
Geologic Controls of Deep Natural Gas Resources in the United States

U.S. GEOLOGICAL SURVEY BULLETIN 2146

Cover. Loffland Brothers drill rig on the site of the Lone Star Production Company No. 1 Earnest Baden well spudded in September 1970 in Beckham County, Oklahoma. The No. 1 Earnest Baden well was drilled to a depth of 30,050 ft and is the second deepest petroleum well drilled in the United States. Photograph provided by GHK Company, Oklahoma City, Oklahoma.

Geologic Controls of Deep Natural Gas Resources in the United States

Edited by T.S. Dyman, D.D. Rice, and P.A. Westcott

U.S. GEOLOGICAL SURVEY BULLETIN 2146

The research on which these chapters are based was funded by the Gas Research Institute, U.S. Department of Energy, and U.S. Geological Survey

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1997

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government

Library of Congress Cataloging-in-Publication Data

Geologic controls of deep natural gas resources in the United States / edited by T.S. Dyman, D.D. Rice, and P.A. Westcott. p. cm. — (U.S. Geological Survey bulletin ;) Includes bibliographical references. Supt. of Docs. no.: I 19.3:B2146A–O 1. Natural gas—Geology—United States. 2. Gas fields—United States. I. Dyman, T. S. II. Rice, Dudley D. III. Westcott, P. A. IV. Series. QE75.B9 [TN881.A1] 557.3 s—dc20 [553.2'85'0973] 95–37556 CIP

CONTENTS

[Letters designate chapters]

- A. Introduction *By* T.S. Dyman, D.D. Rice, *and* P.A. Westcott
- B. Maps Illustrating the Distribution of Deep Wells in the United States by Geologic Age By Craig J. Wandrey and David K. Vaughan
- C. Geologic and Production Characteristics of Deep Natural Gas Resources Based on Data From Significant Fields and Reservoirs
 By T.S. Dyman, C.W. Spencer, J.K. Baird, R.C. Obuch, *and* D.T. Nielsen
- D. Structural Settings of Deep Natural Gas Accumulations in the Conterminous United States
 By William J. Perry, Jr.
- E. Sequential Laramide Deformation and Paleocene Depositional Patterns in Deep Gas-Prone Basins of the Rocky Mountain Region
 By William J. Perry, Jr., and R.M. Flores

by william 5.1 city, 51., and Kilvi. 1 lores

- F. Initial Potential Test Data From Deep Wells in the United States By C.W. Spencer and Craig J. Wandrey
- G. Physical Properties of Clastic Reservoir Rocks in the Uinta, Wind River, and Anadarko Basins, As Determined by Mercury-Injection Porosimetry
 By C.W. Keighin
- H. Porosity Prediction in Deeply Buried Sandstones, With Examples From Cretaceous Formations of the Rocky Mountain Region

By James W. Schmoker

- Porosity Trends of Pennsylvanian Sandstones With Respect to Thermal Maturity and Thermal Regimes in the Anadarko Basin, Oklahoma
 By Timothy C. Hester
- J. Source-Rock Potential of Precambrian Rocks in Selected Basins of the United States *By* James G. Palacas
- K. Minimum Thermal Stability Levels and Controlling Parameters of Methane, As Determined by C₁₅+ Hydrocarbon Thermal Stabilities
 By Leigh C. Price
- L. Origins, Characteristics, Evidence For, and Economic Viabilities of Conventional and Unconventional Gas Resource Bases By Leigh C. Price

CONTENTS

M. Migration of Hydrocarbon and Nonhydrocarbon Gases From the Deep Crust—Composition, Flux, and Tectonic Setting
 By Robert C. Burruss

N. Deep Natural Gas Resources in the Eastern Gulf of Mexico By Dudley D. Rice, Christopher J. Schenk, James W. Schmoker, James E. Fox, Jerry L. Clayton, Thaddeus S. Dyman, Debra K. Higley, C. William Keighin, Ben E. Law, and Richard M. Pollastro

O. Assessment Methodology for Deep Natural Gas Resources By G.L. Dolton and R.A. Crovelli

Multiply	By	To obtain
Cubic meters	35.31	Cubic feet
Cubic kilometers	0.24	Cubic miles
Kilometers	0.62	Miles
Meters	3.28	Feet
Centimeters	0.39	Inches
Kilopascals	6.90	Pounds per square inch (100 bars)
Microns (micrometers)	0.001	Millimeters

CONVERSION TABLE

ABBREVIATIONS

BCFG	Billions of cubic feet of gas
	6
BOE	Barrels of oil-equivalent
kPa	Kilopascal
mD	Millidarcy
MMCFG	Millions of cubic feet of gas
MMBO	Millions of barrels of oil
psi	Pounds per square inch
psia	Pounds per square inch (absolute)
R _o eq	Equivalent vitrinite reflectance
R _o	Vitrinite reflectance
T _{max}	Maximum pyrolysis temperature
TCFG	Trillions of cubic feet of gas

IV

