quadrangle, mineralogic composition of Bull 182, p 126
Andesitic rocks, analyses of, from Montana, Elkhorn district Ann 22, ii, p 430
of Colorado, Engineer Mountain, mineralogic composition of Bull 182, p 120
of Montana, Elkhorn district .. Ann 22, ii, pp 429-431

hydrographic investigations on .. WS 69, pp 70-91
Animas River, Colorado, flow of, measurement of Ann 22, iv, p 394; WS 50, pp 383-384; WS 66, p 97; WS 74, pp 120-124

Animikie series of Great Lakes region Ann 10, i, pp 402-406; Bull 8, pp 35-37
of Minnesota, Vermilion district ... Mon xliv, pp 374-396
Antelope Range, Nevada, geology of ... Bull 208, pp 37-38
Antilines in Washington, Yakima County WS 55, pp 23-24
Antietam Creek, Maryland, flow of, measurement of Ann 22, iv, p 134; WS 48, pp 117-118; WS 65, pp 230-231; WS 75, p 36

Antimony, ores of ... MR 1901, p 908
statistics of .. MR 1900, pp 251-255; MR 1901, pp 251-256
Antrim shales of Michigan .. Ann 22, iii, p 668
Anvil Creek, Alaska, gold on ... N and N, pp 73-75
Apache group of Arizona, Globe district PP 12, pp 28-39
Apalachee River, Georgia, flow of, measurement of WS 65, pp 258-259; WS 75, p 66
Apatite, occurrence of .. MR 1901, p 761
Apishapa formation of Colorado .. GF 71, pp 1, 3
Aplin (S. A.), work in charge of ... Ann 22, i, p 174; Ann 23, p 161
Aplite, analysis of, from Montana, Black Butte Ann 22, ii, p 540
Aplite of Montana, Elkhorn district, petrography of Ann 22, ii, pp 425, 539-543
Aplitic-granite of Montana, Elkhorn district Ann 22, ii, p 425
Aplite and pegmatitic rocks of Alaska, Ketchikan district PP 1, p 47
Aplitic dikes of Vermont, Ascutney Mountain Bull 209, pp 70-77
Apophyllite, action of ammonium chloride on Bull 207, p 39
Appalachian coal field, structure of .. GF 82, p 5
Appalachian coal field, northern; summary of knowledge Ann 22, iii, pp 119-226
Appalachian coal field, southern; summary of knowledge Ann 22, iii, pp 227-263
Appalachian Mountains, southern, climate of Ann 22, iv, pp 179-181; WS 62, pp 22-25
forests and lumbering in ... Ann 22, iv, p 178; WS 62, pp 25-30
Appalachian Mountains, southern, geology of .. Ann 22, iv, pp 177–178
 highways in ... Ann 22, iv, p 179
 hydrography of ... WS 62, WS 63
 minerals in ... Ann 22, iv, p 179
 park proposed in .. Ann 22, iv, pp 173–184
 peaks in, heights of .. Ann 22, iv, pp 14–15
 physical features of .. Ann 22, iv, pp 175–177
 rainfall in ... Ann 22, iv, pp 181–183; WS 62, pp 23–25
 soil and vegetation in .. WS 62, pp 30–33
 stream flow in .. Ann 22, iv, pp 183–184
 temperature of .. Ann 22, iv, pp 180–181; WS 62, pp 22–23
Appalachian province, structure, extent, divisions, etc., of GF 72, p 1;
 GF 75, pp 1, 4–5; GF 77, p 1; GF 78, pp 1, 4; GF 82, pp 1–2; GF 90, p 1
Appalachian States, copper deposits of ... Bull 213, pp 181–185
Appalachian streams, miscellaneous measurements of WS 65, p 312
Appanoose formation of Iowa ... Ann 22, iii, pp 342, 343
Appomattox River, flow of, measurement of .. WS 48,
 pp 126–127; WS 65, 238–239; WS 75, p 44
Aquia Creek series of deposits and flora .. Ann 16,
 i, pp 473, 482–483, 523, 530–532, 538, 542
Arago formation of Oregon ... GF 89, p 3
Arbuckle limestone of Indian Territory .. GF 79, p 3
Arbuckle uplift, Indian Territory, structure of GF 79, p 7
Archean rocks; Basement complex of Michigan, Crystal Falls district Ann 19,
 iii, pp 146–147; Mon xxxvi, pp 463–471
 of Minnesota, Mesabi district .. Mon xliv, pp 13, 63–71
 Beach granite of Tennessee ... GF 90, p 3
 Blowing Rock gneiss of Tennessee ... GF 90, p 3
 Carolina gneiss of Tennessee ... GF 90, p 2
 Cranberry granite of Tennessee ... GF 90, p 3
 Ely greenstone of Minnesota .. Mon xliv, pp 130–172
 Huronian sandstones of Great Lakes region Bull 8, pp 15, 16, 20
 Keweenawan sandstones, enlargements of feldspar fragments in Bull 8, pp 44–47
 of Minnesota, Vermilion district Mon xliv, pp 129–274
 of Nevada, south of fortieth parallel Bull 208, pp 26–27, 47
 of North America ... Ann 12, i, pp 557–563
 of Tennessee, Cranberry quadrangle GF 90, pp 2–3
 of Virginia, Norfolk quadrangle .. GF 80, p 2
 of States. (See, also, formation names under this heading.)
 quartzites of the Northwest .. Bull 8, p 49
 Roan gneiss of Tennessee ... GF 90, p 2
 Soudan formation of Minnesota Mon xliv, pp 172–246
Archean and Algonkian rocks of Alabama, clays of PP 11, pp 67–68
Argentina, borax production of .. MR 1901, p 871
 copper from, statistics of ... MR 1900, pp 184, 185; MR 1901, p 194
 petroleum in, occurrence of .. MR 1900, p 592
Argillites of Alaska, southeastern .. PP 1, p 24
Argus Range, California, geology of ... Bull 208, p 212
Arid lands, reclamation of, review of work on Ann 23, pp 11–15
Arid regions of United States .. Ann 22, iv, pp 28–37
(See, also, Irrigation.)
Arikaree formation of Nebraska ..GF 87, p 2; GF 88, p 3
of Wyoming, eastern ..WS 70, pp 16–18
Arizona; Bisbee, copper deposits atBull 213, pp 149–157
borings, deep, in, list of ..WS 57, p 11
building stone from, statistics ofMR 1900, p 662 et seq; MR 1901, p 643 et seq
cement investigations in ...Bull 213, pp 372–379
clay products of, statistics of ..MR 1900, p 636 et seq; MR 1901, p 674 et seq
Clifton, copper deposits at ...Bull 213, pp 133–140
coal in ..MR 1901, p 360
Colorado River, flow of, measurement ofWS 50, p 387; WS 66, pp 147
Arkansas; bauxite, from, statistics ofMR 1900, pp 143, 144, 158–159; MR 1901, pp 160, 161, 170–171
copper from, statistics of ..MR 1900, pp 143, 144, 158–159; MR 1901, pp 160, 161, 170–171
copper deposits at Bisbee ..Bull 213, pp 149–157
at Clifton ..Bull 213, pp 133–140
gologic and paleontologic investigations inAnn 22, i, pp 85, 102; Ann 23, pp 40, 48, 52, 53–54; Bull 213, pp 23–24
Gila River, cement investigations onBull 213, pp 372–379
flow of, measurement on ..Ann 22, iv, pp 397–398; WS 50, pp 385–386;
WS 66, pp 98–99; WS 75, pp 179–180
Globe copper district, geology ofPP 12
gold and silver from, statistics ofMR 1900, pp 109–113; MR 1901, pp 119 et seq
law of March 20, 1901, authorizing counties to acquire storage-reservoir
sites ..WS 73, pp 11–12
lead from, statistics of ..MR 1900, p 196; MR 1901, p 201
limestone production of ...MR 1900, pp 662, 685, 686, 687; MR 1901, pp 643, 644, 667, 668, 669, 670
McDowell reservoir, plans for, cost, etc.WS 73, pp 16–22
maps, geologic and topographic, of. (See Map.)
marmite production of ...MR 1900, pp 662, 683, 684; MR 1901, pp 643, 644, 664, 665
molybdenum in ...MR 1901, p 267
nickel in ..MR 1901, p 245
ore deposits of Globe copper districtPP 12, pp 114–163
petrified forest in ...MR 1900, pp 763–766; MR 1901, pp 756–758
physiography of, outline of ..PP 12, pp 14–16
platinum in ...Bull 193, pp 33, 51
water storage on ...WS 73
Salt River reservoir, capacity, cost, etc.WS 73, pp 32–52
sandstone production of ..MR 1900, pp 662, 670, 671, 672, 673; MR 1901, pp 643, 644, 656, 657, 658, 659
Tonto Creek, flow of, measurement ofWS 66, pp 100–101; WS 75, pp 178
topographic work in ..Ann 22, i, pp 137, 138, 144, 145, 158–159, 163, 171; Ann 23, pp 130, 146, 154
Turquoise in ...MR 1901, p 761
Verde River, flow of, measurement ofWS 66, pp 102–103; WS 73, pp 13–16; WS 75, p 177
water storage on ...WS 73, pp 12–22
water storage on Salt River ...WS 73
on Verde River ..WS 73, pp 12–22
Arkansas; bauxite from, statistics ofMR 1900, p 231; MR 1901, p 227
borings, deep, in, list of ...WS 57, p 12
building stone from, statistics ofMR 1900, p 662 et seq; MR 1901, p 643 et seq
Arkansas; cement from, statistics of...........MR 1900, p 737; MR 1901, pp 721, 722
cement, Portland, industry in............................Ann 22, iii, pp 741-742
chalk of southwestern, with notes on its adaptability to the manufacture
of hydraulic cements..................Ann 22, iii, pp 687-742
chalk-marl of southwestern..................Ann 22, iii, pp 700-725
clay products of, statistics of........MR 1900, p 695 et seq; MR 1901, p 674 et seq
coal in, area and statistics of........MR 1900,
pp 276 et seq, 359, 363-366; MR 1901, pp 287 et seq, 360-363
coal fields of, production, etc., of........Ann 22, iii, p 13
summary of knowledge of..................Ann 22, iii, pp 389-402
gas and oil in western....................Bull 184, p 28
geography of chalk region................Ann 22, iii, p 694
of southwestern................Ann 22, iii, p 694
geologic and paleontologic work in.........Ann 22, i, p 78; Ann 23, p 62
geology of southwestern................Ann 22, iii, pp 694-742
granite production of........................MR 1900,
pp 662, 663, 664, 665, 666; MR 1901, pp 643, 644, 651, 652, 653
lead and zinc deposits of northern........Bull 213, pp 187-196
of Ozark region, preliminary report on......Ann 22, ii, pp 23-227
limestone production of..................MR 1900,
pp 662, 685, 686, 687, 688; MR 1901, pp 643, 644, 667, 668, 669, 670
manganese ore from, statistics of..........MR 1900,
pp 115, 116, 119-120; MR 1901, pp 127, 128, 132
maps, geologic and topographic, of. (See Map.)
mрам production of........................MR 1900, pp 683, 684; MR 1901, pp 644, 664, 665
marl and chalk of southwestern..............Ann 22, iii, pp 687-742
mineral springs of........................MR 1900, pp 901, 902; MR 1901, p 964
natural gas in, statistics of............MR 1900, pp 634, 635; MR 1901, p 617
oil and gas in western.....................Bull 184, p 28
Ouachita Mountains, features of............GF 79, p 1
phosphate rock in, statistics of............MR 1900, p 805; MR 1901, p 813
Pike County, asphalt deposits of........Bull 213, pp 353-355
sandstone production of...................MR 1900, pp 662,
670, 671, 672, 673; MR 1901, pp 643, 644, 666, 667, 657, 658, C59
topographic work in........................Ann 22, i, pp 137, 138, 143, 153, 171; Ann 23, pp 128, 141
whetstones in............................MR 1901, p 785
zinc and lead deposits of northern........Bull 213, pp 187-196
Arkansas River, hydrographic data relating to......WS 50, pp 319-320, 322-330
Arkansas River and tributaries, flow of, measurement of......Ann 22, iv, pp 339-346;
WS 66, pp 47-58; WS 74, pp 76-100; WS 75, pp 145-148
Arkansas River division, Colorado, irrigation system of........WS 74, pp 70-100
Arkansas Valley region, Indian Territory, structure of........GF 79, p 7
Arkose series of Washington.........................Ann 22, ii, pp 789-791
Armuchee chert of Georgia.........................GF 78, p 3
Arrow Canyon Range, Nevada, geology of...........Bull 208, p 154
Arroyo Seco, California, flow of, measurement of........WS 51, p 471;
WS 66, pp 156, 161; WS 75, p 220
Arsenic, ores of..................................MR 1901, p 968
statistics of................................MR 1901, pp 257-258
Artesian basins in Idaho and Oregon............WS 78
in Washington, central.......................WS 55, pp 40-46
Artesian water, analyses of, from California, southern........WS 59, p 23
bibliography of................................WS 54, pp 130-131
in Colorado, Spanish Peaks quadrangle..............GF 71, p 7
Artesian water in Michigan, relation of coal-field structure to... Ann 22, iii, p 319
in Washington, central.. WS 55, pp 38-65
Ellensburg quadrangle..GF 86, pp 6-7
law of Washington providing for conservation of........... WS 78, pp 47-48
Artesian wells; conditions, yield, etc., of... Bull 199, pp 156-158; WS 67, pp 79-101;
WS 78, pp 10-14
failure of, causes of.. WS 67, pp 93-95
flushing of, results of, at Savannah, Ga....................... WS 67, pp 454-467
in California, southern... WS 59, pp 38-42, 77
in Georgia, Savannah.. WS 67, pp 97-101
in Idaho, Nez Perce region.. WS 54, pp 104-119
Snake River Plains... Bull 199, pp 174-184
in Texas, San Antonio, irrigation from......................... WS 71, pp 54-56
in Washington, Atanum-Moxee basin.............................. WS 55, pp 46-65
Moxee Valley, discharge measurement of...................... WS 75, pp 204-205
interference of, mutual.. WS 67, pp 95-97
literature of.. WS 78, pp 50-51
principles of, general... WS 54, pp 101-104
yield of, method of measuring................................... WS 67, pp 90-93
Arundel formation of Maryland, clays of...................... PP 11, pp 139-141
Asbestos, statistics, occurrence, etc., of... MR 1900, pp 861-868; MR 1901, pp 887-895
Ascutney Mountain, Vermont, geology of...................... Bull 209
Ash Creek, Nebraska, flow of, measurement of.............. WS 50, p 310
Ashley (G. H.), Eastern Interior coal field................. Ann 22, iii, pp 265-305
Ashley (G. H.) and Fuller (M. L.), geology of the Ditney quadrangle, Indiana......................... GF 84
recent work in the coal field of Indiana and Illinois.... Bull 213, pp 284-295
Ashley Creek, Utah, flow of, measurement of............... Ann 22, iv, p 365; WS 50, pp 368-369; WS 66, pp 83-84; WS 75, p 173
irrigation from... Ann 22, iv, pp 362-364; WS 75, pp 168-173
Asphalt deposits of Arkansas, Pike County............... Bull 213, pp 353-355
Asphalt and bituminous rock deposits in United States... Ann 22, i, pp 209-452
in United States, origin and distribution of................. Bull 213, pp 296-305
Asphalt, oil, and gas in southwestern Indiana............ Bull 213, pp 333-335
publications on... Bull 213, p 356
Asphaltum and bituminous rock, statistics of.............. MR 1900, pp 653-660; MR 1901, pp 633-640
Assabet River, Massachusetts, quality of water of........ WS 79, pp 44-45
Atanum Creek, Washington, flow of, measurement of...... Ann 22, iv, p 455
Atlantic coast Triassic coal field............................... Ann 22, iii, pp 25-53
Atoka formation of Indian Territory........................... GF 73, p 3; GF 79, p 5
Atoka quadrangle, Indian Territory, geology of............. GF 79
Atrato canal route across American isthmus.................. Ann 22, iv, p 536
Atwell sand of Pennsylvania, Gaines oil field.............. Ann 22, iii, pp 591-593
Aubrey group, age, character, and thickness of............ Ann 3, p 272
Aubrey limestone and sandstone of Nevada.................. Bull 208, p 18
Augite, analysis of, from Cacaquabic granite of Minnesota, Vermilion dis-
trict... Mon xlvi, p 366
Augite-diorite of Colorado, Spanish Peaks quadrangle..... GF 71, p 4
Augite-granite-porphry of Colorado, Spanish Peaks quadrangle..... GF 71, p 4
Augite-hornblende-syenite, analysis of, from New York.... Bull 209, p 47
Auriferous gravels of Washington, central.................. Bull 213, pp 76-78
Auriferous slate series of California and Sierra Nevada... Ann 8, i, pp 430-431
Austin chalk of Texas... Bull 184, p 38, GF 76, p 5
Austin quadrangle, Texas, geology of .. GF 76
Australia; coal from, platinum in .. Bull 193, p 35
lead from, statistics of .. MR 1900, pp 209, 210
Austria; graphite production of ... MR 1901, p 900
quicksilver production of ... MR 1901, p 238
sulphur production of ... MR 1901, p 837
zinc from, statistics of .. MR 1900, p 226; MR 1901, p 223
Austria-Hungary; antimony production of MR 1901, p 253
copper production of ... MR 1900, pp 315, 317; MR 1901, pp 311, 313
iron and steel production of ... MR 1901, p 114
Austria-Hungary; lead from, statistics of MR 1901, pp 209, 210, 211
petroleum in, statistics of ... MR 1900, pp 608-610
coal production of ... MR 1900, pp 315, 317; MR 1901, pp 311, 313
Babcook (M.), geographic dictionary of Alaska Bull 187
of Alaska ... Bull 194
work in charge of .. Ann 22, i, p 77
Babcook (C. C.), work in charge of Ann 23, p 99
Badger Creek, Montana, flow of, measurement of WS 49, p 269
Bain (H. F.), Western Interior coal field Ann 22, ii, pp 333-366
work in charge of .. Ann 22, i, p 77
Bain (H. F.), Van Hise (C. R.), and Adams (G. I.), preliminary report on the lead and zinc deposits of the Ozark regionAnn 22, ii, pp 227
Baker (J. S.), irrigation in Utah Valley, Utah WS 52, pp 498-509
Baker (M.), geographic dictionary of Alaska Ann 5, pp 198-199
northwest boundary of Texas ... Ann 6, i, pp 1052-1053
Bakers Island dike, Maine ... Ann 8, ii, pp 1047-1052
Barre moraine, New York, distribution, topography, etc., of Ann 11, pp 1047-1052
Barre moraine, New York, distribution, topography, etc., of Mon xli, pp 695-701
Barrel (J.), microscopical petrography of the Elkhorn mining district, Jefferson County, Montana Ann 22, ii, pp 511-549
Barren Measures of bituminous coal field of Pennsylvania, Ohio, and West Virginia ... Bull 65, pp 70-98
of West Virginia, clays of ... PP 11, pp 258-259
Barren Measures, Upper, of bituminous coal field of Pennsylvania, Ohio, and West Virginia ... Bull 65, pp 20-42
Bartlett's Island series of Maine, Mount Desert Ann 8, ii, pp 1038-1041
Barton Springs, Texas, flow from WS 50, p 338
Barus (C.), high temperature work in igneous fusion and ebullition (abstract of Bulletin No. 103) Ann 15, pp 96-97
Barytes, statistics of .. MR 1900, pp 891-892; MR 1901, pp 915-919
Basalt, analysis of, from New Jersey, Watchung MountainGF 83, p 7
 analysis of, from Oregon, Crater Lake National ParkPP 3, p 161
 from Oregon, Port Orford quadrangleGF 89, p 4
 from Washington, Walla Walla ...WS 53, p 44
 from Yellowstone Park, Mount WashburnAnn 22, ii, p 529
 of Alaska, Ketchikan district ...PP 1, p 50
 Norton Bay region ..N and N, pp 206-207
 Seward Peninsula, northwestern portionPP 2, pp 30-31
 of Arizona, Globe district ..PP 12, pp 95-97
 of Colorado, Spanish Peaks quadrangleGF 71, p 4
 of Minnesota, Mesabi district ..Mon xliii, pp 64-65
 of New Jersey, New York City districtGF 83, p 7
 of Oregon, Blue Mountains ..Ann 22, ii, pp 592-593
 Coos Bay quadrangle ...GF 73, p 4
 as a building stone ..GF 73, p 5
 Crater Lake National Park ..PP 3, pp 31-34
 petrography of ...PP 3, pp 141-163
 Port Orford quadrangle ...GF 89, p 4
 of Texas, Austin district ...GF 76, p 6
 of Washington, Ellensburg quadrangleGF 86, pp 2, 3-4
 thin section of, from Oregon, Crater Lake National ParkPP 3, p 138

Bascom (F.), work in charge of ...Ann 22, i, p 68; Ann 23, pp 34-35
Basement complex of Minnesota, Mesabi districtMon xlii, pp 13, 63-71
Bash series of Alabama ..Bull 43, pp 43-46, 69
Batavia moraine, New York, distribution, topography, etc., ofMon xli, pp 688-690
Batesville sandstone of Ozark region ...Ann 22, ii, p 84
Batholith in Montana, Elkhorn district, petrography ofAnn 22, ii, pp 535-538
Batholith, granitic, in Montana, Elkhorn districtAnn 22, ii, pp 450-453
Bauxite in Georgia, Rome quadrangle ...GF 78, p 6
Bauxite and aluminum, statistics of ..MR 1900, pp 229-231; MR 1901, pp 225-229
Bayley (W. S.), eruptive and sedimentary rocks of Pigeon Point, Minnesota Ann 15, pp 101-103

work in charge of ..Ann 22, i, p 76; Ann 23, pp 34-35
Bays formation of Tennessee ..GF 75, p 3
Beach deposits of Alaska, Seward PeninsulaN and N, p 42
Beach placers of Alaska, Nome region ..N and N, pp 85-91
Beaches of Lake Chicago ..GF 81, pp 8-11
Beaches, elevated, along Klamath peneplainBull 196, pp 24-30
Bear Creek, Colorado, flow of, measurement ofAnn 22, iv, p 321;
 WS 49, pp 284-285; WS 66, p 31; WS 74, pp 36-40; WS 75, p 127
 seepage on, computations of ..WS 50, p 304
Bear River, California, forest conditions in basin ofPP 8, pp 138-145
Bear River and tributaries, Utah-Idaho, flow of, measurement ofAnn 22, iv, pp 406-411
Bear River beds of Wyoming and Utah, age and correlation ofAnn 3, pp 415, 416
Beaumont clays of Gulf coast ...Bull 212, pp 27-30
Beaumont, Texas, oil field ..Bull 184, pp 56-59; Bull 212, pp 68-104; MR 1901, pp 565-578
Beaver Creek, Nebraska, flow of, measurement ofWS 50, p 310
Beaver limestone of Georgia ..GF 78, p 2
Beaver River, New York, flow of, measurement ofWS 66, pp 100-102
 hydrographic data concerning ..WS 49, pp 235-236

Bull. 215—03——4
Beaver River, Pennsylvania-Ohio, preglacial and present features of Mon xli, pp 148-152
Becker (G. F.), work in charge of Ann 22, i, pp 133-135; Ann 23, p 32
Bedford shale (see Waverly shale) Mon xli, p 61
Beech granite of Tennessee GF 90, p 3
Belgium; coal production of MR 1900, pp 315, 317; MR 1901, pp 311, 313
Belgium; iron and steel production of MR 1901, p 114
Belgium; lead from, statistics of MR 1900, pp 209, 210, 211
Belgium; manganese ore from, statistics of MR 1900, pp 132, 140; MR 1901; pp 146, 155
Belgium; ocher production of MR 1901, p 906
Belgium; phosphate rock production of MR 1901, p 822
Belgium; pyrite production of MR 1901, pp 841, 842
Belgium; zinc from, statistics of MR 1900, p 226; MR 1901, p 223
Bells Landing series of Alabama Bull 43, pp 46-51, 69-70
Bellspring peneplain, California-Oregon, description of Bull 196, pp 18-22
Beloceratidve o. America Mon xlii, pp 34-41
Belted Range, Nevada, geology of Bull 208, pp 163-164
Bendeleben Mountains, Alaska, character, geology, etc., of N and N, pp 17, 36, 45-46, 49, 98-98, 194
Bennington limestone of Indian Territory GF 79, p 6
Benton group in Kansas, western Bull 202, pp 8-9
Berea grit in Ohio and Pennsylvania Mon xli, p 62
Berea grit in Ohio as a source of gas Ann 8, i, p 496
Berea grit oil sand in Ohio, Cadiz quadrangle Bull 198
Bergman series of Alaska; Dall, Allen, Kanuti, and Kowak rivers PP 10, pp 39-41
Berkshire schist in Massachusetts Ann 13, ii, p 328
Beryl, occurrence and statistics of MR 1900, pp 759-760, 777
Beryl, golden, occurrence of MR 1901, p 742
Bibliography of artesian waters WS 54, pp f30-131
Bibliography of Buda limestone Bull 205, pp 11-12
Bibliography of Devonian faunas Bull 210, pp 135-139
Bibliography of economic geology . Bull 213, pp 90-91,
Bibliography of geology of Chicago district Bull 206, pp 92-94
Bibliography of geology, paleontology, petrology, and mineralogy, North American, for 1892-1900 Bull 188
Bibliography of geology, paleontology, petrology, and mineralogy, North American, for the year 1901 Bull 203
Bibliography of glacial formations and drainage features of Erie and Ohio basins Mon xli, pp 28-49
Bibliography of Globe copper district, Arizona PP 12, pp 10-13
Bibliography of goniatites, American Carboniferous Mon xlii, pp 147-150
Bibliography of greensand marl MR 1901, p 827
Bibliography of mineralogy, paleontology, petrology, etc., for 1892-1900 Bull 188
Bibliography of mineralogy, paleontology, petrology, etc., for 1901 Bull 203
Bibliography of platinum Bull 193, pp 38, 56, 68-69, 73-74, 76, 86, 87
Bibliography of Pseudoceratites of the Cretaceous Mon xli, pp 246-250
Bibliography of Vertebrata, fossil, of North America Bull 179, pp 13-251
Big Blue River, Nebraska, flow of, measurement of WS 50, p 310
Big Cottonwood Creek, Utah, flow of, measurement of WS 51, pp 422-423
Big Sandy Creek, Alabama, flow of, measurement of WS 75, p 83
Big Sioux River, flow of, measurement of WS 49, pp 270-271; WS 66, pp 24-25; WS 75, p 124
hydrographic reconnaissance of basin of Ann 22, iv, pp. 298-306
Big Stone Gap coal field of Virginia and Kentucky, geology of... Ann 15, p 105
Big Thompson Creek, Colorado, flow of, measurement of... Ann 22, iv, p 326; WS 49, pp 290, 291; WS 66, p 36; WS 74, pp 52-55; WS 75, p 130
seepage on, measurement of... WS 50, p 305
Bighorn River, Wyoming, flow of, measurement of... Ann 22, iv, p 291; WS 49, p 269; WS 66, p 25; WS 75, p 123
Bingham, Utah, ore deposits of... Bull 213, pp 105-122
Bionic value of fossils... Bull 210, pp 124-134
Biotite-augite-hornblende-diorite, analysis of, from Vermont, Ascutney Mountain... Bull 209, pp 41, 118
Biotite-dacite, analysis of, from Arizona, Globe... PP 12, p 92
Biotite-granite of Arizona, Globe district... PP 12, pp 67-75
of Vermont, Ascutneyville... Bull 209, p 118
Biotite-granite stock of Vermont, Ascutney Mountain... Bull 209, pp 79-85
Birch Creek, Montana, flow of, measurement of... WS 49, p 269
Bird's-eye beds of Kentucky... Ann 8, ii, p 545
Birkbinbine (J.), iron ores, statistics of... MR 1900, pp 39-67; MR 1901, pp 43-72
manganese ores, statistics of... MR 1900, pp 115-140; MR 1901, pp 127-155
Bisbee, Ariz., copper deposits of... Bull 213, pp 149-157
Bismuth, ores of... MR 1901, p 968
Bitter Creek coal series, age and correlation of... Ann 3, pp 413, 416
Bitterroot Mountains, geology of... WS 53, pp 16-19
Bitterroot Range and Clearwater Mountains, Montana, mineral deposits of... Bull 213, pp 66-70
Bitterroot River, Montana, flow of, measurement of... Ann 22, iv, pp 441-442; WS 51, pp 433-434; WS 66, pp 131-132; WS 75, p 199
Bitumens, analyses of... Ann 22, i, pp 224-226
Bituminous coal field of Pennsylvania, recent work in... Bull 213, pp 270-275
Bituminous limestone, analysis of, from Texas, Burnet County... Ann 22, i, p 322
Bituminous rock and asphalt deposits of the United States... Ann 22, i, pp 209-452 of the United States, origin and distribution of... Bull 213, pp 296-305
Bituminous rock and asphaltum, statistics of... MR 1900, pp 653-660
Biwabik formation of Minnesota, Mesabi district... Mon xiii, pp 100-168
Black Bluff series of Alabama... Bull 43, pp 61-62, 70
Black Fork of Green River, Wyoming, flow of, measurement of... Ann 22, iv, p 302
hydrography of basin of... Ann 22, iv, pp 360-361
Black Hills, divisions of... GF 85, p 1
Black River, New York, flow of, measurement of... Ann 22, iv, pp 252-253; WS 47, p 39; WS 49, pp 236-239; WS 65, pp 102-105
Black Warrior River, Alabama, flow of, measurement of... Ann 22, iv, p 207; WS 48, pp 170-172; WS 65, pp 283-285; WS 75, pp 95-96
Blackfoot River, Montana, flow of, measurement of... Ann 22, iv, pp 433-434; WS 51, pp 430-431; WS 66, p 130; WS 75, p 198
Blacksmith Fork, Utah, flow of, measurement of... Ann 22, iv, pp 409-410; WS 51, pp 412-413; WS 66, pp 119-120; WS 75, p 192
Blackstone Canal, Rhode Island, flow of, measurement of... WS 65, pp 28, 29
Blackstone River, Rhode Island, flow of, measurement of... WS 65, pp 27-28
quality of water of... WS 79, pp 60-68
Blacksville limestone of Pennsylvania and West Virginia... Bull 65, p 36
Blanco River, Texas, flow of, measurement of... WS 50, p 338
Blankets, ore, in Colorado, Rico district... Ann 22, ii, pp 273-293
Blossburg formation of Pennsylvania, Gaines oil field... Ann 22, iii, pp 593-599
Blowing Rock gneiss of Tennessee... GF 90, p 3
Blue Mountains, Oregon, gold belt of

Blue River, Kansas, flow of, measurement of

Bluestone formation of West Virginia

Bluestone River region, Alaska, gold in

Board on Geographic Names, U. S., cooperation with

Executive order creating, officers of, etc

Boggy shale of Indian Territory

Boise River, Idaho, flow of, measurement of

Bokchito formation of Indian Territory

Bolivar fire clay of Pennsylvania, Ohio, and West Virginia

Bolivia, copper from, statistics of

Bombs, volcanic, of Snake River Plains of Idaho

Boone formation of Ozark region

Borax, deposits of, in California, Death Valley and Mohave Desert, reconnais-
sance of

Borings, deep, in United States, list of

Borneo, diamonds in

Bosnia, pyrite production of

Bosque River, Texas, flow of, measurement of

Boston group of Ozark region

Boulder, Colorado, oil field near

Boulder Creek, Colorado, flow of, measurement of

Boutwell (J. M.), ore deposits of Bingham, Utah

progress report on the Park City mining district, Utah

work in charge of

Bradford oil sands of Pennsylvania

Braner (J. C.), work in charge of

Braxton formation of West Virginia

Brazil; amethyst in

diamonds in

manganese ore from, statistics of

Brazil formation of Indiana

Brazil formation of Oregon

Brazos River, flow of, measurement of

Breccia of Vermont, Little Ascutney Mountain

Brieveille shale of Kentucky

of Tennessee

Brick, manufacture of, from slag

Brick, tile, etc., statistics of

Brick, fire; analyses of, from New Jersey, Woodbridge

analyses of, from various localities

Brick clay. (See Clay, brick.)

Brick industry in United States east of Mississippi River
Bridger group, age and correlation of .. Ann 3, p 416
Brines, solid matter in, analyses of, from various localities Bull 213, p 415
British Columbia; copper from, statistics of MR 1900, p 189
jade in ... MR 1900, p 768
platinum in .. Bull 195, pp 34, 38-51
Broad River (of Georgia), flow of, measurement of Ann 22, iv, p 163; WS 48, pp 151-152; WS 49, p 207; WS 65, pp 255-256; WS 75, p 65
Broad River (of the Carolinas), flow of, measurement of Ann 22, iv, p 158; WS 48, pp 145-147; WS 49, pp 205-206; WS 65, pp 249-250; WS 75, p 60
hydrography of, basin of .. WS 63, pp 139-146
Broadway moraine, Ohio; distribution, topography, etc., of Mon xi, pp 531-543
Bromine, statistics of .. MR 1901, pp 867-868
Brooks (A. H.), an occurrence of stream tin in the York region, Alaska . MR 1900, pp 267-271
coal resources of Alaska .. Ann 22, iii, pp 515-571
placer gold mining in Alaska in 1902 Bull 213, pp 41-48
preliminary report on the Ketchikan mining district, Alaska, with an introdutory sketch of the geology of southeastern Alaska .. PP 1
stream tin in Alaska .. Bull 213, pp 92-93
work in charge of .. Ann 22, i, pp 95-97; Ann 23, pp 71-73
Brooks (A. H.), Richardson (G. B.), and Collier (A. J.), reconnaissance of the Cape Nome and adjacent gold fields of Seward Peninsula, Alaska, in 1900 . N and N, pp 1-180
Brookville clay of Ohio .. PP 11, pp 195-196
of Pennsylvania .. PP 11, pp 218-221
Brookville-Clarion coal of Pennsylvania GF 82, p 10
Brownstown sandstone of West Virginia Bull 65, p 58
Brule clay of Nebraska .. GF 87, p 2; GF 88, p 2
of South Dakota .. GF 85, p. 4
Brule formation of Wyoming, eastern WS 70, p 16
Bruneau River, Idaho, flow of, measurement of WS 51, pp 426-427; WS 66, p 127
Buchiceratidae of the Cretaceous .. Mon xlv, pp 26-34
Buda limestone of Texas .. Bull 205, pp 12-14; GF 76, p 5
of Texas, corals of ... Bull 205, pp 37-40
Mollusca of ... Bull 205
Buhrstone formation of Alabama .. Bull 43, pp 34-38, 69
Buhrstone iron ore of Pennsylvania, Ohio, and West Virginia . Bull 65, pp 172-173
Buhrstones, statistics of .. MR 1900, pp 787, 791-793; MR 1901, pp 793-795
Building stone of Illinois, Chicago district GF 81, p. 12
of New Jersey, New York City district GF 83, p 10
of New York, New York City district GF 83, p 5
of South Dakota, Oelrichs quadrangle GF 85, p 6
of Tennessee, Cranberry quadrangle GF 90, pp 7-8
of Washington, Ellensburg quadrangle GF 86, p 6
statistics of ... MR 1900, pp 661-692; MR 1901, pp 641-670
Burlingame shales of Kansas, synonymy, character, and fauna of ... Bull 211, p 51
Burlington limestone of Iowa, northeastern Ann 11, i, p 234
of Ozark region .. Ann 22, ii, pp 86-87
Burma, ruby in, occurrence and statistics of MR 1900, pp 757-758; MR 1901, p 741
Burnt Rock and Leach Point mountains, California, geology of . Bull 208, pp 205-206
Butte, Montana, ore deposits at .. Bull 213, pp 170-180
Cacaquabic granite of Minnesota, Vermilion district Mon xlv, pp 364-369
Cache Creek, California, flow of, measurement of WS 66, pp 144-145
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

Cache Creek and tributaries, California, flow of, measurement of WS 51, pp 453, 480; WS 75, p 211
Cache la Poudre River, Colorado, flow of, measurement of ... Ann 22, iv, p 327; WS 49, pp 291-292; WS 66, pp 36-37; WS 74, pp 55-59; WS 75, p 130
seepage on, measurements of .. WS 50, p 305
Caddo limestone of Indian Territory GF 79, p 6
Cadiz quadrangle, Ohio, Berea grit oil sand in Bull 198
Cadmium, ores of ... MR 1901, p 968
Cahaba River and tributaries, discharge measurements of WS 63, p 180; WS 65, p 283
Cañon de Chiquito, New Mexico, geology of Bull 208, pp 215-217
Cañon del Rio Grande, New Mexico, geology of Bull 208, pp 215-217
Cairngorm stone, occurrence of ... MR 1901, p 754
Calamine, action of ammonium chloride on Bull 207, pp 47-49
analysis of, from New Jersey, Franklin Furnace Bull 207, p 48
of Ozark region .. Ann 22, iv, pp 114-116
Caledonia canal route across American isthmus Ann 22, iv, p 537
Calhoun shales of Kansas .. Bull 211, p 48
California; Amargosa Valley, geology of Bull 208, pp 194-195
American River, flow of, measurement of WS 51, p 480
forest conditions in basin of .. PP 8, pp 145-173
Argus Range, geology of ... Bull 208, p 212
Arroyo Seco, flow of, measurement of WS 51, p 471; WS 66, pp 156, 161; WS 75, p 220
asbestos in ... MR 1901, p 891
asphalt deposits of .. Bull 213, pp 302-304
asphalt and bituminous rock in Ann 22, iv, pp 365-452
Bear River, forest conditions in basin of PP 8, pp 138-145
Bellspring peneplain, description of Bull 196, pp 18-22
Black Diamond district, copper deposits of Bull 213, p 130
Borate, borax deposits at .. Bull 213, p 403
borax deposits of ... Bull 213, pp 401-405; MR 1901, pp 869-870
borings, deep, in, list of .. WS 57, pp 12-17
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 643 et seq
Bully Hill district, copper deposits of Bull 213, pp 126-130
Burnt Rock and Leach Point mountains, geology of Bull 208, pp 205-206
Cache Creek, flow of, measurement of WS 66, pp 144-145
reconnaissance of basin of .. Ann 22, iv, pp 492-494
Cache Creek and tributaries, flow of, measurement of WS 51, pp 453, 480; WS 75, p 211
canals, small, near Colton and San Bernardino WS 59, pp 24-38
Carson River, flow of, measurement of WS 66, pp 109-110; WS 75, p 188
cement from, statistics of ... MR 1900, pp 737, 740; MR 1901, pp 721, 722
Cherry River, flow of, measurement of WS 66, p 148; WS 75, p 213
Chino Creek, flow of, measurement of WS 51, p 478
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq
climates of southern .. WS 59, pp 14-18
col area and statistics of .. Ann 22, iii, p 13; MR 1900, pp 277 et seq, 359, 366-368; MR 1901, pp 287 et seq, 364-365
coal fields of, production, etc., of Ann 22, iii, p 13
summary of knowledge ... Ann 22, iii, pp 498-504
copper in Redding region ... Bull 213, pp 123-132
corundum in ... Bul 189, pp 79-80
Cosumnes River, flow of, measurement of WS 51, p 480
California; crops in San Bernardino Valley ... WS 59, pp 18-20
Darwin Range, geology of ... Bull 208, p 212
Death Valley and Mohave Desert, borax deposits of Bull 200;
 Bull 213, pp 403-405
Dog Valley reservoir site, surveys of .. WS 68, pp 69-71
Donner Creek, flow of, measurement of ... WS 51, p 405
Donner Lake, hydrographic investigations at WS 68, pp 51-55
drainage areas in southern ... WS 59, pp 51-52
East Riverside irrigation district .. WS 60, pp 103-106
El Paso Range, geology of ... Bull 208, pp 214-216
Eleanor Creek, flow of, measurement of ... WS 66, pp 147-148; WS 75, p 213
electric power development in Kings River Basin WS 58, pp 48-95
Feather River, flow of, measurement of ... WS 51, p 480
 forest conditions in basin of .. PP 8, pp 52-96
 forest conditions in northern Sierra Nevada PP 8
Funeral and Grapevine ranges, geology of ... Bull 208, pp 187-194
Gage canal system; history, supply, etc ... WS 59, pp 70-95
graphy of Bidwell Bar quadrangle ... GF 43, p 1
 of Big Trees quadrangle ... Ann 22, iii, pp 498-499
 of Colfax quadrangle .. GF 51, p 1
 of Lassen Peak quadrangle .. GF 66, p 1
 of Mother Lode district ... GF 15, p 1
 of Sonora quadrangle .. GF 63, p 1
geologic and paleontologic work in .. Ann 22, i, pp 88,
gology of southeastern ... Bull 208
gold and silver from, statistics of .. MR 1900, pp 109-113; MR 1901, p 119 et seq
granite production of .. MR 1900,
 pp 662, 663, 664, 665, 666; MR 1901, pp 643, 644, 651, 652, 653
Grapevine and Funeral ranges, geology of ... Bull 208, pp 187-194
gypsum from, statistics of ... MR 1900, pp 828, 830; MR 1901, pp 846, 847
Henness Pass Valley reservoir site, surveys of WS 68, pp 66-68
hydrographic work in, proposed cooperation of State in Ann 22,
 i, pp 33-34; Ann 22, iv, pp 50-52
Independence Lake, hydrographic investigations at WS 68, pp 56-58
Iron Mountain district, copper deposits of ... Bull 213, pp 131-132
iron ores of Redding quadrangle ... Bull 213, pp 219-220
irrigation in Truckee Basin .. WS 68, pp 74-84
jasper in ... MR 1901, p 756
Kaweah River, flow of, measurement of ... WS 51, p 482
Kern River, discharge measurements in basin of WS 51, pp 461-462
 flow of, measurement of ... Ann 22, iv, p 467; WS 46, pp 16-25;
 WS 51, pp 462-463, 482; WS 66, pp 158-159; WS 75, p 218
 physical characteristics of, with reference to electric-power develop-
 ment ... WS 46, pp 11-38
 reservoirs in basin of ... Ann 22, iv, p 487
Kern River district, petroleum in .. Bull 213, pp 310-312
King River, electric-power development in basin of WS 58, pp 48-95
 evaporation and seepage on .. WS 58, pp 22-24
 flow of, measurement of ... Ann 22, iv, p 467;
 WS 51, pp 459-461, 481-482; WS 66, pp 152-153; WS 75, p 217
hydrographic survey of basin of .. Ann 22, iv, pp 470, 471-484
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

California; King River, lands served by WS 58, p 13
King River, physical features of WS 58, pp 11-15
power development on Ann 22, iv, pp 477-479
profile and plan of canyon of WS 58, pl xxiii
pumping plants in basin of Ann 22, iv, pp 480-484
regimen of ... WS 58, pp 17-22
reservoir sites in basin of Ann 22, iv, pp 472-477; WS 58, pp 24-48
underground waters in basin of Ann 22, iv, pp 479-480
water storage on ... WS 58

Kingston Range, geology of Bull 208, pp 195-200
Klamath Mountains, topographic development of Bull 196
La Graciosa district, petroleum in Bull 213, p 313
Leach Point and Burnt Rock mountains, geology of Bull 208, pp 205-206
lead from, statistics of MR 1900, p 196; MR 1901, p 201
limestone of Redding district Bull 213, p 305
limestone production of MR 1900,
pp 662, 685, 686, 687, 688; MR 1901, pp 643, 644, 667, 668, 669, 670
Los Angeles district, petroleum in Bull 213, pp 318-319
Los Angeles River, flow of, measurement of WS 51,
pp 464-471, 482-483; WS 66, pp 160-161
Lytte Creek, flow of, measurement of WS 66, pp 162-163; WS 75, p 223
McKittrick district, petroleum in Bull 213, pp 308-309
manganese ore from, statistics of MR 1900,
pp 115, 116, 120; MR 1901, pp 127, 128, 133
maps, geologic and topographic, of. (See Map.)
marget production of MR 1900,
pp 662, 682, 683, 684; MR 1901, pp 643, 644, 664, 665
Merceed River, flow of, measurement of WS 51,
p 481; WS 66, pp 150-151; WS 75, p 215
Mill Creek, flow of, measurement of WS 51, pp 476-477; WS 75, p 224
Mill Creek canals, flow of, measurement of Ann 22, iv, p 505; WS 66, p 166
mineral springs of MR 1900, pp 901, 903; MR 1901, pp 963, 964
Mohave Desert and Death Valley, borax deposits of, reconnaissance of. Bull 200
Mohave River, flow of, measurement of Ann 22, iv, p 503;
WS 51, pp 463-464; WS 66, pp 159-160; WS 75, pp 221-222
Mokelemne River, flow of, measurement of WS 51,
p 480; WS 66, pp 145-146; WS 75, p 212
molybdenum in ... MR 1901, pp 265-266
Mono Basin, geography and topography of Ann 8, 1, pp 269-286
Nacimiento Creek, flow of, measurement of WS 66, p 154; WS 75, p 219
natural gas in, statistics of MR 1900,
pp 634, 635, 637, 638, 648-649; MR 1901, pp 617, 619, 620, 621, 630
Panamint Range, geology of Bull 208, pp 200-205
petroleum in, statistics of MR 1900,
pp 540, 541, 542, 583-586; MR 1901, pp 530, 531, 532, 533, 583
petroleum fields of ... Bull 213, pp 306-321
platinum in .. Bull 193, pp 51-56
Portland cement, manufacture of, in southern WS 60, pp 135-137
Puente Hills, petroleum in Bull 213, pp 319-321
pumping plants in San Bernardino Valley WS 59, pp 42-46
quicksilver from, statistics of MR 1900, p 236; MR 1901, pp 235-237
rainfall at Riverside, San Bernardino, and Colton WS 59, pp 17-18
in King River Basin WS 58, pp 15-17
in southern, at various stations WS 52, p 496; WS 66, pp 168-169
California; rainfall in Truckee Basin ... WS 68, pp 10-15
rainfall, relation of, to run-off in ... WS 75, pp 225-231
Redding district, limestone of .. Bull 213, p 305
Redding quadrangle, iron ores of .. Bull 213, pp 219-220
Redding region, copper deposits of ... Bull 213, pp 123-132
reservoir sites in southern ... Ann 22, iv, pp 499-502
in Truckee Basin .. WS 68, pp 36-71
reservoir sites and surveys in King River Basin WS 58, pp 24-48
Riverside, commercial growth of .. WS 59, p 62
Riverside district, irrigation in, history, etc., of WS 59, pp 59-95
Riverside-Highland Water Company ... WS 60, pp 105-106
Riverside Water Company and its operations WS 59, pp 62-70
Sacramento River, flow of, measurement of Ann 22, iv, p 462; WS 51, pp 450-451, 480; WS 66, pp 142-143; WS 75, p 210
Salinas River, flow of, measurement of Ann 22, iv, pp 468-469; WS 51, pp 454-455, 481; WS 66, pp 156-157; WS 75, p 221
hydrographic survey of basin of .. Ann 22, iv, pp 484-486
salt production of ... MR 1900, p 837; MR 1901, p 855
San Antonio Creek, flow of, measurement of WS 66, pp 154-155; WS 75, p 220
San Bernardino Valley, return waters in WS 59, pp 48, 59
streams tributary to, flow of, measurement of WS 59, pp 47-59; WS 60, pp 107-111
San Bernardino Valley, lower, above Rincon, development of water
in .. WS 60, pp 106-113
San Gabriel River and branches, flow of, measurement of Ann 22, iv, p 504; WS 51, pp 472-475, 483-484; WS 66, pp 161-162; WS 75, pp 222-223
San Joaquin River, flow of, measurement of Ann 22, iv, p 466; WS 51, pp 458-459, 481; WS 66, pp 151-152; WS 75, p 216
San Lorenzo Creek, flow of, measurement of WS 66, pp 155; WS 75, pp 220
sandstone production of ... MR 1900, pp 662, 670, 671, 672, 673; MR 1901, pp 643, 644, 656, 657, 658, 659
Santa Ana River, flow of, measurement of Ann 22, iv, pp 504-505; WS 51, pp 475-476, 478-479, 484-487; WS 66, pp 163-165; WS 75, p 224
Santa Clara River, flow of, measurement of WS 51, p 482
Santa Clara River region, petroleum in Bull 213, p 315-318
Sherwood peneplain, description of .. Bull 196, pp 22-23
Sierra Nevada, forest conditions in northern PP 8
g eo l o g y of ... Bull 208, pp 218-222
slate production of ... MR 1900, pp 662, 677, 678, 680; MR 1901, pp 643, 644, 660, 661
Slate Range, geology of ... Bull 208, p 213
soil of Riverside region ... WS 59, p 13
spessartite in ... MR 1901, p 745
Stanislaus River, flow of, measurement of Ann 22, iv, p 464; WS 51, pp 455-456, 480-481; WS 66, p 146
Stony Creek, flow of, measurement of WS 75, p 211
survey of basin of ... Ann 22, iv, pp 487-491; WS 66, pp 143-144
stream measurements, miscellaneous, in WS 66, p 167
streams in, diurnal variation of .. Ann 22, iv, p 498
low-water measurements of .. Ann 22, iv, pp 494-497
Summerland district, petroleum in .. Bull 213, pp 313-315
Sunset district, petroleum in .. Bull 213, pp 309-310
Susan River, flow of, measurement of WS 51, p 408; WS 66, pp 115-116; WS 75, p 190

WAR MAN.

CALIFORNIA.

57
California; Sweetwater River, flow of, measurement of: WS 66, pp 166-167

temperature at Riverside: WS 59, p 17

topazolite in: MR 1901, p 745

topographic development of Klamath Mountains: Bull 196

topography of American River: PP 8, pp 145-147, 159-160

of Bear River Basin: PP 8, pp 138-139

of Big Trees quadrangle: GF 51, p 1

of Coast Range: Ann 22, i, pp 366-367

of Downieville quadrangle: GF 51, p 1

of Feather River Basin: PP 8, pp 52-54, 65-67, 87

of Jackson quadrangle: GF 11, p 3

of Lake County: WS 45, pp 11-12

of Lassen Peak quadrangle: GF 15, p 1

of Long Valley: PP 8, p 183

of Los Alamos district: Ann 22, i, pp 429-430

of Marysville quadrangle: GF 17, p 1

of Mohave Desert: Bull 200, pp 8-9

of Mother Lode district: GF 63, p 1

of Nevada City district: GF 29, p 1

of Nevada County: Ann 17, i, p 14

of Ophir mining district: Ann 14, ii, pp 251-252, 254-255

of Placerville quadrangle: GF 3, p 2

of Pyramid Peak quadrangle: GF 51, p 1

of Rubicon River Basin: PP 8, pp 159-160

of Sacramento quadrangle: GF 5, p 1

of San Bernardino Forest Reserve: Ann 19, v, pp 359-360; Ann 20, v, pp 429-431

of San Bernardino Valley: WS 59, p 11

of San Clemente Island: Ann 18, ii, pp 466-468

of San Gabriel Forest Reserve: Ann 19, v, pp 367-368; Ann 20, v, pp 411-412

of San Jacinto Forest Reserve: Ann 19, v, pp 351, 352; Ann 20, v, pp 455-457

of Santa Cruz district: Ann 22, i, pp 382-383

of Santa Maria district: Ann 22, i, p 424

of Sierra Nevada, northern: PP 8, pp 15-18

of Smartsville quadrangle: GF 18, p 1

of Sonora quadrangle: GF 41, p 1

of Stanislaus and Lake Tahoe forest reserves: Ann 21, v, pp 507-508

of Truckee quadrangle: GF 39, p 1

of Truckee River Basin: PP 8, pp 173-174

of Yuba River Basin: PP 8, pp 96-97, 109, 119-121, 132-133; WS 46, pp 41-42

tourmaline in: MR 1900, pp 761-762; MR 1901, p 748

Truckee River, discharge measurements in basin of: WS 51, p 405

forest conditions in: PP 8, pp 173-183

water storage in: WS 68

Tule River, flow of, measurement of: WS 51, p 482; WS 66, pp 157-158; WS 75, p 218

Tuolumne River, flow of, measurement of: Ann 22, iv, pp 465; WS 51, pp 456-458, 481; WS 66, pp 146-147, 149; WS 75, pp 212, 214
California; Twin Valley, hydrographic investigations at WS 68, pp 59-61
vesuvianite in .. MR 1901, p 747
water near San Bernardino, Colton, and Riverside, development and applica-
tion of ... WS 59 and 60
water power in Truckee Basin WS 68, pp 72-74
water supply of southern WS 59, pp 20-23
wells in King River delta WS 58, pp 56-79
in Redlands and San Bernardino quadrangles WS 60, pp 113-134
in southern, construction of WS 52, pp 497-498
wells, artesian, in southern WS 59, pp 38-42, 77
White Mountain Range, geology of Bull 208, pp 206-212
Willow Creek, flow of, measurement of WS 51, p 407; WS 66, p 115
Yuba River, flow of, measurement of Ann 22, iv, pp 462-463; WS 51, pp 451-453, 480
forest conditions in basin of PP 8, pp 96-158
reconnaissance of, with reference to water supply WS 46, pp 39-54
Calowa River, Washington, flow of, measurement of Ann 22, iv, p 460; WS 51, pp 448-449
Calumet River, Illinois, course and character of GF 81, p 1
Calvin sandstone of Indian Territory GF 74, p 4
Cambrian history of New York City district GF 83, p 2
of South Dakota, Oelrichs quadrangle GF 85, p 2
Cambrian rocks; Alpreston quartzite of Montana Ann 22, ii, p 435
Arbuckle limestone of Indian Territory GF 79, p 3
Beaver limestone of Georgia GF 78, p 2
Cemetery limestone of Montana Ann 22, ii, p 437
Chilhowee sandstone of Tennessee Bull 81, pp 300-301
clays, distribution of, east of Mississippi River PP 11, p 50
Conasauaga formation of Georgia GF 78, pp 2-3
of Tennessee ... GF 75, p. 2
Elkhorn hornstone of Montana Ann 22, ii, p 437
Erwin quartzite of Nevada Ann 22, ii, p 437
Eureka quartzite of Nevada Ann 2, pp 22, map, 27, 29
Flathead quartzite. (See Alpreston quartzite.).............
Fredericktown limestone of Ozark region Ann 22, ii, p 79
Grand Canyon group of Colorado River Bull 8, p 39
Hamburg limestone and shale of Nevada Ann 2, pp 22, 27, 29, 34; Ann 4, pp 229, 231; Bull 208, p 19
Hampton shale of Tennessee GF 90, p 5
Holes Gulch lime-shale of Montana Ann 22, ii, p 436
La Motte sandstone of Ozark region Ann 22, ii, p 79
Madison sandstone of Wisconsin Ann 11, i, p 332
Maryville limestone of Tennessee GF 75, p 2
Mendota limestone of Wisconsin Ann 11, i, p 332
Nolichucky shale of Tennessee GF 75, p 2
Ocoee group of Appalachian Mountain region, southern WS 62, p 16
of Dakota, Black Hills Ann 12, i, pp 556-557
of Georgia, Rome quadrangle GF 78, pp 2-3
of Illinois, Chicago district GF 81, p 2
of Indian Territory, Atoka quadrangle GF 79, p 3
of Iowa, northeastern Ann 11, i, p 334
of Montana, Elkhorn district Ann 22, ii, pp 435-437
of Nevada, south of fortieth parallel Bull 208, passim
of New York City district GF 83, p 4
Cambrian rocks of Newfoundland .. Ann 12, i, pp 546-547
of North America ... Ann 12, i, pp 536-540
of Ozark region ... Ann 22, ii, p 79
of Tennessee, Cranberry quadrangle GF 90, pp 4-5
Maynardville quadrangle .. GF 75, p. 2
of States. (See, also, formation names under this heading.)
Pogonip limestone of Nevada ... Ann 2, pp 22, map, 27, 30, 34
Potsdam rocks of Illinois .. Ann 11, i, p 332
of Iowa .. Ann 11, i, p 332
of Mississippi Valley ... Bull 8, pp 39-40
of New York ... Bull 30, pp 20-24, 67
of St. Lawrence Valley .. Ann 12, i, pp 549-550
of Wisconsin .. Ann 11, i, p 332; Bull 8, pp 12, 15, 18, 21
water supply from .. WS 67, pp 59-60
Poughquag quartzite of New York City district GF 83, p 4
Prospect Mountain limestone and quartzite of Nevada Ann 2, pp 22, map, 27, 32, 33; Bull 208, p 21
Reagan sandstone of Indian Territory GF 79, p 3
Rogersville shale of Tennessee .. GF 75, p 2
Rome formation of Georgia .. GF 78, p 2
of Tennessee ... GF 75, p 2
Rutledge limestone of Tennessee ... Bull 81, pp 181-186
St. Croix sandstone of Minnesota ... Bull 81, pp 181-186
Secret Canyon shale of Nevada ... Ann 2, pp 22, map, 27, 34; Bull 208, p 22
Shady limestone of Tennessee .. GF 90, p 5
Sioux quartzite of Minnesota .. Bull 81, pp 181-186
Starmount limestone of Montana ... Ann 22, ii, pp 435-436
Tonto group of Grand Canyon district Ann 2, p 217; Ann 3, p 272; Bull 208, p 22
Unicoi formation of Tennessee .. GF 90, p 4
Watauga shale of Tennessee .. GF 90, p 5
Weisner quartzite of Georgia .. GF 78, p 2
Cambrian and Silurian rocks of Alabama, clays of PP 11, pp 68-69
Cambrian system, definition of .. Ann 14, i, p 43
Cambridge limestones of Pennsylvania, Ohio, and West Virginia... Bull 65, pp 93-94
Camp Clarke quadrangle, Nebraska, geology of GF 87
Campbell (M. R.), borax deposits of eastern California Bull 213, pp 401-405
gEOLOGY OF BIG STONE GAP COAL FIELD OF VIRGINIA AND KENTUCKY... Ann 15, pp 105
goEOLOGY OF THE CHARLESTON QUADRANGLE, WEST VIRGINIA... GF 72
goEOLOGY OF THE MASONTOWN AND UNIONTOWN QUADRANGLES, PENNSYLVANIA... GF 82
goEOLOGY OF THE RALEIGH QUADRANGLE, WEST VIRGINIA... GF 77
recent work in the bituminous coal field of Pennsylvania Bull 213, pp 270-275
reconnaissance of the borax deposits of Death Valley and Mohave Desert... Bull 200
work in charge of .. Ann 22, i, pp 68-69, 94; Ann 23, pp 36-37
Campbell (M. R.) and White (D.), bituminous coal field of Pennsylvania... Ann 22, iii, pp 127-201
Camptonite, analysis of, average .. Bull 209, p 87
analysis of, from New Hampshire, Campton Falls Bull 209, p 87
from Vermont, Ascutney Mountain Bull 209, pp 87, 118
of Vermont, Little Ascutney Mountain Bull 209, pp 86-87
Canada; arsenic production of ... MR 1901, p 257
asbestos production of .. MR 1900, pp 867-868; MR 1901, pp 888, 894
coal production of .. MR 1900, pp 315, 320; MR 1901, pp 311, 316
copper from, statistics of ... MR 1900, pp 184, 185; MR 1901, pp 193, 196
Canada; corundum in .. Bull 180, pp 88-89
corundum (gem) in .. MR 1901, pp 739-740
graphite from, statistics of ... MR 1900, p 877; MR 1901, pp 899, 900
gypsum production of .. MR 1900, pp 832, 833; MR 1901, pp 849-850
iron and steel production of MR 1901, pp 107, 112
lead from, statistics of ... MR 1900, pp 209, 210
manganese ore from, statistics of MR 1900, pp 127-128, 140; MR 1901, pp 138-139, 155
Milk River, reconnaissance of, for irrigation Ann 22, iv, pp 271-273
natural gas in, statistics of .. MR 1900, pp 650-651; MR 1901, p 632
nickel from, statistics of ... MR 1900, p 249; MR 1901, pp 247, 249
other production of ... MR 1901, p 906
phosphate rock production of MR 1901, p 822
petroleum in, statistics of ... MR 1901, pp 584, 611
platinum in .. Bull 198, pp 36-51
pyrite production of .. MR 1900, p 826; MR 1901, pp 840-841, 842
salt production of ... MR 1900, p 847; MR 1901, p 865
soapstone in, statistics of ... MR 1900, pp 786; MR 1901, p 780
Canal across American isthmus, problem of, descriptions and comparisons of routes, etc. Ann 22, iv, pp 536-546
Canals, ship; size, cost, traffic, etc., comparison of Ann 22, iv, pp 541-543
Cancrinite, action of ammonium chloride on Bull 207, pp 41-42
analysis of, from Maine, Litchfield Bull 207, p 41
Candelaria Mountains, Nevada, geology of Bull 208, pp 113-115
Caney shale of Indian Territory GF 73, p 3; GF 79, p 4
Canyon division of Texas .. Ann 22, iii, pp 404
Cape Colony, coal production of MR 1901, p 311
Cape Fear River, North Carolina, flow of, measurement of ... Ann 22, iv, p 155; WS 48, pp 137-138; WS 65, pp 244-245; WS 75, p 56
Cape Lisburne, Alaska, coal near Ann 22, iii, pp 561-563
Cape Nome. (See Nome.)
Carbonates, iron-bearing, analyses of, from Minnesota, Vermilion district ..Mon xliv, p 380
Carboniferous ammonoids of America Mon xliv
Carboniferous clays, distribution of, east of Mississippi River ..PP 11, p 92
of Illinois ... PP 11, pp 94-95
of Indiana .. PP 11, pp 98-106
of Kentucky ... PP 11, pp 118-124
of Ohio ... PP 11, pp 192-205
of Pennsylvania .. PP 11, pp 212-235
of Tennessee ... PP 11, p 244
of Virginia ... PP 11, pp 249
of West Virginia .. PP 11, pp 252-260
Carboniferous coal fields of United States Ann 22, iii, pp 15-17
Carboniferous fauna; Coal Measures ammonoids of America ...Mon xliv, pp 15-16
Kinderhook ammonoids of America Mon xliv, pp 13-14
Permian ammonoids of America Mon xliv, p 16
St. Louis-Chester ammonoids of America Mon xliv, p 14
correlation of, of the world Mon xliv, pp 17-18
Carboniferous fossils of Arizona, Globe quadrangle PP 12, pp 42-44
Carboniferous history of Great Plains region GF 87, p 3; GF 88, p 4
of New York City district ... GF 83, pp 5-6
of South Dakota, Oelrich's quadrangle GF 85, p 2
Carboniferous rocks; Admire shales of Kansas, fauna of... Bull 211, p 53
Albany division of Texas.......................... Ann 22, ii, p 405
Allegheny formation of Erie and Ohio basins... Mon xli, p 64
of Maryland, coal field......................... Ann 22, ii, pp 202, 204
of Ohio, bituminous field...................... Ann 22, ii, pl xii, p 216
of Pennsylvania................................ Ann 22, ii, pp 136-138; GF 82, pp 7-8
Allegheny River Coal Measures of Pennsylvania... Ann 22, iii, p 66
Allegheny River series of the bituminous coal field of Pennsylvania, Ohio,
and West Virginia.................................. Bull 65, pp 99-178
Altamont limestone of Kansas.................. Ann 22, iii, p 342
Alton fire clay of Pennsylvania................. PP 11, p 213
Americus limestone of Kansas, synonymy, character, and fauna of... Bull 211,
pp 53-54
Ames limestone of Ohio.......................... Bull 65, pp 90-91
Appanoose formation of Iowa.................. Ann 22, iii, pp 342, 343
Atoka formation of Indian Territory........ GF 73, p 3; GF 79, p 5
Aubrey group...................................... Ann 3, p 272
Aubrey limestone and sandstone of Nevada... Bull 208, p 18
Bandera shales of Kansas, character and synonymy of... Bull 211, pp 32-33
Bangor limestone of Georgia.................. GF 78, p 4
Barclay limestone of Kansas, synonymy, character, and fauna of... Bull 211,
pp 51-52
Barren Measures of Pennsylvania, Ohio, and West Virginia, bituminous
coal field... Bull 65, pp 70-98
of West Virginia, clays of...................... PP 11, pp 258-259
Batesville sandstone of Ozark region......... Ann 22, ii, p 84
Berea grit of Ohio and Pennsylvania......... Ann 8, ii, p 496; Mon xli, p 62
Berea grit oil sand of Ohio, Cadiz quadrangle.... Bull 198
Blacksville limestone of Pennsylvania and West Virginia... Bull 65, p 36
Bluestone formation of West Virginia......... GF 77, p 3
Boggy formation or shale of Indian Territory... Ann 22,
iii, p 377, pl xxvi; GF 74, p 3; GF 79, p 5
Bolivar fire clay of Pennsylvania, Ohio, and West Virginia... Bull 65, pp 159-160
Boone formation of Ozark region............... Ann 22, ii, p 84
Boston group of Ozark region.................. Ann 22, ii, p 85
Braxton formation of West Virginia........ GF 72, p 5
Brazil formation of Indiana.................. GF 84, p 2
Briceville shale of Kentucky.................. Ann 22, iii, pl xiii, p 234
of Tennessee.................................. Ann 22, iii, p 234; GF 75, p 4
Brookville clay of Ohio........................ PP 11, pp 195-196
of Pennsylvania................................ PP 11, pp 218-221
Browntown sandstone of West Virginia........ Bull 65, p 58
Buhrstone iron ore of Pennsylvania, Ohio, and West Virginia... Bull 65, pp 172-173
Burlingame shales of Kansas, synonymy, character, and fauna of... Bull 211, p 51
Burlington limestone of Iowa, northeastern...... Ann 11, i, p 234
of Ozark region.................................. Ann 22, ii, pp 86-87
Calaveras formation of Sierra Nevada......... Ann 17, i, pp 628-632
Calhoun shales of Kansas..................... Bull 211, p 48
Calvin sandstone of Indian Territory........ GF 74, p 4
Cambridge limestones of Pennsylvania, Ohio, and West Virginia... Bull 65,
pp 93-94
Caney shale of Indian Territory................ GF 73, p 3; GF 79, p 4
Canyon division of Texas...................... Ann 22, iii, p 404
Carboniferous rocks; Cassville plant shale of West Virginia. Bull 65, p 41

Cavallan group of Indian Territory. Ann 22, iii, p 375

Channele formation of Kansas, flora of. Bull 211, pp 38, 112

Charleston sandstone of West Virginia. GF 72, p 5; GF 77, p 4

Chenung group of New York. Bull 41, pp 18, 19, 21, 24, 26, 27

Cherokee limestones of Missouri and Kansas, analyses of. Bull 78, p 125

Cherokee shales of Kansas, character and fossils of. Bull 211, pp 27-29

of Kansas and Indian Territory. Bull 184, p 14

of Kansas, Missouri, and Iowa. Ann 22, iii, pp 342, 343, 344

of Ozark region. Ann 22, ii, p 88

Cherryvale shales of Kansas, character and extent of. Bull 211, p 37

Chester limestone of Illinois, southern. Ann 22, iii, p 272

Chickachoe chert lentil of Indian Territory. GF 74, p 3; GF 79, p 5

Chitistone limestone of Alaska. Copper, pp 33, 44-46

Chouteau beds of Missouri. Bull 41, p 17

of Ozark region. Ann 22, ii, p 86

Cisco division of Texas. Ann 22, iii, p 404

Clarion clay of Pennsylvania. PP 11, pp 221-222

Clark formation of West Virginia. GF 77, p 3

Clarksburg limestone of Pennsylvania and West Virginia. Bull 65, p 88

Cleveland shale of Ohio. Bull 41, pp 24, 25

Coal Measures of Arkansas. Ann 22, iii, pp 389-391

of Illinois, coal field. Ann 22, iii, pp 272-274

of Indian Territory. Ann 22, iii, pp 374-383, 409

of Indiana, coal field. Ann 22, iii, pp 272-274

of Kentucky, coal field. Ann 22, iii, pp 235, 272-274

of Maryland. Ann 22, iii, pp 201-204

of Michigan. Ann 22, iii, pl xx, pp 315-316

of Ohio, bituminous field. Ann 22, iii, p 215

of Tennessee, coal field. Ann 22, iii, p 235

of Texas, north. Ann 22, iii, pp 403-405

of Western Interior coal field. Ann 22, iii, pp 340-343

Coal Measures, Lower, of Iowa, northeastern. Ann 11, i, p 234

of Pennsylvania, Ohio, and West Virginia, bituminous coal field. Bull 65, pp 99-178

Coal Measures, Upper, of Pennsylvania, Ohio, and West Virginia, bituminous coal field. Bull 65, pp 43-69

Coldwater shales of Michigan. Ann 22, iii, pp 666-667; PP 11, p 154

Colvis Run limestone of Pennsylvania. Bull 65, p 39

Conemaugh formation of Erie and Ohio basins. Mon xili, p 65

of Maryland, coal field. Ann 22, iii, pp 202, 203

section of. PP 11, p 138

of Ohio, bituminous field. Ann 22, iii, pl xii, p 216

of Pennsylvania. Ann 22, iii, pp 171-172; GF 82, p 8

Conemaugh group, clays of. PP 11, p 54

Conglomerate group of Ohio, clay of. PP 11, p 193

of Pennsylvania, clays of. PP 11, pp 212-215

Connellsville sandstone of Pennsylvania and West Virginia. Bull 65, pp 87-88

Connoquenessing sandstones of Pennsylvania and Ohio. Bull 65, pp 201-202

correlation of, of the world. Mon xili, pp 17-18

Cottonwood limestone of Kansas, synonymy, character, and fauna of. Bull 211, p 55
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

Carboniferous rocks; Crinoidal limestone of Pennsylvania, Ohio, and West Virginia

Cuyahoga shale of Ohio, Pennsylvania, and Indiana

Deer Creek limestone of Kansas, synonymy, character, and fauna of

Dennis limestone of Kansas, character, synonymy, and fauna of

Diamond Peak quartzite of Nevada

Ditney formation of Indiana

Doyle shales of Kansas, synonymy, character, and fauna of

Drum limestone of Indian Territory, character and fauna of

Dudley shales of Kansas, character and extent of

Dunkard formation of Ohio, bituminous field

Dunkard Creek series of Pennsylvania, Ohio, and West Virginia, bituminous coal field

Eagle limestone of West Virginia

Elk Lick limestone of Pennsylvania, Ohio, and West Virginia

Elk River series of Pennsylvania, Ohio, and West Virginia, bituminous coal field

Emporia limestone of Kansas

Erie formation of Kansas, flora of

Elk Creek sandstone of Pennsylvania

Graydon sandstone of Ozark region

Ferriferous limestone of Pennsylvania, Ohio, West Virginia, and Maryland

Ferriferous limestone and clays of Ohio

Fish Creek sandstone of Pennsylvania

Florence flint of Kansas, synonymy, character, and fauna of

Floyd shale of Georgia

Fort Payne chert of Georgia

Fort Riley limestone of Kansas and Indian Territory

Freeport clay of Ohio

Freeport limestones of Pennsylvania, Ohio, and West Virginia

Freeport sandstones of Pennsylvania, Ohio, and West Virginia

Galesburg shales of Kansas, character and synonymy of

Garrison formation of Kansas, synonymy, character, and fauna of

Gilmore sandstone of Pennsylvania

Graydon sandstone of Ozark region

Great limestone of Pennsylvania, Ohio, and West Virginia

Greenbrier limestone lentil of Pennsylvania
<table>
<thead>
<tr>
<th>Rock Type / Formation</th>
<th>Location / Reference</th>
</tr>
</thead>
</table>
| Carboniferous rocks; Guyandot sandstone | West Virginia, Ann 22, II, p 4
| Hannibal sandstone of Ozark region | Ann 22, II, p 86
| Hartford limestone of Kansas | Bull 211, p 48
| Hartshorne sandstone of Indian Territory | Ann 22, III, p 376, pl xxvi; GF 73, p 3; GF 79, p 5
| Harvey conglomerate lentil of West Virginia | GF 77, p 4
| Henrietta formation of Missouri | Ann 22, III, p 342
| Hermosa formation of Colorado, Silverton quadrangle | Bull 182, p 35
| Hertha limestone of Kansas | Bull 211, pp 35-36
| Hinton formation of West Virginia | GF 77, p 3
| Holdenville shale of Indian Territory | GF 74, p 4
| Homewood sandstone of Pennsylvania, Ohio, and West Virginia | Bull 65, pp 199-200
| Howard limestone of Kansas | Bull 211, p 50
| Inglefield sandstone of Indiana | GF 84, p 3
| Iola limestone of Kansas | Bull 211, p 40
| Irondale limestone of West Virginia | Bull 65, p 95
| Jollytown limestone of Pennsylvania | Bull 65, p 34
| Johnstown (cement) limestone of Pennsylvania | Bull 65, pp 165-166
| Kanawha black flint of West Virginia | Bull 65, p 98
| Kanawha formation of West Virginia | GF 72, pp 4-5; GF 77, p 4
| Kanwaka shales of Kansas | Bull 211, p 45
| Kaskaskia limestone of Illinois, southern | Ann 22, III, p 272
| Keokuk limestone of Iowa, northeastern | Ann 11, r, p 234
| Kinderhook limestone of Iowa, northeastern | Ann 11, r, p 234
| King limestone of Ozark region | Ann 22, II, p 85
| Kittanning clay of Pennsylvania | PP 11, pp 222-226
| Kittanning clay and shales of Ohio | PP 11, pp 197-198
| Kittanning fire clay of Pennsylvania, Ohio, and West Virginia | Bull 65, pp 171-172
| Kittanning sandstone of Pennsylvania | Bull 65, pp 171-172
| Labette shale of Kansas | Ann 22, III, p 342; Bull 211, p 31
| Lane shales of Kansas | Bull 211, pp 40-41
| Le Roy formation of Kansas, flora of | Bull 211, pp 111-112
| of Kansas, synonymy and character of | Bull 211, pp 43-44
| Lecompton limestone of Kansas, synonymy, character, and fauna of | Bull 211, p 46
| Lee conglomerate of Kentucky | Ann 22, III, pl xiii, p 235
| of Tennessee | Ann 22, III, pl xiii, p 235; GF 75, p 4
| Logan conglomerate of Ohio, Kentucky, and Indiana | Mon xli, pp 63-64
| Lookout conglomerate of Tennessee | Ann 22, III, pl xiii, p 235
| Lookout sandstone of Georgia | GF 78, p 4
| Louisiana limestone of Ozark region | Ann 22, II, p 86
| Lower Barren Measures (see Conemaugh group) | PP 11, pp 52-54
| Lower Coal Measures, clays of | Ann 22, III, p 377, pl xxvi, GF 74, p 3; GF 79, p 5
| McAlester shale of Indian Territory | Bull 65, pp 438-440
| Madison limestone of Montana | Bull 65, pp 95-97
| Mahoning sandstone and limestone of Pennsylvania and West Virginia | Bull 65
| Mansfield sandstone of Indiana | Ann 22, III, p 273
| Marietta sandstone of Pennsylvania, Ohio, and West Virginia | Bull 65, pp 35-36
| Marion formation of Kansas, flora of | Bull 211, pp 114-115
| Marshburg fire clay of Pennsylvania | PP 11, p 214
Carboniferous rocks; Matfield shales of Kansas, synonymy, character, and fauna of .. Bull 211, p 57
Mauch Chunk formation of Maryland, clays of .. PP 11, p 136
of Pennsylvania, northern .. Ann 22, iii, pp 66, 612-613; GF 82, p 6
Mercer clay and shale of Ohio .. PP 11, pp 194-195
of Pennsylvania .. PP 11, pp 213-214
Mercer group of Pennsylvania, Ohio, and West Virginia .. Bull 65, pp 200-201
Michigan series of Michigan .. Ann 22, iii, pp 645-646; PP 11, p 134
Millsburg formation of Indiana .. GF 84, p 2
Millersville division of Texas .. Ann 22, iii, p 404
Millstone grit of Ozark region .. Ann 22, ii, p 87
Minnekahta limestone of South Dakota .. GF 85, p 3
Minnelusa sandstone of South Dakota .. GF 85, p 2
Mississippian limestone of Kansas and Indian Territory .. Bull 184, pp 13-14
Mississippian series of Pennsylvania .. GF 82, pp 6-7
of West Virginia .. GF 77, p 3
Monongahela formation of Erie and Ohio basins .. Mon xli, p 65
of Maryland, coal field .. Ann 22, iii, pp 202-203
of Ohio, bituminous field .. Ann 22, iii, pl xii, p 216
of Pennsylvania, bituminous field .. Ann 22, iii, p 175; GF 82, p 8
Monongahela group, clays of .. PP 11, p 54
Monongahela River group of Pennsylvania .. PP 11, pp 233-235
of Pennsylvania, Ohio, and West Virginia, bituminous coal field .. Bull 65, pp 43-69
Morgantown sandstone of Pennsylvania and West Virginia .. Bull 65, pp 88-89
Mount Morris limestone of Pennsylvania .. Bull 65, pp 39-40
Neva limestone of Kansas, synonymy and character of .. Bull 211, p 54
Newman limestone of Tennessee .. GF 75, p 4
Nineveh limestone and sandstone of Pennsylvania and West Virginia .. Bull 65, pp 32-33
Nuttall sandstone lentil in West Virginia .. GF 77, p 3
of Alabama, clays of .. PP 11, pp 69-71
of Colorado .. Bull 182, p 35
of Georgia, Rome quadrangle .. GF 78, pp 3-4
of Indian Territory, Atoka quadrangle .. GF 79, pp 4-5
Coalgate quadrangle .. GF 74, pp 3-4
of Indiana .. Ann 11, i, pp 624, 638-639
Ditney quadrangle .. GF 84, p 2
of Iowa, northeastern .. Ann 11, i, p 334
of Kansas, divisions of .. Bull 184, pp 13-15
invertebrates of, tabulated list of .. Bull 211, pp 73-82
publications on, résumé of .. Bull 211, pp 17-27
stratigraphy and paleontology of .. Bull 211
of Maryland (shales) .. PP 11, pp 136-138
of Michigan (shales) .. PP 11, pp 153-154
of Missouri .. Bull 41, p 17
of Montana, Elkhorn district .. Ann 22, ii, pp 438-440
of Nevada .. Ann 2, pp 22 (map), 28, 30
south of fortieth parallel .. Bull 208, passim
of New York .. Bull 41, pp 18, 19, 21, 24, 26, 27
of Ohio .. Bull 41, pp 17-18, 24, 25; Bull 65
of Ozark region .. Ann 22, ii, pp 83-88
of Pennsylvania .. Bull 65
Masontown and Uniontown quadrangles .. GF 82, pp 6-9
Carboniferous rocks of South Dakota, Oelrichs quadrangle......... GF 85, pp 2-3
of Tennessee, Maynardville quadrangle........................ GF 75, p 4
of West Virginia, Charleston quadrangle..........................GF 72, pp 3-4
Raleigh quadrangle..GF 77, pp 3-4
of States. (See, also, formation names under this heading.)
Olean conglomerate of New York.................................. Bull 41, pp 19, 21, 26
Olpe shales of Kansas, character and fauna of Bull 211, p 52
Oologah limestone of Indian Territory, character and fauna of Bull 211, pp 62-63
Opeche formation of South Dakota GF 85, p 3
Oread limestone of Kansas, synonymy, character, and fauna of .. Bull 211, pp 44-45
Oxmoor sandstone of Georgia ...GF 78, p 4
Parsons limestone of Kansas, character, synonymy, and fauna of .. Bull 211, pp 33-34
Pawhuska limestone of Indian Territory Bull 211, p 64
Pawnee limestone of Kansas .. Ann 22, III, p 342, Bull 211, p 32
Pennsylvanian series of Pennsylvania............................. GF 82, pp 7-9
of West Virginia .. GF 77, pp 3-4
Petersburg formation of Indiana GF 84, p 2
Phelps sandstone of Ozark region Ann 22, II, p 85
Pittsburg limestone and sandstone of Pennsylvania and West Virginia .. Bull 65, pp 63, 87
Pleasanton shales of Kansas and Iowa Ann 22, III, pp 342
Pocahontas formation of West Virginia GF 77, p 3
Pocono formation of Pennsylvania, northern Ann 22, III, pp 66, 611-612; GF 82, p 6
Poteau group of Indian Territory Ann 22, III, p 376
Pottsville conglomerate, clays derived from PP 11, p 52
of Pennsylvania ... Ann 22, III, pp 66, 67
of Pennsylvania, Ohio, and West Virginia, bituminous coal field . Bull 65, pp 179-205
of West Virginia .. PP 11, p 252
Pottsville formation of Erie and Ohio basins Mon xlii, p 64
of Maryland, coal field ... Ann 22, III, pp 202, 204
of Ohio, bituminous field ... Ann 22, III, pl xii, p 216
of Pennsylvania ... GF 82, p 7
bituminous field .. Ann 22, III, pp 130-131
northern ... Ann 22, III, pp 613-615
section of ... PP 11, p 137
Princeton conglomerate of West Virginia GF 77, p 3
Putnam Hill clay of Ohio .. PP 11, pp 195-196
Quadrant formation of Montana Ann 22, II, p 440
Quakertown clay and shale of Ohio PP 11, p 193
Quinnimont formation of West Virginia GF 77, p 3
Raleigh sandstone of West Virginia GF 77, p 3
Red shale beds of Pennsylvania, Ohio, and West Virginia Bull 65, p 92
Red Wall limestone of Nevada Ann 3, p 272; Bull 208, p 21
Redstone limestone of Pennsylvania, Ohio, and West Virginia .. Bull 65, pp 62-63
Sac limestone of Ozark region Ann 22, II, p 85
Saginaw formation of Michigan Ann 22, III, pp 669-670
St. Louis limestone of Iowa, northeastern Ann 11, i, p 234
Savage Mountain fire clay of Pennsylvania PP 11, p 215
Carboniferous rocks; Savanna formation or sandstone of Indian Territory...Ann 22, iii, p 377; pl xxvi; GF 74, p 3; GF 79, p 5
Seminole conglomerate of Indian Territory...GF 74, p 4
Senora formation of Indian Territory ...GF 74, p 4
Searl conglomerate of Pennsylvania, bituminous field Ann 22, iii, pp 130-131
Severy formation of Kansas, flora of...Bull 211, pp 112-113
of Kansas, synonymy, character, and fauna of.................................Bull 211, pp 49-50
Sewell formation of West Virginia ...GF 72, p 4; GF 77, pp 3-4
Sewickley limestone and sandstone of Pennsylvania, Ohio, and West Virginia Bull 65, pp 61-62
Sharon conglomerate of Ohio and Pennsylvania...Bull 65, pp 204-205
Sharon fire clay of Pennsylvania..PP 11, p 214
Sharon shales of Ohio...PP 11, p 193
Somervell formation of Indiana...GF 84, p 4
Stanton limestone of Kansas, synonymy, character, and fauna of........Bull 211, pp 41-43
Strawn division of Texas Ann 22, iii, p 404
Stuart shale of Indian Territory...GF 74, p 4
Sylamoire sandstone of Ozark region Ann 22, ii, pp 83-84
Tecumseh shales of Kansas...Bull 211, p 47
Thurman sandstone of Indian Territory..GF 74, p 4
Thurmond formation in West Virginia..GF 77, p 3
Uniontown limestone and sandstone of Pennsylvania and West Virginia Bull 65, p 59
Upper Barren Measures. (See Dunkard group.)...
Vespertine formation of the Virginias...Bull 80, pp 112-113
Vilas shales of Kansas..Bull 211, p 39
Wabash group of Indiana Ann 22, iii, p 273
Walden sandstone of Tennessee...Ann 22, iii, pl xiii, p 285
Wapanucka limestone of Indiana...GF 73, p 3; GF 79, p 4
Washington limestone of Pennsylvania..Bull 65, pp 35, 36-37
Washington sandstone of Pennsylvania and West Virginia...Bull 65, pp 38-39
Wayne formation of Kansas...Bull 41, pp 17-18
Waverly group in Ohio..Bull 65, pp 40-41, 58
Weber conglomerate of Nevada Ann 2, pp 28; Bull 208, p 23
Wellington shales of Kansas...Bull 211, pp 60-61
Wetumka shale of Indian Territory...GF 74, p 4
Wewoka formation of Indian Territory...GF 74, p 4
Windy Gap limestone of Pennsylvania and West Virginia...Bull 65, pp 30-31
Winfield formation of Kansas, synonymy, character, and fauna of........Bull 211, pp 59-60
Wreford limestone of Kansas, synonymy, character, and fauna of........Bull 211, pp 56-57
Carboniferous rocks, Upper, of Kansas section, stratigraphy and paleontology of...Bull 211
Carboniferous system, definition of...Ann 14, i, p 43
Carbonite (natural coke) in Virginia, Richmond Basin Ann 22, iii, pp 36-37
Carborundum, statistics of...MR 1900, pp 800-801; MR 1901, pp 806-807
Carey act of August 18, 1894..WS 70, pp 44-45
Carkhuff (N. W.), work in charge of...Ann 22, i, pp 180-181; Ann 23, pp 175-176
Carlile formation of Colorado...GF 71, pp 1, 3
of South Dakota...GF 85, p 4
Carmichael clay of Pennsylvania..GF 82, p 9
Carnotite, analyses of, from Colorado, Rock Creek MR 1900, p 260
analysis of, from Colorado, La Sal Creek MR 1900, p 260
Carolina gneiss of Tennessee .. GF 90, p 2
Carrabasset River, Maine, flow of, measurement of WS 65, p 19
Carrizo Springs Creek, Texas, flow of, measurement of WS 66, p 63
Carterville district, Georgia, iron ores of Bull 213, pp 233-242
manganese ores of .. Bull 213, p 232
ocher deposits in .. Bull 213, pp 427-432
Cascade Mountains, history of GF 86, pp 1-2
Cascade Range, geology of PP 3, pp 17-20
Cascade Range, Washington, forest conditions in, between Washington and
Mount Rainier forest reserves PP 6, pp 37-39
Cascade Range Forest Reserve, Oregon, forest conditions in PP 9
Cason shale of Ozark region Ann 22, ii, p 82
Cassville plant shale of West Virginia Bull 65, p 41
Catalogue and bibliography of Vertebrata, fossil, of North America ... Bull 179
hydrography of basin ... WS 63, pp 147-158
Catoctin schist of Maryland, Virginia, and West Virginia Ann 14, ii, pp 306-309
Catskill Creek, New York, flow of, measurement of WS 65, pp 61, 62-63; WS 76, p 96
quality of water of .. WS 76, p 77
water powers on ... WS 65, p 62
Catskill formation of Pennsylvania Ann 22, iii, pp 609-611; GF 82, p 6
Cattaraugus Creek, New York, course, present and preglacial, of . Mon xii, pp 212-213
Cavanal group of Indian Territory Ann 22, iii, p 375
Cayadutta Creek, New York, flow of, measurement of Ann 22, iv, pp 98-99; WS 47, pp 58-60; WS 65, pp 166-167
Cayuga Lake region, New York, geology of Bull 206, pp 13-16
Cayuga Lake section, New York, Hamilton formation of, fauna of .. Bull 206
Cedar Range and Clover Valley Mountains, Nevada, geology of .. Bull 208, pp 36-37
Cedar River, Washington, forest conditions in basin of PP 6, p 23
Cedar Valley limestone of Iowa, northeastern Ann 11, i, pp 234, 243
Cement, analysis of, from Arizona, Salt River reservoir site WS 73, p 49
investigations of, in Arizona Bull 213, pp 372-379
publications on .. Bull 213, p 381
slags, use of, for making Bull 213, pp 221-224
statistics of .. MR 1900, pp 737-748; MR 1901, pp 721-728
Cement, hydraulic; chalk of southwestern Arkansas, adaptability of, to
manufacture of .. Ann 22, iii, pp 687-742
Cement, hydraulic, natural, preparation of Ann 22, iii, p 726
Cement, natural, analyses of, from Maryland, Cumberland .. Ann 22, iii, p 727
analysis of, from New York, Akron Ann 22, iii, p 727
Cement, Portland; analyses of, from various localities Ann 22, iii, p 728; Bull 213, p 223; WS 60, p 136; MR 1900, p 742
analysis of raw materials used in making Ann 22, iii, p 637
showing permissible variations Ann 22, iii, p 636
characteristics of .. Ann 22, iii, pp 636-640
composition of ... Ann 22, iii, pp 636-638
permissible variation in WS 54, p 133
in California, southern, manufacture of WS 60, pp 135-137
Cement, Portland, industry in Arkansas Ann 22, iii, pp 741-742
industry in Michigan .. Ann 22, iii, pp 629-685
kilns used in making, styles of Ann 22, iii, pp 639-640
materials, processes, tests, etc Ann 22, iii, pp 727-731
materials used in making, composition of WS 54, p 134
in Michigan .. Ann 22, iii, pp 641-677
Michigan, analyses of Ann 22, iii, p 680
tensile strength of, tests of Ann 22, iii, pp 681-682
notes concerning ... WS 54, pp 133-136
statistics of .. MR 1900, pp 737-744; MR 1901, pp 721-725
uses of .. Ann 22, iii, p 640
Cement, slag, analysis of, from Alabama, Ensley MR 1900, p 747
analysis of, from Alabama, North Birmingham MR 1901, pp 727-728
from various localities Bull 213, p 223
in Alabama .. MR 1900, pp 747-748
manufacture of .. Bull 213, pp 221-224
Cement rock in Texas, Austin quadrangle GF 76, p 7
Cemetery limestone of Montana Ann 22, ii, p 437
Cenozoic formations of Iowa, northeastern Ann 11, i, p 234
Census Office, cooperation with Ann 22, i, pp 41-42
Central America; hydrography of American isthmus Ann 22, iv, pp 507-630
physiography, temperature, rainfall, and wind movement of. Ann 22, iv, pp 513-538
Cerussite of Ozark region Ann 22, ii, p 114
Ceylon, graphite production of MR 1901, p 900
Chabazite, action of ammonium chloride on Bull 207, pp 32-34
analysis of, from Nova Scotia, Wassons Bluff Bull 207, p 32
Chadron formation of Nebraska GF 88, p 2
of South Dakota ... GF 85, p 4
of Wyoming, eastern .. WS 70, pp 15-16
Chagres River, Panama, hydrography of Ann 22, iv, pp 594-623
Chaledony, occurrence of MR 1901, p 755
Chalk, analyses of, from Arkansas, southwestern ... Ann 22, iii, pp 735-736
analyses of, from Texas, various localities Ann 22, iii, p 737
of Arkansas, southwestern, with notes on its adaptability to the manufacture of hydraulic cements Ann 22, iii, pp 687-742
Chalk-marl, analyses of, from Arkansas, southwestern ... Ann 22, iii, pp 735-736
of Arkansas, southwestern Ann 22, iii, pp 700-725
Chalcopyrite, detection of, in pyrite or marcasite and in rocks, method of .. Bull 186, p 35
Chamberlin (T. C.), work in charge of Ann 22, i, p 59; Ann 23, p 28
Champlain, Lake, flow of, measurement of WS 65, pp 38-42
trap dikes in region of Ann 15, pp 99-100
Chanute formation of Kansas, flora of Bull 211, pp 38, 110
Chara, composition of stems of, after removal of organic matter Ann 22, iii, p 659
Charleston quadrangle, West Virginia, geology of GF 72
Charleston sandstone of West Virginia GF 72, p 5; GF 77, p 4
Chattahoochee River and tributaries, flow of, measurements of WS 49, p 208; WS 63, p 179
Chattanooga shale of Georgia GF 78, p 3
of Tennessee ... GF 75, p 4
Chazy limestone of Kentucky Ann 8, ii, pp 545, 546
Cheat River, West Virginia, flow of, measurement of WS 48, p 177; WS 65, p 290; WS 75, p 100
Chelan, Lake, Washington, forest conditions in basin of PP 6, pp 33-34
Chemical method of distinguishing pyrite and marcasite and of quantitatively determining their relative amounts in mixtures of the two Bull 186
Chemistry; action of ammonium chloride on silicates Bull 207
composition of glauconite and greenalite Mon xliii, pp 243-247
on pyrite and marcasite ... Bull 186
Chemistry and physics, work in .. Ann 22, i, pp 133-135; Ann 23, pp 119-121
Chemung formation, fauna of .. Bull 210, pp 82-89
of Pennsylvania, northern Ann 22, iii, pp 608-609
Chemung group of New York .. Mon xli, p 59; Bull 3, pp 21-22, 29, 30; Bull 41, pp 18, 19, 21, 24, 26, 27
Chenango River, New York, storage reservoirs on WS 65, p 148
Cherokee formation of Kansas, flora of Bul 211, pp 108-109
Cherokee limestones of Missouri and Kansas, analyses of Bull 78, p 125
Cherokee shales of Kansas, character and fossils of Bull 211, pp 27-29
of Kansas and Indian Territory Bull 184, p 14
of Kansas, Missouri, and Iowa .. Ann 22, iii, pp 342, 343, 344
of Ozark region .. Ann 22, ii, p 88
Cherry River, California, flow of, measurement of WS 66, p 148; WS 75, p 213
Cherryvale shales of Kansas, character and extent of Bull 211, p 37
Chert, analysis of, from Ozark region Ann 22, ii, p 121
in Oregon, Coos Bay quadrangle GF 73, p 1; GF 89, p 2
Chert, amphibolitic, analyses of, from Minnesota, Mesabi district Mon xliii, p 141
thin section of, from Minnesota, Mesabi district Mon xlii, p 136
Chert, ferruginous, analyses of, from Minnesota, Mesabi district Mon xlii, pp 139-140
thin section of, from Michigan-Wisconsin, Penokee-Gogebic district Mon xlii, p 134
from Minnesota, Mesabi district Mon xlii, pp 132, 136
Chert, ferruginous, amphibolitic, sideritic, and calcareous, from Minnesota, Mesabi district Mon xlii, pp 116-143
Chert conccretion, ferruginous, thin section of, from Minnesota, Mesabi district Mon xlii, p 128
Chert granules, ferruginous, thin section of, from Minnesota, Mesabi district Mon xlii, p 130
Chesapeake Bay, topography of head of Ann 7, pp 551-564
Chesapeake formation of Maryland Bull 84, p 54
of Virginia ... GF 80, p 3
Chester limestone of Illinois, southern Ann 22, iii, p 272
Chester-St. Louis ammonoids of America Mon xlii, p 14
Chestochna. (See Chistochna.)
Cheyenne River and tributaries, flow of, measurements of WS 49, pp 271-272
Chicago district, geology of ... GF 81
stone industry in .. Bull 213, pp 357-360
Chicago Lake, extent, beaches, etc., cf GF 81, p 7-11
Chickachoc chert lentil of Indian Territory GF 73, p 3; GF 79, p 5
Chickamauga limestone of Georgia .. GF 78, p 3
of Tennessee ... GF 75, pp 2-3
Chico formation of California ... Bull 15, p 10; Bull 19, p 24; Bull 33, pp 19-20
of Oregon, John Day Basin .. Bull 204, p 17
Chicopee River and tributaries, Massachusetts, quality of water of WS 79, pp 77-85
Chile, borax production of .. MR 1901, pp 871, 872
<table>
<thead>
<tr>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile, copper from, statistics of</td>
<td>MR 1900, pp 184-185; MR 1901, p 194</td>
</tr>
<tr>
<td></td>
<td>MR 1900, pp 131, 140; MR 1901, pp 144-145</td>
</tr>
<tr>
<td>Chilhowee sandstone of Tennessee</td>
<td>Bull 81, pp 300-301</td>
</tr>
<tr>
<td>China, petroleum imported into</td>
<td>MR 1900, pp 624-626; MR 1901, pp 609-610</td>
</tr>
<tr>
<td>Chippewa Valley quartzites, Wisconsin</td>
<td>Ann 5, pp 197-198</td>
</tr>
<tr>
<td>Chistochina gold field, Alaska, preliminary report on</td>
<td>Bull 213, pp 71-75</td>
</tr>
<tr>
<td>Chistochina trail, Alaska</td>
<td>Copper, pp 24-25</td>
</tr>
<tr>
<td>Chitistone limestone of Alaska</td>
<td>Copper, pp 33, 44-46</td>
</tr>
<tr>
<td>Chittenango Creek, New York, flow of, measurement of</td>
<td>Ann 22, iv, pp 244-245; WS 47, p 39; WS 49, pp 223-225; WS 65, pp 112-116</td>
</tr>
<tr>
<td>Chlrose, determination of</td>
<td>WS 79, pp 26-29</td>
</tr>
<tr>
<td>Chlrose method of determining rate of underflow</td>
<td>WS 67, pp 46-48</td>
</tr>
<tr>
<td>Chlorite-schists of Minnesota, Vermilion district</td>
<td>Mon xlv, p 253</td>
</tr>
<tr>
<td>Chlorite-schists of Alaska, Seward Peninsula</td>
<td>N and N, p 31</td>
</tr>
<tr>
<td>Chouteau beds of Missouri</td>
<td>Ann 22, ii, p 86; Bull 41, p 17</td>
</tr>
<tr>
<td>Chromite or chromic iron ore, statistics of</td>
<td>MR 1900, pp 897-898; MR 1901, pp 941-948</td>
</tr>
<tr>
<td>Chromium, ores of</td>
<td>MR 1901, p 968</td>
</tr>
<tr>
<td>Chysoberyl, occurrence of</td>
<td>MR 1901, p 743</td>
</tr>
<tr>
<td>Chrysoprase, occurrence and statistics of</td>
<td>MR 1901, pp 755, 770</td>
</tr>
<tr>
<td>Chuar series of Nevada</td>
<td>Bull 208, p 18</td>
</tr>
<tr>
<td>Chugach Mountains, Alaska, topography of</td>
<td>Copper, pp 28-29</td>
</tr>
<tr>
<td>Chugach peneplain, Alaska, uplift and erosion of</td>
<td>Copper, pp 64-70</td>
</tr>
<tr>
<td>Cincinnati group in Illinois</td>
<td>GF 77, p 1</td>
</tr>
<tr>
<td>in Ohio</td>
<td>GF 81, p 2</td>
</tr>
<tr>
<td>Cisco division of Texas</td>
<td>Ann 8, ii, p 499</td>
</tr>
<tr>
<td>City Creek, Utah, flow of, measurement of</td>
<td>WS 51, p 420</td>
</tr>
<tr>
<td>Claiborne beds of Alabama</td>
<td>Bull 43, pp 25-34, 68</td>
</tr>
<tr>
<td>Callam River, Washington, flow of, measurement of</td>
<td>WS 51, p 450</td>
</tr>
<tr>
<td>Clarion clay of Pennsylvania</td>
<td>PP 11, pp 221-222</td>
</tr>
<tr>
<td>Clark (W. B.), Mesozoic Echinodermata of the United States</td>
<td>Ann 15, p 96</td>
</tr>
<tr>
<td>work in charge of</td>
<td>Ann 22, i, pp 63-64; Ann 23, p 37</td>
</tr>
<tr>
<td>Clark formation in West Virginia</td>
<td>GF 77, p 3</td>
</tr>
<tr>
<td>Clarke (F. W.), composition of glauconite and greenalite</td>
<td>Mon xiii, pp 243-247</td>
</tr>
<tr>
<td>work in charge of</td>
<td>Ann 22, i, pp 133-134; Ann 23, p 120, 121</td>
</tr>
<tr>
<td>Clarke (F. W.) and Steiger (G.), action of ammonium chloride on silicates</td>
<td>Bull 207</td>
</tr>
<tr>
<td>Clarksburg limestone of Pennsylvania and West Virginia</td>
<td>Bull 65, p 88</td>
</tr>
<tr>
<td>Clarno formation of Oregon, John Day Basin</td>
<td>Bull 204, p 17</td>
</tr>
<tr>
<td>Clay, analyses of, from Alabama, various localities:</td>
<td>PP 11, pp 69, 70, 71, 74-76</td>
</tr>
<tr>
<td>from Florida, various localities</td>
<td>PP 11, pp 83, 84</td>
</tr>
<tr>
<td>from Georgia, various localities</td>
<td>PP 11, pp 87, 88, 90, 93</td>
</tr>
<tr>
<td>from Indiana, various localities</td>
<td>PP 11, pp 104, 110, 111, 112</td>
</tr>
<tr>
<td>from Kentucky, various localities</td>
<td>PP 11, pp 118, 122, 126, 127-128</td>
</tr>
<tr>
<td>from Maryland, various localities</td>
<td>PP 11, pp 145</td>
</tr>
<tr>
<td>from Massachusetts, Gay Head and West Cambridge</td>
<td>PP 11, p 151</td>
</tr>
<tr>
<td>from Michigan</td>
<td>Ann 22, iii, pp 671, 672; PP 11, p 157</td>
</tr>
<tr>
<td>Wyandotte</td>
<td>MR 1900, p 741</td>
</tr>
<tr>
<td>from New York, Smiths Landing</td>
<td>MR 1900, p 742</td>
</tr>
<tr>
<td>various localities</td>
<td>PP 11, p 174, 177</td>
</tr>
<tr>
<td>from North Carolina</td>
<td>PP 11, pp 180, 183-185</td>
</tr>
<tr>
<td>from Ohio, Highland County, western</td>
<td>Mon xli, p 298</td>
</tr>
<tr>
<td>Milbury and Bryan</td>
<td>Ann 22, iii, p 673</td>
</tr>
</tbody>
</table>
Clay, analyses of, from Ohio, North Industry ... PP 11, p 196
analyses of, from Ohio, various localities .. PP 11, pp 198, 202
from Pennsylvania, Charleroi ... PP 11, p 237
Great Valley ... PP 11, p 209
Lottsville ... Mon xli, p 455
New Brighton ... PP 11, p 236
Titusville ... Mon xli, p 455
Wymy Gap ... GF 82, p 20
various localities .. PP 11, pp 211, 220, 222, 225, 230
from Tennessee, various localities .. PP 11, p 246
from Vermont, Forestdale ... PP 11, p 133
from Virginia, Pulaski County ... PP 11, p 249
Sherando ... PP 11, p 251
from West Virginia, Spragueville ... GF 82, p 20
from Wisconsin, various localities .. PP 11, pp 267, 269-270, 271
in Indian Territory, Atoka quadrangle .. GF 79, p 8
Coalgate quadrangle ... GF 74, p 6
in Indiana, Ditney quadrangle .. GF 84, p 8
in Michigan, in relation to Portland-cement industry ... Ann 22, iii, pp 670-673
in Pennsylvania, Masontown and Uniontown quadrangles GF 82, p 20
in Tennessee, Maynardville quadrangle .. GF 75, p 6
statistics of .. MR 1900, pp 728-734; MR 1901, pp 711-720
Clay, ball, analyses of, from Florida, Palatalkaha River and Edgar PP 11, p 83
analyses of, from Tennessee, Henry County PP 11, p 246
from various localities ... PP 11, p 39
in Florida ... PP 11, pp 82-85
Clay, brick, analyses of ... PP 11, pp 42, 44, 45
distribution of .. PP 11, pp 61-62
in Georgia, Cartersville and Rome .. PP 11, p 93
in Illinois, Chicago district ... GF 81, p 13
in Tennessee, Cranberry quadrangle ... GF 90, p 8
in Texas, Austin quadrangle .. GF 76, p 7
Clay, brick and stoneware, of western Tennessee and northwestern Missis-
sippi ... Bull 213, pp 382-391
Clay, fire, analyses of, from Alabama, Choctaw County PP 11, p 76
analysis of, from Kentucky, Boone Furnace PP 11, p 119
from New Jersey ... PP 11, pp 164-165
from New York, Kreischerville ... GF 83, p 11
from Ohio ... PP 11, p 194
various localities .. PP 11, p 204
from Pennsylvania, Kittanning ... PP 11, p 222
various localities .. PP 11, pp 213, 214, 215, 221, 238
from West Virginia, various localities .. PP 11, p 257
from various localities ... PP 11, p 40
distribution of .. PP 11, pp 63-67
Clay, flint, analysis of, from Ohio .. PP 11, p 205
analysis of, from West Virginia, Hammond PP 11, p 256
Clay, glass-pot, analysis of, from Pennsylvania, Layton station PP 11, p 41
Clay, pipe, analysis of, from Mississippi, Clingscale PP 11, p 160
Clay, residual, analyses of, from various localities PP 11, p 17
of Iowa, northeastern .. Ann 11, r, p 234
Clay, stoneware, analyses of, from Ohio, various localities PP 11, p 202
distribution of .. PI 11, p 63
Clay, stoneware and brick, of western Tennessee and northwestern Mississippi

Clay, terra-cotta, analyses of, from various localities...

distribution of...

Clay products, statistics of...

Clay shales, analyses of, from Arkansas, various localities (Carboniferous)

Clays of United States east of Mississippi River, nature, origin, uses, distribution, etc., of...

Clays and chalks of Arkansas, southwestern, as Portland-cement materials...

Clear Creek, Colorado, flow of, measurement of...

Clear Creek, Wyoming, flow of, measurement of...

Clearwater Mountains, Montana, mineral deposits of Bitterroot Range and...

Cleavage in Appalachian Mountains

Cleland (H. F.), a study of the fauna of the Hamilton formation of the Cayuga Lake section in central New York

Clements (J. M.), Vermilion iron-bearing district of Minnesota

work in charge of...

Cleveland moraine, distribution, character, etc., of...

Cleveland shale of Ohio

Clifton, Arizona, copper deposits at...

Climate of Alaska; Dallas, Kowak, and Koyukuk valleys

of Alaska, Nome region, notes on...

of Appalachian Mountain region, southern...

of California, southern

of Idaho, Snake River Plains

of Oregon, Cascade Range Forest Reserve

relation of geological processes to...

Clinch sandstone of Tennessee.

Clover Valley Mountains and Cedar Range, Nevada, geology of...

Coal, analysis of, from Alaska, Chilkat River...

analyses of, from Alaska, northwestern...

from Alaska, southeastern and southwestern...

Yukon Basin

from Appalachian field, southern

from Arkansas, various localities...

from Australia

from California, Corral Hollow (lignite)

from Colorado

Spanish Peaks quadrangle

from Illinois, various localities...

from Indian Territory, various localities...

from Indiana, Ditney quadrangle...

various counties...
Coal, analyses of, from Iowa .. Ann 22, III, p 347
analyses of, from Kansas .. Ann 22, III, p 347
from Maryland, Potomac Basin Ann 22, III, p 347
from Michigan, various localities Ann 22, III, pp 321-322, 675, 676
from Missouri ... Ann 22, III, p 347
from Montana .. Ann 22, III, p 425
from New Mexico .. Ann 22, III, p 425
from North Carolina, Deep Diver area Ann 22, III, p 47
Stokes County ... Ann 22, III, p 51
from Ohio, bituminous field Ann 22, III, p 221
from Oregon, Coos Bay .. Ann 22, III, p 510
Eckley region ... GF 89, p 5
Riverton .. GF 89, p 5
Shasta Costa Creek .. GF 89, p 5
from Pennsylvania .. Ann 22, III, pp 72, 73
bituminous fields .. Ann 22, III, pp 183-185
Connellsville Basin (bituminous) Ann 22, III, p 176
Youghiogheny River .. GF 82, p 12
from Rocky Mountain fields Ann 22, III, pp 424-425
from Texas, north ... Ann 22, III, pp 407-408
from Virginia, Richmond area Ann 22, III, pp 37, 38
from Washington .. Ann 22, III, p 490
from West Virginia, used in Michigan cement industry Ann 22, III, p 675
from Wyoming ... Ann 22, III, p 424
classification of, as fuel Ann 22, III, pp 19-22
coking value of, from Eastern Interior field Ann 22, III, pp 291-293
distribution of, in United States Ann 22, III, pp 12-14
fuel ratios of, in Southwestern field Ann 22, III, p 21
gas-producing value of, from Eastern Interior field Ann 22, III, pp 293-294
in Alabama, production, etc., of Ann 22, III, p 13
in Alaska, Copper River region, notes on Copper, pp 91-92
Dall and Kowak rivers .. PP 10, p 49
Norton Bay region .. N and N, p 214
Yukon Basin .. Bull 213, pp 276-283
in Arkansas, production, etc., of Ann 22, III, p 13
in California, production, etc., of Ann 22, III, p 13
in Colorado, production, etc., of Ann 22, III, pp 12, 13
Spanish Peaks quadrangle GF 71, pp 5-6
in Georgia, production, etc., of Ann 22, III, p 13
in Idaho, production, etc., of Ann 22, III, p 13
in Illinois, production, etc., of Ann 22, III, p 13
in Indian Territory, Atoka quadrangle GF 79, p 7
Coalgate quadrangle ... GF 74, p 6
production, etc., of .. Ann 22, III, p 13
in Indiana, Ditney quadrangle GF 84, p 7
production, etc., of .. Ann 22, III, p 13
in Iowa, production, etc., of Ann 22, III, p 13
in Kansas, production, etc., of Ann 22, III, p 13
in Kentucky, production, etc., of Ann 22, III, pp 12, 13
in Maryland, Cumberland and Georges Creek field Ann 14, II, p 579
production, etc., of .. Ann 22, III, p 12
in Michigan, production, etc., of Ann 22, III, p 13
in Missouri, production, etc., of Ann 22, III, p 13
in Montana, Jurassic rocks Ann 22, III, p 460
production, etc., of .. Ann 22, III, p 13
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal in Nebraska, production, etc., of</td>
<td>Ann 22, iii, p 13</td>
</tr>
<tr>
<td>in New Mexico, production, etc., of</td>
<td>Ann 22, iii, p 12</td>
</tr>
<tr>
<td>in North Carolina, Deep River and Dan River areas (Triassic)</td>
<td>Ann 22, iii, pp 43-51</td>
</tr>
<tr>
<td>production, etc., of</td>
<td>Ann 22, iii, p 12</td>
</tr>
<tr>
<td>in Ohio, production, etc., of</td>
<td>Ann 22, ii, p 640</td>
</tr>
<tr>
<td>in Oregon, Blue Mountains</td>
<td>GF 73, pp 4-5</td>
</tr>
<tr>
<td>Coos Bay quadrangle</td>
<td>GF 89, p 4</td>
</tr>
<tr>
<td>Port Orford quadrangle</td>
<td>Ann 22, iii, p 13</td>
</tr>
<tr>
<td>production, etc., of</td>
<td>Ann 22, iii, p 13</td>
</tr>
<tr>
<td>in Pennsylvania, Masontown and Uniontown quadrangles</td>
<td>GF 82, pp 10-19</td>
</tr>
<tr>
<td>production, etc., of</td>
<td>Ann 22, iii, p 12</td>
</tr>
<tr>
<td>in United States, rank of the States in area and production</td>
<td>Ann 22, iii, pp 12-13</td>
</tr>
<tr>
<td>in Utah, production, etc., of</td>
<td>Ann 22, iii, p 13</td>
</tr>
<tr>
<td>in Virginia, production, etc., of</td>
<td>Ann 22, iii, p 13</td>
</tr>
<tr>
<td>Richmond and other areas (Triassic)</td>
<td>Ann 22, iii, pp 25-53</td>
</tr>
<tr>
<td>in Washington, production, etc., of</td>
<td>Ann 22, iii, p 13</td>
</tr>
<tr>
<td>in West Virginia, Charleston quadrangle</td>
<td>GF 72, pp 6-8</td>
</tr>
<tr>
<td>Elk Garden field</td>
<td>Ann 14, ii, p 579</td>
</tr>
<tr>
<td>Potomac Basin</td>
<td>Ann 14, ii, pp 579-582</td>
</tr>
<tr>
<td>production, etc., of</td>
<td>Ann 22, iii, p 12</td>
</tr>
<tr>
<td>Raleigh quadrangle</td>
<td>GF 77, pp 4-8</td>
</tr>
<tr>
<td>Roaring Creek field</td>
<td>Ann 14, ii, pp 588-590</td>
</tr>
<tr>
<td>in Wyoming, production, etc., of</td>
<td>Ann 22, iii, p 13</td>
</tr>
<tr>
<td>in California, Carbon Creek, Yakima, and other fields</td>
<td>Bull 193, p 35</td>
</tr>
<tr>
<td>statistics of</td>
<td>MR 1900, pp 273-457; MR 1901, pp 279-449</td>
</tr>
<tr>
<td>tests of, from Arkansas</td>
<td>Ann 22, iii, pp 398-400</td>
</tr>
<tr>
<td>from Cook Inlet, Nanaimo, and Cardiff</td>
<td>Ann 22, iii, pp 552-555</td>
</tr>
<tr>
<td>from Eastern Interior and other fields</td>
<td>Ann 22, iii, pp 290-291</td>
</tr>
<tr>
<td>from Iowa</td>
<td>Ann 22, iii, pp 348-349</td>
</tr>
<tr>
<td>from Michigan</td>
<td>Ann 22, iii, pp 323-324</td>
</tr>
<tr>
<td>from Rocky Mountain fields</td>
<td>Ann 22, iii, pp 425-427</td>
</tr>
<tr>
<td>from Washington</td>
<td>Ann 22, iii, p 492</td>
</tr>
<tr>
<td>Coal, anthracite, in Pennsylvania; coal-carrying companies</td>
<td>Ann 22, iii, p 106</td>
</tr>
<tr>
<td>cost of mining</td>
<td>Ann 22, iii, p 96</td>
</tr>
<tr>
<td>freight rates</td>
<td>Ann 22, iii, pp 112-115</td>
</tr>
<tr>
<td>history of development</td>
<td>Ann 22, iii, pp 74-79</td>
</tr>
<tr>
<td>individual operators</td>
<td>Ann 22, iii, pp 110-111</td>
</tr>
<tr>
<td>labor employed in mining</td>
<td>Ann 22, iii, pp 97-98</td>
</tr>
<tr>
<td>marketing of</td>
<td>Ann 22, iii, pp 115-117</td>
</tr>
<tr>
<td>method of mining</td>
<td>Ann 22, iii, pp 79-88</td>
</tr>
<tr>
<td>preparation of, for market</td>
<td>Ann 22, iii, pp 88-95</td>
</tr>
<tr>
<td>statistics and future developments</td>
<td>Ann 22, iii, pp 98-102</td>
</tr>
<tr>
<td>summary of knowledge</td>
<td>Ann 22, iii, pp 55-117</td>
</tr>
<tr>
<td>Coal, lignite, and peat, Geological Survey publications on</td>
<td>Bull 213, pp 294-295</td>
</tr>
<tr>
<td>Coal ash, analyses of, from Colorado, Spanish Peaks quadrangle</td>
<td>GF 71, p 7</td>
</tr>
<tr>
<td>Coal-bearing rocks in Indian Territory, columnar section of</td>
<td>Ann 22, iii, p 376</td>
</tr>
<tr>
<td>Coal bed in Nevada, central</td>
<td>Ann 22, iii, p 459</td>
</tr>
<tr>
<td>Coal field, Appalachian, northern; summary of knowledge</td>
<td>Ann 22, iii, pp 119-226</td>
</tr>
</tbody>
</table>
Coal field, Appalachian, southern; summary of knowledge. Ann 22, iii, pp 227-263

Coal field, bituminous, of Maryland; summary of knowledge. Ann 22, iii, pp 201-214

of Pennsylvania; summary of knowledge. Ann 22, iii, pp 127-214

of Ohio; summary of knowledge. Ann 22, iii, pp 215-226

Coal field, Eastern Interior; summary of knowledge. Ann 22, iii, pp 265-305

Coal field, Northern Interior; summary of knowledge. Ann 22, iii, pp 307-331

Coal field, Southwestern; summary of knowledge. Ann 22, iii, pp 367-413

Coal field, Triassic, of Atlantic coast. Ann 22, iii, pp 25-53

Coal field, Western Interior; summary of knowledge. Ann 22, iii, pp 333-366

Coal fields of Alabama, production, etc., of. Ann 22, iii, p 13

of Alaska; summary of knowledge. Ann 22, iii, pp 515-571

of Arkansas, production, etc., of. Ann 22, iii, p 13

of California, production, etc., of. Ann 22, iii, p 13

summary of knowledge. Ann 22, iii, pp 498-504

of Colorado, production, etc., of. Ann 22, iii, pp 12, 13

summary of knowledge. Ann 22, iii, pp 427-439

of Georgia, production, etc., of. Ann 22, iii, p 13

of Idaho, production, etc., of. Ann 22, iii, p 13

summary of knowledge. Ann 22, iii, pp 409-450

of Illinois, production, etc., of. Ann 22, iii, p 13

of Indian Territory, production, etc., of. Ann 22, iii, p 13

of Indiana, production, etc., of. Ann 22, iii, p 13

of Indiana and Illinois, work in. Bull 213, pp 284-293

of Iowa, production, etc., of. Ann 22, iii, p 13

of Kansas, production, etc., of. Ann 22, iii, p 13

of Kentucky, production, etc., of. Ann 22, iii, pp 12, 13

of Maryland, production, etc., of. Ann 22, iii, p 12

of Michigan, production, etc., of. Ann 22, iii, p 13

of Missouri, production, etc., of. Ann 22, iii, p 13

of Montana, production, etc., of. Ann 22, iii, p 13

summary of knowledge. Ann 22, iii, pp 460-468

of Nebraska, production, etc., of. Ann 22, iii, p 13

of New Mexico, production, etc., of. Ann 22, iii, p 12

summary of knowledge. Ann 22, iii, pp 449-453

of North Carolina, production, etc., of. Ann 22, iii, p 12

Triassic. Ann 22, iii, pp 43-51

of North Dakota; summary of knowledge. Ann 22, iii, pp 456-458

of Ohio, production, etc., of. Ann 22, iii, p 12

of Oregon, production, etc., of. Ann 22, iii, p 13

summary of knowledge. Ann 22, iii, pp 505-512

of Pacific coast; summary of knowledge. Ann 22, iii, pp 473-513

of Pennsylvania, production, etc., of. Ann 22, iii, p 12

anthracite, original content of. Ann 22, iii, pp 70-72

of Rocky Mountains; summary of knowledge. Ann 22, iii, pp 415-471

of South Dakota, production, etc., of. Ann 22, iii, p 13

summary of knowledge. Ann 22, iii, pp 458-459

of Tennessee, production, etc., of. Ann 22, iii, p 13

of Texas, production, etc., of. Ann 22, iii, p 13

of Texas, north; summary of knowledge. Ann 22, iii, pp 402-409

of United States. Bull 213, pp 257-269

rank of, in area and production. Ann 22, iii, pp 12-13

summary of knowledge. Ann 22, iii, pp 7-24

of Utah, production, etc., of. Ann 22, iii, p 13

summary of knowledge. Ann 22, iii, pp 453-456
Coal fields of Virginia .. Ann 22, iii, pp 25-53
of Virginia, production, etc., of Ann 22, iii, p 12
of Washington, production, etc., of Ann 22, iii, p 13
summary of knowledge .. Ann 22, iii, pp 483-497
of West Virginia, production, etc., of Ann 22, iii, p 12
of Wyoming, production, etc., of Ann 22, iii, p 13
summary of knowledge .. Ann 22, iii, pp 439-448
Coal Measures of Arkansas Ann 22, iii, pp 389-391
of Illinois, coal field .. Ann 22, iii, pp 272-274
of Indiana Territory .. Ann 22, iii, pp 374-383, 409
of Indiana, coal field .. Ann 22, iii, pp 272-274
of Kentucky, coal field Ann 22, iii, pp 235, 272-274
of Maryland .. Ann 22, iii, pp 201-204
of Michigan .. Ann 22, pl xx, pp 315-316
of Ohio, bituminous field Ann 22, iii, p 215
of Tennessee, coal field Ann 22, iii, p 235
of Western Interior coal field Ann 22, iii, pp 340-343
of Texas, north ... Ann 22, iii, pp 403-405
Coal Measures, Lower, of Pennsylvania, Ohio, and West Virginia, bituminous coal field of Bull 65, pp 99-178
Coal Measures, Upper, of Pennsylvania, Ohio, and West Virginia, bituminous coal field of Bull 65, pp 43-69
Coaledo formation of Oregon GF 73, pp 2-3
Coalgate quadrangle, Indian Territory, geology of GF 74
Coastal development in Alaska, Norton Bay region N and N, pp 208-210
Coastal Plain, description of, general Ann 14, ii, pp 104-105
gelogic history and description of Ann 14, i, pp 227-233
of Texas .. GF 76, pp 1-2
Cobalt, ores of ... MR 1901, p 969
Cobalt and nickel, statistics of MR 1900, pp 245-249; MR 1901, pp 241-250
Cobosseecontee River, Maine, flow of, measurement of .. Ann 22, iv, pp 58-59;
WS 47, p 31; WS 65, pp 19-20; WS 69, pp 59-70; WS 75, p 21
Cocheco River, New Hampshire, drainage area, fall, power, etc., of Ann 22, iv, pp 73-76
Cochituate Lake, Massachusetts, rainfall and run-off in watershed of WS 47, pp 33-34; WS 65, p 26; WS 80, pp 68-69, 88-89, 99
Colipoceratide of the Cretaceous Mon xliv, pp 88-100
Coke, analysis of, from Pennsylvania, Connellsville GF 82, p 18
analysis of, from Pennsylvania, Connellsville Basin Ann 22, iii, p 176
from Indian Territory, near Howe Ann 22, iii, p 386
from Virginia, Richmond Basin (natural) Ann 22, iii, p 37
in Pennsylvania, Masontown and Uniontown quadrangles GF 82, pp 18-19
statistics of .. MR 1900, pp 459-536; MR 1901, pp 451-523
Coke, natural (carbonite), in Virginia, Richmond Basin Ann 22, iii, pp 36-37
Coking value of coals from Eastern Interior field Ann 22, iii, pp 291-293
Coldwater shales of Michigan Ann 22, iii, pp 666-667; PP 11, p 154
Colebrooke schist of Oregon, Port Orford quadrangle GF 89, p 21
Coleoptera, rynchophorous, of United States Ann 15, pp 94-95
Collier (A. J.), coal resources of Yukon Basin, Alaska Bull 213, pp 276-283
Glenn Creek gold mining district, Alaska Bull 213, pp 49-56
reconnaissance of northwestern portion of Seward Peninsula, Alaska PP 2

Colombia, emerald in. MR 1900, p 758.

manganese ore from, statistics of. MR 1900, pp 130, 140; MR 1901, pp 143-144, 155.

Color of river water, determination of. WS 76, pp 73-86.

of water, determination of, in sanitary analysis. WS 79, p 23.

hydrographic data relating to. WS 50, pp 319-320, 322-329.

Arkansas River division, irrigation system of. WS 74, pp 70-100.

artesian water in Spanish Peaks quadrangle. GF 71, p 7.

asphalt in, occurrence, geology, etc., of. Ann 22, i, pp 327-330.

Bear Creek, flow of, measurement of. Ann 22, iv, p 321;

seepage on, computations of. WS 50, p 304.

Big Thompson Creek, flow of, measurement of. Ann 22, iv, p 326;

seepage on, measurement of. WS 50, p 305.

borings, deep, in, list of. WS 57, pp 17-20.

Boulder Creek, flow of, measurement of. Ann 22, iv, p 324;

seepage on, computations of. WS 50, p 304.

building stone from, statistics of. MR 1900, p 662 et seq; MR 1901, p 643 et seq.

seepage on, measurement of. WS 50, p 305.

clay products of, statistics of. MR 1900, p 695 et seq; MR 1901, p 674 et seq.

seepage on, computations of. WS 50, p 304.

Colorado River Basin, miscellaneous measurements in. WS 66, p 98.

seepage on, measurement of. WS 50, p 306.

Florida River, flow of, measurement of. WS 66, pp 96-97; WS 74, pp 119-120; WS 75, p 176.
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 215.

Colorado; geography of Anthracite-Crested Butte quadrangle GF 9, p 1
geography of Elmo quadrangle GF 58, p 1
of La Plata quadrangle GF 60, p 1
of Pikes Peak quadrangle GF 7, p 1
of Pueblo quadrangle GF 36, p 1
of Rico Mountains Ann 22, II, p 238
of Spanish Peaks quadrangle GF 71, p 1
of Telluride quadrangle GF 57, p 1
of Tenmile District quadrangle GF 48, p 1
of Walsenburg quadrangle GF 58, p 1
geologic and paleontologic investigations in Ann 22, 1, pp 82-85, 99; Ann 23, pp 33, 38; Bull 213, p 25
gold and silver from, statistics of MR 1900, pp 109-113; MR 1901, p 119 et seq
Grand River division, irrigation system of WS 74, pp 127-147
granite production of MR 1900, pp 662, 663, 664, 665, 666; MR 1901, pp 643, 644, 651, 652, 653
Green River, tributaries of, discharge of, measurement of WS 50, p 375
Green River irrigation division, drainage, gaging, etc., in WS 74, pp 146-147
Gunnison River, flow of, measurement of Ann 22, iv, p 390; WS 50, pp 378-379; WS 66, pp 93-95; WS 74, pp 132-133; WS 75, p 175
gypsum from, statistics of MR 1900, pp 828, 830; MR 1901, pp 846, 847
iron and steel from, statistics of MR 1900, pp 43, 56, 57, 96; MR 1901, pp 45, 59, 63, 76, 91, 103
irrigation in, system of WS 74, pp 20-147
Lake Creek, flow of, measurement of Ann 22, iv, p 339; WS 74, pp 73-75
hydrographic data relating to WS 50, pp 320-322
lead from, statistics of MR 1900, p 196; MR 1901, p 201
limestone in Spanish Peaks quadrangle GF 71, p 6
limestone production of MR 1900, pp 662, 685, 686, 688; MR 1901, pp 643, 644, 667, 668, 669, 670
Los Pinos River, flow of, measurement of Ann 22, iv, p 393; WS 50, pp 382-383; WS 66, pp 95-96; WS 74, pp 118-119, 126; WS 75, p 176
Mancos River, flow of, measurement of WS 50, pp 384-385; WS 66, pp 97-98; WS 74, pp 124-126
manganiferous ores of, statistics of MR 1900, p 121; MR 1901, p 133
maps, geologic and topographic, of (See Map.)
marble production of MR 1900, pp 683, 684; MR 1901, p 664
mineral springs of MR 1900, pp 901, 903; MR 1901, pp 963, 964
natural gas in, statistics of MR 1900, pp 634, 635, 637, 638; MR 1901, pp 617, 619, 620, 621
northwestern, topography of a portion of Ann 9, pp 683-685
oil field near Boulder Bull 213, pp 322-332
Pearl, copper deposits of, reconnaissance examination of Bull 213, pp 163-169
petroleum in, statistics of MR 1900, pp 540, 541, 542, 570-571; MR 1901, pp 530, 531, 532, 533, 559-563
Piedra River, flow of, measurement of WS 74, pp 115-118
platinum in Bull 193, p 57
Platte River, flow of, measurement of WS 66, pp 29-30, 37-38
Purgatory River, flow of, measurement of WS 74, pp 96-98
rainfall in South Platte Basin WS 75, pp 131-137
Rico Mountains, ore deposits of Ana 22, II, pp 229-397
Rio Grande, seepage on, measurement of WS 50, p 306
Rio Grande division, irrigation system of WS 74, pp 101-110
run-off in WS 74, pp 14-19
seepage on, measurement of WS 50, p 304
San Juan River and tributaries, flow of, measurement of Ann 22, iv, pp 392-394; WS 74, pp 112-115, 126
San Juan division, irrigation system of WS 74, pp 111-126
San Juan volcanic area Bull 182, pp 29-30
San Miguel River, flow of, measurement of WS 74, pp 142-145
sandstone in Spanish Peaks quadrangle GF 71, p 6
sandstone production of MR 1900, pp 662, 670, 671, 672, 673; MR 1901, pp 643, 644, 656, 657, 658, 659
seepage in, computations of WS 50, pp 299-306
measurements of WS 74, pp 65-66, 100, 109-110
Silverton quadrangle, economic geology of Bull 182
geology of, outline of Bull 182, pp 29-39
South Boulder Creek, flow of, measurement of Ann 22, iv, p 323; WS 75, p 128
South Platte division, irrigation system of WS 74, pp 21-70
South Platte River, flow of, measurement of Ann 22, iv, pp 318-320, 327; WS 74, pp 23-36; WS 75, pp 127, 130
gagings in basin of, miscellaneous WS 74, pp 63-64
hydrography of basin of Ann 22, iv, pp 314-317; WS 49, pp 278-283
seepage on, computations of WS 50, pp 300-303
Spanish Peaks quadrangle, geology of GF 71
topography near Greeley WS 9, pp 10-13
of Arkansas Valley Ann 17, ii, pp 558-560
of Arkansas River Basin Ann 13, iii, pp 433-435
of Battlement Mesa Forest Reserve Ann 20, v, pp 186-191
of Buffalo Peaks, Mosquito Range Bull 1, p 12
of Denver Basin Mon xxvii, pp 1-10
of Great Plains, portion of Ann 16, ii, pp 542-545
of Leadville district Ann 2, pp 207-208; Mon xii, pp 3-6
of Pikes Peak Forest Reserve Ann 20, v, pp 64-65
of Pikes Peak quadrangle GF 7, p 1
of Platte River Basin Ann 13, iii, pp 74-75
of Plum Creek Timber-Land Reserve Ann 20, v, pp 74-75
of Pueblo quadrangle GF 36, p 5
of Rico Mountains Ann 22, ii, pp 243-244
of Silverton quadrangle Bull 182, pp 26-29
of South Platte Forest Reserve Ann 20, v, pp 90-91
of Spanish Peaks quadrangle GF 71, p 1
of Telluride quadrangle Ann 18, iii, pp 756-757; GF 57, p 1
of Uinta Basin Ann 17, i, pp 920-922
of Walsenburg quadrangle GF 68, p 1
of White River Plateau Timber Reserve Ann 20, v, pp 119-121
turquoise in MR 1901, p 760
Colorado; Twin Lakes, discharge measurements of WS 50, p 321
Twin Lakes, reservoir at ... WS 74, pp 73-75
Uncompahgre River, flow of, measurement of Ann 22, iv, p 392; WS 50, pp 379-380; WS 74, pp 135-139
seepage on, measurement of ..… WS 50, p 306
uranium in, production of ... MR 1900, p 265
water, low, measurement of, in northwestern Ann 22, iv, pp 395-397
water resources of ... WS 74
White River, flow of, measurement of WS 66, pp 91-92
Yampa River, flow of, measurement of WS 66, pp 89-91
Colorado Canyon, Nevada, geology of Bull 208, p 133
Colorado division of Texas ... GF 76, p 5
Colorado formation, character, extent, and invertebrate fossils of Ann 15, p 99
Colorado River, flow of, measurement of Ann 22, iv, pp 357-398; WS 50, p 387; WS 66, p 104
Colorado Basin, stream measurements in WS 66, pp 82-104
Colorado River, Texas, flow of, measurement of WS 50, pp 336-338; WS 66, p 64; WS 75, p 152
Columbia formation, age and areal extent of Ann 14, r, p 228
of Georgia, clays of ... PP 11, p 92
of Gulf coast ... Bull 212, pp 26-27
of Virginia ... GF 80, p 3
Columbia River, hydrographic work in basin of Ann 22, iv, pp 421-457
stream measurements in basin of WS 66, pp 126-138
Columbia River lava in Idaho, Nez Perce region WS 53, pp 28-42
in Oregon, John Day Basin ... Bull 204, p 19
in Washington ... Ann 15, p 100
Colvins Run limestone of Pennsylvania Bull 65, p 39
Conal River, Texas, flow of, measurement of WS 50, pp 339-340
Comanche series of Texas, Austin quadrangle GF 76, pp 3-5
Conasauga formation of Georgia GF 78, pp 2-3
of Tennessee ... GF 75, p 2
Conasauga River and tributaries, flow of, measurements of WS 49, p 209
Concho River, Texas, flow of, measurement of WS 66, pp 61-62
Concord River, Massachusetts, quality of water of WS 79, pp 39-40, 45
Conglomerate structures and granules, thin sections of, in Clinton iron ore ... Mon xliv, p 250
Concejos River, Colorado, flow of, measurement of WS 50, p 348; WS 74, pp 106-107, 109
seepage on, measurement of ..… WS 50, p 306
Conemaugh formation of Erie and Ohio basins Mon xli, p 65
of Maryland, coal field .. Ann 22, iii, pp 202, 203
section of .. PP 11, p 138
of Ohio, bituminous field ... Ann 22, iii, pl xii, p 2, 6
of Pennsylvania, bituminous field Ann 22, iii, pp 171-172; GF 82, p 8
Conemaugh group, clays of ... PP 11, p 54
Conglomerate group of Ohio, clay of PP 11, p 193
of Pennsylvania, clays of ... PP 11, pp 212-215
Conglomerates of Minnesota, Mesabi district Mon xlvi, pp 75-78, 94-98, 154-159
Conneant Creek, Pennsylvania, course, present and preglacial, of... Mon xli, pp 214-215
Connecticut; borings, deep, in, list of WS 57, p 20
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 643 et seq
clay deposits and industry of .. PP 11, pp 48, 78-79
clay products of, statistics of .. MR 1900, p 665 et seq; MR 1901, p 674 et seq; PP 11, p 79
Connecticut; Connecticut River, flow of, measurement of. WS 47, p 35; WS 65, p 30
flint and feldspar production of. MR 1900, p 895; MR 1901, pp 936, 938
granite production of. MR 1900, pp 662, 663, 664, 665, 667; MR 1901, pp 643, 644, 651, 652, 653
Hockanam River, quality of water of. WS 79, pp 89-91
Housatonic River, flow of, measurement of. WS 47, pp 35-36; WS 65, pp 87-90; WS 75, p 24; WS 76, p 104
Housatonic River, flow of, measurement of. WS 47, pp 35-36; WS 65, pp 87-90; WS 75, p 24; WS 76, p 104
iron and steel from, statistics of. MR 1900, pp 43, 57, 96, 99, 102; MR 1901, pp 45, 63, 76, 91, 103
limestone production of. MR 1900, pp 662, 685, 686, 687, 688; MR 1901, pp 643, 644, 667, 668, 669, 670
maps, geologic and topographic, of. (See Map.)
mineral springs of. MR 1900, 901, 902; MR 1901, pp 962, 964
Park River, quality of water of. WS 79, pp 91-94
pollution of streams, court decisions on. WS 79, pp 107-112
sandstone production of. MR 1900, pp 662, 670, 671, 672, 673; MR 1901, pp 643, 644, 656, 657, 658, 659
topographic work in, cooperation of State in. Ann 22, i, pp 18, 21-22, 29
Trumbull, tungsten mining at. Bull 213, p 98
tungsten mine at Trumbull, geology, petrography, etc., of. Ann 22, ii, pp 7-22
tungsten mining at Trumbull. Bull 213, p 98
Connecticut River, amount and quality of water in basin of. WS 79, pp 68-97
fall of. WS 79, p 70
flow of, measurement of. WS 47, pp 34-35; WS 65, pp 29-31; WS 75, p 23
rainfall, run-off, and evaporation in basin of. WS 80, pp 98-99
Connellsville sandstone of Pennsylvania and West Virginia. Bull 65, pp 87-88
Connoquenessing sandstones of Pennsylvania and Ohio. Bull 65, pp 201-202
Controller Bay, Alaska, coal beds near. Ann 22, iii, p 542
Cook Inlet region, Alaska, placer gold mining in. Bull 213, p 48
Coos Bay quadrangle, Oregon. GF 73
Coos conglomerate of Oregon. GF 73, p 3
survey of. Ann 22, iv, pp 194-196
in Alaska, Copper River district. Copper, pp 42, 82-89
Copper River district, Bonanza claim. Copper, p 86
Nikolai mine. Copper, pp 86-87
Gladhaugh mine. Copper, p 89
Latouche Island. Copper, p 89
Prince William Sound. Copper, pp 88-89
in Appalachian States. Bull 213, pp 181-185
in Arizona, Bisbee. Bull 213, pp 149-157
Clifton. Bull 213, pp 133-140
Copper in California, Redding region ... Bull 213, pp 123-132
in Colorado, Pearl ... Bull 213, pp 163-169
Silvertown quadrangle ... Bull 182, pp 78, 80, 86
in Idaho, Nez Perce region .. WS 54, pp 127-129
in Tennessee, Cranberry quadrangle GF 90, p 8
in Wyoming, Encampment region ... Bull 213, pp 160-162
ores of ... MR 1901, p 969
in Wyoming, platinum in ... Bull 213, pp 94-97
publications on .. Bull 213, p 186
statistics of .. MR 1900, pp 141-190; MR 1901, pp 157-198
Copper Basin, Alaska, terraces in ... Copper, pp 80-81
timber in .. Copper, p 92
topography of .. Copper, pp 27, 29-30
Copper Center, Alaska, trail from Tonsina River to Copper, p 21
Copper River district, Alaska, geography of Copper, pp 25-31
goic history of, outline of ... Copper, p 32
geology and mineral resources of portion of Copper, pp 76-82
gold in ... Copper, pp 90-91
mineral resources of .. Copper, pp 82-92
placer gold mining in .. Bull 213, p 48
railroad construction in, practicability of Copper, pp 92
trails in ... Copper, pp 17-25
Coral reefs of Hawaiian Islands, Molokai WS 77, pp 15-16
Corals of Buda limestone ... Bull 205, p 37-40
Cordierite-biotite-microperthite-hornfels, analysis of, from Vermont, Ascutney
Mountain .. Bull 209, p 118
Cordierite-corundum-pleonaste-hornfels, analysis of, from Vermont, Ascutney
Mountain .. Bull 209, p 118
Cordierite-hornfels, analysis of, from Minnesota, Mesabi district ... Mon xlii, p 172
from Vermont, Mount Ascutney .. Bull 209, p 29
of Minnesota, Mesabi district .. Mon xlii, pp 171-172
thin section of, from Minnesota, Mesabi district, showing alteration from
slate ... Mon xlii, p 174
Cornell University, experiments at, in stream measurement WS 64, pp 54-95
hydraulic laboratory at, description of WS 64, pp 59-60
Corniferous escarpment, New York, description of Mon xl, p 73
Corniferous limestone of Erie and Ohio basins Mon xlii, pp 56-57
of New York .. Bull 3, pp 8, 9
of Ohio, oil and gas in ... Ann 8, ii, pp 498-499
(See also, Onondaga.)
Correlation of Alaskan formations, provisional Copper, p 33
of Carboniferous formations and faunas of the world Mon xlii, pp 17-18
of geological faunas .. Bull 210
of rocks in Alaska, southeastern ... PP 1, pp 27-29
in Minnesota, Mesabi district .. Mon xlii, pp 200-205
principles of .. Bull 210, pp 10-32
Corsicana, Texas, oil and gas field, description and record of Bull 184, pp 54-55
Corundum in other countries .. Bull 180, pp 88-93
in United States, occurrence and distribution of Bull 180
methods of mining and cleaning .. Bull 180, pp 72-75
occurrence of, modes of .. Bull 180, pp 11-37; MR 1900, p 756; MR 1901, pp 737-738
uses of ... Bull 180, pp 75-79
Corundum, artificial, production of .. MR 1901, pp 808-809
Corundum and emery, statistics of .. MR 1900, pp 787, 798-800; MR 1901, pp 801-805
Cosalite, analysis of, from Colorado. Silverton quadrangle.......... Bull 182, p 220
Cosmeceratida of the Cretaceous .. Mon xlv, pp 101-105
Costa Rica, rainfall in .. Ann 22, iv, pp 526-530, 575-579
temperature and humidity of ... Ann 22, iv, pp 520-521
wind movement in .. Ann 22, iv, pp 535-536
Cosumnes River, California, flow of, measurement of WS 51, p 480
Cottonwood limestone of Kansas, synonymy, character, and fauna of........ Bull 211, p 55
Country rock, influence of, on shape of ore deposits Ann 22, ii, pp 124-131
Coville (F. V.), identification of plants collected in Seward Peninsula, Alaska, in 1900 ... N and N, pp 167-174
Cowlitz River, Washington, description of Ann 22, iv, pp 455-457
Cranberry district, North Carolina-Tennessee, iron-ore deposits of .. Bull 213, pp 243-246
Cranberry granite of Tennessee ... GF 90, p 3
Cranberry Island series of Maine .. Ann 8, ii, pp 1043-1047
Cranberry quadrangle, Tennessee, geology of GF 90
Crater Lake, Oregon, formation, temperature, height, etc., of PP 3, pp 46-61
routes to ... PP 3, pp 6-9
Crater Lake National Park, geology and petrography of PP 3
Cretaceous clays, distribution of, east of Mississippi River PP 11, pp 56-59
Cretaceous coal fields of United States Ann 22, iii, pp 17-18
Cretaceous fossils; Mollusca, nonmarine, of North America Ann 3, pp 403-550
Cretaceous history of Cascade Mountains GF 86, p 1
of Great Plains region ... GF 87, p 3; GF 88, p 4
of Maryland and Virginia, Catoctin belt Ann 14, ii, pp 384-394
of New York City district .. GF 83, pp 3, 10, 11
of South Dakota, Oelrichs quadrangle GF 85, p 2
Cretaceous period, Pseudoceratites of the Mon xlv
Cretaceous rocks; Apishapa formation of Colorado GF 71, pp 1-3
Austin chalk of Texas ... Bull 184, p 38; GF 76, p 5
Bennington limestone of Indian Territory GF 79, p 6
Benton group in Kansas, western .. Bull 202, pp 8-9
Bokchito formation of Indian Territory GF 79, p 6
Buda limestone, corals of ... Bull 205, pp 37-40
g eo l o gy of .. Bull 205, pp 12-14
Mollusca of ... Bull 205
of Texas ... GF 76, p 5
Caddo limestone of Indian Territory GF 79, p 6
Carlile formation of Colorado .. GF 71, pp 1-3
of South Dakota ... GF 85, p 4
Chico formation of California .. Bull 15, p 10; Bull 19, p 24; Bull 33, pp 19, 20
of Oregon, John Day Basin .. Bull 204, p 17
Colorado division of Texas .. GF 76, p 5
Dakota formation of South Dakota .. GF 85, p 3
supply of water to ... WS 67, pp 57-59
Del Rio clay of Texas .. GF 76, p 5
Eagle Ford formation of Texas .. Bull 184, p 38; GF 76, p 5
Edwards limestone of Texas ... GF 76, pp 4-5
Eutaw formation of Alabama ... Bull 43, pp 86-95, 117
Fort Union group ... Ann 6, pp 542-549
Fox Hills group in South Dakota .. Bull 21, p 11
Fredericksburg division of Texas ... GF 76, pp 3-5
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

Cretaceous rocks; Fuson formation of South Dakota ...GF 85, p 3
gas and oil from ...Ann 11, i, pp 597-598
Georgetown limestone of Texas ...GF 76, p 5
Glen Rose formation of Texas ...GF 76, p 3
Goodland limestone of Indian Territory ...GF 79, p 6
Graneros shale of South Dakota ...GF 85, p 4
Greenhorn limestone of South Dakota ...GF 85, p 4
Gulf series of TexasGF 76, pp 5-6
Kennicott formation of Alaska ...Copper, pp 33, 48-50
Kiamichi! formation of Indian Territory ...GF 79, p 6
Knoxville beds of CaliforniaBull 19, pp 8-10, 11, 12
of Oregon, John Day Basin ...Bull 204, p 17
Laramie formation of Colorado ..Ann 22, iii, pp 423, 429, 432, 434, 435, 436, 439; GF 71, pp 1-2, 3
of Montana ..Ann 22, iii, pp 461, 462, 463, 464, 466
of North Dakota ..Ann 22, iii, pp 457, 458
of Plateau region ...Ann 6, pp 187-188
of South Dakota ..Bull 19, p 11; GF 85, p 3
of Utah ..Ann 22, iii, pp 423, 453, 454, 455
of Wyoming ...Ann 22, iii, pp 439, 441, 442, 443, 447, 448; WS 70, pp 14-15
Laramie group (partly Cretaceous, partly Eocene) ..Ann 3, pp 414-417
in Colorado ..Ann 9, pp 689, 690
in Utah ...Bull 34, pp 13-19
Matanuska series of Alaska ..Ann 22, iii, p 528
Minnewaste limestone of South Dakota ...GF 85, p 3
Mission Creek series of Alaska ...Ann 22, iii, pp 530, 556
Montana division of Texas ...GF 76, p 5
Myrtle formation of Oregon ..GF 73, pp 1-2; GF 89, p 2
Navarro marls of Texas ..Bull 184, p 38
Nilkoka formation of Alaska ...Ann 20, vii, p 472; Ann 22, iii, p 530; Alaska (2), p 68
Niobrara formation of South Dakota ...GF 85, p 4
Niobrara group in Kansas, western ..Bull 202, p 8
(clays) ..PP 11, pp 71-117, 131-133
of Alabama ...Bull 43, pp 71-117, 131-133
of Alaska ..Ann 22, iii, pp 526-533
of Arkansas ..Ann 22, iii, pp 696-725
of California ..Bull 15, p 10; Bull 19, pp 8-10, 11, 12, 16, 24; Bull 33, pp 19, 20
of Canada ..Ann 22, iii, p 423
of Colorado ...Ann 22, iii, p 423
Spanish Peaks quadrangle ..GF 71, pp 1-2
of Georgia (clays) ...PP 11, pp 89-92
of Indian Territory, Atoka quadrangle ...GF 79, pp 5-6
of Iowa, northeastern ...Ann 11, i, p 334
of Kansas, western ...Bull 202, pp 7-9
of Maryland (clays) ..PP 11, pp 138-142
of Massachusetts, Martha's Vineyard ..Bull 84, p 36
of Minnesota ..Bull 8, p 43
Mesabi district ..Mon xxiii, pp 189-191
of Montana ..Ann 22, iii, pp 423
coil fields ..Ann 22, iii, pp 460, 461, 462, 463
of New Jersey (clays) ...PP 11, pp 162-166
of New York (clays) ..PP 11, pp 173-175
New York City district ...GF 83, pp 10-11
Crushed steel, statistics of .. MR 1901, pp 807-808
Cryolite, occurrence, uses, and statistics of MR 1901, pp 883-885
Crystalline metamorphic rocks of Arizona, Globe district PP 12, pp 23-28
Crystalline rocks, clays derived from PP 11, pp 47-50
Cub River, Idaho, flow of, measurement of Ann 22, iv, p 408; WS 51, pp 410-411; WS 66, p 118
Cuba, gazetteer of ... Bull 192
geography and topography of ... Bull 192, pp 9-11
manganese deposits of Santiago .. Bull 213, pp 251-255
manganese ore from, statistics of MR 1900, pp 128, 140; MR 1901, pp 139-140, 155
opal in ... MR 1901, p 758
petroleum in .. MR 1900, p 590
stone industry in ... MR 1900, pp 691-692
Cuba moraine, Ohio, distribution, topography, etc., of Mon xli, pp 341-347
Cuchara formation of Colorado ... GP 71, pp 2, 3
Cumberland Plateau in Tennessee and Alabama GF 77, p 1
Cumberland River, flow of, measurement of WS 65, pp 296-297
Cummings (U.), American rock cement, statistics of MR 1900, pp 745-748
Current Creek, Utah, irrigation data relating to WS 52, pp 508-509
Current meters. (See Meters, current.)
Curves, velocity, in stream measurement WS 76, pp 20-47, 60-67
Cutbank River, Montana, flow of, measurement of WS 49, p 269
Cuyahoga River, Ohio, course and character of Mon xli, p 216
Cuyahoga shale of Ohio, Pennsylvania, and Indiana Mon xli, pp 62-63
Cyclolobide of America ... Mon xli, pp 134-141
Cyprus, gypsum production of .. MR 1900, p 833; MR 1901, p 851
ocher production of .. MR 1901, p 906
Dacite, analysis of, from Nevada, Washoe district PP 12, p 92
analyses of, from Oregon, Crater Lake National Park PP 3, p 140
of Arizona, Globe district ... PP 12, pp 88-95
of Oregon, Mount Mazama .. PP 3, pp 34-41
of Washington, Monte Cristo .. Ann 22, ii, p 797
thin sections of, from Oregon, Crater Lake National Park PP 3, pp 128, 132, 138
Dacite-porphyry, analysis of, from Oregon, Port Orford quadrangle GF/89, p 4
of Oregon, Port Orford quadrangle .. GF/89, p 4
Dahlonega district, Georgia, gold and pyrite deposits of Bull 213, pp 57-63
Dakota formation of South Dakota .. GF 85, p 3
supply of water to ... WS 67, pp 57-59
Dale (T. N.), slate industry at Slatenngton, Pennsylvania, and Martinsburg, West Virginia ... Bull 213, pp 361-364
structural details in Green Mountain region and in eastern New York .. Bull 195
work in charge of .. Ann 22, i, pp 64-65; Ann 23, p 39
Dall (W. H.), work in charge of ... Ann 22, i, pp 104-105; Ann 23, pp 67-68
Dall River, Alaska, course and character of PP 10, pp 21-22
reconnaissance from Fort Hamlin to Kotzebue Sound, by way of Kanuti, Allen, and Kowak rivers and .. PP 10
Daly (R. A.), geology of Ascutney Mountain, Vermont Bull 209
Dan River, flow of, measurement of .. WS 48, pp 132-133; WS 65, pp 240-241; WS 75, pp 52-53
Dan River coal area, Virginia and North Carolina Ann 22, ii, pp 49-51
Darby Mountains, Alaska .. N and N, pp 17, 194
Darton (N. H.), geology of Camp Clarke quadrangle, Nebraska GF 87
geology of Norfolk quadrangle, Virginia–North Carolina GF 80
geology of Oelrich's quadrangle, South Dakota–Nebraska GF 85
Darton (N. H.), geology of Scotts Bluff quadrangle, Nebraska GF 88
Juratris rocks of New York City district GF 83, pp 6-10
preliminary list of deep borings in United States WS 57; WS 61
work in charge of Ann 22, i, pp 79-81, 125; Ann 23, pp 39-41, 99
Darwin (C. C.), work in charge of Ann 22, i, pp 205-206; Ann 23, pp 191-194
Darwin Range, California, geology of Bull 208, p 212
Datolite, action of ammonium chloride on Bull 207, p 40
Davis (A. P.), hydrography of the American isthmus Ann 22, iv, pp 507-630
measurement of sediment held in suspension by streams, method of WS 47, pp 15-18
water storage on Salt River, Arizona WS 73
work in charge of Ann 22, i, p 125; Ann 23, p 99
Day (D. T.), mineral resources of United States in 1900, summary, etc. MR 1900
mineral resources of United States in 1901, summary, etc MR 1901
work in charge of Ann 22, i, pp 108-124; Ann 23, i, p 32
Dead River, Maine, flow of, measurement of WS 65, p 18
Death Valley, California, borax deposits of Bull 213, pp 403-405
Death Valley and Mohave Desert, borax deposit of, reconnaissance of Bull 200
Deep River, North Carolina, flow of, measurement of WS 48, pp 136-137; WS 65, pp 243-244; WS 75, p 55
Deep River coal area, North Carolina Ann 22, iv, pp 43-49
Deer Creek limestone of Kansas, synonymy, character, and fauna of . Bull 211, pp 47-48
Deerfield River, Massachusetts, quality of water of WS 79, pp 76-77
Deformation, researches in Ann 14, i, pp 234-235
Degradation in Alaska, Copper River district Copper, pp 66-75
in New York City district GF 83, p 11
relief due to, in Idaho WS 53, pp 61-70
Del Rio clay of Texas GF 76, p 5
Delaware; borings, deep, in, list of WS 57, p 21
building stone from, statistics of ... MR 1900, p 662 et seq; MR 1901, p 643 et seq
clay deposits and industry of PP 11, pp 48, 80
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq; PP 11, p 80
corundum in ... Bull 180, p 80
granite production of MR 1900, pp 662, 663, 664, 665, 667; MR 1901, pp 643, 644, 651, 652, 653
maps, topographic, of. (See Map, topographic, of Delaware.)
topographic work in Ann 22, i, pp 137, 138, 141, 149; Ann 23, p 134
Delaware River, flow of, measurement of Ann 22, iv, pp 112-124; WS 47, p 80; WS 65, p 214; WS 75, pp 27-28
quality of water of WS 79, pp 112-116
Dennis limestone of Kansas, character, synonymy, and fauna of . Bull 211, pp 36-37
Deposition in Tennessee, Maynardville quadrangle GF 75, p 1
in West Virginia, Charleston quadrangle GF 72, p 3
Desert lands in United States Ann 22, iv, pp 48-49
Desert-lands act of March 3, 1877, etc. WS 70, pp 42-44
Desert Mountains, Nevada, geology of Bull 208, pp 106-107, 160-161
Desplaines River, Illinois, course and character of Bull 208, p 81
Devils Lake, North Dakota, fluctuations of, measurement of . WS 66, p 14
Devils River, Texas, flow of, measurement of WS 66, p 79; WS 75, p 61
Devonian clays, distribution of, east of Mississippi River PP 11, p 51
Devonian faunas of New York province, faunal dissection of Middle and Upper Bull 210, pp 42-96
Devonian fossils of Arizona, Globe quadrangle.......................... PP 12, pp 40–42
Devonian history of New York City district............................ GF 83, p 5
Devonian rocks; Antrim shales of Michigan............................ Ann 22, III, p 668
Armuchee chert of Georgia.. GF 78, p 3
Atwell sand of Pennsylvania.. Ann 22, III, pp 591–593
Bedford shale (see Waverly shale)... Mon xli, p 61
Blossburg formation of Pennsylvania, Gaines oil field.............. Ann 22, III, pp 593–599
Bradford oil sands of Pennsylvania...................................... Bull 41, p 19
Catskill formation of Pennsylvania...................................... Ann 22, II, pp 600–611; GF 82, p 6
Cedar Valley limestone of Iowa, northeastern........................ Ann 11, I, pp 234, 243
Chattanooga shale of Georgia... GF 78, p 3
of Tennessee... GF 75, p 4
Cheyenne formation or group, fauna of.................................. Bull 210, pp 82–89
of New York... Mon xli, p 59; Bull 3, pp 21–22, 29, 30
of Pennsylvania, northern... Ann 22, III, pp 608–609
Corniferous limestone of Erie and Ohio basins....................... Mon xli, pp 56–57
of New York... Bull 3, pp 8, 9
of Ohio.. Ann 8, II, pp 498–499
(See, also, Onondaga.)
Dundee limestone of Michigan... Ann 22, III, pp 641–643
Frog Mountain sandstone of Georgia....................................... GF 78, p 3
gas and oil from... Ann 11, I, pp 599–600
Genesee group or shale of New York.. Mon xli, p 58; Bull 3, pp 7, 8, 9–10, 29, 30; Bull 41, pp 23, 24
Grainger shale of Tennessee... GF 75, p 4
Hackberry shales of Iowa, northeastern.................................... Ann 11, I, p 234
Hamilton formation, dissection of... Bull 210, pp 50–66
history of... Bull 206, pp 17–19
of New York... Mon xli, p 57; Bull 3, p 9; Bull 41, p 22
Cayuga Lake section, fauna of.. Bull 206
sections of, comparison of... Bull 206, pp 83–88
Independence shales of Iowa, northeastern.............................. Ann 11, I, p 234
Ithaca formation or group of New York................................... Bull 3, pp 7, 8, 16–20
of New York, fauna of... Bull 210, pp 73–82
Keene limestone of Montana.. Ann 22, II, p 438
Marcellus shale of New York... Mon xli, p 57; Bull 3, p 8; Bull 41, p 23
Nevada limestone of Nevada.. Bull 208, p 20
of Colorado.. Bull 182, p 35
of Georgia, Rome quadrangle.. GF 78, p 3
of Illinois, Chicago district.. GF 81, pp 3–4
of Indian Territory, Atoka quadrangle.................................... GF 79, p 4
of Indiana... Ann 11, I, pp 625, 634–638
of Iowa, northeastern.. Ann 11, I, p 334
of Maryland, shales... PP 11, p 136
of Montana, Elkhorn district... Ann 22, II, p 438
of Nevada... Ann 2, pp 28, 30
south of fortieth parallel... Bull 208, passim
of New York.. Bull 41
of Ozark region... Ann 22, II, pp 82–83
of Pennsylvania.. Bull 41, pp 19, 25
(clays)... PP 11, p 212
Masontown and Uniontown quadrangles................................. GF 82, p 6
of Tennessee, Maynardville quadrangle.................................. GF 75, p 4
of States. (See, also, formation names under this heading.)
Devonian rocks; Ogden quartzite of Nevada.................. Bull 208, p 20
Ohio shale of Ohio...Mon xli, pp 59-61
Old Red sandstone of New York..............................Bull 41, pp 16-17
Oneonta sandstone, deposition of, evidence of shifting of faunas associated
with..Bull 210, pp 97-103
Oriskany sandstone in Erie and Ohio basins.......................Mon xli, p 56
Ouray limestone of Colorado, Silverton quadrangle...................Bull 182, p 95
Portage formation or group of New York.........................Mon xli, p 58; Bull 3, pp 7, 8, 13, 20-21, 29; Bull 41, pp 21, 22, 23-24, 25
of New York, fauna of eastern extension of......................Bull 210, pp 71-73
Romney formation of Maryland, fauna of.........................Bull 210, p 67
Sellersburg formation of Indiana, fauna of.......................Bull 210, pp 66-67
Traverse group of Michigan.....................................Ann 22, iii, p 644
Tully limestone of New York.....................................Bull 3, p 9
Union shale of Montana...Ann 22, ii, p 438
Venango oil sands of Pennsylvania..............................Bull 41, pp 19, 25
Wasatch limestone of Nevada..................................Bull 208, p 23
Waverly shale of Ohio...Mon xli, p 61
White Pine shales of Nevada....................................Ann 2, p 28; Bull 8, p 42; Bull 208, p 23
Woodford chert of Indian Territory..........................GF 79, p 4
Devonian system, definition of..................................Ann 14, i, p 43
Dexter Creek, gold on...Ann 14, i, pp 75-76
Diabase, analysis of...Bull 209, p 87
analysis of, from Arizona, Globe district......................PP 12, p 84
from Vermont, Ascutney Mountain..............................Bull 209, p 118
of Alaska, Ketchikan district................................PP 1, pp 47-48
of Arizona, Globe district....................................PP 12, pp 80-86
of Minnesota, Mesabi district................................Mon xliii, pp 185-186
of New Jersey, New York City district.........................GF 83, pp 8-9
of Oregon, Blue Mountains.....................................Ann 22, ii, p 588
Diamond, occurrence and statistics of.........................MR 1900, pp 749-756, 777;
MR 1901 pp 730-736, 770
Diamond Peak quartzite of Nevada.........................Ann 2, p 28; Bull 8, p 43; Bull 208, p 18
Diamond Range, Nevada, geology of............................Bull 208, pp 81-84
Diastrophism; changes of level during deposition of Coastal Plain forma-
tions..Bull 212, pp 66-67
faulting in Colorado, Silverton quadrangle......................Bull 182, p 37
faults in Alaska, Copper River district.........................Copper, p 62
in Arizona, Globe district....................................PP 12, pp 97-106
in Georgia, Rome quadrangle................................GF 78, pp 4-5
in Missouri, southwestern district...........................Ann 22, ii, pp 168-173
in Nevada, south of fortieth parallel.........................Bull 208, passim
faults and folds in Appalachian Valley.........................GF 78, p 4
in Green Mountain region.....................................Bull 195, pp 10-12
in Nevada south of fortieth parallel.........................Bull 208, passim
in Tennessee, Cranberry quadrangle............................GF 90, p 6
in Texas, Austin quadrangle................................GF 76, p 7
folding in Indian Territory, Coalgate quadrangle..............GF 74, p 5
mountain growth in Colorado, Spanish Peaks quadrangle........GF 71, p 2
uplift in Indian Territory, Coalgate quadrangle..............GF 74, p 5
in Pennsylvania, western................................GF 82, p 4
Dictionary, geographic, of Alaska..............................Bull 187
(See, also, Gazetteer.)
Dike rock, analysis of, from Colorado, Cripple Creek district (basic). Ann 16, ii, p 50
Dikes in Arizona, Globe district .. PP 12, p 73
in Lake Champlain region, trap.. Ann 15, pp 99-100
in Minnesota, Vermilion district................................. Mon XLIV, passim
in Montana, Elkhorn district, petrography of.. Ann 22, ii, pp 518-523
in New York, Lake Champlain region................. Ann 15, pp 99-100; Bull 107
Diller (J. S.), copper deposits of the Redding region, California.. Bull 213, pp 123-132
description of Port Orford quadrangle, Oregon.......... GF 89
geology of Coos Bay quadrangle, Oregon......................... GF 73
iron ores of the Redding quadrangle, California. Bull 213, pp 199-220
limestone of Redding district, California................. Bull 213, p 365
topographic development of the Klamath Mountains........ Bull 196
work in charge of.. Ann 22, i, pp 91-93; Ann 23, pp 41-42
Diller (J. S.) and Patton (H. B.), geology and petrography of Crater Lake
National Park... PP 3
Diorite, analysis of, average .. Bull 209, pp 41, 66
of Minnesota, Mesabi district............................... Mon xliii, p 66
of Montana, Elkhorn district.............................. Ann 22, ii, pp 427-428
of New York City district.. GF 83, p 5
of Oregon, Blue Mountains................................. Ann 22, ii, p 587
of Vermont, Ascutney Mountain.................................. Bull 209, pp 38-48
Diorite-porphyry of Arizona, Globe district...................... PP 12, pp 86-88
of Montana, Elkhorn district.............................. Ann 22, ii, p 431
Dioritic rocks of Alaska, Ketchikan district................. PP 1, p 47
Dismal Swamp, description of.................................. GF 80, p 1
District of Columbia; borings, deep, in................. WS 57, p 21
clay deposits and industry of.................................. PP 11, pp 80-81
clay products of, statistics of.................................. PP 11,
p 81; MR 1900, p. 695 et seq; MR 1901, p 674 et seq
geography of Washington quadrangles........................ GF 70, p 1
mineral springs of.. MR 1900, pp 901, 902; MR 1901, p 964
Rock Creek, flow of, measurement of.......................... WS 48, pp 125-126
topography of Washington quadrangles........................ GF 70, p 1
Ditney formation of Indiana.. GF 84, p 2
Ditney quadrangle, Indiana, coals of......................... Bull 213, pp 284-290
geology of... GF 84
Dix's Point dike of Maine, Mount Desert...................... Ann 8, ii, p. 1053
Dodge (R. E.) and Willis (B.), general geography of New York City district.. GF 83,
pp 1-2
physiographic features of New York City district............... GF 83, pp 17-18
Dodwell (A.) and Rixon (T. F.), forest conditions in the Olympic Forest
Reserve, Washington.. PP 7
Dodwell (A.), Rixon (T. F.), Leiberg (J. B.), Langille (H. D.), and Plummer
(F. G.), forest conditions in the Cascade Range Forest
Reserve, Oregon... PP 9
Dog Valley reservoir site, California, surveys of............. WS 68, pp 69-71
Dolerite of Minnesota, Mesabi district......................... Mon xliii, p 64
Dolomite, analysis of, from Vermont, Dorset, Green Peak quarries... Bull 195, p 14
Dolores formation of Colorado, Silverton quadrangle.......... Bull 182, p 35
Dolores River, Colorado, flow of, measurement of............. Ann 23, iv, p 391; WS 50,
pp 380-381; WS 66, p 95; WS 74, pp 139-142; WS 75, p 175
Dome structure in Alaska, Seward Peninsula....................... N and N, pp 36-37
in Colorado, Silverton quadrangle.................................. Bull 182, pp 36, 37
Donner Creek, California, flow of, measurement of............. WS 51, p 405
Donner Lake, hydrographic investigations at.................. WS 68, pp 51-55
Douglas (E. M.), work in charge ofAnn 22, 1, pp 135, 161; Ann 23, p 121
Douglas (E. M.), Goode (R. U.), Wilson (H. M.), and Renshawe (J. H.),
results of primary triangulation and primary traverse,
1900–1901 ..Bull 181
results of primary triangulation and primary traverse, fiscal year 1901–
1902 ...Bull 201
results of spirit leveling in 1900–1901 ..Bull 185
Doyle shales of Kansas, synonymy, character, and fauna ofBull 211, p 59
Drainage, changes in, character of ..Mon xlii, pp 196–200
Drainage areas of New York streams ..WS 47, pp 40–41
of streams in United States ...WS 52, pp 524–548
Drainage basins of Appalachian region, southernWS 62; WS 63
Drainage basins, underground ..WS 67, pp 32–33
Drainage modifications in southeastern Ohio and adjacent parts of West Vir-
ginia and Kentucky ..PP 13
Drift in Illinois, Chicago district ..GF 81, p 4
in Indiana, Chicago district ..GF 81, p 4
in Minnesota, Mesabi district ..Mon xliii, pp 191–194
Vermilion district ..Mon xlv, pp 425–430
in New York City district ..GF 83, pp 10–16
Drift border in Erie and Ohio basins, discussion ofMon xlii, pp 220–227
Drum limestone of Indian Territory, character and fauna ofBull 211, pp 63–64
of Kansas, character, synonymy, and fauna ofBull 211, pp 37–38
Duchesne River, Utah, flow of, measurement of ..Ann 22, iv, p 385; WS 50, pp 373–374; WS 66, pp 88–89; WS 75, p 167
irrigation from ..Ann 22, iv, pp 380–384
Duchesne River and tributaries, investigation of, for water supply of Uinta
Indian Reservation, Utah ..Ann 22, iv, pp 366–388
Dudley shales of Kansas, character and extent ofBull 211, pp 34–35
Duluth gabbro of Minnesota, Mesabi districtMon xliii, pp 57–59, 182–185, 272–274
of Minnesota, Vermilion district ..Mon xlv, pp 397–422
Dundee limestone of Michigan ..Ann 22, iii, pp 641–643
dunes in Alaska, Copper River district ..Copper, p 61
Dunkard Creek series of Pennsylvania, Ohio, and West Virginia, bituminous
coal field ...Bull 65, pp 20–42
Dunkard formation or group, clays of ..PP 11, p 55
of Ohio, bituminous field ...Ann 22, iii, pl xii, p 216; Mon xli, p 65
of Pennsylvania ..Mon xli, p 65
bituminous field ..Ann 22, iii, pp 181–182; GF 82, p 9
Dunnington (A. F.), work in charge ofAnn 22, 1, p 206; Ann 23, pp 195–197
Duryee (E.), cement investigations in ArizonaBull 213, pp 372–379
Dynamic geology in Alaska, Seward PeninsulaN and N, pp 35–39
(See, also, Degradation; Deposition; Diastrophism; Metamorphism; Vol-
canism.)
Eagle Ford formation of Texas ..Bull 184, p 38; GF 76, p 5
Eagle limestone of West Virginia ..Bull 65, p 177
Earlton limestone of Kansas, character, synonymy, and fauna ofBull 211, p 39
Early Wisconsin drift, interval between late Wisconsin drift andMon xlii, pp 352–353
of Erie and Ohio basins ..Mon xlii, pp 304–351
Earth movements, drainage changes caused byMon xlii, pp 199–200
East Canada Creek, New York, flow of, measurement ofAnn 22, iv, pp 96–97; WS 47, pp 39, 55–58; WS 65, pp 158–161
East White River, Indiana, course and character of. Mon xii, pp 193-195
Echinodermata from Mesozoic of United States. Ann 15, p 96
Eckel (E. C.), a recently discovered extension of the Tennessee white phos-
phato fields. Bull 215, pp 57-63
gold and pyrite deposits of the Dahlonega district, Georgia. Bull 213, pp 406-416
salt and gypsum deposits of southwestern Virginia. Bull 213, pp 382-391
slag cement in Alabama. Bull 213, pp 221-231
white phosphates of Decatur County, Tenn. Bull 213, pp 242-425
utilization of iron and steel slags. Bull 213, pp 427-432
stoneware and brick clays of western Tennessee and northwestern Missis-
sippi. Bull 213, pp 283-242
Eckel (E. C.) and Hayes (C. W.), iron ores of the Cartersville district, Geor-
occurrence and development of ocher deposits in the Cartersville district,
Georgiana. Bull 213, pp 427-432
Economic geology, 1902, contributions to. Bull 213
Ecuador, petroleum in, occurrence of. MR 1900, p 591
Edwards limestone of Texas. GF 76, pp 4-5
Edwards Plateau, Texas, geographic features of. GF 76, p 1
Effusive eruptive rocks of Arizona, Globe district. PP 12, pp 88-97
Egan Range, Nevada, geology of. Bull 208, pp 47-54
Egypt, peridot in. MR 1901, pp 746-747
El Paso Range, California, geology of. Bull 208, pp 214-216
Elaeolite, action of ammonium chloride on, and analysis of. Bull 207, p 40
Eldridge (G. H.), asphalt and bituminous rock deposits of United States. Ann 22,
I, p 209-452
origin and distribution of asphalt and bituminous rock deposits in the
United States. Bull 213, pp 296-305
Eleanor Creek, California, flow of, measurement of. WS 66, pp 147-148; WS 75, p 213
Electric method of determining rate of underflow. WS 67, pp 48-51
Electric power development in California, Kern River, possibilities of. WS 46,
pp 11-38
in California, King River Basin. WS 58, pp 48-95
Elevations in Idaho, Nez Perce region. WS 54, p 132
Elk Creek, Tennessee, flow of, measurement of. WS 48,
pp 184-185; WS 65, pp 299-300
Elk Lick limestone of Pennsylvania, Ohio, and West Virginia. Bull 65, p 90
Elk River series of Pennsylvania, Ohio, and West Virginia, bituminous coal
field. Bull 65, pp 70-98
Elkhorn hornstone of Montana. Ann 22, II, p 437
Elkhorn mining district, Montana, geology and ore deposits of. Ann 22,
II, p 399-549
Elkhorn River, Nebraska, flow of, measurement of. Ann 22, IV, p 329-331;
WS 50, pp 308-310; WS 66, pp 40-41; WS 75, pp 139-140
Ellensburg formation in Washington. WS 55, pp 17-22; GF 86, pp 2-3
Ellensburg quadrangle, Washington, geology of. GF 86
Elsworth Range, Nevada, geology of. Bull 208, pp 99-103
Elmwood formation of Kansas, flora of. Bull 211, pp 113-114
of Kansas, synonymy, character, and fauna of. Bull 211, p 54
Elwha River, Washington, flow of, measurement of. Ann 22,
IV, p 459; WS 51, pp 447-448; WS 66, pp 139-140; WS 75, p 207
Ely greenstone of Minnesota .. Mon xlv, pp 130-172
Embarrass granite of Minnesota, Mesabi district Mon xliii, pp 186-188
Emerald, occurrence and statistics of MR 1900,
pp 758-759, 777; MR 1901, pp 742, 770
Emerson (B. K.), work in charge of Ann 22, i, p 65; Ann 23, pp 43-44
Emery in Massachusetts, Chester Bull 180, pp 23-26, 67-70
in New York, Westchester County Bull 180, pp 70-71
in North Carolina .. Bull 180, p 72
Emery and corundum, statistics of MR 1900, pp 787, 798-800; MR 1901, pp 801-805
Emmons (S. F.), biographic sketch of Clarence King Ann 23, pp 199-206
investigation of metalliferous ores Bull 213, pp 15-28
platinum in copper ores in Wyoming Bull 213, pp 94-97
work in charge of .. Ann 22, i, pp 60-61; Ann 23, pp 29-31
Empire formation of Oregon GF 73, p 3; GF 80, p 3
Emporia limestone of Kansas Bull 211, p 52
Encampment copper region, Wyoming, mineral resources of Bull 213, pp 158-162
Engonoceratidte of the Cretaceous Mon xlv, pp 153-187
Engraving and printing maps, methods of Ann 15, pp 84-89
Enstatite-peridotite of Washington, Monte Cristo Ann 22, ii, p 799
Entiat River, Washington, forest conditions in basin of PP 6, pp 31-33
Eocene history of Cascade Range PP 3, pp 19-20
Eocene rocks; Arago formation of Oregon GF 89, p 3
Bashi series of Alabama ... Bull 43, pp 43-46, 69
Bells Landing series of Alabama Bull 43, pp 46-51, 69-70
Black Bluff series of Alabama Bull 43, pp 61-62, 70
Brule clay of Nebraska .. GF 87, p 2; GF 88, p 2
of South Dakota .. GF 85, p 4
of Wyoming, eastern .. WS 70, p 16
Buhrstone formation of Alabama Bull 43, pp 34-38, 69
Chadron formation or sand of Nebraska GF 88, p 2
of South Dakota .. GF 85, p 4
of Wyoming, eastern .. WS 70, pp 15-16
Claiborne beds of Alabama Bull 43, pp 25-34, 68
Clarno formation of Oregon, John Day Basin Bull 204, p 17
Coaledo formation of Oregon GF 73, pp 2-3
Cuchara formation of Colorado GF 71, pp 2, 3
Fayette sands of Gulf coast Bull 212, pp 21-22
Fayette sands of Texas .. Bull 184, p 43
Frio clays of Gulf coast .. Bull 212, pp 22-23
of Texas ... Bull 184, p 43
Hatchetigbee series of Alabama Bull 43, pp 39-43, 69
Huerfano formation of Colorado GF 71, pp 2, 3
John Day series of Oregon, John Day Basin Bull 204, p 18
Judith River beds, age and correlation of Ann 3, p 415
Kenai group of Alaska ... Ann 22, iii, pp 533, 534, 538, 543, 544, 556
Laramie group (partly Eocene, partly Cretaceous) Ann 3, pp 414-417
Lignitic group of Alabama Bull 43, pp 39-67, 69-70
of Northwest ... Ann 2, pp 43
of Texas, Arkansas, and Louisiana Bull 184, p 42
Lytton formation of Texas GF 76, p 6
Marine beds of Texas and Louisiana Bull 184, p 42
Martinez group of California Bull 15, p 10
Matthews Landing series of Alabama Bull 43, pp 57-60, 70
Midway series of Alabama Bull 43, pp 62-63, 70
Eocene rocks; Naheola series of Alabama ... Bull 43, pp 57-60, 70
Nanafalia series of Alabama ... Bull 43, pp 51-57, 70
of Alaska .. Ann 22, iii, p 533
of Arkansas .. Bull 184, p 42
of California .. Bull 15, pp 9-10
of Colorado, Spanish Peaks quadrangle ... GF 71, p 2
of Louisiana .. Bull 184, pp 42, 43
of Maryland, clays ... PP 11, pp 142-143
of Nebraska, Camp Clarke quadrangle ... GF 87, p 2
Scatts Bluff quadrangle .. GF 88, p 2
of Oregon, Coos Bay quadrangle .. GF 73, p 2
Port Orford quadrangle .. GF 89, p 3
of South Dakota, Oelrichs quadrangle .. GF 85, p 4
of Texas .. Bull 184, pp 42-43
Austin quadrangle ... GF 76, p 6
of Utah, coal field .. Ann 22, iii, pp 453, 454
of Virginia, Norfolk quadrangle ... GF 80, p 2
of Washington, coal fields .. Ann 22, iii, pp 484-485
of States. (See, also, formation names under this heading.)
Pamunkey formation of Virginia ... GF 80, p 2
Poison Canyon formation of Colorado ... GF 71, pp 2, 3.
Puget formation of Washington, coal fields ... Ann 22, iii, p 484
Pulaski formation of Oregon ... GF 73, p 2
Roslyn formation of Washington, coal fields .. Ann 22, iii, p 485
Tejon group of Pacific coast ... Bull 15, pp 9-10
Unga beds of Alaska .. Ann 22, iii, p 533
White limestone of Alabama ... Bull 43, pp 19-25, 68
Willspoint clays of Texas, Arkansas, and Louisiana Bull 184, p 42
Woods Bluff series of Alabama .. Bull 43, pp 43-46, 69
Yegua clays of Texas and Louisiana ... Bull 184, p 43
Yentna beds of Alaska .. Ann 22, iii, p 535
Eocene system, definition of ... Ann 14, 1, p 42
Epidote, occurrence of .. MR 1901, p 762
Equivalency of formations, discussion of ... Bull 210, pp 117-123
Erie formation of Kansas, flora of ... Bull 211, p 110
Erie glacial lobe, minor moraines of late Wisconsin stage in... Mon xli, pp 619-672
Erie and Ohio basins, glacial formations and drainage features of ... Mon xli
Erosion. (See Degradation.)
Eruptive rocks of Colorado, Leadville district.. Ann 2, pp 221-224, 226-228
of Vermont, Mount Ascutney ... Bull 209, pp 36-89
Erwin quartzite of Tennessee .. GF 90, p 5
Eskridge shales of Kansas, character and fauna of Bull 211, p 55
Esmeralda formation of Nevada ... Bull 208, p 19
Esopus Creek, New York, flow of, measurement of WS 47, p 36; WS 65, pp 63-65; WS 76, pp 97-98
pollution of ... WS 72, p 45
quality of water of ... WS 76, p 80
water powers on ... WS 65, p 66
Essexite, analysis of, from Massachusetts, Salem Neck Bull 209, pp 41, 66
Etowah River and tributaries, Georgia, flow of, measurement of Ann 22, iv, p 193; WS 48, pp 160-161; WS 49, p 208;
... WS 63, p 180; WS 65, pp 275-276; WS 75, p 89
Eulophoceratidae of the Cretaceous .. Mon xliv, pp 83-87
Eureka quartzite of Nevada .. Ann 2, pp 22 (map), 27, 29; Bull 8, pp 42-43; Bull 208, p 19
Europe, cement industry in .. MR 1900, p 743
Eutaw formation of Alabama .. Bull 43, pp 86-95, 117
Evaporation, formulas, relations, persistency, etc., of WS 80, pp 38-43
in California, Tahoe Lake, etc WS 68, pp 34-36
in Nevada, Tahoe Lake, etc ... WS 68, pp 34-36
in Oregon, from Crater Lake .. PP 3, pp 57-59
Ewing limestone of Ohio ... Bull 65, p 92
Excelsior Range, Nevada, geology of Bull 208, pp 109-113
Exeter River, New Hampshire, drainage area, fall, power, etc. Ann 22, iv, pp 79-81
Exposition work, cooperation in Ann 22, i, pp 42-44
Farmington coal in Pennsylvania GF 82, p 12
Farmville coal area, Virginia Ann 22, iii, pp 42-43
Faulting in Colorado, Silverton quadrangle Bull 182, p 37
Faults in Alaska, Copper River district Copper, p 62
in Arizona, Globe district ... PP 12, pp 97-106
in Georgia, Rome quadrangle GF 78, pp 4-5
in Missouri, Southwestern district Ann 22, ii, pp 108-117
in Nevada, south of fortieth parallel Bull 208, passim
in Tennessee, Cranberry quadrangle GF 90, p 6
Faults and folds in Appalachian Valley GF 78, p 4
in Green Mountain region ... Bull 195, pp 10-12
in Texas, Austin quadrangle .. GF 76, p 7
Faunal migrations, geological expression of .. Bull 210, pp 33-41
Faunas, geological, correlation of Bull 210
shifting of .. Bull 210, pp 97-116
Fayette sands of Gulf coast ... Bull 212, pp 21-22
of Texas .. Bull 184, p 43
Fayetteville shale of Ozark region Ann 22, ii, p 84
Fenneman (N. M.), the Boulder, Colorado, oil field Bull 213, pp 322-332
Ferriferous limestone of Pennsylvania, Ohio, West Virginia, and Maryland Bull 65, pp 173-175
Ferriferous limestone and clays of Ohio PP 11, p 197
Fertilizers, manufacture of, from slags Bull 213, pp 225-227
Feather River, California, flow of, measurement of WS 51, p 480
forest conditions in basin of ... PP 8, pp 52-96
Feldspar, analysis of, from Cacaquabic granite of Minnesota, Vermilion dis-

thin section of, from Vermont, Aucutney Mountain Bull 209, p 58
Feldspar and flint, statistics of MR 1900, p 895; MR 1901, pp 935-939
Fellows (A. L.), water resources of Colorado WS 74
Felisite-porphyry of Maine, Mount Desert Ann 8, ii, pp 1054-1055
Fire clay. (See Clay, fire.)
Fires, forest, in forest reserves PP 7, p 17
in northern Sierra Nevada ... PP 8, pp 40-44, 63-64, 83-85, 94-98, 106-108, 116-

in Oregon .. PP 4, pp 40-41
pollution of ... WS 72, pp 58-59
Fish Creek sandstone of Pennsylvania Bull 65, p 33
Fish River, Alaska, reconnaissance along, in 1900 N and N, pp 188-190, 195-196
Fishkill Creek, New York, flow of, measurement of WS 65, pp 74-76; WS 76, p 102

Bull. 215-03—7
Fishkill Creek, New York, quality of water of..............................WS 76, pp 83-84
water powers on...WS 65, p 76
Fissure veins of Arizona, Clifton..Bull 213, pp 138-140
Fissures, lode, in Colorado, Silverton quadrangle.....................Bull 182, pp 43-67
Fitch (C. H.), work in charge of..Ann 22, i, p 125; Ann 23, p 99
Flathead Lake, Montana, flow of, measurement of........................WS 66, p 132
hydrographic data relating to..WS 51, pp 434-436, 437-438
Flathead quartzite. (See, also, Alpreston quartzite.)
Flattop schist of Tennessee, Cranberry quadrangle.....................GF 90, p 4
Flint and feldspar, statistics of..MR 1900, p 895; MR 1901, pp 935-939
Flint River, Georgia, flow of, measurement of.........................Ann 22, iv, p 190; WS 48, pp 156-158; WS 65, pp 265-267; WS 75, p 78
Flat River and tributaries, Georgia, discharge measurements of......WS 63, p 179
Floats, stream measurement by means of...............................WS 56, pp 16-18; WS 76, pp 15-18
Floods and flood plains, observations on................................Ann 14, i, p 236
Florence flint of Kansas, synonymy, character, and fauna of........Bull 211, p 58
Florida; building stone from, statistics of............................MR 1900, p 662 et seq; MR 1901, p 643 et seq
clay deposits and statistics of..PP 11, pp 81-86
clay products of, statistics of...PP 11, pp 85-86; MR 1900, p 695 et seq; MR 1901, p 674 et seq
fuller's earth deposits in...Bull 213, pp 392-399; MR 1901, pp 926-932
limestone production of..MR 1900, pp 662, 685, 686, 687, 688; MR 1901, pp 643, 644, 667, 668, 669, 670
mineral springs of..MR 1900, pp 901, 902; MR 1901, pp 962, 964
phosphate rock in, statistics of..MR 1900, pp 804, 805, 806-809; MR 1901, pp 812, 813, 814-817
Florida River, Colorada, flow of, measurement of....................WS 66, pp 96-97; WS 74, pp 119-120; WS 75, p 176
Flow of rivers near New York City, observations on...................WS 76
of rivers under ice, measurement of....................................WS 76, pp 48-67
Floyd shale of Georgia..GF 78, pp 3-4
Fluorspar, occurrence, uses, and statistics of..........................MR 1900, pp 857-859; MR 1901, pp 879-883
Fluorspar, lead, and zinc deposits of western Kentucky..............Bull 213, pp 205-213
Folding in Indian Territory, Coalgate quadrangle......................GF 74, p 5
Folds in Nevada, south of fortieth parallel............................Bull 208, passim
in Pennsylvania, Gaines oil region.....................................Ann 22, iii, pp 616-620
in Tennessee, Cranberry quadrangle......................................GF 90, p 6
Folds and faults in Green Mountain region..............................Bull 195, pp 10-12
Foliation of rocks in Alaska, Seward Peninsula........................N and N, p 36
Fordham gneiss of New York City district...............................GF 83, p 4
reproduction of, in Oregon, Cascade Range Forest Reserve, northern portion..PP 9, pp 35-37
types of, in northern Sierra Nevada, composition, etc., of.........PP 8, pp 27-38
Forest, petrified, of Arizona...MR 1901, pp 756-758
Forest conditions in California, Sierra Nevada, northern............PP 8
in Oregon, Cascade Range Forest Reserve................................PP 9
in Washington, Cascade Range, between the Washington and Mount Rainier forest reserves..PP 6
Olympic Forest Reserve..PP 7
Forest fires in forest reserves .. PP 7, p 17.
in Oregon ... PP 4, pp 11-13
 Cascade Range Forest Reserve, northern portion PP 9, pp 40-41
Forest reserves in the West, list of, and map showing Ann 22, iv, p 43
 work on ... Ann 23, pp 162-164
Forests, effects of, on run-off .. WS 80, pp 55-56
 of Appalachian Mountain region, southern Ann 22, iv, p 178; WS 62, pp 25-50
 of Hawaiian Islands, Molokai, decay of WS 77, pp 21-24
 of Maine .. WS 69, pp 15-16
 of Minnesota, Vermilion district Mon xlv, pp 47-50
 of Oregon, stand of timber, classification of lands, etc PP 4
 of United States, western ... Ann 22, iv, pp 40-43
 of Washington ... PP 5
Formation names, bibliography, synonymy, and distribution of ... Bull 191
 Formulas and tables, geographic Bull 214
 Fort Hamlin, Alaska, reconnaissance from Kotzebue Sound to PP 10
 Fort Payne chert of Georgia ... GF 78, p 3
 Fort Riley limestone of Kansas, synonymy and fauna of Bull 211, pp. 58-59
 Fort Scott limestone of Kansas and Indian Territory Ann 22, iii, p 342; Bull 184, p 15; Bull 211, pp 29-31, 61
 Fort Union group, age and correlation of Ann 3, p 415
 fossils from .. Ann 6, pp 542-549
 Fort Wayne moraine, Ohio, distribution, topography, etc., of. Mon xli, pp 567-581
 Fossils, bionic value of .. Bull 210, pp 124-134
 (See, also, Plants, fossil; Invertebrates, fossil; Vertebrata, fossil.)
Fox Hills group in South Dakota .. Bull 21, p 11
France; antimony production of .. MR 1901, p 253
 asphaltum production of .. MR 1900, p 660, MR 1901, p 640
 bauxite from, statistics of .. MR 1901, p 226
 coal production of ... MR 1900, pp 315, 317; MR 1901, pp 311, 313
 copper from, statistics of ... MR 1900, pp 182; MR 1901, pp 192-193
 gypsum production of ... MR 1900, p 833; MR 1901, p 851
 iron and steel production of MR 1901, p 113
 lead from, statistics of ... MR 1900, pp 209, 210, 211
 manganese ore from, statistics of MR 1900, pp 131-132, 140; MR 1901, pp 145-146, 155
 nickel from, statistics of .. MR 1900, p 249; MR 1901, p 249
 ocher production of .. MR 1901, p 906
 phosphate rock production of MR 1901, p 822
 platinum in .. Bull 193, pp 52, 65-66
 pyrite production of .. MR 1900, p 826; MR 1901, pp 841, 842
 salt production of .. MR 1900, p 846; MR 1901, p 864
 sulphur production of ... MR 1901, p 837
 zinc from, statistics of .. MR 1900, p 226; MR 1901, p 223
 Franklin Furnace, New Jersey, zinc and manganese deposits of. Bull 213, pp 214-217
 Franklin Mountains, Texas; structure, formations, ores, and veins of Bull 178, pp 11-15
 Fredericksburg division of Texas GF 76, pp 3-5
 Fredericktown limestone of Ozark region Ann 22, ii, p 79
 Freeport clay of Ohio .. PP 11, p 198
 of Pennsylvania ... PP 11, pp 226-231
Freeport coal of Pennsylvania .. GF 82, p 11
Freeport limestones of Pennsylvania, Ohio, and West Virginia. Bull 65, pp 159, 163
Freeport sandstones of Pennsylvania, Ohio, and West Virginia Bull 65, pp 160, 163-164

hydrography of basin of ... WS 63, pp 115-135
French Broad River and tributaries, flow of, measurement of WS 49, pp 211-212
French Guiana, platinum in ... Bull 193, p 62
Frenchman River, Nebraska, flow of, measurement of WS 50, p 310; WS 74, pp 67-68, 69, 70

Frio clays of Gulf coast ... Bull 212, pp 22-23
of Texas ... Bull 184, p 43

Frog Mountain sandstone of Georgia GF 78, p 3
Fuel; coal, classification of, as Ann 22, iii, pp 19-22
Fuel ratios of coals in Southwestern field Ann 22, iii, p 21
Fuel value, comparative, of coal and Beaumont petroleum Bull 212, pp 160-161
Fuller (M. L.), asphalt, oil, and gas in southwestern Indiana Bull 213, pp 333-335
Gaines oil field of northern Pennsylvania Ann 22, iii, pp 573-627
Fuller (M. L.) and Ashley (G. H.), geology of the Ditney quadrangle, Indiana, ... GF 84
recent work in coal field of Indiana and Illinois Bull 213, pp 284-293
Fuller's earth, analysis of, from Florida, Mosquito Creek Bull 213, p 395; MR 1901, p 928
analysis of, from Florida, New River Junction MR 1901, p 928
from Florida, near Quincy ... Bull 213, pp 396, 397; MR 1901, pp 930, 931
River Junction, vicinity of .. Bull 213, p 395
from Georgia, Attapulgas ... Bull 213, p 393; MR 1901, p 924
from various localities .. Bull 213, pp 398-399; MR 1901, pp 933-934
of Florida and Georgia ... Bull 213, pp 392-399
publications on ... Bull 213, p 400
statistics of ... MR 1900, pp 893-894; MR 1901, p 921-934
Funeral and Grapevine ranges, California, geology of Bull 208, pp 187-194
Gabbroic rocks of Alaska, Ketchikan district PP 1, p 48
Gabbro, analysis of, from Minnesota, Vermillion district Mon xlv, p 405
analysis of, from Montana Black Butte Ann 22, ii, p 426, 514
from New York, Adirondacks ... Ann 22, ii, p 514
from Oregon, Port Orford quadrangle GF 89, p 4
metamorphism by, in Minnesota, Vermillion district Mon xlv, pp 161-162, 342-344
of Minnesota, Mesabi district ... Mon xliii, pp 57-59, 182-185, 272-274
of Montana, Elkhorn district ... Ann 22, ii, pp 426-427
of Oregon, Blue Mountains ... Ann 22, ii, p 588
Port Orford quadrangle ... GF 89, pp 3-4
of Tennessee, Cranberry quadrangle GF 90, p 5
of Vermont, Ascutney Mountain Bull 209, pp 38-48
Ganges and equipment for stream measurement WS 56, pp 23-28
Gaging stations for stream measurement WS 56, pp 21-29
in Appalachian region, southern WS 62, p 35
Gaging streams, methods employed in, in New York WS 65, pp 91-98
Gaines oil field of Pennsylvania, northern Ann 22, iii, pp 573-627
Galena of Ozark region .. Ann 22, ii, pp 113-114
of Upper Mississippi Valley, concentration of Ann 22, ii, pp 42-45
Galesburg shales of Kansas, character and synonymy of. Bull 211, p 36
Galicia, petroleum in, statistics of. MR 1901, pp 591, 611
Gannett (H.), forests of Oregon. PP 4
forests of Washington. PP 5
gazetteer of Cuba. Bull 192
gazetteer of Porto Rico. Bull 183
gazetteer of Texas. Bull 190
introduction to paper on forest conditions in the Cascade Range Forest Reserve, Oregon. PP 9, pp 15-26
origin of certain place names in the United States. Bull 197
work in charge of. Ann 22, i, pp 175-178; Ann 23, pp 162-164
Gannett (S. S.), geographic tables and formulas. Bull 214
work in charge of. Ann 22, i, p 139; Ann 23, pp 126, 162
Garnet, occurrence and statistics of. MR 1900, pp 760, 777; MR 1901, pp 744, 770
Garnet, abrasive, statistics of. MR 1900, pp 787, 798; MR 1901, p 801
Garrison formation of Kansas, synonymy, character, and fauna of. Bull 211, p 56
Gas, natural, in Coal Measure rocks, origin of. Bull 184, p 12
in Gulf Coastal Plain, associated with oil. Bull 212, p 154
in Indiana, Ditney quadrangle. GF 84, pp 7-8
in Louisiana. Bull 184, pp 59-60
in Pennsylvania, Masontown and Uniontown quadrangles. GF 82, pp 18-19
northern, Gaines oil field. Ann 22, iii, pp 60-5-606
in West Virginia, Charleston quadrangle. GF 72, p 6
statistics of. MR 1900, pp 629-651; MR 1901, pp 613-632
Gas, natural, and oil fields of Western Interior and northern Texas Coal Measures, and of the Upper Cretaceous and Tertiary of western Gulf Coast. Bull 184
Gas, natural, oil, and asphalt in Indiana, southwestern. Bull 213, pp 333-335
publications on. Bull 213, p 356
Gasconade limestone of Ozark region. Ann 22, ii, p 82
Gas-producing value of coals from Eastern Interior field. Ann 22, iii, pp 293-294
of Cuba. Bull 192
of Porto Rico. Bull 183
of Texas. Bull 190
Geest, proposed revival of the term. Ann 11, i, pp 278-279
Gem-cutting industry, extent of. MR 1901, pp 763-765
Genesee drainage basin, New York, features of. Mon xii, pp 201-209
Genesee River, New York, flow of, measurement of. WS 65, pp 139-142
rainfall, run-off, and evaporation in basin of. WS 80, pp 64, 72, 85, 99, 102
Genesee shale or group of New York. Mon xii, p 58; Bull 3, pp 7, 8, 9-10, 29, 30; Bull 41, pp 23, 24
Geographic dictionary of Alaska. Bull 187
Geographic names in the United States, origin of. Bull 197
Geographic Names, U. S. Board on, cooperation with. Ann 22, i, pp 44-45
Executive order creating, officers of, etc. Bull 187, pp 9-10
Geographic tables and formulas. Bull 214
Geography. (See State names.)
Geologic faunas, correlation of. Bull 210
Geologic formation names; bibliography, synonymy, and distribution. Bull 191
Geologic nomenclature, observations on. Ann 2, pp xlv, xlvi
tables showing. Ann 2, pp xliv, xlviii
Geologic work, cost of ... Ann 14, r, p 203
Geology, North American, bibliography and index of, 1732-1891, 1892-1900, Bull 127; Bull 188; Bull 203
Georgetown limestone of Texas .. GF 76, p 5.
Georgia; Alcovy River, flow of, measurement of........ WS 65, pp 260-261; WS 75, p 69
Apalachee River, flow of, measurement of........ WS 65, pp 258-259; WS 75, p 66
bauxite in Rome quadrangle .. GF 78, p 6
statistics of .. MR 1900, p 231; MR 1901, p 227
boring, deep, in, list of ... WS 57, pp 22-25
Broad River, flow of, measurement of Ann 22, iv, p 163;
WS 48, pp 151-152; WS 49, p 207; WS 65, pp 255-256; WS 75, p 65
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 643 et seq
Cartersville district, iron ores of .. Bull 213, pp 233-242
manganese ores of ... Bull 213, p 232
ocher deposits in ... Bull 213, pp 427-432
Cement from, statistics of .. MR 1900, pp 740, 745; MR 1901, p 726
Chattahoochee River and tributaries, flow of, measurements of Ann 22, iv, pp 191-192; WS 48, pp 158-160; WS 49, p 208;
WS 63, p 179; WS 65, pp 267-271; WS 75, pp 78-80
clay deposits and industry .. PP 11, pp 48, 64, 86-94
clay products of, statistics of ... MR 1900, p 695 et seq; MR 1901, p 674 et seq PP 11, pp 93-94
carbon area and statistics of ... Ann 22, iii, p 13; MR 1900,
pp 276 et seq, 358, 372-373; MR 1901, pp 287 et seq, 369-370
carbon fields of, production, etc., of Ann 22, iii, p 13
coke in, manufacture of ... MR 1900,
pp 462 et seq, 491-492; MR 1901, pp 454 et seq PP 11, pp 483-484
Conasagua River and tributaries, flow of, measurements of WS 49, p 209
Coosa River, flow of, measurement of Ann 22, iv, p 199; WS 48, pp 163-164; WS 65, pp 278-279; WS 75, p 90
Coosawattee River, flow of, measurement of Ann 22, iv, p 197; WS 48, pp 161-162; WS 49, p 209; WS 65, pp 276-277; WS 75, p 89
survey of ... Ann 22, iv, pp 194-196
corundum deposits in .. Bull 180, pp 63-65, 80-81
Dahlonega district, gold and pyrite deposits of Bull 213, pp 57-63
diamonds in, occurrence of .. MR 1901, p 730
Etowah River and tributaries, flow of, measurement of Ann 22, iv, p 193;
WS 48, pp 160-161; WS 49, p 208; WS 63, p 180; WS 65, pp 275-276; WS 75, p 89
Flint River, flow of, measurement of Ann 22, iv, p 190; WS 48, pp 156-158; WS 63, p 179; WS 65, pp 265-267; WS 75, p 78
survey of ... Ann 22, iv, pp 184-189
diagnostic earth in ... MR 1901, pp 923-926
deposits of, in Florida and ... Bull 213, pp 392-399
geography of Ringgold quadrangle .. GF 2, p 1
of Rome quadrangle .. GF 78, p 1
of Stevenson quadrangle .. GF 19, p 1
geologic and paleontologic investigations in Ann 23, p 63
gold and pyrite deposits of Dahlonega district Bull 213, pp 57-63
gold and silver from, statistics of .. MR 1900, pp 109-113; MR 1901, p 119 et seq
granite production of ... MR 1900,
pp 662, 663, 664, 665, 667; MR 1901, pp 643, 644,651, 652, 653
Hiwassee River Basin, discharge measurements in WS 49, p 217; WS 63, pp 177-178
Georgia; iron in Rome quadrangle ...GF 78, pp 5-6
iron and steel from, statistics of ...MR 1900, pp 43, 56, 57, 96; MR 1901, pp 45, 59, 63, 76, 103
iron ores of Cartersville district ...Bull 213, pp 233-242
lime in Rome quadrangle ..GF 78, p 6
limestone production of ...MR 1900, pp 662, 685, 686, 687, 688; MR 1901, pp 643, 644, 667, 668, 669, 670
manganese ores of Cartersville districtBull 213, p 232
statistics of ..MR 1900, pp 115, 116, 121-122; MR 1901, pp 127, 128, 134
marble, geologic and topographic, of. (See Map.)
marble production of ...MR 1900, pp 662, 682, 683, 684; MR 1901, pp 643, 644, 664, 665
mineral springs of ...MR 1900, pp 901, 902; MR 1901, pp 962, 964
ocher deposits in Cartersville districtBull 213, pp 427-432
Ocmulgee River, flow of, measurement ofAnn 22, iv, p 172; WS 48, pp 155-156; WS 49, p 207;
WS 65, pp 262-263, 264-265; WS 75, pp 70, 71
survey of ..Ann 22, iv, pp 167-172
Oostanaula River, flow of, measurement ofAnn 22, iv, p 198; WS 48, pp 162-163; WS 63, p 181; WS 65, pp 277-278; WS 75, p 90
paint, mineral, production of. ..MR 1900, p 881; MR 1901, p 903
rainfall in Oconee and Ocmulgee basinsWS 75, pp 72-76
rainfall and run-off in various river basins inWS 75, pp 72-76
Rome quadrangle, geology of ..GF 78
sandstone production of ..MR 1900, pp 662, 670, 671, 672; MR 1901, pp 643, 644, 656, 657, 658, 659
Savannah, artesian wells at ..WS 67, pp 97-101
Savannah River, flow of, measurement ofAnn 22, iv, p 162; WS 48, pp 150-151; WS 49, p 207; WS 65, pp 254-255; WS 75, pp 62, 64
slate in Rome quadrangle ...GF 78, p 6
production of ...MR 1900, pp 662, 677, 678, 680; MR 1901, pp 643, 644, 660
soils in Rome quadrangle, derivation, classification, etc., of ..GF 78, p 6
talc and soapstone in, statistics ofMR 1900, p 783; MR 1901, p 777
Tallapoosa River and tributaries, discharge measurements ofWS 63, p 181
Tallahulah River, flow of, measurement ofAnn 22, iv, p 167;
WS 48, p 148; WS 65, pp 251-252
Toccoa River, flow of, measurement ofAnn 22, iv, p 227;
WS 48, p 193; WS 49, p 218; WS 65, pp 310-311; WS 75, p 108
topographic work in ..Ann 22, i, pp 137, 138, 151, 171
topography of Rome quadrangle ...GF 78, p 1
of Stevenson quadrangle ...GF 19, p 1
Towaliga River, flow of, measurement ofAnn 22, iv, p 166;
WS 48, pp 154-155; WS 65, pp 263-264; WS 75, p 70
Yellow River, flow of, measurement ofAnn 22, iv, p 165;
WS 48, pp 153-154; WS 65, pp 261-262; WS 75, p 69
Gephyroceratidw of America ...Mon xii, pp 33-34
Gerdine (T. G.), work in charge ofAnn 22, i, pp 98, 169; Ann 23, pp 73-75
Gering formation of Nebraska ...GF 87, p 2; GF 88, pp 2-3
Germany; antimony production of ..MR 1901, p 253
arsenic production of ...MR 1901, p 257
asphalt in, statistics of ...MR 1900, p 660; MR 1901, p 640
Germany; borax production of MR 1901, p 872
coal production of MR 1900, pp 315, 316; MR 1901, pp 311, 312
copper from, statistics of MR 1900,
pp 179-182, 184, 185, 187-189; MR 1901, pp 190-192, 193
graphite production of MR 1901, p 900
gypsum production of MR 1900, p 833; MR 1901, p 851
iron and steel production of MR 1901, p 113
lead from, statistics of MR 1900, pp 209, 210, 211
manganese ore from, statistics of MR 1900,
pp 132-133, 140; MR 1901, pp 147, 155
nickel from, statistics of MR 1900, p 249; MR 1901, p 249
other production of MR 1901, p 906
petroleum in, statistics of MR 1900, pp 613-614; MR 1901, pp 595-596, 611
platinum in Bull 193, pp 32, 66
pyrite production of MR 1901, pp 841, 842
salt production of MR 1900, p 846; MR 1901, p 864
sulphur production of MR 1901, p 837
Giants Range, Minnesota Mon xlv, pp 35-36
Giants Range granite of Minnesota, Vermilion district Mon xlv, pp 353-361
Gila conglomerate of Arizona PP 12, pp 47-57
Gila River, Arizona, cement investigations on Bull 213, pp 372-379
flow of, measurement of Ann 22, iv, pp 397-398;
WS 50, pp 385-386; WS 66, pp 98-99; WS 75, pp 179-180
topography of basin of Ann 12, ii, pp 292-295
Gilbert (G. K.), work in charge of Ann 22, i, p 94; Ann 23, p 44
Gilmore sandstone of Pennsylvania Bull 65, pp 31-32
Gilsonite. (See Uintaite.)
Girty (G. H.), Carboniferous fossils of Globe quadrangle, Arizona... PP 12, pp 42-44
work in charge of Ann 22, i, pp 99-100; Ann 23, p 45
Girty (G. H.), White (D.), and Adams (G. I.), stratigraphy and paleontology of the Upper Carboniferous rocks of the Kansas section... Bull 211
Glacial boundary in Erie and Ohio basins, discussion of Mon xli, pp 220-227
Glacial deposits of Alaska, Seward Peninsula N and N, pp 43-46
of Indiana, Ditney quadrangle GF 84, pp 3-4
of Minnesota, Mesabi district Mon xliii, pp 191-194
Glacial formations and drainage features of Erie and Ohio basins Mon xli
Glacial history of Indiana, Ditney quadrangle GF 84, pp 6-7
Glaciation, drainage changes caused by Mon xlii, pp 196-198
drift in Minnesota, Mesabi district Mon xliii, pp 191-194
in Minnesota, Vermilion district Mon xliv, pp 425-430
in Alaska, Copper River district Copper, pp 76-82
Dall, Allen, Kanuti, and Kowak rivers PP 10, pp 45-48
Norton Bay region N and N, p 208
southeastern PP 1, pp 31-35
in Illinois, Chicago district GF 81, pp 5-11
in Indiana, Chicago district GF 81, pp 5-11
in Oregon, Mount Mazama PP 3, pp 41-44
in Vermont, Mount Ascutney Bull 209, pp 12-13
Glacier Creek, Alaska, gold on N and N, p 75
Gladhaugh copper mine, Alaska Copper, p 89
Glauconite, analyses of, from various localities Mon xliv, pp 240-242, 244
similarity of greenalite to Mon xliv, pp 239-243
Glauconite and greenalite, composition of Mon xliv, pp 245-247
Glen Rose formation of Texas GF 76, p 3
Glenn (L. C.), work in charge of. Ann 22, i, pp 68-69
Glenn Creek gold mining district, Alaska, preliminary report on. Bull 213, pp 49-56
Globe copper district, Arizona, geology of. PP 12
Globe limestone of Arizona. PP 12, pp 39-46
Glyphioceratidae of America. Mon xlii, pp 58-111
Gneiss of Tennessee, Cranberry quadrangle. GF 90, pp 2, 3
Gold in Alaska, Copper River district. Copper, pp 90-91
in Alaska, Dall, Allen, Kanuti, and Kowak rivers, and Kotzebue Sound. PP 10, pp 50-51
Norton Bay region. N and N, pp 212-213
in Colorado, Cripple Creek district. Ann 16, ii, pp 137-209
Silverton quadrangle. Bull 182
in Idaho, Nez Perce region. WS 54, pp 127-129
in Oregon, Coos Bay quadrangle. GF 73, p 5
Port Orford quadrangle. GF 89, pp 5-6
in Tennessee, Cranberry quadrangle. GF 90, p 8
ores of. MR 1901, pp 969-970
(See, also, Placer gold.)
Gold and pyrite deposits of the Dahlonega district, Georgia. Bull 213, pp 57-63
Gold and silver in shales from western Kansas, tests for. Bull 202
production of, statistics of. MR 1900, pp 105-113; MR 1901, pp 117-126
publications on. Bull 213, pp 90-91
Gold and silver deposits of Oregon, Blue Mountains, distribution, age, etc., of. Ann 22, ii, pp 599-629
Gold belt of the Blue Mountains of Oregon. Ann 22, ii, pp 551-776
Gold fields of Alaska, Nome and Seward Peninsula, reconnaissance of, in 1900. N and N, pp 1-180
Gold-quartz veins in Alaska, Nome region. N and N, pp 143-144
relation of, to structure, in Alaska, Nome region. N and N, p 38
Golden Gate Range, Nevada, geology of. Bull 208, pp 57-59
Goode (R. U.), work in charge of. Ann 22, i, pp. 135, 144, 161; Ann 23, p 121
Goode (R. U.), Wilson (H. M.), Renshawe (J. H.), and Douglas (E. M.), results of primary triangulation and primary traverse, 1900-1901; 1901-2. Bull 181; Bull 201
results of spirit leveling in 1900-1901. Bull 185
Goodland limestone of Indian Territory. GF 79, p 6
Goshen Hole and Patrick quadrangles, eastern Wyoming and western Nebraska, geology and water resources of. WS 70
Gowanda moraine, New York, distribution, character, etc., of. Mon xli, pp 673-677
Grahamite in West Virginia, occurrence, geology, etc., of. Ann 22, i, pp 232-240
Grainger shale of Tennessee. GF 75, p. 4
Grand Canyon district, geography of. Ann 2, pp 69-73
Grand Canyon group of Colorado River. Bull 8, p 39; Bull 208, p 19
Grand Encampment Creek, Wyoming, description of. Ann 22, iv, p 308
flow of, measurement of. Ann 22, iv, pp 308-310; WS 49, p 273
Grand Gulf formation of Louisiana. Bull 184, p 44
Grand River division, Colorado, irrigation system of. WS 74, pp 127-147

hydrography of basin of Ann 22, iv, pp 254-256; WS 49, pp 239-249

Grand River Basin, Ohio, physical features of Mon xli, pp 74-75

Grand River glacial lobe, Ohio, early Wisconsin drift of Mon xxi, p 351
main morainic system of late Wisconsin stage in Mon xli, pp 457-474

Grandfather Mountain, North Carolina, general description of WS 62, p 21

Graneros shale of South Dakota GF 85, p 4

Granite, analysis of, from Alaska, Glacier Island and the moraine of Miles Glacier Copper, p 54
analysis of, from Minnesota, Vermilion district Mon xiv, p 367
from Montana, Elkhorn, vicinity of Ann 22, ii, p 424
from Oregon, Sparta Ann 22, ii, p 586

intrusion of, into graywacke-slate, intricate nature of, in Minnesota,
Mesabi district Mon xlii, p 85

of Alaska, Ketchikan district PP 1, pp 46-47
of Arizona, Globe district PP 12, pp 65-75, 78
of Colorado, Cripple Creek district Ann 16 ii, pp 20-23, 97-99
of Indian Territory, Atoka quadrangle GF 79, pp 2, 7
of Minnesota, Mesabi district Mon xliv, pp 68-69, 78-80

Vermilion district Mon xlvi, pp 246-274

of Montana, Elkhorn district Ann 22, ii, pp 423-424
of New York City district GF 83, p 5
of Oregon, Blue Mountains Ann 22, ii, pp 585-586
of Tennessee, Cranberry quadrangle GF 90, p 3

statistics of MR 1900,

pp 661, 662, 663-665; MR 1901, pp 643, 645, 647, 649-654

Granite-felsophyre of Colorado, Spanish Peaks quadrangle GF 71, p 4
Granite-porphry, analysis of, from Arizona, Globe district PP 12, p 69
analysis of, from Minnesota, Vermilion district Mon xlv, p 367
of Colorado, Spanish Peaks quadrangle GF 71, p 4

Granitite, analysis of, from Arizona; Globe district PP 2, pp 29-30

analysis of, from Germany, Odenwald PP 12, p 67-75
analysis of, from Arizona, Globe district PP 12, p 69

Granodiorite, analysis of, average Bull 209, p 47
analysis of, from Arizona, Globe quadrangle PP 12, p 60

from Oregon, Bald Mountain Ann 22, ii, p 587
of Oregon, Blue Mountains Ann 22, ii, pp 586-587

Grant and Quinn Canyon ranges, Nevada, geology of Bull 208, pp 68-74
Grantley Harbor region, Alaska, gold in N and N, p 126

Granules and concretionary structures, thin sections of, in Clinton iron ore Mon xlvi, p 250

Granulite, analysis of, from California, Milton Ann 22, ii, p 540
Grapevine and Funeral ranges, California, geology of Bull 208, pp 187-194

Graphite, publications on Bull 213, pp 439-440

statistics of MR 1900, pp 875-877; MR 1901, pp 897-900

Grasse River, New York, description of WS 65, pp 31-32, 33
Gravina series of Alaska, Ketchikan district PP 1, p 45

Gravity, specific, of petroleum from various fields Bull 212, pp 146-147
Graydon sandstone of Ozark region Ann 22, iv, p 88
Graywacke of Minnesota, Mesabi district Mon xliii, pp 74–75
 thin section of, from Minnesota, Mesabi district, showing progressive meta-
morphism in approaching intrusive granite Mon xliii, p 82
Grazing in Oregon, Cascade Range Forest Reserve, northern portion. PP 9, pp 38–40
Grazing lands in California, Sierra Nevada, northern PP 8, pp 56, 69, 88, 98, 110, 122, 134, 140, 148, 161, 175, 184
 in forest reserves PP 7, p 19
 in the West Ann 22, iv, pp 44–48
Great Britain; bauxite from, statistics of MR 1901, p 226
 coal production of MR 1900, pp 315, 316; MR 1901, pp 311, 312
 gypsum production of MR 1900, p 833; MR 1901, p 850
 iron and steel production of MR 1901, pp 112–113
 jasper in .. MR 1901, p 756
 lead from, statistics of MR 1901, pp 209, 210, 211
 manganese ore from, statistics of MR 1900, pp 131, 140; MR 1901, p 145
 other production of MR 1901, p 906
 petroleum in, statistics of MR 1900, pp 616–618; MR 1901, pp 598–600
 pyrite production of MR 1901, p 841, 842
 salt production of MR 1900, p 846; MR 1901, p 864
 zinc from, statistics of MR 1900, p 226; MR 1901, p 223

Great Lakes watershed, stream measurements in Ann 22, iv, pp 239–268
Great limestone of Pennsylvania, Ohio, and West Virginia Bull 65, pp 59–60
Great Miami River, course, present and preglacial, of Mon xli, pp 182–184
Great Plains province, altitude, drainage, and general features of GF 85, p 1
Great Salt Lake, fluctuations of level of Ann 22, iv, pp 412–416
 rainfall in basin of Ann 22, iv, pp 413–416
Great Works River, New Hampshire, drainage area, fall, power, etc. Ann 22, iv, pp 71–73

Grecian Archipelago, emery in Bull 180, p 91
Greece, lead from, statistics of MR 1900, pp 209, 210, 211
 manganese ore from, statistics of MR 1900, pp 137, 140; MR 1901, pp 153, 155
 sulphur production of MR 1901, p 837
Green Mountain region, structural details in eastern New York and Bull 195
Green River, Washington, forest conditions in basin of PP 6, p 24
 hydrography of basin of Ann 22, iv, pp 358–359
Green River irrigation division, Colorado, drainage, gageings, etc., in WS 74, pp 146–147
Green River group, age and correlation of Ann 3, p 416
 similarity of, to glauconite Mon xliii, pp 239–243
Greenalite and glauconite, composition of Mon xliii, pp 243–247
Greenalite granules, thin section of, from Minnesota, Mesabi district Mon xliii, pp 106, 128
Greenalite rocks, analyses of, from Minnesota, Mesabi district Mon xliii, p 108
Greenbrier limestone lentil of Pennsylvania GF 82, p 6
Greenbrier River, West Virginia, flow of, measurement of Ann 22, iv, p 221; WS 48, pp 178–179; WS 65, pp 290–291; WS 75, p 100
Greenhorn limestone of South Dakota GF 85, p 4
Greensand marl, occurrence of MR 1901, pp 823–827
108 INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

Greenstones of Alaska, Seward Peninsula, northwestern portionPP 2, p 29
of Minnesota, Mesabi district .. Mon xliv, pp 63-68
Greenstone-schists of Alaska, Copper River districtCopper, p 53
of Alaska, Ketchikan district ..PP 1, pp 48-49
Greenstones and greenstone-schists of Alaska, Seward Peninsula. N and N, pp 31-33
Gregory (H. E.), work in charge of Ann 22, iv, pp 65, 66; Ann 23, p 45
Grindstones, statistics of MR 1900, pp 787, 789-791; MR 1901, pp 789-792
Grisswold (W. T.), Berea grit oil sand in the Cadiz quadrangle, OhioBull 198
structural work during 1901 and 1902 in eastern Ohio oil fieldsBull 213,
work in charge of .. Ann 22, i, pp 140-141; Ann 23, pp 45-46
Gruudelite, analysis of, average .. Bull 209, p 75
Grossularite, occurrence of MR 1901, pp 745-746
Ground ice of Alaska, Seward PeninsulaN and N, p 47
Ground water in arid lands .. Ann 22, iv, p 642
in California, Kings River delta ..WS 58, pp 53-55
in Hawaiian Islands, Molokai, utilization ofWS 77, pp 56-59
in Washington, Ellensburg quadrangleGF 86, p 6
Yakima County ..WS 55, pp 37-38
movements of, and growth of streams by accession ofWS 80, pp 43-46
of High Plains, depth, origin, etc., ofAnn 22, iv, pp 640-652
Guadalupe River, Texas, flow of, measurement ofWS 66, pp 62-63
Guertie sand of Indian Territory ...GF 74, p 4
Guiana, diamonds in, occurrence ofMR 1900, pp 752-753; MR 1901, p 735
Gulf Coastal Plain, geology of Bull 212, pp 15-67
Gulf of Mexico watershed, stream measurements in Ann 22, iv, pp 184-210, 347-357
Gulf series of Texas ...GF 76, pp 5-6
Gulf slope, geologic reconnaissance inAnn 14, i, p 241
Gunflint formation, granules in, photomicrograph of, from Minnesota, Vermillion district ..Mon xliv, p 382
of Minnesota, Vermilion districtAnn 22, iv, pp 374-390
Gunnison River, Colorado, flow of, measurement ofAnn 22, iv, p 390; WS 50,
pp 378-379; WS 66, pp 93-95; WS 75, pp 175
Guyandot sandstone lentil in West VirginiaGF 77, p 4
analysis of, from South Dakota, Hot SpringsGF 85, fig 6
from Virginia, Plastero ...Bull 213, p 412
association of rock salt, petroleum, sulphur, and ...Bull 184, pp 49-53
of Michigan, Grand Rapids, in relation to cement industry Ann 22, iii, p 674
of South Dakota, Oelrichs quadrangleGF 85, p 6
publications on ..Bull 213, p 417
Gypsum and salt deposits of Virginia, southwesternBull 213, pp 406-416
Gypsum industry, mining and technology ofBull 213, pp 410-416
Gypsum rock, analysis of, from Virginia, Bradford, east ofBull 213, p 411
Hackberry shales of Iowa, northeasternAnn 11, i, p 234
Hager coal of Pennsylvania ..GF 82, p 12
Hague (A.), work in charge ofAnn 22, i, p 82; Ann 23, p 46
Halloysite, analysis of, from Colorado, Rico district, Logan mine ..Ann 22, ii, p 285
Hamburg limestone and shale of Nevada, EurekaAnn 2, pp 22, 27, 29, 34;
Ann 3, pp 253, 255-256; Ann 4, pp 229, 231; Bull 208, p 19
Hamburg moraine, New York, distribution, topography, etc., ofMon xli, pp 677-681
Hamilton formation of New York... Bull 3, p 9
of New York, Cayuga Lake section, fauna of.................................. Bull 206
faunal dissection of... Bull 210, pp 50–66
history of.. Bull 206, pp 17–19
sections of, comparison of... Bull 206, pp 83–88
Hamilton group of New York.. Mon xli, p 57; Bull 41, p 22
Hampton shale of Tennessee... GF 90, p 5
Hanagita trail, Alaska.. Copper, pp 21–22
Hannibal sandstone of Ozark region... Ann 22, iii, p 86
Hardness of river water, determination of... WS 76, pp 76–86; WS 79, pp 30–31
Harrison diorite of New York City district... GF 83, p 5
Hartford limestone of Kansas, synonymy, character, and fauna of.............. Bull 211, p 48
Hartshorne sandstone of Indian Territory... Ann 22, iii, p 376, pl xxvi; GF 73, p 3; GF 79, p 5
Hartwell moraine, Ohio, distribution, topography, etc., of................................ Mon xli, pp 304–326
Harvey conglomerate lentil in West Virginia.. GF 77, p 4
Hasseltine (R. M.), bituminous coal field of Ohio...................................... Ann 22, iii, pp 215–226
Hatchetigbee series of Alabama... Bull 43, pp 39–43, 69
Hawaiian Islands; Molokai, geology of... WS 77, pp 12–15
topography of.. WS 77, pp 9–12
water resources of... WS 77
Hay (O. P.), bibliography and catalogue of fossil Vertebrata of North
America.. Bull 179
Hayes (C. W.), asphalt deposits of Pike County, Arkansas.......................... Bull 213, pp 353–355
coal fields of United States... Ann 22, iii, pp 7–24; Bull 213, pp 257–269
geology of Rome quadrangle, Georgia-Alabama.. GF 78
introduction to Contributions to Economic Geology, 1902.......................... Bull 213, pp 9–14
investigation of nonmetalliciferous economic minerals................................. Bull 213, pp 29–30
manganese ores of Cartersville district, Georgia.. Bull 213, p 232
oil fields of Texas-Louisiana Gulf Coastal Plain.. Bull 213, pp 345–352
origin and extent of Tennessee white phosphates...................................... Bull 213, pp 418–423
southern Appalachian coal field.. Ann 22, iii, pp 227–263
work in charge of.. Ann 22, i, p 62; Ann 23, pp 31, 46–47
Hayes (C. W.) and Eckel (E. C.), iron ores of the Cartersville district,
Georgia ... Bull 213, pp 233–242
occurrence and development of ocher deposits in the Cartersville district,
Georgia ... Bull 213, pp 427–432
Hayes (C. W.) and Kennedy (W.), oil fields of the Texas-Louisiana Gulf
Coastal Plain.. Bull 212
Hayes River beds of Alaska.. Ann 22, iii, p 535
Hays (J. W.), use of stream gageings for computation of water power.............. WS 47, pp 10–15
Heinziidae of the Cretaceous... Mon xliii, pp 128–136
Helderberg limestone in Erie and Ohio basins.. Mon xli, p 56
Helderberg, Lower, of Ohio... Ann 8, ii, pp 499, 507
Hematite in Georgia, Rome quadrangle.. GF 78, p 5
in Minnesota, Mesabi district... Mon xliii, pp 93, 209, 218
Henness Pass Valley reservoir site, California, surveys of.......................... WS 68, pp 66–68
Henrietta formation of Missouri.. Ann 22, iii, p 342
Hermosa formation of Colorado, Silverton quadrangle............................... Bull 182, p 35
Hertza limestone of Kansas, character, synonymy, and fauna of.................. Bull 211, pp 35–36
Heulandite, action of ammonium chloride on.. Bull 207, p 32
analysis of, from Iceland, Bernfiord... Bull 207, p 32
Hicks (L. A.), generation and transmission of electric power and installation of pumping plants in Kings River delta, California...WS 58, pp 86-95

High Plains, ground water of, depth, origin, etc...Ann 22, iv, pp 640-652
irrigable and nonirrigable lands of...Ann 22, iv, p 639
land subdivision, natural unit of, on...Ann 22, iv, pp 657-661
position, character, and origin of...Ann 22, iv, pp 637-639
stock farming on...Ann 22, iv, pp 654-655
utilization of...Ann 22, iv, pp 631-639

Highland and Schell Creek ranges, Nevada, geology of...Bull 208, pp 38-47

Highland Rim in Tennessee...GF 77, p 1
Highways in Appalachian Mountain region, southern...Ann 22, iv, p 179
Hiko Range, Nevada, geology of...Bull 208, p 152

Hilgard (E. W.), report on artesian water supply of Gage canal system, California, extract from...WS 59, pp 80-83

Hill (R. T.), work in charge of...Ann 22, i, pp 87-88; Ann 23, p 47
Hill (R. T.) and Vaughan (T. W.), geology of Austin quadrangle, Texas...GF 76
Hillabee Creek, Alabama, flow of, measurement of...WS 48, pp 172-173; WS 65, pp 271-272; WS 75, p 82
Hills (R. C.), geology of Spanish Peaks quadrangle, Colorado...GF 71

Hinton formation of West Virginia...GF 77, p 3
Hiwassee River and tributaries, flow of, measurements of...WS 49, pp 217-218; WS 63, pp 177-178

Hobble Creek, Utah, irrigation data relating to...WS 52, pp 505-507
Hobbs (W. H.), old tungsten mine at Trumbull, Connecticut, geology, petrography, etc., of...Ann 22, ii, pp 7-22
tungsten mining at Trumbull, Connecticut...Bull 213, p 98
work in charge of...Ann 22, i, p 67; Ann 23, pp 47-48
Hobo Gulch lime-shale of Montana...Ann 22, ii, p 436
Hockanum River, Connecticut, quality of water of...WS 79, pp 89-91
Hocking drainage system, Ohio, features, preglacial and present, of...Mon x II, pp 169-172
Hocking Valley, Ohio, description of...PP 13, pp 35-36
Holdenville shale of Indian Territory...GF 74, p 4
Holland, coal production of...MR 1901, p 311
zinc from, statistics of...MR 1900, p 226; MR 1901, p 223
Hollick (A.), Cretaceous deposits of Staten Island...GF 83, pp 10-11
Holston marble of Tennessee...GF 75, p 3
Holston River, Tennessee, flow of, measurement of...WS 48, pp 182-183; WS 65, pp 297-298
hydrography of basin of...WS 62, pp 36-77
Holston River and tributaries, flow of, measurements of...WS 49, pp 214-215
Holmes (J. A.), the mica industry in 1900...MR 1900, p 852-856
Homewood sandstone of Pennsylvania, Ohio, and West Virginia. Bull 65, pp 199-200
Hoosic River, pollution of...WS 72, pp 41-43
Hornblende-andesite-porphyry, analysis of, from Montana, Elkhorn district...Ann 22, ii, p 525
Hornblende-biotite-diorite, analysis of, from Vermont, Little Ascutney Mountain...Bull 209, pp 44, 118
thin section of, from Vermont, Ascutney Mountain...Bull 209, p 32
Hornblende-biotite-nordmarkite, analysis of, from Vermont, Ascutney Mountain Bull 209, p 59
Hornblende-paisanite, analyses of, from Vermont, Ascutney and Little Ascutney mountains Bull 209, p 75
basic segregation in, from Vermont, Ascutney Mountain Bull 209, p 66
Hornblende-pyroxene-andesite, analysis of, from Yellowstone Park, Sepulcre Mountain Ann 22, ii, p 525
Hornblendic schists of Minnesota, Mesabi district Mon xliv, pp 66-68
Hornfels, thin section of, from Vermont, Ascutney Mountain Bull 209, p 32
Horton (R. E.), Grand River, Michigan, hydrographic data concerning WS 49, pp 239-249
methods employed in gaging New York streams in 1900 WS 47, pp 37-41
Hot Creek Range, Nevada, geology of Bull 208, pp 84-87
Housatonic River, flow of, measurement of WS 47, pp 35-36; WS 65, pp 87-90; WS 75, p 24; WS 76, p 104
quality of water of WS 76, pp 84-85; WS 79, pp 98-107
Hovey (E. O.), ores of economic importance MR 1901, pp 967-973
Howard limestone of Kansas, synonymy, character, and fauna of Bull 211, p 50
Hübnerite in Colorado, Silverton quadrangle Bull 182, pp 86-87, 143
Hudson group of Illinois GF 81, p 2
Hudson River, New York, drainage areas and pollution in basin of WS 72, p 36
ice obtained from WS 72, pp 61-64
rainfall, run-off, and evaporation in basin of WS 80, pp 63, 64, 70, 71, 72, 77, 78, 96, 99
water from, analyses of, at Poughkeepsie WS 72, p 35
Hudson River and tributaries, hydrography of WS 65, pp 42-87
hydrography of, with respect to pollution WS 72, pp 34-72
Hudson River group in Erie and Ohio basins Mon xli, p 54
Hudson schist of New York City district GF 83, p 4
Hudson shales, clays derived from PP 61, p 50
of Wisconsin PP 11, p 265
Huerfano formation of Colorado GF 71, pp 2, 3
Humboldt Range, Nevada, geology of Bull 208, pp 59-61
Humboldt series of Nevada Bull 208, p 20
Humidity, relative, of Costa Rica Ann 22, iv, pp 520-521
of Nicaragua Ann 22, iv, pp 517-519, 522
Hungary, pyrite production of MR 1901, pp 841, 842
sulphur production of MR 1901, p. 837
Huntington series of Oregon Ann 22, ii, p. 579
Hunton limestone of Indian Territory GF 79, p 3
Huron River, Michigan, hydrography of basin of Ann 22, iv, pp 259-260; WS 49, p 251
Huronian and Potsdam formations, unconformity between Ann 7, pp 409-412
Huronian rocks of Great Lakes region Bull 8, pp 15, 16, 20
of Minnesota, Mesabi district Mon xliv, pp 72-181
 Vermilion district Mon xlv, pp 275-396
Hyatt (A.), Pseudoceratites of the Cretaceous Mon xliv
Hydrocarbons, classification and features of Ann 22, 1, pp 220-224; Bull 213, pp 296-300
Hydrographers, resident, in the States, list of Ann 22, iv, p 53
Hydrographic work, cooperation of States in Ann 22, i, pp 30-34
Hydrography; chlorine method of determining rate of underflow WS 67, pp 46-48
Cornell University experiments in stream measurement WS 64, pp 54-95
discharge measurements of New York canals and feeders, tests to deter-
mine accuracy of WS 47, pp 18-29
drainage areas of New York streams WS 47, pp 40-41
of streams in United States WS 52, pp 524-548
drainage basins, underground WS 67, pp 32-33
electric method of determining rate of underflow WS 67, pp 48-51
floats, use of, to determine current velocity WS 76, pp 15-18
gaging stations in Appalachian region, southern WS 62, p 35
Hawaiian Islands, Molokai, water resources of WS 77
meters, current, description and use of WS 64, pp 19-22, 34-44
methods employed in gaging New York streams in 1900 WS 47, pp 37-41
of American isthmus Ann 22, iv, pp 507-630
of Appalachian Mountain region, southern WS 62; WS 63
of Maine WS 69, pp 16-119
of Nicaragua canal route Ann 22, iv, pp 546-592
of Panama canal route Ann 22, iv, pp 593-630
of United States arid region Ann 16, iv, pp 496-533
rating tables for rivers in various States WS 52, pp 511-523; WS 65, pp 318-324
river stations, operations at, in 1900 WS 47; WS 52
operations at, in 1901 WS 65; WS 66
rivers, flow of, under ice, measurement of WS 76, pp 48-67
near New York City, flow of, observations on WS 76
velocity of, methods of measuring WS 76, pp 14-20
run-off in Colorado WS 74, pp 14-19
sediment held in suspension by streams, measurement of, method of WS 47,
pp 15-18
stream flow, measuring and computing, methods of WS 64, pp 31-46
stream measurements, accuracy of WS 64
in 1900 and in 1901 Ann 22, iv, pp 9-506; WS 75
methods of WS 56
streams in California, southern, flow of, measurement of WS 59,
pp 47-59; WS 60, pp 107-111
surface fluctuations of, measurement of WS 64, pp 23-25
velocity of, methods of measuring WS 64, pp 13-23
velocity curves WS 64, pp 25-27, 72-76
turbidity, color, alkalinity, and hardness of river water, determination
of WS 76, pp 67-86
underflow, chlorine and electric methods of determining rate of WS 67, pp 46-51
velocity curves, vertical, in stream measurement WS 76, pp 20-47, 60-67
water, moving, pulsation of WS 64, pp 28-31
water, underground, motions of WS 67
origin and extent of WS 67, pp 13-30
recovery of, from surface flows WS 67, pp 61-78
water power, computation of, method of using stream gagings for WS 47, pp 10-15
weirs, use of, in stream measurement WS 64, pp 31-34; WS 76, pp 15-18
work in, reports on, 1901, 1902 Ann 22, i, pp 124-132; Ann 23, pp 11-15, 99-119; WS 65; WS 66; WS 75
Hypersthene-andesite, analysis of, from California, Franklin Hill PP 3, p 151
analysis of, from Montana, Red Bluff Ann 22, ii, p 525
Hypersthene-dacites of Oregon, Crater Lake National Park, petrography of .. PP 3, pp 99-141
Ice obtained from Hudson River .. WS 72, pp 61-64
Ice sheet, development and movement of .. GF 81, pp 4-5
Idaho; artesian basins in southwestern .. WS 78
artesian water in Snake River Desert .. Ann 22, iv, pp 428-430
artesian wells in Nez Perce region .. WS 54, pp 104-119
Bear River and tributaries, flow of, measurements of .. Ann 22, iv, pp 407-408; WS 51, pp 409-410; WS 66, p 116; WS 75, p 191
Bitterroot Mountains, geology of .. WS 53, pp 16-19
Blue Hills, physiography of .. WS 53, p 59
Boise River, flow of, measurement of .. Ann 22, iv, pp 431-432; WS 51, pp 427-429; WS 66, pp 128-129; WS 75, p 201
Boise Valley, miscellaneous discharge measurements in WS 66, p 129
borings, deep in .. WS 57, p 25
Bruneau River, flow of, measurement of .. WS 51, pp 426-427; WS 66, p 127
building stone in Nez Perce region .. WS 54, pp 119-122

cameras of MR 1900, p 662 et seq; MR 1901, p 643 et seq
Camas Prairie, physiography of .. WS 53, pp 60-61
canyons of Snake, Clearwater, and other rivers WS 53, pp 62-70
Clarkston Plateau, physiography of .. WS 53, pp 57-58
clay products of, statistics of .. MR 1900, p 695 et seq; MR 1901, p 674 et seq
Clearwater canyons, physiography of .. WS 53, pp 69-70
coil deposits in; summary of knowledge .. Ann 22, iii, pp 459-460
coil fields of, production, etc., of .. Ann 22, iii, p 13;
MR 1900, pp 277 et seq, 359, 373; MR 1900, pp 287 et seq, 370
copper in Nez Perce region .. WS 54, pp 127-129

crag Mountain, physiography of .. WS 53, pp 59-60
Cub River, flow of, measurement of .. Ann 22, iv, p 408; WS 51, pp 410-411; WS 66, p 118
elevations in Nez Perce region .. WS 54, p 132
gography of Boise quadrangle .. GF 45, p 1
of Wood River mining district .. Ann 20, iii, p 190
geologic and paleontologic investigations in Ann 23, pp 56, 65-66; Bull 213, p 26
gold in Nez Perce region .. WS 54, pp 127-129
gold and silver from, statistics of .. MR 1900, pp 109-113; MR 1901, p 119 et seq
Grande Ronde Canyon, physiography of .. WS 53, pp 66-67
granite production of .. MR 1900, pp 662, 663, 665; MR 1901, pp 643, 644, 651, 652
irrigation possibilities in Snake River Desert Ann 22, iv, pp 427-428
Kamiah Prairie, physiography of .. WS 53, pp 60-61
landslide topography in Nez Perce region .. WS 53, pp 75-79
lead from, statistics of .. MR 1900, p 196; MR 1901, p 201
Lewis or Snake artesian basin .. WS 78, pp 24-37
Lawiston Plateau, physiography of .. WS 53, pp 57-58
lignite in Nez Perce region .. WS 54, pp 122-127
limestone production of .. MR 1900, pp 662, 665, 686, 687, 688; MR 1901, pp 643, 644, 667, 668, 669, 670
maps, geologic and topographic, of. (See Map.)
marble production of .. MR 1900, pp 662, 682, 683, 684; MR 1901, pp 643, 644, 665
Nez Perce County, geology and water resources of WS 53, WS 54
Nez Perce region, physiography of .. WS 53, pp 51-85
physiography of Nez Perce region .. WS 53, pp 51-85
Portland cement possibilities in Nez Perce region WS 54, pp 135-136

Bull. 215—03—8
Idaho; rocks of southwestern, classification of.................. WS 78, p 16
Salmon River Canyon, physiography of...................... WS 53, pp 67-69
sandstone production of.. MR 1900,

pp 662, 670, 671, 672; MR 1901, pp 643, 644, 656, 657, 658, 659
silver in Nez Perce region................................. WS 54, pp 127-129
Snake River, flow of, measurement of....................... WS 66, pp 126-127
Snake River canyons, physiography of...................... WS 53, pp 62-66
Snake River Desert, physiography of...................... Ann 22, iv, pp 424-427

hydrography of... Ann 22, iv, pp 424-427
irrigation possibilities in.................................. Ann 22, iv, pp 427-428
Snake River Plains, geology of......................... Bull 199, pp 13-146

water resources of... Bull 199, pp 147-185
soils in Nez Perce region................................ WS 53, pp 42-51
springs in Nez Perce region................................. WS 54, pp 96-101
springs, hot and warm, in western........................ WS 78, pp 26-29
topographic work in.. Ann 22, i, pp 137, 138, 144, 150, 171; Ann 23, p 147
topography of... Ann 16, ii, pp 217-224

of Bitterroot Forest Reserve, portion of.................. Ann 19, v, pp 57, 253-257; Ann 20, v, pp 317-322
of Priest River Forest Reserve.............................. Ann 19, v, pp 217-220
of Snake River Desert....................................... Ann 22, iv, pp 421-424
of Snake River Plains.. Bull 199, pp 14-17
of Wood River mining district.............................. Ann 20, iii, pp 190-191
Uniontown Plateau, physiography of......................... WS 53, pp 55-57
Waha Lake as a physiographic feature...................... WS 53, pp 79-81
Water resources of a portion of southeastern............. Ann 22, iv, pp 421-430
Weiser River, flow of, measurement of..................... Ann 22, iv, pp 432-433; WS 51, p 430; WS 66, pp 129-130; WS 75, p 201
wells, drilled, in southwestern................................ WS 78, pp 29-37
wells, horizontal, desirability of, in Nez Perce region... WS 54, pp 98-101
Idaho formation of Idaho.................................... Bull 199, pp 51-56
Ignacio quartzite of Colorado, Silverton quadrangle...... Bull 182, p 35
Igneous fusion and ebullition, experiments in............. Ann 15, pp 96-97
Igneous rocks of Alaska, Copper River district........... Copper, pp 52-58

of Alaska, Ketchikan district..................................... PP 1, pp 46-50
Seward Peninsula, northwestern portion..................... PP 2, pp 29-31

southeastern.. PP 1, p 26
of Arizona, Globe district..................................... PP 12, pp 57-97
of Colorado, Spanish Peaks quadrangle...................... GF 71, pp 3-4
southwestern.. WS 78, pp 18-21
of Indian Territory, Atoka quadrangle...................... GF 70, p 2
of Minnesota, Mesabi district................................. Mon xlvi, pp 63-69, 78-80
of Montana, Elkhorn district................................. Ann 22, ii, pp 422-431
of Nevada, south of fortieth parallel...................... Bull 208, passim
of New York City district..................................... GF 83, pp 5-5
of Oregon, Blue Mountains..................................... Ann 22, ii, pp 585-589

Coos Bay quadrangle... GF 73, p 4
Crater Lake National Park.................................... PP 3, pp 23-41
Port Orford quadrangle.. GF 89, pp 3-4
southwestern.. WS 78, pp 18-21
of Ozark region.. Ann 22, ii, pp 77-78
Igneous rocks of Texas, Austin quadrangle. Bull 213, pp 110-111
of Utah, Bingham district. Bull 213, pp 37
Park City mining district. Bull 213, p 37
of Washington, Ellensburg quadrangle. GF 86, pp 3-4
Illinois; borings, deep, in, list of. WS 57, pp 25-30
brick clay in Chicago district. GF 81, p 13
building stone from, statistics of. MR 1900, p 662 et seq; MR 1901, p 643 et seq
in Chicago district. GF 81, p 12
Calumet River, course and character of. GF 81, p 1
cement from, statistics of. MR 1900, pp 737, 741, 745; MR 1901, pp 721, 722, 726
Chicago district, geology of. GF 81
stone industry in. Bull 213, pp 357-360
clay, brick, in Chicago district. GF 81, p 13
clay deposits and industry of. PP 11, pp 94-97
clay products of, statistics of. PP 11, pp 96-97; MR 1900, p 695 et seq; MR 1901, p 674 et seq
coal area and statistics of. Ann 22, III, p 13; MR 1900, pp 276, 358, 373-379; MR 1901, pp 287 et seq, 370-374
coal field; summary of knowledge. Ann 22, III, pp 265-305
of Indiana and, work in. Bull 213, pp 284-293
coke in, manufacture of. MR 1900, pp 462 et seq, 492-493; MR 1901, pp 454, 523
Desplaines River, course and character of. GF 81, p 1
drift in Ditney quadrangle. GF 84, pp 3-4
limestone in Chicago district. GF 81, p 3
production of. MR 1900, pp 662, 685, 686, 687, 688; MR 1901, pp 643, 644, 667, 668, 669, 670
maps, geologic and topographic, of. (See Map.)
imineral springs of. MR 1900, pp 901, 903; MR 1901, pp 963, 964
natural gas in, statistics of. MR 1900, pp 634, 635, 637, 638, 649; MR 1901, pp 617, 619, 620, 621
Patoka quadrangle, coals of. Bull 213, pp 290-293
petroleum in, statistics of. MR 1900, pp 540, 541, 543; MR 1901, pp 530, 531, 533
rainfall in Chicago district. GF 81, p 13
sand in Chicago district. GF 81, pp 12-13
sandstone production of. MR 1900, pp 662, 670, 671, 672, 673; MR 1901, pp 643, 644, 656, 657, 658, 659
steel production of. MR 1900, pp 96, 97, 98, 99, 100; MR 1901, pp 91, 95, 101, 103
stone industry in vicinity of Chicago. Bull 213, pp 357-360
topographic work in. Ann 23, p 140
topography of Chicago district. GF 81, pp 1-2
of Danville quadrangle. GF 67, p 1
water in Chicago district. GF 81, p 13
zinc from, statistics of. MR 1900, pp 213, 214; MR 1901, pp 211, 212
Illinoian drift sheet in Erie and Ohio basins, character, structure, etc., of. Mon xli, pp 222-226, 253-291
Ilvaite, action of ammonium chloride on. Bull 207, p 44
analysis of, from Idaho, South Mountain. Bull 207, pp 44-45
Inclusions in granite in Minnesota, Mesabi district. Mon xliii, p 80
Independence Lake, hydrographic investigations at. WS 68, pp 56-58
Independence shales of Iowa, northeastern. Ann 11, i, p 234
Index to North American geology, paleontology, petrology, and mineralogy for 1892-1900. Bull 189
Index and catalogue of publications of U. S. Geological Survey, 1880-1901. Bull 177
India; borax production of .. MR 1901, p 872
coal production of .. MR 1900, pp 315, 320; MR 1901, pp 311, 316
corundum in ... Bull 180, pp 89-90
corundum (gem) in ... MR 1901, pp 740-741
diamonds in, occurrence of .. MR 1900, p 753
graphite production of .. MR 1901, p 900
gypsum production of ... MR 1900, p 833; MR 1901, p 851
manganese ore from, statistics of MR 1900, pp 138, 140; MR 1901, pp 153, 155
petroleum in, statistics of ... MR 1900, pp 626-627; MR 1901, pp 607-608, 611
salt production of ... MR 1900, p 846; MR 1901, p 864
Indian Creek, Pennsylvania, flow of, measurement of WS 65, pp 289-290
Indian Lake reservoir, New York, storage capacity of WS 47, p 72; WS 65, pp 42-45
Indian reservations in the West, list of, and map showing Ann 22, iv, pp 43, 44
Indian River, New York, flow of, measurement of WS 47, pp 39, 71-72
water storage on ... WS 65, pp 42-45
Indian Territory; Arbuckle uplift, structure of GF 79, p 7
Arkansas Valley region, structure of GF 79, p 7
asphalt and bituminous rock deposits in, occurrence, geology, etc., of .. Ann 22, i, pp 262-319
Atoka quadrangle, geology of ... GF 79
borings, deep, in .. WS 57, p 39
clay in Atoka quadrangle .. GF 79, p 8
in Coalgate quadrangle ... GF 74, p 6
clay products of, statistics of .. MR 1900, p 695 et seq; MR 1901, p 674 et seq
in Atoka quadrangle ... GF 79, p 7
in Coalgate quadrangle ... GF 74, p 6
coal fields of, production, etc., of Ann 22, iii, pp 373-389, 409
summary of knowledge of ... Ann 22, iii, pp 373-389, 409
Coalgate quadrangle, geology of GF 74
coke in, manufacture of ... MR 1900, pp 462 et seq, 494-495; MR 1901, pp 454 et seq, 484-485
gas and oil fields of Western Interior and northern Texas coal measures .. Bull 184, pp 5-29
geography of Atoka quadrangle GF 79, p 1
of Coalgate quadrangle .. GF 74, p 1
gleologic and paleontologic work in Ann 22, i, pp 78, 89; Ann 23, pp 33, 58-60
granite of Atoka quadrangle .. GF 79, p 7
limestone in Atoka quadrangle GF 79, p 7
in Coalgate quadrangle ... GF 74, p 6
maps, geologic and topographic, of. (See Map.)
oil and gas fields of Western Interior and northern Texas coal measures .. Bull 184, pp 5-29
Ouachita Mountains, extent and character of GF 74, p 1; GF 79, p 1
structure of ... GF 74, p 1
petroleum in, statistics of .. MR 1900, pp 540, 541, 543, 572; MR 1901, pp 530, 533, 534
Red River Plain, features of ... GF 79, pp 1, 2
sandstone of Atoka quadrangle GF 79, p 8
of Coalgate quadrangle ... GF 74, p 6
soils of Atoka quadrangle .. GF 79, p 8
topography of Atoka quadrangle GF 79, pp 1-2
of Coalgate quadrangle ... GF 74, p 1
of eastern Choctaw coal field .. Ann 21, ii, pp 265-271
Indiana; asphalt, oil, and gas in southwestern...

borings, deep, in, list of...

building stone from, statistics of...

cement from, statistics of...

clay deposits and industry of...

clay products of, statistics of...

coal in, area and statistics of...

coal field; summary of knowledge...

clay deposits and industry of...

clay products of, statistics of...

oil, gas, and asphalt in southwestern...

gas, oil, and asphalt in southwestern...

geologic and paleontologic work in...

geologic and paleontologic work in...

limestone of Ditney quadrangle...

natural gas in Ditney quadrangle...

oil, gas, and asphalt in southwestern...

oil, gas, and asphalt in southwestern...

Patoka quadrangle, coals of...

petroleum in, statistics of...

sandstone of Ditney quadrangle...

soils of Ditney quadrangle...

Tippecanoe River, course and character of...

topographic work in...

topography of Chicago district...

of Danville quadrangle...

of Ditney quadrangle...

Wabash River Basin, glacial formations and drainage features of...

water supply of Ditney quadrangle...

West White River, course and character of...

whetstones in...

Indianaite, analysis of...

Infusorial earth, occurrence and statistics of...
Iowan loess of Indiana, Ditney quadrangleGF 84, p 3
Inostranzeff (A.), primary deposits of platinum in the UralsBull 193, pp 76-81
Insects, fossil; Coleoptera, rhynchophorous, of United StatesAnn 15, pp 94-95
Instructions of United States Geological Survey. (See page 31 of this bulletin.)
Intermediate series of Colorado. (See Silverton series.)
Intrusion of granite into graywacke-slate, intricate nature of, in Minnesota,
Mesabi district. ..Mon xliv, p 85
Intrusive rocks of Alaska, Copper River districtCopper, pp 53-55, 57
of Arizona, Globe districtPP 12, p 57
of Minnesota, Vermilion districtMon xlv, passim
of Oregon, Blue MountainsAnn 22, ii, pp 585-589
Invertebrates, fossil; ammonoids, Carboniferous, of America ...Ann. xli
corals of the Buda limestoneBull 205, pp 37-40
correlation of geological faunas, a contribution to Devonian paleontology .Bull 210
fauna of Hamilton formation of Cayuga Lake section, New YorkBull 206
Mollusca of Buda limestoneBull 205
of Alaska, Seward PeninsulaPP 2, pp. 20, 21, 22
of Arizona, Globe districtPP 12, pp. 40-44
of Carboniferous ...Ann 3, pp 425, 453, 456, 490
of Kansas, tabulated list ofBull 211, pp 73-82
of Cretaceous ..Ann 3, pp 420-550
of Devonian ...Ann 3, pp 424, 455, 488
of Idaho, Snake River PlainsBull 199, p. 56
of Juratris ..Ann 3, pp 425, 426, 446, 457, 472, 492
of Laramie group ..Ann 3, pp 420-550
of Neocene ..Ann 3, pp 420-550
of Nevada and California ..Bull 208, passim
of Texas-Louisiana Gulf CoastBull 212, pp. 20-25, 53, 87
paleontology of Upper Carboniferous rocks of Kansas section ...Bull 211, passim
Pseudoceratites of the CretaceousMon xlv
Iola limestone of Kansas, fauna ofBull 211, p 40
Iowa; borings, deep, in, list ofWS 57, pp 39-42
building stone from, statistics ofMR 1900,
clay products of, statistics ofMR 1900, pp 662 et seq;
coal area and statistics ofMR 1900,
coal fields of, production, etc., ofAnn 22, iii, pp 13
summary of knowledge ..Ann 22, iii, pp 333-366
gold and silver from, statistics ofMR 1900, p 110
gypsum from, statistics ofMR 1900, pp 828, 830;
iron ore from, statistics ofMR 1900, pp 43, 57;
marble production of ..MR 1900, pp 662, 685, 686, 687, 689;
mineral springs of ..MR 1900, pp 901, 903;
sandstone production ofMR 1900, pp 662, 670, 671, 672, 673;
topographic work in ..Ann 22, i, pp 137, 138, 156, 172;
topography of northeasternAnn 11, i, pp 358-363
Iowan loess of Indiana, Ditney quadrangleGF 84, pp 4-5
Iridium, ores of ..MR 1901, p 970
Iridosmine, analyses of, from various localitiesBull 193, p 21
Iron in Georgia, Rome quadrangle ..GF 78, pp 5-6
ores of ..MR 1901, p 970
Iron and manganese, publications on Bull 213, p 256
Iron and steel at close of nineteenth century MR 1900, pp 69-104
Iron and steel slags, utilization of Bull 213, pp 221-231
Iron-bearing district of Minnesota, Mesabi, monograph on Mon xlvii
Vermilion, monograph on ..Mon xlv
Iron ore, analysis of, from Iowa MR 1900, p 57
analyses of, Lake Superior region MR 1900, pp 48-57
from Minnesota, Mesabi district Mon xliii, pp 212-232
Vermilion district ..Mon xlv, p 385
of California, Redding quadrangle Bull 213, pp 219-229
of Georgia, Cartersville districtBull 213, pp 233-242
of Lake Superior regionBull 213, pp 247-250
prices of, 1891-1901 ..Mon xliii, pp 293-294
of Minnesota, Mesabi district Mon xliii, pp 206-279
Mesabi district, origin ofMon xlviii, pp 287-279
Vermilion district ...Mon xlv, pp 183-188, 213-234
of North Carolina, Cranberry districtBull 213, pp 243-246
of Pennsylvania, Masontown and Uniontown quadranglesGF 82, p 21
of Tennessee, Cranberry districtBull 213, pp 243-246; GF 90, p. 8
Maynardville quadrangleGF 75, p 6
of West Virginia, Charleston quadrangleGF 72, p 9
production of, statistics of MR 1900, pp 39-67; MR 1901, pp 43-72
similarity and difference between that of Mesabi district and that of other
Lake Superior rangesMon xliii, p 276
Iron-ore mining in Minnesota, Mesabi district, methods of ...Mon xliii, pp 280-285
Iron-ore series of deposits and flora Ann 16, 1, p 473
Iron-oxide bodies in gabbro, analyses of, from Minnesota, Vermilion district ...Mon xlv, p 420
Irondale limestone of West VirginiaBull 65, p 95
Irrigation; effect of, on water plane in California WS 58, pl xxvi
in Arizona, McDowell reservoir, plans for, cost, etc.WS 73, pp 16-22
Salt River, water storage onWS 73
Salt River reservoir, capacity, cost, etc., ofWS 73, pp 32-52
in California, canals near Colton and San Bernardino WS 59, pp 24-38
return waters in San Bernardino Valley WS 59, pp 48, 59
Riverside district, history, etc., ofWS 59, pp 59-95
Truckee Basin ...WS 68, pp 74-84
water storage in ...WS 68
water near San Bernardino, Colton, and Riverside, development and application of WS 59 and 60
wells in southernWS 59, pp 38-42, 77; WS 60, pp 113-134
in Colorado, system of ...WS 74, pp 20-147
in Montana, diversion of St. Mary River forAnn 22, iv, pp 268-279
in Nevada, Truckee BasinWS 68, pp 74-84
Truckee Basin, water storage inWS 68
in Texas, systems of ..WS 71
in Utah, Utah Valley ..WS 52, pp 498-509
in Washington, central PP 6, pp 35-36; WS 55, pp 26-33, 53-55, 65
in Wyoming, Patrick and Goshen Hole quadranglesWS 70, pp 31-34
return waters from ..WS 67, pp 43-46
seepage measurements inWS 74, pp 65-66, 100, 109-110
Irrigation; tile drainage, etc., effect of ..WS 67, p 46
water storage in California-Nevada, Truckee BasinWS 68
wells in High Plains region ..Ann 22, iv, pp 657-668
(See, also, Hydrography.)
Irving (R. D.) and Van Hise (C. R.), Penokee iron-bearing series of Michigan and Wisconsin (synopsis of Mon xix)Ann 15, pp 93-94
Isostasy in Alaska, Norton Bay regionN and N, pp 208-210
Isthmian canal problem ...Ann 22, iv, pp 536-546
Isthmus, American, hydrography of ..Ann 22, iv, pp 507-630
Italy; antimony production of ..MR 1901, p 253
arsenic production of ..MR 1901, p 257
asphaltum production of ..MR 1900, p 660; MR 1901, p 640
borax production of ..MR 1901, p 872
copper from, statistics of ...MR 1900, pp 184, 185; MR 1901, p 193
graphite production of ..MR 1901, p 900
iron and steel production of ...MR 1901, p 114
lead from, statistics of ...MR 1900, pp 209, 210, 211
manganese ore from, statistics ofMR 1900, pp 133-134, 140; MR 1901, pp 147-148, 155
petroleum in, statistics of ..MR 1900, pp 614-616; MR 1901, pp 596-597, 611
Ithaca formation of New York, fauna ofBull 210, pp 73-76
Ithaca group of New York ...Bull 3, pp 7, 8, 16-20
Izard limestone of Ozark region ...Ann 22, ii, p 81
Jackfork sandstone of Indian TerritoryGF 79, p 4
Jade, occurrence of ..MR 1900, p 768
Jadeite, occurrence of ...MR 1901, p 749
Jaggar (T. A., jr.), work in charge ofAnn 22, i, p 82; Ann 23, p 48
James River and tributaries, flow of, measurements ofAnn 22, iv, pp 145-149;
WS 48; pp 127-130; WS 65, pp 235-238; WS 75, pp 41-44
James River series of deposits and floraAnn 16, 1, pp 473, 482-483, 523, 524, 530-532
Japan; antimony production of ..MR 1901, p 253
arsenic production of ..MR 1901, p 257
copper from, statistics of ...MR 1900, pp 184, 185; MR 1901, p 194
graphite production of ..MR 1901, p 900
manganese ore from, statistics ofMR 1900, pp 138, 140; MR 1901, pp 153-154, 155
petroleum in, statistics of ..MR 1900, pp 623; MR 1901, pp 605-607, 611
salt production of ..MR 1901, p 864
sulphur production of ...MR 1901, p 837
Jarosite, analysis of, from Colorado, Rico district, Pigeon mineAnn 22, ii, p 289
Jasper in Minnesota, Mesabi districtMon xliii, pp 77, 97-98, 120, 126, 157-158
occurrence of ...MR 1901, pp 755-756
Java; manganese ore from, statistics ofMR 1900, pp 139, 140; MR 1901, pp 153, 155
petroleum in, statistics of ...MR 1900, pp 620-622; MR 1901, pp 602-604, 611
Jefferson River, Montana, flow of, measurement ofAnn 22, iv, pp 285-286,
287; WS 49, pp 264-265; WS 66, pp 19-20; WS 75, p 120
Jewels, ancient, finding of .. MR 1901, p 765
John Day Basin, Oregon, exploration, geologic features, etc., of ... Bull 204, pp 10-20
fossil flora of .. Bull 204
John Day beds, naming of ... Ann 15, p 187
John Day series of Oregon, John Day Basin Bull 204, p 18
of Washington .. Ann 15, p 100
John River, North Carolina, flow of, measurement of WS 48, pp 142-143; WS 65, p 247
Johnson (W. D.), High Plains and their utilization Ann 22, iv, pp 631-669
Johnson City, Tennessee, Soldiers' Home near, water supply for Ann 22, iv, pp 231-235
Johnstown (cement) limestone of Pennsylvania Bull 65, pp 165-166
Jollytown limestone of Pennsylvania Bull 65, p 34
Joplin district, Missouri-Kansas, lead and zinc deposits of Bull 213, pp 197-204
Judith River beds, age and correlation of Ann 3, p 415
Juratrias rocks; Arundel formation of Maryland, clays of PP 11, pp 139-141
Bakersville gabbro of Tennessee GF 90, p 5
clays, distribution of, east of Mississippi River PP 11, p 56
Dolores formation of Colorado, Silverton quadrangle Bull 182, p 35
gas and oil from .. Ann 11, i, p 598
Huntington series of Oregon .. Ann 22, ii, p 579
Jurassic history of Great Plains region GF 87, p 3; GF 88, p 4
of New York City district ... GF 83, pp 3, 10
of South Dakota, Oelrichs quadrangle GF 85, p 2
Kennicott formation of Alaska .. Copper, pp 33, 48-50
Koipato formation of Nevada ... Bull 208, p 20
Newark group in New Jersey, New York City district GF 83, pp 6-10
in New York City district ... GF 83, pp 6-10
of Alaska, character, correlation, etc., of Ann 20, vii, pp 404-408
of California .. Ann 14, ii, pp 449-451
of Colorado ... Bull 182, p 35
of Maryland (clays) .. PP 11, pp 138-142
of New Jersey, New York City district GF 83, pp 6-10
of New York City district ... GF 83, pp 6-10
of States. (See, also, formation names under this heading.)
of Tennessee, Cranberry quadrangle GF 90, p. 5
Orca series of Alaska. Alaska (2), p 57; Ann 22, iii, p 528; Copper, pp 33, 37-40
Patumxent formation of Maryland, clays of PP 11, p 139
Robinson formation of Sierra Nevada Ann 17, i, pp 626-628
Spearfish shale of South Dakota GF 85, p 3
Star Peak formation of Nevada Bull 208, p 22
Sundance formation of South Dakota GF 85, p 3
Triassic rocks of Oregon, Blue Mountains Ann 22, ii, p 579-582
Triassic series of Alaska, Copper River district Copper, pp 33, 46-47
Unkpapa sandstone of South Dakota GF 85, p 3
Juratrias system, definition of Ann 14, i, p 43
Kalamazoo River, Michigan, hydrography of basin of Ann 22, iv, pp 266-268; WS 49, pp 257-259
Kalawa River, Washington, flow of, measurement of WS 66, pp 140-141; WS 75, p 208
Kampeska Lake, South Dakota, reconnaissance of, for water storage .. Ann 22, iv, pp 300-303
Kanawha drainage system, preglacial, description of...Mon xli, pp 100-109
Kanawha formation of West Virginia.....Bull 65, p 98; GF 72, pp 4-5; GF 77, p 4
Kansan or pre-Kansan drift in Erie and Ohio basins, character and thickness of, border of, and outwash from...Mon xli, pp 220-222, 228-252
Kansas; Arkansas River, flow of, measurement of........Ann 22, iv, p 344; WS 50, p 330; WS 66, p 56; WS 75, pp 147-148
Blue River, flow of, measurement of........Ann 22, iv, p 337; WS 50, pp 317-318; WS 66, p 46; WS 75, p 143
borings, deep, in, list of...WS 57, pp 42-46
building stone from, statistics of...MR 1900, p 662 et seq; MR 1901, p 643 et seq
Carboniferous of, résumé of publications on Bull 211, pp 17-27
cement from, statistics of...MR 1900, pp 737, 741, 745; MR 1901, pp 721,722, 726
clay products of, statistics of...MR 1900, p 695 et seq; MR 1901, p 674 et seq
coal area and statistics of...Ann 22, iii, p 13;
MR 1900, pp 276, 359, 387-390; MR 1901, pp 287 et seq, 383-386
coke in, manufacture of...MR 1900, pp 462 et seq, 495-496;
MR 1901, pp 454 et seq, 486-487
gas and oil fields of Western Interior and northern Texas Coal Measures...Bull 184, pp 5-29
geography of southwestern portion...WS 6, pp 19-20
geologic and paleontologic work in Ann 22, pp 33, 52, 53, 57
gold and silver in shales from, tests for...Bull 202
granite production of...MR 1900, pp 662, 663, 635; MR 1901, pp 643, 644, 651, 652, 653
gypsum from, statistics of...MR 1900, pp 828, 830; MR 1901, pp 846, 847
High Plains, utilization of...Ann 22, iv, pp 631-669
Joplin district, lead and zinc deposits of...Bull 213, pp 197-204
Kansas River, flow of, measurement of...WS 50, pp 318-319; WS 66, pp 46-47; WS 75, p 144
lead and zinc deposits of Joplin district...Bull 213, pp 197-204
of Ozark region, preliminary report on Ann 22, ii, pp 23-227
limestone production of...MR 1900, pp 662, 685, 686, 687, 689; MR 1901, pp 643, 644, 667, 668, 669, 670
maps, geologic and topographic, of. (See Map.)
mineral springs of...MR 1900, pp 901, 903; MR 1901, pp 963, 964
natural gas in, statistics of...MR 1900, pp 634, 635, 637, 638, 647-648; MR 1901, pp 617, 619, 620, 621, 628
Neosho River, flow of, measurement of...Ann 22, iv, p 346; WS 50, pp 331-332; WS 66, pp 57-58; WS 75, p 149
oil and gas fields of Western Interior and northern Texas coal measures...Bull 184, pp 5-29
petroleum in, statistics of...MR 1900, pp 540, 541, 543; MR 1901, pp 530, 531, 533, 534
Republican River, flow of, measurement of...Ann 22, iv, p 333; WS 50, pp 313-314; WS 66, p 43
Saline River, flow of, measurement of...Ann 22, iv, p 335; WS 50, pp 315-316; WS 66, pp 44-45; WS 75, p 142
salt production of...MR 1900, p 887; MR 1901, p 855
sandstone production of...MR 1900, pp 662, 670, 671, 672, 674; MR 1901, pp 643, 644, 656, 657, 658, 659
silver and gold in shales from, tests for...Bull 202
Smoky Hill River, flow of, measurement of...Ann 22, iv, p 336; WS 50, pp 316-317; WS 66, p 45; WS 75, p 143
Kansas; Solomon River, flow of, measurement of. Ann 22, iv, p 334; WS 50, pp 314-315; WS 66, p 44; WS 75, p 142
topographic work in ... Ann 22, i, pp 137, 138, 143, 153
topography of ... Bull 154, pp 11-12
of Fort Riley Military Reservation and vicinity Bull 137, pp 11-16
of Great Plains, portion of ... Ann 16, ii, pp 542-545
of western portion .. Bull 202, pp 6-7
water, ground, in western ... Ann 22, iv, pp 647-652
zinc production of .. MR 1900, pp 213, 214, 216-218; MR 1901, pp 211, 212, 214-215
zinc and lead deposits of Joplin district Bull 213, pp 197-204
Kansas River and tributaries, flow of, measurement of. Ann 22, iv, pp 331-338; WS 50, pp 318-319; WS 66, pp 41-47
Kansas section, Upper Carboniferous rocks of, stratigraphy and paleontology of .. Bull 211
Kanuti River, Alaska, course and character of. PP 10, pp 22-23
reconnaissance from Fort Hamlin to Kotzebue Sound, by way of Dall, Allen, and Kowak rivers and PP 10
Kanuti series of Alaska; Dall, Allen, Kanuti, and Kowak rivers PP 10, pp 37-38
Kanwaka shales of Kansas ... Bull 211, p 45
Kaolin, analysis of, from Connecticut, West Cornwall PP 11, p 79
analysis of, from Massachusetts, Blandford PP 11, p 150
from Massachusetts, Clayton PP 11, p 150
from New York, Kreischerville GF 83, p 11
distribution of .. PP 11, pp 47-49
of Indiana .. PP 11, pp 106-107
of North Carolina .. PP 11, pp 179-181
Kaolin, washed, analyses of, from various localities PP 11, p 39
Kaolinite, analysis of, from Colorado, Silverton quadrangle. Bull 182, p 234
Kasaan greenstone of Alaska, Ketchikan district PP 1, pp 49-50
Kaskaskia limestone of Illinois, southern Ann 22, iii, p 272
Kaweah River, flow of, measurement of WS 51, p 482
Kawich Range, Nevada, geology of Bull 208, p 181
Keene limestone of Montana .. Ann 22, ii, p 438
Keith (A.), geology of Cranberry quadrangle, Tennessee GF 90
geology of Maynardville quadrangle, Tennessee GF 75
talc deposits of North Carolina Bull 213, pp 433-438
Tennessee marbles .. Bull 213, pp 366-370
work in charge of .. Ann 22, i, pp 68, 86; Ann 23, pp 48-49
Kemp (J. F.), geological relations and distribution of platinum and associated metals ... Bull 193
notes on the occurrence of asbestos in Lamoille and Orleans counties, Vermont .. MR 1900, pp 862-866
work in charge of .. Ann 22, i, p 64; Ann 23, pp 49
Kemp (J. F.) and Marsters (V. F.), trap dikes of the Lake Champlain region .. Ann 15, pp 99-100
Kenai group or series of Alaska Ann 22, iii, pp 533, 534, 538, 543, 544, 556
of Alaska; Dall, Allen, Kanuti, and Kowak rivers PP 10, pp 41-42
Kenai Peninsula, coal beds on Ann 22, iii, pp 544-546
Kennebec River, flow of, measurement of ... Ann 22, iv, pp 56-58;
WS 47, pp 29-30; WS 65, pp 16-17; WS 69, pp 45-57
Kennebec River and tributaries, hydrographic investigations on.... WS 69, pp 38-70
Kennedy (W.) and Hayes (C. W.), oil fields of the Texas-Louisiana Gulf Coastal Plain ... Bull 212
Kennicott formation of Alaska ... Copper, pp 33, 48-50
Kentucky; Big Stone Gap coal field of Virginia and Ann 15, p 105
bitumens in, occurrence, geology, etc., of Ann 22, i, pp 240-259
borings, deep, in, list of .. WS 57, pp 47-49
building stone from, statistics of MR 1900, p 66 et seq; MR 1901, p 643 et seq
cement from, statistics of .. MR 1900, p 745; MR 1901, p 726
clay deposits and industry of .. PP 11, pp 65, 114-132
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq; PP 11, pp 131-132
coal area and statistics of ... MR 1900, pp 276, 358, 390-395; MR 1901, pp 287 et seq, 387-391
coal fields of, production, etc., of Ann 22, iii, pp 12, 13
summary of knowledge of .. Ann 22, iii, pp 233-240, 257-263, 265-305
coke in, manufacture of .. MR 1900, pp 462 et seq, 497-498; MR 1901, pp 454 et seq, 487-488
drainage modifications in southeastern Ohio and adjacent parts of West
Virginia and ... PP 13
fluorspar, lead, and zinc deposits of western Bull 213, pp 205-213
geography of Estillville quadrangle GF 12, p 1
of London quadrangle .. GF 47, p 1
geologic and paleontologic work in Ann 22, i, p 76
hydrography of southern Appalachian Mountain region WS 62; WS 63
iron and steel from, statistics of MR 1900, pp 43, 57, 96; MR 1901, pp 45, 63, 76, 91
Jackson Purchase region, clays of PP 11, pp 124-131
lead, zinc, and fluor spar deposits of western Bull 213, pp 205-213
limestone production of .. MR 1900, pp 662, 685, 686, 687, 689; MR 1901, pp 643, 644, 667, 668, 669, 670
maps, geologic and topographic, of. (See Map.)
mineral springs of .. MR 1900, pp 901, 902; MR 1901, pp 963, 964
natural gas in, statistics of .. MR 1900, pp 634, 635, 637, 638, 648; MR 1901, pp 617, 619, 620, 621, 629
Ohio River at Cincinnati and Louisville, quality of water of WS 79, pp 162-170, 183-185
petroleum in, statistics of .. MR 1900, pp 540, 541, 542; MR 1901, pp 530, 531, 532, 533
physiographic history of central GF 77, pp 1-2
sandstone production of .. MR 1900, pp 662, 670, 671, 672, 674; MR 1901, pp 643, 644, 656, 657, 658, 659
topographic work in .. Ann 22, i, pp 137, 138, 142, 151, 153, 172
topography of Big Stone Gap coal field Bull, 112, pp 16-19
of Estillville quadrangle ... GF 12, p 1
of London quadrangle .. GF 47, p 1
of Ohio Basin .. GF 47, p 1
of Richmond quadrangle ... GF 46, p 1
whetstones in .. MR 1901, p 786
zinc, lead, and fluor spar deposits of western Bull 213, pp 205-213
Kenwood Creek, New York, flow of, measurement of Ann 22, iv, pp 246-247
Keokuk limestone of Iowa, northeastern Ann 11, i, p 234
Kern River, California, discharge measurements in basin of WS 51, pp 461–462
flow of, measurement of......Ann 22, iv, p 467;
WS 51, pp 462–463, 482; WS 66, pp 158–159; WS 75, p 218
physical characteristics of, with reference to electric power development. WS 46,
pp 11–38
reservoirs in basin of. Ann 22, iv, p 487
Ketchikan mining district, Alaska, preliminary report on.................PP 1
Ketchikan series of Alaska, Ketchikan district.................PP 1, pp 44–45
Keweenaw series and Potsdam sandstone, unconformity between.......Ann 7, pp 412–414
Keweenawan rocks of Lake Superior region..............Ann 10, i, pp 437–438; Bull 8, p 20
of Lake Superior region, enlargements in.................Ann 5,
pp 237–240; Bull 8, pp 38–39, 44–47
of Minnesota, Mesabi district.................Mon xliii, pp 182–188
Vermilion district.................Mon xlv, pp 397–424
Kiamichi formation of Indian Territory.................GF 79, p 6
Kigluaik Mountains, Alaska, description of, glaciation in, etc.................N and N,
pp 17, 36, 43–45, 48, 194
Kigluaik series of Alaska, Seward Peninsula.................N and N, pp 27–28
of Alaska, Seward Peninsula, northwestern portion.................PP 2, p 16
Killbuck Creek, Ohio, features, preglacial and present, of.................Mon xli, p 165
Kinderhook ammonoids of America.................Mon xlii, pp 13–14
Kinderhook Creek, New York, flow of, measurement of..................WS 65, pp 53–57
Kinderhook limestone of Iowa, northeastern.................Ann 11, i, p 234
King (Clarence), biographic sketch of.................Ann 23, pp 198–206
King limestone of Ozark region.................Ann 22, ii, p 85
King River, California, evaporation and seepage on.................WS 58, pp 22–24
hydrographic survey of basin of.................Ann 22, iv, pp 470, 471–484
irrigation canals from.................Ann 22, iv, pp 471–472
lands served from.................WS 58, p 13
physical features of.................WS 58, pp 11–15
power development on.................Ann 22, iv, pp 477–479; WS 58, pp 48–95
profile and plan of canyon of..................WS 58, pl xxiii
pumping plants in basin of.................Ann 22, iv, pp 480–484
regimen of.................WS 58, pp 17–22
reservoir sites and surveys in basin of.................Ann 22, iv, pp 472–477; WS 58, pp 24–48
storage of water on.................WS 58
underground waters in basin of.................Ann 22, iv, pp 479–480
Kingston Range, California, geology of.................Bull 208, pp 195–200
lead, statistics of...............MR 1900, pp 191–211; MR 1901, pp 199–210
zinc, statistics of...............MR 1900, pp 213–227; MR 1901, pp 211–223
Kittanning clay of Pennsylvania.................PP 11, pp 222–226
Kittanning clay and shales of Ohio.................PP 11, pp 197–198
Kittanning coal of Pennsylvania.................GF 82, p 10
Kittanning fire clay of Pennsylvania, Ohio, and West Virginia.................Bull 65, pp 171–172
Kittanning sandstone of Pennsylvania.................Bull 65, pp 171–172
Kittitas system of Washington.................Ann 15, p 100
Klamath Mountains, topographic development of.................Bull 196
topography of...............GF 73, p 1
Klickitat River, Washington, flow of, measurement of.................WS 51, p 443
reconnaissance of basin of.................Ann 22, iv, pp 454–455
Klutina series of Alaska.................Copper, pp 33, 34
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

Knemiceratidw of the Cretaceous Mon xliv, pp 144-152
Knife Lake slates of Minnesota, Vermilion district Mon xlvi, pp 293-296, 335-352
Knight (W. C.), work by .. Ann 23, p 50
Knoebstone shale of Indiana PP 11, p 98
Knowlton (F. H.), fossil flora of the John Day Basin, Oregon ... Bull 204
work in charge of ... Ann 22, i, pp 103-104; Ann 23, p 68
Knox dolomite of Georgia ... GF 78, p 3
of Tennessee ... GF 75, p 2
Knoxville beds of California .. Bull 19, pp 8-10
of Oregon, John Day Basin Bull 204, p 17
Kobellite, analysis of, from Colorado, Silverton quadrangle Bull 182, p 257
Koipato formation of Nevada Bull 208, p 20
Kok River, Alaska, coal deposits along Ann 22, iii, p 563
Kotsina River, Alaska, copper deposits on Copper, pp 84-85
undetermined rocks on ... Copper, p 40
Kotsina trail, Alaska ... Copper, p 22
Kotzebue Sound, Alaska, gold near PP 10, pp 50-51
reconnaissance from Fort Hamlin to PP 10
Kowak River, Alaska, coal on Ann 22, iii, p 560
course and character of PP 10, pp 25-27
reconnaissance from Fort Hamlin to Kotzebue Sound by way of Dall,
Kanuti, and Allen rivers, and PP 10
Kowak Valley, Alaska, natives of PP 10, p 52
Koyuk River, Alaska, reconnaissance along, in 1900 N and N, pp 191-192, 198-199
Kruzgamepa region, Alaska, gold in N and N, pp 114-119
Kübel (S. J.), lithographic stone, occurrence and statistics of... MR 1900, pp 869-873
work in charge of ... Ann 22, i, pp 189-203; Ann 23, pp 173, 177-191
Kugruk group of Alaska, in Seward Peninsula, northwestern portion PP 2, pp 21-24
Kugruk region, Alaska, gold in N and N, pp 119-125
Kunz (G. F.), precious stones, statistics of MR 1900, pp 749-778; MR 1901, pp 729-771
Kuskulana River, Alaska, copper deposits on Copper, p 85
Kuzitrin series of Alaska, Seward Peninsula PP 2, pp 16-17; N and N, pp 28-29
La Motte sandstone of Ozark region Ann 22, ii, p 79
Labette shale of Kansas .. Ann 22, iii, p. 342; Bull 211, p 31
Laccoliths in Colorado, Leadville district Ann 2, pp 226
Lafayette formation of Georgia GF 78, p 4
of Gulf coast ... Bull 212, p 26
Lake Creek, Colorado, flow of, measurement of .. Ann 22, iv, p 339; WS 74, pp 73-75
hydrographic data relating to WS 50, pp 320-322
Lake Creek, Utah, agricultural lands near Ann 22, iv, pp 378-379
flow of, measurement of Ann 22, iv, p 380; WS 50, pp 372-373; WS 66, pp 87-88; WS 75, p 167
Lake Erie escarpment morainic system, distribution, character, etc., of Mon xli, pp 651-672
Lake Superior iron district, work in, during 1902 Bull 213, pp 247-250
Lake systems of Maine ... WS 69, p 17
Lake. (See also, next word of name.)
Lakes of Minnesota, Vermilion district Mon xlvi, pp 41-46
Lakota formation of South Dakota GF 85, p 3
Lampasas River, Texas, flow of, measurement of WS 66, p 60
hydrographic data concerning WS 50, pp 335-336
Lamprey River, New Hampshire, drainage area, fall, power, etc. Ann 22, iv, pp 76-79
Lamprophyre of Colorado, Spanish Peaks quadrangle GF 71, p 4
of Vermont, Ascutney Mountain Bull 209, pp 85-88
KNEMICERATIDÆ—LEHIGH.

Land subdivision, natural unit of, on High Plains............. Ann 22, iv, pp 657-661
Landslide topography in Idaho, Nez Perce region............... WS 53, pp 75-79
Landslides in Colorado, Silverton quadrangle Bull 182, pp 37-39
Lane (A. C.), Northern Interior coal field Ann 22, iii, pp 307-331
Lane shales of Kansas ... Bull 211, pp 40-41
Langille (H. D.), Plummer (F. G.), Dodwell (A.), Rixon (T. F.), and Leiberg (J. B.), forest conditions in the Cascade Range Forest Reserve, Oregon PP 9
Lapilli, deposits of, in Idaho, Nez Perce region WS 53, pp 34-35
Laramie formation or group, age and correlation of Ann 3, pp 414-417
Laramie fossils of ... Ann 3, pp 420-550
of Colorado .. Ann 2, p 43; Ann 9, pp 689, 690; Ann 22, iii, pp 423, 429, 432, 434, 435, 436, 439; GF 71, pp 1-2, 3
of Montana .. Ann 15, pp 98-99; Ann 22, iii, pp 461, 462, 463, 464, 466
of North Dakota ... Ann 22, iii, pp 457, 458
of Plateau region .. Ann 6, pp 187-188
of South Dakota .. Bull 21, p 11
of Utah ... Ann 22, iii, pp 423, 453, 454, 455; Bull 34, pp 13-19
of Wyoming .. Ann 2, pp 43; Ann 22, iii, pp 439, 441, 442, 443, 447, 448; WS 70, pp 14-15
Las Vegas Range, Nevada, geology of Bull 208, pp 155-159
Late Wisconsin drift, interval between early Wisconsin drift and Mon xii, pp 352-353
Late Wisconsin stages in Erie and Ohio basin, main morainic system of ... Mon xli, pp 354-472
minor moraines of ... Mon xlii, pp 475-709
Latite, mineralogic composition of, from Colorado, Engineer Mountain. Bull 182, p 120
Latoche Island, Alaska, copper on Copper, p 89
Laumontite, action of ammonium chloride on Bull 207, p 35
Laurentian-Huronian rocks of north shore of Lake Huron, unconformity of... Ann 7, pp 429-431
Lava, analysis of, from Idaho, Cinder Buttes Bull 199, p 87
of Oregon, Crater Lake National Park PP 3, pp 23-41
Law of Washington governing conservation of underground water... WS 55, pp 64-65
of Washington providing for conservation of artesian water... WS 78, pp 47-48
Laws desirable relating to artesian waters WS 78, pp 47-49
Le Roy formation of Kansas, flora of Bull 211, pp 111-112
Le Roy shales of Kansas, synonymy and character of Bull 211, pp 43-44
Leach Point and Burnt Rock Mountains, California, geology of... Bull 208, pp 205-206
Lead in Colorado, Silverton quadrangle Bull 182, pp 80, 81, 82
in Tennessee, Maynardville quadrangle GF 75, p 6
ores of, percentage of metal contained in MR 1901, p 971
statistics of ... MR 1900, pp 191-211; MR 1901, pp 199-210
Lead and zinc of Arkansas, northern Bull 213, pp 187-196
of Missouri-Kansas, Joplin district Bull 213, pp 197-204
of Ozark region, preliminary report on Ann 22, ii, pp 23-227
publications on ... Bull 213, p 218
Lead, zinc, and fluorspar deposits of western Kentucky Bull 213, pp 205-213
Lecompton limestone of Kansas, synonymy, character, and fauna of .. Bull 211, p 46
Lee conglomerate of Kentucky Ann 22, iii, pl xiii, p 235
of Tennessee ... Ann 22, iii, pl xii, p 235; GF 75, p 4
Lehigh River, flow of, measurement of WS 48, p 114; WS 65, pp 213-214
Leiberg (J. B.), forest conditions in the northern Sierra Nevada, California ... PP 8
Leiberg (J. B.), Langille (H. D.), Plummer (F. G.), Dodwell (A.), and Rixon (T. F.), forest conditions in the Cascade Range Forest Reserve, Oregon ... PP 9
Leighton (M. O.), normal and polluted waters in northeastern United States. WS 79
Leighton (M. O.), sewage pollution in the metropolitan area near New York City, and its effect on inland water resources ... WS 72
Mesabi iron-bearing district of Minnesota ... Mon xli
work in charge of ... Ann 22, i, pp 76-77; Ann 23, p 50
Leon River, Texas, flow of, measurement of ... WS 66, p 60
Leona River, Texas, hydrographic data concerning ... WS 50, p 334
Lepidolite, analysis of, from Maine, Paris and Rumford ... MR 1900, p 240
Lestivarite, analysis of, classic ... Bull 209, p 75
Leuconebenite, action of ammonium chloride on ... Bull 207, p 52
Leucite, action of ammonium chloride on ... Bull 207, pp 16-17
analysis of, from Massachusetts, Gloucester ... Bull 209, p 75
Lesueur limestone of Ozark region ... Ann 22, II, p 79
Leon River, Texas, hydrographic data concerning ... WS 50, pp 342-343
Lignite, analysis of, from California, Corral Hollow ... Ann 22, III, p 501
in Washington, Grande Ronde River ... WS 54, p 126
from Washington, Roslyn and Clealum ... WS 54, p. 136
in Idaho, Nez Perce region ... WS 53, pp 83-85
in Montana; summary of knowledge ... Ann 22, III, pp 521-571 (passim)
in Idaho, Nez Perce region ... WS 54, pp 122-127
summary of knowledge ... Ann 22, III, pp 459-460
from Washington, Grande Ronde River ... WS 54, p 126
in Idaho, Nez Perce region ... WS 54, pp 521-571 (passim)
in Montana; summary of knowledge ... Ann 22, III, p 450
in New Mexico ... Ann 22, III, pp 460-468
from Washington, Roslyn and Clealum ... WS 54, p. 136
in North Dakota; summary of knowledge ... Ann 22, III, pp 456-458
in South Dakota; summary of knowledge ... Ann 22, III, pp 458-459
in United States, locations of deposits ... Ann 22, III, pl i (pocket)
in Washington ... Ann 22, III, pp 479, 489
Lignite, peat, and coal, publications on ... Bull 213, pp 294-295
Lignite beds of Northwest ... Bull 184, p 42
of Texas, Arkansas, and Louisiana ... Bull 184, p 42
Lignite group, age and correlation of ... Ann 3, p 415
of Alabama ... Bull 43, pp 39-67, 69-70
Lime in Georgia, Rome quadrangle ... GF 78, p 6
in Tennessee, Cranberry quadrangle ... GF 90, p 8
Lime, hydraulic, analyses of, from England and Wales ... Ann 22, III, p 727
Lime waste, analysis of, from Michigan, Wyandotte ... MR 1900, p 741
Limestone, analysis of ... Bull 213, p 224
analysis of, from Arizona, Salt River ... WS 73, p 49
from Colorado, Rico district, Forest-Payroll mine ... Ann 22, II, p 283
Rico district, Logan mine ... Ann 22, II, p 286
from Idaho, Nez Perce County ... WS 54, p 121
from Illinois, Blue Island ... Bull 213, p 359; GF 81, p 12
from Michigan, Alpena ... Ann 22, III, p 644
Limestone, analysis of, from Michigan, Bayport................. Ann 22, ii, p 646
analysis of, from Michigan, Bellevue.......................... Ann 22, ii, pp 641, 642, 646
from Michigan, Portage River......................... Ann 22, ii, p 646
Wayne County, Trenton...................................... Ann 22, ii, p 643
from New York, Smiths Landing........................ MR 1900, p 742
from South Dakota, Oelrichs quadrangle................. GF 85, p 3
of California, Redding district......................... Bull 213, p 365
of Colorado, Spanish Peaks quadrangle................. GF 71, p 6
of Idaho, Snake River Plains.............................. Bull 198, p 46
of Illinois, Chicago district............................. GF 81, p 3
of Indiana, Atoka quadrangle............................ GF 79, p 7
Coalgate quadrangle.. GF 74, p 6
of Indiana, Ditney quadrangle............................ GF 84, p 8
of Oregon, Blue Mountains................................. Ann 22, ii, p 639
statistics of.. MR 1900,
pp 661, 662, 684-691; MR 1901, pp 643, 644, 645, 666-670
Limestone, bituminous, analysis of, from Texas, Burnet County Ann 22, i, p 322
Limestone, lithographic, analysis of, from Bavaria, Solnhofen MR 1900, p 871
analysis of, from Kentucky, Brandenburg................. MR 1900, p 871
Limonite iron ore in Georgia, Rome quadrangle.......... GF 78, pp 5-6
Limonite silica granule, photomicrograph of, from Minnesota, Vermilion dis-
trict... Mon xvi, p 382
Lincoln (W.), copper deposits at Clifton, Arizona......... Bull 213, pp 133-140
gold belt of Blue Mountains of Oregon.................. Ann 23, ii, pp 551-776
mineral deposits of the Bitterroot Range and Clearwater Mountains, Mon-
tana... Bull 213, pp 66-70
Neocene rivers of the Sierra Nevada........................ Bull 213, pp 64-65
tests for gold and silver in shales from western Kansas.. Bull 202
water resources of Molokai, Hawaiian Islands.......... WS 77
work in charge of.. Ann 22, i, pp 90-91; Ann 23, pp 51-53
Linville metadiabase of Tennessee......................... GF 90, pp 3-4
Linville River, North Carolina, flow of, measurement of.... WS 48, p 142
Lippincott (J. B.), development and application of water near San Bernar-
dino, Colton, and Riverside, California................. WS 59 and 60
storage of water on Kings River, California.............. WS 58
Lithium, sources, occurrence, uses, etc., of............ MR 1900,
pp 239-243; MR 1901, pp 239-240
Lithographic stone, analysis of, from Bavaria, Solnhofen MR 1900, p 871
analysis of, from Kentucky, Brandenburg................. MR 1900, p 871
occurrence and statistics of................................. MR 1900, pp 869-873
Little River, New York, water powers on.................. WS 65, p 33
Little River, Texas, flow of, measurement of............. WS 66, pp 60-61
Little River, Washington, flow of, measurement of....... WS 51, p 450
Little Miami River, drainage changes along................. Mon xiv, pp 180-182
Little Truckee reservoir site, surveys of.................. WS 68, pp 61-66
Livingston formation in Montana.......................... Ann 15, pp 98-99
Lodes in Colorado, Rico district, discussion of........ Ann 22, ii, pp 255-294
in Colorado, Silverton quadrangle, structures of........ Bull 182, pp 67-70, 145-214
Lodgepole Creek, Nebraska, flow of, measurement of..... WS 50, p 311
Bull. 215—03—9
Loess of Iowa, northeastern Ann 11, i, p 234
Loess and associated silts in Erie and Ohio basins Mon xli, pp 295-301
Logan conglomerate of Ohio, Kentucky, and Indiana Mon xli, pp 63-64
Logan River, Utah, flow of, measurement of Ann 22, iv, pp 408-409;
WS 51, pp 411-412; WS 66, pp 118-119; WS 75, p 192
Logan silts of Minnesota, Vermilion district Mon xlv, pp 397-422
Logarithms, five-place, of natural numbers and circular functions, expressed
in arc and time. (See page 30 of this bulletin.)
Lone Mountain limestone of Nevada Bull 208, p 20
Long Valley Range, Nevada, geology of Bull 208, pp 54-57
Lookout conglomerate of Tennessee Ann 22, iii, pl xiii, p 235
Lookout sandstone of Georgia GF 78, p 4
Los Angeles River, flow of, measurement of WS 51, pp 464-471, 482-483; WS 66, pp 160-161
Los Moras Creek, Texas, hydrographic data concerning ... WS 50, pp 344-345
Los Pinos River, Colorado, flow of, measurement of Ann 22, iv, p 393; WS 50, pp 382-383; WS 66, pp 95-96; WS 74, pp 118-119, 126; WS 75, p 176
Lost Gulch monzonite of Arizona, Globe district PP 12, pp 75-78
Louisiana; Anse la Butte oil district Bull 212, pp 130-131
boring, deep, in, list of WS 57, pp 49-50
building stone from, statistics of ... MR 1900, p 662 et seq; MR 1901, p 643 et seq
clay products of, statistics of ... MR 1900, p 695 et seq; MR 1901, p 674 et seq
gas wells in ... Bull 184, pp 59-60
Gulf Coastal Plain, geology of Bull 212, pp 15-67
Hackberry Island oil well Bull 212, pp 131-133
Jennings oil district Bull 212, pp 127-130
map, geologic, of Bull 184, p 38
oil fields of, geology, etc., of Bull 212
of Gulf Coastal Plain Bull 212, pp 345-352
petroleum in, occurrence of MR 1901, p 564
sandstone production of MR 1900,
pp 662, 670, 671, 672; MR 1901, pp 643, 644, 656, 657, 658, 659
sulphur oil district Bull 212, pp 133-135
topography of Gulf Coastal Plain Bull 212, pp 13-15
Louisiana limestone of Ozark region Ann 22, ii, p 86
Lower Barren Measures. (See Conemaugh group.)
Lower Coal Measures, clays of PP 11, pp 52-54
of Iowa, northeastern Ann 11, i, p 234
of West Virginia, clays of PP 11, pp 253-258
Lower Huronian. (See Huronian.)
Lower Magnesian group of Illinois GF 81, p 2
Lower Magnesian limestone in Wisconsin Ann 7, p 394; Ann 11, i, p 332
Lumbering in Appalachian Mountain region Ann 22, iv, p 178; WS 62, pp 25-30
Lytle Creek, California, flow of, measurement of WS 66, pp 162-163; WS 75, p 223
Lyttton formation of Texas GF 76, p 6
McAlester shale of Indian Territory Ann 22, iii, p 377, pl xxvi; GF 74, p 3; GF 79, p 5
McChesney (J. D.), work in charge of Ann 22, i, pp 203-205; Ann 23, pp 191-194
McDonald Lake, Montana, description of Ann 22, iv, pp 436, 439-441
Machias Rivers, Maine, hydrographic data concerning ... WS 69, pp 113-114
Madagascar, precious stones of MR 1901, pp 766-769
Madera diorite of Arizona, Globe quadrangle PP 12, pp 58-65
Madison limestone of Montana .. Ann 22, ii, pp 438-440
Madison River, Montana, diversion of, proposed Ann 22, iv, pp 283-284
flow of, measurement of .. Ann 22, iv, p 284; WS 49, pp 263-264; WS 66, pp 18-19; WS 75, p 119
Madison sandstone of Wisconsin Ann 11, i, p 332
Magnesite, statistics of ... MR 1901, pp 959-960
Magnetic attraction in Minnesota, Mesabi district Mon xlIII, p 164
Magnetite, analyses of, from Minnesota, Mesabi district Mon xlIII, pp 221, 222, 223
Mahoning limestone of Pennsylvania, Ohio, and West Virginia Bull 65, pp 96-97
Mahoning River, Ohio, quality of water of WS 79, pp 129-136
Mahoning sandstone of Pennsylvania and West Virginia Bull 65, pp 95-96
Maine; Androscoggin River, flow of, measurement of Ann 22, iv, pp 59-61; WS 47, pp 31-32; WS 65, pp 20-21; WS 75, p 22
Androscoggin River, hydrographic investigations on WS 69, pp 70-91
boring, deep, at Kennebec WS 57, p 50
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 643 et seq
Carrabassett River, flow of, measurement of WS 65, p 19
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq
Cobbasseeconeet River, flow of, measurement of Ann 22, iv, pp 58-59;
WS 47, p 31; WS 65, pp 19-20; WS 69, pp 59-70; WS 75, p 21
copper from, statistics of MR 1900, pp 143, 144; MR 1901, pp 160, 173
Dead River, flow of, measurement of WS 65, p 18
flint production of .. MR 1900, p 895; MR 1901, pp 936, 938
forests of .. WS 69, pp 15-16
geography of Aroostook area Bull 165, pp 101-102
geologic and paleontologic work in Ann 22, i, p 66
geology of, sketch of .. WS 69, pp 12-15
gold and silver from, statistics of MR 1900,
pp 109-113; MR 1901, pp 124
granite production of ... MR 1900,
pp 662, 663, 664, 665, 667; MR 1901, pp 643, 644, 651, 652, 653
hydrography of .. WS 69, pp 16-119
Kennebec River, flow of, measurement of Ann 22, iv, pp 56-58; WS 47, pp 29-30; WS 65, pp 16-17
Kennebec River and tributaries, hydrographic investigations on WS 69, pp 38-70
lake systems of ... WS 69, p 17
limestone production of .. MR 1900,
pp 662, 685, 686, 687, 689; MR 1901, pp 643, 644, 667, 668, 669, 670
Machias Rivers, hydrographic data concerning WS 69, pp 113-114
maps, topographic, of. (See Map, topographic, of Maine.)
mineral springs of ... MR 1900, pp 901, 902; MR 1901, pp 962, 964
Mousam River, hydrographic data concerning WS 69, p 116
Narraguagus River, hydrographic data concerning WS 69, p 112
Penobscot River, flow of, measurement of WS 65, pp 14-15; WS 75, p 20
water power, etc., on WS 69, pp 27-38
Piscataqua River, hydrographic data concerning WS 69, p 116
Presumpscot River, flow of, measurement of WS 65, pp 21-22; WS 75, p 22
hydrographic investigations on WS 69, pp 91-104
rivers of, flow of, measurement of WS 65, pp 13-22
Roach River, flow of, measurement of WS 65, pp 17-18
Saco River, hydrographic investigations on WS 69, pp 105-109
St. Crois River, water power, etc., on WS 69, pp 20-27
St. John River and tributaries, hydrographic investigations on WS 69, pp 109-112
Maine; St. John and Penobscot rivers, artificial connection between ... WS 69, p 36
slate production of... MR 1900, pp 662, 677, 678, 680; MR 1901, pp 643, 644, 660, 661
topographic work in... Ann 22, i, pp 137, 138, 141, 150, 172; Ann 23, pp 136-137
cooperation of State in... Ann 22, i, pp 19, 29
Union River, hydrographic data concerning... WS 69, p 115
water power in... WS 69
Mannitida of the Cretaceous... Mon xlv, pp 24-100
Manantico Creek, New Jersey, flow of, measurement of... WS 65, p 213
Mancos River, flow of, measurement of... WS 50, pp 384-385; WS 66, pp 97-98; WS 74, pp 124-126
Manganese, analyses of, from Brazil, Minas Geraes... MR 1901, p 142
of Cuba, Santiago... Bull 213, pp 251-255
ores of... MR 1901, p 971
Manganese and iron, publications on... Bull 213, p 256
Manganese and zinc deposits of Franklin Furnace, New Jersey... Bull 213, pp 214-217
Manganese ore, analysis of, from Brazil... MR 1900, p 129
analysis of, from Tennessee, Heberlin mine... MR 1900, p 124
of Georgia, Cartersville district... Bull 213, p 232
statistics of... MR 1900, pp 115-140; MR 1901, pp 127-155
Manitoba; Red River, flow of, measurement of... WS 66, pp 13-14
Mansfield sandstone of Indiana... Ann 22, iii, p 273
Manson (M.), reconnaissance of Yuba River, California... WS 46, pp 39-54
Mantelliceratide of the Cretaceous... Mon xlv, pp 105-115
Manti Creek, Utah, flow of, measurement of... Ann 22, iv, p 418; WS 51, p 424
Map, geologic; methods of preparing, engraving, and printing... Ann 15, pp 84-89
of Alabama, coal field... Ann 22, iii, p 250
of Alaska, Allen and Kowak rivers, portage between... PP 10, p 38
Chitina copper belt (also sections)... Copper, p 32
coal-bearing rocks... Ann 22, iii, p 527
Fort Hamlin to Kotzebue Sound, by way of Dall, Allen, Kanuti, and
Kowak rivers... PP 10, p 30
Ketchikan district... PP 1, p 40
Kowak and Allen rivers, portage between... PP 10, p 38
Norton Bay region (also sections)... N and N, p 200
Prince William Sound and vicinity (sketch)... Copper, p 34
Seward Peninsula (also section)... N and N, p 28
(economic)... N and N, p 140
northwestern portion... PP 2, p 14, 44
southeastern... PP 1, p 14
of Appalachian coal field, northern... Ann 22, iii, pl xi, p 126
of Appalachian coal field, southern... Ann 22, iii, pp 234, 250
of Arizona, Globe Hills... PP 12, in pocket
Globe quadrangle... PP 12, in pocket
of Arkansas, coal field... Ann 22, iii, pp 374, 390
Ozark region... Ann 22, ii, pocket
showing physiographic features... Ann 22, ii, p 70
southwestern, chalk region... Ann 22, iii, p 694
chalk and chalk-marl areas... Ann 22, iii, pp 701, 704, 709, 716, 721, 723
of British Columbia, Tulameen platinum region... Bull 193, p 38
of California, Death Valley and Mohave Desert... Bull 200, p 7
southeastern... Bull 208, pocket
of Colorado, coal fields... Ann 22, iii, p 422
Rico Mountains... Ann 22, ii, pocket
Silverton quadrangle, northern portion... Bull 182, p 32
Map, geologic, of Nevada, south of fortieth parallel . Bull 208, pocket
of New Jersey, Harlem quadrangle
Harlem quadrangle
Staten Island quadrangle
of New Mexico, coal fields
of New York, Brooklyn quadrangle
Buffalo, vicinity of (Pleistocene)
Cayuga Lake region
Dunkirk, Cherry Creek, and Silver Creek quadrangles (Pleistocene)
Harlem quadrangle
New York City district, showing terminal moraine and direction of
southwestern (glacial)
Staten Island quadrangle
western (glacial)
(Pleistocene)
of North America, showing extent of ice sheet
of North Carolina, Norfolk quadrangle
of Ohio (glacial)
Cadiz quadrangle, Berea grit oil sand
Defiance, vicinity of (glacial)
drainage modifications in parts of Kentucky and
in parts of West Virginia and
Hocking, Vinton, and adjacent counties, showing drainage modifications
northern (glacial)
Sandusky, vicinity of (beaches)
Washington and adjacent counties, showing drainage modifications
western (glacial)
of Ohio Valley, upper, showing pre-Glacial hydrographic basins
of Oregon, Coos Bay coal field
Coos Bay quadrangle, historical, economic, and structural geology
Crater Lake National Park
eastern, gold belt
Port Orford quadrangle
of Pennsylvania (glacial)
coil field, anthracite
Girard and Erie quadrangles (Pleistocene)
Masontown quadrangle
northern, anticlinal and synclinal axes
northwestern (glacial)
Washington County, oil and gas pools
Uniontown quadrangle
of Rocky Mountain coal field
of Russia, Iss and Veeya River, headwaters of
Nijni-Tagilsk platinum district
of South Dakota, Oelrichs quadrangle
of Tennessee, coal field
Maynardville quadrangle
of Texas

Bull 208, pocket
GF 83
GF 83
GF 83
Ann 22, iii, p 422
GF 83
Mon xlii, p 754
Bull 206, p 14
Mon xlii, p 654
GF 83
Ann 14, i, pp 213-215
Mon xli, p 436
Mon xli, p 69
GF 81, p 4; GF 83, p 12
GF 80
Mon xli, pp 50, 340, 710, 714, 740, 758
Bull 198, p 20
Mon xlii, p 748
PP 13, p 74
PP 13, p 62
PP 13, p 58
PP 13, p 70
Mon xlii, p 436
Mon xlii, p 730
PP 13, p 58
Ann 22, iii, p 506
GF 73
PP 3, p 26
Ann 22, ii, p 562
GF 89
Mon xl, pp 50, 710, 714, 740, 758
Ann 22, iii, p 64
Mon xlii, p 652
GF 82
Ann 22, iii, p 616
Mon xlii, p 436
Ann 22, ii, p 579
GF 82
Ann 22, iii, pp 422, 424
Bull 193, p 71
Bull 193, p 74
GF 85
Ann 22, iii, p 234
GF 75
Bull 212, pl i
WARMAN, I MAP, GEOLOGIC—MAP, TOPOGRAPHIC.

Map, geologic, of Texas, Austin quadrangle GF 76
- of Texas, Austin region, showing outcrops of Buda limestone Bull 205, p 12
- coal field Ann 22, iii, pp 374, 402
- eastern Bull 184, p 38
- of United States, eastern, showing Cambrian land and sea GF 83, p 2
- showing coal-bearing formations Ann 22, iii, pocket
- showing drainage basin of Mississippi River Ann 22, iv, p 210
- of Utah, coal fields Ann 22, iii, p 422
- of Vermont, Ascutney Mountain and vicinity Bull 209, p 70
- of Virginia, Deep and Dan River coal basins Ann 22, iii, p 44
- Norfolk quadrangle GF 80
- Richmond coal area Ann 22, iii, p 32
- of Washington, coal fields Ann 22, iii, p 482
- Ellensburg quadrangle GF 86
- Monte Cristo and vicinity Ann 22, ii, p 788
- North Yakima and vicinity WS 55, p 14
- of West Virginia (glacial) Mon xii, pp 50, 710, 714, 740, 758
- Charleston quadrangle, historical, economic, and structural geology.. GF 72
- drainage modifications in parts of Ohio and... PP 13, p 62
- Raleigh quadrangle GF 77
- of Wyoming, coal fields Ann 22, iii, p 424
- eastern WS 70, pp 14, 16

Map, topographic, of Alabama. (See p. 24 of this bulletin.)
- of Alabama, quadrangles in. (See pp. 21, 29 of this bulletin.)
- of Appalachian Mountains, northern GF 82
- of Appalachian Mountains, southern Ann 22, iv, p 172; WS 62, p 11
- showing drainage basins Ann 22, iv, p 170; WS 62, p 14
- of Arizona, quadrangles in. (See pp. 21, 29 of this bulletin.)
- Salt River Basin, showing drainage and reservoir sites WS 73, pp 8, 10
- of Arkansas, Ozark region, showing drainage and topography Ann 22, ii, p 69
- Ozark region, showing mining districts Ann 22, ii, p 61
- quadrangles in. (See p. 21 of this bulletin.)
- of California, Bidwell Bar quadrangle; classification of lands... PP 8, in pocket
- Colfax quadrangle, showing classification of lands... PP 8, in pocket
- Downieville quadrangle, showing classification of lands... PP 8, in pocket
- Kern River watershed WS 46, p 18
- King River delta, showing canals and wells WS 58, p 15
- King River drainage basin WS 58, p 11
- northern Bull 196, p 9
- quadrangles in. (See pp. 21, 29 of this bulletin.)
- Redlands and San Bernardino WS 59, p 11
- Sierra Nevada, northern, showing distribution of forest trees... PP 8,
- pp 18, 20, 22, 24, 26, 28
Map, topographic, of California, Sierraville quadrangle; land classification ... PP 8, in pocket

of California, Smartsville quadrangle; land classification ... PP 8, in pocket

Truckee Basin ... WS 68, p 9

Truckee quadrangle, showing classification of lands ... PP 8, in pocket

of California, Oregon, Washington, Idaho, and Nevada (general) ... WS 78, p 9

of Central America, showing mean rainfall ... Ann 22, iv, p 530

of Colorado, irrigation divisions, water districts, and gaging stations ... WS 74, p 20

quadrangles in. (See pp 22, 29 of this bulletin.)

Silvertown quadrangle ... Bull 182, pp 26, 34

southwest quarter ... Bull 182, p 14

Spanish Peaks quadrangle ... GF 71

of Connecticut, Millbrook quadrangle. (See p 22 of this bulletin.)

of Cuba ... Bull 192, p 9

of Delaware, quadrangles in. (See p 22 of this bulletin.)

of Erie and Ohio basins ... Mon xli, p 22

of Georgia, a northern ... Bull 180, p 55

Rome quadrangle ... GF 78

of Hawaian Islands, Molokai ... WS 77, p 9

of Idaho, a southwestern ... WS 78, p 16

of Idaho and contiguous States (general) ... WS 53, p 12

of Illinois, a Calumet quadrangle ... GF 81

Chicago, lake front at ... GF 81, p 11

Chicago quadrangle ... GF 81

Desplaines quadrangle ... GF 81

Riverside quadrangle ... GF 81

showing coal production ... Ann 22, iii, p 296

of Indian Territory, a Atoka quadrangle ... GF 79

Coalgate quadrangle ... GF 74

Tenmile district, showing location of asphaltites ... Ann 22, r, p 264

of Indiana, a Calumet quadrangle ... GF 81

Ditney quadrangle ... GF 84

eastern ... Mon xli, p 23

of Iowa, quadrangles in. (See p 23 of this bulletin.)

of Kansas, eastern, showing oil and gas localities ... Bull 184, p 11

of Kentucky, a northern ... Mon xli, p 23

Owensboro quadrangle ... Mon xli, pocket

of Maine, a Androscoggin, Presumpscot, and Saco basins ... WS 69, p 70

Penobscot and Kennebec drainage ... WS 69, p 28

showing drainage basins ... WS 69, p 12

of Maryland, quadrangles in. (See p 23 of this bulletin.)

of Michigan, lower ... Mon xli, p 23

lower peninsula, showing streams and drainage basins ... Ann 22, iv, p 284

of Minnesota, a Vermillion district ... Mon xlv, atlas sheets iv-x

of Missouri, a Ozark region, showing drainage and topography ... Ann 22, ii, p 69

Ozark region, showing mining districts ... Ann 22, ii, p 61

of Montana, a Elkhorn district ... Ann 22, ii, p 408

western ... Bull 180, p 47

of Nebraska, a Camp Clarke quadrangle ... GF 87

Scotts Bluff quadrangle ... GF 88

of Nevada, Truckee Basin ... WS 68, p 9

of New Jersey, a Harlem quadrangle ... GF 83

Paterson quadrangle ... GF 83

Staten Island quadrangle ... GF 83

of New York, a Adirondack region, stream-gaging stations ... Ann 22, iv, p 82

a See, also, State lists of atlas sheets, etc., on pp. 21-29 of this bulletin.
Map, topographic, of New York, Brooklyn quadrangle. GF 83
of New York, Harlem quadrangle. GF 83
Olean quadrangle. Mon xli, pocket
Staten Island quadrangle. GF 83
western. Mon xli, p 23
of North Carolina, Norfolk quadrangle. GF 80
western. Bull 180, p 55
of Ohio. Mon xli, p 23
Athens County, Athens and part of Dover townships. PP 13, p 68
Cincinnati, vicinity of. Mon xli, p 85
Flatwoods Valley. PP 13, p 50
Ironton, vicinity of. Mon xli, p 106
showing principal streams. Ann 22, iv, p 236
of Oregon, Cascade Range Forest Reserve. PP 9, p 230 and in pocket
Coos Bay quadrangle. GF 73
Crater Lake National Park. PP 3, p 17
Port Orford quadrangle. GF 89
showing classification of lands. PP 4, in pocket
southeastern. WS 78, p 16
southern. Bull 196, p 9
of Pennsylvania. Mon xli, p 23
Gaines oil region. Ann 22, iii, p 580
Masontown quadrangle. GF 82
Uniontown quadrangle. GF 82
of Russia, Goroblagodat and Bisiersk districts. Bull 193, p 70
Perm. Bull 193, p 67
of South Dakota, Oelrichs quadrangle. GF 85
of Tennessee, Maynardville quadrangle. GF 75
of Texas. Bull 190, at end
Austin quadrangle. GF 76
Beaumont and vicinity, showing oil wells at Spindletop Heights. Bull 184, p 54
Corsicana and vicinity, showing oil and gas development. Bull 184, p 48
eastern-southern, showing oil and gas field. Bull 184, p 37
northern, showing oil and gas localities. Bull 184, p 11
northwest boundary of. Bull 194
southeastern, showing rice belt. WS 71, p 83
Spindletop oil pool, region surrounding. Bull 212, p 86
Uvalde County (part), bituminous limestone of. Ann 22, i, p 322
of United States, east of Mississippi River, showing clays, potteries, and
brick and kaolin works. PP 11, pp 64, 68, 180, 280, 284
showing arid, semiarid, and humid regions. Ann 22, iv, p 29
showing astronomical location and primary triangulation to June 30, 1901. Bull 181, p 17
showing vacant public lands, forest reserves, etc. Ann 22, iv, p 38
western, showing forest reserves and Indian reservations. Ann 22, iv, p 43
showing forests and woodlands. Ann 22, iv, p 41
of Utah. (See pp. 26, 29 of this bulletin.)
of Vermont, Mettawee quadrangle. (See p. 26 of this bulletin.)
of Virginia. Norfolk quadrangle. GF 80
of Washington, Cascade Range, showing distribution of forest trees. PP 6, pp 10, 12, 14, 16, 18
Cascade Range, showing land classification and density of standing
timber. PP 6, in pocket
central. WS 55, p 11

a See, also, State lists of atlas sheets, etc., on pp. 21-29 of this bulletin.
Map, topographic, of Washington, Ellensburg quadrangle
 of Washington, Olympic Forest Reserve ... PP 7, in pocket
 showing classification of lands ... PP 5, in pocket
of West Virginia ... Mon xli, p 23
Barbourville and vicinity ... PP 13, p 64
Charleston quadrangle .. GF 72
Raleigh quadrangle .. GF 77
Teays Valley ... PP 13, p 50
of Wisconsin, quadrangles in. (See pp. 27, 29 of this bulletin.)
of Wyoming, quadrangles in. (See p. 27 of this bulletin.)
of world, showing arid regions .. Ann 22, iv, p 31
Maquoketa shale of northeastern Iowa .. Ann 11, i, pp 233, 234
Marble, analysis of, from Connecticut, Trumbull Ann 22, ii, p 17
of Tennessee ... Bull 213, pp 306-370
Maynardville quadrangle ... GF 75, p 5
statistics of ... MR 1900, pp 661, 662, 683-684; MR 1901, pp 643, 644, 645, 663-666
Marcasite and pyrite, action of cupric salts on Bull 186, pp 41-46
distinguishment and quantitative determination of relative amounts of, in
mixtures of the two, chemical method of ... Bull 186
oxidation of, by potassium permanganate Bull 186, pp 46-47
paramorphism of, remarks on .. Bull 186, p 40
Marcellus shale of New York .. Mon xli, p 57; Bull 3, p 8; Bull 41, p 22
Marietta sandstones of Pennsylvania, Ohio, and West Virginia Bull 65, pp 35-36
Marilla moraine, New York, distribution, topography, etc., of Mon xli, pp 681-684
Marine beds of Texas and Louisiana .. Bull 184, p 42
Marion formation of Kansas, flora, synonymy, etc., of Bull 211, p 60, 114-115
Marl, analyses of ... MR 1901, p 826
analysis of, from Michigan .. Ann 22, iii, pp 650-651
 from Michigan, Lakes Wetzell and Goose (mechanical) Ann 22, iii, p 654
 from Texas, Williams County .. Ann 22, iii, p 737
Marl, greensand, occurrence and use of MR 1901, pp 823-827
Marl and chalk of Arkansas, southwestern Ann 22, iii, pp 687-742
Marl deposits of Michigan, southern; composition, origin, etc. Ann 22, iii, pp 646-664
Marquette series of Michigan .. Bull 8, pp 27-30
Marshburg fire clay of Pennsylvania .. PP 11, p 214
Marsters (V. F.) and Kemp (J. F.), trap dikes of the Lake Champlain region,
abstract of paper on .. Ann 15, pp 99-100
Martinez group of California .. Bull 15, p 10
Martinsburg, West Virginia, slate industry at Bull 213, pp 363-364
Maryland; Antietam Creek, flow of, measurement of Ann 22, iv, p 134; WS 48, pp 117-118; WS 65, pp 230-231; WS 75, p 36
 borings, deep, in, list of .. WS 57, p 60
 building stone from, statistics of .. MR 1900, pp 662 et seq; MR 1901, pp 643 et seq
 cement from, statistics of ... MR 1900, pp 745; MR 1901, pp 726
 clay deposits and industry of ... PP 11, pp 48, 65, 134-149
 clay products of, statistics of .. MR 1900, p 695 et seq; MR 1901, pp 674 et seq; PP 11, p 149
coal area and statistics of .. Ann 22, iii, p 12; MR 1900, pp 276, 358, 395-399; MR 1901, pp 287 et seq, 391-395
coal field, bituminous; summary of knowledge Ann 22, iii, pp 201-214
coal fields of ... Ann 14, ii, p 579
production, etc., of .. Ann 22, iii, p 12
 copper deposits in ... Bull 213, p 183

See, also, State list of atlas sheets on p. 27 of this bulletin.
Maryland; flint and feldspar, production of . . MR 1900, p 895; MR 1901, pp 936, 938
geography of Catoctin belt Ann 14, ii, pp 293-296
of Fredericksburg quadrangle GF 13, p 1
of Harpers Ferry quadrangle GF 10, p 1
of Nomini quadrangle .. GF 23, p 1
of Piedmont quadrangle GF 28, p 1
of Washington quadrangles GF 70, p 1
geologic and paleontologic work in . . Ann 22, i, pp 63-64, 68, 70; Ann 23, p 37
gold and silver from, statistics of MR 1900, pp 110, 112, 113; MR 1901, pp 121, 124, 125, 126
granite production of ... MR 1900, pp 662, 663, 664, 665; MR 1901, pp 643, 644, 645, 651, 652, 653
iron and steel from, statistics of MR 1900, pp 43, 57, 96, 100; MR 1901, pp 45, 63, 76, 91
limestone production of MR 1900, pp 662, 668, 687, 689; MR 1901, pp 643, 645, 667, 668, 669, 670
maps, topographic, of. (See p. 23 of this bulletin.)
marble production of .. MR 1900, pp 662, 682, 683, 684; MR 1901, pp 643, 645, 664, 665
mineral springs of .. MR 1900, pp 901, 902; MR 1901, pp 962, 964
Monocacy River, flow of, measurement of Ann 22, iv, pp 139-140; WS 48, p 125; WS 65, pp 234-235; WS 75, p 40
Patapsco River, flow of, measurement of Ann 22, iv, p 130; WS 48, p 115; WS 65, pp 228; WS 75, p 33
sandstone production of MR 1900, pp 662, 670, 671, 672; MR 1901, pp 643, 645, 656, 657, 658, 659
slate production of ... MR 1900, pp 662, 677, 678, 680; MR 1901, pp 643, 644, 660
topographic work in .. Ann 22, i, pp 137, 138, 140, 149-150, 172; Ann 23, p 127
topography of Fredericksburg quadrangle GF 13, p 1
of Nomini quadrangle GF 23, p 1
of Piedmont quadrangle GF 28, p 1
of Washington quadrangles GF 70, p 1
Maryville limestone of Tennessee GF 75, p 2
Mascall formation of Oregon, John Day Basin Bull 204, p 19
Masontown and Uniontown quadrangles, Pennsylvania, geology of GF 82
Massachusetts; Assabet River, quality of water of WS 79, pp 44-45
Blackstone River, quality of water of WS 79, pp 60-68
borings, deep, in, list of WS 57, p 51
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 644 et seq
Chicopee River and tributaries, quality of water of WS 79, pp 77-85
clay deposits and industry of PP 11, pp 49, 149-153
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq; PP 11, pp 152-153
Cochituate Lake, rainfall and run-off in watershed of . WS 65, p 26
rainfall, run-off, and evaporation in basin of WS 80, pp 68, 69, 88-89, 99
run-off from watershed of WS 47, pp 33-34
coke in, manufacture of MR 1900, pp 462 et seq, 498; MR 1901, pp 454 et seq, 523
Concord River, quality of water of WS 79, pp 39-40, 45
corundum in .. Bull 180, p 82
Massachusetts; Deerfield River, quality of water of WS 79, pp 76-77
	emery at Chester .. Bull 180, pp 23-26, 67-70

gEOGRAPHY OF HOLYOKE QUADRANGLE GF 50, p 4

gEOLIC WORK IN .. Ann 22, i, p 65, 73-74; Ann 23, pp 43-44, 48, 59

GRANITE PRODUCTION OF MR 1900,

pp 662, 663, 664, 665, 667; MR 1901, pp 644, 645, 651, 652, 653

HOOSIC RIVER, POLLUTION OF WS 72, pp 41-43

HOUSTONIC RIVER, QUALITY OF WATER OF WS 79, pp 98-107

IRON AND STEEL FROM, STATISTICS OF MR 1900,

pp 43, 57, 99, 100; MR 1901, pp 45, 63, 76, 91, 97, 103

LIMESTONE PRODUCTION OF MR 1900, 665, 686, 687, 689; MR 1901, pp 644, 645, 667, 668, 669, 670

MARBLE PRODUCTION OF MR 1900,

pp 662, 682, 683, 684; MR 1901, pp 644, 645, 664, 665

MERRIMAC RIVER, FLOW OF, MEASUREMENT OF WS 47, pp 32-33; WS 65, p 22

WATER, AMOUNT AND QUALITY OF, IN BASIN OF WS 79, pp 33-35

MILLERS RIVER, QUALITY OF WATER OF WS 79, pp 73-79

MINERAL SPRINGS OF MR 1900, pp 901, 902; MR 1901, pp 962, 963

MYSTIC LAKE, RAINFALL, RUN-OFF, AND EVAPORATION IN BASIN OF . WS 80, pp 92, 99

NASHUA RIVER, FLOW OF, MEASUREMENT OF WS 65, pp 22-25

QUALITY OF WATER OF WS 79, pp 46-54

SANDSTONE PRODUCTION OF MR 1900, 670, 671, 672, 674; MR 1901, pp 644, 645, 656, 657, 658, 659

SHAWSEEN RIVER, QUALITY OF WATER OF WS 79, pp 38-39

SLATE PRODUCTION OF MR 1900, pp 677, 680; MR 1901, p 660

SUDBURY RIVER, FLOW OF, MEASUREMENT OF WS 47, pp 33-34; WS 79, p 36

QUALITY OF WATER OF WS 79, pp 40-44

RAINFALL AND RUN-OFF IN WATERSHED OF WS 65, p 26

topographic conditions as affecting road building in Ann 16, ii, pp 322-324

topographic work in Ann 22, i, pp 137, 138, 150, 172

cOOPERTAION OF STATE IN Ann 22, i, pp 16-17, 29

topography of eastern Berkshire County Bull 159, pp 14-16

of Franklin, Hampshire, and Hampden counties Mon xxix, pp 8-11

of Holyoke quadrangle GF 50, pp 1, 4

of Nantucket Island Bull 58, pp 11-15

WESTFIELD RIVER, QUALITY OF WATER OF WS 79, pp 85-89

MATANUSKA SERIES OF ALASKA Ann 22, iii, p 528

MATFIELD SHALES OF KANSAS, SYNONYMY, CHARACTER, AND FAUNA OF Bull 211, p 57

MATTHEWS LANDING SERIES OF ALABAMA Bull 43, pp 57-60, 70

MAUCH CHUNK FORMATION OF MARYLAND, CLAYS OF PP 11, p 136

OF PENNSYLVANIA, northern Ann 22, iii, pp 612-613

MAUCH CHUNK RED SHALE OF PENNSYLVANIA Ann 22, iii, p 66

MAUCH CHUNK SHALE OF PENNSYLVANIA GF 82, p 6

MAUMEE DRAINAGE BASIN, OHIO, FEATURES OF Mon xvi, pp 218-219

MAUMEE GLACIAL LAKE, DESCRIPTION OF Mon xvi, pp 710-740

MINOR MORAINES OF LATE WISCONSIN STAGE IN Mon xvi, pp 545-619

MAUMEE-MIAMI GLACIAL LOBE, MINOR MORAINES OF LATE WISCONSIN STAGE IN ... Mon xvi, pp 475-523

MAUMEE RIVER, OHIO, FLOW OF, MEASUREMENT OF Ann 22, iv, pp 240-241; WS 49, p 220; WS 65, pp 313-314; WS 75, p 110

PHYSICAL FEATURES OF BASIN OF Mon xvi, p 76

MAURICE RIVER AND TRIBUTARIES, NEW JERSEY, FLOW OF, MEASUREMENT OF ... WS 65, p 213
Maynardville quadrangle, Tennessee, geology of ... GF 75
Meadow Valley Canyon, Nevada, geology of ... Bull 208, pp 139-148
Meadow Valley Range, Nevada, geology of ... Bull 208, pp 148-151
Means (T.), notes on alkaline conditions of soil and water in Kings River delta, California ... WS 58, pp 83-85
Measurements of streams, accuracy of ... WS 64
Medicine Bow River, Wyoming, flow of, measurement of WS 66, p 26
Medicine Creek, Nebraska, flow of, measurement of ... WS 50, p 311
Medina group in Erie and Ohio basins .. Mon xli, p 54
Medina shale, clay derived from ... PP 11, p 51
Mendenhall (W. C.), Chistochina gold field, Alaska ... Bull. 213, pp 71-75
Mendenhall (W. C.) and Schrader (F. C.), copper deposits of the Mount Wrangell region, Alaska .. Bull 213, pp 141-148
Mendota limestone of Wisconsin Ann 11, i, p 332
Menominee region of Michigan and Wisconsin, unconformity between iron-bearing and gneissic formations in .. Ann 7, pp 434-435
Merced River, flow of, measurement of .. WS 51, p 481; WS 66, pp 150-151; WS 75, p 215
Merrimac River, flow of, measurement of .. WS 47, pp 32-33; WS 65, p 22
Mesabi iron-bearing district of Minnesota ... Bull 213, pp 247-249
Mesabi range, Minnesota ... Mon xlv, pp 35-36; Mon xliii, pp 21-23
Mesas, preglacial, New York State ... Ann 15, p 96
Mesozoic Echinodermata of the United States .. GF 84, p 6
Mesozoic rocks; clays of Massachusetts ... PP 11, p 150
Metabasalt of Minnesota, Mesabi district .. Mon xliii, pp 64-65
Metadiabase of Arizona, Globe district .. PP 12, pp 79-80
Metadolerite of Minnesota, Mesabi district ... Mon xliii, p 64
Metalliferous ores, investigation of ... Bull 213, pp 15-28
Metamorphic complex of Alaska, Dall, Allen, Kanuti, and Kowak rivers PP 10, pp 31-37
Metamorphic crystalline rocks of New York City district GF 83, pp 3-5
Metamorphic effect of gabbro and sills in Minnesota, Vermilion district... Mon XLV, pp 418-419

Metamorphic rocks of Alaska, Norton Bay region...... N and N, pp 199-204
of Arizona, Globe district............ pp 12, 23-28
of Minnesota, Mesabi district........... Mon XLIII, pp 63-66

Metamorphism in Appalachian Mountains........GF 78, p 4
in Vermont, Mount Ascutney............... Bull 209, pp 22-35
of conglomerate in Minnesota, Vermilion district... Mon XLV, pp 313-317
of country rock in Colorado in connection with ore deposition... Bull 182, pp 114-131
of granites in Minnesota, Vermilion district....... Mon XLV, pp 251-254, 273, 359
of greenstones in Minnesota, Vermilion district... Mon XLV, pp 155-162, 169-172
of iron formation in Minnesota, Mesabi district, by intrusion of granite
and gabbro....................... Mon XLIII, pp 159-164
of Lower Huronian rocks by granite in Minnesota, Mesabi district.... Mon XLIII, pp 83-84
of sediments and of igneous rocks in Alaska, Seward Peninsula...... N and N,
pp 34-35, 199-204
of slates of Minnesota, Vermilion district..... Mon XLV, pp 340-344, 393-394

Metamorphism, thermal, effect of, on rocks of Elkhorn district, Montana... Ann 22, pp 456-458

Metarhyolite of Tennessee, Cranberry quadrangle................. GF 90, p 4
Meteorites, platinum in................. Bull 193, p 35
Meters, current, description and use of........... WS 56, pp 18-21, 30-33; WS 64, pp 19-22, 34-44; WS 76, pp 19-20
rating of, methods of................. WS 56, pp 34-35; WS 64, pp 39-40, 80-82, 94

Metoicoceratidae of the Cretaceous................. Mon XLV, pp 115-128
Mexico; copper from, statistics of... MR 1900, pp 184, 185, 190; MR 1901, pp 194, 196

grahamite in................. Ann 22, i, pp 238-240
jadeite in......................... MR 1901, p 749
lead from, statistics of................. MR 1900, pp 209, 210
petroleum in, statistics of............ MR 1900, pp 589-590; MR 1901, pp 585-586
platinum in......................... Bull 193, pp 31, 59

Miami glacial lobe, Ohio, early Wisconsin drift of........... Mon XII, pp 304-339
main morainic system of late Wisconsin stage in........... Mon XIII, pp 354-382

Miami River. (See Little Miami River; Great Miami River.)

Miami and Little Miami rivers and tributaries, quality of water of...... WS 79, pp 170-183

Mica in Tennessee, Cranberry quadrangle................. GF 90, p 7
publications on.......................... Bull 213, pp 439-440
statistics of......................... MR 1900, pp 849-856; MR 1901, pp 873-878

Mica-gabbro, analysis of, from Wyoming, Absaroka Range......... Ann 22, ii, pp 529
Micaceous quartz-slate of Minnesota, Mesabi district......... Mon XLII, pp 93-94
Micaceous schists of Minnesota, Mesabi district............. Mon XLIII, p 68

Michigan; artesian water of, relation of coal-field structure to........ Ann 22, iii, pp 319
borings, deep, in, list of.............. WS 57, pp 51-55
bromine production of..................... MR 1901, p 868
building stone from, statistics of............. MR 1900, p 662 et seq; MR 1901, p 644 et seq
cement from, statistics of................. MR 1900, pp 737, 738, 740; MR 1901, pp 721, 722
cement, Portland, industry in................ Ann 22, iii, pp 629-685
clay deposits and industry of.............. PP 11, pp 153-158
clay deposits of, in relation to cement industry Ann 22, iii, pp 670-673
Michigan; clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq; PP 11, p 158
coal area and statistics of .. Ann 22, iii, p 13;
 MR 1900, pp 276, 358, 400–401; MR 1901, pp 287 et seq, 396–397
coal fields of, production, etc., of Ann 22, iii, p. 13
 summary of knowledge of .. Ann 22, iii, pp 307–331
gold and silver from, statistics of MR 1900, pp 109–113; MR 1901, pp 119 et seq
 Grand River, flow of, measurement of WS 65, pp 315–317; WS 75, pp 111–112
 hydrography of basin of .. Ann 22, iv, pp 254–256; WS 49, pp 239–249
 granite production of .. MR 1900, pp 662, 663, 665; MR 1901, pp 644, 645, 651, 652, 653
gypsum, in relation to cement industry Ann 22, iii, p 674
 statistics of .. MR 1900, pp 828, 830; MR 1901, pp 846, 847
Huron River, hydrography of basin of Ann 22, iv, pp 259–260; WS 49, p 251
 iron and steel from, statistics of .. MR 1900, pp 43, 44–54, 57; MR 1901, pp 45, 58, 63, 76, 91, 97, 103
 iron-bearing series of ... Ann 15, pp 93–94
 Kalamazoo River, hydrography of basin of Ann 22, iv, pp 256–268; WS 49, pp 257–259
limestone production of .. MR 1900, pp 662, 685, 686, 687, 689; MR 1901, pp 644, 645, 667, 668, 669, 670
 marl deposits of southern; composition, origin, etc Ann 22, iii, pp 646–664
 mineral springs of .. MR 1900, pp 901, 903; MR 1901, pp 963, 964
 Muskegon River, hydrography of basin of Ann 22, iv, pp 256–258; WS 49, pp 249–251
 Ontonagon River, hydrographic data concerning WS 49, p 259
 peat, use of, as fuel in cement industry Ann 22, iii, pp 676–677
 petroleum in, statistics of MR 1900, pp 540, 541, 572; MR 1901, pp 530, 531
 St. Joseph River, hydrography of basin of Ann 22, iv, pp 262–266; WS 49, pp 253–257
salt production of .. MR 1900, p 837; MR 1901, p 855
sandstone production of .. MR 1900, pp 662, 670, 671, 672, 674; MR 1901, pp 644, 645, 656, 657, 668, 659
shale of Lower Peninsula .. Ann 22, iii, pp 664–670
soil, analyses of, from celery farms (drained swamp) Ann 22, iii, p 677
 streams of Upper Peninsula, hydrographic data concerning ... WS 49, pp 259–260
topographic work in .. Ann 23, pp 129, 142
 topography of Crystal Falls district Ann 19, iii, pp 25, 26; Mon xxxvi, pp 29–31
 of Lower Peninsula ... WS 30, pp 57–64
Michigan series of Michigan Ann 22, iii, pp 645–646
Michigan shales of Michigan PP 11, p 154
Middle Creek, Montana, flow of, measurement of .. Ann 22, iv, p 281; WS 49, pp 261-262
Middleton (J.), clay products, statistics of ... MR 1900, pp 693-736; MR 1901, pp 671-720
Midway series of Alabama Bull 43, pp 62-63, 70
Military trail, Alaska Copper, pp 19-20
Milk River, Montana, flow of, measurement of .. Ann 22, iv, pp 287-288; WS 49, pp 267, 269; WS 66, pp 15-16; WS 75, p 122
reconnaissance of, for irrigation .. Ann 22, iv, pp 271-273
Mill Creek, California, flow of, measurement of .. WS 51, pp 476-477; WS 75, p 224
Mill Creek canals, California, flow of, measurement of Ann 22, iv, p 505; WS 66, p 166
Mill Creek, Texas, flow of, measurement of .. WS 66, p 62
Mill Creek, Utah, flow of, measurement of ... WS 51, p 422
Millard trail, Alaska Copper, p 24
Milidams as weirs for stream measurement ... WS 56, pp 14-16
Mlller River, Massachusetts, quality of water of ... WS 79, pp 73-76
Millersburg coal of Indiana GF 84, p 7
Millersburg formation of Indiana GF 84, p 2
Millsap division of Texas Ann 22, ii, p 404
Millstone grit of Ozark region Ann 22, ii, p 87
Millstones, statistics of MR 1900, pp 787, 791-793; MR 1901, pp 793-795
Millton formation of California Ann 17, i, pp 624-625
Mineral paints, statistics of MR 1900, pp 879-890; MR 1901, pp 901-914
Mineral resources of the United States ... MR 1900; MR 1901
Mineral springs in Oregon, Blue Mountains ... Ann 22, ii, pp 641-642
in Oregon, Cascade Range Forest Reserve, central portion PP 9, pp 76-77
in Washington, Cascade Mountains ... PP 6, pp 37-39
Mineral waters of Indiana, Ditney quadrangle .. GF 84, p 8
statistics of MR 1900, pp 899-905; MR 1901, pp 961-966
Mineral wool, analysis of Bull 213, pp 227-228
manufacture of, from slag Bull 213, pp 227-228
Mineralogy, bibliography and index of North American, 1892-1900, 1901 Bull 188; Bull 203
of ores of Colorado, Rico district .. Ann 22, ii, pp 248-254
of Colorado, Silverton quadrangle .. Bull 182, pp 70-87
Minerals containing and associated with platinum ... Bull 193, pp 12-28
investigation of nonmetalliferous economic .. Bull 213, pp 29-30
of Appalachian Mountain region, southern .. Ann 22, iv, p 179
of Colorado, Rico district Ann 22, iv, pp 249-253
of Montana, Elkhorn district Ann 22, ii, pp 459-469
of Oregon, Blue Mountains Ann 22, ii, pp 642-644
of Ozark region Ann 22, ii, pp 111-113, 116-123
Mines in Colorado, Silverton quadrangle .. Bull 182, pp 145-258
Mining in Colorado, Silverton quadrangle, methods of Bull 182, pp 39-41
in Minnesota, methods of (iron ore) .. Mon xliii, pp 280, 285
Vermilion district, methods of (iron ore) .. Mon xlv, pp 234-241
Mining and mining methods in Minnesota, Mesabi iron-ore district Mon xliii, pp 43, 61-62, 280-285
Mining methods in Alaska, Nome region .. N and N, pp 151-154
Minnekahta limestone of South Dakota .. GF 85, p 3
Minnelusa sandstone of South Dakota ... GF 85, p 2
Minnesota; borings, deep, in, list of WS 57, pp 55-57
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 644 et seq
cement from, statistics of MR 1900, p 745; MR 1901, p 726
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq
forests of Vermilion district Mon xlvi, pp 47-50
geography of the Mesabi iron-bearing district Mon xiii, pp 20-23
gold from, statistics of MR 1900, p 110
granite production of MR 1900,
iron and steel from, statistics of MR 1900,
iron ores of, Vermilion district Mon xlvi; pp 183-188, 213-234
jasper in .. Mon xlii, p 756
lakes of Vermilion district Mon xlvi; pp 41-46
limestone production of MR 1900, pp 662,
mineral springs of MR 1900, pp 901, 902; MR 1901, p 964
Mississippi River, flow of, measurement of WS 49, p 260; WS 65, pp 312-313
Mississinewa moraine, distribution, topography, etc., of Mon xli, pp 494-509
Mississinewa River, Indiana, course and character of Mon xli, p 190
Mississippi; borings, deep, in, list of WS 57, p 57
clay deposits and industry of PP 11, pp 159-161
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq
clays, stoneware and brick, of western Tennessee and northwestern Mississippi Bull 213, pp 382-391
descriptions of Bull 213, pp 8-20
geologic and paleontologic work in Ann 22, i, pp 47-50
Giants range, description of Mon xiii; pp 21-23; Mon xiv, pp 35-36
maps, geologic and topographic, of. (See Map.)
Mesabi iron-bearing district, iron ores of Bull 213, pp 247-249
production of, 1892-1902 Mon xiii, pp 287-290
Mesabi range, description of Mon xii, pp 21-23
mineral springs of MR 1900, pp 901, 903; MR 1901, p 964
Mississippi River, flow of, measurement of WS 49, p 260; WS 65, pp 312-313
hydrography of .. Ann 22, iv, pp 211-218
Pigeon Point, eruptive and sedimentary rocks of Ann 15, pp 101-103
Red Lake River, flow of, measurement of WS 66, pp 9-10
Red River, flow of, measurement of WS 66, pp 9-10
sandstone production of MR 1900,
slate production of MR 1900, pp 662, 670, 671, 672, 674; MR 1901, pp 644, 645, 656, 657, 658-659
topographic work in Ann 22, i, pp 137, 138, 156, 172
topography of the Mesabi district Ann 21, iii, pp 352-353; Mon xiii, pp 20-23
Vermilion district, exploration in, history of Mon xlvi, pp 56-63
geologic literature on Mon xlvi, pp 64-128
monograph on .. Mon xlv
Minnewaste limestone of South Dakota GF 85, p 3
Miocene history of Cascade Range PP 3, p 20
Miocene rocks of California, Lassen Peak district Ann 8, i, pp 431-432
of California, Lassen Peak district Bull 18, pp 10, 11, 12
Mission Creek, Montana, reconnaissance of basin of Ann 22, iv, pp 436-441
Mission Creek series of Alaska Ann 22, iii, pp 530, 556
Mississinewa moraine, distribution, topography, etc., of Mon xli, pp 494-509
Mississinewa River, Indiana, course and character of Mon xli, p 190
Mississippi; borings, deep, in, list of WS 57, p 57
clay deposits and industry of PP 11, pp 159-161
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq
clays, stoneware and brick, of western Tennessee and northwestern Mississippi Bull 213, pp 382-391
descriptions of Bull 213, pp 8-20
geologic and paleontologic work in Ann 22, i, pp 105-106
Holly Springs, clay at Bull 213, p 384
mineral springs of MR 1900, pp 901, 902; MR 1901, p 964

Bull. 215—03——10
Mississippi; Pearl River, flow of, measurement of WS 65, pp 286–287
Tombigbee River, flow of, measurement of WS 48, pp 174–175; WS 63, p 180; WS 65, p 285; WS 75, p 97
topographic work in ... Ann 23, pp 142–143
Yazoo River, flow of, measurement of WS 65, pp 287–288
Mississippi River, flow of, measurement of WS 49, p 260; WS 65, pp 312–313
hydrography of upper ... Ann 22, iv, pp 210–219
velocity per minute, variation in, at Burlington, Iowa WS 64, p 30
vertical velocity curves obtained on, position of vertex of, table showing ... WS 64, p 27
Mississippi Valley, Upper, ores of, occurrence of Ann 22, i, pp 33–49
Mississippian limestone of Kansas and Indian Territory ... Bull 184, pp 13–14
Mississippian rocks of Ozark region Ann 22, ii, pp 83–87
Mississippian series of Pennsylvania GF 82, pp 6–7
of West Virginia .. GF 77, p 3
Missouri; barytes production of MR 1901, pp 916, 918
bituminous rock deposits in, occurrence, geology, etc., of Ann 22, i, pp 259–262
borings, deep, in, list of .. WS 57, pp 58–59
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 644 et seq
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq
coal area and statistics of Ann 22, iii, p 13, MR 1900, pp 276, 359, 402–405;
MR 1901, pp 287 et seq, 398–400
coker production of ... MR 1900, pp 462 et seq, 498–499; MR 1901, pp 454 et seq, 489
gold and silver from, statistics of MR 1900, pp 111, 112; MR 1901, pp 119, 124, 125
granite production of ... MR 1900, pp 662, 663, 664, 665, 666; MR 1901, pp 644, 645, 651, 652, 653
iron and steel from, statistics of MR 1900, pp 43, 57, 96; MR 1901, pp 45, 63, 76, 103
Joplin district, lead and zinc deposits of Bull 213, pp 197–204
lead and zinc deposits of Joplin district Bull 213, pp 197–204
of Ozark region, preliminary report on Ann 22, ii, pp 23–227
limestone production of MR 1900, pp 662, 665, 666, 670; MR 1901, pp 644, 645, 667, 668, 669, 670
manganese ore from, statistics of MR 1900, pp 115, 116; MR 1901, pp 128, 134
maps, geologic and topographic, of (See Map.)
marble production of ... MR 1900, pp 662, 663, 684; MR 1901, pp 644, 645, 646, 665
mineral springs of ... MR 1900, pp 901, 902; MR 1901, pp 963, 964
natural gas in, statistics of MR 1900, pp 634, 635, 637, 638; MR 1901, pp 617, 619, 620, 621
petroleum in, statistics of MR 1900, pp 540, 541, 543, 572; MR 1901, pp 530, 531, 533, 534
sandstone production of MR 1900, pp 662, 670, 671, 672, 674; MR 1901, pp 644, 645, 665, 657, 658, 659
topographic work in ... Ann 22, i, pp 137, 138, 143, 153, 172; Ann 23, pp 128, 141
topography of southeastern portion Bull 132, pp 10–11
zinc from, statistics of MR 1900, pp 213, 214, 216–218; MR 1901, pp 211, 212, 214
zinc and lead deposits of Joplin district Bull 213, pp 197–204
of Ozark region, preliminary report on Ann 22, ii, pp 23–227
Missouri River, Montana, flow of, measurement of

Missouri River and tributaries, Upper, flow of, measurement of

Mohave Desert and Death Valley, borax deposits of, reconnaissance of

Mohave River, California, flow of, measurement of

Mohawk River, New York, flow of, measurement of

Mohican Creek, Ohio, changes in basin of

Mojisoviscidiidae of the Cretaceous

Mokelumne River, flow of, measurement of

Mollusca of Buda limestone

Molokai, Hawaiian Islands, water resources, climate, topography, geology, etc., of

Molybdenum, occurrence, uses, and production of

Monazite, statistics of

Monitor Range, Nevada, geology of

Monocacy River, Maryland, flow of, measurement of

Monongahela drainage system, pre-glacial, description of

Monongahela formation of Erie and Ohio basins

Monongahela River, Pennsylvania, abandoned channels of

Monongahela Valley, Pennsylvania, coal field of, recent work in

Montana; Badger Creek, flow of, measurement of

Birch Creek, flow of, measurement of

Bitterroot Range and Clearwater Mountains, mineral deposits of

Bitterroot River, flow of, measurement of

Blackfoot River, flow of, measurement of

Borings, deep, in, list of

building stone from, statistics of

Butte, ore deposits at

clay products of, statistics of

Clearwater Mountains and Bitterroot Range, mineral deposits of

coal area and statistics of

MR 1900, pp 277, 359, 406-408; MR 1901, pp 287 et seq, 401-403
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

Montana; coal fields of, production, etc., of: Ann 22, iii, p 13
coal fields of, summary of knowledge of: Ann 22, iii, pp 460-468
coke in, manufacture of: MR 1900, pp 462 et seq, 499-500; MR 1901, pp 454 et seq, 490-491
copper from, statistics of: MR 1900, pp 143, 144, 157; MR 1901, pp 160, 161, 169
corundum deposits in: Bull 150, pp 66-67, 82
corundum (gem) in: MR 1901, pp 738-739
Crow Creek, flow of, measurement of: WS 49, p 266; WS 66, pp 21-22
Cutbank River, flow of, measurement of: WS 49, p 289
diamonds in, occurrence of: MR 1901, p 731
Elkhorn mining district, geology and ore deposits of: Ann 22, iv, pp 399-549
Flathead Lake, flow of, measurement of: WS 66, p 132
hydrographic data relating to: WS 51, pp 434-436, 437-438
Gallatin River, flow of, measurement of: Ann 22, iv, pp 280-281, 282;
WS 49, pp 260-261, 262; WS 66, pp 16-18; WS 75, pp 118-119
glaciation of Yellowstone Valley in: Ann 15, pp 97-98; Bull 104
gold and silver from, statistics of: MR 1900, pp 109-113; MR 1901, p 119 et seq
gold mines of Marysville district: Bull 213, p 98
granite production of: MR 1900, p 662, 663, 664, 665; MR 1901, pp 644, 645, 651, 652, 653
iron ore production of, statistics of: MR 1900, pp 43, 56, 57; MR 1901, p 45, 63, 76, 91
lead from, statistics of: MR 1900, p 196; MR 1901, p 201
limestone production of: MR 1900, pp 662, 685, 686, 687, 690; MR 1901, pp 644, 645, 667, 668, 669, 670
McDonald Lake, description of: Ann 22, iv, pp 436, 439-441
Madison River, diversion of, proposed: Ann 22, iv, pp 283-284
flow of, measurement of: Ann 22, iv, p 284; WS 49, pp 263-264; WS 66, pp 18-19; WS 75, p 119
manganese ore from, statistics of: MR 1900, pp 115, 116, 123; MR 1901, p 128
maps, geologic and topographic, of. (See Map.)
marble production of: MR 1900, pp 662, 683, 684; MR 1901, pp 644, 645, 664, 665
Marysville district, gold mines of: Bull 213, pp 88-89
Middle Creek, flow of, measurement of: Ann 22, iv, p 281; WS 49, pp 261-262
reconnaissance of, for irrigation: Ann 22, iv, pp 271-273
mineral deposits of Bitterroot Range and Clearwater Mountains: Bull 213, pp 66-70
Mission Creek, reconnaissance of basin of: Ann 22, iv, pp 436-441
Montana; Missouri River, flow of, measurement of ... Ann 22, iv, p 286; WS 49, pp 265-266; WS 66, pp 20-21; WS 75, p 121
Missouri River, miscellaneous measurements in basin of ... WS 66, p 23
molybdenum in ... MR 1901, p 266
ore deposits at Butte .. Bull 213, pp 170-180
Post Creek, reconnaissance of basin of .. Ann 22, iv, pp 436-441
quartz, smoky, from .. MR 1901, p 750
rainfall in Upper Missouri Basin .. WS 75, pp 114-118
Rattlesnake Creek, flow of, measurement of ... WS 51, pp 431-432
ruby in, occurrence of .. MR 1900, pp 756-757
St. Mary Lake, description of .. Ann 22, iv, pp 436, 438
St. Mary River, description of .. Ann 22, iv, p 270
diversion of, proposed ... Ann 22, iv, pp 268-279
flow of, measurement of ... Ann 22, iv, p 271; WS 49, p 269; WS 66, pp 14-15; WS 75, p 113
sandstone production of .. MR 1900, pp 662, 670, 671, 672, 674; MR 1901, pp 644, 645, 656, 657, 658, 659
sapphires in ... Bull 180, pp 47-55; MR 1900, p 756; MR 1901, pp 736-737
Swan River, flow of, measurement of .. WS 51, pp 436-437
Swift Current Creek, diversion of, proposed ... Ann 22, iv, p 274
Three Forks, Paleozoic section near .. Ann 15, pp 103-105
topographic work in .. Ann 22, i, pp 137, 138, 145, 157, 162-163, 172; Ann 23, pp 130, 151-152, 153
topography of Bitterroot Forest Reserve, part of .. Ann 19, v, pp 57, 253-257
of Castle Mountain mining district .. Bull 139, pp 19-21
of Elkhorn mining district .. Ann 22, ii, pp 410-411
of Flathead Forest Reserve ... Ann 20, v, pp 246-247
of Fort Benton quadrangle .. GF 55, p 1
of Judith Mountains .. Ann 18, iii, pp 450-451
of Lewis and Clark Forest Reserve .. Ann 21, v, pp 36-37, 57, 65, 68, 74
of Little Belt Mountains ... Ann 20, iii, pp 273-275
of Little Belt Mountains quadrangle .. GF 56, p 1
of Livingston quadrangle .. GF 1, p 1
of Three Forks quadrangle ... GF 24, p 1
Two Medicine River, flow of, measurement of .. WS 49, p 269
Yellowstone River, flow of, measurement of ... Ann 22, iv, pp 289-290; WS 49, p 268; WS 66, p 22; WS 75, pp 122-123
Montana division of Texas ... GF 76, p 5
Monte Cristo, Washington, ore deposits of ... Ann 22, ii, pp 777-865
Monte Cristo Mountains, Nevada, geology of ... Bull 208, pp 105-106
Montezuma schist of Tennessee, Cranberry quadrangle ... GF 90, p 4
Monzonite, analysis of, average ... Bull 209, p 66
Monzonite-porphry, mineralogic composition of, from Colorado, Silverton quadrangle ... Bull 182, pp 128, 129
of Colorado, Spanish Peaks quadrangle ... GF 71, pp 3-4
Monzonitic porphyry, analysis of, from Colorado, Silverton quadrangle Bull 182, p 127
Moonstone, occurrence and statistics of .. MR 1901, p 749
Moose River, New York, flow of, measurement of ... WS 49, pp 234-235; WS 65, p 98
Moraines in Minnesota, Mesabi district .. Mon xliii, pp 49, 192-193
in New York City district .. GF 83, pp 12-14
Morgantown sandstone of Pennsylvania and West Virginia .. Bull 65, pp 88-89
Mormon Range, Nevada, geology of .. Bull 208, pp 134-136
Morsell (W. F.), work in charge of .. Ann 22, i, p 206; Ann 23, i, p 195
Motions of underground waters ... WS 67
Mount Mazama, Oregon, geology of .. PP 3, pp 21-50
Mount Morris limestone of Pennsylvania Bull 65, pp 39-40
Mount Thielsen, Oregon, features of PP 3, pp 20-21
Mount Vernon series of deposits Ann 16, i, pp 473, 523, 530-533, 538, 559
Mount Victory moraine, Ohio, distribution and topography of .. Mon xli, pp 543-545
Mount Wrangell region, Alaska, copper deposits of Bull 213, pp 141-148
Mount Zion porphyry of Colorado, Leadville district Ann 2, pp 245
Mountain growth in Colorado, Spanish Peaks quadrangleGF 71, p 2
in South Dakota, Oelrichs quadrangle GF 85, p 2
Mountains, Appalachian, southern, heights of peaks in WS 62, pp 14-15
Mousam River, Maine, hydrographic data concerning WS 69, p 116
Movement in earth’s crust, relief due to, in Idaho WS 53, pp 54-61
Mud from Gulf of Mexico, examination of Bull 212, pp 107-111
Muddy Range, Nevada, geology of Bull 208, pp 136-138
Murphy (E. C.), accuracy of stream measurements WS 64

tests to determine the accuracy of discharge measurements of New York
State canals and feeders WS 47, pp 18-29
Muscovite-aplite of Vermont, Ascutney Mountain Bull 209, p 73
Muscovite-granite of Arizona, Globe district PP 12, pp 65-67
Muskegon River, Michigan, hydrography of basin of Ann 22, iv, pp 256-258; WS 49, pp 249-251
Muskingum River, Ohio; rainfall, run-off, and evaporation in basin of .. WS 88, pp 67, 76, 85, 99, 100
Muskingum River, Ohio, and tributaries; quality of water of . WS 79, pp 136-153
Muskingum River system, Ohio; features, preglacial and present, of Mon xli, pp 153-168
Muskingum Valley, Ohio, description of PP 13, p 35
Myrtle formation of Oregon ... GF 89, p 2; GF 73, pp 1-2
Mystic Lake, Massachusetts, rainfall, run-off, and evaporation in basin of .. WS 80, pp 92, 99
Nabesna River, Alaska, trail from Copper River to Copper p 25
Naches River, Washington, description of, with reference to irrigation .. WS 55, pp 29-31
flow of, measurement of ... Ann 22, iv, pp 445-446;
WS 51, 440; WS 55, p 35; WS 66, pp 133-134; WS 75, p 202
irrigation in basin of ... Ann 22, iv, pp 444-445
Nacimiento Creek, California, flow of, measurement of .. WS 66, p 154; WS 75, p 219
Nacogdoches, Texas, oil field .. Bull 184, pp 53-54
Naheola series of Alabama ... Bull 43, pp 57-60, 70
Nanafalia series of Alabama ... Bull 43, pp 51-57, 70
Narraguagus River, Maine, hydrographic data concerning WS 69, p 112
Nashua River, flow of, measurement of WS 65, pp 22-25
quality of water of ... WS 79, pp 46-54
Natal, coal production of .. MR 1901, p 311
Natrolite, action of ammonium chloride on Bull 207, pp 22-24
analysis of, from Bohemia, Aussig Bull 207, p 23
Natural gas. (See Gas, natural.)
Navarro marls of Texas .. Bull 184, p 38
Nebraska; Ash Creek, flow of, measurement of WS 50, p 310
Beaver Creek, flow of, measurement of WS 50, p 310
Big Blue River, flow of, measurement of WS 50, p 310
borings, deep, in, list of ... WS 61, pp 10-11
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 644 et seq
Camp Clarke quadrangle, geology of GF 87
Nebraska; cement from, statistics of MR 1900, p 745; MR 1901, p 726
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq
coal area and statistics of Ann 22, ii, p 13;
MR 1900, pp 276, 359, 409; MR 1901, pp 287 et seq, 403-404
coal fields of, production, etc., of Ann 22, iii, pp 13, 333-366
Elkhorn River, flow of, measurement of Ann 22, iv, pp 329-331;
WS 50, pp 308-310, WS 66, pp 40-41; WS 75, pp 139-140
Frenchman River, flow of, measurement of WS 50, p 310; WS 74, pp 67-68, 69, 70
geography of Camp Clarke quadrangle GF 87, p 1
of Oelrichs quadrangle GF 85, p 1
of Scotts Bluff quadrangle GF 88, p 1
gеologic and paleontologic investigations in Ann 22, p 40
Goshen Hole quadrangle in Wyoming and, geology, etc., of WS 70
limestone production of MR 1900, pp 662, 685, 686, 687, 690; MR 1901, pp 644, 645, 667, 668, 669, 670
Lodgepole Creek, flow of, measurement of WS 50, p 311
maps, geologic and topographic, of. (See Map.)
Medicine Creek, flow of, measurement of WS 50, p 311
Niobrara River, flow of, measurement of. WS 50, p 311; WS 66, p 25
North Platte River, flow of, measurement of Ann 22, iv, pp 312-314; WS 49, pp 276-278; WS 75, p 128
Oelrichs quadrangle, geology of GF 85
Patrick quadrangle in Wyoming and, geology and water resources of WS 70
rainfall in western GF 87, p 1; GF 88, p 1
Republican River, flow of, measurement of Ann 22, iv, p 332;
WS 50, pp 311, 312-313; WS 66, pp 41-42; WS 74, pp 68, 69-70
Salt Creek, flow of, measurement of WS 50, p 311
sandstone production of MR 1901, pp 645, 656, 658, 659
Scotts Bluff quadrangle, geology of GF 88
stream measurements in, miscellaneous. WS 66, p 43
topographic work in Ann 22, p 129
topography of Great Plains, portion of Ann 16, ii, pp 542-545
of Patrick and Goshen Hole quadrangles WS 70, pp 22-25
of Platt River Basin Ann 13, iii, pp 74-75
of southeastern portion WS 12, pp 12-14
underground waters of Camp Clarke quadrangle GF 87
of Scotts Bluff quadrangle GF 88, p 4
White River, flow of, measurement of WS 50, p 311
Neocene fossils; Mollusca (nonmarine) of North America Ann 3, pp 403-550
Neocene history of Washington, Ellensburg quadrangle GF 86, p 2
Neocene rivers of the Sierra Nevada Bull 213, pp 64-65
Neocene rocks; Arikaree formation of Wyoming, eastern WS 70, pp 16-18; GF 87, p 2; GF 88, p 3
Chesapeake formation of Virginia GF 80, p 3
Columbia formation of Georgia, clays of PP 11, p 92
Columbia River lava in Idaho, Nez Perce region WS 53, pp 28-42
Ellensburg formation in Washington WS 55, pp 17-22; GF 86, pp 2-3
Empire formation of Oregon GF 73, p 3; GF 89, p 3
Gering formation of Nebraska GF 87, p 2; GF 88, pp 2-3
Grand Gull formation of Louisiana Bull 184, p 44
Neocene rocks; Guertie sand of Indian Territory GF 74, p 4
Hayes River beds of Alaska .. Ann 22, iii, p 535
Idaho formation of Idaho .. Bull 199, pp 51-56
Lafayette formation of Georgia GF 78, p 4
of Gulf coast ... Bull 212, p 26
Mascall formation of Oregon .. Bull 204, p 19
Nulato sandstones of Alaska Ann 22, iii, pp 533, 535
Nushagak beds of Alaska ... Ann 22, iii, p 535
Nussbaum formation of Colorado GF 71, p 2, 3
of Alaska ... Ann 22, iii, p 533
of Colorado, Spanish Peaks quadrangle GF 71, p 2
of Georgia, Rome quadrangle GF 78, p 4
of Indian Territory, Atoka quadrangle GF 79, p 6
Coalgate quadrangle ... GF 74, p 4
of Maryland, clays .. PP 11, p 143
of Nebraska, Camp Clarke quadrangle GF 87, p 2
Scotts Bluff quadrangle .. GF 88, pp 2-3
of Oregon, Blue Mountains ... Ann 22, ii, pp 582-584
Coos Bay quadrangle .. GF 73, p 3
Port Orford quadrangle .. GF 89, p 3
of Oregon, Blue Mountains ... Ann 22, ii, pp 582-584
Payette formation of Oregon and Idaho.......................... Bull 199, pp 50-51; WS 78, pp 16-17
Rattlesnake formation of Oregon, John Day Basin Bull 204, pp 19-20
Truckee formation of Nevada Bull 208, p 22
Twelvemile beds of Alaska ... Ann 18, iii, pp 196-199; Ann 22, iii, p 536
Tyonek beds of Alaska ... Ann 22, iii, p 535
Uvalde formation of Texas .. GF 76, p 6
Yakima basalt in Washington WS 56, pp 15-17
Neocene system, definition of Ann 14, i, p 42
Neococeratidae of America .. Mon xi, p 143
Neosho River, Kansas, flow of, measurement of Ann 22, iv, p 346; WS 50, pp 331-332; WS 66, pp 57-58; WS 75, p 149
Nephrite, occurrence of .. MR 1900, p 767; MR 1901, p 749
Neshaminny Creek, Pennsylvania, flow of, measurement of Ann 22, iv, pp 116-119; WS 47, pp 90-98; WS 65, p 216; WS 75, p 29
rainfall, run-off, and evaporation in basin of WS 80, pp 93, 99
Neuse River, North Carolina, flow of, measurement of Ann 22, iv, p 154; WS 48, pp 135-136
Neva limestone of Kansas, synonymy and character of Bull 211, p 54
Nebraska; Antelope Range, geology of Bull 208, pp 37-38
Arrow Canyon Range, geology of Bull 208, p 154
Belted Range, geology of ... Bull 208, pp 163-164
borings, deep, in, list of... WS 61, p 11
Candelaria Mountains, geology of Bull 208, pp 113-115
Cedar Range and Clover Valley Mountains, geology of Bull 208, pp 36-37
clay products of ... MR 1900, p 695 et seq; MR 1901, p 674 et seq
Nevada; Clover Valley Mountains and Cedar Range, geology of... Bull 208, pp 36-37
coral area and statistics of... MR 1900, pp 279, 409; MR 1901, p 404
coral bed in central... Ann 22, iii, p 459
Colorado Canyon, geology of... Bull 208, p 133
copper from, statistics of... MR 1900, pp 143, 144, 159; MR 1901, pp 160, 161, 174
corundum in... Bull 180, p 82
Desert Mountains, geology of... Bull 208, pp 106-107
Desert Range, geology of... Bull 208, pp 160-161
Diamond Range, geology of... Bull 208, pp 81-84
Egan Range, geology of... Bull 208, pp 47-54
Ellsworth Range, geology of... Bull 208, pp 99-103
Excelsior Range, geology of... Bull 208, pp 109-113
Gabbs Valley and Gabbs Valley Range, geology of... Bull 208, pp 107-109
geologic and paleontologic work in... Ann 22, i, p 88; Bull 213, p 27
gleology of, south of fortieth parallel... Bull 208
Gold Mountain district, ore deposits of... Bull 213, p 87
gold and silver from, statistics of... MR 1900, pp 109-113; MR 1901, p 119 et seq
Golden Gate Range, geology of... Bull 208, pp 57-59
granite production of... MR 1900, pp 662, 663, 665; MR 1901, pp 644, 645, 651, 653
Grant and Quinn Canyon ranges, geology of... Bull 208, pp 68-76
Hennepeah district, ore deposits of... Bull 213, p 87
Highland and Schell Creek ranges, geology of... Bull 208, pp 38-47
Hiko Range, geology of... Bull 208, p 152
Hot Creek Range, geology of... Bull 208, pp 84-87
Humboldt Range, geology of... Bull 208, pp 59-61
Humboldt River, flow of, measurement of... Ann 22, iv, pp 399-402;
WS 51, pp 395-399; WS 66, pp 104-108; WS 75, pp 181-183
hydrographic work in, cooperation of State in... Ann 22, i, pp 32-33
iron ore from, statistics of... MR 1900, pp 43, 56, 57; MR 1901, p 45, 63, 76
irrigation in Truckee Basin... WS 68, pp 74-84
Kawich Range, geology of... Bull 208, p 181
Las Vegas Range, geology of... Bull 208, pp 155-159
lead from, statistics of... MR 1900, p 196; MR 1901, p 201
limestone of Nevada... Bull 208, p 20
Long Valley Range, geology of... Bull 208, pp 54-57
Lovelocks, canals near, discharge measurements of... WS 51, p 399
maps, geologic and topographic, of. (See Map.)
Meadow Valley Canyon, geology of... Bull 208, pp 139-148
Meadow Valley Range, geology of... Bull 208, pp 148-151
Monitor Range, geology of... Bull 208, p 89
Monte Cristo Mountains, geology of... Bull 208, pp 105-106
Mormon Range, geology of... Bull 208, pp 134-136
Muddy Range, geology of... Bull 208, pp 136-138
nickel in... MR 1901, p 243
ore deposits of Tonopah district... Bull 213, pp 81-85
Pahranagat Range, geology of... Bull 208, pp 153-154
Pahroc Range, geology of... Bull 208, p 151
Pancake Range, geology of... Bull 208, pp 77-81
Pilot Mountains, geology of... Bull 208, pp 103-105
Pine Nut Range, geology of... Bull 208, pp 120-125
Piñon Range, geology of... Bull 208, pp 88-89
Quinn Canyon and Grant ranges, geology of... Bull 208, pp 68-76
rainfall in Truckee Basin... WS 68, pp 10-15
Ralston Desert, geology of... Bull 208, pp 181-183
Nevada; Reese River Range, geology of .. Bull 208, pp 98–99
reservoir sites in Truckee Basin ... WS 68, pp 36–71
Revelle Range, geology of ... Bull 208, pp 161–164
Schell Creek and Highland ranges, geology of Bull 208, pp 38–47
Silver Peak district, ore deposits of .. Bull 213, pp 85–86
Silver Peak Range, geology of ... Bull 208, pp 184–186
Smith Valley Range, geology of ... Bull 208, pp 117–120
Snake Range, geology of ... Bull 208, pp 25–36
Southern Klondike district, ore deposits of Bull 213, p 86
Spring Mountain Range, geology of .. Bull 208, pp 164–180
Steamboat Creek, flow of, measurement of .. WS 51, p 406; WS 66, pp 114–115; WS 75, p 185
Steamboat Springs, flow of, measurement of Ann 22, iv, p 406
Sweetwater Range, geology of ... Bull 208, pp 125–129
Timpahute Range, geology of ... Bull 208, pp 159–160
tonopah district, ore deposits of .. Bull 213, pp 81–85
topography of Eureka mining district .. Mon iv, pp 1–3
Toquima Range, geology of ... Bull 208, pp 90–93
Toyabe Range, geology of ... Bull 208, pp 93–97
Truckee Basin, water storage in ... WS 68
tungsten ore in eastern ... Bull 213, p 103
turquoise in .. MR 1901, p 760
Virginia Range, geology of ... Bull 208, pp 129–130
Walker River Range, geology of .. Bull 208, pp 115–117
water power in Truckee Basin ... WS 68, pp 72–74
White Pine Range, geology of ... Bull 208, pp 61–68
Worthington Mountains, geology of .. Bull 208, pp 76–77
New Hampshire; borings, deep, in .. WS 61, p 12
building stone from, statistics of ... MR 1900, p 662 et seq; MR 1901, p 644 et seq
clay products of, statistics of ... MR 1900, pp 695 et seq; MR 1901, p 674 et seq
Cocheco River, drainage area, fall, power, etc., of Ann 22, iv, pp 73–76
Connecticut River, flow of, measurement of WS 47, p 34; WS 65, pp 29–30; WS 75, p 23
copper from, statistics of ... MR 1900, pp 143, 144; MR 1901, pp 160, 161
Exeter River, drainage area, fall, power, etc., of Ann 22, iv, pp 79–81
geologic and paleontologic investigations in .. Ann 23, p 59
granite production of .. MR 1900, pp 662, 663, 664, 665, 668; MR 1901, pp 644, 645, 651, 652, 653
Great Works River, drainage area, fall, power, etc., of Ann 22, iv, pp 71–73
Lamprey River, drainage area, fall, power, etc., of Ann 22, iv, pp 76–79
Merrimac River; water, amount and quality of, in basin of WS 79, pp 33–50
mica, production of .. MR 1900, pp 850, 852–853; MR 1901, p 877
mineral springs of . .. MR 1900, pp 901, 902; MR 1901, pp 962, 964
Nashua River, quality of water of .. WS 79, pp 46–54
power development on coast streams of .. Ann 22, iv, p 62
Salmon Falls River, drainage area, fall, etc., of Ann 22, iv, pp 63–71
Salmon Falls River and tributaries, water powers of Ann 22, iv, pp 63–73
water powers of coast streams of .. Ann 22, iv, pp 61–81
New Jersey; borings, deep, in, list of .. WS 61, pp 12–15
building stone from, statistics of ... MR 1900, p 662 et seq; MR 1901, p 644 et seq
New Jersey; building stone of New York City district GF 83, p 10
cement from, statistics of MR 1900, pp 737, 738; MR 1901, pp 721, 722
clay deposits and industry of PP 11, pp 66, 161-170
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq, PP 11, pp 166-167
coke in, manufacture of MR 1901, p 454 et seq
copper deposits in Bull 213, pp 182-183
corundum in Bull 180, p 82
Delaware River, quality of water of WS 79, pp 112-116
Delaware River and tributaries, flow of, measurement of Ann 22, iv, pp 112-124; WS 47, p 80; WS 65, p 214, WS 75, pp 27-28
flint production of MR 1900, p 895
Franklin Furnace, zinc and manganese deposits of Bull 213, pp 214-217
granite production of MR 1900, pp 662, 663, 664, 665, 668
iron and steel from, statistics of MR 1900, pp 43, 56, 57, 96, 98, 99, 100; MR 1901, pp 45, 59, 63, 76, 91, 97 et seq
limestone production of MR 1900, pp 682, 685, 686, 687, 690; MR 1901, pp 644, 645, 667, 668, 669, 670
manganese and zinc deposits of Franklin Furnace Bull 213, pp 214-217
Manantico Creek, flow of, measurement of WS 65, p 213
maps, geologic and topographic, of. (See Map.)
Maurice River and tributaries, flow of, measurement of WS 65, p 213
mineral springs of MR 1900, pp 901, 902; MR 1901, pp 962, 964
New York City district, geology of GF 83
Passaic River, flow of, measurement of WS 65, pp 210-211; WS 72, pp 16-17; WS 75, p 26
profile of WS 72, p 15
Passaic River and tributaries, hydrography of, with respect to pollution WS 72, pp 15-33
Pequanac River, flow of, measurement of WS 72, pp 22-24
rainfall, run-off, and evaporation in basin of WS 80, pp 97, 99
Pompton River, flow of, measurement of WS 65, pp 211-212; WS 75, p 26
Ramapo River, flow of, measurement of WS 72, pp 19-21
Raritan River and tributaries, hydrography of, with respect to pollution WS 72, pp 11-15
road metal of New York City district GF 83, p 10
Rockaway River, flow of, measurement of WS 72, pp 24-25
sandstone production of MR 1900, pp 662, 670, 671, 672, 674; MR 1901, pp 644, 645, 656, 657, 658, 659
slate production of MR 1900, pp 662, 677, 678, 680; MR 1901, pp 644, 645, 660, 661
topographic work in cooperation of State in Ann 22, i, p 140
topography of Sussex County, portion of Ann 18, ii, p 438
Tuckahoe River, flow of, measurement of WS 65, pp 212-213
Wanaque River, flow of, measurement of WS 72, pp 21-22
zinc and manganese deposits of Franklin Furnace Bull 213, pp 214-217
New Mexico; borings, deep, in, list of WS 61, p 15
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 644 et seq
cement from, statistics of MR 1900, p 737; MR 1901, pp 721, 722
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq
coal area and statistics of Ann 22, iii, p 12; MR 1900, pp 277, 359, 409-411; MR 1901, pp 287 et seq, 404-407
coal fields of, production, etc., of Ann 22, iii, pp 12, 449-453
New Mexico; coke in, manufacture of .. MR 1900, pp 462 et seq, 500-501; MR 1901, pp 454 et seq, 491-492

copper from, statistics of ... MR 1900, pp 143, 144, 159; MR 1901, pp 160, 161, 173

geologic and paleontologic work in ... Ann 22, i, p 88

gold and silver from, statistics of ... MR 1900, pp 109-113; MR 1901, p 119 et seq

iron ore from, statistics of ... MR 1900, pp 43, 56, 57; MR 1901, p 45

lead from, statistics of ... MR 1900, p 196; MR 1901, p 201

map of coal fields of ... Ann 22, ii, p 422

marble production of .. MR 1900, pp 662, 683, 684; MR 1901, pp 644, 645, 664, 665

mica production of ... MR 1900, pp 850, 855-856; MR 1901, p 877

mineral springs of ... MR 1900, pp 901, 903; MR 1901, pp 963, 964

molybdenum in ... MR 1900, p 267

sandstone production of ... MR 1900, pp 662, 670, 671, 672; MR 1901, pp 644, 645, 656, 657, 658, 659

topographic work in ... Ann 23, pp 130, 154

topography of Rio Grande Basin .. Ann 12, ii, pp 240-243

turquoise in ... MR 1900, p 761

hydrography of basin of .. WS 63, pp 169-175

New South Wales; coal production of MR 1900, pp 315, 319; MR 1901, pp 311, 315

copper from, statistics of ... MR 1900, pp 184, 185; MR 1901, p 194

diamonds in, occurrence of .. MR 1900, p 754

manganese ore from, statistics of ... MR 1900, pp 139, 140; MR 1901, pp 154, 155

opal in ... MR 1900, p 767; MR 1901, pp 758-760

petroleum in, statistics of .. MR 1900, pp 601-602; MR 1901, p 601-602

platinum in ... Bull 193, pp 34, 83-86

New York; Beaver River, flow of, measurement of WS 65, pp 100-102

Black River, flow of, measurement of Ann 22, iv, pp 252-253; WS 47, p 39; WS 49, pp 236-239; WS 65, pp 102-105

borings, deep, in, list of .. WS 61, pp 15-19

building stone from, statistics of .. MR 1900, pp 662 et seq; MR 1901, pp 644 et seq

of New York City district ... GF 83, p 5

canals and feeders in, discharge measurements of, tests to determine accuracy of .. WS 47, pp 18-29

Catskill Creek, flow of, measurement of WS 65, pp 61, 62-63; WS 76, p 90

quality of water of ... WS 76, p 77

water powers on ... WS 65, p 62

Cattaraugus Creek, course, present and preglacial, of Mon xliv, pp 212-213

Cayadutta Creek, flow of, measurement of Ann 22, iv, pp 98-99; WS 47, pp 58-60; WS 65, pp 166-167

Cayuga Lake region, geology of .. Bull 206, pp 13-16

Hamilton formation of, fauna of ... Bull 206

cement from, statistics of ... MR 1900, pp 737, 738, 741-742, 745; MR 1901, pp 721, 722, 726

Chenango River, storage reservoirs on WS 65, p 148

Chittenango Creek, flow of, measurement of Ann 22, iv, pp 244-245; WS 47, p 39; WS 49, pp 223-225; WS 65, pp 112-116

chrysoberyl in ... MR 1901, p 743

clay deposits and industry of .. PP 11, pp 66, 170-179

clay products of, statistics of ... MR 1900, p 695 et seq; MR 1901, p 674 et seq; PP 11, pp 177-178
New York; coke in, manufacture of

MR 1900, pp 462 et seq, 501; MR 1901, pp 454 et seq, 492, 523
corundum in

Bull 180, p 82
Croton River, flow of, measurement of

WS 47, pp 79-80; WS 65, pp 76-83
rainfall, run-off, and evaporation in basin of

MS 80, pp 76, 86-87, 99
drumlin belt of western, distribution, topography, etc., of

Mon xlii, pp 691-695
East Canada Creek, flow of, measurement of

Ann 22, iv, pp 96-97; WS 47, pp 39, 55-58; WS 65, pp 158-161
eastern, structural details in Green Mountain region and

Bull 195
emery in Westchester County

Bull 180, pp 70-71
Esopus Creek, flow of, measurement of

WS 47, p 36; WS 65, pp 63-65; WS 76, pp 97-98
pollution of

WS 72, p 45
quality of water of

WS 76, p 80
water powers on

WS 65, p 66
Fish Creek, flow of, measurement of

Fishkill Creek, flow of, measurement of

WS 65, pp 74-76; WS 76, p 102
quality of water of

WS 76, pp 83-84
water powers on

WS 65, p 76
flint production of

MR 1900, p 895; MR 1901, pp 936, 938
Genesee drainage basin, glacial and present features of

Mon xli, pp 201-209
Genesee River, flow of, measurement of

WS 65, pp 139-142
rainfall, run-off, and evaporation in basin of

MS 80, pp 64, 72, 85, 99, 102
glacial formations and drainage features of Erie and Ohio basins

Ann 22, i, pp 64, 66, 67, 68-69, 72-73; Ann 23, pp 36, 39, 49, 51, 59, 64-65
grauite production of

MR 1900, pp 662, 663, 664, 665, 668; MR 1901, pp 644, 645, 651, 652, 653, 654
Grasse River, description of

WS 65, pp 31-32, 33
gypsum from, statistics of

MR 1900, pp 828, 830; MR 1901, pp 846, 847
Hoosic River, pollution of

WS 72, pp 41-43
Hudson River, drainage areas and population in basin of

WS 72, p 36
flow of, measurement of

Ann 22, iv, pp 84, 107-111; WS 47, pp 39, 75-79; WS 65, pp 44, 48-53
rainfall, run-off, and evaporation in basin of

MS 80, pp 63, 64, 70, 71, 72, 77, 78, 96, 99
Hudson River and tributaries, hydrography of

WS 65, pp 42-87
hydrography of, with respect to pollution

WS 72, pp 34-72
hydrographic work in, cooperation of State in

Ann 22, i, pp 25-26
ice obtained from Hudson River

WS 72, pp 61-64
Indian Lake reservoir, water storage in

WS 47, p 72; WS 65, pp 42-45
Indian River, flow of, measurement of

WS 47, pp 39, 71-72
water storage on

WS 65, pp 42-45
iron and steel from, statistics of

MR 1900, pp 43, 55, 57, 96, 98, 99, 100; MR 1901, pp 45, 59, 63, 76, 91, 97 et seq
Kenwood Creek, flow of, measurement of

Ann 22, iv, pp 246-247
Kinderhook Creek, flow of, measurement of

WS 65, pp 53-57
Lake Champlain, outflow of, measurement of

WS 65, pp 38-42
limestone production of

MR 1900, pp 662, 685, 686, 687, 690; MR 1901, pp 644, 645, 667, 668, 669, 670
Little River, water powers on

WS 65, p 33
maps, geologic and topographic, of

(See Map.)
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

New York; mineral springs of MR 1900, pp 901, 902; MR 1901, pp 962, 964
stream measurement in basin of WS 65, pp 142-209
Mohawk River and tributaries, pollution of WS 72, pp 46-58
Moose River, flow of, measurement of WS 49, pp 234-235; WS 65, p. 98
moraines of late Wisconsin stage in western ... Mon xiii, pp 672-711
natural gas in, statistics of MR 1900, pp 634, 635, 637, 638, 646-647; MR 1901, pp 617, 619, 620, 621, 627-628
New York City, river water near, quality of WS 76, pp 67-86
rivers near, flow of, observations on WS 76
sewage pollution near WS 72
streams which are possible sources of water supply for, measurements
of WS 47, p 36
water supply of, streams proposed for, gagings of WS 65, pp 59-60
New York City district, geology of GF 83
Normanskill Creek, flow of, measurement of WS 65, pp 53-57
Oneida Creek, flow of, measurement of WS 47, p 39; WS 49, pp 225-227; WS 65, pp 110-111
Oneida River, flow of, measurement of WS 65, pp 131-133
Oriskany Creek, flow of, measurement of Ann 22, iv, pp 88-89; WS 47, pp 39, 45-47; WS 65, pp 145-149
Oswegatchie River, drainage areas of WS 65, p 33
water powers on WS 65, pp 34-36
Oswego River at high dam near Oswego, power diversions, etc. WS 49, p 231
flow of, measurement of Ann 22, iv, pp 250-251; WS 47, p 39; WS 49, pp 229-233; WS 65, pp 133-139; WS 75, p 25
paint, mineral, production of MR 1900, pp 885; MR 1901, p 907
petroleum in, statistics of MR 1900, pp 540, 541, 542, 545; MR 1901, pp 530, 531, 532, 533
platinum in Bull 193, pp 57-58
pyrope in MR 1901, p 744
Raquette River, water powers on WS 65, pp 36-38
Rensselaer grit plateau, topography of Ann 13, ii, pp 297-299, 335-336
Rondout Creek, diversion of, to feed Delaware and Hudson Canal WS 65, pp 68-69
flow of, measurement of WS 65, pp 66-68, 69-70; WS 76, pp 98-99
quality of water of WS 76, pp 78-80
water powers on WS 65, p 70
St. Lawrence River and tributaries, flow of, measurement of WS 65, pp 31-42
Salmon River, flow of, measurement of WS 47, p 39; WS 49, p 234; WS 65, pp 105-107
salt production of MR 1900, p 837; MR 1901, p 855
sandstone production of MR 1900, pp 662, 670, 671, 672, 674; MR 1901, pp 644, 645, 656, 657, 658, 659
Sanquoit Creek, flow of, measurement of Ann 22, iv, pp 90-91; WS 47, pp 48-49; WS 65, pp 149-151
Sawkill Creek, flow of, measurement of WS 65, pp 65-66
Schoharie Creek, flow of, measurement of Ann 22, iv, pp 100-101; WS 47, pp 39, 60-65; WS 65, pp 167-172
New York; Seneca River, flow of, measurement of....................... WS 47,
p 39; WS 49, pp 222-223; WS 65, pp 128-131
sewage pollution near New York City................................. WS 72
Skaneateles outlet, flow of, measurement of....................... WS 65, pp 116-128
slate production of. MR 1900, pp 662, 677, 678, 681; MR 1901, pp 644, 645, 660, 661
stream gaging in 1900, methods employed in........................ WS 47, pp 37-41
streams in, drainage areas of.. WS 47, pp 40-41
gaging of, methods employed in.. WS 65, pp 91-98
gaging stations on, locations of.. Ann 22, iv, pp 82-83; WS 65, p 95
talc in, statistics of.. MR 1900, pp 784-785; MR 1901, pp 778-779
Tennille River, flow of, measurement of............................... WS 47,
p 36; WS 65, pp 85-87; WS 76, p 103
quality of water of... WS 76, p 82
Tonawanda Creek, course and character of............................ Mon xli, pp 210-211
topographic work in.. Ann 22, i, pp 157, 158, 139-140, 146-148, 172-173; Ann 23, pp 126, 131-133
cooporation of State in... Ann 22, i, pp 19, 22-23, 29
topography of Lake Champlain region................................... Bull 107, p 11
of Rensselaer grit plateau.. Ann 13, ii, pp 297-299, 335-336
south of Lake Ontario... Mon xli, pp 68-69
Wallkill River, flow of, measurement of................................ WS 47,
p 36; WS 65, pp 71-74; WS 76, pp 100-101
pollution of... WS 72, pp 44-45
quality of water of.. WS 76, p 81
water powers on... WS 65, p 74
water supply from Hudson River.. WS 72, pp 64-69
New York City, river water near, quality of.......................... WS 76, pp 67-86
rivers near, flow of, observations on.................................... WS 76
sewage pollution near... WS 72
water supply of... GF 83, pp 18-19
water supply of, streams proposed for, gagings of.................... WS 65, pp 59-60
New York City district, New York—New Jersey, geology of........... GF 83
New Zealand, coal production of.. MR 1900, pp 315, 319; MR 1901, pp 311, 315
manganese ore from, statistics of....................................... MR 1900, pp 139, 140; MR 1901, p 155
nephrite in, occurrence of... MR 1901, p 749
platinum in... Bull 193, pp 86-87
Newark clays, distribution of, east of Mississippi River.......... PP 11, p 56
Newark diabase in Virginia.. Ann 14, ii, pp 352-356
Newark group in New York City district................................ GF 83, pp 6-10
Newberry (S. B.), Portland cement, statistics of..................... MR 1900, pp 737-744
Newell (F. H.), stream measurements for 1900......................... Ann 22, iv, pp 9-506
stream measurements for 1901.. WS 75
work in charge of.. Ann 22, i, pp 124-132; Ann 23, pp 99-119
Newfoundland, pyrite production of.................................... MR 1901, pp 841, 842
copper from, statistics of... MR 1900, pp 184, 185; MR 1901, p 193
Newman limestone of Tennessee... GF 75, p 4
Niagara escarpment, description of..................................... Mon xli, pp 70-71
Niagara group of Erie and Ohio basins................................... Mon xli, pp 54-55
of Illinois... GF 81, pp 2-3
Niagara limestone of Iowa, northeastern............................... Ann 11, i, pp 233-234
of Ohio... Ann 8, ii, pp 499, 548
Nicaragua; Lake Nicaragua, hydrography of........................... Ann 22, iv, pp 550-556
Nicaragua; rainfall in .. Ann 22, iv, pp 525-527, 573-579, 583-586
San Juan River, hydrography of Ann 22, iv, pp 556-573
temperature and humidity of .. Ann 22, iv, pp 517-519, 522
wind movement in .. Ann 22, iv, pp 530-534
Nicaragua Canal route across American isthmus Ann 22, iv, pp 538-540
hydrography of .. Ann 22, iv, pp 546-592
Nickel, ores of .. MR 1901, pp 971-972
Nickel and cobalt, statistics of MR 1900, pp 245-249; MR 1901, pp 241-250
Nigrite in Utah, occurrence, geology, etc., of Ann 22, i, pp 360-361
Nikolai copper mine, Alaska ... Copper, pp 86-87
trails to ... Copper, pp 23-24
Nikolai greenstone of Alaska ... Copper, pp 33, 40-43
Nilkoka formation of Alaska .. Ann 22, iii, p 530
Nineveh limestone and sandstone of Pennsylvania and West Virginia ... Bull 65, pp 32-33
Niobrara formation of South Dakota GF 85, p 4
of Kansas, western ... Bull 202, p 8
Niobrara River, flow of, measurement of WS 50, p 311; WS 66, p 25
Nitrate in water, determination of WS 79, p 26
Nitrites in water, determination of WS 79, p 25
Nitrogen, determination of, in sanitary analysis WS 79, pp 24-26
Nizina River, Alaska, routes east of Copper, p 24
Nolichucky River, Tennessee, flow of, measurement of WS 48, p 189; WS 65, p 300
hydrography of basin of .. WS 63, pp 105-115
Nolichucky River and tributaries, flow of, measurement of WS 49, pp 212-214
Nolichucky shale of Tennessee .. GF 75, p 2
Nome and adjacent gold fields of Seward Peninsula, reconnaissance of, in 1900 .. N and N, pp 1-180
Nome region, Alaska; Anvil Creek, gold on, discovery of N and N, pp 25-26
climatic notes on .. N and N, pp 154-163
development of .. N and N, pp 64-69
economic geology of ... N and N, pp 70-91
mining methods in .. N and N, pp 151-154
placer of ... N and N, pp 70-91, 140-151
quartz veins in ... N and N, pp 133-144
recording districts in .. N and N, pp 178-180
topographic survey of, in 1890 .. N and N, pp 174-176
Nome River and tributaries, Alaska, gold on N and N, pp 73-80
Nome series of Alaska, Seward Peninsula PP 2, pp 17-24; N and N, pp 29-31
Nordmarkite, analysis of, from Norway, Tonsenas and Auerød Bull 209, p 59
analysis of, from Quebec, Sheffield Mountain Bull 209, p 59
from Vermont, Ascutney Mountain Bull 209, p 119
basic segregation in, analysis of, from Vermont, Ascutney Mountain ... Bull 209, p 66
thin section of, from Vermont, Ascutney Mountain Bull 209, p 58
Norfolk quadrangle, Virginia—North Carolina, geology of GF 80
Noritude of America ... Mon xlii, pp 49-51
Normanskill Creek, New York, flow of, measurement of WS 65, pp 53-57
North America; Vertebrata, fossil, of, bibliography and catalogue of ... Bull 179
North Carolina; amethyst in .. MR 1901, p 751
barytes production of .. MR 1901, pp 916, 918
beryl, golden, in .. MR 1901, p 742
North Carolina; borings, deep, in, list of......................WS 61, p 20
Broad River, flow of, measurement ofWS 48, pp 145-147
hydrography of basin ofWS 63, pp 139-146
Broad River and tributaries, flow of, measurement of. . .WS 49, pp 205-206
building stone from, statistics of...MR 1900, p 662 et seq; MR 1901, p 644 et seq
Cape Fear River, flow of, measurement of................Ann 22, iv, p 155; WS 48, pp 137-138; WS 65, pp 244-245; WS 75, p 66
hydrography of basin of............................WS 63, pp 147-158
Catawba River and tributaries, flow of, measurement of. . .WS 49, pp 204-205
clay deposits and industry of PP 11, pp 49, 66, 179-190
clay products of, statistics of...MR 1900, pp 689-700; MR 1901, p 674 et seq
coal area and statistics of..........................Ann 22, iii, p 49; MR 1900, pp 277, 358, 411-412; MR 1901, pp 287 et seq, 407-408
copper deposits of......................................Ann 22, iii, pp 12, 43-51
corundum deposits in...................................Bull 213, p 184
Cranberry district, iron-ore deposits of.................Bull 213, pp 243-246
Deep River, flow of, measurement ofWS 48, pp 136-137; WS 75, p 55
Dismal Swamp, description of..........................GF 80, p 1
emerald in ...Bull 180, p 72
French Broad River, flow of, measurement of..........Ann 22, iv, p 223; WS 48, p 186; WS 65, pp 301-302; WS 75, p 103
French Broad River and tributaries, flow of, measurement of........WS 49, pp 211-212; WS 63, pp 115-135
Frisco River, flow of, measurement of..................Ann 22, iv, p 224; WS 48, pp 190-191; WS 65, pp 306-307; WS 75, p 106
Holston River Basin, hydrography of.....................WS 62, pp 36-77
hydrography of Southern Appalachian Mountain region ..WS 62; WS 63
iron and steel from, statistics of.......................MR 1900, pp 43, 56, 57, 96; MR 1901, pp 45, 59, 63, 76, 91
iron-ore deposits of Cranberry district.................Bull 213, pp 243-246
John River, flow of, measurement ofWS 48, pp 142-143; WS 65, p 247
Basket River, flow of, measurement of..................WS 48, p 122
Little Tennessee River, flow of, measurement of.......Ann 22, iv, p 224; WS 48, pp 189-190; WS 65, pp 305-306; WS 75, p 105
manganese ore from, statistics of.....................MR 1900, pp 115, 116; MR 1901, pp 127, 128
mica production ofMR 1900, pp 850, 853-854; MR 1901, p 877
mineral springs ofMR 1900, pp 901, 902; MR 1901, p 962, 964
moonstone in ..MR 1901, p 749
Neuse River, flow of, measurement of..................Ann 22, iv, p 154; WS 48, pp 135-136
New River, hydrography of basin of........................WS 49, pp 210-211; WS 63, pp 169-175; WS 65, pp 291-292

Bull. 215—03——11
North Carolina; nickel in .. MR 1901, p 242
Nolichucky River, hydrography of basin of WS 63, pp 105-115
Nolichucky River and tributaries, flow of, measurement of .. WS 49, pp 212-214
Norfolk quadrangle, geology of GF 80
Nottellly River, flow of, measurement of WS 65, pp 307-308; WS 75, p 106
phosphate rock in, statistics of MR 1900, pp 804, 805; MR 1901, p 813
platinum in ... Bull 193, pp 34, 58-59
quartz, rutilated, in .. MR 1901, p 751
Roanoke River, flow of, measurement of Ann 22, iv, p 152; WS 48, pp 131-132; WS 65, pp 242-243; WS 75, p 54
ruby mines in ... Bull 180, pp 39-46; MR 1901, p 741
Saluda Creek and tributaries, flow of, measurement of WS 49, p 206
sandstone production of .. MR 1900, pp 662, 670, 671, 672, 675; MR 1901, pp 644, 645, 656, 657, 658, 659
sapphires ... Bull 180, pp 46-47
soil of Norfolk quadrangle ... GF 80, p 4
talc deposits of .. Bull 213, pp 433-438
talc and soapstone in, occurrence and statistics of MR 1900, pp 780-782, 783; MR 1901, p 777
Tar River, flow of, measurement of Ann 22, iv, p 153; WS 48, pp 134-135
topographic work in .. Ann 22, iv, pp 137, 138, 141, 151, 152, 173; Ann 23, pp 127, 138
cooperation of State in .. Ann 22, i, pp 20, 24-25, 29
Tuckasegee River, flow of, measurement of Ann 22, iv, p 223; WS 48, pp 188-189; WS 65, pp 304-305; WS 75, p 104
Tugaloo River tributaries, flow of, measurement of WS 49, p 206
Watauga River and tributaries, flow of, measurement of .. WS 49, pp 215-216; WS 62, pp 77-95
water power in ... WS 63, pp 125-127, 142, 150, 162, 173, 174
Yadkin River, flow of, measurement of Ann 22, iv, p 156; WS 48, pp 138-140; WS 65, pp 245-246; WS 75, p 57
hydrography of basin of .. WS 49, pp 203-204; WS 63, pp 158-169
North Dakota; borings, deep, in, list of WS 61, p 20
cement from, statistics of MR 1900, p 737; MR 1901, pp 721, 722
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq
coal area and statistics of MR 1900, pp 277, 359, 412-413; MR 1901, pp 287 et seq, 498-410
coal field, summary of knowledge Ann 22, iii, pp 456-458
Devils Lake, fluctuations of, measurement of WS 66, p 14
topographic work in .. Ann 22, i, p 80
Red River, flow of, measurement of WS 66, pp 11-13
North Platte River, description of Ann 22, iv, pp 310-312
flow of, measurement of .. Ann 22, iv, pp 312-314; WS 49, pp 272, 274-278; WS 75, pp 125-126
Northwest Territory, platinum in Bull 193, p 51
Norton Bay region, Alaska, coal in N and N, p 214
gold in .. N and N, pp 212-213
natives of .. N and N, p 215
reconnaissance in, in 1900 N and N, pp 181-218
routes and means of transportation in N and N, pp 216-217
silver in .. N and N, pp 213-214
Norway, copper from, statistics of MR 1900, pp 184, 185; MR 1901, p 193
emerald in ... MR 1901, p 742
phosphate rock production of MR 1901, p 822
Norway, pyrite production of .. MR 1901, pp 841, 842
rutile from, statistics of .. MR 1901, p 277
Nottely River, North Carolina, flow of, measurement of WS 65, pp 307-308; WS 75, p 106
Nueces River, hydrographic data concerning WS 50, p 343
Nulato sandstones of Alaska .. Ann 22, iii, pp 533, 535
Nushagak beds of Alaska ... Ann 22, iii, p 535
Nussbaum formation of Colorado GF 71, pp 2, 3
Nuttall sandstone lentil in West Virginia GF 77, p 3
Ocher, analysis of, from Kentucky, Wycliffe PP 11, p 128
analyses of, from various localities Bull 213, p 431
deposits of, in Georgia, Cartersville district Bull 213, pp 427-432
production of ... MR 1900, pp 880, 881, 882, 883, 884; MR 1901, pp 902, 903, 904, 905, 906
Ocmulgee River, Georgia, flow of, measurement of Ann 22, iv, p 172; WS 48, pp 155-156; WS 65, pp 262-263, 264-265; WS 75, pp 70, 71
rainfall in basin of ... WS 75, pp 72-76
survey of ... Ann 22, iv, pp 167-172
Ocmulgee River and tributaries, flow of, measurement of WS 49, p 207
Ocoee group of Appalachian Mountain region, southern WS 62, p 16
rainfall in basin of ... WS 75, pp 72-76
Oconee River and tributaries, flow of, measurement of WS 49, p 207
Odor of water, determination of, in sanitary analysis WS 79, p 23
Oelrichs quadrangle, South Dakota-Nebraska, geology of GF 85
Ogalalla formation of Nebraska GF 87, p 3; GF 88, p 3
of Wyoming, eastern .. WS 70, p 18
Ogden quartzite of Nevada .. Bull 208, p 20
Ogden River, Utah, flow of, measurement of WS 66, p 121
Ogishke conglomerate of Minnesota, Vermilion district Mon xliv, pp 284-293, 309-324
Ohio; altitudes in .. PP 13, pp 10-11
Beaver River, preglacial and present features of Mon xli, pp 148-152
borings, deep, in, list of .. WS 61, pp 21-29
bromine production of ... MR 1901, p 868
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 644 et seq
Cadiz quadrangle, Berea grit oil sand in Bull 108
cement from, statistics of .. MR 1900, pp 737, 738, 741, 745; MR 1901, pp 721, 722
clay deposits and industry of PP 11, pp 66, 190-207
clay products of, statistics of PP 11, p 207; MR 1900, p 695 et seq; MR 1901, p 674 et seq
coal area and statistics of MR 1900, pp 276, 358, 413-418; MR 1901, pp 287 et seq, 410-414
coke in, manufacture of ... MR 1900, pp 462 et seq, 501-503; MR 1901, pp 454 et seq, 492-493
Cuyahoga River, course and character of Mon xli, p 216
drainage modifications in southeastern, and adjacent parts of West Vir-
ginia and Kentucky ... PP 13
glacial formations and drainage features of Erie and Ohio basins Mon xli
geologic and paleontologic work in Ann 22, 1, pp 76, 77; Ann 23, pp 45, 46, 53
Grand River Basin, physical features of Mon xli, pp 74-75
Ohio; Great Miami River, course, present and preglacial, of... Mon xli, pp 182-184
gypsum from, statistics of... MR 1901, p 847
Hocking drainage system, features, preglacial and present, of... Mon xli, pp 169-172
Hocking Valley, description of... PP 13, pp 35-36
iron and steel from, statistics of... MR 1900, pp 43
56, 57, 96, 97, 98, 99, 100; MR 1901, pp 45, 63, 76, 91, 95 et seq
Killbuck Creek, features, preglacial and present, of... Mon xli, p 165
limestone production of... MR 1900, pp 662, 685, 686, 687, 690; MR 1901, pp 644, 645, 667, 668, 669, 670
Little Miami River, drainage changes along... Mon xli, pp 180-182
Mahoning River, quality of water of... WS 79, pp 129-136
maps, geologic and topographic, of. (See Map.)
Manume drainage basin, features of... Mon xli, pp 218-219
Maumee River, flow of, measurement of... Ann ii, pp 240-241; WS 49, p 220; WS 65, pp 313-314; WS 75, p 110
physical features of basin of... Mon xli, p 76
Miami and Little Miami rivers and tributaries, quality of water of... WS 79, pp 170-183
mineral springs of... MR 1900, pp 901, 903; MR 1901, pp 963, 964
Mohican Creek, changes in basin of... Mon xli, pp 162-165
Muskingum River, features, preglacial and present, of... Mon xli, pp 153-168
rainfall, run-off, and evaporation in basin of... WS 80, pp 67, 85, 99, 100
Muskingum River and tributaries, quality of water of... WS 79, pp 136-153
Muskingum Valley, description of... PP 13, p 35
natural gas in, statistics of... MR 1900, pp 634, 635, 637, 638, 643-646; MR 1901, pp 617, 619, 620, 621, 626-627
oil fields of eastern, structural work in, 1901 and 1902... Bull 213, pp 336-344
Olentangy River, flow of, measurement of... Ann ii, p 238; WS 49, pp 218-219; WS 65, p 295
quality of water of... WS 79, pp 158-160
Owl Creek drainage basin, changes in... Mon xli, pp 160-162
petroleum in, statistics of... MR 1900, pp 540, 541, 542, 545; MR 1901, pp 530, 531, 532, 533
Raccoon Creek, features of... Mon xli, p 172
rainfall and run-off in Maumee River Basin... WS 75, pp 110-111
salt from, statistics of... MR 1900, p 837; MR 1901, p 855
Salt Creek Basin, drainage changes in... Mon xli, pp 178-180
sandstone production of... MR 1900, pp 662, 670, 671, 672, 675; MR 1901, pp 644, 645, 656, 657, 658, 659
Sandusky River, flow of, measurement of... Ann ii, pp 242-243; WS 49, pp 221-222; WS 65, p 314
Scioto drainage system, glacial formations and drainage features of... Mon xli, pp 174-180
Scioto River, flow of, measurement of... WS 49, pp 219-220; WS 65, pp 295-296
physical features of basin of... Mon xli, pp 75-76
Scioto River and tributaries, flow of, measurement of... Ann ii, iv, pp 285-288
quality of water of... WS 79, pp 153-162
Scioto Valley, description of... PP 13, pp 36-38
Symmes Creek, course, present and preglacial, of... Mon xli, p 173
topographic work in... Ann ii, pp 137, 138, 141, 142, 151; Ann iv, pp 127, 128, 136, 139-140
topography of Allegheny Plateaus... Bull 198, p 1
Ohio; topography of Huntington quadrangle ... GF 69, p 1
Tuscarawas drainage system, features, preglacial and present, of Mon xli, pp 165–168
Tuscarawas River and tributaries, quality of water of WS 79, pp 142–147
wetstones in ... MR 1901, p 786
Ohio and Erie basins, glacial formations and drainage features of Mon xli physical features of Mon xli, pp 66–81
fall of, rate of ... Mon xli, pp 82–84
glacial formations along, and preglacial course of Mon xli, pp 82–125
quality of water in basin of ... WS 79, pp 116–185
Ohio River and tributaries, flow of, measurement of Ann 22, iv, pp 219–228, 235–238
Ohio shale of Ohio ... Mon xli, pp 59–61
Ohio Valley, features of ... PP 13, pp 29–35
Ohio Valley, Upper, terraces in ... Mon xli, pp 249–251
Oil. (See Petroleum.)
Oil and gas fields of Western Interior and northern Texas Coal Measures, and
of the Upper Cretaceous and Tertiary of western Gulf coast Bull 184
Oilstones, statistics of ... MR 1900, pp 787, 788–789; MR 1901, pp 782–789
Oklahoma; bitumen in ... Ann 22, iv, p 320
borings, deep, in, list of ... WS 61, p 29
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 644 et seq
clay products of, statistics of ... MR 1900, p 695 et seq; MR 1901, p 674 et seq
gypsum from, statistics of ... MR 1900, p 828; MR 1901, p 846
limestone production of ... MR 1900, pp 662, 685, 686, 687; MR 1901, pp 644, 645, 667, 668, 669, 670
salt production of ... MR 1900, p 837; MR 1901, p 855
Oklune series of Alaska ... Ann 22, iii, p 529
Okooe River and tributaries, Tennessee, flow of, measurements of WS 49, p 218
Old Red sandstone of New York ... Bull 41, pp 16–17
Olean conglomerate of New York ... Bull 41, pp 19, 21, 26
Olenellus beds of Nevada ... Ann 2, p 29
Olentangy River, Ohio, flow of, measurement of Ann 22, iv, p 238; WS 49, pp 218–219; WS 65, p 295
quality of water of ... WS 79, pp 158–160
Oligocene rocks of Nebrasks, Camp Clarke quadrangle GF 87, p 2
of Nebraskas, Scotts Bluff quadrangle ... GF 88, p 2
petroleum, statistics of ... MR 1900, pp 537–627; MR 1901, pp 525–611
Olivine, action of ammonium chloride on ... Bull 207, p 44
Olmsted (F. H.), physical characteristics of Kern River, California, with
special reference to electric-power development WS 46, pp 11–38
Olpe shales of Kansas, character and fauna of Bull 211, p 52
Olympic Forest Reserve, Washington, forest conditions in PP 7
Oneida River, New York, flow of, measurement of WS 65, pp 131–133
Oneota limestone in Iowa ... Ann 11, i, p 332
Oneonta sandstone of New York, deposition of, evidence of shifting of faunas associated with. Bull 210, pp 97-103
Onion Creek marl of Texas, Austin quadrangle. GF 76, p 6
Ondondaga series in Erie and Ohio basins. Mon xl, pp 55-56
Ontario, platinum in. Bull 193, pp 33, 37-38
Ontario, Lake, tography south of. Mon xl, pp 68-69
Ontonagon River, Michigan, hydrographic data concerning. WS 49, p 259
Oologah limestone of Indian Territory, character and fauna of. Bull 211, pp 62-63
Oostanaula River, Georgia, flow of, measurement of. Ann 22, iv, p 198; WS 48, pp 162-163; WS 65, pp 277-278; WS 75, p 90
Ontonagon River, Michigan, hydrographic data concerning. WS 49, p 259
Ore, precious metal, of Colorado, Silverton quadrangle, treatment of. Bull 182, pp 41-43
Ore deposits, copper, of Arizona, Globe copper district. PP 12, pp 114-163
Ore deposits, copper and precious metals, of Montana, Butte. Bull 213, pp 170-180
Ore deposits, iron ore, of Minnesota, Vermilion district, origin of. Bull 213, pp 399-549
Ore deposits, lead and zinc, of Ozark region, formation, nature, etc., of. Ann 22, ii, pp 124-162
Ore deposits, precious metal, of Colorado, Rico Mountains. Ann 22, ii, pp 229-397
of Colorado, Silverton quadrangle. Bull 182, pp 13-144
of Nevada, Tonopah and neighboring districts. Bull 213, pp 81-87
of Utah, Bingham. Bull 213, pp 105-122
of Washington, Monte Cristo. Ann 22, ii, pp 777-865
relation of, to circulation of underground waters. Ann 22, ii, pp 95-110
mode of formation of, in Montana, Elkhorn district. Ann 22, ii, pp 496-504
of economic importance. MR 1901, pp 967-973
of Ozark region. Ann 22, ii, pp 113-116, 123
Oread limestone of Kansas, synonymy, character, and fauna of. Bull 211, pp 44-45
Oregon; Alamo district, mining geology of. Ann 22, ii, pp 688-692
artesian basins in southeastern. WS 78
Bonanza and Upper Burnt River districts, mining geology of. Ann 22, ii, pp 697-704
borax in. MR 1901, pp 869-870
boring, deep, in, list of. WS 61, p 29
building stone from, statistics of. MR 1900, p 662 et seq; MR 1901, p 644 et seq
Cable Cove district, mining geology of. Ann 22, ii, pp 671-676
Camp Carson district, mining geology of. Ann 22, ii, pp 676-677
Canyon district, mining geology of. Ann 22, ii, pp 712-720
Cascade Range, geology of. PP 3, pp 17-20
Cascade Range Forest Reserve, forest conditions in. PP 9
clay products of, statistics of. MR 1900, p 686 et seq; MR 1901, p 674 et seq
coal in, area and statistics of. MR 1900, pp 277, 359, 418-419; MR 1901, p 287 et seq, 414-415
Oregon; coal, in Blue Mountains... Ann 22, ii, p 640
in Coos Bay quadrangle... GF 73, pp 4-5
in Port Orford quadrangle.. GF 89, p 4
coal fields of, production, etc., of.. Ann 22, iii, pp 13, 505-512
Coos Bay quadrangle, geology of... GF 73
copper, Butte district, mining geology of.................................. Ann 22, ii, pp 729-733
Cornucopia district, mining geology of...................................... Ann 22, ii, pp 740-745
Cracker Creek and Sumpter districts, mining geology of................ Ann 22, ii, pp 654-671
Crater Lake, formation, temperature, height, etc., of...................... PP 3, pp 46-61
routes to... PP 3, pp 6-9
Crater Lake National Park, geology and petrography of....................... PP 3
Eagle Creek and Sparta districts, mining geology of........................ Ann 22, ii, pp 733-739
Elkhorn and Rock Creek districts, mining geology of........................ Ann 22, ii, pp 645-648
forest conditions in Cascade Range Forest Reserve.......................... PP 9
forests of... PP 4
gold and silver from, statistics of MR 1900, pp 109-113; MR 1901, p 119 et seq
gold belt of the Blue Mountains.. Ann 22, ii, pp 551-776
Granite district, mining geology of.. Ann 22, ii, pp 677-688
granite production of.. MR 1900, pp 662, 663, 664, 665; MR 1901, pp 644, 645, 651, 652, 653, 654
Greenhorn district, mining geology of... Ann 22, ii, pp 692-695
Harney artesian basin.. WS 78, pp 38-43
jasper in... MR 1901, pp 755-756
John Day Basin, exploration, geologic features, etc., of.................... Bull 204, pp 10-20
fossil flora of.. Bull 204
Klamath Mountains, topographic development of................................. Bull 196
lands in, classification of.. PP 4, pp 15-33
limestone in Blue Mountains.. Ann 22, ii, p 639
production of.. MR 1900, pp 662, 685-687; MR 1901, pp 644, 645, 667-670
maps, geologic and topographic, of. (See Map.)................................. Map
marble production of... MR 1901, pp 645, 664, 665
mineral springs in... MR 1900, pp 901, 903; MR 1901, pp 963, 964
in Blue Mountains.. Ann 22, ii, pp 641-642
in Cascade Range Forest Reserve, central portion.......................... PP 9, pp 76-77
minerals of Blue Mountains.. Ann 22, ii, pp 642-644
Minersville, Pocahontas, and Auburn districts, mining geology of........ Ann 22, ii, pp 649-654
Miocene rocks of.. Ann 17, i, pp 469-476
Mount Mazama, geology of.. PP 3, pp 21-50
Mount Thielsen, features of.. PP 3, pp 20-21
nickel in... MR 1901, p 242
North Powder, mining geology in vicinity of................................... Ann 22, ii, pp 726-729
Otis artesian basin.. WS 78, pp 37-38
Pine Creek and Lower Powder River, mining geology of................. Ann 22, ii, pp 745-747
platinum in.. Bull 193, pp 51-56
in Port Orford quadrangle... GF 89, p 5
Pocahontas, Auburn, and, Minersville districts, mining geology of...... Ann 22, ii, pp 649-654
Port Orford quadrangle, geology of.. GF 89
Oregon; Quartzburg district, mining geology of. Ann 22, ii, pp 708-712
Robinsonville district, mining geology of. Ann 22, ii, pp 695-697
Rock Creek and Elkhorn districts, mining geology of. Ann 22, ii, pp 645-648
rocks of southeastern, classification of. WS 78, p 16
Rye Valley district, mining geology of. Ann 22, ii, pp 767-770
Sherwood peneplain, description of. Bull 196, pp 22-23
Snake River, copper deposits of. Ann 22, ii, pp 747-752
Sparta and Eagle Creek districts, mining geology of. Ann 22, ii, pp 733-739
springs, hot and warm, in southeastern. WS 78, pp 39-40
stone, building, in Coos Bay quadrangle. GF 73, p 5
Sumpter and Cracker Creek districts, mining geology of. Ann 22, ii, pp 654-671
Susanville district, mining geology of. Ann 22, ii, pp 705-708
topographic development of Klamath Mountains. Bull 196
topography of Blue Mountains gold belt. Ann 22, ii, pp 574-576
of Bohemia mining region. Ann 20, iii, pp 9-10
of Cascade Range and Ashland forest reserves and adjacent regions. Ann 21, v, pp 219-231
of Coos Bay coal field. Ann 19, iii, pp 315-318
of Coos Bay quadrangle. GF 73, p 1
of John Day Basin. Bull 204, pp 10-11
Of Port Orford quadrangle. GF 89, p 1
of Roseburg quadrangle. GF 49, p 1
Union Peak; features of. PP 3, p 20
Virtue district, mining geology of. Ann 22, ii, pp 721-728
wells, drilled, in southeastern. WS 78, pp 40-43
White River, flow of, measurement of. WS 66, p 138
Whitehorse artesian basin. WS 78, pp 43-44
Oriskany sandstone in Erie and Ohio basins. Mon xli, p 56
Oswegatchie River, New York, drainage areas of. WS 65, p 33
water powers on. WS 65, pp 34-36
Oswego River, New York, at high dam near Oswego, power diversions, etc. WS 49, p 231
Onachita Mountains, Indian Territory-Arkansas, features of. GF 79, p 1
structure of. GF 79, p 6
Ouray limestone of Colorado, Silverton quadrangle. Bull 182, p 35
Ouro preto, analysis of, from Brazil. Bull 193, p 61
Ouvarovite, occurrence of. MR 1900, p 760
Owl Creek, Ohio, changes in drainage basin of. Mon xli, pp 160-162
Owl Creek, Wyoming, hydrography of basin of. Ann 22, iv, pp 291-295
Oxmoor sandstone of Georgia. GF 78, p 4
Ozark region, lead and zinc deposits of, preliminary report on. Ann 22, ii, pp 23-227
Ozocerite in Utah, occurrence of. Ann 22, ii, p 361
Pacific coast, coal fields of, summary of knowledge of. Ann 22, iii, pp 473-513
topography of. GF 73, p 1
Pahroc Range, Nevada, geology of. Bull 208, p 151
Paint rock, analyses of, from Minnesota, Mesabi district

in Minnesota, Mesabi district

Paint stock, preparation of, from slag

Paints, mineral, statistics of

Paisanite, analysis of, average of classic

analyses of, from Vermont, Ascutney, and Little Ascutney Mountains

dike of, in Vermont, on Little Ascutney Mountain

Paleontology, bibliography of North American, 1892-1900, 1901
index to North American, 1892-1900, 1901

(See, also, Plants, fossil; Invertebrates, fossil; Vertebrata, fossil.)

Paleozoic clays of Georgia

Paleozoic history of Indiana, Ditney quadrangle

of New York City district

Paleozoic rocks of Alaska, southeastern

of Idaho

of Iowa, northeastern

of Newfoundland

of Oregon, Blue Mountains

Paleozoic shales of Michigan

of New York

Pale diabase of New Jersey, New York City district

Palisades conglomerate of Alaska

 Palladium, ores of

Palouse River, Washington, flow of, measurement of

Panamunkey formation of Virginia, Norfolk quadrangle

Panama; Chagres River, hydrography of

Panamint Range, California, geology of

Pancake Range, Nevada, geology of

Parageneration of lode and stock ores of Colorado, Silverton quadrangle

Parleys Creek, Utah, flow of, measurement of

Parker (E. W.), asphaltum and bituminous rock, statistics of

Park City mining district, Utah, progress report on

Park River, Connecticut, quality of water of

Parker (E. S.), barytes, statistics of

coal, statistics of

coke, statistics of

fluorspar, statistics of

gypsum, statistics of

mineral paints, statistics of

phosphate rock, statistics of

salt, statistics of

sulphur and pyrite, statistics of

Parleys Creek, Utah, flow of, measurement of

Parsons (A. L.), greensand marl, statistics of

Parsons limestone of Kansas, character, synonymy, and fauna of
Passaic River, flow of, measurement of.......................... WS 65, pp 210–211; WS 72, pp 16–17; WS 75, p 26
run-off diagram of...WS 80, p 74
Passaic River and tributaries, hydrography of, with respect to pollution........WS 72, pp 15–33
Patapsco formation of Maryland, clays of................................PP 11, p 141
Patapsco River, Maryland, flow of, measurement of.........................Ann 22, iv, p 130; WS 48, p 115; WS 65, p 228; WS 75, p 33
Patoka quadrangle, Indiana-Illinois, coals ofBull 213, pp 290–293
Patrick and Goshen Hole quadrangles, eastern Wyoming and western Nebraska, geology and water resources of..........WS 70
Patton (H. B.) and Diller (J. S.), geology and petrography of Crater Lake National Park ... PP 3
Patuxent formation of Maryland, clays of................................PP 11, p 139
Paul (E. G.), work in charge of........Ann 22, i, pp 125, 126, 127; Ann 23, p 100
Pawhuska limestone of Indian TerritoryBull 211, p 64
Pawnee limestone of Kansas..Ann 22, iii, p 342; Bull 211, p 32
Payette formation of Idaho...Bull 199, pp 50–51; WS 78, pp 16–17
of Oregon..WS 78, pp 16–17
Pelican Lake, South Dakota, reconnaissance of, for water storage........Ann 22, iv, pp 300–303
Pembroke ridges, New York, distribution, topography, etc., of Mon xli, pp 685–688
Peneplains, formation of, method of.....................................GF 78, p 2
Pennsylvania; Allegheny River, fall of, rate of............................Mon xli, pp 125–127
Allegheny River, quality of water of..WS 79, pp 119–124
rock floor, altitude of, and valley of, description of......Mon xli, pp 127–129
Allegheny River system, preglacial and present features of. Mon xli, pp 129–148
Allegheny Valley, coal field of, recent work inBull 213, pp 272–274
Beaver River, preglacial and present features of...............Mon xli, pp 148–152
bench marks in Tioga and Potter counties, list ofAnn 22, iii, pp 623–626
bituminous coal field of, recent work inBull 213, pp 270–275
borings, deep, in, list of..WS 61, pp 29–43
bromine production of..MR 1901, p 868
building stone from, statistics of....MR 1900, p 662 et seq; MR 1901, p 644 et seq
cement from, statistics of..MR 1900, pp 737, 738, 742, 745; MR 1901, pp 721, 722, 726
clay of Masontown and Uniontown quadrangles.................GF 82, p 20
clay deposits and industry of..PP 11, pp 49, 66–67
clay products of, statistics of..MR 1900, p 695 et seq; MR 1901, p 674 et seq; PP 11, pp 240–241
Pennsylvania; natural gas in, statistics of ..MR 1900, pp 634, 635, 637, 638, 639-640; MR 1901, pp 617, 619, 620, 621, 622-623
natural gas in Masontown and Uniontown quadranglesGF 82, pp 18-19
Neshaminy Creek, flow of, measurement of ..Ann 22, iv, pp 116-119; WS 47, pp 90-98; WS 65, p 216; WS 75, p 29
rainfall, run-off, and evaporation in basin ofWS 80, pp 93, 99
nickel in ..MR 1901, p 242
oil field, Gaines ..Ann 22, iv, pp 573-627
paint, mineral, production ofMR 1900, pp 881, 885; MR 1901, pp 903, 907
Pennsylvania Canal, flow of, measurement of ..WS 48, p 114
Perkiomen Creek, flow of, measurement of ..Ann 22, iv, pp 121-123; WS 47, pp 98-99; WS 65, pp 217; WS 75, p 29
rainfall, run-off, and evaporation in basin of ...WS 80, pp 94, 99
petroleum in Masontown and Uniontown quadranglesGF 82, pp 19-20
statistics of ...MR 1900, pp 540, 541, 542, 543, 545; MR 1901, pp 530, 531, 532, 533, 549-559
phosphate rock in, statistics of ...MR 1900, p 805; MR 1901, pp 813, 819
platinum in ..Bull 193, pp 33, 59
salt production of ..MR 1900, p 837; MR 1901, p 855
sandstone production of ..MR 1900, pp 662, 670, 671, 672, 675; MR 1901, pp 644, 645, 656, 657, 658, 659
Schulykill River, flow of, measurement of ...WS 48, pp 109-110; WS 75, p 219
slate production of ..MR 1900, pp 662, 677, 678, 681; MR 1901, pp 644, 645, 660, 661
Slatington, slate industry at ..Bull 213, pp 361-363
stone in Masontown and Uniontown quadranglesGF 82, p 20
Susquehanna River, flow of, measurement of ...Ann 22, iv, pp 124-129; WS 48, pp 110-114; WS 65, pp 220-228; WS 75, pp 30-31, 32
talc and soapstone in, statistics of ...MR 1900, p 783; MR 1901, p 777
Tohickon Creek, flow of, measurement of ...Ann 22, iv, pp 113-116; WS 47, pp 81-89; WS 65, pp 215; WS 75, p 28
rainfall, run-off, and evaporation in basin of ..WS 80, pp 95, 99
topographic work in ..Ann 22, i, pp 137, 138, 140, 148-149, 151, 173; Ann 23, pp 126, 133-134
topography of Gaines oil field ...Ann 22, iii, pp 580-581
of Masontown and Uniontown quadrangles ...GF 82, pp 2-5
Uniontown and Masontown quadrangles, geology ofGF 82
Wissahickon Creek, flow of, measurement ofAnn 22, iv, pp 124; WS 48, pp 107-109; WS 65, pp 218; WS 75, p 30
Youghiogheny River, abandoned channels alongGF 82, p 4
Pennsylvania Canal, flow of, measurement of ..WS 48, p 114
Pennsylvanian series of Pennsylvania ...GF 82, pp 7-9
of West Virginia, Raleigh quadrangle ..GF 77, pp 3-4
Penobscot River, flow of, measurement of ...WS 65, pp 14-15; WS 75, p 20
water power, etc., on ...WS 69, pp 27-38
Penokee-Gogebic iron belt of the Northwestern StatesAnn 5, pp 194-196
Penokee-Gogebic region of northern Wisconsin and Michigan, unconformities of ..Ann 7, pp 423-428
Penokee series of Michigan and Wisconsin ..Ann 15, pp 93-94; Bull 8, pp 30-32
Pensauken formation of New York City districtGF 83, p 11
Peorian soil and weathered zone in Erie and Ohio basinsMon xli, pp 302-303
Pequannac River, New Jersey, flow of, measurement ofWS 72, pp 22-24
rainfall, run-off, and evaporation in basin of ...WS 80, pp 97, 99
Peridot, occurrence and statistics of.. MR 1901, pp 746-747, 770
Peridotite, analysis of, from British Columbia, Eagle Creek......... Bull 193, p 44
analysis of, from Russia, Mount Soloviev............................... Bull 193, p 75
Perkiomen Creek, Pennsylvania, flow of, measurement of........ Ann 22, iv, pp 121-123; WS 47, pp 98-99; WS 63, p 217; WS 75, p 29
rainfall, run-off, and evaporation in basin of........................ WS 80, pp 94, 99
Permability of rocks... Mon xlii, p 16
Permian ammonoids of America... Bull 211, pp 83-115
Permian rocks of Kansas, fossil plants of Upper Carboniferous, and... Bull 211, p 72
Permian vertebrates of Kansas.. Bull 65, pp 20-42
Permo-Carboniferous series of bituminous coal field of Pennsylva
nia, and West Virginia... Bull 65, pp 20-42
Persia, petroleum in, occurrence of.. MR 1900, p 627
Peru, borax production of.. MR 1901, p 872
copper from, statistics of.. MR 1900, pp 184, 185; MR 1901, p 194
petroleum in, statistics of... MR 1900, pp 590-591; MR 1901, p 586, 611
Peshastin district, Washington, gold mining in.......................... Bull 213, pp 78-79
Peteetnete Creek, Utah, irrigation data relating to..................... WS 52, pp 507-508
Peters (W. J.), work in charge of... Ann 22, i, pp 97-98, 167-168; Ann 23, pp 77-80
Petersburg coal of Indiana... GF 84, p 7
Petersburg formation of Indiana.. GF 84, p 2
Petrified forest of Arizona... MR 1901, pp 756-758
Petrographic characters of granite, gabbro, greenstone, slates, conglomerate, etc., in Minnesota, Vermilion district........... Mon xlv, passim
Petrographic relations of iron ores to adjacent rocks in Minnesota, Mesabi dis-trict... Mon xliii, pp 233-234
Petrography, bibliography of, 1892-1900, 1901.............................. Bull 188; Bull 203
index to, 1892-1900, 1901... Bull 189; Bull 203
of Crater Lake National Park.. PP 3, pp 63-164
Petrography, microscopic, of the Elkhorn mining district, Montana... Ann 22, ii, pp 511-549
Petroleum; accumulation of, factors controlling.......................... Bull 212, pp 140-145; Bull 213, pp 336-338, 347-348
analysis of, from Colorado, Boulder.. MR 1901, p 560
from Ohio, Lima... MR 1901, p 572
from Pennsylvania... MR 1901, p 572
from Russia... MR 1901, p 572
from Texas, Beaumont.. MR 1901, p 572
Corsicana... MR 1901, p 582
association of sulphur, gypsum, rock salt, and.......................... Bull 184, pp 49-53
character, origin, mode of accumulation, etc., of...................... Bull 198, pp 12-16
composition of, ultimate, from various sources.......................... Bull 212, p 149
in Alaska, Copper River region.. Copper, p 92
in California... Bull 213, pp 306-321
in Coal Measure rocks, origin of.. Bull 184, p 12
in Colorado, near Boulder... Bull 213, pp 322-332
in Ohio, eastern, structural work in the field in 1901 and 1902........ Bull 213, pp 336-344
in Pennsylvania, Masontown and Uniontown quadrangles............... GF 82, pp 19-20
in Pennsylvania, northern... Ann 22, iii, pp 573-627
in Texas, Austin quadrangle... GF 76, p 7
Beaumont; comparative fuel value of coal and............................ Bull 212, pp 160-161
in Texas-Louisiana Gulf Coastal Plain..................................... Bull 212; Bull 213, pp 345-352
Petroleum in West Virginia, Charleston quadrangleGF 72, p 6
methods of burningBull 212, pp 162-165
origin of, theories ofBull 212, pp 137-140
pools of Gulf Coastal Plain, geology ofBull 212, pp 68-137
properties, physical and chemical, of the Texas-Louisiana ..Bull 212, pp 146-157
specific gravity of, from various fieldsBull 212, pp 146-147
statistics of ..MR 1900, pp 537-627; MR 1901, pp 525-611
storage and transportation of the BeaumontBull 212, pp 165-166
tests of coal and, for locomotive fuelBull 212, pp 161-162
utilization of, of the Gulf coastBull 212, pp 157-170
Petroleum rock in Texas, Beaumont district, Spindletop, character ofBull 212, pp 70-71
Petroleum sand in Ohio, Cadiz quadrangleBull 198
Petroleum wells, cost of, items affecting, in Gaines field, Pennsylvania Ann 22, iii, p 605
 drilling of, methods and cost ofBull 212, pp 166-170
 production of, methods of increasingAnn 22, iii, pp 602-604
 shooting of, production increased byAnn 22, iii, pp 602-604
Petroleum and gas fields of Western Interior and northern Texas Coal Measures, and of the Upper Cretaceous and Tertiary of western
 Gulf coast ...Bull 184
Petroleum, gas, and asphalt in Indiana, southwesternBull 213, pp 323-335
 publications onBull 213, p 356
Petrology, bibliography of North American, 1892-1900, 1901Bull 188; Bull 203
 index to North American, 1892-1900, 1901 Bull 189; Bull 203
Phelps sandstone of Ozark regionAnn 22, ii, p 85
Philippine Islands, petroleum in, occurrence ofMR 1900, p 622; MR 1901, p 609
Phlogopite, action of ammonium chloride onBull 207, pp 51-52
 analysis of, from Canada, BurgessBull 207, p 52
Phonolite, analyses of, from Colorado, Cripple Creek districtAnn 16, ii, p 39
Phosphate, publications onBull 213, p 426
Phosphate, Tennessee white, origin and extent ofBull 213, pp 418-425
Phosphate rock, statistics ofMR 1900, pp 803-814; MR 1901, pp 811-822
Phosphorus, distribution of, in iron formation in Minnesota, Mesabi district ..Mon xlv, pp 274-275
Phyllite, analysis of, from Vermont, AscutneyvilleBull 209, p 118
 thin section of, from Vermont, Ascutney MountainBull 209, p 16
Phyllitic series of Vermont, Mount AscutneyBull 209, pp 14-17
Physics and chemistry, work inAnn 22, 1, pp 133-135; Ann 23, pp 119-121
Physiographic history of Kentucky, centralGF 77, pp 1-2
 of West Virginia, Raleigh quadrangleGF 77, p 2
Physiography of Alaska, Copper River districtCopper, pp 62-76
 of Alaska, Seward PeninsulaN and N, pp 48-64
 of Appalachian Mountain region, southernWS 62, pp 11-15
 of Central AmericaAnn 22, iv, pp 513-516
 of Idaho, Nez Perce regionWS 53, pp 51-85
 of Minnesota, Vermilion districtMon xlv, pp 34-46
Piedra River, Colorado, flow of, measurement ofWS 74, pp 115-118
Pierre shale of ColoradoGF 71, pp 1, 3
 of South DakotaGF 85, p 4
Pigeon Point, Minnesota, eruptive and sedimentary rocks onAnn 15, pp 101-103
Pigeon River, Tennessee, flow of, measurement ofWS 48, p 188; WS 65, pp 302-303
Pike County, Arkansas, asphalt deposits ofBull 213, pp 353-355
Pilot Mountains, Nevada, geology ofBull 208, pp 103-105
Pinal schists of Arizona .. PP 12, pp 23-28
Pine Nut Range, Nevada, geology of Bull 208, pp 120-125
Piñon Range, Nevada, geology of Bull 208, pp 88-89
Piscataqua River, Maine, hydrographic data concerning WS 69, p 116
Pittsburg coal of Pennsylvania ... GF 82, pp 12-13, 14, 16
Pittsburg sandstone of Pennsylvania and West Virginia Bull 65, p 63
Place names in the United States, origin of Bull 197
Placenticeratidae of the Cretaceous Mon xliv, pp 188-245
Placer deposits of Alaska, Copper River district Copper, pp 90-91
of Alaska, Seward Peninsula ... N and N, pp 96-99, 104-106, 137, 140-151
of Oregon, Blue Mountains ... Ann 22, ii, pp 634-638
of Utah, Bingham Canyon ... Bull 213, pp 119-120
Placer gold in Alaska, distribution and source of Bull 213, pp 41-44
Placer-gold mining in Alaska in 1902 Bull 213, pp 41-48
Placer-gold output from Seward Peninsula, Alaska, in 1900 N and N, p 69
Placers, beach, of Alaska, Nome region N and N, pp 85-91
Placers, gravel-plain, of Alaska, Nome region N and N, pp 80-85
Plants collected in Alaska, Seward Peninsula, in 1900 N and N, pp 167-174
Plants, fossil, of John Day Basin Bull 204
of Kansas, Upper Carboniferous and Permian Bull 211, pp 83-115
Platinum, analysis of, from British Columbia, Tulameen River . . Bull 193, p 50
analysis of, from New York, near Plattsburg Bull 193, p 57
from Pacific coast .. Bull 193, p 56
ground relations and distribution Bull 193
in Wyoming, in copper ores .. MR 1901, p 972
ores of .. MR 1900, pp 233-234; MR 1901, pp 231-233
statistics of .. Platinum minerals in Oregon, Port Orford quadrangle ... GF 89, p 5
Platinum nuggets, analyses of, from Borneo Bull 193, p 82
analysis of, from French Guiana, Appronaguel Bull 193, p 62
from various localities .. Bull 193, pp 18-19
Platte River, flow of, measurement of WS 50,
pp 307-308, 311; WS 66, pp 37-38, 39; WS 75, p 138
Platte River and tributaries, flow of, measurement of Ann 22,
iv, pp 306-351; WS 66, pp 26-41
Pleasanton shales of Kansas and Iowa Ann 22, ii, p 342
Pleistocene clays, distribution of, east of Mississippi River ... PP 11, pp 60-61
of Indiana .. PP 11, p 107-112
of Maryland ... PP 11, pp 143-144
of Massachusetts ... PP 11, p 151
of Michigan .. PP 11, pp 156-157
of New York .. PP 11, pp 175-177
of Wisconsin ... PP 11, pp 266-271
Pleistocene history of Catoctin belt of Maryland, Virginia, West Virginia ... Ann 14,
ii, pp 380-382
of Great Basin, northern part Ann 4, pp 462-464
of Maine .. WS 69, pp 13-15
of New York City district .. GF 83, p 3
of Washington, Ellensburg quadrangle GF 86, p 2
Pleistocene lakes of Great Basin, northern part Ann 4, pp 468-461
of Oregon (southern) Ann 4, pp 458-461
Pleistocene rocks; alluvial deposits in Iowa, northeastern Ann 11,
1, pp 234, 417-425
Pleistocene rocks; alluvial deposits in Nebraska, Camp Clarke quadrangle. GF 87, p 3
 alluvial deposits in Nebraska, Scotts Bluff quadrangle. GF 88, p 3
 in Oregon, Coos Bay quadrangle. GF 73, p 4
 Port Orford quadrangle. GF 89, p 3
 in Washington, Yakima County. WS 55, p 22
 in West Virginia, Charleston quadrangle. GF 72, p 5

Carmichael clay of Pennsylvania. GF 82, p 9
character of. Ann 14, i, pp 41-42
 of Virginia. GF 80, p 3
Coos conglomerate of Oregon. GF 73, p 3
drift in Indiana. Ann 11, i, pp 639-641
 in Iowa, northeastern. Ann 11, i, p 234
 in Minnesota, Mesabi district. Mon xliii, pp 49, 191-194
gas from. Ann 11, i, pp 595-596
Glacial rocks of Minnesota, Mesabi district. Mon xliii, pp 191-194
Illinoian drift of Indiana, Ditney quadrangle. GF 84, pp 3-4
Iowan loess of Indiana, Ditney quadrangle. GF 84, pp 4-5
loess of Iowa, northeastern. Ann 11, i, p 234
of Alabama, clay of. PP 11, p 76
of Alaska, Copper River district. Copper, pp 58-61
of Illinois, Chicago district. GF 81, pp 4-13
 of Indiana. Ann 11, i, pp 624, 639-641
 Chicago district. GF 81, pp 4-13
 Ditney quadrangle. GF 84, pp 3-5
of Louisiana. Bull 184, pp 44-45
 of Minnesota, Mesabi district. Mon xliii, pp 191-194
of Nebraska, Camp Clarke quadrangle. GF 87, p 3
 Scotts Bluff quadrangle. GF 88, p 3
of Nevada, south of fortieth parallel. Bull 208, passim
of New York City district. GF 83, pp 11-17
 of North Carolina, Norfolk quadrangle. GF 80, p 3
of Oregon, Blue Mountains. Ann 22, ii, pp 584-585
Coos Bay quadrangle. GF 73, p 3
 Port Orford quadrangle. GF 89, p 3
of Pennsylvania, Masontown and Uniontown quadrangles. GF 82, p 9
 northern. Ann 22, ii, p 615
of South Dakota, Oelrichs quadrangle. GF 85, p 4
of Texas, Austin quadrangle. GF 76, p 6
of Virginia, Norfolk quadrangle. GF 80, p 3
of West Virginia, Charleston quadrangle. GF 72, p 5
of States. (See, also, formation names under this heading.)
Onion Creek marl of Texas, Austin quadrangle. GF 76, p 6
Pensauken formation of New York City district. GF 83, p 11
Port Hudson formation of Louisiana. Bull 184, p 44
Sangamon deposits of Indiana, Ditney quadrangle. GF 84, p 4
Teays formation of West Virginia. GF 72, p 5
terrace deposits in Iowa, northeastern. Ann 11, i, p 234
Wisconsin deposits of Indiana, Ditney quadrangle. GF 84, p 5
Pliocene rocks of Dismal Swamp. Ann 10, i, pp 316-317
 of Nevada, south of fortieth parallel. Bull 208, passim
Plummer (F. G.), forest conditions in the Cascade Range, Washington, between the Washington and Mount Rainier forest reserves. PP 6
Plummer (F. G.), Dodwell (A.), Rixon (T. F.), Leiberg (J. B.), and Langille
(H. D.), forest conditions in the Cascade Range Forest Reserve, Oregon...
WS 78, p 21

Plutonic rocks of Oregon and Idaho .. GF 77, p 3
Pocahontas formation in West Virginia Ann 22, iii, pp 65-61, 612, GF 82, p 6
Pocono formation or sandstone of Pennsylvania............................. Ann 22, iv, pp 303-305
Pogonip limestone of Nevada .. Ann 22, iv, pp 22, map, 27, 30, 34; Ann 4, p 229; Bull 208, p 21
Poinsett, Lake, South Dakota, reconnaissance of, for water storage.... Ann 22, iv, pp 303-305

Pollucite, action of ammonium chloride on Bull 207, pp 21-22
analysis of, from Maine, Hebron .. Bull 207, p 21
Polluted and normal waters in northeastern United States WS 79
Pollution of streams, court decisions on, in Connecticut WS 79, pp 107-112
Pompton River, New Jersey, flow of, measurement of WS 65, pp 211-212; WS 75, p 26
Popanoceratidae of America ... Mon XLI, pp 131-134
Porcupine district, Alaska, placer gold mining in Bull 213, p 48
Porosity of rocks and soils ... WS 67, p 16
Porpzeite, analysis of, from Brazil .. Bull 193, p 61
Porphyritic granite of Minnesota, Mesabi district Mon XLI, pp 78-79
Porphyritic rhyolite of Minnesota, Mesabi district Mon XLI, pp 68-69, 79-80
Porphyry in Alaska, Copper River district, in unmetamorphosed sediments.. Copper, pp 56-57
in Colorado, Silverton quadrangle .. Bull 182, pp 33-34
Port Clarence limestone of Alaska, Seward Peninsula, northwestern portion............... PP 2, pp 17-21
Port Hudson formation of Louisiana ... Bull 184, p 44
Port Orford quadrangle, Oregon, geology of GF 89
Portage group or formation of New York Mon XLI, p 58; Bull 3, pp 7, 8, 13, 20-21, 29; Bull 41, pp 21, 22, 23-24, 25
of New York, fauna of eastern extension of Bull 210, pp 71-73
Porter (D.), water powers of coast streams of New Hampshire........ Ann 22, iv, pp 61-81
Portland cement. (See Cement, Portland.)
Porto Rico, gazetteer of .. Bull 183
general description, population, etc., of Bull 183, pp 7-12
history of the name ... Bull 183, p 7
topography of ... WS 32, pp 11-15
Portugal, arsenic production of ... MR 1901, p 257
iron production of ... MR 1901, p 114
manganese ore from, statistics of ... MR 1900, pp 135, 140; MR 1901, pp 149-150, 155
pyrite production of ... MR 1901, pp 841, 842
Post Creek, Montana, reconnaissance of basin of Ann 22, iv, pp 436-441
Poteau group of Indian Territory ... Ann 22, iii, p 376
Potomac formation .. Bull 43, pp 100-103
Albirupean series of deposits and flora Ann 15, pp 333-338, 369-375; Ann 16, r, pp 473-474, 531, 532; Bull 82, pp 89-90, 94

Bull. 215—03—12
Potomac formation; Aquia Creek series of deposits and flora Ann 15, pp 326-330, 367-368; Ann 16, i, pp 482-483, 530-532, 538, 542
areal extent of .. Ann 14, i, pp 227-228
iron-ore series of deposits and flora Ann 15, pp 330-332; Ann 16, i, p 473
Island series of deposits and flora Ann 16, i, pp 473-474, 523, 524, 531, 532
James River series of deposits and flora Ann 15, pp 318-320, 346-347; Ann 16, i, pp 473, 482-483, 523, 524, 530-532
Mount Vernon series of deposits and flora Ann 15, pp 324-325, 348-360; Ann 16, i, pp 473, 523, 530-532, 538, 539
of New York City district GF 83, p 10
of Virginia, Norfolk quadrangle GF 80, p 2
Rappahannock series of deposits and flora Ann 15, pp 321-324, 347-348; Ann 16, i, pp 473, 482-483, 523, 524, 530-532
Potosi series of Colorado, Silverton quadrangle Bull 182, pp 32-33
Potsdam formation or group in Illinois GF 81, p 2
in Iowa ... Ann 11, i, p 332
in Lake Superior region Ann 3, p 156; Ann 7, p 418
junction between Keweenaw series and Bull 23
in Mississippi Valley Bull 8, pp 39-40; Bull 43, p 49
in New York .. Bull 30, pp 20-24, 67
in St. Lawrence Valley and on northern side of Adirondacks Ann 12, i, pp 549-550
in Wisconsin ... Ann 11, i, p 332; Bull 8, pp 12, 15, 18, 21
water supply from .. WS 67, pp 59-60
Potsdam and Huronian formations, unconformity between Ann 7, pp 400-412
Potsdam sandstone and Keweenaw series, unconformity between Ann 7, pp 412-414
Pottery, statistics of MR 1900, pp 695, 696, 714-727; MR 1901, pp 699-710
Pottsville conglomerate, clays of PP 11, p 52
of Pennsylvania ... Ann 22, iii, pp 66, 67
- of Pennsylvania, Ohio, and West Virginia, bituminous coal field. Bull 65, pp 179-205
- of West Virginia .. PP 11, p 252
Pottsville formation of Erie and Ohio basins Mon xli, p 64
-of Maryland, coal field Ann 22, iii, pp 202, 204
of Ohio, bituminous field Ann 22, iii, pl xii, p 216
-of Pennsylvania ... GF 82, p 7
bituminous field .. Ann 22, iii, pp 130-131
northern section of PP 11, p 137
Poughquag quartzite of New York City district GF 83, p 4
Powell moraine, Ohio, distribution, topography, etc., of Mon xli, pp 524-531
Power, electric, available, on Hawaiian Islands, Molokai WS 77, p 60
development of, in California, Kern River, possibilities of WS 46, pp 11-38
in California, King River Basin WS 58, pp 48-95
Power, water. (See Water power.)
aluminum and bauxite, statistics of MR 1900, pp 229-231
antimony, statistics of MR 1900, pp 251-255
asbestos, statistics, occurrence, etc., of MR 1900, pp 861-868; MR 1901, pp 887-895
POTOMAC—PULASKITE.

Pratt (J. H.), barytes, statistics of . MR 1900, pp 915-919
chromite or chromic iron ore, statistics of . MR 1900, pp 897-898; MR 1901, pp 941-948
corundum in United States, occurrence and distribution of . Bull 180
fluorspar and cryolite, occurrence, uses, and statistics of . MR 1901, pp 879-885
graphite, statistics of . MR 1900, pp 875-877
lithium, statistics of . MR 1901, pp 239-240
mica, statistics of . MR 1901, pp 873-878
monazite, statistics of . MR 1901, pp 949-954
nickel and cobalt, statistics of . MR 1901, pp 241-250
strontium ores, occurrence of . MR 1901, pp 955-958
talc and soapstone, occurrence and statistics of . MR 1900, pp 779-786; MR 1901, pp 773-780

Precious metals. (See Gold; Placer; Silver.)
Precious stones, statistics of . MR 1900, pp 749-778; MR 1901, pp 729-771
Precipitation. (See Rainfall.)
analysis of, from New Jersey, Paterson Bull 207, pp 26
Pressey (H. A.), hydrography of southern Appalachian Mountain region . WS 62;
WS 63
observations on the flow of rivers in the vicinity of New York City . WS 76
method of using stream gaugings for computation of water power . WS 47, pp 10-15
water powers of the State of Maine . WS 69
water supply of New York City . GF 83, pp 18-19
work in charge of . Ann 22, i, pp 125, 126, 132; Ann 23, p 100
Presumpscot River, flow of, measurement of . WS 65, pp 21-22; WS 75, p 22
hydrographic investigations on . WS 69, pp 91-104
Price electric current-meter . WS 56, pp 30-33
Primary traverse and triangulation, results of, fiscal year 1901-2 . Bull 201
Prince William Sound, Alaska, copper in . Copper, pp 88-89
glaciation in . Copper, pp 81-82
terraces of . Copper, pp 73-76
topography of . Copper, pp 26-27
Princeton conglomerate of West Virginia . GF 77, p 3
Prolecanitidae of America . Mon xlii, pp 51-56
Pronotitidae of America . Mon xliv, pp 41-49
Prospect Mountain limestone and quartzite of Nevada . Ann 2, pp 22, 27, 33; Ann 3, pp 253, 254; Bull 208, p 21
Prosser (C. S.), work in charge of . Ann 22, i, p 77; Ann 23, p 53
irrigation data relating to . WS 52, pp 500-503
Pseudoceratites of the Cretaceous . Mon xliv
Pseudotissotioid of the Cretaceous . Mon xlv, pp 34-41
Public lands, amount, location, utilization, etc., of . Ann 22, iv, pp 37-49
1901-1903, catalogue of. (See pp. 9-31 of this bulletin.)
Puget formation of Washington, coal fields . Ann 22, iii, p 484
Pulaski formation of Oregon . GF 73, p 2
Pulaskite, analysis of, from Arkansas, Fourche Mountain . Bull 209, p 59
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY.

Pulchellidm of the Cretaceous ... Mon xliv, pp 136-144
Pumice, analysis of, from Nebraska .. MR 1900, p 796
 analysis of, from Utah, Millard County MR 1900, p 796
 from Utah and Nebraska .. MR 1901, pp 796-797
occurrence and statistics of ... MR 1900, pp 795-797; MR 1901, pp 796-797
Pumping plants in California, southern WS 59, pp 42-46
Purgatory River, Colorado, flow of, measurement of WS 74, pp 96-98
Putnam Hill clay of Ohio ... PP 11, pp 195-196
Pyrite, analysis of, from Georgia, Chestatee Bull 213, p 63
 statistics of .. MR 1900, pp 823-826; MR 1901, pp 838-842
Pyrite and gold deposits of Georgia, Dahlonega district Bull 213, pp 57-63
Pyrite and marcasite, action of cupric salts on Bull 186, pp 41-46
 distinction and quantitative determination of relative amounts of, in mixtures of the two, chemical method of Bull 186
 oxidation of, by potassium permanganate Bull 186, pp 46-47
 paramorphism of, remarks on .. Bull 186, p 40
Pyritiferous porphyry of Colorado, Leadville district Ann 2, p 244
Pyrope, occurrence and statistics of MR 1901, pp 744, 770
Pyrophyllite, action of ammonium chloride on Bull 207, pp 49-50
 analysis of, from North Carolina, Deep River Bull 207, p 50
Pysht River, Washington, flow of, measurement of WS 51, p 450
Quadrant formation of Montana .. Ann 22, II, p 440
Quakertown clay and shale of Ohio PP 11, p 193
Quartz (crystal), occurrence and statistics of MR 1900, pp 762-763, 777
Quartz, crystalline, statistics of MR 1900, pp 787, 797; MR 1901, pp 750-754, 770, 800
Quartz-diorite-porphyry, analysis of, from Montana, Elkhorn Ann 22, II, p 534
 of Montana, Elkhorn district ... Ann 22, II, p 428
Quartz-mica-diorite, analysis of, from Arizona, Globe quadrangle PP 12, p 60
 of Arizona, Globe quadrangle ... PP 12, pp 58-65
Quartz-monzonite, analysis of, from Arizona, Globe district PP 12, p 76
 analysis of, from Montana, Elkhorn, vicinity of Ann 22, II, p 424
 from Sierra Nevada .. Bull 209, p 47
 of Arizona, Globe district .. PP 12, pp 75-78
 of Montana, Elkhorn district .. Ann 22, II, pp 423-424
Quartz-sericite-schist, analysis of, from Vermont, Ascutneyville Bull 209, p 15
Quartz-slate, micaceous, of Minnesota, Mesabi district Mon xlvi, pp 93-94
Quartz veins in Alaska, Nome region N and N, pp 143-144
 relation of, to structure in Alaska, Nome region N and N, p 38
Quartzite, analysis of, from Minnesota, Mesabi district Mon xlvi, p 156
 in Idaho, Snake River Plains .. Bull 199, p 45
 in Minnesota, Mesabi district .. Mon xlvi, pp 90-93, 154-158
 in Montana, Elkhorn district, petrography of Ann 22, II, pp 544-545
 in Northwestern States .. Ann 5, pp 197-202
Quebec, platinum in ... Bull 193, p 36
Richelieu River, flow of, measurement of WS 65, pp 38, 40-41
Queensland, coal production of .. MR 1900, pp 315, 319; MR 1901, pp 311, 315
 copper production of .. MR 1901, p 194
 manganese ore from, statistics of MR 1900, pp 139, 140; MR 1901, pp 154, 155
Quicksilver, statistics of ... MR 1900, pp 235-238; MR 1901, pp 235-238
Quinn Canyon and Grant ranges, Nevada, geology of Bull 208, pp 68-76
Quinnimont formation in West Virginia GF 77, p 3
Raccoon Creek, Ohio, features of Mon xli, p 172
Rafter (G. W.), relation of rainfall to run-off WS 80
Railroad ballast, use of slag for Bull 213, p 230
Rainfall; cause, measurement, records, etc., of ... WS 80, pp 9–19
in Alabama, Tallapoosa River Basin ... WS 75, pp 86–87
in Alaska, southeastern ... PP 1, p 114
in Appalachian Mountain region, southern .. Ann 22, iv, pp 181–183; WS 62, pp 23–25
in California, Kings River Basin .. WS 58, pp 15–17
 Riverside, San Bernardino, and Colton ... WS 59, pp 17–18
 southern, at various stations ... WS 52, p 496
 Truckee Basin ... WS 68, pp 10–15
in Colorado, Denver .. Ann 22, iv, pp 34, 35
 South Platte Basin ... WS 75, pp 131–137
in Costa Rica ... Ann 22, iv, pp 526–530, 575–579
in Illinois, Chicago district .. GF 81, p 13
in Montana, Missouri Basin ... WS 75, pp 114–118
in Nebraska, western .. GF 87, p 1; GF 88, p 1
in Nevada, Truckee Basin .. WS 68, pp 10–15
in New Mexico, Santa Fe .. Ann 22, iv, pp 33, 35
in Ohio, Maumee River Basin ... WS 75, pp 110–111
in Oregon ... PP 9, p 29
in Panama ... Ann 22, iv, pp 526–527, 625–630
in United States, Western States ... Ann 22, iv, pp 31, 32, 33
in Utah, Salt Lake City and Camp Douglas ... Ann 22, iv, pp 34, 35
in Virginia, James River Basin .. WS 75, pp 45–50
relaton of run-off to .. WS 80
relaton of, to run-off in California ... WS 75, pp 225–231
Rainfall and run-off; in Alabama, Tallapoosa River Basin WS 75, p 88
in Colorado, South Platte Basin .. WS 75, pp 136–137
in Georgia, various river basins ... WS 75, pp 72–76
in Massachusetts, Cochituate Lake watershed .. WS 65, p 26
 Sudbury River watershed .. WS 65, p 26
in Montana, Missouri Basin ... WS 75, pp 114–118
in New York, Croton watershed .. WS 65, pp 80, 81–82, 83–85
in Ohio, Maumee River Basin ... WS 75, p 110
in United States, mean annual, maps showing ... Ann 22, iv, p 36
in Virginia, James River Basin .. WS 75, pp 45–50
Raleigh quadrangle, West Virginia, geology of ... GF 77
Raleigh sandstone in West Virginia .. GF 77, p 3
Ralston Desert, Nevada, geology of ... Bull 208, pp 181–183
Ramapo River, New Jersey, flow of, measurement of WS 72, pp 19–21
Ransome (F. L.), copper deposits of Bisbee, Arizona Bull 213, pp 149–157
 economic geology of Silvertone quadrangle, Colorado Bull 182
 geology of Globe copper district, Arizona .. PP 12
 ore deposits of Rico Mountains, Colorado ... Ann 22, ii, pp 299–307
 work in charge of ... Ann 22, i, pp 85–86; Ann 23, pp 53–55
Rappahannock series of deposits and flora .. Ann 16, i, pp 473, 482–483, 523, 524, 530–532
Raquette River, New York, water powers on ... WS 65, pp 36–38
Raritan clays of Maryland .. PP 11, pp 141–142
 of New York City district ... GF 83, p 10
Raritan River and tributaries, hydrography of, with respect to pollution WS 72, pp 11–15
Rating meters, methods of ... WS 56, pp 34–35
Rating tables for stations in the various States

in stream measurement

Rattlesnake Creek, Montana, flow of, measurement of

Rattlesnake formation of Oregon, John Day Basin

Reagan sandstone of Indian Territory

Recent deposits, gas from

Recent rocks of Alaska, Copper River district

Reclamation of arid lands, review of work on

Record blanks used in recording stream measurements

Red Lake River, Minnesota, flow of, measurement of

Red River, flow of, measurement of

Red River Plain, Indian Territory, features of

Red shale beds of Pennsylvania, Ohio, and West Virginia

Redding quadrangle, California, iron ores of

Redding region, California, copper deposits of

limestone of

Redstone coal of Pennsylvania

Redstone limestone of Pennsylvania, Ohio, and West Virginia

Reese River Range, Nevada, geology of

Reforestation in Oregon, Cascade Range Forest Reserve, northern portion

in Sierra Nevada, northern, amount of

Regulations of United States Geological Survey.

Relief in Idaho due to erosion

in Idaho due to movements in earth's crust

Renshawe (J. H.), work in charge of

results of primary triangulation and primary traverse, 1900–1901

results of primary triangulation and primary traverse, 1901–2

results of spirit leveling in 1900–1901

Rensselaer grit in New York

in Vermont, description of

Replacement deposits of Colorado, Silverton quadrangle

Republican River, flow of, measurement of

Reservoir site, requisites of

Reservoir sites in California, Kings River Basin

in California, southern

Truckee Basin

in Nevada, Truckee Basin

Reservoir sites and surveys in California, Kings River Basin

Reservoirs for watering live stock, act of January 13, 1897, providing for construction of

Residual soils in Idaho, Nez Perce region

Reveille Range, Nevada, geology of

Rhode Island; Blackstone Canal, flow of, measurement of

Blackstone River, flow of, measurement of

quality of water of
Rhode Island: borings, deep, in... WS 61, p 43
building stone from, statistics of... MR 1900, p 662 et seq; MR 1901, p 644 et seq
geologic and paleontologic investigations in... Ann 23, p 43
granite production of... MR 1900, pp 662, 663, 664, 665, 668; MR 1901, pp 644, 645, 651, 652, 653, 654
limestone production of... MR 1900, pp 662, 685, 686, 687; MR 1901, pp 644, 645, 667, 668, 669, 670
mineral springs of... MR 1900, pp 901, 902; MR 1901, pp 962, 964
topographic work in, cooperation of State in... Ann 22, i, pp 18-19, 29
Rhodolite, occurrence of... MR 1901, p 744
Rhyolite of Alaska, Ketchikan district... PP 1, p 50
of Idaho, Snake River Plains... Bull 199, pp 42-45
of Minnesota, Mesabi district (porphyritic)... Mon xlii, pp 68-69, 79-80
of Oregon, Blue Mountains... Ann 22, ii, p 590
of Washington, Monte Cristo... Ann 22, ii, p 798
Rhyolitic and granitic intrusives of Alaska, Seward Peninsula, northwestern... PP 2, pp 29-30
Rice irrigation systems in Texas... WS 71, pp 82-124
Richardson (G. B.), Collier (A. J.), and Brooks (A. H.), reconnaissance of the Cape Nome and adjacent gold fields of Seward Peninsula, Alaska, in 1500... N and N, pp 1-180
Richelieu River, Quebec, flow of, measurement of... WS 65, pp 38, 40-41
Richmond coal area, Virginia... Ann 22, iii, pp 32-42
Rico Mountains, Colorado, ore deposits of... Ann 22, ii, pp 229-307
Ridgway (J. L.), work in charge of... Ann 22, i, pp 178-179; Ann 23, pp 174-175
Riebeckite, action of ammonium chloride on... Bull 207, pp 45-46
analysis of, from Colorado, Pikes Peak... Bull 207, pp 45-46
Ries (H.), clays of the United States east_of the Mississippi River... PP 11
flint and feldspar, statistics of... MR 1901, pp 935-939
seepage on, measurements of... WS 50, p 306
topography of basin of... Ann 12, ii, pp 240-243
Rio Grande division, Colorado, irrigation system of... WS 74, pp 101-110
Ripley formation of Alabama... Bull 43, pp 71-83, 116, 132-133
River stations, for measuring flow, in 1900 and 1901, maps showing locations of... Ann 22, iv, pp 26, 27; WS 75, pp 12, 13
in various States, rating tables for... WS 52, pp 511-523; WS 65, pp 318-324; WS 66, pp 170-178
operations at, in 1900... WS 47-52
in 1901... WS 65, WS 66
River terraces in Iowa, northeastern... Ann 11, i, pp 425-432
River water near New York City, quality of... WS 76, pp 67-86
turbidity, color, alkalinity, and hardness of, determination of... WS 76, pp 73-76
Rivers, flow of, under ice, measurement of... WS 76, pp 48-67
in United States, drainage areas of... WS 52, pp 524-548
near New York City, flow of, observations on... WS 76
stream measurement, methods of... WS 56
velocity of, methods of measuring... WS 76, pp 14-20
(See, also, Stream.)
Rixon (T. F.) and Dodwell (A.), forest conditions in Olympic Forest Reserve... PP 7
Rixon (T. F.), Leiberg (J. B.), Langille (H. D.), Plummer (F. G.), and Dodwell (A.), forest conditions in the Cascade Range Forest Reserve, Oregon

PP 9

Rizer (H. C.), work in charge of

Ann 22, i, p 206

Roach River, Maine, flow of, measurement of

WS 65, pp 17-18

Road metal in New Jersey, New York City district

GF 83, p 10

in Tennessee, Maynardville quadrangle

GF 75, p 6

in Texas, Austin quadrangle

GF 76, p 8

use of slag for

Bull 213, p 230

Roan Creek, Tennessee, flow of, measurement of

WS 48, p 184; WS 65, p 289

Roan gneiss of Tennessee

GF 90, p 2

Roanoke River, flow of, measurement of

Roberts (G. E.), gold and silver, production of, statistics of

MR 1900, pp 105-113; MR 1901, pp 117-126

Rock cement, American, statistics of

MR 1900, pp 745-748; MR 1901, pp 725-726

Rock Creek, District of Columbia, flow of, measurement of

WS 48, pp 125-126

Rockaway River, New Jersey, flow of, measurement of

WS 72, pp 24-25

Rockmart slate of Georgia

GF 78, p 3

Rocks, permeability and porosity of

WS 67, pp 15-16

Rockville conglomerate of Iowa, northeastern

Ann 11, i, p 234

Rockwood formation of Georgia

GF 75, p 3

of Tennessee

GF 75, p 3

Rocky Mountain coal fields; summary of knowledge

Ann 22, iii, pp 415-471

Rogersville shale of Tennessee

GF 75, p 2

Rome formation of Georgia

GF 78, p 2

of Tennessee

GF 75, p 2

Rome quadrangle, Georgia-Alabama, geology of

GF 78

Romney formation of Maryland, fauna of

Bull 210, pp 67

Rondout Creek, New York, diversion of, to feed Delaware and Hudson Canal.

WS 65, pp 68-69

flow of, measurement of

WS 65, pp 66-68, 69-70; WS 76, pp 98-99

quality of water of

WS 76, pp 78-80

water powers on

WS 65, pp 70

Ros eoelite, analysis of, from California, Lotus

MR 1900, p 284

Roslyn formation of Washington, coal fields

Ann 22, iii, p 485

Rotten limestone of Alabama

Bull 43, pp 83-86, 116-117, 131

Roubidoux sandstone of Ozark region

Ann 22, ii, p 82

Roumania, petroleum in, statistics of

MR 1900, pp 611-613; MR 1901, pp 592-594, 611

Rove slate of Minnesota, Vermilion district

Mon xlv, pp 390-396

Ruby, occurrence and statistics of

MR 1900, pp 756-758, 777; MR 1901, pp 741-742, 770

Ruby, oriental, in North Carolina

Bull 180, pp 39-46

Ru in granite of Arizona, Globe district

PP 12, pp 73-75

Ruley (W. W.), Pennsylvania anthracite

MR 1901, pp 419-423

Run-off, effect of geologic structure and forests on

WS 80, pp 46-56

in Colorado

WS 74, pp 14-19

laws, characteristics, estimation, formulas, etc., of

WS 80, pp 19-38

relation of rainfall to

WS 80

in California

WS 75, pp 225-231

t able for converting depth of, in inches, into acre-feet per square mile

WS 75, p 226

(See, also, Rainfall and run-off.)
Russell (J.C.), a geological reconnaissance in central Washington. Ann 15, pp 100-101
geology and water resources of Nez Perce County, Idaho. WS 53, 54
geology and water resources of Snake River Plains of Idaho. Bull 199
Portland-cement industry in Michigan. Ann 22, 1, pp 629-685
preliminary report on artesian basins in southwestern Idaho and southeastern Oregon. WS 78

Russia; borax production of. MR 1901, p 871
coal production of. MR 1900, pp 315, 318; MR 1901, pp 311, 314
copper from, statistics of. MR 1900, pp 182, 184, 185; MR 1901, p 193
diamonds in, occurrence of. MR 1900, p 754
emeralds in. MR 1900, p 759
iron and steel production of. MR 1901, p 114
manganese ore from, statistics of. MR 1900, pp 137, 140; MR 1901, p 152, 155
petroleum in, statistics of. MR 1900, pp 594-608; MR 1901, pp 587-590, 611
phosphate-rock production of. MR 1901, p 822
pyrite production of. MR 1901, p 841, 842
quicksilver production of. MR 1901, p 238
salt production of. MR 1900, p 846; MR 1901, p 864
sulphur production of. MR 1901, p 837
Rutile, statistics of. MR 1901, pp 277-278
Rutledge limestone of Tennessee. GF 75, p 2
Sac limestone of Ozark region. Ann 22, 11, p 85
Saccharoidal sandstone of Ozark region. Ann 22, 11, pp 80-81
Saco River, hydrographic investigations on. WS 69, pp 105-109
Sacramento River, California, flow of, measurement of. Ann 22, 11, p 462; WS 51, pp 450-451, 480; WS 66, pp 142-143; WS 75, p 210
St. Clair limestone of Ozark region. Ann 22, 11, p 82
St. Croix River, Maine, water power, etc., on. WS 69, pp 20-27
St. Croix sandstone in Minnesota. Ann 11, 1, p 332; Bull 81, pp 181-186
St. John River and tributaries, Maine, hydrographic investigations on. WS 69, pp 109-112
St. Johns moraine, distribution, topography, etc., of. Mon xi, pp 509-523
St. Lawrence River and tributaries, flow of, measurement of. WS 65, pp 31-42
St. Lawrence system in New York, Pennsylvania, and Ohio, drainage features of. Mon xi, pp 201-219
St. Louis limestone of Iowa, northeastern. Ann 11, 1, p 234
St. Louis slates of Minnesota. Ann 5, pp 196-197; Bull 81, pp 32-33
St. Louis–Chester ammonoids of America. Mon xli, p 14
St. Mary Lake, Montana, description of. Ann 22, 11, pp 436, 438
St. Mary River, Montana, description of. Ann 22, 11, p 270
diversion of, proposed. Ann 22, 11, pp 268-279
flow of, measurement of. Ann 22, 11, p 271; WS 49, p 269; WS 66, pp 14-15; WS 75, p 113
St. Marys moraine. (See Fort Wayne moraine.)
St. Peter group of Illinois. GF 81, p 2
St. Peter sandstone of Minnesota. Ann 11, 1, p 332
of Mississippi Valley. Bull 43, p 49
of Wisconsin. Ann 11, 1, p 332; Bull 8, pp 15, 16, 41-42
seepage on, measurements of. WS 50, p 304
Salamonie moraine. (See St. Johns moraine.)
Salamonie River, Indiana, course and character of. Mon xli, p 189
Salina Creek, Utah, flow of, measurement of Ann 22, iv, pp 417-418; WS 51, pp 423-424; WS 66, pp 124-125; WS 75, p 196
Salina formation in Erie and Ohio basins Mon xli, pp 55-56
Salinas River, California, flow of, measurement of Ann 22, iv, pp 468-469; WS 51, pp 454-455, 481; WS 66, pp 156-157; WS 75, p 221
hydrographic survey of basin of .. Ann 22, iv, pp 484-486
Salisbury (R. D.1, Pleistocene formations of New York City district. ... GF 83, pp 11-17
work in charge of ... Ann 22, i, p 59; Ann 23, pp 55-56
Salmon Falls River, New Hampshire, drainage area, fall, etc. ... Ann 22, iv, pp 63-71
Salmon Falls River and tributaries, New Hampshire, water powers of ... Ann 22, iv, pp 63-73
Salmon River, New York, flow of, measurement of WS 47, p 39; WS 49, p 234; WS 65, pp 105-107
Salt, analyses of, from various localities Bull 213, pp 415, 416
analysis of, from Virginia, Saltville Bull 213, p 413
in West Virginia, Charleston quadrangle GF 72, p 6
publications on ... Bull 213, p 417
statistics of .. MR 1900, pp 835-847; MR 1901, pp 853-865
Salt and gypsum deposits of southwestern Virginia................. Bull 213, pp 406-416
Salt, rock; association of, with petroleum, sulphur, and gypsum. Bull 184, pp 49-53
Salt Creek, Nebraska, flow of, measurement of WS 50, p 311
Salt Creek Basin, Ohio, drainage changes in Mon xli, pp 178-180
Salt River, Arizona, flow of, measurement of WS 66, pp 69-100, 101-102; WS 75, pp 178, 179
water storage on .. WS 73
Saluda Creek and tributaries, North Carolina, flow of, measurement of ... WS 49, p 206
Saluda River, South Carolina, flow of, measurement of Ann 22, iv, p 159; WS 48, pp 147-148; WS 65, pp 250-251; WS 75, p 61
hydrography of basin of ... WS 63, pp 135-138
San Antonio Creek, California, flow of, measurement of WS 66, pp 154-155; WS 75, p 220
San Antonio River, Texas, flow of, measurement of WS 50, pp 340-342
San Blas canal route across American isthmus Ann 22, iv, p 537
San Felipe Springs, Texas, flow from, measurement of WS 50, p 345
San Francisco Bay drainage, stream measurements in Ann 22, iv, pp 461-497; WS 66, pp 142-153
San Gabriel River, California, flow of, measurement of Ann 22, iv, p 504; WS 51, pp 472-475, 483-484; WS 66, pp 161-162; WS 75, pp 222-223
San Joaquin River, California, flow of, measurement of Ann 22, iv, p 466; WS 51, pp 458-459, 481; WS 66, pp 151-152; WS 75, p 216
San Juan division, Colorado, irrigation system of WS 74, pp 111-126
San Juan formation of Colorado, Silverton quadrangle Bull 182, p 31
San Juan volcanic area, Colorado .. Bull 182, pp 29-30
San Juan River, Nicaragua, hydrography of Ann 22, iv, pp 556-573
San Juan River and tributaries, Colorado, flow of, measurement of ... Ann 22, iv, pp 392-394; WS 74, pp 112-115, 126
San Lorenzo Creek, California, flow of, measurement of WS 66, p 155; WS 75, p 220
San Miguel conglomerate. (See Telluride conglomerate.)
San Miguel River, Colorado, flow of, measurement of WS 74, pp 142-145
San Pitch River, Utah, flow of, measurement of Ann 22,
 iv, p 419; WS 51, p 425; WS 66, p 126; WS 75, p 196
Sand in Illinois, Chicago district GF 81, pp 12-13
Sand dunes in Oregon, Coos Bay quadrangle GF 73, p 4
in Virginia, Norfolk quadrangle GF 80, p 1
Sandstone, analysis of, from Colorado (vanadiferous) MR 1900, p 263
analysis of, from Colorado, Rico district, Logan mine Ann 22, ii, p 287
of Colorado, Spanish Peaks quadrangle GF 71, p 6
of Indian Territory, Atoka quadrangle GF 79, p 8
Coalgate quadrangle ... GF 74, p 6
of Indiana, Ditney quadrangle GF 84, p 8
of Oregon, Coos Bay quadrangle GF 73, p 5
statistics of of MR 1900, pp 661, 662, 669-676; MR 1901, pp 643, 644, 645, 655-660
Sandusky River, Ohio, flow of, measurement of Ann 22, iv,
 pp 242-243; WS 49, pp 221-222; WS 65, p 314
Sangamon deposits of Indiana, Ditney quadrangle GF 84, p 4
Sangamon soil and weathered zone in Erie and Ohio basins ... Mon xli, pp 292-294
Sanitary analyses of waters ... WS 79, pp 22-31
Santa Ana River, California, flow of, measurement of Ann 22, iv,
 pp 504-505; WS 51, pp 475-476, 478-479,
 484-487; WS 66, pp 163-165; WS 75, p 224
Santa Clara River, flow of, measurement of WS 51, p 482
Santiago, Cuba, manganese deposits of Bull 213, pp 251-255
Santo Domingo, platinum in ... Bull 193, p 60
Sapphire, occurrence and statistics of MR 1900,
 pp 756, 777; MR 1901, pp 736-737, 770
Sapphire or corundum gems, occurrence and varieties of Bull 180, pp 38-55
Saratoga chalk-marl of Arkansas Ann 22, iii, pp 714-725, 733
Sauquoit Creek, New York, flow of, measurement of Ann 22,
 iv, pp 90-91; WS 47, pp 48-49; WS 65, pp 149-151
Savage (H. N.), statements by, in regard to wells and pumps in southern
California .. WS 52, pp 497-498
Savage Mountain fire clay of Pennsylvania PP 11, p 215
Savanna formation or sandstone of Indian Territory Ann 22,
 iii, p 377, pl xxvi; GF 79, p 3; GF 79, p 5
Savannah River, flow of, measurement of Ann 22, iv, pp 161-162;
 WS 48, pp 149-151; WS 65, pp 253-255; WS 75, pp 62, 63-64
 tributaries of, flow of, measurement of WS 49, p 207; WS 63, p 178
Sawkill Creek, New York, flow of, measurement of WS 65, pp 65-66
Scheelite, formation of wolframite after Ann 22, ii, pp 19-20
Schell Creek and Highland ranges, Nevada, geology of Bull 208, pp 38-47
Schists, analyses of, from Wisconsin, various localities PP 11, p 263
in Alaska, Norton Bay region .. N and N, pp 199-204
in Tennessee, Cranberry quadrangle GF 90, p 4
Schists, folded, of the Northwestern States Ann 5, pp 205-208
Schoharie Creek, New York, flow of, measurement of Ann 22,
 iv, pp 100-101; WS 47, pp 39, 60-61; WS 65, pp 167-172
Schooner-head series of Maine, Mount Desert Ann 8, ii, p 1041
Schrader (F. C.), work in charge of Ann 22,
 i, pp 98-99, 169-170; Ann 23, pp 77-89
Schrader (F. C.) and Mendenhall (W. C.), copper deposits of the Mount
Wrangell region, Alaska ... Bull 213, pp 141-148
Schrader (F. C.) and Spencer (A. C.), geology and mineral resources of portion of Copper River district, AlaskaCopper
Schroon River, New York, flow of, measurement ofAnn 22,
iv, pp 104-105; WS 47, pp 39, 73-74; WS 65, pp 45-47
Schulze granite of Arizona, Globe districtPP 12, pp 67-73
Schuylkill River, flow of, measurement ofWS 48, pp 109-110; WS 65, p 219
Scioto drainage system, Ohio, glacial formations and drainage features ofMon
 xli, pp 174-180
Scioto glacial lobe, early Wisconsin drift ofMon xli, pp 340-350
main moraines of late Wisconsin stage inMon xli, pp 382-457
minor moraines of late Wisconsin stage inMon xli, pp 524-545
Scioto River and tributaries, flow of, measurement ofAnn 22,
iv, pp 235-238; WS 49, pp 219-220; WS 65, pp 205-206
quality of water of ..WS 79, pp 153-162
Scioto River Basin, Ohio, physical features ofMon xli, pp 75-76
Scioto Valley, Ohio, description ofPP 13, pp 36-38
Scolecite, action of ammonium chloride onBull 207, pp 24-25
 analysis of, from New Brunswick, Whale Cove ..Bull 207, p 24
Scotland, cairngorm stone in ..MR 1901, p 754
Scotts Bluff quadrangle, Nebraska, geology ofGF 88
Scudder (S. H.), Tertiary rhynchophorous Coleoptera of the United States,
synopsis of monograph on ..Ann 15, pp 94-95
Sea wax of the Gulf of Mexico beachBull 212, p 111
Secret Canyon shale of Nevada and UtahAnn 2, pp 22, 37, 34; Ann 3, pp 253, 255; Bull 208, p 22
Section, geologic; in Alabama, Chalk BluffPP 11, p 72
in Alabama, Concord Church, vicinity ofPP 11, p 73
 Pegram, vicinity of ...PP 11, p 74
T 6 N., R 9 E., sec 3 ..PP 11, p 69
Tuscaloosa, vicinity of ...PP 11, p 73
in Alaska, Dahl Creek ..PP 2, p 61
 Nome region ...N and N, pp 77, 78, 82, 83, 84, 85, 89, 95, 113, 114
in Arizona, Apache Mountains to Richmond BasinPP 12, fig 4 (p 37)
 Barnes Peak ..PP 12, fig 2 (p 30), fig 5 (p 98)
 Globe quadrangle ..PP 12, pp 16, 34
 Globe Hills ...PP 12, in pocket
 Granite Basin to Whitetail GulchPP 12, fig 6 (p 99)
 Richmond Basin to Apache MountainsPP 12, fig 4 (p 37)
 Whitetail Gulch to Granite BasinPP 12, fig 6 (p 99)
in Arkansas, northern ..Ann 22, ii, p 80
 Saline Landing, artesian wellAnn 22, iii, p 711
 southwestern, and northern Texas, Cretaceous rocks ...Ann 22, iii, p 697
 Whitecliffs Landing, chalk and marlAnn 22, iii, pp 706, 707
in California, Carpinteria, Las Conchas regionAnn 22, ii, p 444
 Big Pine, vicinity ofBull 208, p 207
 Crescent City, vicinity ofBull 196, fig 5 (p 34), fig 6 (p 35)
 Grapevine Range ...Bull 208, pl viii (p 194)
 Kingston Peak ..Bull 208, p 196
 Klamath Mountains ..Bull 196, pl ii (p 10)
 Port Gulch ..Ann 22, i, p 380
 Resting Springs, vicinity ofBull 208, pp 196, 197
 San Luis Obispo district, Carpenter wellAnn 22, i, p 423
 Santa Cruz district, West quarryAnn 22, i, p 401
 Saratoga Springs ...Bull 208, p 188
Section, geologic; in Coastal Plain region, clay deposits
in Colombia, Iro River to Opopoto River.
in Colorado, Rico district, Aztec lode.
Rico district, Enterprise blanket.
Enterprise mine, Group tunnel.
Jumbo No. 2 vein.
Jumbo No. 3 lode.
Eureka vein.
Iron mine.
Logan mine, blanket zone of.
Montezuma vein.
Newman mine, James cross vein.
Sambo vein.
Songbird vein.
Union-Carbonate mine.

Spanish Peaks quadrangle.
in Florida, Apalachicola River.
in Georgia, Attapulgus, vicinity of.
in Idaho, Asotin Canyon.
in Illinois, Blue Island.
in Indian Territory, Atoka quadrangle.

Edgar.
New River Junction.
Quincy, vicinity of.
River Junction, vicinity of.
in Georgia, Attapulgus, vicinity of.
Climax, vicinity of.
Lewiston.
Rome quadrangle.
in Idaho, Asotin Canyon.
Clearwater River near Orofino.
Lewiston, 6 miles east of.
Lewiston Plateau, Craig Mountain, and Camas Prairie.
Lewiston and Clarkston plateaus.
Little Canyon, near Russell.
Nez Perce region (well records).
Orofino Creek, 15 miles above mouth.
Snake River Canyon.
southwestern, Robertson's ranch (well).
Uniontown Plateau, Clearwater escarpment, and Lewiston Plateau.
in Illinois, Blue Island.
Chicago.
Forest Home Cemetery.
Chicago Heights.
coal field.
Evanston.
Goose Island.
Hammond.
Lockport.
South Evanston.
in Indian Territory, Atoka quadrangle.
Bartlesville to Spavinaw.
Caddo Creek, Nelson prospect.
Canadian River, south of.
coal field.
Coalgate quadrangle.
Lehigh Basin.
Section, geologic; in Indian Territory, Pine Mountain, foothills of...GF 74, fig 1 (p 1)
in Indian Territory, Schley, vicinity of....................Ann 22, i, p 300
in Indiana, Alexandria................................Mon xli, p 486

Beelers Hill...PP 11, p 100
Brazil, vicinity of..PP 11, p 100
Brazil formation..GF 84, p 2
Brook..PP 11, p 108
Butler..Mon xli, p 504
Camden, vicinity of..Mon xli, p 520
Cannelton...PP 11, p 101
Chandler...GF 84, p 2
Chestnut Ridge...Mon xli, p 264
coal field...Ann 22, iii, pl xvii, p 274; pl xviii, p 276
Coal Measures..PP 11, p 99

Ditney quadrangle..GF 84
Earl Park..PP 11, p 108
Francisco, vicinity of......................................GF 84, p 3
High Rock...GF 84, p 2
Hosmer..GF 84, p 2
Liberty, vicinity of..Mon xli, p 331
Lynnville, vicinity of......................................GF 84, p 2

Maxville..PP 11, p 103
Millersburg formation......................................GF 84, p 2
Mount Carmel, vicinity of.................................Mon xli, p 323
Oatsville, vicinity of......................................GF 84, p 4
Ohio County, T. 3, R. 2 W., sec. 6........................Mon xli, p 283
Owen..PP 11, p 109

Paris Crossings, vicinity of...............................Mon xli, p 283
Petersburg, vicinity of.....................................GF 84, p 3
Petersburg formation..GF 84, p 2
Pigeon Creek..PP 11, p 102
Pikeville, vicinity of......................................GF 84, p 2
Portland...Mon xli, p 519
Scalesville..GF 84, p 2
Scottsburg..Mon xli, p 284
Selma..Mon xli, p 485
Seymour..Mon xli, p 263
Sims..Mon xli, p 486
Somerville...GF 84, p 2
South Milan...Mon xli, p 284
Spencerville..Mon xli, p 577
Switzerland County, T. 5, R. 12 E., sec. 4................Mon xli, p 283
Turkey Lake, vicinity of..................................PP 11, p 111
Union, vicinity of..Mon xli, p 484; GF 84, p 3
Wabash River Bluff, T. 28, R. 9 E., sec. 27.............Mon xli, p 521
Waterloo...Mon xli, p 504
Wells County, eastern.......................................Mon xli, p 557
West Montezuma..PP 11, p 103
White River Valley..GF 84, fig 3 (p 7)

in Kansas, Carboniferous rocks.........................Bull 211, pp 65-66, 69

Coal Measures (vertical column).........................Bull 184, p 16
Elk City to Galena, Mo....................................Bull 184, pl ii
Fort Scott to Toronto.....................................Bull 184, pl ii
Galena, Mossback mine....................................Ann 22, ii, fig 34 (p 184)
Section, geologic; in Kansas, western, Cretaceous rocks ... Bull 202, p 7
in Kentucky, Amanda, vicinity of ... PP 11, p 121
Bee Spring .. Ann 22, i, fig 11 (p 255)
c coal field ... Ann 22, iii, pl xvii, p 274
Coal Measures, Rockcastle County ... PP 11, p 120
Garfield, Compton farm .. Ann 22, i, fig 8 (p 247)
Highland Landing .. PP 11, p 130
Jackson Purchase region ..PP 11, p 124
Leitchfield .. Ann 22, i, fig 9 (p 250)

vicinity of .. Ann 22, i, fig 10 (p 254)
Ohio County, Bald Knob Church, vicinity of .. PP 11, p 123
Russellville, vicinity of ... Ann 22, i, fig 13 (p 259)
Soldier, Vincent farm ... Ann 22, i, fig 7 (p 245)
Stevensport .. Ann 22, i, fig 5 (p 242)
Warren County .. Ann 22, i, fig 12 (p 256)
western ... Ann 22, i, p 241
in Louisiana, Anse la Butte ... Bull 212, p 130
Gulf Coastal Plain ... Bull 212, pp 19-20, 55, 63, 64
Gulf Coastal Plain formations .. Bull 212, pl ii
Hackberry Island ... Bull 212, p 132
Lake Charles .. Bull 212, p 136
showing relation of Cretaceous and Tertiary .. Bull 184, p 40
Sulphur ... Bull 212, pp 133, 134
Vinton ... Bull 212, p 135
in Maryland, Franklin village, Allegany County PP 11, p 137
Muirkirk, Prince George County ... PP 11, p 140
Piney Run, Anne Arundel County ... PP 11, p 140
Potomac Plane, Allegany County ... PP 11, p 138
in Michigan, coal formations .. Ann 22, iii, pl xxi, pp 316, 319
Midland ... Ann 22, iii, p 320
Saginaw, vicinity of ... PP 11, p 154
Wayne County, Trenton ... Ann 22, iii, p 643
in Minnesota, Mesabi district, showing nature of circulation of water ... Mon XLIII, p 266
in Mississippi, Holly Springs ... Bull 213, p 384; PP 11, p 160
in Missouri, Aurora, Bowyer mine .. Ann 22, ii, fig 29 (p 170)
Aurora, Bowyer shaft ... Ann 22, ii, p 169
Louisa-World-Herald-Ozark mines .. Ann 22, ii, p 176
Carterville, vicinity of ... Ann 22, ii, p 137
Carthage ... Ann 22, ii, p 165
Pleasant Valley mines ... Ann 22, ii, fig 36 (p 186)
Cedar Gap to Joplin ... Ann 22, ii, fig 28 (p 167)
Granby ... Ann 22, ii, p 188
Homestake mine ... Ann 22, ii, p 187
Higginsville, vicinity of ... Ann 22, i, fig 15 (p 261)
Joplin, Massasoit mines ... Ann 22, ii, fig 31 (p 180)
Orogo, vicinity of ... Ann 22, ii, p 148
Ozark Plateau and Boston Mountains .. Ann 22, ii, fig 4 (p 93)
Pierson Creek ... Ann 22, ii, p 137
Prosperity, Boston Get-There mines .. Ann 22, ii, fig 27 (p 161)
in Montana, Crow Ridge .. Ann 22, ii, pp 439, 440, 441
Elkhorn Creek ... Ann 22, ii, pp 439-440
Elkhorn district ... Ann 22, ii, p 434
Elkhorn mine ... Ann 22, ii, fig 73 (p 478), fig 74 (p 481), fig 75 (p 486)
Great Falls, along Missouri River .. WS 67, p 58
Section, geologic; in Nebraska, Camp Clarke quadrangle, various localities...GF 87
in Nebraska, R. 57 W..GF 88, p 2
 Scotts Bluff quadrangle................................GF 88, fig 1 (p 2)
 various localities..GF 88

in Nevada, Bird Spring Mountain..............................Bull 208, fig 25 (p 179)
 Cottonwood Springs.......................................Bull 208, p 168
 Eldorado Canyon...Bull 208, fig 8 (p 121), fig 9 (p 123)
 Good Spring...Bull 208, pp 171, 174
 Grant Range..Bull 208, fig 4 (p 75)
 Grant and Quinn Canyon ranges...........................Bull 208, fig 3 (p 74)
 Hackberry Canyon..Bull 208, fig 15 (p 144), fig 19 (p 147)
 Highland Range..Bull 208, p 41
 Hot Creek...Bull 208, p 85
 Hot Creek Range...Bull 208, fig 7 (p 88)
 Indian Creek, vicinity of................................Bull 208, p 167
 Indian Springs, vicinity of................................Bull 208, p 167
 Meadow Valley Canyon.....................................Bull 208, figs 12 and 13 (p 141),
 fig 14 (p 142), fig 16 (p 144), fig 17 (p 145), fig 18 (p 146)
 Meadow Valley Range.....................................Bull 208, fig 20 (p 151)
 Mormon Range..Bull 208, fig 10 (p 136)
 Muddy Range..Bull 208, fig 11 (p 138)
 Olcott Peak...Bull 208, fig 23 (p 177)
 Pancake Range...Bull 208, fig 6 (p 80)
 Pogonip Mountain..Bull 208, p 63
 Quartz Peak..Bull 208, p 153
 Quinn Canyon Range.......................................Bull 208, fig 5 (p 75)
 Quinn Canyon and Grant ranges...........................Bull 208, fig 3 (p 74)
 Reveille Range..Bull 208, fig 21 (p 162)
 Schellbourne, vicinity of................................Bull 208, p 39
 Spring Mountain Range..................................Bull 208, fig 22 (p 176), fig 24 (p 178)
 Timpahute Range..Bull 208, p 159
 White Pine Range..Bull 208, figs 1 and 2 (p 66)

in New Jersey, Cretaceous, Lower............................PP 11, p 163
 Harlem quadrangle...GF 83
 High Mountain...GF 83, fig 4 (p 7)
 Orange...GF 83, fig 4 (p 7)
 Paterson...GF 83, fig 4 (p 7)
 Paterson quadrangle......................................GF 83, fig 3 (p 6)

in New South Wales, Broken Hill, platinum deposit near......Bull 193, fig 9 (p 85)
in New York, Cayuga Lake....................................Bull 206, fig 1 (p 14)
 Harlem quadrangle...GF 83
 Jamestown, Pleistocene clay................................PP 11, p 176
 Rochester, Pleistocene clay................................PP 11, p 175

in North Carolina, Deep River area..........................Ann 22, ii, pp 45, 46

in Ohio...PP 11, pp 190–191
 Ashtabula Creek...Mon xli, p 668
 Baresville...PP 11, pp 201–202
 Basil, vicinity of..Mon xli, p 410
 Batavia Junction, vicinity of............................Mon xli, p 282
 Bellaire, vicinity of.....................................PP 11, p 200
 Bellefontaine..Mon xli, p 367
 Bethel, vicinity of.......................................Mon xli, p 273
 Carboniferous formations.................................Ann 22, ii, pl xii, p 216
 Cincinnati...Mon xli, p 282
Section, geologic; in Ohio, Circleville.

in Ohio, Degraff .. Mon xli, p 274
Fort Hill, vicinity of Mon xli, p 368
Germantown ... Mon xli, p 274
Hamilton ... Mon xli, p 318
Harper, vicinity of Mon xli, p 306
Lockland ... Mon xli, p 320
Lovett, vicinity of Mon xli, p 274
Madisonville.. Mon xli, p 282
Marysville .. Mon xli, p 527
Mill Creek Valley .. Mon xli, p 319
Mount Oreb ... Mon xli, p 275
Owl Creek Bluff, near Gambier Mon xli, p 407
Painesville, vicinity of Mon xli, p 689
Paintersville, vicinity of Mon xli, p 346
Pigah, vicinity of ... Mon xli, p 317
Port Union.. Mon xli, p 319
St. Bernard ... Mon xli, p 280
Sardinia, vicinity of Mon xli, p 274
Sharonville ... Mon xli, p 320
Sidney, vicinity of Mon xli, p 483
Spring Hill, vicinity of Mon xli, p 367
Springfield Township, sec 26 Mon xli, p 268
Sterling .. Mon xi, p 557
Steubenville ... PP 11, fig 4 (p 199)
Urbana .. Mon xi, p 314
Zanesville, vicinity of PP 11, p 196
in Oregon, Cape Blanco Bull 196, p 31
Cape Blanco, vicinity of GF 89, p 3
Cape Blanco to Elk River Bull 196, fig 4 (p 31)
Coos Bay coal field .. Ann 22, iii, p 507
Coos Bay quadrangle GF 73
Denmark, vicinity of GF 89, p 5
John Day Basin .. Bull 204, p 16
John Day Valley at Canyon Ann 22, ii, p 718
Klamath Mountains ... Bull 196, pl ii (p 10)
Port Orford quadrangle GF 89
Rye Valley .. Ann 22, ii, p 768
in Ozark region ..
in Pennsylvania, Allegheny Mon xli, p 249
Allegheny County .. PP 11, p 232
anthracite basins, Lehigh region Ann 22, iii, pl viii, p 72
southern ... Ann 22, iii, pl x, p 80
western middle ... Ann 22, iii, pl ix, p 76
anthracite coal field, northern Ann 22, iii, pl vii (p 68)
Armstrong County, Allegheny formation Ann 22, iii, p 137
Benezette ... PP 11, fig. 5 (p 217)
Blockhouse Run ... PP 11, p 223
Blueball station ... PP 11, p 219
Bolivar .. PP 11, pp 215-216, 228
Bradys Run .. PP 11, p 223
Brookville .. PP 11, p 219
Charleroi .. PP 11, p 236
Cochranton ... Mon xli, p 458

Bull. 215—03—13
Section, geologic; in Pennsylvania, Cucumber Run GF 82, fig 2 (p 8)
in Pennsylvania, Dawson ... PP 11, p 237
Fayette City ... PP 11, p 234
Fayette County, Conemaugh formation Ann 22, III, p 172
 Monongahela formation .. Ann 22, III, p 175
Fayette and Westmoreland counties PP 11, fig 9 (p 234)
French Creek Valley, near Meadville Mon xli, p 458
Gaines oil field .. Ann 22, III, pp 583-584, 608, 615
Greene County, Dunkard formation Ann 22, III, p 181
 Hutchinson .. GF 82, p 8
Ledgedale ... PP 11, p 237
Lockport ... PP 11, pp 215-216
Lottsville ... PP 11, p 237
Karthaus ... PP 11, pp 216-218, fig 6 (p 217)
Masontown ... GF 82, p 7
Masontown and Uniontown quadrangles, various localities GF 82, pp 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
 Mercer County, Pottsville formation Ann 22, III, p 131
 northern ... Ann 22, III, p 616
 Oakhill ... PP 11, p 223
 Parker Township .. PP 11, p 213
 Pave Run ... PP 11, p 223
 Pittsburg ... PP 11, p 235
 Pittsburg region .. PP 11, fig 8 (p 231)
 Pottsville formation .. PP 11, p 137
 Smithfield ... GF 82, p 7
 Through Run ... PP 11, p 223
 Upper Middletown .. GF 82, p 7
 Westmoreland and Fayette counties PP 11, fig 9 (p 234)
 Wilmarth Station .. PP 11, p 213
 in South Dakota, artesian basin (cross section) WS 67, p 55
 Buffalo Gap, vicinity of .. GF 85, p 4
 Cheyenne Falls .. GF 85, p 3
 Cheyenne River ... GF 85, p 4
 Cold Brook .. GF 85, fig 2 (p 6)
 Hot Brook .. GF 85, p 2
 Hot Springs, vicinity of .. GF 85, p 3
 Oelrichs quadrangle ... GF 85
 in Tennessee, Currier, vicinity of PP 11, p 245
 Decatur County ... Bull 213, p 425
 Grand Junction .. PP 11, p 245; Bull 213, p 385
 Jackson .. Bull 213, p 388
 Maynardville quadrangle ... GF 75
 Paris ... Bull 213, p 389
 in Texas, Anacocho Mountains .. Ann 22, I, fig 26 (p 323)
 Austin .. Bull 205, fig 1 (p 13)
 Austin quadrangle ... GF 76, pp 1, 3, 4, 7
 Beaumont, Higgins well .. MR 1901, p 570
 Lucas well .. MR 1901, p 569
 Beaumont district .. Bull 212, pp 25, 74-77, 87
 Beaumont oil wells (logs) Bull 184, pp 57-59
 Brazos and Trinity rivers Bull 212, pp 42-48
 Colorado and Brazos rivers Bull 212, pp 32-42
 Corsicana to Beaumont ... Bull 184, p 47
Section, geologic; in Texas, Elgin

in Texas, Eocene. Bull 184, p 55
Guadalupe River. Bull 212, pp 30-32
Gulf Coastal Plain. Bull 212, pp 19-20
Gulf Coastal Plain formations. Bull 212, pl ii
High Island oil district. Bull 212, p 124
Nacogdoches and vicinity, showing occurrence of oil. Bull 184, p 54
Neches and Sabine rivers. Bull 212, pp 48-61
northern, and southwestern Arkansas, Cretaceous rocks. Ann 22, iii, p 697
Pleasanton to Palito Blanco. Bull 212, p 18
Port Arthur-Sabine Pass oil district. Bull 212, pp 112, 113
Rockland to Sabine Pass. Bull 184, p 45
San Antonio. WS 71, p 56
Saratoga oil district. Bull 212, pp 120-121
Sour Lake oil district. Bull 212, pp 116-117
Spindletop oil pool. Bull 212, p 73
Upper Cretaceous. Bull 184, p 39

in Utah, Evacuation Creek. Ann 22, i, fig 35 (p 349)
Indian and Lake canyons. Ann 22, i, pp 361-362
Tie Fork of Soldier Creek. Ann 22, i, p 364
Uinta Basin. Ann 22, i, pp 333-335
Cowboy vein. Ann 22, i, fig 34 (p 347)
Culver vein. Ann 22, i, fig 33 (p 345)
Duchesne vein. Ann 22, i, fig 32 (p 344)

in Virginia, Holston River, vicinity of. Bull 213, pp 408-409
Norfolk. GF 80, vicinity of. GF 80, p 3
Old Point Comfort. GF 80
Richmond and other coal areas. Ann 22, iii, pp 33, 34, 35, 36, 44
in Washington, Carbon River Canyon, Puget formation. Ann 22, iii, pls xxxii, xxxiii
Ellensburg quadrangle. GF 86
Glacier Creek, Rainy mine. Ann 22, ii, fig 99 (p 814)
tonalite on. Ann 22, ii, figs 100 and 101 (p 817)
Monte Cristo, Glacier Creek. Ann 22, ii, fig 122 (p 849)
Mystery mine. Ann 22, ii, fig 113 (p 825)
near third level. Ann 22, ii, fig 103 (p 819)
tunnels No 3. Ann 22, ii, fig 128 (p 856)
Mystery-Pride vein. Ann 22, ii, fig 102 (p 818), fig 119 (p 841)
O and B tunnel. Ann 22, ii, fig 110 (p 821), fig 116 (p 828)
O and B mine. Ann 22, ii, fig 106 and 107 (p 821), fig 116 (p 828)
Seventy-six tunnel. Ann 22, ii, figs 120 and 121 (p 848)
clip above. Ann 22, ii, fig 105 (p 820)
vein in. Ann 22, ii, fig 108 (p 822)
Naches Valley. GF 86, p 3
Ellensburg formation. WS 55, pp 17-21
Roslyn mine, Roslyn formation. Ann 22, iii, p 485
in West Virginia, Barren Measures. PP 11, fig 10 (p 258)
Charleston quadrangle, various localities. GF 72, pp 3-4
Hammond. PP 11, p 255
Huntington. PP 11, p 259
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

Section, geologic; in West Virginia, Newburg.......................... PP 11, p 253
in West Virginia, Nuzums Mills.. PP 11, p 255
Piedmont.. PP 11, p 254
Raleigh quadrangle.. GF 77
Robinson Run... PP 11, fig 11, p 260
Ritchie County, Ritchie mines....................................... Ann 22, I, pp 234-235
Thomas.. PP 11, p 254
in Wisconsin, lead and zinc district of......................... Ann 22, II, fig 2 (p 40)
showing formation of residual clay............................... PP 11, fig 1 (p 16)
showing occurrence of sedimentary clay.......................... PP 11, fig 2 (p 18)
Sediment held in suspension by streams, measurement of, method of....... WS 47, pp 15-18

Sedimentary rocks; of Alaska, Copper River district.................. Copper, pp 33-50
of Alaska, Ketchikan district.. PP 1, pp 41-46
Seward Peninsula.. N and N, pp 27-31, 205
northwestern portion.. PP 2, pp 16-24
of Arizona, Globe district... PP 12, pp 28-57
of Colorado, Spanish Peaks quadrangle............................. GF 71, pp. 1-3
of Georgia, Rome quadrangle.. GF 78, pp 2-4
of Idaho, Nez Perce region... WS 53, pp 35-40
Snake River Plains... Bull 199, pp 45-46, 50-56
southwestern... WS 78, pp 16-18
of Illinois, Chicago district....................................... GF 81, pp 2-4
of Indian Territory, Atoka quadrangle.............................. GF 79, pp 2-6
Coalgate quadrangle... GF 74, pp 3-5
of Indiana, Chicago district....................................... GF 81, pp 2-4
Ditney quadrangle.. GF 84, pp 2-5
of Minnesota, Mesabi district...................................... Mon xlIII, pp 69-70, 74-78
of Montana, Elk horn district....................................... Ann 22, II, pp 432-442
of Nebraska, Camp Clarke quadrangle............................... GF 87, pp 2-3
Scotts Bluff quadrangle... GF 88, pp 2-3
of Nevada, south of fortieth parallel............................. Bull 208, passim
of North Carolina, Norfolk quadrangle............................. GF 80, pp 2-3
of Oregon, Coos Bay quadrangle.................................... GF 73, pp 1-3
John Day Basin.. Bull 204, pp 17-20
Port Orford quadrangle... GF 89, pp 2-3
southwestern... WS 78, pp 16-18
of Ozark region.. Ann 22, II, pp 79-89
of Pennsylvania, Masontown and Uniontown quadrangles............ GF 82, pp 6-9
of South Dakota, Oelrichs quadrangle............................. GF 85, pp 2-4
of Tennessee, Cranberry quadrangle............................... GF 90, pp 3-5
of Texas, Austin quadrangle.. GF 76, pp 2-6
of Virginia, Norfolk quadrangle.................................... GF 80, pp 2-3
of Washington, Ellensburg quadrangle.............................. GF 86, pp 2-3
of West Virginia, Charleston quadrangle.......................... GF 72, pp 4-5
Raleigh quadrangle.. GF 77, pp 2-4

Seepage in Colorado, computations of................................ WS 50, pp 299-306
measurements of, in Colorado...................................... WS 74, pp 65-66, 100, 109-110
Sellersburg formation of Indiana, fauna of........................ Bull 210, pp 66-67
Seminoie conglomerate of Indian Territory........................ GF 74, p 4
Seneca River, flow of, measurement of................................ WS 47, p 39; WS 49, pp 222-223; WS 65, pp 128-131
Senora formation of Indian Territory................................ GF 74, p 4
Seral conglomerate of Pennsylvania, bituminous field
Sericite-schists of Minnesota, Vermilion district.
Serpentine, action of ammonium chloride on
analysis of, from Massachusetts, Newburyport.
from Oregon, Port Orford quadrangle.
of New York City district.
of Oregon, Blue Mountains
Coos Bay quadrangle
Port Orford quadrangle.
Severy formation of Kansas, flora of.
Severy shales of Kansas, synonymy, character, and fauna of.
Sevier River and tributaries, Utah, flow of, measurement of.
Sevier shale of Tennessee
Sewage pollution near New York City
Seward Peninsula, Alaska; coal on, indications of
fish and game in
geographic features of
history of exploration of
physiography of
placer deposits of
placer-gold mining in
placer-gold output from, in 1900
plants collected in, in 1900
reconnaissance of northwestern portion of
timber in, notes on
tundra of
vegetation of, notes on
(See, also, Nome; Norton Bay region.)
Sewell formation of West Virginia
Sewickley coal of Pennsylvania
Sewickley limestone of Pennsylvania, Ohio, and West Virginia
Sewickley sandstone of Pennsylvania, Ohio, and West Virginia
Shakopee limestone of Minnesota
Shale, analyses of, from Alabama, various localities
analyses of, from Georgia, Cartersville, vicinity of
from Indiana, Blue Lick
various localities.
from Kentucky, various localities
from Michigan
various localities.
from New York, various localities
from Ohio, North Industry
various localities.
from Pennsylvania, Pittsburg
from Wisconsin, Merrillan.
Oakfield
various localities.
of Kansas, western, gold and silver in, tests for
of Michigan, lower.
Sharon conglomerate of Ohio and Pennsylvania
Sharon fire clay of Pennsylvania.
Sharon shales of Ohio .. PP 11, p 193
Shasta group of California ... Bull 205
Shattuck (G. B), Mollusca of the Buda limestone Bull 205
Shawshen River, Massachusetts, quality of water of WS 79, pp 38-39
Shell Creek and tributaries, Wyoming, flow of, measurement of WS 66, p 23
Shenandoah River, canoe survey of south branch of Ann 22, iv, pp 140-144
flow of, measurement of ... Ann 22, iv, pp 135-137;
WS 48, pp 118-121; WS 65, pp 231-233; WS 75, pp 38-39
Sherwood peneplain, Oregon-California, description of Bull 196, pp 22-23
Ship canals; size, cost, traffic, etc., comparison of Ann 22, iv, pp 541-543
Shishmaref Inlet, Alaska, gold on N and N, pp 138-139
Shumagin Islands, coal beds on Ann 22, iii, pp 547-548
Sideritic and calcareous rocks of Minnesota, Mesabi district Mon xliii, pp 150-153
Sienna, statistics of .. MR 1900, pp 880, 882, 884; MR 1901, pp 902, 904, 906
Sierra Nevada, forest conditions in northern Bull 208, pp 218-222
geology of .. Bull 213, pp 64-65
Neocene rivers of .. Bull 213, pp 64-65
Silesia, zinc from, statistics of MR 1900, p 226; MR 1901, p 223
Silica powder, analyses of, from Minnesota, Mesabi district .. Mon xliii, p 210
Silicates, action of ammonium chloride on Bull 207
Silo sandstone of Indian Territory GF 79, p 6
Silt, analyses of, from Indiana, Terre Haute and Princeton GF 84, p 5
Silurian history of New York City district GF 83, pp 2, 5
Silurian rocks; Arbuckle limestone of Indian Territory GF 79, p 3
Bays formation in Tennessee GF 75, p 3
Birdsye beds of Kentucky Ann 8, ii, p 545
Cason shale of Ozark region Ann 22, ii, p 52
Chazy limestone of Kentucky Ann 8, ii, pp 545, 546
Chickamauga limestone of Georgia GF 78, p 3
of Tennessee .. GF 75, pp 2-3
Cincinnati group in Illinois GF 81, p 2
clays east of Mississippi River PP 11, pp 50-51
of Alabama .. PP 11, pp 68-69
of Kentucky .. PP 11, pp 115-117
of Pennsylvania .. PP 11, p 212
Clinch sandstone of Tennessee GF 75, p 3
Clinton group in Erie and Ohio basins Mon xlii, p 54
Clinton limestone of Ohio Ann 8, ii, p 499
Clinton shale, clays derived from PP 11, p 51
Eureka quartzite of Nevada Ann 4, p 229; Bull 8, pp 42-43; Bull 208, p 19
gas and oil from .. Ann 11, i, p 600
Gasconade limestone of Ozark region Ann 22, ii, p 82
Heldenberg limestone in Erie and Ohio basins Mon xlii, p 56
Holston marble of Tennessee GF 75, p 3
Hudson group of Illinois .. GF 81, p 2
Hudson River group in Erie and Ohio basins Mon xlii, p 54
Hudson schist of New York City district GF 83, p 4
Hudson shale of Wisconsin PP 11, p 265
clay derived from .. PP 11, p 50
Hunton limestone of Indian Territory GF 79, p 3
Izard limestone of Ozark region Ann 22, ii, p 81
Jackfork sandstone of Indian Territory GF 79, p 4
Keene limestone of Montana Ann 22, ii, p 438
Knox dolomite of Georgia GF 78, p 3
of Tennessee .. GF 75, p 2
Silurian rocks; Kugruk group of Alaska, Seward Peninsula, northwestern portion. PP 2, pp 21-24

Lone Mountain limestone of Nevada. Bull 208, p 20
Lower Helderberg series of Ohio. Ann 8, ii, pp 499, 507
Lower Magnesian group of Illinois. GF 81, p 2
Lower Magnesian limestone in Wisconsin. Ann 7, p 394; Ann 11, i, p 332
Medina group in Erie and Ohio basins. Mon xli, p 54
Medina shale, clay derived. PP 11, p 51
Mocassin limestone of Tennessee. GF 75, p 3
Monroe formation of Michigan. Ann 22, iii, p 645
Niagara group in Erie and Ohio basins. Mon xli, pp 54-55
Niagara limestone of Ohio. Ann 8, ii, p 490
of Ohio, thickness of. Ann 8, ii, p 548
Nome series of Alaska, Seward Peninsula, northwestern portion. PP 2, pp 17-24
of Georgia, Rome quadrangle. GF 78, p 3
of Illinois, Chicago district. GF 81, pp 2-3
of Indian Territory, Atoka quadrangle. GF 79, pp 3-4
of Indiana. Ann 11, i, pp 625-634
of Iowa, northeastern. Ann 11, i, p 334
of Montana. Ann 11, i, p 332
of Minnesota. Ann 22, ii, p 438
of Nevada. Ann 2, pp 22 (map), 28
south of fortieth parallel. Bull 208, passim
of New Jersey, New York City district. GF 83, p 4
of New York City district. GF 83, p 4
of Ozark region. Ann 22, ii, pp 79-82
of Tennessee, Maynardville quadrangle. GF 75, pp 2-4
of Wisconsin. Ann 11, i, p 332
Oneota limestone in Iowa. Ann 11, i, p 332
Onondaga series in Erie and Ohio basins. Mon xli, pp 55-56
Ponapip formation or limestone of Nevada. Ann 4, p 229; Bull 208, p 21
Point Pleasant beds of Ohio. Ann 22, ii, pp 550-551
Polk Bayou limestone of Ozark region. Ann 22, ii, p 81
Port Clarence limestone of Alaska, Seward Peninsula, northwestern portion. PP 2, pp 17-21
Potsdam sandstone in Mississippi Valley. Bull 8, p 49
Rockmart slate of Georgia. GF 78, p 3
Rockwood formation of Georgia. GF 78, p 3
of Tennessee. GF 75, p 3
Roubidoux sandstone of Ozark region. Ann 22, ii, p 82
Saccharoidal sandstone of Ozark region. Ann 22, ii, pp 80-81
St. Clair limestone of Ozark region. Ann 22, ii, p 82
St. Croix sandstone in Minnesota. Ann 11, i, p 332
St. Peter group of Illinois. GF 81, p 2
St. Peter sandstone of Minnesota. Ann 11, i, p 332
of Mississippi Valley. Bull 43, p 49
of Wisconsin. Ann 11, i, p 332; Bull 8, pp 15, 16, 41-42
Salina formation in Erie and Ohio basins. Mon xli, pp 55-56
Sevier shale of Tennessee. GF 75, p 3
Shakopee limestone of Minnesota. Ann 11, i, p 332
shales of Maryland. PP 11, p 135
Simpson formation of Indian Territory. GF 79, p 3
Silurian rocks; Standley shale of Indian Territory .. GF 79, p 4
Stockbridge dolomite of New York City district .. GF 83, p 4
Stringtown shale of Indian Territory ... GF 79, p 4
Sylvan shale of Indian Territory ... GF 79, p 3
Talihina chert of Indian Territory ... GF 79, p 4
Tellico sandstone of Tennessee ... GF 75, p 3
Trenton group of Illinois ... GF 81, p 2
Trenton limestone of New York ... Bull 3, p 9
Union shale of Montana .. Ann 22, ii, p 438
Utica slates of New York .. Bull 3, p 9
Valdes series of Alaska .. Copper, pp 33, 34-37
Viola limestone of Indian Territory ... GF 79, p 3
Waterlime formation in Erie and Ohio basins ... Mon xli, pp 55-56
Silurian system, definition of ... Ann 14, i, p 43
Silver in Alaska, Norton Bay region ... N and N, pp 213-214
in Colorado, Silverton quadrangle ... Bull 182
in Idaho, Nez Perce region .. WS 54, pp 127-129
ores of ... MR 1901, p 972
Silver and gold in Oregon, Blue Mountains, distribution, age, etc., of Ann 22, ii, pp 599-629
in shales from western Kansas, tests for ... Bull 202
production of, statistics of ... MR 1900, pp 105-113; MR 1901, pp 117-126
publications on .. Bull 213, pp 90-91
(See, also, Ore deposits.)
Silver Peak district, Nevada, ore deposits of ... Bull 213, pp 85-86
Silver Peak Range, Nevada, geology of ... Bull 208, pp 184-186
Silverton quadrangle, Colorado, economic geology of Bull 182
Silverton series of Colorado, Silverton quadrangle .. Bull 182, p 32
Simpson formation of Indian Territory ... GF 79, p 3
Sinuk Basin, Alaska, gold in .. N and N, p 96
Sioux quartzite of Minnesota ... Bull 81, pp 181-186
Skaneateles outlet, New York, flow of, measurement of WS 65, pp 116-128
Skolai Mountains, Alaska, topography of .. Copper, p 31
Skykomish River, Washington, forest conditions in basin of PP 6, pp 19-20
Slag cement. (See Cement, slag.)
Slags, analyses of, various localities .. Bull 213, pp 222, 225, 229
Slags, iron and steel, utilization of ... Bull 213, pp 221-231
Slate, analyses of, from Minnesota, Mesabi district Mon xliii, pp 144-145
analysis of, from Minnesota, Mesabi district, iron formation Mon xliii, p 153
from Minnesota, Mesabi district (Virginia slate) .. Mon xliii, p 170
of Georgia, Rome quadrangle .. GF 78, p 6
of Minnesota, Mesabi district .. Mon xliii, pp 74-75, 143-148
Mesabi district (Virginia slate) .. Mon xliii, pp 169-170
of St. Louis and Mississippi rivers .. Ann 5, pp 196-197
statistics of ... MR 1900, pp 661, 662, 676-682; MR 1901, pp 643, 644, 645; MR 1901, pp 660-663
thin section of, from Minnesota, Mesabi district, showing metamorphism
into cordierite-hornstone ... Mon xliii, p 174
Slate Range, California, geology of ... Bull 208, p 213
Slatington, Pennsylvania, slate industry at .. Bull 213, pp 361-363
Slichter (C. S.), motions of underground waters ... WS 67
Smith (G. O.), coal fields of Pacific coast. Ann 22, iii, pp 473-513
geology and water resources of a portion of Yakima County, Washington. WS 55
Smith (J. H.), work in charge of. Ann 22, i, pp 89-90; Ann 23, p 56
Smith (J. P.), Carboniferous ammonoids of America. Mon xiii
Smith (W. S. T.), lead and zinc deposits of the Joplin district, Missouri-Kansas.
work in charge of. Ann 22, iv, pp 197-204
Smith Valley Range, Nevada, geology of. Bull 208, pp 117-120
Snelling (W. O.), titanium ores, occurrence, uses, and production of.
Snelling Valley Range, Nevada, geology of. Bull 208, pp 13-146
Snake River, Idaho, flow of, measurement of. WS 66, pp 126-127
Snake River canyons, physiography of. WS 53, pp 62-66
Snake River Desert, Idaho, artesian water in. Ann 22, iv, pp 428-430
irrigation possibilities in. Ann 22, iv, pp 427-428
topography of. Ann 22, iv, pp 421-424
water resources of. Ann 22, iv, pp 424-427
water resources of. Bull 199, pp 147-185
Snake River and tributaries, Alaska, gold on. N and N, pp 73-80
Snelling (W. O.), titanium ores, occurrence, uses, and production of.
Snoqualmie River, Washington, forest conditions in basin of. PP 6, pp 21-22
Snowbank granite of Minnesota, Vermilion district. Mon xlv, pp 361-364
Soapstone in Tennessee, Cranberry quadrangle. GF 90, pp 3, 7
Soapstone and talc, occurrence and statistics of. MR 1900, pp 779-786; MR 1901, pp 773-780
Soda, publications on. Bull 213, p 417
Sodalite, action of ammonium chloride on. Bull 207, pp 42-43
analysis of, from British Columbia, Kicking Horse Pass. Bull 207, p 42
Soil, analysis, chemical, of, from California, Riverside. WS 59, p 13
analysis, chemical, of, from Michigan (celery farm: drained swamp). Ann 22, iii, p 677
from Washington, Dayton. WS 53, p 44
analysis, mechanical, of. WS 67, pp 21-23
from Virginia, Norfolk, vicinity of. GF 80, pp 4
classes of. Mon xlii, pp 777-781
of California, Riverside. WS 59, p 13
Sierra Nevada, northern. PP 8, pp 54-55, 67, 87, 97, 109, 121, 133, 139, 147, 160-161, 175, 183
of Georgia, Rome quadrangle, derivation, classification, etc., of. GF 78, p 6
of Idaho, Nez Perce region. WS 53, pp 42-51
Snake River Plains. Bull 199, pp 24-25, 135-141
of Indian Territory, Atoka quadrangle. GF 79, p 8
of Indiana, Ditney quadrangle. GF 84, p 8
of North Carolina, Norfolk quadrangle. GF 80, p 4
of South Dakota, Oelrichs quadrangle. GF 85, p 5
of Texas, Austin quadrangle. GF 76, p 8
Soil of Virginia, Norfolk quadrangle .. GF 80, p 4
of Washington, Ellensburg quadrangle GF 86, p 6
of West Virginia, Charleston quadrangle GF 72, p 9
Raleigh quadrangle .. GF 77, p 8

Soil and vegetation in Appalachian Mountains, southern WS 62, pp 30–33
Solado River, Texas, flow of, measurement of WS 66, p 60
Soldiers' Home near Johnson City, Tennessee, water supply for Ann 22, iv, pp 231–235
Solitude granite of Arizona, Globe district PP 12, pp 65–67
Solution basins in Idaho, Nez Perce region WS 53, p 83
Somerville formation of Indiana ... GF 84, p 2
Soudan formation of Minnesota ... Mon xlv, pp 172–246
South Australia, copper from .. MR 1900, pp 184, 185; MR 1901, p 194
South Boulder Creek, Colorado, flow of, measurement of Ann 22, iv, p 323; WS 75, p 128
South Carolina; borings, deep, in, list of WS 61, p 43
Broad River (of the Carolinas), flow of, measurement of Ann 22, iv, p 158; WS 48, pp 145–147; WS 65, pp 249–250; WS 75, p 60
hydrography of basin of ... WS 63, pp 139–146
building stone from, statistics of .. MR 1900, p 662 et seq; MR 1901, p 644 et seq
Catawba River, flow of, measurement of Ann 22, iv, p 157; WS 65, pp 248–249
hydrography of basin of ... WS 63, pp 147–158
clay deposits and industry of .. PP 11, pp 241–243
clay products of, statistics of ... MR 1900, p 696 et seq; MR 1901, p 674 et seq; PP 11, pp 242–243
corundum deposits in .. Bull 180, pp 66, 87
geologic and paleontologic investigations in Ann 14, i, p 241
gold and silver from, statistics of .. MR 1900, pp 109–113; MR 1901, p 119 et seq
granite production of .. MR 1900, pp 662, 663, 664, 665, 668; MR 1901, pp 644, 645, 651, 652, 653, 654
hydrography of southern Appalachian Mountain region ... WS 62, WS 63
limestone production of .. MR 1900, pp 662, 685, 686, 687; MR 1901, pp 644, 645, 667, 668, 669, 670
mineral springs of .. MR 1900, pp 901, 902; MR 1901, p 962, 964
phosphate rock in, statistics of ... MR 1900, pp 804, 805, 810–811; MR 1901, pp 812, 813, 818–819
Saluda River, flow of, measurement of Ann 22, iv, p 159; WS 48, pp 147–148; WS 65, pp 250–251; WS 75, p 61
hydrography of basin of ... WS 63, pp 135–138
Savannah River, flow of, measurement of Ann 22, iv, p 161; WS 48, pp 149–150; WS 65, pp 253–254; WS 75, p 63
Savannah River tributaries, flow of, measurement of WS 49, p 207
topographic work in .. Ann 22, i, pp. 139, 142; Ann 23, p 138
Tugaloo River, flow of, measurement of Ann 22, iv, p 160; WS 48, p 149; WS 65, pp 252–253; WS 75, p 63
South Platte division, Colorado, irrigation system of WS 74, pp 21–70
South Platte River, flow of, measurement of. Ann 22, iv, pp 318-320,
327; WS 49, pp 278-283; WS 74, pp 23-26; WS 75, pp 127, 130

gagings in basin of, miscellaneous. WS 74, pp 63-64
seepage on, computations of. WS 50, pp 300-303

South Dakota; Big Sioux River, flow of, measurement of. WS 49,
pp 270-271; WS 66, pp 24-25; WS 75, p 124

Big Sioux River, hydrographic reconnaissance of basin of. Ann 22, iv, pp 298-306

Black Hills, divisions and features of. GF 85, p 1
borings, deep, in, list of. WS 61, pp 44-49
building stone in Oelrichs quadrangle. MR 1900, p 662 et seq
statistics of. MR 1900, p 737; MR 1901, pp 721, 722
Cheyenne River and tributaries, flow of, measurement of. WS 49, pp 271-272
coil in, production, etc., of. Ann 22, iv, p 13
coal fields of, production etc., of. Ann 22, iv, p 13
summary of knowledge of. Ann 22, iv, pp 458-459
copper from, statistics of. MR 1901, p 61
grography of Oelrichs quadrangle. GF 85, p 1
geologic and paleontologic work in. Ann 22, i, pp 79-80; Ann 23, pp 40, 48; Bull 213, p 27
gold and silver from, statistics of. MR 1900, pp 109-113; MR 1901, p 119 et seq
granite production of. MR 1900, pp 662, 663, 664, 665, 666; MR 1901, pp 644, 645, 651, 652, 653, 654
gypsum in Oelrichs quadrangle. GF 85, p 6
statistics of. MR 1900, p 830; MR 1901, p 847
Kampeska, Lake, reconnaissance of, for water storage. Ann 22, iv, pp 300-303
limestone production of. MR 1900, pp 662, 685, 686, 687; MR 1901, pp 644, 645, 667, 668, 699, 670
maps, geologic and topographic, of. (See Map.)
mica production of. MR 1900, pp 850, 854-855; MR 1901, p 877
mineral springs of. MR 1900, pp 901, 903; MR 1901, p 964
natural gas in, statistics of. MR 1900, pp 634, 635, 637, 638, 650; MR 1901, pp 617, 619, 620, 621
Oelrichs quadrangle, geology of. GF 85
Pelican, Lake, reconnaissance of, for water storage. Ann 22, iv, pp 300-303
Poinsett, Lake, reconnaissance of, for water storage. Ann 22, iv, pp 303-305
sandstone production of. MR 1900, pp 662, 670, 671, 672, 675; MR 1901, pp 644, 645, 656, 657, 658, 659
soils of Oelrichs quadrangle. GF 85, p 5
topographic work in. Ann 22, i, pp 137, 139, 143, 156-157, 162, 173; Ann 23, p 143
topography of Black Hills. Ann 21, iii, pp 174-177
of Black Hills Forest Reserve. Ann 19, v, pp 68-70
of Black Hills region, southern. Ann 21, iv, pp 498-502
underground water of Oelrichs quadrangle. GF 85, p 5

Spain; asphaltum production of. MR 1901, p 257
asphaltum production of. MR 1900, p 660; MR 1901, p 640
coal production of. MR 1900, pp 315, 320; MR 1901, pp 311, 316
copper from, statistics of. MR 1900, pp 183, 185, 186-187; MR 1901, pp 193, 195
iron and steel production of. MR 1901, p 114
lead from, statistics of. MR 1900, pp 209, 210
manganese ore from, statistics of. MR 1900, pp 134-135, 140; MR 1901, pp 149, 155
ocher production of. MR 1901, p 906
Spain; phosphate rock production of
platinum in ... MR 1901, p 822
pyrite production of MR 1900, p 826; MR 1901, pp 841, 842
quicksilver production of MR 1901, p 238
salt production of MR 1900, p 846; MR 1901, p 884
sulphur production of MR 1901, p 837
zinc from, statistics of MR 1900, p 226; MR 1901, p 223
Spanish Fork, Utah, flow of, measurement of...
irrigation data relating to WS 51, pp 415–416; WS 66, pp 122–123; WS 75, p 194
Spanish Peaks quadrangle, Colorado, geology of GF 71
Spar, analysis of, from New York, Bedford MR 1901, p 937
Spearfish shale of South Dakota GF 85, p 3
Specific gravity of anthracite Ann 22, iii, p 74
Spencer (A. C.), manganese deposits of Santiago, Cuba Bull 213, pp 251–255
mineral resources of the Encampment copper region, Wyoming.. Bull 213, pp 158–162
Spencer (A. C.) and Schrader (F. C.), geology and mineral resources of portion of Copper River district, Alaska... Copper
Spessartite, occurrence of MR 1901, p 745
Sphalerite of Ozark region Ann 22, ii, p 114
of Upper Mississippi Valley, concentration of Ann 22, ii, p 45
Sphenodiscidm of the Cretaceous Mon xliv, pp 56–83
Spindletop oil pool, Texas, geology, producing wells, etc........ Bull 212, pp 69–85
Spirit leveling in the various States, results of, in 1900–1901.. Bull 185
Spodumene, analysis of, from Connecticut, Branchville ... MR 1900, p 240
analysis of, from Massachusetts, Goshen MR 1900, p 240
Spokane shale. (See Turnley hornstones.)
Spring Mountain Range, Nevada, geology of Bull 208, pp 164–180
Springs of Hawaiian Islands, Molokai WS 77, pp 28–30
varieties of, conditions controlling, etc................. Bull 199, pp 148–156
Springs, mineral, in Oregon, Cascade Range Forest Reserve, central portion... PP 9, pp 76–77
in Washington, Cascade Range PP 6, pp 37–39
Spurr (J. E.), descriptive geology of Nevada south of fortieth parallel and adjacent portions of California ... Bull 208
ore deposits of Monte Cristo, Washington Ann 22, ii, pp 777–805
ore deposits of Tonopah and neighboring districts, Nevada... Bull 213, pp 81–87
work in charge of Ann 23, p 58
Staked Plains, Texas, irrigation on WS 71, p 78
Standley shale of Indian Territory GF 79, p 4
Stanislaus River, California, flow of, measurement of .. Ann 22, iv, p 464; WS 51, pp 455–456, 480–481; WS 66, p 146
Stanton (T. W.), Colorado formation and its invertebrate fauna Bull 106
work in charge of Ann 22, i, pp 100–101; Ann 23, pp 31–32
Stanton (T. W.), editor; Pseudoceratites of the Cretaceous (by Hyatt)... Mon xliv
Stanton limestone of Kansas, synonymy, character, and fauna of... Bull 211, pp 41–43
Star Peak formation of Nevada Bull 208, p 22
Starmount limestones of Montana

Staunton River, Virginia, flow of, measurement of

Steamboat Creek, Nevada, flow of, measurement of

Steamboat Springs, Nevada, flow of, measurement of

Steel and iron at the close of the nineteenth century

Steel, crushed, statistics of

Steiger (G.) and Clarke (E. W.), action of ammonium chloride on silicates

Stilbite, action of ammonium chloride on

Stock farming on High Plains

Stockbridge dolomite of New York City district

Stockbridge limestone in Massachusetts

Stocks in Colorado, Silverton quadrangle

in Montana, Ellkhorn district

in Vermont, Ascutney Mountain, manner of intrusion of

Stock (H. H.), Pennsylvania anthracite coal field

Stokes (H. N.), on pyrite and marcasite

Stone, building; in Idaho, Nez Perce region

in New Jersey, New York City district

in New York City district

in Oregon, Coos Bay quadrangle

in Pennsylvania, Masontown and Uniontown quadrangles

in South Dakota, Oelrichs quadrangle

in Tennessee, Maynardville quadrangle

in Texas, Austin quadrangle

in Washington, Ellensburg quadrangle

statistics of

publications on

Stone industry in Illinois, vicinity of Chicago

Stoneware clays.

Stony Creek, California, flow of, measurement of

Storage, water; in Arizona, Salt River

in California, King River

in California-Nevada, Truckee Basin

in New York, Croton River watershed

Storrs (L. S.), Rocky Mountain coal fields

Stose (G. W.), work in charge of

Stratigraphy of American Carboniferous

of Arkansas, coal field

of California, coal fields

of Colorado, Spanish Peaks quadrangle

of Georgia, Rome quadrangle

of Illinois, coal field

of Indian Territory, coal field

Coalgate quadrangle

of Indiana, coal field

of Kentucky

coal field

of Louisiana-Texas, Gulf Coastal Plain

of Oregon, coal field

Coos Bay quadrangle
Stratigraphy of Pennsylvania, coal-bearing rocks Ann 22, iii, pp 66-68
of Tennessee, coal field .. Ann 22, iii, pp 235-236
Cranberry quadrangle .. GF 90, pp 3-5
Maynardville quadrangle ... GF 75, pp 1-5
of Texas, north, coal field .. Ann 22, iii, pp 403-405
of Utah, Bingham district ... Bull 213, pp 109-110
of Washington, coal fields ... Ann 22, iii, pp 484-485
of West Virginia, Charleston quadrangle GF 72, pp 3-4
Raleigh quadrangle ... GF 77, pp 2-4
of Western Interior coal field ... Ann 22, iii, pp 340-343
Strawn division of Texas .. Ann 22, iv, p 404
Stream flow in Appalachian Mountain region, southern Ann 22, iv, pp 188-184
measuring and computing, methods of WS 64, pp 31-46
Stream measurements, accuracy of ... WS 64
Cornell University experiments in ... WS 64, pp 54-95
current meters, description and use of WS 64, pp 19-22, 34-44
rating of .. WS 64, pp 39-40, 80-82, 94
historical review of ... WS 75, pp 11-15
in 1900 .. Ann 22, iv, pp 9-506
in 1901 .. WS 65, WS 66, WS 75
in California, southern ... WS 59, pp 47-59; WS 60, pp 107-111
in Colorado ... WS 74, passim
methods of .. WS 56
river stations in 1901, maps showing .. WS 75, pp 12, 13
velocity curves, vertical ... WS 76, pp 20-47, 60-67
Stream tin in Alaska, York region ... Bull 213,
pp 92-93; MR 1900, pp 267-271; N and N, pp 136-137
Streams, gaging of, formulas for calculating records of WS 65, pp 95-97
gaging of, methods employed in, in New York WS 65, pp 91-98
pollution of, court decisions on, in Connecticut WS 79, pp 107-112
pulsation of moving water ... WS 64, pp 28-31
relation of, to geologic structure in Idaho WS 53, pp 70-72
surface fluctuations, measurement of WS 64, pp 23-25
velocity of, methods of measuring .. WS 64, pp 13-23; WS 76, pp 14-20
velocity curves .. WS 64, pp 25-27, 72-76
(See, also, Rivers.)
Strelna Creek, Alaska, copper deposits on Copper, p 85
Stringtown shale of Indian Territory .. GF 79, p 4
Strontium ores, occurrence of .. MR 1901, pp 955-958
Structural geology of Alaska, Seward Peninsula N and N, pp 34-39
Structural material. (See Cement; Clay; Stone, building, etc.)
Structural relations of iron ores to adjacent rocks in Minnesota, Mesabi dis-
trict ... Mon xlvi, pp 227-233
Structure, effect of run-off on .. WS 80, pp 46-52
of Appalachian province ... GF 78, p 4
of Arkansas coal field ... Ann 22, iii, pp 391-392
of California coal fields .. Ann 22, iii, p 499
of Colorado coal fields .. Ann 22, iii, pp 429, 432-433, 435, 438
of Georgia, Rome quadrangle .. GF 78, pp 4-5
of Idaho, southwestern .. WS 78, pp 22-24
of Illinois coal field .. Ann 22, iii, pp 274-275, pl xviii, p 276
of Indian Territory coal field ... Ann 22, iii, p 377, pl xxvi, p 276
of Indiana coal field ... Ann 22, iii, pp 274-275, pl xviii, p 276
of Kentucky coal field .. Ann 22, iii, pp 237, 274-275
Structure of Maryland coal field, bituminous. Ann 22, iii, pp 201-202
of Michigan coal basin Ann 22, iii, pp 316-317
of Minnesota, Mesabi district Mon xlviii pp 70, 86, 98, 165-166, 177-180
of Oregon coal field Ann 22, iii, p 506
southeastern WS 78, pp 22-24
of Ozark region Ann 22, iii, p 92-94
of Pennsylvania, anthracite basins Ann 22, iii, p 68
coal field, bituminous Ann 22, iii, pp 127-129
Gaines oil field Ann 22, iii, pp 617-620
northern Ann 22, iii, pp 616-621
of Tennessee coal field Ann 22, iii, p 287
of Texas, Austin quadrangle GF 76, pp 6-7
north, coal field Ann 22, iii, p 405
oil regions Bull 212, pp 72-74, 118-119, 125, 144-145
of Virginia, Richmond Basin Ann 22, iii, pp 33-35
of Washington coal fields Ann 22, iii, pp 486-487
Yakima County WS 55, pp 23-25
of West Virginia, Raleigh quadrangle GF 77, p 4
relation of streams to, in Idaho WS 53, pp 70-72
topography in relation to, in Minnesota, Vermilion district Mon xlv, pp 431-436
Struthers (J.), aluminum and bauxite, statistics of MR 1901, pp 225-229
antimony, statistics of MR 1901, pp 251-256
arsenic, statistics of MR 1901, pp 257-258
asphaltum and bituminous rock, statistics of MR 1900, pp 633-640
borax, statistics of MR 1901, pp 869-872
bromine, statistics of MR 1901, pp 867-868
graphite, statistics of MR 1901, pp 897-900
gypsum, statistics of MR 1900, pp 843-851
magnesite, statistics of MR 1901, pp 899-900
mineral paints, statistics of MR 1901, pp 901-914
phosphate rock, statistics of MR 1901, pp 811-822
platinum, statistics of MR 1901, pp 231-233
quicksilver, statistics of MR 1901, pp 235-238
salt, statistics of MR 1901, pp 833-865
sulphur and pyrite, statistics of MR 1901, pp 829-842
Stuart shale of Indian Territory GF 74, p 4
Sudbury River, Massachusetts; flow of, measurement of WS 47, pp 33-34; WS 79, p. 36
quality of water of WS 79, pp 40-44
rainfall and run-off in watershed of WS 65, p 26
rainfall; run-off, and evaporation in basin of WS 80, pp 65, 66, 67, 75, 78, 79, 90, 91, 99
Sulphur, association of gypsum, rock salt, petroleum, and Bul 184, pp 49-53
statistics of MR 1900, pp 815-823; MR 1901, pp 829-837
Sulphur, oxidized, deduction of an expression for Bul 186, p 16
Sumatra, petroleum in, statistics of MR 1900, pp 618-620; MR 1901, pp 602-604, 611
Sundance formation of South Dakota GF 85, p 3
Surficial geology of Alaska, Seward Peninsula N and N, pp 41-48, 207-208
Surficial rocks of Oregon, Coos Bay quadrangle GF 73, p 3
of Texas, Austin quadrangle GF 76, p 6
of West Virginia, Charleston quadrangle GF 72, p 5
Susan River, California, flow of, measurement of WS 51, p 408; WS 66, pp 115-116; WS 75, p 190
Sushitna River, Alaska, coal beds on Ann 22, iii, p 543
Susquehanna River, flow of, measurement of... Ann 22, iv, pp 125-126, 127; WS 48, pp 110-114; WS 65, pp 220-226, 227-228; WS 75, pp 30-31, 32

Susquehanna River and tributaries, flow of, measurement of... Ann 22, iv, pp 124-129

Suttons Island series of Maine, Mount Desert... Ann 8, ii, pp 1041-1043

Swan River, Montana, flow of, measurement of... WS 51, pp 436-437

Swank (J. M.), iron and steel at the close of the nineteenth century... MR 1900, pp 69-104

statistics of American iron trade for 1901... MR 1901, pp 73-115

Swank district, Washington, gold mining in... Bull 213, pp 76-78, 79-80

Sweetwater Range, Nevada, geology of... Bull 208, pp 125-129

Sweden; coal production of... MR 1900, pp 315, 321; MR 1901, pp 311, 317
copper from, statistics of... MR 1900, pp 184, 185; MR 1901, p 193

graphite production of... MR 1901, p 900

iron and steel production of... MR 1901, pp 114

manganese ore from, statistics of... MR 1900, pp 136, 140; MR 1901, pp 151, 155

pyrite production of... MR 1901, pp 841, 842

sulphur production of... MR 1901, p 887

Sweetwater River, California, flow of, measurement of... WS 66, pp 166-167

Swift Current Creek, Montana, diversion of, proposed... Ann 22, iv, p 274

Switzerland, bauxite from, statistics of... MR 1901, p 226

Syenite dikes of Montana, Elkhorn district, petrography of... Ann 22, ii, pp 518-523

Syenite-porphyry, analysis of, from New York, Adirondacks... Bull 209, p 59

Syenites of Vermont, Ascutney Mountain... Bull 209, pp 48-70

Syenitic rocks of Alaska, Ketchikan district... PP 1, p 47

Sylamore sandstone of Ozark region... Ann 22, ii, pp 83-84

Sylvan shale of Indian Territory... GF 79, p 3

Symmes Creek, Ohio, course, present and preglacial, of... Mon xlii, p 173

Syenite in Washington, Yakima County... WS 55, pp 24-25

Tables and formulas, geographic... Bull 214

Taff (J. A.), chalk of southwestern Arkansas, with notes on its adaptability to manufacture of hydraulic cements... Ann 22, iii, pp 687-742
geology of Atoka quadrangle, Indian Territory... GF 79
geology of Coalgate quadrangle, Indian Territory... GF 74

Southwestern coal field... Ann 22, iii, pp 367-413

work in charge of... Ann 22, i, pp 78-79; Ann 23, pp 33, 58-59

Tahoe, Lake, hydrographic investigations at... WS 68, pp 33-35, 43-51

map of... WS 68, p 44

deposits of, in North Carolina... Bull 213, pp 433-438

Tallulah River, Georgia, flow of, measurement of... Ann 22, iv, p 167; WS 48, p 148; WS 65, pp 251-252

Tanana River, Alaska, trails from Copper River to... Copper, p 25

Tar River, North Carolina, flow of, measurement of... Ann 22, iv, p 153, WS 48, pp 134-135
Taral, Alaska, trail from Tonsina River to copper, p 21
Tasmania, coal production of MR 1901, p 311
 copper from, statistics of MR 1900, p 185; MR 1901, pp 194, 196
 platinum in Bull 193, p 87
Tasmina route, Alaska Copper, p 19
Taylor (F. B.), work in charge of Ann 22, iv, pp 73-75; Ann 23, p 59
Taylor (L. H.), water storage in Truckee Basin, California-Nevada WS 68
Taylor (T. U.), irrigation systems of Texas WS 71
Taylor marls of Texas Bull 184, p 38; GF 76, p 5
Teays formation of West Virginia GF 72, p 5
Tecumseh shales of Kansas Bull 211, p 47
Tejon group in California Bull 15, pp 9-10
Tellico sandstone of Tennessee GF 75, p 3
Telluride conglomerate of Colorado, Silverton quadrangle Bull 182, p 36
Temperature in Alaska, southeastern, and other regions PP 1, p 113
 in Appalachian Mountains, southern Ann 22, iv, pp 180-181, WS 62, pp 22-23
 in artesian wells in central Washington, relation of, to depth WS 55, pp 58-62
 in California, Riverside WS 59, p 17
 in Central America Ann 22, iv, pp 516-524
 in Costa Rica Ann 22, iv, pp 520-521
 in Crater Lake, Oregon PP 3, pp 50-53
 in Nicaragua Ann 22, iv, pp 517-519, 522
 in Panama Ann 22, iv, pp 523-524
Temperature, high, experimental work on rock fusion in Ann 15, pp 96-97
Temperature gradient in Idaho, southwestern, indicated in wells WS 78, p 55
Tejon River, New York, flow of, measurement of WS 47, p 36; WS 65, pp 85-87; WS 76, p 103
Tejon group in California Bull 15, pp 9-10
Tennessee; barytes production of MR 1901, pp 916, 918
 borings, deep, in, list of WS 61, p 49
 brick and stoneware clays of northwestern Mississippi and southwestern, Bull 213, pp 382-391
 building stone in Cranberry quadrangle GF 90, pp 7-8
 cement from, statistics of MR 1900, p 745; MR 1901, p 726
 clay in Maynardville quadrangle GF 75, p 6
 clay, brick, in Cranberry quadrangle GF 90, p 8
 clay deposits and industry of PP 11, p 67
 clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq; PP 11, p 247
 clays, stoneware and brick, of northwestern Mississippi and western Bull 213, pp 382-391
 coal area and statistics of Ann 22, iii, p 13;
 coal fields of, production, etc., of Ann 22, iii, pp 13, 233-243, 257-263
 coke in, manufacture of MR 1900, pp 462 et seq, 522-523; MR 1901, pp 454 et seq, 511-512
 copper from, statistics of MR 1901, p 161
 copper deposits of Bull 213, p 185
 in Cranberry quadrangle GF 90, p 8
 Cranberry district, iron-ore deposits of Bull 213, pp 243-246
 Cranberry quadrangle, geology of GF 90
 Cumberland River, flow of, measurement of WS 65, pp 296-297
 Decatur County, white phosphates of Bull 213, pp 424-425
 Elk Creek, flow of, measurement of WS 48, pp 184-185; WS 65, pp 299-300

Bull. 215—03—14
Tennessee; French Broad River, flow of, measurement of WS 48, p 187
French Broad River, hydrography of basin of WS 63, pp 115-135
geography of Briceville quadrangle GF 33, p 1
of Chattanooga quadrangle GF 6, p 1
of Cleveland quadrangle GF 20, p 1
of Cranberry quadrangle G F 90
of Estillville quadrangle GF 12, p 1
of Kingston quadrangle GF 4, p 1
of Knoxville quadrangle GF 16, p 1
of Loudon quadrangle GF 25, p 1
of McMinnville quadrangle GF 22, p 1
of Maynardville quadrangle GF 75, p 1
of Morristown quadrangle GF 27, p 1
of Pikeville quadrangle GF 21, p 1
of Ringgold quadrangle GF 2, p 1
of Sewanee quadrangle GF 8, p 1
of Standingstone quadrangle GF 53, p 1
of Stevenson quadrangle GF 19, p 1
of Wartburg quadrangle GF 40, p 1
geologic and paleontologic work in Ann 22, i, p 77; Ann 23, pp 48-49, 63
Gold in Cranberry quadrangle ... GF 90, p 8
Grand Junction, clay at Bull 213, pp 384-386
Hiwassee River, flow of, measurement of WS 48, pp 191-192; WS 65, pp 308-310; WS 75, pp 107-108
Hiwassee River tributaries, flow of, measurement of WS 49, p 218
Holston River, hydrography of basin of WS 62, pp 36-77
Holston River and tributaries, flow of, measurement of WS 48, pp 182-183;
WS 49, pp 214-215; WS 65, pp 297-298
hydrography of southern Appalachian Mountain region WS 62, WS 63
iron and steel from, statistics of MR 1900,
pp 43, 55, 57, 96; MR 1901, pp 45, 59, 63, 76, 91, 103
iron ore in Cranberry quadrangle GF 90, p 8
iron-ore deposits in Cranberry district Bull 213, pp 243-246
in Maynardville quadrangle GF 75, p 6
Jackson, clay at .. Bull 213, pp 388, 390-391
lead in Maynardville quadrangle GF 75, p 6
lime in Cranberry quadrangle GF 90, p 8
limestone production of .. MR 1900, pp 662,
685, 686, 687, 691; MR 1901, pp 644, 645, 667, 668, 669, 670
manganese ore from, statistics of MR 1900,
pp 115, 116, 123, 124; MR 1901, pp 127, 128, 134-135
maps, geologic and topographic, of. (See Map.)
marble in Maynardville quadrangle GF 75, p 5
marble production of .. MR 1900, pp 662, 682, 683, 684;
MR 1901, pp 644, 645, 664
marbles of .. Bull 213, pp 366-370
Maynardville quadrangle, geology of GF 75
mica in Cranberry quadrangle GF 90, p 7
mineral springs of ... MR 1900, pp 901, 902;
MR 1901, p 964
Nolichucky River Basin, hydrography of WS 63, pp 105-115
Nolichucky River and tributaries, flow of, measurement of WS 48,
p 185; WS 49, pp 212-214; WS 65, p 300
Okoee River and tributaries, flow of, measurement of WS 49, p 218
paint, mineral, production of MR 1900, p 885; MR 1901, p 907
Paris, clay works at ... Bull 213, p 389
Tennessee; phosphate rock in, statistics of MR 1900
phosphate, white, origin and extent of Bull 213, pp 418-423
of Decatur County ... Bull 213, pp 424-425
Pigeon River, flow of, measurement of WS 48, p 188; WS 65, pp 302-303
Pinson, clay works at Bull 213, pp 386-388
road material in Maynardville quadrangle GF 75, p 6
Roan Creek, flow of, measurement of WS 48, p 184; WS 65, p 299
rock crystal in .. MR 1901, p 750
sandstone production of MR 1900,
pp 662, 670, 672, 675; MR 1901, pp 644, 645, 656, 657, 658, 659
slate production of .. MR 1900,
pp 662, 677, 678, 681; MR 1901, pp 644, 645, 660, 661
soapstone in Cranberry quadrangle GF 90, pp 3, 7
Soldiers' Home near Johnson City, water supply for Ann 22, iv, pp 231-235
stone building from, statistics of MR 1900, p 662 et seq; MR 1901, p 644 et seq
in Maynardville quadrangle GF 75, p 6
stoneware and brick clays of northwestern Mississippi and western Bull 213,
pp 382-391
discharge measurements in basin of WS 49, p 217; WS 63, pp 176-177
timber in Cranberry quadrangle GF 90, p 9
in Maynardville quadrangle GF 75, p 6
topographic work in ... Ann 22, r, pp 137, 139, 152; Ann 23, pp 137-138
topography of Briceville quadrangle GF 33, p 1
of Bristol quadrangle GF 59, p 1
of Chattanooga quadrangle GF 6, p 1
of Cleveland quadrangle GF 20, p 1
of Estillville quadrangle GF 12, p 1
of Kingston quadrangle GF 4, p 1
of McMinnville quadrangle GF 22, p 1
of Maynardville quadrangle GF 75, p 1
of Morristown quadrangle GF 27, p 1
of Ohio Basin .. GF 53, p 1
of Pikeville quadrangle GF 21, p 1
of Sewanee quadrangle GF 8, p 1
of Standingstone quadrangle GF 53, p 1
of Stevenson quadrangle GF 19, p 1
Watauga River Basin, hydrography of WS 62, pp 77-95
Watauga River and tributaries, flow of, measurement of WS 48, p 183; WS 49, pp 215-216; WS 65, p 298
water power in ... WS 62, pp 48-53, 70-73, 84-85; WS 63, pp 125-127
in Cranberry quadrangle GF 90, p 9
in Maynardville quadrangle GF 75, p 6
zinc in, Maynardville quadrangle GF 75, p 6
discharge measurements in basin of WS 49, p 217; WS 63, pp 176-177
Terrace deposits in Alaska, Seward Peninsula N and N, p 42
in Iowa, northeastern ... Ann 11, r, p 234
Terraces in Alaska, Copper River district Copper, pp 75-76, 80-81
in Alaska, Seward Peninsula N and N, pp 57-62
in Idaho, Nez Perce region (stream) WS 53, pp 72-75
Terraces in Iowa (river) ... Ann 11, I, pp 425-432
in Ohio Basin ... PP 13, pp 88-90
in Oregon, Coos Bay quadrangle GF 73, p 3
Klamath peneplain .. Bull 196, pp 24-30

Terra-cotta clay. (See Clay, terra cotta.)

Terrestrial heat .. Ann 14, I, pp 159-160

Tertiary clays, distribution of, east of Mississippi River........ PP 11, p 60
of Alabama .. PP 11, p 76
of Georgia .. PP 11, p 92
of Tennessee ... PP 11, pp 244-246

Tertiary coal fields of United States Ann 22, III, pp 18-19

Tertiary fauna; Coleoptera, rhynchophorous, of United States Ann 15, pp 94-95

Tertiary and Cretaceous clays of New York PP 11, pp 173-175

Tests of coal from Arkansas .. Ann 22, III, pp 398-400
of coal from Cook Inlet, Nanaimo, and Cardiff Ann 22, III, pp 552-555
from Eastern Interior and other fields Ann 22, III, pp 290-291
from Iowa .. Ann 22, III, pp 348-349
from Michigan ... Ann 22, III, pp 323-324
from Rocky Mountain fields Ann 22, III, pp 425-427
from Washington .. Ann 22, III, pp 492

Texas; artesian waters in Austin quadrangle GF 76, p 8
artesian wells in and near San Antonio, irrigation from WS 71, pp 54-56
asphalt and bituminous rock deposits in, occurrence, geology, etc., of Ann 22, I, pp 320-327

Austin quadrangle; drainage, forests, woodland, etc., of GF 76, p 2
geography of .. GF 76, pp 1-2
geology of .. GF 76, pp 1-2
topography of ... GF 76, pp 1-2
Balcones scarp and fault zone GF 76, pp 1, 7
Texas; Barton Springs, flow from WS 50, p 338
Beaumont oil field Bull 184, pp 56-59; MR 1901, pp 556-578
geology, etc., of Bull 212, pp 68-104
Spindletop pool, list of producing wells, depth, etc Bull 212, pp 77-85
Beaumont region, rice irrigation systems in WS 71, pp 86-102
Blanco River, flow of, measurement of WS 50, p 338
borings, deep, in, list of WS 61, pp 50-59
Bosque River, flow of, measurement of WS 66, p 59
Brazos River, flow of, measurement of WS 50, pp 333-334; WS 66, pp 58-59; WS 75, pp 150-151
Brazos Valley region, rice irrigation systems in WS 71, pp 103-107
Brownsville irrigation system WS 71, p 124
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 644 et seq
in Austin quadrangle GF 76, p 7
Carrizo Springs Creek, flow of, measurement of WS 66, p 63
cement from, statistics of MR 1900, pp 737, 745; MR 1901, pp 721, 722, 726
material for, in Austin quadrangle GF 76, p 7
clay, brick, in Austin quadrangle GF 76, p 7
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq
coal area and statistics of Ann 22, iii, p 13; MR 1900, pp 276, 359, 439-441; MR 1901, pp 287 et seq, 432-434
coal fields of, production, etc., of Ann 22, iii, pp 13, 402-409
Coastal Plain of GF 76, pp 1-2
Colorado River, flow of, measurement of WS 50, pp 336-338; WS 66, p 64; WS 75, p 152
Colorado Valley, irrigation systems in WS 71, pp 70-76
rice irrigation systems in WS 71, pp 107-123
Comal River, flow of, measurement of WS 50, pp 339-340
Concho River, flow of, measurement of WS 66, pp 61-62
Corsicana oil and gas field Bull 184, pp 54-55
Devils River, flow of, measurement of WS 50, pp 363-364; WS 66, p 79; WS 75, p 161
drainage of GF 76, p 2; TF 3, pp 9-11
Edwards Plateau, geographic features of GF 76, p 1
irrigation systems of WS 71, pp 25-51
El Paso, tin deposits near Bull 178; Bull 213, pp 99-102
Franklin Mountains, structure, formations, ores, and veins of Bull 178, pp 11-15
gas and oil fields of northern Bull 184, pp 5-29
of Upper Cretaceous and Tertiary formations of western Gulf coast Bull 184, pp 31-62

gazetteer of Bull 190
geography of Austin quadrangle GF 76, p 1
of Nueces quadrangle GF 42, p 1
of Uvalde quadrangle GF 64, p 1
geologic history of Austin quadrangle GF 76, p 7
geologic and paleontologic work in Ann 22, i, p 81, 87-88; Ann 23, pp 45, 46-47
gold and silver from, statistics of MR 1900, pp 109-115; MR 1901, p 119 et seq
granite production of MR 1900, pp 662, 663, 664, 665, 669; MR 1901, pp 644, 645, 651, 652, 653, 654
Guadalupe River, flow of, measurement of WS 66, pp 62-63
Gulf Coastal Plain, geology of Bull 212, pp 15-67
gypsum from, statistics of MR 1900, p 830; MR 1901, pp 846, 847
High Island oil district Bull 212, pp 122-125
iron and steel from, statistics of MR 1900, pp 43, 57, 96; MR 1901, pp 45, 63, 76, 91
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

Texas; irrigation, laws relating to, statement of.................................WS 71, pp 125-127
irrigation, systems of, in...WS 71
Lampasas River, flow of, measurement of..WS 66, p 60
hydrographic data concerning...WS 50, pp 335-336
Leon River, flow of, measurement of..WS 66, p 60
hydrographic data concerning...WS 50, p 334
Leona River, hydrographic data concerning.......................................WS 50, pp 342-343
lime production of, in Austin quadrangle..GF 76, p 7
limestone production of...MR 1900, pp 662,
685, 686, 687, 691; MR 1901, pp 644, 645, 667, 668, 669, 670
Little River, flow of, measurement of...WS 66, pp 60-61
Los Moras Creek, hydrographic data concerning.................................WS 50, pp 344-345
map, geologic and topographic, of. (See Map.)
Mill Creek, flow of, measurement of..WS 66, p 62
mineral springs of..MR 1900, pp 901, 902; MR 1901, pp 963, 964
Mud Creek, hydrographic data concerning.......................................WS 50, p 345
Nacogdoches oil and gas field...Bull 184, pp 53, 54
natural gas in, statistics of..MR 1900,
634, 635, 637, 638, 650; MR 1901, pp 617, 619, 620, 621, 631
northwest boundary of...Bull 194
Nueces River, hydrographic data concerning.....................................WS 50, p 343
oil in, statistics of...MR 1900, pp 540,
541, 543, 573-583; MR 1901, pp 530, 531, 533, 534, 565-582
in Austin quadrangle...GF 76, p 7
oil fields of, geology, etc., of...Bull 212
of the Gulf Coastal Plain..Bull 213, pp 345-352
oil and gas fields of northern..Bull 184, pp 5-29
of Upper Cretaceous and Tertiary formations of western Gulf coast...Bull 184,
31-62
Pecos River, flow of, measurement of..WS 50,
358-361, 362-363; WS 66, pp 78-78; WS 75, p 160
Pecos Valley irrigation systems..WS 71, pp 21-24
Pinto Creek, hydrographic data concerning.....................................WS 50, p 345
Port Arthur-Sabine Pass oil district..Bull 212, pp 104-113
quicksilver in...MR 1901, p 237
rice culture, area devoted to, by counties.....................................WS 71, p 124
rice irrigation systems in..WS 71, pp 82-124
Rio Grande, flow of, measurement of...Ann 22, xv, pp 353-357; WS 50,
pp 346-358, 364-366; WS 66, pp 70-76, 80-82; WS 75, pp 155-163
rivers of, flow of, in 1900..WS 50, pp 332-333
road material in Austin quadrangle...GF 76, p 8
salt production of...MR 1900, p 837; MR 1901, p 855
San Antonio and vicinity, irrigation systems at................................WS 71, pp 51-62
San Antonio River, flow of, measurement of................................WS 50, pp 340-342
San Felipe Springs, flow from, measurement of................................WS 50, p 345
sandstone production of...MR 1900, pp 662,
670, 671, 672, 675; MR 1901, pp 644, 645, 656, 657, 658, 659
Saratoga oil district...Bull 212, pp 119-122
sewage farm near San Antonio..WS 71, p 56
soils of Austin quadrangle...GF 76, p 8
Solano River, flow of, measurement of..WS 66, p 60
Sour Lake oil district...Bull 212, pp 113-119
Staked Plains, irrigation on..WS 71, p 78
tin deposits at El Paso...Bull 178; Bull 213, pp 99-102
topographic provinces of..Ann 21, vii, pp 27-28; GF 76, p 1; TF 3, pp 1-2
Texas; topographic work in .. Ann 22, i, pp 137, 139, 158, 173; Ann 23, pp 129, 144-145

topography of .. Bull 45, pp 49-53; Bull 190, p 12

of Austin quadrangle ... GF 76, p 1
of Gulf Costal Plain ... Bull 212, pp 13-15
of Nueces quadrangle .. GF 42, p 1
of San Carlos coal field ... Bull 164, pp 74-75
of Uvalde quadrangle .. GF 64, p 1

Toyah Creek, hydrographic data concerning WS 50, pp 361-362

Thames River, variation in velocity of a vertical of WS 64, p 29

Thomsonite, action of ammonium chloride on Bull 207, pp 34-35

analysis of, from Colorado, Golden Bull 207, p 34

statistics of .. MR 1900, p 788

Three Forks, Montana, Paleozoic section near Ann 15, pp 103-105

Three-point problem, solution of Bull 214, pp 13-15

Thunder Bay River, Michigan, hydrography of basin of Ann 22, iv, pp 260-262; WS 49, pp 252-253

Thurman sandstone of Indian Territory GF 74, p 4

Thurmond formation in West Virginia GF 77, p 3

Tieton andesite of Washington, Ellensburg quadrangle GF 86, p 4

Tieton River, Washington, flow of, measurement of WS 66, pp 134-135

Tight (W. G.), drainage modifications in southeastern Ohio and adjacent parts of West Virginia and Kentucky PP 13

work in charge of ... Ann 22, i, p 76

Tile drainage, etc., effect of WS 67, p 46

Timber in Alaska, Copper Basin Copper, p 92

in Alaska, Seward Peninsula, notes on N and N, p 164

in Cascade Range Forest Reserve, stand of PP 9, p 31

in Oregon, stand of ... PP 4, pp 13-16

in Tennessee, Cranberry quadrangle GF 90, p 9

in Washington, stand of .. PP 5, pp 9-12

Olympic Forest Reserve, stand of PP 7, pp 14-16

Timpanute Range, Nevada, geology of Bull 208, pp 159-160

Timpas formation of Colorado GF 71, pp 1, 3

Tin, deposits of, in Texas, near El Paso Bull 178; Bull 213, pp 99-102

ores of .. MR 1901, p 973

Tippecanoe River, Indiana, course and character of Mon xli, p 191

Tishomingo granite of Indian Territory, Atoka quadrangle .. GF 79, p 2

Tissitodie of the Cretaceous Mon xlii, pp 41-54

Titanium ores, occurrence, uses, and production of MR 1901, pp 271-278

Toccoa River and tributaries, Georgia, flow of, measurement of Ann 22, iv, p 227; WS 48, p 193; WS 49, pp 218; WS 65, pp 310-311; WS 75, p 108

Tohickon Creek, Pennsylvania, flow of, measurement of Ann 22, iv, pp 113-116; WS 47, pp 81-89; WS 65, p 215; WS 75, p 28

rainfall, run-off, and evaporation in basin of WS 80, pp 95, 99

Tolt River, Washington, forest conditions in basin of PP 6, pp 20-21

Tonalite of Washington, Monte Cristo Ann 22, ii, pp 796-797

Tonalite-porphry of Washington, Monte Cristo Ann 22, ii, p 797

Tonawanda Creek, New York, course and character of Mon xli, pp 210-211

Tonopah district, Nevada, ore deposits of Bull 213, pp 81-85

Tonsina trail, Alaska ... Copper, p 20
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

Tonto Creek, Arizona, flow of, measurement of...WS 66, pp 100-101; WS 75, p 178
Tonto group of Grand Canyon district...Ann 2, p 217; Ann 3, p 272
Tonto shale and sandstone of Nevada...Bull 208, p 22
Topaz, occurrence and statistics of...MR 1900, pp 760, 777
Topazolite, occurrence and statistics of...MR 1901, pp 745, 770
Topkok (Cape) region, Alaska, gold in...N and N, pp 102-106
Topographic map, uses of...Ann 22, i, pp 27-28
Topographic work, cooperation of States in...Ann 22, i, pp 13-30
report on...Ann 22, i, pp 135-175; Ann 23, pp 121-164
Topography. (See State names.)
Toquima Range, Nevada, geology of...Bull 208, pp 90-93
Tordrillo series of Alaska...Ann 22, iii, p 528
Tourmaline, occurrence and statistics of...MR 1900, pp 761-762, 777; MR 1901, pp 748, 770
Towaliga River, Georgia, flow of, measurement of...Ann 22, iv, p 166; WS 48, pp 154-155; WS 65, pp 263-264; WS 75, pp 70
Townes (J. C.), statement of Texas laws pertaining to irrigation...WS 71, pp 125-127
Toyabe Range, Nevada, geology of...Bull 208, pp 93-97
Toyah Creek, Texas, hydrographic data relating to...WS 50, pp 361-362
Trachytes of Alaska, Ketchikan district...PP 1, p 50
Trails in Alaska, Copper River district...Copper, pp 17-25
Transported soils in Idaho, Nez Perce region...WS 53, pp 48-51
Trap dikes of Lake Champlain region...Ann 15, pp 99-100
Traverse and triangulation, primary, in 1899-1901, results of, in various States...Ann 21, i, pp 227-375; Bull 181
Traverse group of Michigan...Ann 22, iii, p 644
Travis Peak formation in Texas...GF 76, p 3
Trenton group of Illinois...GF 81, p 2
Trenton limestone of Iowa, northeastern...Ann 11, i, p 234
of New York...Bull 3, pp 9
Triangles, rules for solution of...Bull 214, pp 9, 12-13
Triangulation in 1900, 1901, and 1902, reports on...Ann 22, i, pp 139-146; Ann 23, pp 126-131
in Pennsylvania, Masontown and Uniontown quadrangles...GF 82, p 1
in various States in 1900, 1901, and 1902, results of...Bull 181; Bull 201
Triangulation and primary traverse, results of, fiscal year 1901-2...Bull 201
Triassic coal field of Atlantic coast...Ann 22, iii, pp 25-53
Triassic coal fields of United States...Ann 22, iii, p 17
Triassic rocks of Alaska, Copper River district...Copper, pp 33, 46-47
of Oregon, Blue Mountains...Ann 22, ii, pp 579-582
of Utah...Bull 8, p 43
Trinidad, asphaltum production of...MR 1900, pp 657-659, 660; MR 1901, pp 637-640
Trinidad sandstone of Colorado...GF 71, pp 1, 3
Trinity division of Texas...GF 76, p 3
Trinity sand of Arkansas and Texas...Ann 22, iii, p 697
of Indian Territory...GF 73, p 5
Truckee Basin, flow of streams in, measurement of...Ann 22, iv, pp 403-405; WS 51, pp 402-405; WS 66, pp 111-114; WS 68, pp 18-33; WS 75, pp 184-185, 186
forest conditions in...PP 8, pp 173-183
water storage in...WS 68
Truckee formation or group of Nevada...Bull 208, p 22
of Nevada and Idaho, age of...Ann 3, p 416
of Oregon...Bull 18, pp 10, 11, 12
Truckee, Little, reservoir site, surveys of WS 68, pp 61-66
Trumbull, Connecticut, old tungsten mine at, geology, petrography, etc., of Ann 22, ii, pp 7-22

tungsten mining at .. Bull 213, p 98
Tubutulik River, Alaska, reconnaissance along, in 1900 N and N, pp 190-191, 196-197
Tuckahoe River, New Jersey, flow of, measurement of WS 65, pp 212-213
Tuckasegee River, North Carolina, flow of, measurement of Ann 22, iv, p 223; WS 48, pp 188-189; WS 65, pp 304-305; WS 75, p 104
Tugaloo River, South Carolina, flow of, measurement of Ann 22, iv, p 160; WS 48, p 149; WS 65, pp 252-253; WS 75, p 63
Tugaloo River tributaries, Georgia, flow of, measurements of WS 49, p 206
Tulameen district, British Columbia, platinum in Bull 193, pp 38-51
Tule River, California, flow of, measurements of WS 51, p. 482; WS 66, pp 157-158; WS 75, p 218
Tully limestone of New York ... Bull 3, p 9
Tundra of Alaska, Seward Peninsula ... N and N, pp 16, 164
Tungsten, occurrences, uses and production of MR 1900, pp 257-259; MR 1901, pp 261-265
Tungsten ore in eastern Nevada ... Bull 213, p 98
Tulicuminne River, California, flow of, measurement of Ann 22, iv, p. 465; WS 51, pp 456-458, 481; WS 66, pp 146-147, 149; WS 75, pp 212, 214
Turbidity of river water, determination of WS 76, pp 67-73, 77-86
of water, determination of, in sanitary analysis WS 79, p 23
Turkey, borax production of ... MR 1901, pp 871-872
copper from, statistics of ... MR 1900, p 185; MR 1901, p 193
emery in ... Bull 180, p 91
manganese ore from, statistics of ... MR 1900, pp 137, 140; MR 1901, pp 153, 155
Turner (H. J.), report on examination of mud from Gulf of Mexico Bull 212, pp 107-111

Turner (H. W.), work in charge of .. Ann 22, i, pp 92-93
Turnley hornstones of Montana .. Ann 22, ii, pp 434-435
Turquoise, occurrence and statistics of MR 1900, pp 767, 777; MR 1901, pp 760-761, 770
Tuscaloosa formation of Alabama ... Bull 43, pp 95-100, 104-116, 117
Tuscarawas drainage system, Ohio, features, preglacial and present, of Mon xli, pp 165-168
Tuscarawas River and tributaries, Ohio, quality of water of WS 79, pp 142-147
Twelve mile beds of Alaska ... WS 79, p 536
Twin Lakes, Colorado, discharge measurements at WS 50, p 321
Twin Lakes reservoir, Colorado ... WS 74, pp 73-75
Twin Valley, California, hydrographic investigations at WS 68, pp 59-61
Two Medicine River, Montana, flow of, measurement of WS 49, p 269
Tyonek beds of Alaska ... Ann 22, iii, p 535
Uinta Basin, Utah, geology of ... Ann 22, i, pp 331-340
Uinta Indian Reservation, Utah, agricultural lands of Ann 22, iv, pp 370-373
arable lands on, irrigation of ... Ann 22, iv, pp 386-388
physical features of .. Ann 22, iv, pp 367-368
water supply of, investigation of Ann 22, iv, pp 366-388
Uinta River, Utah, flow of, measurement of...Ann 22, iv, pp 375-377; WS 50, pp 369, 370-372; WS 66, pp 84, 85-87; WS 75, pp 165, 166
irrigable lands along...Ann 22, iv, p 372
Uintaite of Uinta Basin, occurrence, geology, etc., of...Ann 22, i, pp 340-358
Ulrich (E. O.), work in charge of...Ann 22, i, p 77; Ann 23, pp 59-60
Ulrich (E. O.) and Smith (W. S. T.), lead, zinc, and fluor spar deposits of western Kentucky...Bull 213, pp 205-213
Umatilla River, Oregon, flow of, measurement of...Ann 22, iv, pp 452-453; WS 51, pp 444-445; WS 66, p 137; WS 75, p 206
Umber, production of...MR 1900, pp 880, 881, 882, 883; MR 1901, pp 902, 904
Uncompahgre River, Colorado, flow of, measurement of...Ann 22, iv, p 392; WS 50, pp 379-380; WS 74, pp 135-139
seepage on, measurement of...WS 50, p 306
Underground temperatures...Ann 14, i, pp 159-160
Underground waters. (See Waters, underground.)
Unga beds of Alaska...Ann 22, iii, p 533
Unicoi formation of Tennessee...GF 90, p 4
Union moraine, Ohio-Indiana, distribution, topography, etc., of...Mon xli, pp 475-494
Union Peak, Oregon, features of...PP 3, p 20
Union River, Maine, hydrographic data concerning...WS 69, p 115
Union shale of Montana...Ann 22, ii, p 438
Uniontown coal of Pennsylvania...GF 82, pp 13, 15, 17
Uniontown limestone of Pennsylvania and West Virginia...Bull 65, p 59
Uniontown sandstone of Pennsylvania...Bull 65, pp 58-59
Uniontown and Masontown quadrangles, Pennsylvania, geology of...GF 82
Unkar formation of Nevada...Bull 208, p 23
Unkapa sandstone of South Dakota...GF 85, p 3
Uplands of High Plains, utilization of...Ann 22, iv, pp 653-661
Uplift in Alaska, Copper River district...Copper, pp 66-75
in Indian Territory, Coalgate quadrangle...GF 74, p 5
in Pennsylvania, western...GF 82, p 4
Upper Barren Measures. (See Dunkard group; also Barren Measures.)
Upper Huronian. (See Huronian.)
Ural Mountains, Russia, platinum in...Bull 193, pp 29-31, 76-81
Uranium, ores of...MR 1901, p 973
Uranium and vanadium, occurrence, character, and production of...MR 1900, pp 259-265; MR 1901, pp 268-278
Utah; American Fork, flow of, measurement of...WS 51, pp 417-418; WS 66, p 124; WS 75, p 195
American Fork, irrigation data relating to...WS 52, pp 504-505
Ashley Creek, flow of, measurement of...Ann 22, iv, p 365; WS 50, pp 368-369; WS 66, pp 83-84; WS 75, p 173
irrigation from...Ann 22, iv, pp 362-364; WS 75, pp 168-173
asphalt and bituminous rock deposits in, occurrence, geology, etc., of...Ann 22, i, pp 330-364
Bear River and tributaries, flow of, measurement of...Ann 22, iv, pp 406-411; WS 51, pp 413-414; WS 66, pp 120-121; WS 75, p 193
Big Cottonwood Creek, flow of, measurement of...WS 51, pp 422-423
Bingham, ore deposits at...Bull 213, pp 105-122
Blacksmith Fork, flow of, measurement of...Ann 22, iv, pp 409-410; WS 51, pp 412-413; WS 66, pp 119-120; WS 75, p 192
borings, deep, in, list of...WS 61, pp 59-60
building stone from, statistics of...MR 1900, p 662 et seq; MR 1901, p 644 et seq
cement from, statistics of...MR 1900, p 737; MR 1901, pp 721, 722
Utah; City Creek, flow of, measurement of WS 51, p 420
clay products of, statistics of MR 1900, p 695 et seq; MR 1901, p 674 et seq
coal area and statistics of Ann 22, iii, p 13;
MR 1900, pp 277, 359, 441-443; MR 1901, pp 287 et seq, 434, 436
coal fields of, production, etc., of Ann 22, iii, p 13
summary of knowledge Ann 22, iii, pp 453-456
coke in, manufacture of .. MR 1900, pp 462 et seq, 524; MR 1901, pp 454 et seq, 513
copper from, statistics of .. MR 1900, pp 143, 144, 159; MR 1901, pp 160, 161, 172
corundum deposits in .. Bull 180, p 87
Current Creek, irrigation data relating to .. WS 52, pp 508-509
Duchesne River, flow of, measurement of .. Ann 22, iv, p 385; WS 50, pp 373-374; WS 66, pp 88-89; WS 75, p 167
irrigation from Ann 22, iv, pp 380-384
Duchesne River and tributaries, investigation of, for water supply of Uinta Indian Reservation Ann 22, iv, pp 366-388
geography of Tintic quadrangle GF 65, p 1
geologic and paleontologic work in .. Ann 22, i, pp 86, 88, 99; Ann 23, pp 44, 55
gold and silver from, statistics of .. MR 1900, pp 109-113; MR 1901, p 119 et seq
granite production of .. MR 1900, pp 662, 663, 664, 665; MR 1901, pp 644, 645, 651, 652, 653, 654
Great Salt Lake, fluctuations of level of .. Ann 22, iv, pp 412-416
rainfall in basin of Ann 22, iv, pp 412-416
Hobble Creek, irrigation data relating to .. WS 52, pp 505-507
iron ore from, statistics of .. MR 1900, pp 43, 56, 57; MR 1901, p 76
irrigation in Utah Valley WS 52, pp 498-509
Lake Creek, agricultural lands near .. Ann 22, iv, pp 378-379
flow of, measurement of .. Ann 22, iv, p 380; WS 50, pp 372-373; WS 66, pp 87-88; WS 75, p 167
lead from, statistics of .. MR 1900, p 196; MR 1901, p 201
limestone production of .. MR 1900, pp 662, 685, 686, 687, 691; MR 1901, pp 644, 645, 667, 668, 669, 670
Logan River, flow of, measurement of .. Ann 22, iv, pp 408-409; WS 51, pp 411-412; WS 66, pp 118-119; WS 75, p 192
Manti Creek, flow of, measurement of .. Ann 22, iv, p 418; WS 51, p 424
maps, geologic and topographic, of. (See Map.)
marmal production of .. MR 1900, pp 683, 684; MR 1901, pp 645, 664, 665
Mill Creek, flow of, measurement of .. WS 51, p 422
mineral springs of .. MR 1900, pp 901, 903; MR 1901, p 964
molybdenum in .. MR 1901, p 266
Ogden River, flow of, measurement of .. WS 66, p 121
ore deposits at Bingham .. Bull 213, pp 105-122
Park City mining district, progress report on .. Bull 213, pp 31-40
Parleys Creek, flow of, measurement of .. WS 51, p 421
Peteetnete Creek, irrigation data relating to .. WS 52, pp 507-508
placer deposits of Bingham .. Bull 213, pp 119-120
irrigation data relating to .. WS 52, pp 500-503
Salina Creek, flow of, measurement of .. Ann 22, iv, pp 417-418; WS 51, pp 423-424; WS 66, pp 124-125; WS 75, p 196
salt production of .. MR 1900, p 837; MR 1901, p 855
San Pitch River, flow of, measurement of .. Ann 22, iv, p 419; WS 51, p 425; WS 66, p 126; WS 75, p 196
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY.
[BULL. 215.]

Utah; sandstone production of .. MR 1900, pp 662, 670, 671, 672, 676; MR 1901, pp 644, 645, 656, 657, 658, 659
Sevier River and tributaries, flow of, measurement of Ann 22, rv, pp 417-420; WS 51, pp 425-426; WS 66, p 126; WS 75, p 197
slate production of ... MR 1900, p 677
Spanish Fork, flow of, measurement of WS 51, pp 415-416; WS 66, pp 122-123; WS 75, p 194
irrigation data relating to .. WS 52, pp 503-504
topographic work in ... Ann 22, i, pp 137, 139, 163, 173; Ann 23, pp 146, 153
topography of ... Bull 166, pp 12-13
northeastern, portion of .. Ann 9, pp 683-685
of Oquirrh Mountains .. Ann 16, i, pp 349-351
of Tintic district .. Ann 19, iii, pp 610-611; GF 65, p 1
of Uinta Basin .. Ann 17, i, pp 920-922; Ann 22, i, pp 331-333
Uinta Indian Reservation, water supply of, investigation of Ann 22, iv, pp 366-388
Uinta River, flow of, measurement of Ann 22, iv, pp 375-377; WS 50, pp 369, 370-372; WS 75, pp 165, 166
irrigable lands along .. Ann 22, iv, p 372
Utah Lake, hydrographic data relating to WS 51, pp 419-420
Utah Valley, irrigation in .. WS 52, pp 498-509
Vernal Valley, irrigation in .. Ann 22, iv, pp 362-364; WS 75, pp 168-173
Whiterocks River, flow of, measurement of WS 50, pp 369-370; WS 66, p 85; WS 75, p 165
irrigable lands along .. Ann 22, iv, p 372
Utah Lake, hydrographic data relating to WS 51, pp 419-420
Utah Valley, irrigation in .. WS 52, pp 498-509
Utica slates of New York .. Bull 3, p 9
Uvalde formation of Texas .. GF 76, p 6
Valdes Glacier route, Alaska .. Copper, pp 18-19
Valdes series of Alaska ... Copper, pp 33, 34-37
Van Hise (C. R.), work in charge of Ann 22, i, pp 59-60; Ann 23, pp 28-29
Van Hise (C. R.) and Irving (R. D.), Penokee iron-bearing series of Michigan and Wisconsin .. Ann 15, pp 93-94
Van Hise (C. R.), Bain (H. P.), and Adams (G. I.), preliminary report on the lead and zinc deposits of the Ozark region Ann 22, ii, pp 23-227
Vanadium, ores of .. MR 1901, p 973
Vanadium and uranium, occurrence, character, and production of .. MR 1900, pp 259-265; MR 1901, pp 268-270
Vaughan (T. W.), corals of Buda limestone Bull 205, pp 37-40
fuller's earth deposits of Florida and Georgia Bull 213, pp 392-399
fuller's earth of southwestern Georgia and western Florida MR 1901, pp 922-934
work in charge of .. Ann 22, i, pp 105-106; Ann 23, pp 60-61
Vaughan (T. W.) and Hill (R. T.), geology of Austin quadrangle, Texas .. GF 76
Vegetation in Alaska along Dall, Kanuti, Allen, and Kowak rivers .. PP 10, pp 56-65
Veins, calcite and quartz, in Alaska, Norton Bay region N and N, pp 210-211
Veins and vein minerals of western Kentucky Bull 213, pp 210-213
Velocity curves for streams ... WS 64, pp 25-27, 72-76
Velocity curves, vertical, in stream measurement WS 76, pp 20-47, 60-67
Velocity in river channels, measuring, methods of WS 76, pp 14-20
of streams, measuring, methods of WS 64, pp 13-23
Velocity measurements of flow of streams WS 56, pp 16-21
Venango oil sands of Pennsylvania Bull 41, pp 19, 25
Venetian red, statistics of .. MR 1901, p 908
Venezuela, copper from, statistics of MR 1900, p 184
petroleum in, occurrence of MR 1900, p 593
Verde River, Arizona, flow of, measurement of WS 66, pp 102–103; WS 73, pp 13–16; WS 75, p 177
water storage on .. WS 73, pp 12–22
Vermilion Creek group, age and correlation of Ann 3, pp 415, 416
Vermilion iron-bearing district of Minnesota Mon xlv, exploration in, history of Mon xlv, pp 56–63
geologic literature on .. Mon xlv, pp 64–128
Vermilion Lake region, unconformity among schistose rocks of Ann 7, pp 435–437
Vermont; asbestos in Lamoille and Orleans counties, Vermont . MR 1900, pp 862–866; MR 1901, pp 889–891
Ascutney Mountain, geology of Bull 209
building stone from, statistics of MR 1900, p 662, et seq; MR 1901, p 644 et seq
clay products of .. MR 1900, p 685 et seq; MR 1901, p 674 et seq
copper from, statistics of MR 1900, pp 143, 144, 161; MR 1901, pp 160, 161, 175
geologic work in ... Ann 22, iv, pp 64, 65; Ann 23, pp 39, 49, 66
granite production of .. MR 1900, pp 662, 663, 664, 669; MR 1901, pp 644, 645, 651, 652, 653, 654
Green Mountain region, structural details in eastern New York and Bull 195
Lake Champlain, flow of, measurement of WS 65, pp 38–42
limestone production of MR 1900, pp 662, 686, 687, 691; MR 1901, pp 644, 645, 667, 668, 669, 670
maps, geologic and topographic of. (See Map.)
marble production of .. MR 1900, pp 662, 682, 683, 684; MR 1901, pp 644, 645, 664, 665
mineral springs of .. MR 1900, pp 901, 902; MR 1901, p 964
paint, mineral, production of MR 1900, p 881; MR 1901, p 903
slate production of ... MR 1900, pp 662, 677, 678, 681; MR 1901, pp 644, 645, 660, 661
topography of Ascutney Mountain area Bull 209, pp 8–10
of Lake Champlain region Bull 107, p 14
of ridge between Taconic and Green Mountain ranges Ann 14, ii, pp 531, 533, 543
whetstones in .. MR 1901, pp 786–787
Vertebrata, fossil, of Idaho, Snake River Plains Bull 199, p 56
of North America, bibliography and catalogue of Bull 179
of Permian of Kansas ... Bull 211, p 72
Vespertine formation of the Virginias Bull 80, pp 112–113
Vesuvianite, occurrence of MR 1901, p 747
Victoria, coal production of MR 1900, pp 315, 320; MR 1901, pp 311, 316
Vilas shales of Kansas ... Bull 211, p 39
Viola limestone of Indian Territory GF 79, p 3
Virgin Range, Nevada, geology of Bull 208, pp 131–133
Virginia; Appomattox River, flow of, measurement of WS 48, pp 126–127; WS 65, pp 238–239; WS 75, p 44
barytes production of .. MR 1901, pp 915, 918
Big Stone Gap coal field of Kentucky and Ann 15, p 105
borings, deep, in, list of WS 61, pp 60–61
building stone from, statistics of MR 1900, p 662 et seq; MR 1901, p 644 et seq
Virginia; cement from, statistics of ...MR 1900, pp 737, 745; MR 1901, pp 721, 722
clay deposits and industry of ..PP 11, pp 49, 247-252
clay products of, statistics of ..MR 1900,
p 665 et seq; MR 1901, p 674 et seq; PP 11, p 251
coal area and statistics of ..Ann 22, iii, p 12;
MR 1900, pp 276, 358, 443-445; MR 1901, pp 287 et seq; 436-438
coal fields of, production, etc., ofAnn 22, iii, p 12
of (Triassic) ..Ann 22, iii, pp 25-53
coke in, manufacture of ...MR 1900,
p 462 et seq, 524-525; MR 1901, pp 454 et seq, 513-514
coke, natural, in Richmond Basin ...Bull 213, pp 183-184
corundum in ..Bull 180, p 87
Dan River, flow of, measurement ofWS 48,
pp 132-133; WS 65, pp 240-241; WS 75, pp 52-53
Dismal Swamp, description of ..GF 80, p 1
geography of Catoctin belt ...Ann 14, ii, pp 293-296
of Estillville quadrangle ...GF 12, p 1
of Franklin quadrangle ..GF 52, p 1
of Fredericksburg quadrangle ..GF 13, p 1
of Harpers Ferry quadrangle ..GF 10, p 1
of Monterey quadrangle ..GF 61, p 1
of Nomini quadrangle ...GF 23, p 1
of Norfolk quadrangle ..GF 80, pp 1-2
of Pocahontas quadrangle ...GF 26, p 1
of Staunton quadrangle ...GF 14, p 1
of Tazewell quadrangle ...GF 44, p 1
of Washington quadrangles ...GF 70, p 1
gold and silver from, statistics ofMR 1900,
pp 110, 112, 113; MR 1901, p 119, et seq
granite production of ...MR 1900, pp 662,
663, 664, 665, 669; MR 1901, pp 644, 645, 651, 652, 653, 654
gypsum from, statistics of ..MR 1900, pp 828, 830; MR 1901, pp 846, 847
gypsum and salt deposits of southwesternMR 1900, pp 406-416
Holston River Basin, hydrography ofWS 62, pp 36-77
Holston River and tributaries, flow of, measurement ofWS 49, pp 214-215
hydrography of southern Appalachian Mountain regionWS 62; WS 63
iron and steel from, statistics of ...MR 1900,
pp 43, 54, 57, 96; MR 1901, pp 45, 58, 63, 76, 91, 103
James River and tributaries, flow of, measurement ofAnn 22, iv, pp 145-149;
WS 48, pp 127-130; WS 65, pp 235-238; WS 75, pp 41-44
limestone production of ...MR 1900,
pp 662, 686, 687; MR 1901, pp 644, 645, 667, 668, 669, 670
manganese ore from, statistics ofMR 1900,
pp 115, 116, 124; MR 1901, pp 127, 128, 135
maps, geologic and topographic, of. (See Map.)
mica production of ...MR 1900, p 850; MR 1901, p 877
mineral springs of ...MR 1900, pp 901, 902; MR 1901, pp 962, 964
New River, flow of, measurement ofWS 48,
p 178; WS 65, pp 293-294; WS 75, pp 101-102
hydrography of basin of ..WS 63, pp 169-175
Norfolk quadrangle, geology of ...GF 80
Potomac River and tributaries, flow of, measurement ofAnn 22,
iv, pp 131-144; WS 48, pp 121-124
rainfall in James River Basin ..WS 75, pp 45-50
Virginia; Roanoke River, flow of, measurement of Ann 22, iv, p 151, WS 48, pp 130-131; WS 65, pp 241-242; WS 75, p 53
rutile in .. MR 1901, pp 277-278
salt and gypsum deposits of southwestern Bull 213, pp 406-416
sandstone production of MR 1900, pp 662, 670, 671, 672, 676; MR 1901, pp 644, 645, 656, 657, 658, 659
Shenandoah River, canoe survey of south branch of Ann 22, iv, pp 140-144
flow of, measurement of Ann 22, iv, p 135; WS 48, pp 118-120; WS 65, pp 231-232; WS 75, pp 36-38
slate production of MR 1900;
pp 662, 677, 678, 681; MR 1901, pp 644, 645, 660, 661
soil of Norfolk quadrangle WS 48, pp 133-134; WS 65, pp 238-239; WS 75, p 52
talc and soapstone in, occurrence of MR 1900, p 783; MR 1901, p 777
topography of the Appalachian province GF 26, p 1
of Big Stone Gap coal field Bull 111, pp 16-19
of Bristol quadrangle GF 59, p 1
of Estillville quadrangle GF 12, p 1
of Fredericksburg quadrangle GF 13, p 1
of Monterey quadrangle GF 61, p 1
of Nomini quadrangle GF 23, p 1
of Pocahontas quadrangle GF 26, p 1
of Richmond Basin ... Ann 19, ii, p 393
of Tazewell quadrangle GF 44, p 1
of Washington quadrangles GF 70, p 1
water power in ... WS 62, pp 48-53, 70-73
Virginia Range, Nevada, geology of Bull 208, pp 129-130
Virginia slate of Minnesota, Mesabi district Mon xiii, pp 168-177
Volcanic dust, analysis of, from Idaho, Cottonwood Canyon WS 53, p 34
Volcanic phenomena on Hawaiian Islands, Molokai WS 77, pp 12-14
Volcanic rocks. (See Igneous rocks.)
Volcanoes of Idaho, Snake River Plains Bull 199, pp 71-134
Wabash group of Indiana Ann 22, ii, p 273
Wabash moraine, Ohio-Indiana, distribution, topography, etc., of Mon xii, pp 545-566
Wabash River Basin, glacial formations and drainage features of Mon xii, pp 186-200
Waha Lake, Idaho, as a physiographic feature WS 53, pp 79-81
Walcott (C. D.), work in charge of, as Director Ann 22, i, pp 1-207; Ann 23
Walden sandstone of Tennessee Ann 22, ii, pl xiii, p 235
Wales series of Alaska, Ketchikan district PP 1, pp 41-43
Walker River Range, Nevada, geology of Bull 208, pp 115-117
Wallala beds of California Bull 19, pp 11, 16
Wallkill River, New York, flow of, measurement of WS 47, p 36; WS 65, pp 71-74; WS 76, pp 100-101
pollution of .. WS 72, pp 44-45
quality of water of .. WS 76, p 81
water powers on .. WS 65, p 74
Walnut clay of Texas .. GF 76, pp 3-4
Wanaque River, New Jersey, flow of, measurement of WS 72, pp 21-22
Wapanucka limestone of Indian Territory GF 73, p 3; GF 79, p 4
Ward (L. F.), work in charge of Ann 22, i, pp 101-103; Ann 23, p 70
work in charge of ... Ann 22, i, pp 181-185; Ann 23, pp 164-168
Warren glacial lake, discussion of ... Mon xx, pp 758-775
Wasatch group, age and correlation of ... Ann 3, pp 415, 416
Wasatch limestone of Nevada ... Bull 208, p 23
Washington; artesian water in central ... WS 55, pp 38-65
 artesian water, law providing for conservation of .. WS 78, pp 47-48
 artesian wells in Atanum-Moxee basin ... WS 55, pp 46-65
 in Moxee Valley, discharge measurements of .. WS 75, pp 204-205
Atanum Creek, description of, with reference to irrigation WS 55, pp 32-34
 flow of, measurement of ... Ann 22, iv, p 455
Atanum Ridge, structure of ... GF 86, p 6
 borings, deep, in, list of ... WS 61, p 61
 building stone from, statistics of ... MR 1900, p 662 et seq; MR 1901, p 644 et seq
 in Ellensburg quadrangle ... GF 86, p 6
Cascade Range, forest conditions in, between Washington and Mount Rainier forest reserves ... PP 6
 mineral springs of ... PP 6, pp 37-39
 Cedar River Basin, forest conditions in ... PP 6, p 23
 Chelan Lake, forest condition in basin of .. PP 6, pp 33-34
 Clallam River, flow of, measurement of ... WS 51, p 450
 clay products of, statistics of ... MR 1900, p 695 et seq; MR 1901, p 674 et seq
 Cleman Mountain, structure of .. GF 86, p 5
 coal area and statistics of .. MR 1900, pp 277, 359, 445-447; MR 1901, pp 287 et seq, 438-440
 coal fields of, production, etc., of ... Ann 22, iii, pp 13, 483-497
 coke in, manufacture of .. MR 1900, pp 462 et seq, 526; MR 1901, pp 454 et seq, 515-516
 copper from, statistics of .. MR 1900, pp 143, 144, 161; MR 1901, p 160
 Cowiche Creek, description of, with reference to irrigation WS 55, pp 31-32
 Cowiche Mountain, structure of ... GF 86, p 5
 Cowlitz River, description of ... Ann 22, iv, pp 455-457
 Dungeness River, flow of, measurement of .. Ann 22, iv, p 458; WS 51, pp 446-447; WS 66, pp 138-139
 Ellensburg quadrangle, geology of ... GF 86
 Elwha River, flow of, measurement of .. Ann 22, iv, p 459; WS 51, pp 447-448; WS 66, pp 139-140; WS 75, p 207
 Entiat River, forest conditions in basin of ... PP 6, pp 31-33
 forest conditions in Cascade Range between Washington and Mount Rainier forest reserves ... PP 6
 in Olympic Forest Reserve .. PP 7
 forests of .. PP 5
 geography of central portion .. Bull 108, pp 15-19
 of coal fields .. Ann 22, iii, pp 483-484
 of Ellensburg quadrangle ... GF 86, p 1
 of Yakima County, portion of ... WS 55, pp 12-15
 geologic and paleontologic work in .. Ann 15, pp 100-101; Ann 22, i, pp 89-90; Ann 23, p 56
 gold and silver from, statistics of ... MR 1900, pp 109-113; MR 1901, p 119 et seq
 gold mining in central .. Bull 213, pp 76-80
 granite production of .. MR 1900, pp 662, 663, 664, 665, 669; MR 1901, pp 644, 645, 651, 652, 653, 654
 Green River Basin, forest conditions in .. PP 6, p 24
 irrigation in central, extent, need, etc., of ... WS 55, pp 26-33, 53-55, 65; PP 6, pp 35-36
Washington; Kalawa River, flow of, measurement ofAnn 22, iv, p 460; WS 51, pp 448-449; WS 66, pp 140-141; WS 75, p 208
Klickitat River, flow of, measurement ofWS 51, p 443
reconnaissance of basin of ...Ann 22, iv, pp 454-455
lands of, classification of ..PP 5, pp 12-36
law of March 16, 1901, governing conservation of underground water........WS 55, pp 64-65
limestone production of ...MR 1900, pp 662, 686, 687, 691; MR 1901, pp 644, 645, 667, 668, 669, 670
Little River, flow of, measurement ofWS 51, p 480
Manastash Ridge, structure of ..GF 86, p 4
maps, geologic and topographic, of. (See Map.)
marble production of ...MR 1900, pp 662, 683, 684; MR 1901, pp 644, 645, 664, 665
mineral springs of ..MR 1900, pp 901, 903; MR 1901, p 964
in Cascade Range ..PP 6, pp 37-39
molybdenum in ...MR 1901, p 266
Monte Cristo, ore deposits of ..Ann 22, ii, pp 777-865
Naches River, description of, with reference to irrigationWS 55, pp 29-31
flow of, measurement of ..Ann 22, iv, pp 445-446;
WS 51, p 440; WS 55, p 35; WS 66, pp 133-134; WS 75, p 202
irrigation in basin of ..Ann 22, iv, pp 444-445
natural divisions of ..GF 86, p 1
nickel in ...MR 1901, p 243
Olympic Forest Reserve, forest conditions inPP 7
Palouse River, flow of, measurement ofAnn 22, iv, pp 451-452; WS 51, pp 443-444; WS 66, pp 136-137; WS 75, p 206
Peshastin district, gold mining in ..Bull 213, pp 78-79
Pysht River, flow of, measurement ofWS 51, p 450
sandstone production of ..MR 1900, pp 662, 670, 671, 672, 676; MR 1901, pp 644, 645, 656, 657, 658, 659
Selah-Moxee canal, description ofAnn 22, iv, p 451
Skykomish River Basin, forest conditions inPP 6, pp 19-20
Snoqualmie River Basin, forest conditions inPP 6, pp 21-22
Soils of Ellensburg quadrangle ..GF 86, p 6
Soleduck River, flow of, measurement ofAnn 22, iv, p 461; WS 51, pp 449-450; WS 66, pp 141-142; WS 75, p 209
Spokane River, flow of, measurement ofAnn 22, iv, pp 442-443; WS 51, pp 438-439; WS 66, pp 133; WS 75, p 200
springs, mineral, in Cascade RangePP 6, pp 37-39
stream measurements, miscellaneous, in northwesternWS 66, p 142
Swauk district, gold mining in ..Bull 213, pp 76-78, 79-80
Tieton River, flow of, measurement ofWS 66, pp 134-135
Tolt River Basin, forest conditions inPP 6, pp 20-21
topographic work in ...Ann 22, ii, pp 137, 139, 144, 164; Ann 23, pp 147, 149, 155
topography of Cascade Mountains ...Ann 20, ii, pp 98-100
of Olympic Forest Reserve ..Ann 21, v, p 153; PP 7, p 13
of Priest River Forest Reserve ..Ann 19, v, pp 59-60, 217-220
of Puget Sound ..GF 54, p 2
of southeastern portion ..WS 4, pp 14-21
of Washington Forest Reserve ..Ann 19, v, pp 62, 283-284, 316-319
of Yakima County, portion of ...WS 55, p 12
Umptanum Ridge, structure of ...GF 86, p 4
underground waters in Yakima CountyWS 55, pp 37-65
water supply of Ellensburg quadrangleGF 86, pp 6-7
<table>
<thead>
<tr>
<th>Publication</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington; Wenache River, forest conditions in basin of</td>
<td>PP 6, pp 28-31</td>
</tr>
<tr>
<td>Wenas Creek, description of, with reference to irrigation</td>
<td>WS 55, pp 27-29</td>
</tr>
<tr>
<td>reservoir surveys on</td>
<td>Ann 22, iv, pp 449-450</td>
</tr>
<tr>
<td>White River, flow of, measurement of</td>
<td>WS 51, pp 445-446</td>
</tr>
<tr>
<td>forest conditions in basin of</td>
<td>PP 6, p 25</td>
</tr>
<tr>
<td>Yakima County, climate, soil, and agriculture of</td>
<td>WS 55, pp 13-15</td>
</tr>
<tr>
<td>geology and water resources of a portion of</td>
<td>WS 55</td>
</tr>
<tr>
<td>water resources of portion of</td>
<td>WS 55, pp 25-65</td>
</tr>
<tr>
<td>Yakima River, description of, with reference to irrigation</td>
<td>WS 55, pp 26-27</td>
</tr>
<tr>
<td>flow of, measurement of</td>
<td>Ann 22, iv, pp 446-448; WS 51, pp 441-443; WS 55, pp 35-36; WS 66, pp 153-156</td>
</tr>
<tr>
<td>forest conditions in basin of</td>
<td>PP 6, pp 26-28</td>
</tr>
<tr>
<td>Washington limestone of Pennsylvania</td>
<td>Bull 65, pp 35, 36-37</td>
</tr>
<tr>
<td>Washington sandstone of Pennsylvania and West Virginia</td>
<td>Bull 65, pp 38-39</td>
</tr>
<tr>
<td>Washita division of Texas</td>
<td>GF 76, p 5</td>
</tr>
<tr>
<td>Watauga River, Tennessee, flow of, measurement of</td>
<td>WS 48, p 183; WS 65, p 298</td>
</tr>
<tr>
<td>hydrography of basin of</td>
<td>WS 62, pp 77-95</td>
</tr>
<tr>
<td>Watauga River and tributaries, flow of, measurement of</td>
<td>WS 49, pp 215-216</td>
</tr>
<tr>
<td>Watauga shale of Tennessee</td>
<td>GF 90, p 5</td>
</tr>
<tr>
<td>Watchung basalt of New Jersey, New York City district</td>
<td>GF 83, p 7</td>
</tr>
<tr>
<td>Water; analyses of, from California, southern (artesian wells)</td>
<td>WS 59, p 23</td>
</tr>
<tr>
<td>analysis of, from Colorado, Silverton quadrangle, Guston mine, spring near</td>
<td>Bull 182, p 114</td>
</tr>
<tr>
<td>from Illinois, Chicago</td>
<td>GF 81, p 13</td>
</tr>
<tr>
<td>from Michigan, average of 12 representative lakes</td>
<td>Ann 22, iv, pp 685</td>
</tr>
<tr>
<td>Grand River and tributaries</td>
<td>WS 49, p 241</td>
</tr>
<tr>
<td>from Oregon, Belknap Springs</td>
<td>PP 9, p 77</td>
</tr>
<tr>
<td>from Tennessee, near Johnson City</td>
<td>Ann 22, iv, pp 234-235</td>
</tr>
<tr>
<td>from Texas, Carrizo Springs</td>
<td>WS 66, p 63</td>
</tr>
<tr>
<td>from Virginia, Norfolk</td>
<td>GF 80, p 4</td>
</tr>
<tr>
<td>analyses, sanitary, of, from northeastern United States</td>
<td>WS 79, passim</td>
</tr>
<tr>
<td>in hard and in soft rocks</td>
<td>Ann 22, iv, pp 640-642</td>
</tr>
<tr>
<td>level of, beneath the Great Plains</td>
<td>Ann 22, iv, pp 643-645</td>
</tr>
<tr>
<td>qualities of, essential, for various uses</td>
<td>WS 79, pp 13-16</td>
</tr>
<tr>
<td>sanitary analyses of</td>
<td>WS 79, pp 22-31</td>
</tr>
<tr>
<td>storage of, in Arizona, Salt River</td>
<td>WS 73</td>
</tr>
<tr>
<td>in California, on King River</td>
<td>WS 58</td>
</tr>
<tr>
<td>in California-Nevada, Truckee Basin</td>
<td>WS 68</td>
</tr>
<tr>
<td>Water, artesian; in Colorado, Spanish Peaks quadrangle</td>
<td>GF 71, p 7</td>
</tr>
<tr>
<td>in Texas, Austin quadrangle</td>
<td>GF 76, p 8</td>
</tr>
<tr>
<td>Water, ground; in arid lands</td>
<td>Ann 22, iv, p 642</td>
</tr>
<tr>
<td>in California, King River delta</td>
<td>WS 58, pp 53-85</td>
</tr>
<tr>
<td>in High Plains region, depth, origin, etc., of</td>
<td>Ann 22, iv, pp 640-652</td>
</tr>
<tr>
<td>Water, mineral; analyses of, from Washington, Hot Springs station</td>
<td>PP 6, p 38</td>
</tr>
<tr>
<td>statistics of</td>
<td>MR 1900, pp 899-905; MR 1901, pp 961-966</td>
</tr>
<tr>
<td>Water, moving; pulsation of</td>
<td>WS 64, pp 28-31</td>
</tr>
<tr>
<td>Water, natural; impurities in</td>
<td>WS 79, pp 16-22</td>
</tr>
<tr>
<td>Water, normal; conditions and influences resulting in</td>
<td>WS 72, pp 7-9</td>
</tr>
<tr>
<td>Water, normal and polluted; in northeastern United States</td>
<td>WS 79</td>
</tr>
<tr>
<td>Water, return; from irrigation</td>
<td>WS 67, pp 43-46</td>
</tr>
<tr>
<td>Water, river; near New York City, quality of</td>
<td>WS 76, pp 67-86</td>
</tr>
<tr>
<td>turbidity, color, alkalinity, and hardness of, determination of</td>
<td>WS 76, pp 73-76</td>
</tr>
<tr>
<td>Water, surface; algae, influence of, on</td>
<td>WS 79, p 20</td>
</tr>
<tr>
<td>Water, underground; circulation of, relation of ore deposits to</td>
<td>Ann 22, iv, pp 95-110</td>
</tr>
</tbody>
</table>
Water, underground; dams, subsurface ... WS 67, pp 76-77
fitness of, for public supply .. WS 79, pp 21-22
galleries and subcanals, collecting .. WS 67, pp 73-76
motions of .. WS 67
of Nebraska, Camp Clarke quadrangle .. GF 87, p 4
Scotts Bluff quadrangle .. GF 88, p 4
of South Dakota, Oelrichs quadrangle .. GF 85, p 5
of Virginia, Norfolk quadrangle ... GF 80, p 4
origin and extent of .. WS 67, pp 13-30
recovery of, from surface flows ... WS 67, pp 61-78
surface indications of, under pressure ... WS 78, pp 14-15
wells, artesian and deep; conditions, yield, etc., of WS 67, pp 79-101
wells, open; yield, contamination, etc., of WS 67, pp 62-73

Water plane, effect of irrigation on, in California WS 58, pl xxvi

Water power; computation of, method of using stream gageings for ...
in California–Nevada, Truckee Basin ... WS 68, pp 72-74
in Connecticut, on Housatonic River .. WS 65, p 88
in Maine .. WS 69
in Michigan, Kalamazoo River Basin ... Ann 22, iv, pp 267-268
St. Joseph River Basin .. Ann 22, iv, pp 264-265
in New Hampshire, coast streams .. Ann 22, iv, pp 61-81
in New York, on Catskill Creek ... WS 65, p 62
on Chittenango Creek ... WS 65, p 116
on Esopus Creek ... WS 65, p 66
on Fish Creek (west branch) .. WS 65, p 109
on Fishkill Creek ... WS 65, p 76
on Grasse River .. WS 65, pp 31-32, 33
on Little River ... WS 65, p 33
on Moose River .. WS 65, p 100
on Oswegatchie River .. WS 65, pp 34-36
on Raquette River ... WS 65, pp 36-38
on Rondout Creek ... WS 65, p 70
on Wallkill and Salmon rivers .. WS 65, pp 74, 106
in North Carolina ... WS 63, pp 125-127, 142, 150, 162, 173, 174
in South Dakota, on Big Sioux River ... Ann 22, iv, pp 299-300
Cranberry quadrangle ... GF 90, p 9
Holston River Basin .. WS 62, pp 48-53, 70-73, 84-85
Maynardville quadrangle .. GF 75, p 6

Water register, automatic, in use in southern California WS 59, pp 65-66

Water resources of Colorado .. WS 74
of Molokai, Hawaiian Islands .. WS 77

Water resources and geology of Idaho, Nez Perce County WS 53, 54

Water supply of California, southern .. WS 59, pp 20-23
of Indiana, Ditney quadrangle .. GF 84, p 8
of New York City .. GF 83, pp 18-19
of Washington, Ellensburg quadrangle .. GF 86, pp 6-7
(See, also, Hydrography; Irrigation.)

Waterline formation in Erie and Ohio basins Mon xli, pp 55-56

Waverly group in Ohio ... Bull 41, pp 17-18

Waverly shales of Indiana ... PP 11, p 98
of Ohio ... Mon xli, p 61

Waynesburg coal of Pennsylvania ... GF 82, pp 14, 15-16, 17-18
Waynesburg limestone and sandstone of Pennsylvania and West Virginia. Bull 65, pp 40-41, 58

Webberville formation of Texas. GF 76, p 5

Webber conglomerate of Nevada. Ann 2, p 28; Bull 208, p 23

Weed (W. H.), copper deposits of the Appalachian States. Bull 213, pp 181-185

El Paso tin deposits. Bull 178

glacial and ore deposits of the Elkhorn mining district, Jefferson County, Montana. Ann 22, ii, pp 399-549

gold mines of the Marysville district, Montana. Bull 213, pp 88-89

ore deposits at Butte, Montana. Bull 213, pp 170-180

Weir (F. B.), bibliography of North American geology, paleontology, petrology, and mineralogy for 1892-1900. Bull 188

bibliography and index of North American geology, paleontology, petrology, and mineralogy for the year 1901. Bull 203

index to North American geology, paleontology, petrology, and mineralogy for 1892-1900. Bull 189

North American geologic formation names. Bull 191

tungsten ore in eastern Nevada. Bull 213, p 103

work in charge of. Ann 22, i, pp 81-82; Ann 23, pp 61-62

Weirs, measurement of streams by means of. WS 56, pp 13-16

use of, in stream measurement. WS 64, pp 31-34

to determine current velocity. WS 76, pp 15-18

Weisner quartzite of Georgia. GF 78, p 2

Well construction, correct, importance of. Ann 22, iv, p 669

Well drilling, for oil, methods and cost of. Bull 212, pp 166-170

Wellington shales of Kansas. Bull 211, pp 60-61

Wells in California, Kings River delta. WS 58, pp 56-79

in California, Redlands, and San Bernardino quadrangles. WS 60, pp 113-134

southern (artesian). WS 59, pp 38-42, 77

southern, construction of. WS 52, pp 497-498

in Hawaiian Islands, Molokai. WS 77, pp 37-47

in High Plains region, irrigation from. Ann 22, iv, pp 657-668

Wells, artesian. (See Artesian wells.)

Wells, combination dug and tubular. WS 67, p 67

Wells, deep; conditions, yield, etc., of. WS 67, pp 79-101

in United States, list of, by States. WS 57; WS 61

Wells, horizontal; desirability of, in Idaho, Nez Perce region. WS 54, pp 98-101

Wells, open; yield, contamination, etc., of. WS 67, pp 62-73

Wenache River, Washington, forest conditions in basin of. PP 6, pp 28-31

Wenas basalt of Washington, Ellensburg quadrangle. GF 86, p 4

Wenas Creek, Washington, reservoir surveys on. Ann 22, iv, pp 449-450

West Gallatin River, Montana. (See Gallatin River.)

West Virginia; borings, deep, in, list of. WS 61, pp 61-65

bromine production of. MR 1901, p 868

building stone from, statistics of. MR 1900, p 662 et seq; MR 1901, p 644 et seq
West Virginia; cement from, statistics of MR 1900, p 745; MR 1901, p 726
Charleston quadrangle, geology of ... GF 72
Cheat River, flow of, measurement of ... WS 48, p 177; WS 65, p 290; WS 75, p 100
clay deposits and industry of ... PP 11, pp 252-261
clay products of, statistics of ... MR 1900, p 695 et seq; MR 1901, p 674 et seq; PP 11, p 261
coal in, area and statistics of ... Ann 22, ii, p 12;
MR 1900, pp 276, 358, 447-454; MR 1901, pp 287 et seq, 440-447
in Charleston quadrangle ... GF 72, pp 6-8
in Raleigh quadrangle .. GF 77, pp 4-8
coal fields of ... Ann 14, ii, pp 576-590
production, etc., of .. Ann 22, ii, p 12
coke in, manufacture of ... MR 1900, pp 462 et seq, 527-534; MR 1901, pp 464 et seq, 516-523
drainage modifications in southeastern Ohio and adjacent parts of Ken-
tucky and PP 13
geography of Buckhannon quadrangle .. GF 34, p 1
of Charleston quadrangle ... GF 72, p 1
of Franklin quadrangle ... GF 32, p 1
of Harpers Ferry quadrangle ... GF 10, p 1
of Huntington quadrangle ... GF 69, p 1
of Monterey quadrangle ... GF 61, p 1
of Piedmont quadrangle ... GF 28, p 1
of Pocahontas quadrangle .. GF 26, p 1
of Raleigh quadrangle ... GF 77, pp 1-2
of Staunton quadrangle ... GF 14, p 1
of Tazewell quadrangle ... GF 44, p 1
geologic and paleontologic work in ... Ann 22, i, p 76
grahamite in, occurrence, geology, etc., of Ann 22, i, pp 232-240
Greenbrier River, flow of, measurement of Ann 22, iv, p 221; WS 48, pp 178-179; WS 65, pp 290-291; WS 75, p 100
hydrography of southern Appalachian Mountain region WS 62; WS 63
iron and steel from, statistics of ... MR 1900,
 pp 43, 54, 57, 96; MR 1901, pp 45, 58, 63, 76, 91, 103
iron ore in Charleston quadrangle .. GF 72, p 9
Kanawha drainage system, preglacial, description of Mon xli, pp 100-109
limestone production of ... MR 1900,
 pp 662, 686, 687, 691; MR 1901, pp 644, 645, 667, 668, 609, 670
manganese ore from, statistics of .. MR 1900, pp 115, 116; MR 1901, pp 127, 128
maps, geologic and topographic, of. (See Map.)
Martinsburg, slate industry at .. Bull 213, pp 363-364
mineral springs of ... MR 1900, pp 901, 902; MR 1901, pp 962, 964
Monongahela River, quality of water of .. WS 79, pp 124-129
natural gas in, statistics of ... MR 1900, pp 634, 635, 637, 638, 642-643; MR 1901, pp 617, 619, 620, 621, 625-626
in Charleston quadrangle ... GF 72, p 6
New River, flow of, measurement of .. Ann 22, iv, p 222; WS 75, p 102
petroleum in, statistics of .. MR 1900,
 pp 540, 541, 542, 545; MR 1901, pp 530, 531, 532, 533
in Charleston quadrangle ... GF 72, p 6
physiographic history of Raleigh quadrangle GF 77, p 2
West Virginia; Raleigh quadrangle, geology of ... GF 77
salt in Charleston quadrangle ... GF 77, p 6
production of, in ... MR 1900, p 837; MR 1901, p 855
sandstone production of ... MR 1900,
pp 662, 670, 671, 672, 676; MR 1901, pp 644, 645, 656, 657, 658, 659
Shenandoah River, flow of, measurement of ... Ann 22, iv,
pp 136-137; WS 48, pp 120-121; WS 65, p 233; WS 75, pp 38-39
silt industry at Martinsburg ... Bull 213, pp 363-364
soils in Charleston quadrangle ... GF 72, p 9
in Raleigh quadrangle .. GF 77, p 8
topographic work in ... Ann 22, i, pp 137, 139, 151, 173; Ann 23, pp 126, 134-135
cooperation of State in ... Ann 22, i, pp 20, 29
topography of Allegheny Plateaus ... GF 69, p 1
of Appalachian province ... GF 26, p 1
of Buckhannon quadrangle ... GF 34, p 1
of Charleston quadrangle ... GF 72, p 1
of Huntington quadrangle ... GF 69, p 1
of Monterey quadrangle ... GF 61, p 1
of Piedmont quadrangle ... GF 28, p 1
of Pocahontas quadrangle ... GF 26, p 1
of Raleigh quadrangle ... GF 77, pp 1-2
of Tazewell quadrangle ... GF 44, p 1
West White River, Indiana, course and character of Mon xli, pp 191-193
Westfield River, Massachusetts, quality of water of WS 79, pp 85-89
Wetumka shale of Indian Territory .. GF 74, p 4
Wewoka formation of Indian Territory .. GF 74, p 4
Whetstones, occurrence and statistics of ... MR 1901, pp 782-789
White (D.), bituminous coal field of Maryland Ann 22, iii, pp 201-214
work in charge of ... Ann 22, i, pp 70-71; Ann 23, pp 63-64
White (D.) and Campbell (M. R.), bituminous coal field of Pennsylvania........ Ann 22, iii, pp 127-201
White (D.), Adams (G. I.), and Girty (G. H.), stratigraphy and paleontology of the Upper Carboniferous rocks of the Kansas section ... Bull 211
White lead, statistics of ... MR 1900, p 887; MR 1901, p 910
White limestone of Alabama ... Bull 43, pp 19-25, 68
White marl of Utah ... Ann 2, pp 174-182, 186, 191
White Mountain Range, California, geology of Bull 208, pp 206-212
White Pine Range, Nevada, geology of ... Bull 208, pp 61-68
White Pine shales of Nevada .. Ann 2, p 28; Bull 8, p 42; Bull 208, p 23
White porphyry of Colorado, Leadville district Ann 2, pp 245, 246, passim
White River, Colorado, flow of, measurement of WS 66, pp 91-92
White River, Nebraska, flow of, measurement of WS 50, p 311
White River, Oregon, flow of, measurement of WS 66, p 138
White River, Washington, flow of, measurement of WS 51, pp 445-446
forest conditions in basin of ... PP 6, p 25
White River group of Dakota, age of ... 416
Whitcliffs formation of Arkansas .. Ann 22, iii, pp 700-714, 732
Whiterocks River, Utah, flow of, measurement of WS 50,
pp 369-370; WS 66, p 85; WS 75, p 165
irrigable lands along ... Ann 22, iv, p 372
Whitetail formation of Arizona ... PP 12, pp 46-47
Whitewater River, Indiana, drainage system of Mon xli, pp 184-185
Whittlesey glacial lake, discussion of ... Mon xli, pp 741-757
Wight, Isle of, geologic map of .. Ann 16, i, p 480
geology and fossil plants of .. Ann 16, i, pp 488-499

Williams, (H. S.), correlation of geological faunas Bull 210
Devonian fossils of Globe quadrangle, Arizona .. PP 12, pp 40-42
work in charge of .. Ann 22, i, p 65; Ann 23, pp 64-65
Willis (B.), events of later Cretaceous, Eocene, and Neocene times in New
York City district .. GF 83, p 11
later Jurassic and early Cretaceous events in New York City district GF 83, p 10
later Paleozoic conditions in New York City district GF 83, pp 5-6
outline of geologic history of New York City district GF 83, pp 2-3
work in charge of .. Ann 22, i, pp 56-59; Ann 23, pp 27-28, 65-68
Willis (B.) and Dodge (R. E.), general geography of New York City dis-
trict ... GF 83, pp 1-2
physiographic features of New York City district GF 83, pp 17-18
Willow Creek, California, flow of, measurement of WS 51, p 407; WS 66, p 115
Willow Spring granite of Arizona, Globe district PP 12, p 78
Willspoint clays of Texas, Arkansas, and Louisiana Bull 184, p 42
Wilson (H. M.), work in charge of .. Ann 22, i, pp 139-142, 146-152; Ann 23, p 121
Wilson (H. M.), Renshawe (J. H.), Douglas (E. M.), and Goode (R. U.), re-
sults of spirit leveling in 1900-1901 .. Bull 185
results of primary triangulation and primary traverse, 1900-1901 Bull 181
results of primary triangulation and primary traverse, 1901-02 Bull 201
Wind movement in Central America ... Ann 22, iv, pp 530-536
in Costa Rica .. Ann 22, iv, pp 535-536
in Nicaragua .. Ann 22, iv, pp 530-534
Wind River group of Wyoming, age of ... 416
Windsorite, analysis of, from Vermont, Little Ascutney Mountain Bull 209, pp 47, 118
dikes of, in Vermont, Ascutney Mountain ... Bull 209, pp 45-48
Windy Gap limestone of Pennsylvania and West Virginia Bull 65, pp 30-31
Winfield formation of Kansas, synonymy, character, and fauna of Bull 211, pp 59-60
Wirt (W. D.), work in charge of .. Ann 22, i, p 206; Ann 23, p 195
Wisahickon Creek, Pennsylvania, flow of, measurement of Ann 22, iv, p 124; WS 48, pp 107-109; WS 65, p 218; WS 75, p 30
Wisconsin; borings, deep, in, list of .. WS 61, pp 65-66
building stone from, statistics of .. MR 1900, p 662 et seq; MR 1901, p 644 et seq
clay deposits and industry of .. PP 11, pp 262-272
clay products of, statistics of .. MR 1900, p 695; MR 1901, p 674 et seq; PP 11, p 272
coke in, manufacture of ... MR 1900, pp 462 et seq, 534-535; MR 1901, pp 454 et seq, 523
flint production of .. MR 1900, p 895; MR 1901, p 936
geologic and paleontologic work in .. Ann 22, i, p 75; Ann 23, pp 33-34, 35
granite production of ... MR 1900, pp 662-665, 669; MR 1901, pp 644, 645, 651-654
iron and steel from, statistics of ... MR 1900, pp 43, 55, 57, 96; MR 1901, pp 45, 58, 63, 76, 91, 103
iron-bearing series of .. Ann 15, pp 93-94
limestone production of ... MR 1900, pp 662, 686, 687, 691; MR 1901, pp 644, 645, 667, 668, 669, 670
maps, topographic. (See p. 27 of this bulletin.)
mineral springs of .. MR 1900, pp 901, 903; MR 1901, pp 963, 964
Penokee iron-bearing series of Michigan and Wisconsin Ann 15, pp 93-94
sandstone production of .. MR 1900, pp 662, 670, 671, 672, 676; MR 1901, pp 644, 645, 656, 657, 658, 659
topographic work in ... Ann 22, i, pp 137, 139, 155, 156, 174; Ann 23, pp 129, 142
Wisconsin deposits of Indiana, Ditney quadrangle
Wisconsin drift in Erie and Ohio basins, border of
(See, also, Late Wisconsin drift; Early Wisconsin drift.)
Wolff (J. E.), work in charge of
zinc and manganese deposits of Franklin Furnace, New Jersey
Wolframite, formation of, after scheelite
Wollastonite, action of ammonium chloride on
analysis of, from New York, Diana
Woodbine formation of Texas
Woodford chert of Indian Territory
Woods Bluff series of Alabama
Woodworth (J. B.), Atlantic coast Triassic coal field
Wool, mineral, manufacture of, from slags
Worthington Mountains, Nevada, geology of
Wrangell Mountains, Alaska, topography of.
Wreford limestone of Kansas, synonomy, character, and fauna of
Wurtzilite in Utah, occurrence, geology, etc., of
Wyoming; asbestos in
Bighorn River, flow of, measurement of
Black Fork of Green River, flow of, measurement of.
Black Hills, divisions and features of
boring, deep, in, list of
building stone from, statistics of
clay products of
Clear Creek, flow of, measurement of
coal area and statistics of
coal fields of, production, etc., of
coke in, manufacture of
copper from, statistics of
deposits of, in Encampment region
ores of, in, platinum in
Encampment copper region, mineral resources of
geography of Absaroka quadrangle
geologic and paleontologic work in
gold and silver from, statistics of
Goshen Hole quadrangle, geology and water resources of
Grand Encampment Creek, description of
flow of, measurement of
granite production of
Green River, flow of, measurement of
hydrography of basin of
Grey Bull River, hydrography of basin of
Wyoming: irrigation in Patrick and Goshen Hole quadrangles......WS 70, pp 31-34
Laramie River, flow of, measurement of................Ann 22, iv, p 307; WS 49, pp 273-274; WS 74, pp 59-62
limestone production of................................MR 1900, pp 662, 686, 687; MR 1901, pp 644, 645, 667, 668, 669, 670
maps, geologic and topographic, of. (See Map.)
Medicine Bow River, flow of, measurement of..............WS 66, p 26
mineral resources of the Encampment copper region......Bull 213, pp 158-162
nickel in..MR 1901, p 243
North Platte River, flow of, measurement of..............Ann 22, iv, p 312;
WS 49, pp 272, 274-275; WS 66, p 27; WS 75, pp 125-126
Owl Creek, hydrography of basin of......................Ann 22, iv, pp 291-295
Patrick quadrangle, geology and water resources of......WS 70
petroleum in, statistics of.................................MR 1900, pp 540, 541, 543, 571-572; MR 1901, pp 530, 531, 534, 563
platinum in..Bull 193, p 34
in copper ores in..Bull 213, pp 94-97
sandstone production of......................................MR 1900, pp 662, 670, 671, 672, 676;
MR 1901, pp 644, 645, 656, 657, 658, 659
settlement and occupancy of public lands in eastern.....WS 70, pp 37-41
Shell Creek and tributaries, flow of, measurement of....WS 66, pp 23
springs and ponds in Patrick and Goshen Hole quadrangles.....WS 70, pp 27-29
timber, grass, etc., in Patrick and Goshen Hole quadrangles......WS 70, pp 34-37
topographic work in..Ann 22, i, pp 137, 139, 162, 174; Ann 23, pp 129, 143-144, 153
topography of Absaroka district........................GF 52, p 1
of Black Hills region, southern........................Ann 21, iv, pp 498-502
of northwestern portion....................................Bull 119, pp 13-17
of Patrick and Goshen Hole quadrangles................WS 70, pp 22-25
of Platte River Basin......................................Ann 13, m, pp 74-75
of southern..Ann 9, pp 683-685
of Teton Forest Reserve................................Ann 19, v, pp 54-55, 191-193
of Yellowstone National Park quadrangle................GF 30, p 1
of Yellowstone Park Forest Reserve, part of......Ann 19, v, pp 54, 55, 213-214
wells in Patrick and Goshen Hole quadrangles..........WS 70, pp 29-31
Yadkin River, hydrography of basin of....................WS 63, pp 158-169
Yadkin River and tributaries, North Carolina, flow of, measurement of................Ann 22, iv, pp 156; WS 48, pp 138-140; WS 49, pp 203-204; WS 65, pp 245-246; WS 75, p 57
Yakima basalt of Washington...............................WS 55, pp 15-17
of Washington, Ellensburg quadrangle...............GF 86, p 3
Yakima County, Washington, geology and water resources of a portion of......WS 55
Yakima River, Washington, description of, with reference to irrigation......WS 55, pp 26-27
forest conditions in basin of..............................PP 6, pp 26-28
Yampa River, Colorado, flow of, measurement of..........WS 66, pp 89-91
Yazoo River, flow of, measurement of....................WS 65, pp 287-288
Yegua clays of Texas and Louisiana......................Bull 184, p 43
Yellow clay of Utah......................................Ann 2, pp 174-182, 186
Yellow River, Georgia, flow of, measurement of........Ann 22, iv, p 165; WS 48, pp 153-154; WS 65, pp 261-262; WS 75, p 69
Yellowstone National Park, geologic and paleontologic work in........Ann 22, i, p 82
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 215.

Yellowstone River, Montana, flow of, measurement of.................Ann 22, iv, pp 289-290; WS 49, p 268; WS 66, p 22; WS 75, pp 122-123
 glaciation of valley of..Ann 15, pp 97-98
 topography of basin of..Ann 13, iii, pp 64-65
Yentna beds of Alaska ..Ann 22, iii, p 535
Yonkers gneiss of New York City district.......................GF 83, p 5
York region, Alaska, gold in.................................N and N, pp 132-138
 stream tin in, occurrence of..............................MR 1900, pp 267-271; N and N, pp 136-137
Youghiogheny River, Maryland, flow of, measurement of.....Ann 22, iv, p 220; WS 48, pp 176-177; WS 65, p 289; WS 75, p 99
Youghiogheny River, Pennsylvania, abandoned channels alongGF 82, p 4
Yuba River, California, flow of, measurement of.............Ann 22, iv, pp 462-463; WS 51, pp 451-453, 480
 forest conditions in basin of..........................PP 8, pp 96-158
 reconnaissance of, with reference to water supply......WS 46, pp 39-54
Yukon Basin, coal in...Ann 22, iii, pp 555-559; Bull 213, pp 276-283
Yukon region, Alaska, placer gold mining in.........................Bull 213, pp 46-48
Yukon Valley, Alaska, natives of................................PP 10, pp 51-52
Zinc, in Tennessee, Maynardville quadrangle...................GF 75, p 6
 ores of..MR 1901, p 973
 statistics of..MR 1900, pp 213-227; MR 1901, pp 211-223
Zinc and lead, publications on..................................Bull 213, p 218
Zinc and lead deposits of Arkansas, northern....................Bull 213, pp 187-196
 of Missouri-Kansas, Joplin district.......................Bull 213, pp 197-204
 of Ozark region, preliminary report on..................Ann 22, ii, pp 29-227
Zinc and manganese deposits of Franklin Furnace, New Jersey..Bull 213, pp 214-217
Zinc, lead, and fluorspar deposits of Kentucky, western........Bull 213, pp 205-213
Zinc white, statistics of..MR 1901, pp 913-914
Zoisite, analysis of...MR 1901, p 763