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ORIGIN OF PRIMARY AND DIAGENETIC CARBONATES 
IN THE LACUSTRINE GREEN RIVER FORMATION 

(EOCENE), COLORADO AND UTAH 

By Janet K. Pitman 

ABSTRACT 

Stable isotope geochemistry was used to gain a better 
understanding of the origin of carbonate-rich, kerogen-bear­
ing shales in the Eocene Green River Formation, which was 
deposited in an ancient lake complex. Isotopic, mineralog­
ic, and oil-yield data are reported for two basin-center wells, 
one in the Piceance Creek Basin, Colorado, and the other in 
the Uinta Basin, Utah. The lakes in these basins evolved in­
dependently as separate water bodies, which led to unique 
depositional histories and lake-water chemistries. Results 
show that Ca-Mg-Fe carbonate minerals, the dominant con­
stituents in oil shales in the formation, are primary or early 
diagenetic precipitates whose isotopic compositions were 
determined by environmental conditions and lake state at 
the time of deposition. Initially, primary carbonate precipi­
tation took place in a hydrologically open lake regime that 
had abundant inorganic carbon dissolved from marine 
Paleozoic rock. Later, when the basin was hydrologically 
closed and organically productive, precipitation of primary 
carbonate was promoted by photosynthesis-respiration pro­
cesses; C02 exchange between the atmosphere and lake wa­
ter had a minor influence. Diagenetic carbonate 
precipitated in anoxic, lake-bottom sediments where bacte­
rial methanogenesis was active due to high burial rates of 
organic carbon. Relative to seawater, carbonate-precipitat­
ing lake waters were brackish to slightly saline; during peri­
ods of saline-mineral precipitation, they were brines. 

Evolutionary trends on carbon- and oxygen-isotope 
curves of carbonate provide an historic record of the effects 
of basin closure and hydrologic residence time on carbon 
and oxygen geochemical cycles. Major carbon trends 
record biologic processes that are related to levels of 
paleoproductivity and carbon burial. Major oxygen trends 
reflect changes in the ratio of lake inflow to evaporation. 
Cyclic excursions on the long-term carbon and oxygen 
trends record these changes over short time periods. 

INTRODUCTION 

The Eocene Green River Formation was deposited in a 
large lake complex, known as Lake Uinta, which occupjed 
the Piceance Creek Basin, Colorado, and the Uinta Basin, 
Utah (fig. 1). During the early Eocene, the lakes were shal­
low, hydrologically connected water bodies open to fresh­
water input from areas to the south. Later, in the middle 
Eocene, the lakes were closed, each with its own depocenter, 
which led to distinct depositional histories and lake-water 
chemistries. Thick sequences of carbonate- and organic-rich 
madstone, referred to as oil shale, were deposited in the 
lakes. In the Piceance Creek Basin, abundant nahcolite (so­
dium bicarbonate) accumulated along with organic-rich 
shales in the central part of the lake; nahcolite was deposited 
only locally in the Uinta Basin lake. Thinly bedded oil shale 
comprises rhythmically alternating, ·millimeter to submilli­
meter, light- and dark-colored laminations. The light lami­
nations are composed predominantly of carbonate minerals, 
whereas the dark laminations contain primarily silicate min­
erals. Considerable controversy remains regarding the ori­
gin of the organic-rich shales and their fine-grained 
carbonate minerals, calcite and dolomite. 

Two lake-basin models have been proposed for deposi­
tion of the Green River Formation and its carbonate-rich 
shales. The stratified lake model proposed by Bradley and 
Eugster (1969) defines a deep (greater than 30 m), perma­
nently stratified, saline, alkaline lake that has high organic 
productivity in surface waters and organic-matter deposition 
in anoxic bottom waters. Bradley and Eugster (1969) infer 
that calcite in organic-rich shales was chemically precipitat­
ed in the water column, but they did not determine whether 
dolomite was primary, diagenetic, or a replacement mineral. 
The playa-lake model, originally advanced by Eugster and 
Surdam (1973), suggests that broad playa flats surrounding 
a large, ephemeral lake were sites of extreme evaporation. 
The model proposed that calcite precipitated in the capillary 

I 
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USGS Coyote Wash 1 well 
sec. 22, T. 9 S., R. 22 E. 

USBM 01Awell 
sec. 29, T. 1 S., R. 97 W. 

Figure 1. Generalized geologic map of east-central Utah and northwest Colorado showing the location 
of the Piceance Creek and Uinta Basins and the two study wells. 

zone near the surface of the mudflats and later was incorpo­
rated into deeper water sediments where the calcite was al­
tered to dolomite. 

This study utilized isotopic, mineralogic, and oil-yield 
data to ( 1) delineate major hydrologic states within the Lake 
Uinta system, (2) establish the origin of carbonate mineral 
phases (primary versus diagenetic) within these regimes, 
and (3) determine the controls on the geochemical cycles of 
carbon and oxygen. Two basin-center wells that have con­
tinuous core (U.S. Bureau of Mines 01A well, Piceance 
Creek Basin, and U.S. Geological Survey Coyote Wash 1 
well, Uinta Basin) were analyzed (fig. 2). As part of the 
study, successive members of the formation were subdivid­
ed into major lithofacies and assigned to interpreted lake 
states and depositional environments (as defined by Ryder 
and others, 1976) within the Lake Uinta system (table 1). 

ANALYTICAL METHODS 

Representative samples of carbonate-bearing shales in 
the Green River Formation were sampled for stable isotope 
analysis. Because the carbonate fractions on which isotopic 
analysis was performed represent mixtures, a timed-dissolu­
tion procedure based on different reaction rates for chemical­
ly distinct carbonate phases was used to obtain carbon and 
oxygen isotope ratios (Walters and others, 1972). To pre­
vent contamination by C02 from organic matter during acid 
digestion, kerogen was removed from the samples by ashing 
prior to reaction. The inability to physically separate dis­
crete carbonate phases in most samples led to attributing 
C02 gas evolved in the first hour to calcium carbonates (cal­
cite) and C02 gas evolved after several hours to Mg-Fe car­
bonates (dolomite and ankerite). Carbon isotope analysis of 
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Figure 2. Generalized stratigraphy of the Eocene Green River Formation, Colorado and Utah (W.C. Cashion, written commun., 1994). 
Diagram not to scale. 

Table 1. Generalized lithofacies, depositional environments, and hydrologic states in the lower to 
middle Eocene Green River Formation, Colorado and Utah. 

["Open lacustrine" corresponds to lake-center deposition ; "Marginal lacustrine" corresponds to lake-margin deposition] 

Member Lithofacies Depositional environment 1 Hydrologic state 

Piceance Creek Basin, Colorado 

Parachute Creek 
Garden Gulch 
Douglas Creek2 

Oil shale, evaporite Open lacustrine Closed 
Argillaceous shale Open lacustrine Semi-restricted to closed 
Mixed carbonate-clastic Marginal lacustrine Open 

Uinta Basin, Utah 

Parachute Creek Oil shale Open lacustrine Closed 
Douglas Creek Mixed carbonate-clastic Marginal lacustrine Open to semi-restricted 

1 After Ryder and others (1976). 
2 Not cored in U.S. Bureau of Mines OlA well. 

the Na-bicarbonate mineral nahcolite was performed using 
standard techniques (Global Geochemistry Corporation, 
written commun., 1989), and measurements of ()13C in 
organic matter (see Dean and Anders, 1991) were made on 
splits of samples for which carbonate isotopes were 

analyzed. All isotope results are reported as the per mil (%a) 
difference relative to the Peedee belemnite (PDB) standard 
using the delta (b) notation and are accurate to ±0.2 %o. 

Dolomite/calcite ratios were determined by X-ray 
diffraction for isotopically analyzed samples. The ratio of 
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Figure 3. Ternary diagram showing the range ofCaC0:3-MgC03-FeC03 compositions of carbonate in the Piceance Creek 
and Uinta Basins. 

dolomite to calcite is reported as peak height above back­
ground. The very fine grain size and complexly intergrown 
nature of the carbonate minerals prevented an accurate cal­
culation of the weight percent calcite or dolomite. Oil-yield 
determinations (in gallons per ton-"ton" throughout this re­
port refers to "short ton" or 2,000 pounds) were made using 
high-precision Fischer Assay pyrolysis (Stanfield and Frost, 
1949) and are reported for samples containing carbonate. 
This technique is a measure of a rock's ability to generate oil; 
thus, it provides a means of estimating organic-matter 
content. 

RESULTS 

CARBONATE MINERALOGY 

Finely disseminated Ca-Mg-Fe carbonate minerals are 
abundant constituents in the organic-rich and organic-lean 
shales examined in the Piceance Creek and Uinta Basins in 

this study. X-ray diffraction analysis revealed considerable 
compositional variability between individual carbonate 
phases in the two wells (fig. 3). Varieties of dolomite rang­
ing from ideal dolomite to Ca-dolomite to Fe-rich dolomite 
(ankerite) tend to predominate over calcite in intervals that 
have high oil yield. Calcite containing small amounts of Mg 
and Fe is most abundant in zones that have low oil yield. In 
the upper part of Parachute Creek Member, calcite is ubiqui­
tous. Aragonite, siderite, and Mg-siderite are sparse 
throughout the formation. 

STABLE ISOTOPES, CARBONATE-MINERAL 
ABUNDANCE, AND OIL YIELD 

Carbonate isotope ratios (8 13C and 8180), organic-car­
bon isotope ratios (813C), carbonate mineralogy (dolo­
mite-calcite peak-height ratios), and oil yield (gallons per 
ton) contents of whole-rock samples from the Piceance 
Creek and Uinta Basins are reported in tables 2 and 3 and are 
illustrated relative to depth and stratigraphic position in 



RESULTS 

Table 2. Stable isotopes, carbonate mineralogy, and oil yield in the Green River Formation, Piceance Creek Basin, Colorado. 

[Data from U.S. Bureau of Mines OlA well. Leaders(~-) indicate not determined: isotope values in per mil PDB] 

Depth 

(meters) 

268 
272 
285 
290 
304 
321 
328 
340 
358 
378 

395 
415 
429 

437 
448 
468 
474 
486 
504 
510 
521 
541 
547 
559 
578 
583 
595 
614 
625 
632 
651 
657 
669 
677 
679.5 
679.6 
680 
687 

705 
717 
728 
743 
755 
760 
773 

7.51 
5.34 
7.34 
3.83 
7.29 
6.90 
5.72 
5.50 
9.75 
2.63 

-1.20 
-0.18 

0.90 
2.33 
3.74 
3.95 
5.55 
2.51 
1.20 
2.10 
3.68 
4.08 
4.52 
5.95 
5.19 
4.73 
1.86 
2.46 
4.47 
5.43 
7.05 
6.69 

4.67 
4.60 
5.50 

6.84 
3.36 

7.16 
6.04 
3.10 

10.50 

Calcite 

-3.46 
-5.23 
-2.96 
-5.00 
-2.90 
-3.30 
-3.30 
-2.29 
-0.39 
-4.60 

-4.08 
-2.86 

-4.21 
-3.48 
-3.64 
-3.36 
-3.37 
-2.98 
-3.18 
-3.61 
-3.78 
-3.24 
-3.69 
-3.78 
-4.69 
-4.17 
-3.28 
-4.55 
-5.30 
-4.70 
-4.29 
-4.64 

-5.97 
-5.71 
-6.43 

-2.70 
-7.95 

-7.78 
-8.15 
-8.29 
-4.99 

Dolomite Nahcolite Organic 

matter 
(813C) 

PARACHUTE CREEK MEMBER (closed hydrologic facies) 

9.08 
6.01 
8.60 
6.31 
8.52 
7.48 
5.98 
5.33 

10.36 
3.09 

-2.40 
-0.40 

1.49 
3.25 
5.69 
5.83 
7.10 
4.05 
1.27 
2.90 
4.46 
6.75 
6.42 
6.94 
4.66 
7.17 
3.12 
3.31 
6.48 
6.11 
7.77 
7.62 

5.02 
4.34 
4.68 

Oil-shale facies 

-2.03 
-3.48 
-1.19 
-3.53 
-1.84 
-2.27 
-2.36 
-1.56 

0.58 
-3.62 

Leached zone 

-3.18 
-0.81 

Evaporite facies 
-3.75 8.46 
-3.73 4.92 
-2.19 
-2.02 4.76 
-2.17 
-2.22 5.15 
-2.85 2.68 
-2.63 4.97 
-3.17 
-1.61 
-2.43 
-3.06 
-4.42 12.41 
-2.73 
-4.75 13.99 
-5.49 
-2.64 11.53 
-4.31 9.17 
-3.00 11.08 
-4.27 

-5.29 
-5.92 
-5.85 

7.99 
12.99 
11.68 
11.40 
19.92 

-29.901 

-28.29 
-31.75 
-30.901 

-30.68 
-29.801 

-31.20 
-30.59 
-29.201 

-31.56 

-30.70 
-30.101 

-33.21 

-31.401 

-32.54 
-30.601 

-31.13 
-31.48 
-30.901 

-31.25 
-30.101 

-31.51 
-29.68 
-31.101 

-33.65 
-30.53 
-31.001 

-30.99 
-30.73 
-32.03 
-32.301 

-30.79 
-32.60 
-31.46 
-32.90 
-30.00 

-31.12 
GARDEN GULCH MEMBER (closed hydrologic facies) 

Argillaceous shale facies 
7.60 -2.65 
3.09 -8.74 

6.37 
5.66 
1.51 

11.40 

-9.87 
-8.56 
-7.53 
-4.04 

-30.901 

-30.841 

-29.90 

1 Value reported by Dean and Anders (1991 ). 

Dolomite-calcite 

peak -height 

ratio 

3.27 
1,513.00 
2,025.00 

0.84 
1.14 
0.78 
1.73 
2.15 

10.23 
1,340.00 

38.02 
11.08 

1,325.00 

7.10 
36.54 
12.77 
14.76 
27.83 

7.53 
14.50 

462.00 
10.11 

1,632.00 
156.80 

16.05 
272.00 

33.60 
388.00 

3.54 

1,714.00 
15.33 
29.35 

534.00 

3.60 
484.00 
276.00 
185.00 
930.00 

0.34 
2,704.00 

Oil yield 

(gallons 

per ton) 

15.0 
4.0 

14.0 
70.0 
22.0 
21.0 
20.0 
36.0 
15.0 
8.0 

21.0 
16.0 
27.0 

17.0 
27.0 
34.0 
21.0 
27.0 
4.0 

21.0 
4.0 

25.0 
30.0 
30.0 
18.0 
11.0 
37.0 
28.0 
20.0 
16.0 
17.0 
32.0 
27.0 

46.0 

41.0 
23.0 
28.0 
42.0 
12.0 
9.0 

12.0 

5 
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Table 3. Stable isotopes, carbonate mineralogy, and oil yield in the Green River Formation, Uinta Basin, Utah. 

[Data from U.S. Geological Survey Coyote Wash I well. Leaders (--)indicate not determined; isotope values in per mil PDB] 

Depth Calcite Dolomite Organic Dolomite-calcite Oil yield 
(meters) matter peak -height (gallons 

o13c olso o13c olso o13c ratio per ton) 

PARACHUTE CREEK MEMBER (closed hydrologic facies) 

Oil-shale facies 
670 9.31 -0.70 9.55 -0.10 -32.45 750.00 35.4 
672 7.93 -2.86 9.75 -0.89 23.3 
681 11.13 0.13 11.76 0.30 -28.501 4.52 35.4 
685 12.90 0.89 13.38 0.96 61.4 
697 8.80 -1.15 10.45 1.05 7.17 12.2 
706 7.16 -1.73 7.52 -0.92 -31.15 2.31 16.0 
716 4.95 -2.11 6.40 -1.67 -30.801 400.00 2.2 
725 4.52 -2.62 4.28 -0.60 -27.17 427.50 2.0 
734 4.87 -1.88 5.11 -1.37 -31.07 5.25 7.6 
752 6.99 -0.44 7.61 0.22 -30.99 20.00 12.8 
762 6.27 -1.55 6.49 -0.42 -31.53 2.65 3.5 
771 5.44 -0.68 5.58 -0.43 -30.32 300.00 4.8 
789 6.37 -0.21 6.54 0.00 -28.33 1 11.80 15.8 
807 1.91 -2.02 2.41 -0.05 -28.33 2.35 3.0 
815 1.41 -2.22 3.46 -0.43 -30.301 1.77 1.3 
825 2.88 0.08 3.03 0.09 -30.84 570.00 17.6 
843 4.94 -1.98 6.45 -1.45 -32.02 36.7 
862 8.13 -0.67 10.09 0.87 -30.45 280.00 1.4 
871 6.23 -0.05 6.64 0.07 -30.71 297.50 13.8 
880 5.54 0.12 5.78 -0.04 -30.301 500.00 14.9 
898 3.75 -2.68 5.31 -0.21 -29.97 10.46 1.9 
907 1.82 -3.08 2.24 -2.18 -30.801 300.00 3.0 

DOUGLAS CREEK MEMBER (open to semi-restricted hydrologic facies) 

Mixed carbonate-clastic facies 
917 1.08 -4.19 2.09 
926 -2.35 -6.00 -0.48 
935 -2.12 -6.86 0.13 
953 -0.25 -4.86 2.10 
971 
981 -1.30 -6.20 -0.69 
990 -1.19 -8.15 -0.59 

1,008 -2.74 -9.48 -1.05 
1,026 4.07 -4.63 3.59 
1,035 -2.04 -8.54 -0.21 
1,043 5.44 -2.97 5.92 

1 Value reported by Dean and Anders (1991 ). 

figures 4 and 5. Also shown on table 2 and figure 4 are car­
bon-isotope ratios (813C) for the sodium-bicarbonate min­
eral nahcolite. 

Carbonate minerals in the Green River generally are 
enriched in 13C and depleted in 180 relative to the PDB 
standard. On the average, 813C and 8180 values of calcite 
and dolomite in the same sample tend to show only small 
differences (figs. 6A and 6B). In the Piceance Creek Basin, 
the range of 813C values for calcite and dolomite is highly 
variable, -1 to + 10 %o and -2 to + 11 %a, respectively; the 
majority of values fall between +4 and +8 %o. Negative 

-1.97 -28.35 300.00 
-3.73 -26.45 
-3.29 -26.33 600.00 
-1.97 -30.16 0.93 3.2 

-28.11 0.50 
-4.60 -27.70 0.27 
-5.25 -27.99 0.17 
-5.53 -26.13 0.32 
-6.02 -29.85 0.50 14.5 
-3.85 -26.04 0.33 
-3.21 -30.501 500.00 9.3 

813C values (0 to -2 %o) are from carbonate in brecciated 
shales at the top of the evaporite facies. 813C values of car­
bonate in the Uinta Basin also show large variations, -2 to 
+ 12 %a calcite and -1 to + 13 %a dolomite. Most values are 
between +4 and + 10 %o. 

Compared to 813c, the 8180 values of carbonate tend 
to show less variation. In the Piceance Creek Basin, 8180 
ranges from 0 to -10 %o (calcite and dolomite). In the Uin­
ta Basin, 818Q values of carbonate generally range from +2 
to -3 %o (calcite) and + 1 to -2 %o (dolomite) except in the 
open to semi-restricted hydrologic facies where the 8180 
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()13C in calcite and dolomite and 8180 in calcite and dolomite; A, 
USBM OlA well, B, USGS Coyote Wash 1 well. Each point on the 
graph represents an isotopic value of carbon versus oxygen for one 
sample. 

values are more variable (-3 to -9 %o calcite; -2 to -6 %o 
dolomite). 

813C values of nahcolite in the Piceance Creek Basin 
display considerable variation and substantial enrichment 
ranging from +2 to +20 %o. A comparison between values 

of 813C in nahcolite and other carbonate minerals in the 
same sample show that nahcolite is enriched in Be by 2 to 
10 %o relative to calcite and dolomite. 

The 813C values of organic matter in the Piceance 
Creek and Uinta Basins remain relatively constant (-26 to 
-32 %o) throughout the formation (Dean and Anders, 1991; 
this study). The highest values occur in the open to semi-re­
stricted hydrologic facies in the Uinta Basin. The oil yield 
of shales generally varies significantly, ranging from about 
4 to 70 gallons per ton. The highest oil yields are in the 
closed hydrologic facies; the lowest oil yields are in the 
open to semi-restricted hydrologic facies. 

DISTRIBUTION OF CARBON AND OXYGEN 
ISOTOPES 

Three populations or types of carbonate are recognized 
in the Green River Formation on the basis of the range and 
distribution of 813C and 818Q compositions (figs. 7 and 8). 
One type characterizes the open to semi-restricted hydro­
logic facies in the Uinta Basin. This type has slight positive 
to negative 813C values ( -+4 to --3 %o) and generally neg­
ative 8180 values (0 to --9 %o) that define a linear trend and 
a high degree of correlation between 813C and 818Q (R = 
0.8; fig. 8). Stratigraphic equivalents were not cored in the 
study well in the Piceance Creek Basin; however, because 
comparable depositional and hydrologic environments ex­
isted in both basins, the Uinta Basin primary c'arbonate 
trend was superimposed on the 01A isotope plot (solid line 
in fig. 7) to facilitate interpretation of the data. The second 
type of carbonate is widespread in the closed hydrologic fa­
cies in both basins and displays extreme positive 813c val­
ues ( -+ 5 to-+ 13 %o) and generally negative 8180 values (0 
to --5 %o) that are displaced well above the Uinta Basin lin­
ear carbonate trend; no correlation exists between 813C and 
818Q (figs. 7 and 8). The third type, which occurs only in 
the Piceance Creek Basin, has slight negative 813C values (0 
to -2 %o) and slight negative 8180 values (0 to -4 %o) that 
are displaced below the Uinta Basin linear trend (fig. 7). 
Some compositional overlap between the first two carbon­
ate types may occur within individual lithofacies (see facies 
plots in figs. 7 and 8 ). 

In the evaporite facies of the Piceance Creek Basin, two 
populations of nahcolite are distinguished on the basis of the 
range of 813C values (table 2). Nodular nahcolite has mod­
erate to extreme positive 813C values ( +8 to +20%o) and gen­
erally is restricted to the middle and lower part of the facies. 
Bedded nahcolite has slight to moderate positive 813C values 
( + 2 to +8 %o) and occurs in the upper part of the evaporite 
facies. 

Figure 7 (following page). Relationship of ()Be versus 8180 in 
primary and diagenetic carbonate minerals in the USBM OlA 
well, Piceance Creek Basin. Primary carbonate trend in the Uinta 
Basin shown for reference. Isotope data for individual lithofacies 
are to right of plot. Note similarity between diagenetic trends in 
the Green River Formation and Lake Bosumtwi (see fig. 9). 
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DISCUSSION 

PRIMARY VERSUS DIAGENETIC 
CARBONATE 

The degree of correlation between carbon- and 
oxygen-isotope compositions distinguishes primary versus 
diagenetic calcites and dolomites in modem closed, saline, 
alkaline lakes that have high organic productivity (Talbot and 
Kelts, 1986; data from Botz and others, 1988, replotted by 
Talbot, 1990). One such example is Lake Bosumtwi in 

Ghana, Africa (Talbot and Kelts, 1986) (fig. 9). Carbonate 
minerals that form as primary precipitates in Lake Bo­
sumtwi tend to show slight positive to negative 813C values 
( +6 to -2 %o) that have a high degree of correlation with 
8180. Diagenetic carbonate precipitates display variable, 
moderate to extreme positive 813C values ( + 7 to +27 %o) 

shifted above the primary carbonate trend. In the Green 
River Formation, carbonate minerals exhibit an isotopic 
distribution pattern comparable to Lake Bosumtwi carbon­
ates (see figs. 7 and 8) despite a lower range in 813C and 
8180 values. On the basis of the Lake Bosumtwi data, 
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Figure 9. Isotopic composltlons of primary and diagenetic 
carbonate minerals in Lake Bosumtwi, Ghana (from Talbot and 
Kelts, 1990). Solid lines depict primary and diagenetic 
(methanogenic) trends. 

calcites and dolomites in the Green River that have slightly 
positive o13C values (0 to -+4 %o) were formed mainly by 
primary precipitation in the water mass, whereas carbonate 
phases that have moderate to high positive ()Be values 
(greater than -+4 %o) were formed predominantly by diage­
netic processes close to the sediment-water interface. Cal­
cites and dolomites that have negative ()Be values in the 
Piceance Creek Basin are interpreted to have formed by 
primary precipitation rather than by diagenesis. 

CARBONISOTOPESOFCARBONATE 

The carbon isotopes of carbonates in the Green River 
Formation record the composition of the dissolved inorganic 
carbon (DIC) reservoir in the lake water and in the sediments 
at the time of carbonate precipitation. The carbon reservoir 
in the lake was modified by rates of organic productivity, 
atmospheric exchange of C02, and bacterially mediated 
diagenetic reactions. The degree of basin closure and 
lake-water residence time also greatly influenced the DIC 
compositions. 

PRIMARY CARBONATES 

In the Uinta Basin, the carbon-isotope compositions of 
calcites and dolomites along the primary trend (see fig. 8) 
are interpreted to record the evolution of aqueous bicarbon­
ate as the lake shifted from a hydrologically open, short wa­
ter-residence-time regime to a hydrologically restricted, 
long water-residence-time regime. The most negative val­
ues on the trend (0 to --3 %o), correspond to the initial 
(starting) values for o13C of lake-water bicarbonate and are 
within the range reported for marine carbonate in 
near-shore and alluvial rocks (Keith and Weber, 1964; We­
ber, 1964 )-this suggests that ground water containing dis­
solved C02 from eroded Paleozoic carbonate rock was the 
principal recharge source for the basin. The more positive 
values on the carbonate trend ( -+ 1 to -+4 %o) reflect the in­
fluence of increased basin closure and water residence time 
on the composition of the carbon reservoir. Values en­
riched in 13C coupled with generally high organic-carbon 
richness of the host shales argues for a DIC reservoir regu­
lated by the increased effects of photosynthesis paralleling 
progressive lake-water eutrophication. The effects of pho­
tosynthesis on the carbon-isotope composition were further 
enhanced by increased salinity stratification of the water. 
C02 exchange between the atmosphere and lake water ap­
pears to have played a less important role in the composi­
tion of the carbon reservoir during basin closure. 

DIAGENETIC CARBONATES 

In the Piceance Creek and Uinta Basins, there is 
substantial evidence suggesting that pore-water bicarbon­
ate, rather than lake-water bicarbonate, governed the 
precipitation of Be-enriched (diagenetic) carbonates in 
organic-rich shales. First, the ()13C values of the carbonates 
are moderately to highly positive ( -+4 to -+ 13 %o; figs. 7 
and 8). The rapid reduction of sulfate accompanying a large 
carbon flux from organic matter undoubtedly caused 
pore-water alkalinities to increase greatly. This process led 
to the formation of organic-carbon compounds, methane, 
and associated C02 via acetate metabolism that, in turn, 
promoted the precipitation of diagenetic carbonate minerals 
enriched in Be. Second, the carbon-isotope compositions 
of Be-enriched carbonates are displaced to more positive 
values relative to a primary carbonate trend similar to di­
agenetic (methanic) calcites and dolomites in modem Lake 
Bosumtwi (compare figs. 7 and 8 with fig. 9). Diagenetic 
carbonates in Lake Bosumtwi form in sediment pore waters 
where the overlying lake waters have high rates of evapora­
tion and methanogenesis (Talbot and Kelts, 1986). Third, 
changes in the carbon-isotope compositions of Be-en­
riched calcites and dolomites generally vary independently 
relative to changes in the carbon-isotope compositions of 
organic matter (figs. 7 and 8). This inverse relationship 
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suggests that either the isotopic record of organic matter is 
more complex, and thus distinct from- that of carbonate, or 
the calcite and dolomite formed from a carbon reservoir not 
controlled exclusively by photosynthesis-the latter was 
more likely the case. 

On the basis of the evidence presented above, 
13C-enriched calcites and dolomites (()13C greater than -+4 
%o) in the Green River Formation are early diagenetic 
products that formed in a bacterial regime where methano­
genic processes were active and sedimentation of organic 
matter and burial rates of carbon were high. That bacterial 
methanogenesis had a strong affect on pore-water DIC and, 
in turn, the isotopic composition of diagenetic carbonates is 
supported by the occurrence of 34S-enriched organically 
derived sulfur and disseminated disulfide minerals ( + 16 to 
+52 %o, and + 12 to +49 %o, respectively) in organic-rich 
shales (Tuttle and Goldhaber, 1993). Tuttle and Goldhaber 
( 1993) indicate that bacterial sulfate reduction was essen­
tially completed in the lake water, which kept the sediments 
undersaturated with respect to sulfate minerals. After sul­
fate was depleted by sulfate-reducing bacteria, methanic 
bacteria became dominant. The high iron content in some 
carbonate species may have resulted from insufficient 
amounts of hydrogen sulfide to precipitate all the available 
ferrous iron as pyrite (Cole and Dyni, 1985). 

13C-DEPLETED (PRIMARY?) CARBONATES 

Isotopically light <> 13C values of calcites and dolomites 
in brecciated shales of the evaporite facies (Piceance Creek 
Basin; fig. 7) can be interpreted in two ways. The values 
could reflect reequilibration (recrystallization) with meteor­
ic water containing soil C02 late in the burial history; how­
ever, the oxygen-isotope compositions do not show lower 
values as would be expected if carbonate precipitation were 
related to recrystallization. Therefore, dissolution-zone car­
bonates are not an artifact of recrystallization. A more rea­
sonable explanation for the light ()13C values is that they 
reflect photosynthesis/respiration processes related to de­
creased organic-carbon burial rates. Respiration should 
have increased the 12C content of C02 in the intermediate 
to deep waters of Lake Uinta. Upon reflux of this C02 into 
the overlying waters, the composition of surface-water bi­
carbonate and resulting carbonate precipitates would have 
shifted to lighter <> 13C values. Increased circulation of C02 
through the water column indicates a water body that tended 
toward less stratification. 

OXYGENISOTOPESOFCARBONATE 

The oxygen isotope compositiOns of carbonate 
minerals in the Green River Formation are predominantly a 

function of the 180/160 ratio of the water that precipitated 
the carbonates. The distribution of oxygen-isotope compo­
sitions along the primary carbonate trend in the Uinta Basin 
(fig. 8) records the isotopic evolution of Lake Uinta as it 
shifted from an open, short water-residence-time regime to 
a closed, saline, long water-residence-time regime. The 
()180 values of carbonate near the negative end of the trend, 
including data for shell carbonate from lake-margin envi­
ronments (La Rocque, 1960), reflect the composition of in­
flow water, the freshest waters in the lake. ()I8o values near 
the more positive end of the trend record compositions of 
the most evolved waters in the lake. These waters occurred 
in areas where evaporation was high. Progressive isotopic 
evolution of the water body paralleled increased lake-basin 
closure and residence time of the water, which resulted in 
primary carbonate minerals enriched in 180 relative to the 
inflow water. The continuity of the primary trend through 
time suggests that major changes in the source of fresh wa­
ter to the lake did not occur. 

Like the primary carbonate minerals, diagenetic phas­
es in the Green River also preserve a record of Lake Uinta's 
isotopic evolution. In both basins, ()180 values of diagenet­
ic carbonates partially to completely overlap the composi­
tional range of oxygen in primary carbonate minerals (see 
figs. 7 and 8), which suggests that isotopically modified 
pore waters had essentially the same ()180 composition as 
overlying evaporated lake waters. The ()180 values of di­
agenetic carbonates in the Piceance Creek Basin (fig. 7) 
show wide scatter compared to a more limited range of val­
ues for diagenetic carbonates in the Uinta Basin. The more 
negative values reflect less saline pore waters and indicate 
shallow, fresher water conditions in the lake during the ini­
tial stages of lake-basin closure. The more positive values 
reflect more saline pore waters and imply highly evaporated 
waters in the overlying closed-basin lake. The linear ()13C 
and ()180 trend in the oil-shale facies (see facies plots, figs. 
7 and 8) is consistent with pore waters that became progres­
sively evolved as evaporation and residence time of the wa­
ter in the lake increased. 

The extent of lake-water evaporation and, in turn, iso­
topic evolution of the Green River lakes during the time 
they were closed and precipitating carbonate was evaluated 
using the carbonate-water fractionation equation of Fried­
man and O'Neil (1977) for calcite. Calculated water com­
positions (in SMOW, standard mean ocean water) are based 
on an estimated carbonate precipitation temperature of 
l0°C and average carbonate () 180 values specific to various 
lithofacies. The freshest water existed when the lakes were 
open, short water-residence-time regimes and is estimated 
to have had an 180 composition of about -12 %o. Later, 
upon closure of the basins, the lake waters evolved to heavi­
er compositions. During periods of oil-shale formation, 
which alternated with episodes of evaporite-mineral depo­
sition in the Piceance Creek Basin, carbonate-precipitating 
waters were brackish to slightly saline and had 180 
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compositions of approximately -6 %o. Relative to lake in­
flow, these waters had evolved isotopically as much as 6 %o. 
Presumably, the water mass became isotopically even heavi­
er during periods of extreme evaporation that ended in sa­
line-mineral deposition. At the same time evaporite 
minerals were forming in the Piceance Basin, lake waters 
with estimated 180 compositions of approximately -4 %o 
were depositing oil shale in the Uinta Basin. These waters 
also were isotopically modified by about 8 %o relative to the 
inflow waters. Following the formation of the evapor­
ite-mineral facies in the Piceance Creek Basin, the lakes in 
both basins increased in size and productivity. During this 
period, precipitating waters in the Piceance Creek Basin are 
estimated to have had 180 compositions of about -7 %o, 
whereas, in the Uinta Basin, the water mass was slightly 
heavier, about -5 %o. The 2 %o 180 enrichment in the Uinta 
Basin lake is consistent with lake waters farther from the 
source of inflow; these waters were thus affected by greater 
evaporation. A similar conclusion was reached by Tuttle and 
Goldhaber ( 1993) on the basis of sulfur isotope geochemis­
try of the formation. 

ISOTOPIC TRENDS ON CARBONATE CURVES 

Temporal trends on the isotope curves of carbonate 
(dashed lines in figs. 4 and 5) document the evolution of the 
carbon and oxygen cycles in the Green River lakes. Pertur­
bations superimposed on the trends record alterations in 
these geochemical cycles over much shorter time periods. 
Variations in the carbon and oxygen budget of Lake Uinta 
probably were controlled by changes in climate and tectonic 
conditions during the Eocene. 

In the Piceance Creek Basin, decreasing ()13C values of 
carbonate (and nahcolite) from the bottom of the argilla­
ceous-shale facies to the top of the evaporite facies parallel a 
slight increase in o18o of carbonate (fig. 4). In contrast, in­
creasing o13C of carbonate corresponds to slight decreasing 
()180 values of carbonate in the oil-shale facies. In the Uinta 
Basin, increasing o13C of carbonate extends upward through 
the oil-shale facies and is accompanied by no associated 
long-term changes in ()180 values (fig. 5). 

Superimposed on the ()13C trends in carbonate is a 
rhythmic succession of small- to large-scale (30 to 100m), 
positive and negative excursions (figs. 4 and 5). The o180 
trends, in contrast, display only minor fluctuations. The 
()13C excursions generally correlate with zones of organ­
ic-matter richness (oil yield) and with carbonate mineralogy 
(see Grabowski and Pavear, 1985). On the basis of their da­
ta, positive excursions correspond to zones that have in­
creased oil yield and higher dolomite-to-calcite ratios, and 
negative excursions correspond to zones that have decreased 
oil yield and lower dolomite-to-calcite ratios. A positive 
correlation between these three parameters in the wells on 
which the present study is based is indistinct because of the 
large sample spacing. 

CARBON TRENDS 

A combination of biologic processes in the lake waters 
and in the sediments produced the evolutionary trends on the 
carbon curves of carbonate. The observed Be-enrichment 
trends in the Uinta Basin are what would be expected in an 
organic-productive lake closed to freshwater inflow. The in­
crease in ()13C to heavier values initially was related to in­
tense photosynthetic activity through removal of 
Be-depleted organic carbon; however, as productivity in­
creased with time, rates of organic-matter burial became 
very high, which promoted bacterial methanogenesis in the 
sediments and the formation of carbonate precipitates with 
heavier ()13C values. This same set of processes can explain 
the carbonate trends in the oil-shale facies in the Piceance 
Creek Basin. 

As shown in figure 4, the trends in ()13C versus ()180 in 
the evaporite facies (Piceance Creek Basin) diverge through 
time. Thus, during the long period of evaporite-mineral dep­
osition, the carbon-isotope compositions of the carbon reser­
voir progressively decreased as the oxygen-isotope 
compositions of the oxygen reservoir systematically in­
creased, which suggests that carbonate precipitation was re­
lated to increased lake-water salinity caused by evaporation. 
Lazar and Erez (1992) have shown that atmospheric invasion 
of 12C-enriched C02 into saline, alkaline water causes a 
large negative carbon-isotope fractionation (about -9 %o) be­
tween brine and atmospheric C02 because of intense photo­
synthetic activity. The same photosynthetic effect has been 
reported for a freshwater lake (Herczeg and Fairbanks, 
1987). The possibility of 13C-depletion due to this kinetic 
isotope fractionation in the Piceance Creek Basin is compat­
ible with the measured ()13C values and with the 180 enrich­
ment in carbonate; however, it is inconsistent with the small 
changes (-29 ± 3%o) in the carbon-isotope compositions of 
organic matter. In Eocene Lake Uinta, the partial pressure of 
dissolved C02 was much greater than that of atmospheric 
C02 because of the large bicarbonate reservoir in the water. 
Consequently, the organic carbon fixed would have only 
been depleted by a few per mil (Calder and Parker, 1973; 
Herczeg and Fairbanks, 1987). On the basis of these 
geochemical conditions, it is concluded that 
brine-to-atmospheric C02 exchange was not the dominant 
process controlling carbonate precipitation in the Piceance 
Creek Basin during deposition of the evaporite facies. 

A more reasonable explanation of the carbonate 
Be-depletion trends in the evaporite facies is that they 
reflect the effects of increased respiration. Oxidation of 
organic matter is a source of 12C-enriched C02. A high 
input of isotopically light C02 originating from organic 
matter to the water mass by means of diffusion would have 
shifted the composition of the carbon reservoir in the water 
and the resulting carbonate precipitates to lighter values. 
The increased effects of respiration can also account for the 
8 %o decrease in nahcolite from the bottom to the top of the 
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evaporite facies. Positive 813C values (as high as +20 %o) in 
diagenetic nodules near the base of the facies clearly indicate 
generation of methane and associated l3C-enriched C02 in 
organic-rich sediments. It has been demonstrated that nah­
colite precipitates when C02 pressure in water is at least 10 
times that of atmosphere (see fig. 19 in Bradley and Eugster, 
1969). Lower values (as low as -4 %o) in bedded nahcolite 
at the top of the facies can be attributed to precipitation in 
overlying lake waters where photosynthesis/respiration pro­
cesses were active. 

The ratio of biogenic C02 to organic matter in the 
Green River lakes varied substantially over short time inter­
vals as recorded by the succession of broad positive and neg­
ative &Be excursions on the carbon trends in carbonate, 
particularly in the Piceance Creek Basin. Positive excur­
sions reflect increases in organic-carbon burial and indicate 
the influence of bacterial methanogenesis; thus, they gener­
ally do not preserve the original (primary) carbon trend. In 
contrast, negative excursions reflect decreases in organ­
ic-carbon burial and represent the effects of photosynthe­
sis-respiration; hence, they record a predominantly primary 
carbon trend. Rhythmically alternating carbon excursions 
ultimately may provide an historic record of paleoclimate 
change modified by local sedimentation effects. 

OXYGEN TRENDS 

Temporal trends on the 8180 curves of carbonate record 
the inflow-evaporation history of the Green River lakes and 
the effects of long water residence time on the composition 
of the oxygen reservoir in the water. In the Piceance Creek 
Basin, slight increases in 8180 parallel increased concentra­
tions of nahcolite, implying progressive evaporation and 
shallowing of the Piceance Creek Basin lake through time. 
The buildup of the heavy isotope of oxygen was small in 
comparison to modern saline lakes, which suggests the lake 
received minor inflow that mitigated the effects of extreme 
evaporation. Long-term decreases in &I So of carbonate in 
the oil-shale facies are consistent with expansion and deep­
ening of the lake. Near-vertical&18o trends in the Uinta Ba­
sin indicate a water body that tended toward long-term 
hydrologic stability. A stable water body implies only minor 
alterations in the ratio of freshwater inflow to evaporative 
loss and, hence, also implies isotopic continuity of the water. 

Positive and negative &180 excursions on the 
oxygen-isotope curves record alterations in hydrologic bal­
ance; positive excursions correspond to increased lake-water 
evaporation and negative excursions correspond to increased 
lake inflow. In the Piceance Creek Basin, there is a pro­
nounced positive 8180 excursion at the base of the oil-shale 
facies that is not observed in the same stratigraphic position 
in the Uinta Basin. This excursion immediately overlies an 
interval where nahcolite formerly was widespread. If, in the 
Piceance Creek Basin, nahcolite precipitated in carbonate 

mudflats during the period of maximum lake regression and, 
later, upon lake expansion, was reworked to the center of the 
lake, it may have added a component of heavy 180 to the ox­
ygen reservoir in the water that caused the composition of 
the precipitated carbonates to shift to heavier values. The re­
turn to light values above this interval suggests that the effect 
of this 180 was short lived because of the large reservoir of 
180 in the water. The fact that a positive 8180 excursion is 
not observed in the Uinta Basin may reflect the absence of 
nahcolite, assuming it was the source of the heavy oxygen. 

CONCLUSIONS 

Geochemical evidence presented in this study indicates 
that lake processes in the Piceance Creek and Uinta Basins 
promoted Be enrichment relative to inorganic carbon (ini­
tially about 0 %o) in the Green River systems. More enriched 
values (greater than -+4 %o) were caused by bacterial meth­
anogenesis in sediment pore waters during early diagenesis. 
Less enriched values (less than -+4 %o) were produced by 
photosynthesis/respiration in lake waters, which resulted in 
organic matter being deposited beneath anoxic bottom wa­
ters (fig. 1 0). 

The degree of lake-water stratification strongly influ­
enced the processes (primary versus diagenetic) governing 
carbonate precipitation. When lake waters were well strati­
fied, high levels of organic productivity and carbon burial 
promoted bacterial methanogenesis and the formation of di­
agenetic carbonates in anoxic sediments. Conversely, when 
lake waters were poorly stratified, photosynthesis/respira­
tion processes resulted in primary carbonate precipitation in 
the water. Decomposition (respiration) of organic matter 
when the lake in the Piceance Creek Basin was poorly strat­
ified reversed the bicarbonate Be enrichment caused by 
photosynthesis. 

&180 values of carbonate indicate that carbonate-pre­
cipitating waters in the Green River lakes were predominant­
ly brackish to slightly saline (relative to seawater) except 
during periods of evaporite-mineral deposition when the wa­
ters presumably were brines. Periods of lake-level rise and 
fall are recorded as variations in carbonate 180. During 
much of Eocene time, the Green River lakes were hydrolog­
ically closed, which resulted in significant increases in salin­
ity due to evaporation and in the isotopic evolution of the 
180 in the water. 
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