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MAGNETIC AND GRAVITY STUDY OF THE
PADUCAH 1°x2° CUSMAP QUADRANGLE,
ILLINOIS, INDIANA, KENTUCKY, AND MISSOURI

By Thomas G. Hildenbrand,! Robert P. Kucks,? and Paul C. Heigold3

ABSTRACT

Magnetic and gravity data in the Paducah 1°x2° quad-
rangle (the study area) provide a geologic picture of the sub-
surface that indicates a long and complex tectonic and
magmatic history. A prominent, continental-scale magnetic
lineament (called the south-central magnetic lineament) pos-
sibly delineates a Precambrian northwest-trending shear
zone intruded by large, intermediate igneous bodies. Models
crossing these intrusions suggest that the sources are com-
posed of highly magnetic, intermediate rock, such as quartz
diorite. Two Early Cambrian rifts (the Reelfoot and Rough
Creek) trend into the study area. Interpreted structures and
magnetic basement depths suggest that the Reelfoot graben
bends eastward to join with the Rough Creek graben. Paral-
leling the south-central magnetic lineament to the southwest
is a pronounced gravity lineament that may represent dense
mafic intrusions emplaced along northwest-trending faults
and axial faults of the Reelfoot graben. The age of these
intrusions is interpreted to be Cambrian (syn-rift) or
younger. Strike-slip motion along the northwest-trending
faults is suggested by deflections of magnetic anomalies
along the margins of the Reelfoot graben.

Post-rifting geology is characterized by thick sequences
of sedimentary rocks, as evidenced by the deepening of mag-
netic basement (>6 km) in the Rough Creek graben in the
eastern part of the Paducah quadrangle. Shallow, large mag-
netic intrusions of post-rift age may be present in or near the
Wabash Valley fault system and in the region of tripoli
(microcrystalline silica) deposits in southwestern Illinois. A
high-pass magnetic anomaly map delineates as many as 14
shallow (<1 km), plug-like or laccolithic intrusions in the
eastern part of the study arca. Three of these shallow
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intrusions coincide with known or indicated shallow intru-
sive centers at Hicks dome, Omaha dome, and Coefield;
other interpreted shallow intrusions may also have mineral
potential similar to that at Hicks dome.

INTRODUCTION

The study area (Paducah 1°x2° quadrangle, fig. 1) is
surrounded by major uplifts and basins. To the west, in
southeastern Missouri, Precambrian basement rises toward
the crest of the Ozark uplift and crops out in the St. Francois
Mountains. Basement also rises to the east along the north-
south-trending Cincinnati arch in central Kentucky. To the
north and southwest, basement descends beneath the Illinois
Basin and Mississippi Embayment, respectively. The study
area is structurally complex and includes at least seven major
fault systems. Two rifts intersect or join within the quadran-
gle. Moreover, a continental-scale crustal discontinuity
crosses the study area. Numerous igneous intrusions have
been emplaced along this discontinuity. The study area is
structurally one of the most complex regions in the Midcon-
tinent. Regional potential-field studies aid in our understand-
ing of the structures of the Paducah quadrangle and can
provide a meaningful geologic picture of the subsurface.

Past potential-field studies have contributed signifi-
cantly to the understanding of structures and lithologies
within the study area. Ervin and McGinnis (1975) combined
gravity, seismic, stratigraphic, and petrologic data to suggest
that the Mississippi Embayment is the site of a northeast-
trending, late Precambrian rift, which they called the Reel-
foot rift. Subsequent gravity and magnetic studies (Kane and
others, 1981; Hildenbrand and others, 1982; Hildenbrand,
1985b; Hildenbrand and Hendricks, 1995) have further
defined the buried rift structures, some of which extend into
the study area. Cordell (1977) suggested that the Reelfoot rift
extends northward into southern Illinois and western Ken-
tucky, where broad gravity highs are interpreted as evidence
for a fossil rift cushion at the crust-mantle boundary. An
east-west-trending rift graben (Rough Creek graben),
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EXPLANATION

Northern limit of coastal-plain material
of the Mississippi Embayment

Mafic or ultramafic intrusions within the
Mississippi Embayment identified in
drill-hole cuttings. Intrusions labeled -
PO and LO are also locations of the
Pure Oil McGregor No. 1 and the Lion
Oil Company No. 1 wells, respectively.

Mafic intrusion within the Mississippi
Embayment interpreted from the magnetic
field. Approximate boundaries of
intrusions determined from zero contour
of associated anomaly on a second vertical
derivative map. A

City or town .

Long dashed lines show principal magnetic
lineaments reflecting faulting and lithologic
contrasts in magnetic basement.a and b
are lineaments discussed in text.

Fault- Dashed where inferred

Possible or hypothetical fault. Locations based
on subsurface data or exceptionally strong
lineaments from aerial photographs.

Approximate margins of the Reelfoot graben.

Locations of the Big Chief (BC) and Dow
Chemical 1 Wilson (DW) drill holes.

Earthquake epicenter
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south-central magnetic lineament (SCML) named by
Hildenbrand and others (1983). Hildenbrand (1985a) sug-
gested that the SCML extends northwestward from eastern
Tennessee to possibly as far as southeastern Nebraska.
Although some north-trending anomalies associated with
Keweenawan structures in eastern Tennessee cross the
SCML, other anomalies end abruptly at the SCML. This
anomaly pattern prompted Hildenbrand (1985a) to propose
that the sources of the SCML developed during or prior to
Keweenawan time. The SCML is clearly expressed as a 40-
km-wide band of magnetic highs from the Tennessee-Ken-
tucky boundary at long 86°30” W. (Hildenbrand and Keller,
1983) to eastern Missouri.

Near the Kentucky-Illinois border, lamprophyré and
mica peridotite dikes and sills, together with intrusive brec-
cias (Clegg and Bradbury, 1956; Koenig, 1956; Heyl and
others, 1965), have been mapped and encountered in drill
holes in the vicinity of the magnetic highs along the SCML;
mica and amphibole from these rocks have Rb-Sr and K-Ar
ages of approximately 270 Ma (Zartman and others, 1967,
reconverted to the decay constants of Steiger and Jiger,
1978). Hicks dome, a structural feature of the Kentucky-Illi-
nois fluorspar mineral district (HD, fig. 6), is on the south-
western flank of this northwest-trending magnetic feature.
The dome is underlain by a body of mineralized breccia
(Brown and others, 1954) that is interpreted as a diatreme
formed in alkalic to carbonatitic magmatism (Bradbury and
Baxter, 1992). Small lamprophyre and phlogopite peridotite
dikes and plugs and intrusive breccias occur on the dome’s
flanks (Heyl and others, 1965).

Magnetic highs generally coincide with gravity highs
along the SCML in the study area. These gravity highs are,
however, lower in amplitude than those along the PGL. In
contrast, the magnetic highs along the PGL have lower mag-
netic intensities than those along the SCML. The implication
of this reverse correlation in magnetic and gravity anomaly
intensities is discussed later.

FAULT ZONES

Hildenbrand and Hendricks (1995) suggest that some
fault zones correlate with geophysical features. For example,
the Ste. Genevieve fault zone may be expressed as steep
gravity gradients related to the northeast edge of the PGL.
Also, the Cottage Grove fault system may have provided
channelways for magma forming intrusions related to the
SCML. On the other hand, the numerous northeast-trending
faults in the eastern part of the study area have no apparent
expression on the gravity and magnetic anomaly maps.
Hildenbrand and Keller (1983) suggested that fault displace-
ments here are too small to be detected by regional potential-
field methods.

PROFILE MODELING

The principal goal of potential-field studies is to detect
and quantify changes in magnetic and mass properties at
depth. To translate observed magnetic and gravity anomalies
into a meaningful geologic picture of the subsurface requires
inversion or modeling programs. We used a 2!/,-dimensional
modeling program, SAKI (Webring, 1985), based on gener-
alized inverse theory to derive upper crustal models (fig. 7)
along three individual profiles shown in figures 2 and 3. The
program requires an initial estimate of model parameters
(depth, shape, density, and magnetization of sources) and
then varies selected parameters in an attempt to reduce the
weighted root-mean-square error between the observed and
calculated gravity and magnetic fields. Due to the lack of
information on remanent magnetization, total magnetization
was assumed to be in the direction of the Earth’s present-day
magnetic field (inclination = 66° N. and declination =2°E.).

Knowledge of several parameters facilitated the selec-
tion of the initial estimate for the models. Several hundred
measurements of physical properties of rocks from drill
holes and outcrops in the St. Francois Mountains (west of the
Paducah quadrangle) (Eva Kisvarsanyi, Missouri Depart-
ment of Natural Resources, written commun., 1990) were
used to assign a value for density and susceptibility of Pre-
cambrian basement in the western part of the study area. Sta-
tistical measurements on these laboratory results (Joseph
Rosenbaum, written commun., 1991) indicate that unweath-
ered St. Francois granite-rhyolite terrane has an apparent
average density of 2.67 g/cm? and susceptibility of 0.009 SI
(4w cgs = SI).

Geophysical logs from drill holes located west, north,
and east of the quadrangle suggest a wide range of densities
for Paleozoic units. For example, average densities range
from 2.4 g/cm3 for the Cambrian Lamotte Sandstone to 2.73
g/cm?3 for the Cambrian Eminence Dolomite. A value of 2.65
g/cm3 was obtained for the average density of the Paleozoic
section (based on visual inspection of density logs) and
agrees with the estimated density of similar rocks at depth in
Oklahoma (based on density-depth data from drill sam-
ples—Athy, 1930; Cordell, 1977). This value was used in our
models. A more detailed model for the Paleozoic is consid-
ered inappropriate due to the lack of information on depths
and densities of the Paleozoic units within the broad study
area. The estimated depths to magnetic basement (fig. 5) were
used to approximate the base of Paleozoic sedimentary rocks.

The velocity-density relationship of Birch (1961) and
velocities cited by Mooney and others (1983) were used to
select a representative density for middle crust (2.75 g/cm?).
Middle crust susceptibilities were assigned a value of 0.006
SI, a reasonable estimate for metamorphic rocks (Car-
michael, 1982).

Before inverting the data on long profiles, individual
anomalies related to inferred intrusions were modeled to
provide reasonable estimates of their thicknesses. Two
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gravity anomalies (C and D, fig. 3) were modeled along the
PGL using a three-dimensional inversion algorithm (GI3,
Cordell, 1968). Assuming the intrusions have mafic compo-
sitions (e.g., gabbro) and densities of about 2.9 g/cm?. the
modeling results suggest that the depth to the bottom of an
intrusion along the PGL is about 10 km below the surface. A
similar modeling exercise was carried out for two magnetic
anomalies (using the algorithm SAKI) along the SCML (E
and F, fig. 2). If the depth to the bottom of intrusion is placed
at 10 km, some calculated susceptibilities were unreasonably
high (>0.15 SI); therefore, the base of an intrusion along the
SCML is assumed to lie at 15 km.

The interpretation of potential-field data yields non-
unique solutions because an infinite number of geometrical
models will have an associated field that closely matches the
measured field. Available drill-hole information, simulta-
neous inversion of gravity and magnetic data, and geological
reasoning have aided in deriving a suitable geophysical
model to represent the geologic situation in the study area. It
should be noted, however, that increasing the density and
decreasing the thickness of an intrusion will generally not
produce an appreciable change in the computed fields.

Profile W-W’ (figs. 2 and 3) was selected with a north-
west trend that avoided the major positive anomalies related
to the PGL and SCML. The magnetic low along W-W’ par-
allels the SCML southeastward into Tennessee. In the Mid-
continent, other linear magnetic lows of similar intensity and
length exist but are uncommon. The SCML may be flanked
on the southwest by a trough filled with low-density,
reversely magnetized rocks (e.g., an old rift filled with vol-
canic rocks). Ravat (1984) modeled a reversely magnetized
body in the midcrust to explain the presence of this pro-
nounced magnetic low. The existence of reversely magne-
tized rocks is plausible but not necessary to explain the steep
gradient between the geophysical low and the SCML. We
assume here that the crystalline rocks beneath the sedimen-
tary sequence along W-W” have negligible magnetic proper-
ties (i.e., zero susceptibilities). Associated densities of the
crystalline rocks at the northwest end of profile W-W” are
assumed to be similar to those in the nearby St. Francois
Mountains (2.67 g/cm?).

The data along profile W-W’ were inverted first, based
on the assumed physical properties at its northwestern end
(density of 2.67 g/cm3 and zero susceptibility). Knowledge
of the resulting change in these physical properties eastward
along profile W-W’ then helped to constrain Precambrian
properties at the junctures of this profile with the remaining
profiles. Profiles X-X" and Y-Y’ trend northeast and are nor-
mal to the PGL and SCML.

PROFILE W-W’

A distinct change in the gravity field occurs along pro-
file W-W’ (fig. 7A). In the northwestern part of the profile,

crystalline basement beneath the sedimentary rocks is
assumed to have a density of 2.67 g/cm?. To the southeast,
the increase in the gravity field reflects a more dense (2.74 g/
cm?) Precambrian basement within the region of the Rough
Creek graben. This change in basement density occurs
across an interpreted igneous intrusion (B, fig. 3) near the
center of the profile. We suggest that this change in Precam-
brian basement composition represents the northern exten-
sion of the faulted northwestern margin of the Reelfoot
graben as it joins with the northern margin of the Rough
Creek graben. An alternative explanation for the increase in
gravity southeastward along profile W-W’ is that the
regional field (fig. 4) does not adequately reflect deep
sources. The level change in gravity along the profile may
therefore be related to lateral density variations associated
with a dense rift cushion at depth. We prefer the modeling
results because a density increase in Precambrian basement
is anticipated over areas where the low-density St. Francois
terrane is absent or thin. Early Paleozoic uplift related to rift-
ing may have resulted in substantial erosion of the St. Fran-
cois terrane, as similarly proposed by Denison (1984) for the
region to the south where granitic gneiss (once buried as
deep as 15 km) was encountered in a drill hole (DW, fig. 1).

PROFILES X-X" AND Y-Y’

Profile X-X’ (fig. 7B) and profile Y-Y’ (fig. 7C) are sit-
uated normal to the northwest-trending Paducah gravity lin-
eament and the south-central magnetic lineament. The
proposed igneous bodies producing the PGL and the SCML
appear to be dense and magnetic. Computed densities and
susceptibilities are reasonable for a variety of igneous rocks
such as syenite, quartz diorite, gabbro, and peridotite (Daly
and others, 1966; Carmichael, 1982; Coleman, 1971). Calcu-
lated densities along the PGL range from 2.78 to 2.91 g/em?,
whereas, along the SCML, their range is 2.72 to 2.78 g/cm?.
On the other hand, calculated susceptibilities are generally
greater along the SCML (0.021 to 0.103 SI) than those along
the PGL (0.009 to 0.090 SI). This reverse correlation in both
physical properties and anomaly intensities (figs. 7B, 7C)
suggests that the igneous bodies along the PGL have differ-
ent compositions and origin than those along the SCML. An
alternative explanation is that the igneous intrusions have
similar origins but ultramafic rocks along the SCML have
been chemically altered during serpentinization, whereby
Fe-rich silicates such as olivine and pyroxene were oxidized
to form ferrimagnetic material. During serpentinization,
magnetizations of the ultramafic rocks significantly
increase, but their densities decrease (Coleman, 1971; Saad,
1969; Toft and others, 1990). We do not favor this process
here, however, because the linear zone of intrusions associ-
ated with the SCML is considerably larger than the size of
known serpentinized ultramafic rock bodies.



MAGNETIC AND GRAVITY STUDY OF THE PADUCAH 1°x2° CUSMAP QUADRANGLE Cl1

. - §
; UL A B N LA 7/ T R LIRSS S A B A B Bt B B AT ;z
r 1 r ~—
| [ _O
§ s
L 4 L 4
- - - - nE
o
. ~ - +*:f. - oW
q b - + 1o X
- ] - LIk 09
- - - —_— ’\.v‘
- - - +-{-+« '>< o
b . - ‘g. ‘1 >|<.4
- e L 4
+"f « ~ s
- - - o ~
b ~ - p o'
- . - P L g
L 4 L 4 ~
L 4 L 4 ©
| 4e o
1 > i 12
L p L ]
L 4 | 4 2
- ] i 1e Q N
- ~ - —Ho N J
i~ @
+ 4 + ~ @\
- - b B '\.\0_\
o~ ~
i 1 - ) \ Q
L ., L N
- - & 4O \E\
3 5 17 \i?
K ) A o
L 4 L - N
L A L e § xh\
~N
o - - _O aN
- — - -2 ~
L 4 L ,
i j i lo »va S
- L. IR 2 e
i ] i 1 B -
L § L E E €
(]
i § i lo o >
r - — 1w
: I 1° 2 2
r T - 1 ™ o
i ] l ] L
L 4 L 1o =
- - L -2 N
- h B 7 @ = =
- . - . - (7> w
L . L 4 a =] ©
o
i ) } jo e e
| = - 9 =
o B + E —_ ) ®
r ] i ; > 5| §
C ] I ] > CRE
e ~ N I
L . L. a N »
L i L . o N
i !31 ] [ + i
[ ] [ % o
- - - & —48
L 4 L :o
o - — ~
= 4 L 4
- <<1 g - .
g . - . ~
3 lllllllllJllllllllgllllA k. l l Aod L 1 ' A 1l o ;L(LDI
o [} o =} o 0 o 1) =} Do o
o o o o - - o~
T T by @ SYALINOTIA <
¢
SV ISZLONVN STYOITTIN NI 'HId9d

Figure 7 (above and following pages). Theoretical models and potential-field anomalies along profiles A, W-W’; B, X-X"; and C, Y-Y’. Profile
locations are shown in figures 2 and 3. Triangles and crosses in the potential-field plots are the observed data (figs. 2 and 3); solid lines are cal-
culated fields based on the model shown at the bottom of each part of the figure. Numbers in model represent calculated densities in g/cn? and
susceptibilities in SI units (in parentheses). Hachured bodies in model represent igneous intrusions. Labels PGL and SCML in B and C show
lateral extent of the Paducah gravity lineament and south-central magnetic lineament along the profile. Vertical exaggeration in the models is
1.65x.
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Interpreted large intrusions. Solid enclosures denote boundaries of magnetic sources. Dashed enclosures depict gravity sources.

Magnetic intrusions with hachure pattern lie at depths considerably shallower (>1 km shallower) than the depth of Precambrian basement
(see fig. 5). Heavy lines are interpreted faults (some with strike-slip offsets), also shown in figure 9. Intrusions A are interpreted Precambrian
tin-granite plutons, similar to those to the west in the St. Francois Mountains. Intrusion B lies along the interpreted northwest margin of the

Reelfoot graben.

The steep gravity gradients bounding the PGL require
near-vertical intrusions lying at shallow depths. On the other
hand, the intrusions along the SCML may dip about 60°. It is
worth noting that the intrusions appear to be laterally differ-
entiated (i.e., their cores may be generally more magnetic
and dense).

DISCUSSION

Four major geophysical features cross the study area:
anomalies associated with the Reelfoot and Rough Creek
grabens, the south-central magnetic lineament (SCML), and
the Paducah gravity lineament (PGL). The physical and geo-
logic relations among these four features and their associated
structures (e.g., the many fault zones) are poorly understood
and raise the following questions. Does the Reelfoot rift sim-
ply merge with the Rough Creek rift or are there more

complicated rift structures involving several failed arms?
What are the origins of the PGL and SCML? How do the
fault zones relate to these four features? The following dis-
cussions address these and other questions.

To facilitate the discussions of igneous bodies, a map of
interpreted large intrusions was prepared and is shown as
figure 8. Intrusive boundaries were defined using two tech-
niques: horizontal gradient maxima of the gravity and
pseudogravity fields (Cordell and Grauch, 1982) and body
edges indicated on first- and second-vertical-derivative
anomaly maps.

Also shown in figure 8 (hachure pattern) are interpreted
intrusions that appear to lie at depths substantially above
Precambrian basement. In comparing depths of magnetic
basement and Precambrian basement (fig. 5), four inter-
preted intrusions appear to lie at depths shallower (>1 km)
than the depth of Precambrian basement. Although highly
speculative, we propose the two shallow intrusions in the
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