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ABSTRACT

The Colorado Plateau is bordered by five passive hot
spots:  a southward extension of the Great Falls tectonic
zone, the Colorado mineral belt, the northern Rio Grande
Rift, the Great Basin regional gravity low, and the southern
Basin and Range province.  Each hot spot represents mantle
upwelling induced by lithospheric extension related to plate-
tectonic events.  Manifestations of these hot spots include
thin crust and lithosphere, hot low-density upper mantle, vol-
canism resulting from decompression melting of the mantle,
and regional arching and rifting.  As the hot spots developed
and enlarged they progressively reduced the size of the stable
cratonic block now represented by the Colorado Plateau.

PASSIVE HOT SPOTS BORDERING 
THE COLORADO PLATEAU

The Colorado Plateau is an isolated block of the
Proterozoic craton which is being reduced in size by the lat-
eral encroachment of a ring of Late Cretaceous to Holocene
passive hot spots (fig. 1).  Three features are characteristic of
these hot spots:  (1) Regional geophysical anomalies (figs. 2
and 3) indicative of thin crust, thin lithosphere, low-density
upper mantle, and high heat flow.  (2) Young and/or active
volcanism resulting from decompression melting of rising
hot mantle.  Volcanism tends to be younger outward from the
apex of a static hot spot or along the trend of a migrating hot
spot.  (3) Regional doming or arching above a rising and
expanding mantle bulge.  Crustal extension and thinning
causes axial rifting of the regional dome above the area of
mantle upwelling.

Hot spots, in general, may be either (1) active, resulting
from deep-seated asthenospheric mantle thermal plumes
(fig. 4; Courtney and White, 1986), or (2) passive, resulting
from subcrustal lithospheric thinning (fig. 5; Eaton, 1987).
Assuming that active, deep-source mantle plumes tend to
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remain stationary over periods of tens of millions of years
(Irvine, 1989), they should leave “volcanic tracks” on litho-
sphere plates that move across them, as did the Hawaiian hot
spot on the Pacific plate (Clague, 1987).  There is, however,
little evidence of long-lived volcanic-chronologic tracks for
the hot spots bordering the Colorado Plateau, suggesting that
they are passive features.  The loci of these hot spots appear
to have remained essentially fixed to the southwestward-
traveling North American plate for tens of millions of years,
suggesting that they reside in the lithosphere or are mechan-
ically coupled to it.  This implies that if passive hot spots
form at sites of significant subcrustal thinning, once they are
initiated they may be self-sustaining and travel with the host
lithospheric plate.

Various mechanisms have been suggested for large-
scale thinning of the subcrustal continental lithosphere, in-
cluding (1) differential shifting of lithospheric blocks result-
ing from plate movements (Mutschler and others, 1991), (2)
isostatic rebound and gravitational collapse of tectonically
thickened orogenic welts (Mutschler and others, 1987; Wer-
nicke and others, 1987), (3) release of regional compressive
stress upon termination of adjacent continental margin sub-
duction (Scholz and others, 1971), (4) lithospheric erosion
by asthenospheric advection (Eggler and others, 1988), (5)
back-arc spreading (Thompson and Burke, 1974), (6) lithos-
pheric delamination (Bird, 1979), (7) lithospheric weaken-
ing by mantle degassing (Bailey, 1970, 1978), and (8) lateral
transfer of a “great wave” of lower crustal material from the
coast to beneath a distant area, producing thickened crust
(Bird, 1988).  Whatever their ultimate cause, most of the
Cordilleran passive hot spots we describe show initial mag-
matic crustal penetration controlled by regional crustal
structures, including crustal province boundaries such as the
Great Falls tectonic zone and ancient fault systems such as
the Colorado mineral belt (fig. 6).  As they evolve, however,
these hot spots usually expand across crustal blocks and su-
tures (fig. 7), suggesting that their ultimate source resides at
least as deep as the subcrustal lithosphere.

We will examine the magmatic, tectonic, and chrono-
logic evolution of the five passive hot-spot loci marginal to,
and encroaching on, the Colorado Plateau:

1.  The Great Falls tectonic zone (GFTZ), active from
≈70 to 20(?) Ma.
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Figure 1.

 

Relation of the Colorado Plateau to geophysical provinces characterized by crustal or upper mantle geophysical anomalies.
Generalized axis of bilateral symmetry of observed Bouguer gravity and topography, in center of Great Basin regional gravity low, is from
Eaton and others (1978, fig. 3–11–B).  Colorado Plateau physiographic province (stippled) modified from Bayer (1983).
2.  The Colorado mineral belt (COMB), active from≈75
to 17(?) Ma.

3.  The northern Rio Grande Rift (NRGR), starting at
≈35–26 Ma and active from ≈17 to 0 Ma.
4.  The Great Basin regional gravity low (GBRGL),
active from ≈17 to 0 Ma.

5.  The southern Basin and Range province (SBR),
active from ≈40 to 0 Ma.
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Figure 2.

 

Crustal thickness in the Western United States.  Contours show depth to reflection moho, in kilometers below sea level.  See
figure 1 for explanation of other lines and symbols.  From Allenby and Schnetzler (1983, fig. 2).
GREAT FALLS TECTONIC ZONE (GFTZ)

The Late Cretaceous–Eocene central Montana alkaline
province and the Eocene Challis volcanic field lie along the
northeast-trending Great Falls tectonic zone (GFTZ), an an-
cient, repeatedly reactivated crustal flaw (O’Neill and Lopez,
1985), which essentially coincides with the northwest side of
the Archean Wyoming province cratonic block (fig. 7).
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Figure 3.

 

 Regional Bouguer gravity of wavelengths greater than 250 km in the Western United States.  Contours show gravity in
milligals.  See figure 1 for explanation of other lines and symbols.  A comparison of this map with 1,000-km-filtered regional gravity maps
(Hildenbrand and others, 1982) suggests that the major negative anomalies shown here represent low-density material at depths extending
from the crust-mantle boundary to >125 km.
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 Development of an active hot spot over time.  

 

A

 

, Gen-
eralized cross section showing temperature anomalies with respect
to mean asthenosphere temperature in an axisymmetric convection
model (after White and McKenzie, 1989, fig. 2).  

 

B

 

, Map view
showing isochrons with outward younging of inception of magma-
tism above an axisymmetric mantle plume.  Similar isochron
patterns may develop above passive hot spots.

 

Figure 5.

 

 Cross section showing features of a passive hot spot
resulting from subcrustal lithospheric thinning.  Not to scale.

 

Figure 6 (facing page).

 

 Laramide (75–42 Ma) igneous rocks
and selected tectonic elements in the Western United States.  Mod-
ified from Mutschler and others (1987, fig. 4).
The Late Cretaceous–early Tertiary tectonic setting of
the Montana alkaline province and Challis volcanic field
included the following elements as shown on figure 6:

1.  A regional northeast-trending Eocene topographic
dome defined on the basis of paleobotanical studies by
Axelrod (1968).  The axis of the dome was essentially
coincident with the GFTZ.

2.  Extensive Eocene (≈50–44 Ma) mildly alkaline
shoshonitic to calc-alkaline magmatism in the Challis volca-
nic field (Moye, 1988; Norman and Mertzman, 1991) on the
crest of the dome, and Late Cretaceous–Eocene (≈76–46
Ma) alkaline-dominated magmatism on the flanks of the
dome and along its northeast projection—the central Mon-
tana alkaline province described by Larsen (1940) and many
subsequent workers.  (See papers in Baker and Berg, 1991,
for instance.)

3.  Synvolcanic axial rifting along the crest of the
dome indicated by recurrent movements on the trans-Chal-
lis fault system, northeast-trending dike swarms and volca-
no-tectonic grabens and calderas (Moye, 1988).

These features can be integrated into a generalized
model in which decompression melting of rising mantle
yielded mafic alkaline magmas, some of which parked in
the crust.  These accumulated mantle melts triggered partial
crustal melting, generating the voluminous calc-alkaline
magmas of the Challis volcanic field, which are the surface
manifestations of large batholithic bodies (Mabey and We-
bring, 1985).  Surface doming resulted from both emplace-
ment of the granite batholiths at shallow levels and deep-
level upward movement of thermally expanded mantle.
The areal extent of the plutonic and volcanic loci and the
topographic dome is comparable to that of similar features
that surround recognized modern mantle hot spots.

Mutschler and others (1991) suggested that this pas-
sive hot spot developed in response to an offset in large-
scale northwest-trending Cretaceous strike-slip zones that
resulted from oblique convergence of the North American
and Pacific plates (fig. 8).  The mid-Cretaceous to Pale-
ocene right-lateral transcurrent faults of the Columbia tec-
tonic belt extend southeastward from British Columbia
(Oldow and others, 1989) but do not continue south of the
GFTZ.  Similar Mesozoic right-lateral transcurrent faults,
however, are present south of the projection of the GFTZ,
in the Central tectonic belt of eastern California and west-
ern Nevada (Kistler, 1990; Oldow and others, 1989).  In
both the Columbia and Central tectonic belts, late Mesozo-
ic movement on the transcurrent structures amounted to
hundreds of kilometers.  Thus, the GFTZ may have acted
as a transtensional zone, or releasing bend, between the Co-
lumbia and Central tectonic belt transcurrent systems.  This
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Figure 7 (above and facing page).

 

Crustal provinces of the Western United States.
model is diagrammed in figure 8B, showing lithospheric
mantle extension across the GFTZ axis beneath a decou-
pling zone.  If the decoupling zone were fairly deep, evi-
dence of the event in the crustal “orogenic float” could be
sparse.  Extension (shown in fig. 8B as occurring by pure
shear) would have thinned the lithospheric mantle, resulting
in upflow of hot deeper (asthenospheric) mantle.  The in-
flux of thermal energy, and perhaps magma, into the ex-
tended lithosphere would have set off the sequence of
decompression melting, diapiric magma rise, local crustal
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 Diagrammatic map (

 

A

 

) and cross section (

 

B

 

) showing
the Great Falls tectonic zone (GFTZ) as a Late Cretaceous–Eocene
transtension zone between the Columbia and Central tectonic belt
transcurrent fault systems (not to scale).  From Mutschler and others
(1991, fig. 2).
ponding or penetration, and ultimately development of the
paleotopographic and volcanic features recognized in the
near-surface rock record of the Montana alkaline province
and the Challis volcanic field.  This model shares some fea-
tures with the uplift and decompression scenarios suggested
by Dudás (1991).

From its ≈50- to 45-Ma position beneath the Challis
volcanic field, the magmatic focus of the GFTZ hot spot
appears to have migrated southward during the ensuing 30
m.y. into central Nevada, as indicated by the successive
40-, 30-, and 20-Ma magmatic and caldera fronts shown
on figure 9.  The switch from northwest-directed exten-
sion across the GFTZ (with magmatism concentrated
along the GFTZ) to east-northeast-directed extension (with
southward-migrating magmatism) occurred at ≈48 Ma in
east-central Idaho (Janecke, 1992).  The Eocene-Miocene
southward magmatic migration was essentially coeval
with a southward sweep of upper crustal extensional do-
mains (Seedorff, 1991).  The ≈38- to 20-Ma ignimbrite
flareup in the Great Basin (Best and others, 1989) result-
ed from the high-level emplacement of major calc-alka-
line batholiths (fig. 10) during early, dominantly ductile,
crustal extension (Gans and others, 1989).  The southern
limit of ≈30- to 20-Ma caldera-forming eruptions (fig. 9)
approximately coincides with the east-trending Blue Rib-
bon–Warm Springs lineament (Rowley and others, 1978),
possibly marking a major zone of transform accommoda-
tion between areas having different amounts of crustal ex-
tension (Eaton and others, 1978; Rowley and others, this
volume).
COLORADO MINERAL BELT (COMB)

The COMB hot spot initially developed along the
Colorado mineral belt, a segment of a regional northeast-
trending basement shear zone of Proterozoic origin (Tweto
and Sims, 1963; Warner, 1980).  During the Laramide orog-
eny, the COMB was oriented essentially parallel to the axis
of maximum compression.  Magmatism began shortly after
the start of uplift of the Laramide ranges in Colorado (Mut-
schler and others, 1987) and was closely restricted to the axis
of the COMB, which appears to have “unzipped” along a
strike length of more than 500 km.  The activity extended
from the Carrizo Mountains, Ariz., in the Four Corners area,
to the eastern edge of Colorado’s Front Range (figs. 6, 11A)
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Figure 9.

 

Magmatic migration patterns in the Western United States from about 75 to 20 Ma.  See figure 1 for explanation of lines and
symbols not explained here.  Data from Best and others (1989), and Mutschler and others (1987).  Arrows on isochrons show interpreted
magmatic migration patterns.
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Selected middle Tertiary (40–26 Ma) igneous features in the Southwestern United States.  See figure 1 for explanation of lines
and symbols not explained here.  Modified from Mutschler and others (1987, fig. 10).
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 Laramide–middle Tertiary magmatic migration patterns, Colorado and environs.  Modified from Mutschler and others (1987,
fig. 11).
during the interval ≈74–64 Ma.  No systematic age trends are
apparent in rocks representing this time span along the
COMB igneous belt, but mantle-derived alkaline rocks tend
to be concentrated near the ends of the COMB, whereas calc-
alkaline rocks containing significant crustal components pre-
dominate in the central part of the belt.  By late Eocene time,
igneous activity was restricted to the central and northeastern
parts of the COMB (fig. 11C).  The onset of regional crustal
extension during middle Tertiary (Oligocene) time was
marked by a rapidly enlarging ignimbrite flareup in central
Colorado (fig. 11D), probably in response to massive basalt
accumulation in or beneath the lower crust.  This accumula-
tion resulted in large-scale crustal melting, rise of the result-
ing calc-alkaline magmas to form shallow batholiths, and
ignimbrite eruptions from at least 16 calderas during the
period 36–27 Ma (Lipman, 1984; Steven and Lipman, 1976).
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Small calc-alkaline centers—including the Abajo
(32–23 Ma), Henry (31–23 Ma), and La Sal (28–25 Ma)
Mountains, Utah; the Latir (26–19 Ma) volcanic field, New
Mexico; and the San Luis (29–28 Ma), Silver Cliff–Rosita
(33–27 Ma), Never Summer (29–28 Ma) volcanic fields, and
the Ophir–San Miguel–Klondike (≈26 Ma) plutons, Colo-
rado—developed outside of the central and southwestern
Colorado batholithic area.  Many of these peripheral centers
began about 31–26 Ma, several million years after the onset
of the voluminous mid-Tertiary batholithic magmatism
along the COMB.  Thus, from an early focus in central Col-
orado, the areas involved in middle Tertiary partial melting
appear to have spread outward for about 10–12 m.y. (fig.
11).

Mutschler and others (1987) suggested that the COMB
passive hot spot developed in response to decompression-
triggered partial melting beneath isostatically rebounding
crustal and lithospheric roots produced by Laramide com-
pression.  The model may be overly simplistic, especially as
it failed to take into account possible regional lithospheric
thinning resulting from differential subcrustal movements.
Chapin (1983) documented a series of north-trending
Eocene right-lateral faults and fault-bounded basins extend-
ing the length of the eastern Rocky Mountain uplifts of Col-
orado and New Mexico.  Perhaps these crustal wrench
structures reflect the thinning of partially decoupled lithos-
phere in a manner similar to that suggested for the GFTZ hot
spot.

NORTHERN RIO GRANDE RIFT (NRGR)

The NRGR hot spot is in the north-central part of the
Alvarado Ridge of Eaton (1986, 1987), which is a >1,200-
km-long, north-trending, Neogene thermotectonic uplift
(fig. 12).  Eaton (1987) convincingly modeled the ridge crest
as a feature that rose rapidly above the axis of a developing
linear asthenospheric bulge beneath thinning lithospheric
mantle.  The model is supported by geophysical data (Eaton,
1987; Olsen and others, 1987; Cordell and others, 1991; Gib-
son and others, 1993) indicative of thinned crust and anom-
alously low-density mantle, and by regional heat-flow
observations.  Eaton (1986, 1987) suggested that the topo-
graphic ridge began to form at ≈17–12 Ma, and that uplift
peaked between 7 and 4 Ma.  The NRGR passive hot spot,
however, may have a significant older history, including
north-trending Precambrian shear zones (Cordell, 1978;
Eaton, 1979; Tweto, 1979), which were reactivated in the
Eocene wrenching event, and a magmatic episode of initial
mantle melting between 35 and 26 Ma.4  This magmatic
________________________
4 Gregory and Chase (1992) used paleobotanical analysis to suggest

that the Alvarado Ridge had reached essentially its present elevation by 35
Ma.  This early uplift may be related to the ≈30-Ma low-angle normal fault-
ing in the rift region discussed by Olsen and others (1987).
precursor to the Miocene-Pliocene uplift event is represent-
ed by a north-trending belt of Oligocene mantle-derived
shoshonitic plutons and lamprophyres extending from north-
ern Colorado through New Mexico (fig. 9).  In contrast, the
Neogene period of rapid ridge uplift was characterized by
bimodal basalt-rhyolite volcanism.  Both tholeiitic and alkali
basalts occur, representing lithospheric and asthenospheric
mantle melting (Livaccari and Perry, 1993).  The coeval
high-silica rhyolites may represent melting of crustal
granulites.

The differing locations and eruption times of Neogene
lithosphere- and asthenosphere-derived basalts in different
segments of the rift (Baldridge and others, 1984, 1991; Lip-
man, 1969; Perry and others, 1987, 1988) may result from
local differences in the shear mechanisms involved in sub-
crustal lithospheric extension (fig. 13).  Northeast-trending
accommodation zones transverse to the Rio Grande Rift also
appear to separate distinct tectonic and magmatic crustal
blocks.  The most striking accommodation zone is part of the
Jemez lineament, which has acted as a >800-km-long locus
for Neogene magmatism (Aldrich, 1986).  The 15- to 0.001-
Ma magmatism along the lineament marks a northwestward
volcanic encroachment onto the Colorado Plateau (Aldrich
and Laughlin, 1984; Baldridge and others, 1991).

GREAT BASIN REGIONAL GRAVITY LOW 
(GBRGL)

The Great Basin regional gravity low (GBRGL) of
Eaton and others (1978) has long been recognized as a site
of relatively rapid Neogene crustal extension.  Lower crust-
al ductile extension of thickened Nevadan and Sevier litho-
sphere may have begun in the Cretaceous (Hodges and
Walker, 1992), and significant normal faulting occurred
during Eocene time (Gans and others, 1993).  However, the
majority of upper crustal brittle extension (basin-range
faulting) did not begin until ≈20–17 Ma (Eaton and others,
1978) and it postdates the major part of the Oligocene great
ignimbrite flareup.  Upper crustal brittle extension is con-
tinuing today (Smith, 1978).  As a result of this long-lived
extension, the Great Basin is characterized by thin (≈30
km) crust underlain by anomalous mantle, high heat flow,
regional doming, many calderas and voluminous ash-flow
tuffs succeeded by modest amounts of bimodal (basalt-rhy-
olite) volcanics, and topography developed by basin-range
faulting.  Basaltic volcanism generally becomes more re-
cent toward the Sierra Nevada and Wasatch transition
zones bordering the Great Basin, and it has progressively
overstepped these zones (Smith and Luedke, 1984; Stewart
and Carlson, 1976).  Neogene peralkaline rhyolites, proba-
bly derived from fractionation of trachybasalts, form an
irregular ring around the periphery of the Great Basin (fig.
12).  All of these features indicate regional mantle
upwelling within a passive hot spot.
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Figure 12 (above and facing page)

 

Late Cenozoic (25–0 Ma) igneous rocks and selected tectonic features in the Western United States.
Modified from Mutschler and others (1987, fig. 14).
The northern and southern borders of the Great Basin
also show the effects of an evolving passive hot spot.  The
northwest-trending Brothers fault zone in Oregon
(Lawrence, 1976) and the northeast-trending Snake River
Plain in Idaho meet and form a “triple junction” with the
south-southeast-trending northern Nevada or Oregon-
Nevada magnetic lineament (Blakely, 1988; Stewart and
others, 1975) near the common boundary of Oregon,
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Figure 13.

 

Hypothetical timing and distribution of mantle-de-
rived magmatism and lithospheric thinning resulting from pure
shear (

 

A

 

) and simple shear (

 

B

 

) modes of crustal extension.  Mod-
ified from Farmer and others (1989, fig. 1).
�
�

Nevada, and Idaho (fig. 14).  This “triple junction” is similar
to the radial rift geometry on a rising dome or on an inflating
shield volcano, and may mark the crestal area of passive
mantle upwelling.  Neogene volcanism at the “triple junc-
tion” has an age of 17–16 Ma, but the volcanic features, es-
pecially silicic centers, become progressively younger
outward on two of the three arms:  northwestward along the
Brothers fault zone to Newberry Crater (MacLeod and
others, 1976) and northeastward along the Snake River Plain
to Yellowstone (Christiansen, 1993; Christiansen and
McKee, 1978).  These two lineaments can be interpreted as
“***diffuse (and very leaky) zones of transform accommo-
dation between regions of greater and lesser cumulative
tectonic (basin-range) extension to the south and north,
respectively” (Hildreth and others, 1991, p. 65).  The Quater-
nary Yellowstone Plateau volcanic field, therefore, is proba-
bly not the site of an active hot spot, but rather the northeast
corner of a very large shield-shaped area of extended lithos-
phere located above the expanding passive hot spot that
underlies the GBRGL.  The southern end of the GBRGL can
be interpreted in a similar fashion, with the Garlock fault
(Davis and Burchfiel, 1973) and the Las Vegas shear zone
serving as diffuse (but relatively dry) zones of transform
accommodation.

SOUTHERN BASIN AND RANGE PROVINCE 
(SBR)

Laramide northeast-southwest compression destroyed a
Cretaceous marine trough in southeastern Arizona and
southwestern New Mexico between ≈80 and 50 Ma.  Defor-
mation included uplift of basement welts and thrust faulting
accompanied by extensive ≈75- to 50-Ma calc-alkaline plu-
tonism and volcanism (Krantz, 1989).  In southwestern
Arizona, regional greenschist-facies metamorphism accom-
panied thrusting and plutonism.  These Laramide events
almost certainly resulted in significant crustal thickening.
Yet today the southern Basin and Range province (SBR) is
characterized by thin crust (fig. 2), evidence of large-scale
lithospheric extension, high heat flow, and recent volcanism.
These features, typical of passive hot spots, evolved during
post-Laramide time.

Middle Tertiary ductile lithosphere extension involved
development of major regional low-angle detachment faults
and the isostatic uplift of metamorphic core complexes
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Late Cenozoic (

 

≈

 

17–0 Ma) major crustal tectonic
elements that indicate an expanding passive hot spot beneath the
Great Basin regional gravity low (GBRGL).
(Spencer and Reynolds, 1989).  Middle Tertiary calc-alka-
line-dominated magmatism shows a general westward and
northwestward progression in the SBR, from a ≈40- to 36-
Ma inception in the Mogollon-Datil volcanic field of south-
western New Mexico (Elston and Bornhorst, 1979; McIn-
tosh and others, 1992) to an onset at ≈25 Ma in western
Arizona (fig. 9).  Major caldera formation and ignimbrite
eruptions occurred between 36 and 24 Ma in the Mogollon-
Datil field (fig. 10; McIntosh and others, 1992), and
between ≈32 and 15 Ma in the Arizona part of the SBR
(Nealey and Sheridan, 1989).

About 15–13 Ma, styles of deformation and magma-
tism changed significantly in the SBR (Menges and
Pearthree, 1989).  Brittle crustal extension began, in the
form of high-angle normal (basin-range) faulting, and bi-
modal (basalt-rhyolite) magmatism became dominant.  Bi-
modal volcanic features and, especially, rhyolitic centers
show a northeastward migration from the SBR onto the
Colorado Plateau since ≈15 Ma (Moyer and Nealey, 1989;
Nealey and Sheridan, 1989).

The main pulse of basin-range faulting and magmatism
ended at ≈5–2 Ma, although some normal faulting and
seismic activity continue today, and at least four alkali basalt
eruptions have occurred in and near Arizona in Holocene
time (Lynch, 1989).  Seismic reflection data suggest the
presence of a horizontal basaltic magma body and solidified
intrusions within the lower crust of the transition zone
between the SBR and the Colorado Plateau (Parsons and
others, 1992).

SCENARIO FOR THE EVOLUTION OF 
CONTINENTAL PASSIVE HOT SPOTS

A generalized model for the sequential development of
the passive hot spots described is given herein.  Some
features of individual hot spots vary from this model.

1.  Lithospheric thinning may be initiated by differential
movements between lithospheric blocks, by back-arc spread-
ing, or by gravitational collapse of an orogenic welt, all of
which are common results of large-scale plate tectonic
motions and reorganizations.

2.  Thinning of the lithospheric mantle, which may be
mechanically uncoupled from the crust, results in an upflow
of the expanding asthenosphere, triggering decompression
melting in the mantle.  Early melts tend to be of two types:
(a) Small volumes of mafic potassic magmas (such as alka-
line lamprophyres or minettes) representing minimal mantle
melting.  These highly volatile-charged magmas generally
transit through the lithosphere rapidly, with only minor
fractionation en route.  (b) Shoshonites, representing crustal-
level fractionation and contamination of nepheline-
normative alkaline basalts (Meen and Curtis, 1989).  These
may form moderate-size volcanic-plutonic complexes.

3.  Continuing extension of the lithosphere causes in-
creased mantle melting; the resulting basalt magmas rise and
park at neutral buoyancy levels near the base of the crust
(Glazner and Ussler, 1988) and (or) form distributed dike in-
trusion networks in the lower lithosphere and crust (Lachen-
bruch and Sass, 1978).  Gentle regional crustal doming
begins at this stage.  Heat loss from gravitationally stalled
basalts causes partial crustal melting, yielding calc-alkaline
magmas which rise and collect at upper crustal neutral buoy-
ancy levels, ultimately forming batholiths.  Initial eruptions
from the batholiths form intermediate-composition strato-
volcano fields.  These early andesites represent mixed
mantle and crustal melts.  As crustal melting continues, the
bulk composition of the batholiths becomes increasingly
silicic (dacitic to rhyolitic), and as the batholiths enlarge they
contribute to crustal arching and thermally weaken the crust
so that it extends ductilely (Armstrong and Ward, 1991;
Gans and others, 1989).  With time, as mantle melting
spreads over a broader area, the zone of parked basalt in the
lower crust spreads laterally, resulting in outward migration
of the area of calc-alkaline magmatism as the zone of crustal
melting widens and moves upward.  (See figs. 9, 11.)
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Eventually, many of the roofs of the fractionated calc-
alkaline batholiths fail, producing multiple caldera eruptions
and regional ignimbrite fields.

4.  Finally, the thermally weakened upper crust may fail
by listric (basin-range) faulting above the zone of ductile
flow and distributed magmatic extension in the lower crust
and uppermost mantle.  Bimodal (basalt and rhyolite and (or)
trachybasalt and peralkaline rhyolite) magmatism accompa-
nies the basin-range faulting stage.  These bimodal assem-
blages tend to be concentrated peripheral to earlier calc-
alkaline batholiths, perhaps because the low-density
batholiths inhibit the passage of mantle-derived magmas.
The basalt and high-silica rhyolite suite probably represents
limited crustal melting, inasmuch as the high-silica rhyolites
have minimum melting compositions.  The peralkaline
rhyolites, which tend to be slightly older than the high-silica
rhyolites, may represent fractionation of mantle-derived
trachybasalts.

SUMMARY AND CONCLUSIONS

In the area we discuss, inboard passive hot-spot mag-
matism began in Late Cretaceous to Paleocene time with the
development of the Great Falls tectonic zone and the Colo-
rado mineral belt.  Both these features started as linear
volcanic-plutonic zones and expanded into large volcanic
fields overlying calc-alkaline batholithic complexes.

Today, the Colorado Plateau is surrounded by Neogene
passive hot spots, including the Great Basin regional gravity
low to the west, the northern Rio Grande Rift to the east, and
the southern Basin and Range province to the south and
southwest.  Magmatism in these areas is dominated by pre-
dominantly bimodal (alkali basalt-rhyolite) suites.  Magmat-
ic migration patterns (Nealey and Sheridan, 1989; Smith and
Luedke, 1984) show that late Cenozoic magmatism is over-
stepping the plateau from all of these passive hot spots.  Can
basin-range faulting be far behind?

Armstrong and Ward (1991) and Ward (1991) have re-
cently outlined and commented on many of the plate-tecton-
ic scenarios invoked to explain Cordilleran magmatism.
They emphasized, as have many other workers, a close spa-
tial and temporal correlation between areas of crustal exten-
sion and inboard Cenozoic magmatism throughout the
length of the Cordillera.  Anderson (1992) has succinctly
stated that the location of a hot spot is controlled by lithos-
pheric conditions, and that even if the asthenosphere is rela-
tively hot, a hot spot will not form unless the lithosphere is
under extension.  Lithospheric extension occurred at all the
hot spots we describe, but different plate-motion phenomena
were responsible for extension at different localities.  For ex-
ample, in the early Great Falls tectonic zone, oblique plate
convergence produced intraplate transcurrent fault systems
offset by a transtensional zone across which the lithosphere
thinned.  On the other hand, the late Cenozoic Great Basin
regional gravity low, in Atwater’s (1970) model, developed
through gravitational collapse of an orogenic welt when a
bounding plate margin changed from a subduction mode to
a transform mode.  In other cases (such as the Laramide to
mid-Cenozoic Colorado mineral belt), it remains uncertain
how plate interactions and motions relate to demonstrable
inboard lithospheric extension and magmatism.

Since different plate-tectonic scenarios are involved in
the development of different hot spots, it appears that direct
involvement of a subducted oceanic slab is not a requisite for
generation of the passive hot-spot magmatism we describe.
Consequently, to term the igneous rocks of these inboard hot
spots “subduction related” or “arc related” is perhaps
misleading.  Rather, the magmatism we describe can be
considered to be “continental magmatism” in the sense of
Ward (1991).
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