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Sequential Laramide Deformation and
Paleocene Depositional Patterns in

Deep Gas-Prone Basins of the
Rocky Mountain Region

By William J. Perry, Jr., and R.M. Flores
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ABSTRACT

Successive eastward and northeastward partitioning of
the Late Cretaceous Rocky Mountain foreland basin took
place in southern Montana and Wyoming during latest Cre-
taceous and Paleocene time.  Economic implications, partic-
ularly for deep gas accumulations, are examined in terms of
this structural sequence.  Calculated basin subsidence rates
and associated basin-margin faults and folds are characteris-
tic of transpressional (oblique-contractional) deformation.
The sequence of structural events within the Hanna and
Wind River Basins is discussed in terms of deep gas occur-
rences, and the possibility, and possible locations, of undis-
covered deep gas are explored.

INTRODUCTION

In this report, we describe the structural history, setting,
and trapping mechanism of deep gas accumulations in sev-
eral Rocky Mountain basins in order to relate these factors
to undiscovered natural gas resources. We compare the tim-
ing, synorogenic-sediment dispersal patterns, and structural
style of two deep Rocky Mountain basins in an attempt to
approach this goal.

Perry (1989; this volume) showed that deep natural gas
accumulations in the conterminous United States are associ-
ated primarily with two structural settings:  (1) passive con-
tinental margin basins and (2) basins associated with and
inland from active continental margins.  This latter group of
basins (type 2 basins of Perry, 1989) was subdivided by
Perry into forearc basins, seaward of the magmatic arc above
a continentward-dipping subduction zone; foreland basins,
beneath and cratonward of the frontal zone of fold and thrust
belts; and extensional or transtensional basins, associated

chiefly with transform margins.  In this report, we discu
deep gas-prone Late Cretaceous and early Tertiary Laram
basins of the Rocky Mountain foreland, in particular, th
Hanna and Wind River basins.

Several sedimentary basins in the central Roc
Mountains contain substantial volumes of sedimentary ro
at depths greater than 15,000 ft (4,572 m); the larges
these basins are the Green River and Uinta basins, res
tively north and south of the Uinta uplift (fig. 1).  Thes
basins initially developed during Cretaceous time as fo
deeps in front of the eastward-prograding Wyoming a
Utah salients of the Cordilleran thrust belt.  A southea
ward progression of major uplift and consequent ba
development in the Rocky Mountain foreland began 
extreme southwestern Montana west of the Neoge
Yellowstone volcanic area (fig. 1) during Cenomania
Turonian time (Perry and others, 1990; Haley and othe
1991).  Investigation of the sequence of Laramide deform
tion and relative timing of Rocky Mountain foreland bas
development (Perry and others, 1990, 1992) has begu
revolutionize our understanding of the Late Cretaceous 
early Tertiary history of the Rocky Mountain regio
(Flores and others, 1991; Keighin and others, 199
Nichols and others, 1991; Roberts and others, 1991).   
following comments concerning the history of Laramid
deformation are summarized from Perry and others (199

No evidence of Campanian or older Cretaceous La
mide-style deformation (other than  tectonic welts of lo
relief) is present in the Rocky Mountain foreland east 
southeast of the Blacktail-Snowcrest and Wind River upli
(fig. 1), based on available palynostratigraphic dating of p
orogenic and synorogenic sediments, with the exception
gravels of unknown origin in the Frontier Formation in th
northwestern part of the Bighorn Basin.  The Front Ran
uplift began by 69 Ma and culminated in exposure of t
49
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Figure 2.

 

Map showing sequence of inception of Laramide de-
formation in Rocky Mountain region.  Arrows indicate direction of
migration of Laramide deformation front.

  
crystalline basement by early Paleocene time (Kluth a
Nelson, 1988; Wallace, 1988).  Subsequent Laram
deformation spread northeastward from the Gran
Mountains–Shirley Mountains uplift (fig. 1) in south-centra
Wyoming.  The Laramide deformation front reached th
Black Hills by late Paleocene time, creating first the Win
River Basin and then the Powder River Basin, partitioni
these basins from an earlier continuous foreland basin w
minor welts (Merewether and Cobban, 1986).  These bro
structural welts of low relief, such as the San Rafael Sw
in eastern Utah, had begun to grow in the Rocky Mount
foreland by mid-Cretaceous time (about 90 Ma).  A maj
east-west crustal discontinuity along the Wyomin
Colorado State line separates Archean basement rocks to
north from Proterozoic basement rocks to the south.  So
of this discontinuity, upper crustal Laramide deformatio
probably proceeded from east to west, opposite in direct
from that in the north, culminating along and defining th
eastern boundary of the Colorado Plateau in late Eoce
chiefly Green River time (Perry and others, 1992) (fig. 2)

Economic implications of this newly recognize
sequence of deformation of the northern and central Ro
Mountain foreland include progressive opening an
subsequent blockage of migration paths for hydrocarbo
generated from Paleozoic source rocks in southeas
Idaho, southwestern Montana, Wyoming, Colorado, a
eastern Utah.  Deep natural gas, generated during 
Tertiary, has likely migrated from the deeper parts of the
foreland basins into structural traps formed during Laram
deformation.

Within the Rocky Mountain foreland, the Laramid
Green River and Uinta Basins are followed in order of si
of area deeper than 15,000 ft (4,572 m) by the Wind Riv
Basin, the Great Divide and Washakie Basins, and, perh
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Figure 1 (previous page). Map of Rocky Mountain foreland
province showing principal Laramide basins and uplifts.  Medium
shade, major uplift; light shade, broad positive area. Sawteeth
thrust faults point into upper plates.  AU, Axial uplift; BB, Bighorn
Basin; BHU, Black Hills uplift; BSU, Blacktail-Snowcrest uplift;
BU, Bighorn uplift; CA, Casper arch; CMB, Crazy Mountains Ba
sin; FRU, Front Range uplift; GDB, Great Divide Basin; GHB
Grand Hogback uplift; GRB, Green River Basin; GR-SU, Granit
Mountains–Shirley Mountains (Sweetwater) uplift; HB, Hann
Basin; HU, Hartville uplift; LB, Laramie Basin; LU, Laramie up-
lift; MA, Moxa arch; MBU, Medicine Bow uplift; OCU, Owl
Creek uplift; PB, North and Middle Parks Basin; PCB, Piceanc
Creek Basin; PRB, Powder River Basin; PSU, Park–Sierra Mad
uplift; RAU, Rawlins uplift; RU, Rock Springs uplift; SCU, Sangre
de Cristo uplift; SSU, Sawatch–San Luis uplift; SWB, Sand Was
Basin; UB, Uinta Basin; UMU, Uncompahgre uplift; UU, Uinta
Mountains uplift; WB, Washakie Basin; WHU, White River uplift;
WMU, Wet Mountains uplift; WRB, Wind River Basin, and WRU,
Wind River uplift.  Modified from Bayley and Muehlberger
(1968).
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the deepest of all, the Hanna Basin, all in Wyoming (fig. 1
These latter four basins began to subside in Late Cretace
time as part of the Hanna trough (Thomas, 1949; LeFeb
1988).  This trough extended from the front of th
Cordilleran thrust belt, in northeastern Utah and southea
ern Idaho, eastward across southern Wyoming.  Southw
thinning of the upper Maastrichtian siliciclastic sequen
along the southern margin of this trough along the east
flank of the late Laramide Washakie Basin is shown in gr
detail by Hettinger and others (1991).  The region of t
Great Divide, Hanna, and Washakie basins was partition
from the Green River Basin to the west in latest Cretace
time by growth of the Rock Springs uplift (Kirschbaum an
Nelson, 1988; Hettinger and Kirschbaum, 1991) followin
Late Cretaceous development of the Wind River–ances
Teton–Granite Mountains uplift (Perry and others, 199
The Rawlins uplift finally isolated the Hanna Basin from th
other basins most likely in latest Paleocene to Eocene ti
subsequent to deposition of Paleocene coals of P2 
according to R.D. Hettinger (oral commun., 1992).

HANNA BASIN

The Hanna Basin (fig. 3) contains more than 30,000
(9,144 m) of Phanerozoic sedimentary rocks, of which mo
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Figure 3.

 

Tectonic map of Hanna Basin region, Wyoming, showing the location of No. 1 Hanna Unit well and line of cross section of
figure 4.  AT, Arlington thrust fault; ST, Shirley thrust fault.  Modified from Blackstone (1990; written commun., 1991).
than 15,000 ft (4,572 m) are Upper Cretaceous in age 
predominantly marine in origin.  Less than 2,500 ft (762 m
of pre-Cretaceous Phanerozoic sedimentary rocks 
present (from sections by Blackstone, 1983).  Upperm
Cretaceous and Paleocene nonmarine rocks are more 
14,000 ft (4,270 m) thick.  The nonmarine formations pe
etrated are gas prone, and these more shallowly buried ro
are being exploited for coal-bed methane.
nd
)
re
st
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-
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The major compressional structural framework alon
the southern margin of the basin was defined by Beckw
(1941).  Dobbin and others (1929) named and mapped
Tertiary rocks of the basin.  Gill and others (1970) discuss
the stratigraphy and nomenclature of Upper Cretaceous 
lower Tertiary rocks in the area, and they indicated tha
major unconformity is present between the Paleoce
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Hanna Formation and Cretaceous rocks in the northern
Hanna Basin.  A deep drill hole to the south of the surface
expression of this unconformity shows, however, that at
least 6,500 ft (1,980 m) of intervening rocks is present
within the basin (fig. 3); most of these rocks are now known
to be early to middle Paleocene in age (Cavaroc and others,
1992).  The basin contains numerous Upper Cretaceous to
Paleocene coals (Glass, 1975; Glass and Roberts, 1984) for
which precise palynologic dates have not been previously
reported.  Eight carefully selected samples from these
formations, provided by Dr. G.B. Glass, State Geologist of
Wyoming, were processed for pollen by D.J. Nichols of the
U.S Geological Survey.  The results indicate that virtually
the entire coal-bearing section of the Hanna Basin, a more
than 8,150-foot-thick (2,480 m) sequence primarily
composed of nonmarine siliciclastic rocks, is Paleocene in
age (table 1).

Recent work by Cavaroc and others (1992) shows
detailed palynostratigraphic biozones of the Ferris and
Hanna Formations in the Hanna, Carbon, and Cooper Lake
basins.  The Ferris Formation in the Hanna Basin is as thick
as 5,500 ft (1,676 m) and is dated as P1–P3 in age (early to
early middle Paleocene) above the basal conglomeratic
sandstone of the Ferris.  The overlying Hanna Formation is
as thick as 6,500 ft (1,981 m) and is dated as P3–P6 in age
(early-middle to late Paleocene)(Cavaroc and others, 1992).
Zone P6 is thinner than P5 and is directly overlain by a thick
carbonaceous shale (gyttja formed in a lake) dated as
Eocene in age.  In the Carbon Basin east of the Hanna Basin
(fig. 3), the Ferris Formation is not present, and the Hanna
Formation is as thick as 1,100 ft (335 m) and represents
P4–P5 time (late-middle Paleocene–late Paleocene).  Farther
to the east-southeast in the Cooper Lake Basin, the Hanna
Formation is as thick as 680 ft (207 m) and is dated as P5–P6

in age (late Paleocene).

Palynomorph dates and crossbed measurements (Ryan,
1977; Cavaroc and others, 1992) of the Ferris and Hanna
Formations in the Hanna Basin area suggest that a northeast-
flowing fluvial system drained through the rapidly subsid-
ing Hanna Basin from latest Cretaceous through P3 time
(early-middle Paleocene).  The outlet may have been in the

area of the present Shirley Basin.  Provenance to the so
may have been the western flank of the broad latest Cr
ceous Front Range uplift.  This fluvial system initially wa
in the form of high-gradient braided streams and evolv
into low-gradient meandering-anastomosed streams.  T
thick Ferris coals, as thick as 30 ft (9 m), accumulated
low-lying mires of these low-gradient streams.  The boun
ary (P3) between the Ferris and Hanna Formations is mark
by conglomeratic sandstone found in east-flowing hig
gradient braided streams.  These high-gradient strea
evolved into a southeast-through-flowing low-gradien
meandering and anastomosed stream during P3–P6 time. The
thick Hanna coals (as thick as 30 ft [9 m]) accumulated
associated low-lying mires.  Provenance shifted to t
Granite, Seminoe, and Shirley Mountains in late Paleoce
time.

The fluvial paleodrainage system, consisting 
braided to meandering streams, flowed to the southeast f
the Hanna Basin to the Carbon Basin during P4–P5 time (late
middle Paleocene to early late Paleocene).  The Car
Basin was either a nondepositional or an erosional area
P1–P3 time, and it began to subside during P4 time. Thick
Hanna coals (as much as 20 ft [6 m]) in the Carbon Ba
accumulated in low-lying mires of the braided and meand
ing fluvial systems.

The fluvial system drained to the southeast into a
through the Cooper Lake Basin during P5–P6 time.  A shift
in dispersal of fluvial sediments from south to northeast
the Cooper Lake Basin developed during late P5–P6 time.
Conglomerate and conglomeratic sandstone dispersed
alluvial fans from the Medicine Bow Range into the Coop
Lake Basin suggests that uplift of the hanging wall of t
Arlington thrust (and thus thrusting) was occurring at th
time.

Eocene rocks in the Hanna and Cooper Lake Bas
are marked by thick carbonaceous shale and mudstone
a few coarse-grained, conglomeratic sandstone beds.  
bonaceous shale in the northern part of the Hanna Ba
indicates gyttja or shallow lake and paludal depositio
whereas mudstone in the Cooper Lake Basin sugges
deeper lake deposit.  The gyttja is overlain by burrow
Table 1. Summary of results of palynologic studies of coal samples from the Ferris and Hanna Formations, Wyoming.  
[Palynologic analyses by D.J. Nichols; samples provided by Dr. Gary Glass, State Geologist, Wyoming Geological Survey.  Bed designations are given, sam-
pled intervals described, and relative positions in the sequence shown in Glass (1975) and Glass and Roberts (1984)]

Stratigraphic unit Bed Sample number Geologic age and zone

Hanna Formation  80  74–24    Late Paleocene, probably zone P5.1

Hanna Formation  76  75–14    Late Paleocene, probably zone P5.1

Hanna Formation Brooks Rider2  75–14    Middle Paleocene, zone P3.
Ferris Formation 65  75–16    Early Paleocene, probably zone P2.
Ferris Formation 60  77–6     Early Paleocene, probably zone P2.
Ferris Formation 25  77–14    Early Paleocene, possibly zone P1.
Ferris Formation 24  74–24    Early Paleocene, possibly zone P1.

1Late but not latest Paleocene (D.J. Nichols, written commun., 1991).
2Near base of Hanna Formation.
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coarsening-upward mudstone, siltstone, and rippled sand-
stone beds.  Scouring of the rippled sandstone by a channel
sandstone indicates a delta front–distributary channel
complex.  This sequence is overlain by carbonaceous shale
that contains fish remains indicating expansion of the lake.
The lake deposit, in turn, is overlain by a coarsening-
upward delta-front deposit. Thus, during the early Eocene,
the Hanna trough was transformed into a closed lacustrine
basin, probably resulting in rapid subsidence and (or) rising
of groundwater table above a broad alluvial floodplain.

Thus, infilling of the Hanna and associated basins and
direction of dispersal of fluvial sediments were controlled by
uplift of a south-southwestern source area (west flank of
early Front Range uplift) during P1–P3 time followed by
uplift of an active northern source area (Granite-Seminoe-
Shirley Mountains) during P3–P5 time and succeeded by a
southern source area (Medicine Bow Mountains) during
P5–P6 time.  The high ash and sulfur content in Hanna Basin
coals resulted from erosion of Cretaceous marine fine-
grained sediments from nearby uplifts, from which detrital
and soluton loads entered restricted fluvial pathways and
were ponded, interacting with low-lying mires in the rapidly
subsiding basin (Ellis and others, 1992).  Ponding of these
fine-grained sediments continued into the Eocene lake that
extended from the Hanna to the Cooper Lake Basin, and
during this time rapid subsidence also was accompanied by
closure of the Hanna trough.

Twenty-five vitrinite samples from the No. 1 Hanna
Unit well (fig. 3) have been analyzed by Ben Law of U.S.
Geological Survey.  This dry hole was drilled to a depth of
12,496 ft (3,809 m) but did not reach the base of the Ferris
Formation.  To a depth of almost 10,000 ft (3,048 m), vitrin-
ite reflectance values are less than 0.7 Ro percent.  Below
10,000 ft, vitrinite values increase rapidly to a value of 1.23
Ro percent near the bottom of the hole at a depth of 12,485 ft
(3,805 m).  The high reflectance values near the base of the
drill hole suggest that the more deeply buried marine Creta-
ceous rocks in the basin should yield thermogenic natural
gas; however, only one small gas field, on the northwest
flank of the basin, has been developed.

The Hanna Basin is surrounded by Laramide thrust
faults that are imprecisely dated.  The coal-bearing nonma-
rine sequence represented by the Hanna and Ferris Forma-
tions may represent the time of maximum thrust-related
subsidence.  This more than 12,000-foot (3,657 m)-thick
Paleocene sequence (Cavaroc and others, 1992) may be cor-
rected for compaction (Angevine and others, 1990).  If an
original mean porosity of 45 percent and a present mean
porosity of 25 percent (both very rough estimates) are
assumed, then a simple decompaction coefficient of 1.36
results.  Using this coefficient to expand the presently
known conservative thickness of at least 12,000 ft (3,657 m),
more than 16,000 ft (4,974 m) of subsidence may have
occurred during the Paleocene in the northern part of the
Hanna Basin during a period of about 8.6 m.y., or roughly

1.9 ft (0.57 m) per 103 years decompacted or 1.4 ft (0.425 m
per 103 years uncorrected for compaction.  These valu
compare to Cenozoic subsidence rates in southern Califo
in small pull-apart basins of 2.3 ft/103 years (0.7 m/103

years) in the Eocene-Miocene and 3.3 ft/103 years (1.0 m/103

years) in the post-Miocene (Yeats, 1978), in which t
extreme subsidence rates are driven by major strike-
faulting.  Representative tectonic subsidence histories 
given for various types of basins by Angevine and oth
(1990, fig. 6.1); maximum subsidence rates for forela
basins range from 0.085 to 0.57 ft/103 years (0.02–0.17 m/
103 years), whereas rates for strike-slip basins range fr
0.5 to 2.18 ft/103 years (0.15–0.66 m/103 years).  Clearly,
anomalously high subsidence rates occurred in the Ha
Basin, well outside the average range for foreland basins
well within the range of rates typical of strike-slip relate
basins.  The northern margin of the Hanna Basin is int
preted to represent the locus of a significant zone of la
Cretaceous to Paleocene accommodation (strike-slip) fa
ing at the northern margin of the zone of east-west Laram
shortening represented by the present Colorado Front Ra
and Laramie Range.

The sequence of tectonic events in the Hanna Ba
region are as follows: first, development of a sequence
thick marine Upper Cretaceous rocks that trends east-w
across southern Wyoming; second, partial isolation of 
Hanna Basin as a subarea of the Greater Green River B
by early Paleocene growth of the Granite Mountains–Sh
ley Mountains transpressive zone to the north; third, sou
ward tilting, probably in mid-Paleocene time concurre
with growth of the Sweetwater uplift and initial develop
ment of the Shirley thrust fault along the northern marg
of the basin.  The fourth and final phase of structu
growth, uplift of the Medicine Bow Mountains and Raw
lins uplift concurrent with development of the Arlingto
thrust fault, probably began in late Paleocene time.  T
inferred geometry (fig. 4) of the northern margin of th
basin suggests that major gas accumulations may 
present in the undrilled northern part of the basin bene
the Shirley thrust fault, provided that gas generation con
ued during and after thrusting.  Seismic data (Kaplan a
Skeen, 1985) do not clearly define the structure of t
northern margin of the Hanna Basin.  Much gas m
remain to be found in deep Rocky Mountain forelan
basins if the scenario described here is correct and if 
type of tilting prior to thrusting has occurred in other area
The high vitrinite reflectance values at depths greater th
10,000 ft (3,048 m) suggest that the deeper Cretace
units should also yield natural gas; however, only o
small gas field has been developed.  Very little deep dr
ing has been conducted in the Hanna Basin, unlike ot
basins to the west and north, and substantial amount
deep gas may yet be found in this basin.
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Figure 4.

 

Schematic cross section through northern part of Hanna Basin, Wyoming.  Line of cross section shown in figure 3.
Modified from Blackstone (1983).
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The Wind River Basin, northwest of the Hanna Basin,
is separated from the Hanna Basin by the Granite Moun-
tains–Sweetwater uplift (fig. 5), which may have begun to
grow in mid-Cretaceous time (Merewether and Cobban,
1986) and was a positive element in Campanian time (Rey-
nolds, 1976).  Upper Cretaceous rocks thicken northeast-
ward in the Wind River Basin to more than 18,000 ft (5,486
m).  The Walton-Bullfrog field in Upper Cretaceous Fron-
tier Formation sandstone in the northeastern part of the basin
(fig. 5) contains the deepest producing Cretaceous gas res-
ervoir in the Rocky Mountain region (more than 18,700 ft
[5,700 m] deep).  Other significant nearby ultradeep oil and
gas fields include West Poison Spider and Tepee Flats; the
latter field is beneath the lip of the Casper arch, from which
it is separated by a major blind basement-involved thrust
system that dips northeastward beneath, and is responsible
for, the arch.

The deep Madden gas field in the northern part of the
Wind River Basin (in which Madison Limestone and Big-
horn Dolostone gas reservoirs are as deep as 23,500–23,900
ft [7,162–7,284 m]) is in front of (south of) the Owl Creek
thrust fault that bounds the northern margin of the basin and
is likely continuous with the thrust under the lip of the
Casper arch.  The Madden anticline (fig. 5), the locus of this
growing giant gas field, is cored by a thrust wedge, and the

north-bounding Owl Creek thrust fault has more tha
35,000 ft (10,668 m) of structural relief (Dunleavy an
Gilbertson, 1986), comparable to that of the Wichita fron
fault system along the southern margin of the Anadar
Basin (Perry, 1989).  The Wind River Basin is thus bound
on two sides by thrust faults, whereas the Hanna Basi
almost surrounded by thrust faults (figs. 3, 5).

The Wind River Basin was partitioned from th
remainder of the Rocky Mountain foreland in late Paleoce
time by growth of the Casper arch, which led to intern
drainage as represented by Lake Walton (fig. 5) (Keef
1965).  Isolation from long-distance migration of hydroca
bons from previously downdip areas to the west and sou
west occurred earlier, during latest Cretaceous to ea
Palocene time. 

The Wind River Basin occupies a critical position wit
respect to the sequential development of Laramide struc
in Wyoming.  Conglomerate in the Upper Cretaceous Lan
Formation in the northwestern part of the Wind River Bas
nearest the Wind River uplift, contains granule-size fra
ments and scattered pebbles of chert, siliceous shale,
porcellanite (Keefer, 1965).  Here the Lance is about 1,1
ft (351 m) thick (Keefer, 1965, p. A17), and only the low
part is conglomeratic.  Keefer found no definite evidence 
uplift of the Wind River Range during Cretaceous time, b
his control was inadequate along the southwestern margi
the basin (contours dashed, no control points within 30 
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Figure 5.

 

Tectonic map of Wind River Basin region, Wyoming. Selected contours (in feet) for top of Pennsylvanian and Permian Minnelusa and Phosphoria Formations.  ET, Emmi-
grant Trail thrust fault; LDA, Little Dome anticline; MA, Madden anticline; PSW, West Poison Spider field; TF, Tepee Flat field; WBU, Walton-Bullfrog field.
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[50 km] of the northeastern flank of the Wind River
Mountains, his fig. 9).  The above described conglomerate
in the lower part of the Lance was probably eroded from
Frontier and older Mesozoic rocks exposed on the growing
Wind River uplift.

Murphy and Love (1958) inferred that a broad, domal
uplift occurred in latest Cretaceous time on the southeastern
flank of the Wind River Basin in the area of the present
Granite Mountains, and Keefer (1965) made similar
conclusions.  In a summary of the Laramide history of the
Granite Mountains area, Love (1971) indicated that uplift of
this area did not begin until latest Cretaceous time and cul-
minated in the earliest Eocene time.  He suggested that the
early phase of this uplift may have been coextensive with
that of the south-central part of the Wind River Range.

Investigations by Flores and Keighin (1993), Flores
and others (1993), and Nichols and Flores (1993) suggest
that the Wind River Range was an active source area about
P3 (early middle Paleocene) time.  Flores and Keighin
(1993) described conglomerate and conglomeratic sand-
stone as thick as 500 ft (152 m) in the upper part of the lower
member of the Fort Union Formation.  The conglomerate is
made up predominantly of quartzite probably derived from
Precambrian–early Paleozoic metaquartzite.  Paleocurrent
measurements from clast imbrication and trough crossbeds
show a west-northwest provenance.  Flores and Keighin
(1993) suggested that these rocks were deposited in east-
southeast-flowing braided streams along a structural
paleovalley that occupied the Shotgun Butte area.  They also
reported that the overlying Shotgun Member (P4–P5 age)
(Nichols and Flores, 1993) in the same area was deposited
in shortheaded meandering and anastomosed streams that
drained into Lake Waltman.  Flores and others (1993)
described Fort Union conglomerates dominated by quartzite
in the Hudson area at the southwestern part of the Wind
River Basin (fig. 5).  These Fort Union conglomerates are P3

in age or older (early middle Paleocene).  Underlying coals
of the Mesaverde Formation are Campanian in age (D.J.
Nichols, written commun., 1993).  Paleocurrent measure-
ments from clast imbrication of the conglomerate and
trough crossbeds of the conglomeratic sandstone show
northeastward dispersal of braided streams, a dispersal
direction that suggests uplift of the Wind River arch at this
time.  In the Hudson area a high may have existed on which
an incised paleovalley was developed (Flores and others,
1993).  This high, which extended eastward and was flanked
by the Emmigrant Trail thrust fault, was an area of net ero-
sion and (or) nondeposition during Maestrichtian to early
Paleocene time prior to deposition of the Fort Union con-
glomerates.  A northwest line from the Emmigrant Trail
thrust fault to southwest of Little Dome anticline (Flores and
Keighin, 1993; Flores and others, 1993) represents a hinge
line east of which was a rapidly subsiding subbasin of the
western Wind River Basin proper.  Investigation of the Fort
Union conglomerates and conglomeratic sandstone by

Flores and others (1992) at Castle Garden (fig. 5) on 
south-central flank of the Wind River Basin indicates th
appearance of granitic pebbles, cobbles, and boulders b3

time (early middle Paleocene).  Paleocurrent measurem
of trough crossbeds show northeastward dispersal ass
ated with a meandering fluvial system.  This dispersal dir
tion suggests that the sediments were derived from 
Granite Mountains.  The age of first appearance of igne
detritus coincides with the P3 biozone determined for dis-
persal of the Hanna Formation in the Hanna Basin from 
Seminoe-Granite Mountains and Shirley Mountains.  A
increase in amount of conglomeratic boulders during P3–P6

time reflect continued uplift of the Granite Mountains
which provided sediments into Lake Waltman.  Nichols a
Flores (1993) suggested that the P3–P6 arkosic conglomer-
atic sandstone at Castle Garden is in part correlative with
P5–P6 Waltman Shale Member of the Fort Union Formatio
in the northeastern part of the basin.  The Waltman Sh
Member represents deposition in a lacustrine setting, a
result of rapid subsidence probably influenced by the O
Creek thrust fault (transpressional or strike-slip) (Molze
1992; Paylor, 1992) and closure of the basin by the Cas
arch.  The Waltman Shale Member is as thick as 3,00
(914 m).  Lake Waltman was fed by shorthead
meandering and anastomosed streams and associate
deltas.  The Waltman Shale Member served as source 
for high-paraffin oils in the Fort Union reservoir sandston
(Palacas and others, 1992); however, gas and condensa
the most common hydrocarbons in reservoir sandstone
the Fort Union Formation (Wyoming Geologic Associatio
1989).

Keefer (1965) concluded that, although th
Cretaceous-Tertiary boundary in the Wind River Basin
generally conformable, extensive downwarping occurred
this time along the present-day northern margin of the ba
Along the northeastern margin of the Wind River Basi
Keefer (1965) observed that the oldest conglomerate zo
are in the lower Eocene Indian Meadows Formation.  T
oldest arkosic conglomerate in this part of the basin is at
base of the Lost Cabin Member of the overlying Eoce
Wind River Formation.  The presence of extensi
lacustrine sediments, which first appeared in the Wind Riv
Basin in late Paleocene time (Nichols and Ott, 197
Phillips, 1983), is indicative of internal drainage that like
reflects initial growth of the Casper arch and the Owl Cre
uplift (fig. 1), which closed the outlets of the basin.

Keefer (1965) estimated that more than 8,800 ft (2,6
m) of middle to late Paleocene uplift occurred in the O
Creek Mountains and that almost 10,500 ft (3,200 m) of s
sidence occurred in the adjacent Wind River Basin; the
amounts indicate a cumulative vertical separati
(uplift+subsidence) rate of slightly more than 4 ft/103 years
(1.2 m/103 years).  Keefer estimated that an additional 8,5
ft (2,591 m) of uplift and an additional 5,600 ft (1,707 m) o
subsidence occurred in the early Eocene, yielding a cum
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tive vertical separation rate of almost 4 ft/103 years (1.2 m/
103 years).  He showed that thrust faults of the Casper arch
cut the lower Eocene Indian Meadows Formation and that
the rocks deformed by this thrusting are erosionally trun-
cated by the overlying lower Eocene Wind River Formation.
The relations date the cessation of major Laramide deforma-
tion in the area as early Eocene.  These rates are consistent
with relatively late Laramide strike-slip-dominated
transpressional deformation along the northern margin of the
Wind River Basin, similar to the earlier Laramide transpres-
sional boundary along the northern margin of the Hanna
Basin to the south.  Structurally trapped deep gas may still be
discovered north and northwest of the Madden anticline in
the northern part of the Wind River Basin.
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