

Preliminary Bibliography of Lacustrine Diatomite Deposits in the Western United States and Related Topics

Chapter F of Contributions to Industrial-Minerals Research

Bulletin 2209–F

Preliminary Bibliography of Lacustrine Diatomite Deposits in the Western United States and Related Topics

By Karen S. Bolm,¹ Alan R. Wallace,² Phillip R. Moyle,³ James D. Bliss,¹ and Greta J. Orris¹

Chapter F of **Contributions to Industrial-Minerals Research**

James D. Bliss, Phillip R. Moyle, and Keith R. Long, Editors

Bulletin 2209-F

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

Gale A. Norton, Secretary

U.S. Geological Survey

Charles G. Groat, Director

Version 1.0, 2003

This publication is available only online at: http://pubs.usgs.gov/bul/b2209-f/

Text edited by George A. Havach Layout by Stephen L. Scott Manuscript approved for publication, July 24, 2003

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government

CONTENTS

Introduction 1 References Cited 1 Bibliography 1 Abstracts 13 Index 15 References Cited 1

Figure

1. Sketch map of the Western United States, showing locations of principal diatomite operations **1**

Preliminary Bibliography of Lacustrine Diatomite Deposits in the Western United States and Related Topics

By Karen S. Bolm,¹ Alan R. Wallace,² Phillip R. Moyle,³ James D. Bliss,¹ and Greta J. Orris¹

Introduction

As part of the assessment of lacustrine diatomite resources in the Western United States (fig. 1), U.S. Geological Survey (USGS) project members conducted a review of literature relating to the formation, location, and nature of deposits in the study area. This preliminary bibliography consists of selected publications to identify, locate, and describe the deposits to be studied, to characterize common geologic factors about the deposits, and to better understand the factors that control their formation, preservation, or destruction. The bibliography also serves as a resource for other workers to research the topic.

References included in the preliminary bibliography were gathered by searching existing bibliographic data bases and library collections. Project researchers also contributed references that they found during the course of their work. This bibliography should be considered a working document that will grow as research and literature searches continue. Clearly, many significant publications may be missing from this preliminary list; therefore, USGS staff members intend to issue a revised bibliography as project work progresses. To assure completeness, input from other researchers and industry is welcome.

Although the focus of this bibliography is lacustrine diatomite deposits of the Western United States, additional references that provide a foundation of knowledge for the study of diatomites, diatoms, and diatom-related processes (ecology, geology, geochemistry) and for the uses and behavior of diatomite have also been included.

An index of keywords has been added to this bibliography, designed to help the user locate reports by topic or by geographic location. The letter "A" following a number indicates that the report referenced is an abstract.

Reference Cited

McFaul, E.J., Mason, G.T., Jr., Ferguson, W.B., and Lipin, B.R., 2000, U.S. Geological Survey mineral databases; MRDS and MAS/MILS: U.S. Geological Survey Digital Data Series DDS-52, 2 CD-ROMs.

Bibliography

- 1. Abbott, W.H., Jr., and VanLandingham, S.L., 1972, Micropaleontology and paleoecology of Miocene nonmarine diatoms from the Harper District, Malheur County, Oregon: Nova Hedwigia, v. 13, p. 847-906.
- 2. Abella, S.E.B., 1988, The effect of the Mt. Mazama ashfall on the planktonic diatom community of Lake Washington: Limnology and Oceanography, v. 33, p.1376-1385.
- 3. Ach, J.A., King, H.D., Buehler, A.R., and Capstick, D.O., 1986, Mineral resources of the Little Owyhee River Wilderness Study Area, Owyhee County, Idaho: U.S. Geo-

Figure 1. Western United States, showing locations of diatomite deposits. Many deposits near the Pacific coast formed in marine environments; the rest formed in freshwater environments. Data sources: yellow squares, Mineral Resources Data System (MRDS); green dots, Mineral Availability System/Minerals Industry Location System (MAS/MILS). Many deposits listed in MRDS are also listed in MAS/MILS. From McFaul and others (2000).

¹U.S. Geological Survey, Tucson, Ariz.

 ²U.S. Geological Survey, Reno, Nev.
 ³U.S. Geological Survey, Spokane, Wash.

logical Survey Bulletin 1719–C, p. C1–C10.

- Adams, Opal, 1992, 1992 Fall field trip guidebook; industrial minerals and gold deposits along the I–80 corridor—Lockwood to Battle Mountain: Reno, Nevada, Geological Society of Nevada Special Publication 16, 103 p.
- Altaner, S.P., and Grim, R.E., 1990, Mineralogy, chemistry, and diagenesis of tuffs in the Sucker Creek Formation (Miocene), eastern Oregon: Clays and Clay Minerals,v. 38, no. 6, p. 561–572.
- Archbold, N.L., 1966, Industrial mineral deposits of Mineral County, Nevada: Nevada Bureau of Mines Report, 32 p.
- Archbold, N.L., 1969, Industrial mineral deposits, in Moore, J.G., ed., Geology and mineral deposits of Lyon, Douglas, and Ormsby counties, Nevada: Nevada Bureau of Mines and Geology Bulletin, p. 31–41.
- 8. Aune, Q.A., 1964, A trip to Burney Falls: Mineral Information Service, v. 17, no. 10, p. 183–191.
- 9. Axelrod, D.I., 1958, The Pliocene Verdi flora of western Nevada: University of California Publications in Geological Sciences, v. 34, p. 91–159.
- Axelrod, D.I., 1962, A Pliocene Sequoiadendron forest from western Nevada: University of California Publications in Geological Sciences, v. 39, p. 195–268.
- Axelrod, D.I., 1966, Potassium-argon ages of some 1. western Tertiary floras: American Journal of Science, v. 264, no. 7, p. 497–506.
- Axelrod, D.I., 1992, The middle Miocene pyramid flora of western Nevada: University of California Publications in Geological Sciences, v. 137, 50 p.
- Axelrod, D.I., and Schorn, H.E., 1994, The 15 Ma floristic crisis at Gillam Spring, Washoe County, northwestern Nevada: PaleoBios, v. 16, no. 2, 9 p.
- 14. Barlock, V.E., and Vander Meulen, D.B., 1991, Stratigraphy of Pole Creek Top area, Malheur County, Oregon, *in* Buffa, R.H., and Coyner, A.R., eds., Geology and ore deposits of the Great Basin; field trip guidebook compendium: Geological Society of Nevada, v. 2, p. 686–695.
- 15. Barron, J.A., 1987, Diatomite—environmental and geologic factors affecting its distribution, *in* Hein, J.R., ed., Siliceous sedimentary rock-hosted ores and petroleum: New York, Van Nostrand Reinhold, p. 164–178.
- Barron, J.A., 1993, Diatoms, *in* Lipps, J.H., ed., Fossil prokaryotes and protists: Boston, Blackwell Scientific, p.155–167.
- 17. Barrow, K.T., 1983, Trout Creek Formation, southeastern Oregon: Stratigraphy and diatom paleoecology: Stanford, Calif., Stanford University, M.S. thesis, 121 p.
- Bateman, A.M., 1942, Economic mineral deposits: New York, John Wiley and Sons, 898 p.
- Bates, R.L., 1969, Diatomite, *in* Bates, R.L., Geology of the industrial rocks and minerals: New York, Dover Publications, p. 360–370 [reprint].
- 20. Bell, M.A., and Hagland, T.R., 1982, Fine-scale temporal variation of the Miocene stickleback *Gasterosteus dorys*-

sus: Paleobiology, v. 8, no. 3, p. 282-292.

- 21. Bennett, E.H., Hall, Morrill, McNary, S.W., Lowe, N.T., Neumann, T.R., Rains, R.L., Zilka, N.T., Mayerle, R.T., Leszcykowski, A.M., Olson, J.E., and Gabby, P.N., 1990, Principal deposits of industrial minerals in Idaho, *in* Geitgey, R.P., and Vogt, B.F, eds., Industrial rocks and minerals of the Pacific Northwest; Forum on the Geology of Industrial Minerals, 25th, Portland, Oreg., 1989, Proceedings: Oregon Department of Geology and Mineral Industries Special Paper 23, p. 31–36.
- 22. Bennett, E.H., 1992, Industrial minerals in Idaho, *in* Tooker, E.W., ed., Industrial minerals in the Basin and Range region—workshop proceedings: U.S. Geological Survey Bulletin 2013, p. 28–34.
- Benton, W.E., 1983, Economics of diatomite: New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, Society of Mining Engineers Preprint 83–363, 15 p.
- 24. Berg, R.B., 1990, Montana's industrial minerals, *in* Geitgey, R.P., and Vogt, B.F., eds., Industrial rocks and minerals of the Pacific Northwest; Forum on the Geology of Industrial Minerals, 25th, Portland, Oreg., 1989, Proceedings: Oregon Department of Geology and Mineral Industries Special Paper 23, p. 37–44.
- Blades, T.L., Harwood, D.M., and Voorhies, M.R., 2001, Miocene diatom recovery from ashfall fossil beds: Nebraska Academy of Sciences Annual Meeting, 111th, Lincoln, Nebr., 2001, Program and Proceedings, p. 49–50.
- 26. Blake, W.P., 1903, Arizona diatomite: Wisconsin Academy of Sciences, Transactions, v. 14, no. 1, p. 107–111.
- Blake, W.P., 1903, Diatom earth in Arizona: American Institute of Mining, Metallurgical and Petroleum Engineers, Society of Mining Engineers Transactions 1903, p. 38–45.
- 28. Blanc, R.P., and Cleveland, G.B., 1961, Pleistocene lakes of southeastern California, part 2: Mineral Information Service, v. 14, no. 5, p. 1–6.
- Bonham, H.F., 1969, Geology and mineral deposits of Washoe and Storey counties, Nevada, *with a section on* Industrial rock and mineral deposits, by K.G. Papke: Nevada Bureau of Mines and Geology Bulletin 70, 107 p.
- Bowles, Oliver, 1943, Industrial insulation with mineral products: U.S. Bureau of Mines Information Circular 7263, 17 p.
- Bradbury, J.P., 1988, Fossil diatoms and Neogene paleolimnology: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 62, no. 1–4, p. 299–316.
- 32. Bradbury, J.P., 1997, A diatom-based paleohydrologic record of climate change for the past 800 k.y. from Owens Lake, California, *in* Smith, G.I., and Bischoff, J.L., eds., An 800,000-year paleoclimatic record from core OL–92, Owens Lake, Southeast California: Geological Society of America Special Paper 317, p. 99–112.
- Bradbury, J.P., 1997, A diatom record of climate and hydrology for the past 200 ka from Owens Lake, Cali-

fornia with comparison to other Great Basin records: Quaternary Science Reviews, v. 16, no. 2, p. 203–219.

- Bradbury, J.P., 1999, A 800,000 year long record from Owens Lake, California: PAGES Newsletter, v. 7, no. 3, p. 11.
- 35. Bradbury, J.P., 1999, Continental diatoms as indicators of long-term environmental change, *in* Stoermer, E.F., and Smol, J.P., eds., The diatoms: Cambridge, U.K., Cambridge University Press, p. 169–182.
- 36. Bradbury, J.P., 2000, Limnologic history of Lago de Patzcuaro, Michoacan, Mexico for the past 48,000 years; impacts of climate and man: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 163, no. 1–2, p. 69–95.
- 37. Bradbury, J.P., Dieterich, K.V., and Williams, J.L., 1985, Diatom flora of the Miocene lake beds near Clarkia in northern Idaho, *in* Smiley, C.L., ed., Late Cenozoic history of the Pacific Northwest: San Francisco, American Association for the Advancement of Science, Pacific Division, p. 33–59.
- Bradbury, J.P., and Krebs, W.N., 1982, Neogene and Quaternary lacustrine diatoms of the western Snake River Basin, Idaho-Oregon, USA: Acta Geologica Academiae Scientiarum Hungaricae, v. 25, no. 1–2, p. 97–122.
- Bradbury, J.P., and Krebs, W.N., 1995, *Actinocyclus* (Bacillariophyta) species from lacustrine Miocene deposits of the Western United States: U.S. Geological Survey Professional Paper 1543A–B, p. 1–47.
- 40. Bradbury, J.P., and Krebs, W.N., 1995, Fossil continental diatoms; paleolimnology, evolution, and biochronology, *in* Babcock, L.E., and Ausich, W.I., eds., Siliceous microfossils (Short Courses in Paleontology, no. 8): Knoxville, Tenn., Paleontological Society, p. 119–138.
- 41. Bradbury, J.P., and Paquette, Marc, 1998, Diatom count data and Owens Lake paleolimnology during the last interglacial, *in* Bischoff, J.L., ed., The last interglaciation at Owens Lake, California; core OL–92: U.S. Geological Survey Open-File Report 98–132, p. 120–141.
- 42. Breese, O.Y., 1994, Diatomite, *in* Carr, D.D., ed., Industrial minerals and rocks (6th ed.): New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, p. 397–412.
- Brittain, R.C., 1986, Eagle-Picher diatomite mine and processing plant, eastern Oregon: Oregon Geology, v. 48, no. 9, p. 108–109.
- Bromfield, C.S., 1978, Intermontane basin uranium occurrences in Arizona: U.S. Geological Survey Professional Paper 1100, 30 p.
- 45. Brown, F.H., 1986, Report on correlation of quarries in the Hazen area by chemical analysis of tephra layers: final technical report for National Science Foundation under contract 431–2681–A, 23 p.
- 46. Bryan, D.P., and Papke, K.G., 1980, Industrial minerals of Nevada: American Institute of Mining, Metallurgical, and Petroleum Engineers. Society of Mining Engineers Preprint 80–23, 8 p.
- 47. Burlington Northern, 1971, Diatomite deposits; Washington, Oregon and California: St. Paul, Minn., Burl-

ington Northern, Industrial and Economic Development Department Report 2, 50 p.

- 48. Burnett, J.L., 1962, Carving stone produced near Coalinga: Mineral Information Service, v. 15, no. 7, p. 9.
- 49. Burnett, J.L., 1983, 1982 mining review: California Geology, v. 36, no. 10, p. 211–215.
- 50. Burnett, J.L., 1985, Recent mining activities in California: California Geology, January, p. 5–6.
- 51. Burnett, J.L., 1988, 1987 California mining review: California Geology, v. 41, no. 10, p. 219–224.
- Burnett, J.L., 1991, Mineral commodity report diatomite, 1991: California Division of Mines and Geology Special Publication 111, 26 p.
- 53. Cairnes, C.E., 1937, Preliminary report, mineral deposits of the west half of Kettle River area, British Columbia: Ottawa, Ontario, Geological Survey of Canada, 58 p.
- 54. Calder, S.R., 1982, The geology of, and known mineral occurrences within, wilderness study area 4–60 Vanar Hills-Peloncillo Mountains: Arizona Bureau of Geology and Mineral Technology Report 83–6, n.p.
- California Division of Mines, 1959, Geology of northeastern California: Mineral Information Service, v. 12, no. 6, p. 1–7.
- 56. Callaghan, Eugene, 1936, Diatomite, *in* Hewett, D.F., Callaghan, Eugene, Moore, B.N., Nolan, T.B., Rubey, W.W., and Schaller, W.T., Mineral resources of the region around Boulder Dam: U.S. Geological Survey Bulletin 871, p. 180–181.
- 57. Castor, S.B., 1992, Industrial minerals in Nevada, *in* Tooker, E.W., ed., Industrial minerals in the Basin and Range region—workshop proceedings: U.S. Geological Survey Bulletin 2013, p. 22–28.
- 58. Castor, S.B., 1992, Overview of industrial mineral mining in Nevada, *in* Adams, Opal, ed., Industrial minerals and gold deposits along the I–80 corridor; Lockwood to Battle Mountain; 1992 Fall Field Trip Guidebook: Geological Society of Nevada Special Publication 16, p. xii–xiv.
- 59. Castor, S.B., 1994, Industrial minerals; the Nevada mineral industry, 1993: Nevada Bureau of Mines and Geology Special Publication MI–1993, p. 30–34.
- 60. Castor, S.B., 1998, Industrial minerals; the Nevada mineral industry, 1997: Nevada Bureau of Mines and Geology Special Publication MI–1997, p. 42–44.
- 61. Castor, S.B., 2001, Industrial minerals; the Nevada mineral industry, 2000: Nevada Bureau of Mines and Geology Special Publication MI–2000, p. 39–42.
- 62. Church, B.N., 1995, Several new industrial mineral and ornamental stone occurrences in the Okanagan-Boundary District (82E, 82L): Exploration in British Columbia, v. 1995, p. 123–130.
- 63. Clark, W.B., 1978, Diatomite industry in California: California Geology, v. 31, no. 1, p. 3–9.
- 64. Cleveland, G.B., 1958, Poverty Hills diatomaceous earth deposits, Inyo County, California: California Journal of Mines and Geology, v. 54, no. 3, p. 305–316.
- 65. Cleveland, G.B., 1962, Economic geology of the Long

Valley diatomaceous earth deposit, Mono County, California: California Division of Mines and Geology Map Sheet 61, scale 1:31,680.

- 66. Cleveland, G.B., 1966, Diatomite, *in* Mineral resources of California: California Division of Mines and Geology Bulletin 191, p. 151–158 [reprint].
- Cleveland, G.B., 1969, Rapid method of sampling diatomaceous earth: California Division of Mines and Geology Special Report 100, p. 67–68.
- 68. Colbath, G.K., and Steele, M.J., 1982, The geology of economically significant lower Pliocene diatomites in the Fort Rock basin near Christmas Valley, Lake County, Oregon: Oregon Geology, v. 44, no. 10, p. 111–118.
- Coombs, Garth, 1981, Diatomite: Mining Engineering, v. 33, no. 5, p. 574.
- Coombs, Garth, 1983, Diatomite: Mining Engineering, v. 35, no. 5, p. 489.
- Cooper, J.F., Jr., and Dunning, G.E., 1969, Struvite found at Mono Lake: Mineral Information Service, v. 22, no. 3, p. 44–45.
- 72. Crawford, A.L., 1951, Diatomaceous earth near Bryce Canyon National Park, Utah: Utah Geological and Mineral Survey Circular 38, 34 p.
- Cressman, E.R., 1962, Nondetrital siliceous sediments: U.S. Geological Survey Professional Paper 440–T, p. T1–T23.
- Crossley, Penny, 2000, Clarifying matters; world diatomite reviewed: Industrial Minerals, no. 390, p. 119– 141.
- 75. Cummins, A.B., 1949, Diatomite, *in* Dolbear, S.H., ed., Industrial minerals and rocks; nonmetallics other than fuels (2d ed.): New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, p. 294–312.
- 76. Cummins, A.B., 1960, Diatomite, *in* Gillson, J.L., ed., Industrial minerals and rocks (nonmetallics other than fuels) (3d ed.): New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, p. 303–319.
- 77. Czarnecki, D.B., and Blinn, D.W., 1978, Diatoms of the Colorado River in Grand Canyon National Park Vicinity: Berlin, J. Cramer, 181 p.
- Dammann, Arthur, 1939, The preliminary study of the properties and uses of Pacific Northwest diatomites: Seattle, University of Washington, M.S. thesis, 137 p.
- 79. Davis, F.F., 1960, California mineral production in 1959: Mineral Information Service, v. 13, no. 10, p. 1–8.
- Bavis, F.F., 1961, The California minerals industry in 1960: Mineral Information Service, v. 14, no. 3, p. 1–8.
- Bavis, F.F., 1963, Highlights in California mining, 1962: Mineral Information Service, v. 16, no. 2, p. 1–8.
- Davis, L.L., 1991, Diatomite: American Ceramic Society Bulletin, v. 70, no. 5, p. 860–861.
- 83. Davis, L.L., 1992, Diatomite: American Ceramic Society Bulletin, v. 71, no. 5, p. 795–795.
- Davis, L.L., 1993, Diatomite, *in* Chemical industry applications of industrial minerals and metals: U.S. Bureau of Mines Special Publication, p. 49–50.

- Davis, O.K., and Moutoux, T.E., 1998, Tertiary and Quaternary vegetation history of the Great Salt Lake, Utah, USA: Journal of Paleolimnology, v. 19, p. 417–427.
- Derkey, R.E., 1999, The metallic, nonmetallic, and industrial mineral industry of Washington in 1998: Washington Geology, v. 27, no. 1, p. 3–8.
- 87. Diamond, D.S., 1990, Structural and sedimentologic evolution of an extensional orogen, Silver Peak Range and adjacent areas, west-central Nevada: Los Angeles, University of California, Ph.D. thesis, 338 p.
- Dickson, E.M., 1981, Insulating refractories—vermiculite, perlite, and diatomite—rocks playing an increasing role: Industrial Minerals, Refractories Survey, p. 151–153.
- 89. Dickson, Ted, 1979, Diatomite increases filtering through: Industrial Minerals, no. 141, p. 33–45.
- 90. Dupras, Don, 1997, Mineral land classification of alluvial sand and gravel, crushed stone, volcanic cinders, limestone, and diatomite within Shasta County, California: California Division of Mines and Geology Open-File Report 97–03, 129 p.
- 91. Dupras, Don, 1999, Plio-Pleistocene fossil trees found in ancestral Lake Britton diatomite deposits: California Geology, v. 52, no. 4, p. 15–19.
- Durham, D.L., 1973, Diatomite, *in* Brobst, D.A., and Walden, P.P., eds., United States mineral resources: U.S. Geological Survey Professional Paper 820, p. 191–195.
- 93. Dyrsmid, D.F., 1954, Diatomite operations at Terrebonne, Oregon: American Institute of Mining and Metallurgical Engineers, Industrial Minerals Division Pacific Northwest Metals and Minerals Conference, Portland, Oreg., 1954, Proceedings, 16 p.
- 94. Eagle-Picher, 1992, Celatom—filtration with diatomite filter aids, *in* Adams, Opal, ed., Industrial minerals and gold deposits along the I–80 corridor, Lockwood to Battle Mountain; 1992 Fall Field Trip Guidebook: Geological Society of Nevada Special Publication 16, p. 25.
- 95. Eardley-Wilmot, V.L., 1928, Diatomite—its occurrence, preparation, and uses: Canada Department of Mines Bulletin 691, 182 p.
- 96. Eardley-Wilmont, V.L., 1929, Diatomite, its properties and uses: Canadian Mining Journal, v. 7, p. 147–150.
- 97. Eilers, J.M., Gubala, C.P., Sweets, P.R., and Hanson, D., 2001, Effects of fisheries management and lakeshore development on water quality in Diamond Lake, Oregon: Lake and Reservoir Management, v. 17, no. 1, p. 29–47.
- 98. Evans, J.G., Frisken, J.G., Griscom, Andrew, Sawatzky, D.L., and Miller, M.S., 1990, Mineral resources of the Gold Creek and Sperry Creek Wilderness Study Area, Malheur County, Oregon: U.S. Geological Survey Bulletin 1741–E, p. E1–E20.
- 99. Eyerly, G.B., 1941, The properties and uses of Pacific Northwest diatomite: Seattle, University of Washington, M.S. thesis, 70 p.
- 100. Fernette, Greg, 1983, Geology, energy and mineral (GEM) resource assessment of the Mt. Bennett Hills

GRA, Idaho, including the Little City of Rocks (54–5), Black Canyon (54–6), Gooding (54–8a), City of Rocks (54–8b), Deer Creek (54–10) and King Hill Creek (19– 2) Wilderness Study Areas: Anchorage, Alaska, WGM, Inc., report to U.S. Bureau of Mines under contract YA–553–CT2–1039, 81 p.

- 101. Ferns, M.L., and Huber, D.F., 1984, Mineral resources map of Oregon: Oregon Department of Geology and Mineral Industries Geologic Map Series, no. 36, scale 1:500,000.
- 102. Feth, J.H., 1963, Tertiary lake deposits in western coterminous United States: Science, v. 139, no. 3550, p. 107–110.
- 103. Fields, P.F., 1984, Observations on Miocene phytogeographic changes from Trout Creek-Blue Mountains (Oregon) to the Payette (Idaho) floras: Palynology, v. 8 p. 254–255.
- 104. Filippelli, G.M., Carnahan, J.W., Derry, L.A., and Kurtz, A.C., 2000, Terrestrial paleorecords of Ge/Si cycling derived from lake diatoms: Chemical Geology, v. 168, no. 1–2, p. 9–26.
- 105. Fillo, P.V., 1977, Nevada, *in* Mining and mineral operations in the Rocky Mountain states; a visitor guide: Washington, D.C., U.S. Government Printing Office, p. 48–57.
- 106. Fillo, P.V., and Schilling, J.H., 1979, Minerals in the economy of Nevada: U.S. Bureau of Mines State Mineral Profiles, 16 p.
- 107. Firby, J.R., 1979, Paleogeographic and biostratigraphic relationships of late Tertiary lake beds of western Nevada, *in* Armentrout, J.M., Cole, M.R., TerBest, Harry, Jr., eds., Cenozoic paleogeography of the western United States (Pacific Coast Paleogeography Symposium 3): Los Angeles, Society of Economic Paleontologists and Mineralogists, Pacific Section, p. 328.
- 108. Firby, J.R., 1993, A new species of *Vorticifex* (Gastropoda: Planorbidae) from late Cenozoic lake deposits, Nevada: Journal of Paleontology, v. 67, no. 3, p. 370–374.
- Forester, R.M., 1991, Pliocene-climate history of the western United States derived from lacustrine ostracodes: Quaternary Science Reviews, v. 10, p. 133–146.
- 110. Gabby, P.N., 1985, Mineral resources of the Owyhee River Canyon Wilderness Study Area, Owyhee County, Idaho: U.S. Bureau of Mines Report MLA 68–85, 15 p.
- 111. Gasse, Françoise, Barker, Philip, Gell, P.A., Fritz, S.C., and Chalie, Françoise, 1997, Diatom-inferred salinity in palaeolakes; an indirect tracer of climate change: Quaternary Science Reviews, v. 16, no. 6, p. 547–563.
- 112. Gay, T.E., Jr., 1966, Economic mineral deposits of the Cascade Range, Modoc Plateau, and Great Basin region of northeastern California, in Geology of northern California: California Division of Mines and Geology Bulletin 190, p. 97–104.
- 113. Gehlen, Marion, Beck, L., Calas, George, Flank, A.-M., Van Bennekom, A.J., and Van Beusekom, J.E.E., 2002,

Unraveling the atomic structure of biogenic silica; evidence of the structural association of Al and Si in diatom frustules: Geochimica et Cosmochimica Acta, v. 66, no. 9, p. 1601–1609.

- 114. Geitgey, R.P., 1990, Industrial minerals in Oregon, in Geitgey, R.P., and Vogt, B.F., eds., Industrial rocks and minerals of the Pacific Northwest; Forum on the Geology of Industrial Minerals, 25th, Portland, Oreg., 1989, Proceedings: Oregon Department of Geology and Mineral Industries Special Paper 23, p. 1–7.
- 115. Gillerman, V.S., and Bennett, E.H., 1996, Industrial minerals of Idaho, in Jones, R.W., and Harris, R.E., eds., Wyoming Geological Survey Annual Forum on the Geology of Industrial Minerals, Laramie, Wyo., 1996, Proceedings: Laramie, Wyoming Geological Survey Geological Survey, p. 207–218.
- 116. Glover, S.L., 1949, Washington's assets in industrial minerals: American Institute of Mining and Metallurgical Engineers Metallurgical Minerals Conference, Spokane, Wash., 1949, Proceedings, 6 p.
- 117. Golia, R.T., and Stewart, J.H., 1984, Depositional environments and paleogeography of the upper Miocene Wassuk Group, west-central Nevada: Sedimentary Geology, v. 38, no. 1–4, p. 159–180.
- 118. Gulick, C.W., 1994, Industrial minerals: Washington Geology, v. 22, no. 1, p. 19–22.
- 119. Gulick, C.W., and Lingley, W.S., Jr., 1993, Sand and gravel, quarried rock, and industrial minerals: Washington Geology, v. 21, no. 1, p. 25–30.
- 120. Hall, R.I., and Smol, J.P., 1999, Diatoms as indicators of lake eutrophication, in Stoermer, E.F., and Smol, J.P., eds., The diatoms; applications for the environmental and earth sciences: Cambridge, U.K., Cambridge University Press, p. 128–168.121. Hanna, G.D., 1968, Nature's opaline gems: Pacific Discovery, v. 21, no. 5, p. 12–15.
- 122. Hanna, G.D., 1969, Diatoms and diatomite: California Division of Mines and Geology Mineral Information Service, v. 22, no. 7, p. 111–115.
- 123. Harben, P.W., 1995, Diatomite, in The industrial minerals handybook (2d ed.): London, Industrial Minerals Ltd., p. 57–61.
- 124. Harben, P.W., 1999, Diatomite, in The industrial minerals handybook; a guide to markets, specifications, and prices (3d ed.): Worcester Park, Surrey, U.K., Industrial Minerals Information Ltd., p. 66–69.
- 125. Harben, P.W., and Bates, R.L., 1990, Diatomite, in Industrial minerals geology and world deposits: London, Industrial Minerals Information Ltd., p. 102– 105.
- 126. Harben, P.W., and Kuzvart, Milos, 1996, Diatomite, in Industrial minerals; a global geology: Worcester Park, U.K., Industrial Minerals Information Ltd., p. 161–167.
- 127. Harding, I.C., and Chant, L.S., 2000, Self-sedimented diatom mats as agents of exceptional fossil preservation in the Oligocene Florissant Lake Beds, Colorado, United States: Geology, v. 28, no. 3, p. 195–198.

- Harness, C.L., 1943, Natural mineral-paint extender:
 U.S. Bureau of Mines Information Circular 7264, 19 p.
- Harris, R.E., 1989, Tripoli (tripolite) in Wyoming: Geological Survey of Wyoming Open-File Report 89–4, 10 p.
- 130. Harris, R.E., 1998, Industrial minerals and uranium update: Wyoming Geo-Notes, v. 60, p. 33–38.
- 131. Harris, R.E., and King, J.K., 1986, Diatomite (diatomaceous earth) in Wyoming: Geological Survey of Wyoming Open-File Report 86–16, 7 p.
- 132. Harwood, D.M., 1999, Diatomite, in Stoermer, E.F., and Smol, J.P., eds., The diatoms; applications for the environmental and earth sciences: Cambridge, U.K., Cambridge University Press, 436 p.
- 133. Hatmaker, Paul, 1931, Diatomite as a filler in battery boxes: U.S. Bureau of Mines Research Investigation 3078, 2 p.
- 134. Hearst, J.M., 1999, The mammalian paleontology and depositional environment of the Birch Creek local fauna (Pliocene; Blancan), Owyhee County, Idaho: Lawrence, University of Kansas, Ph.D. thesis, 431 p.
- 135. Henry, C.D., and Perkins, M.E., 2001, Sierra Nevada-Basin and Range transition near Reno, Nevada; twostage development at 12 and 3 Ma: Geology, v. 29, no. 8, p. 719–722.
- 136. Hernandez Velasco, J.A., 1963, Minerales no metalicos Mexicanos; v. 2, Minerales de aluminio, minerales de fosforo, tierras diatomaceas, talcos, asbestos, arenas cuarciferas: Mexico City, Instituto Mexicano de Investigaciones Tecnológicas, 245 p.
- 137. Heylmun, E.B., 1965, Reconnaissance of the Tertiary sedimentary rocks in western Utah: Utah Geological and Mineralogical Survey Bulletin, 38 p.
- 138. Hickman, Michael, and Reasoner, M.A., 1994, Diatom responses to late Quaternary vegetation and climate change, and to deposition of two tephras in an alpine and a sub-alpine lake in Yoho National Park, British Columbia: Journal of Paleolimnology, v. 11, p. 171–188.
- Holdredge, C.P., 1941, Survey of nonmetallic mineral production of Oregon for 1940: Oregon Department of Geology and Mineral Industries Short Paper SH–5, 9 p.
- 140. Hoover, R.B., 1979, Those marvelous, myriad diatoms: National Geographic, v. 155, no. 6, p. 871–878.
- 141. Hora, Z.D., 1981, British Columbia, in Harben, P.W., and Dickson, E.M., eds., Industrial Minerals of Canada: Industrial Minerals, no. 167, p. 35.
- 142. Hora, Z.D., 1984, Diatomite in British Columbia, in Guillet, G.R., and Martin, Wendy, eds., The geology of industrial minerals in Canada: Canadian Institute of Mining and Metallurgy Special Volume 29, p. 267.
- 143. Hora, Z.D., 1990, Industrial minerals in British Columbia: present producers and further development opportunities, in Geitgey, R.P., and Vogt, B.F., eds., Industrial rocks and minerals of the Pacific Northwest; Forum on the Geology of Industrial Minerals, 25th, Portland, Oreg., 1989, Proceedings: Oregon Department of Geol-

ogy and Mineral Industries Special Paper 23, p. 45-50.

- 144. Horton, B.K., and Schmitt, J.G., 1996, Sedimentology of a lacustrine fan-delta system, Miocene Horse Camp Formation, Nevada, USA: Sedimentology, v. 43, no. 1, p. 133–155.
- 145. Hughes, C.V.O., Jr., 1953, Diatomaceous earth; nonmetal of a thousand uses: Mining Engineering, v. 5, no. 3, p. 277–281.
- 146. Hurley, J.P., Armstrong, D.E., Kensyer, G.J., and Bowser, C.J., 1985, Ground water as a silica source for diatom production in a precipitation-dominated lake: Science, v. 227, no. 4694, p. 1576–1578.
- 147. Industrial Minerals, 1979, New diatomite source: no. 139, p. 15–16.
- 148. Industrial Minerals, 1980, Oil from diatomite: no. 157, p. 17.
- 149. Industrial Minerals, 1983, Waste diatomite production: no. 188, p. 17.
- 150. Industrial Minerals, 1984, New diatomite operation: no. 198, p. 19.
- 151. Industrial Minerals, 1986, Second diatomite filter aid source for Eagle-Picher: no. 227, p. 14.
- 152. Industrial Minerals, 1987, Diatomite—no skeletons in the cupboard: no. 236, p. 22–39.
- 153. Israde-Alcantara, Isabel, and Garduno-Monroy, V.H., 1999, Lacustrine record in a volcanic intra-arc setting; the evolution of the late Neogene Cuitzeo basin system (central-western Mexico, Michoacan): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 151, no. 1–3, p. 209–227.
- 154. Jensen, N.C., 1942, Marketing silica (quartz, Tripoli, diatomite, etc.): U.S. Bureau of Mines Information Circular 7202, 39 p.
- 155. Johnson, M.G., 1977, Geology and mineral deposits of Pershing County, Nevada: Nevada Bureau of Mines and Geology Bulletin 89, 115 p.
- 156. Jones, R.B., 1985, Directory of Nevada mine operations active during 1984, in The Nevada mineral industry, 1983: Nevada Bureau of Mines and Geology Special Publication MI–1983, 32 p.
- 157. Jones, R.L., 1964, Note on occurrence of opal phytoliths in some Cenozoic sedimentary rocks: Journal of Paleontology, v. 38, no. 4, p. 773–775.
- 158. Joseph, N.L., 1990, Industrial minerals in Washington— 1988, in Geitgey, R.P., and Vogt, B.F., eds., Industrial rocks and minerals of the Pacific Northwest; Forum on the Geology of Industrial Minerals, 25th, Portland, Oreg., 1989, Proceedings: Oregon Department of Geology and Mineral Industries Special Paper 23, p. 24–30.
- 159. Joseph, N.L., 1990, Industrial minerals in Washington; production and potential: Washington Geologic Newsletter, v. 18, no. 4, p. 8–16.
- 160. Kaczmarska, Irena, 1985, The diatom flora of Miocene lacustrine diatomites from the Harper Basin, Oregon, U.S.A.: Acta Palaeobotanica, v. 25, no. 1–2, p. 33–99.
- 161. Kadey, F.L., Jr., 1967, The unique properties of diatomite and new filler uses: Society of Mining Engineers Pre-

print 67HI84, 8 p.

- 162. Kadey, F.L., Jr., 1975, Diatomite, in Lefond, S.J., ed., Industrial minerals and rocks (nonmetallics other than fuels) (4th ed.): New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, Society of Mining Engineers, p. 605–635.
- 163. Kadey, F.L., Jr., 1983, Diatomite, in LeFond, S.J., Jr., ed., Industrial rocks and minerals (5th ed.): New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, v. 1, p. 677–708.
- Kamatani, Akiyoshi, 1971, Physical and chemical properties of biogeneous silica: Marine Biology, v. 8, p. 89–95.
- 165. Keith, W.J., Turner, R.L., Griscom, Andrew, Benham, J.R., and Miller, M.S., 1989, Mineral resources of the Camp Creek and Cottonwood Creek Wilderness Study Areas, Malheur County, Oregon: U.S. Geological Survey Bulletin 1741–C, p. C1–C16.
- 166. Khursevich, G.K., and VanLandingham, S.L., 1993, Frustular morphology of some centric diatom species from Miocene fresh-water sedimentary-rocks of western USA and Canada: Nova Hedwigia, v. 56, no. 3–4, p. 389–400.
- 167. Kimmel, P.G., 1979, Stratigraphy and paleoenvironments of the Miocene Chalk Hills Formation in the western Snake River Plain, Idaho: Ann Arbor, University of Michigan, Ph.D. thesis, 331 p.
- 168. Kimmel, P.G., 1982, Stratigraphy, age, and tectonic setting of the Miocene-Pliocene lacustrine sediments of the western Snake River Plain, Oregon and Idaho, in Bonnichsen, Bill, and Breckenridge, R.M., eds., Cenozoic geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 559–578.
- 169. Knauth, L.P., 1994, Petrogenesis of chert, in Heaney, P.J., Prewitt, C.T., and Gibbs, G.V., eds., Silica—physical behavior, geochemistry, and materials applications: Mineralogical Society of America Reviews in Mineralogy, v. 29, p. 55–74.
- 170. Krebs, W.N, 1999, Diatoms in oil and gas exploration, in Stoermer, E.F., and Smol, J.P., eds., The diatoms; applications for the environmental and earth sciences: Cambridge, U.K., Cambridge University Press, p. 402–412.
- 171. Krebs, W.N., and Bradbury, J.P., 1984, Fieldtrip guidebook to non-marine diatomites near Reno, Nevada, in Geologic use of diatoms: Geological Society of America Short Course, p. I–6 to I–29.
- 172. Krebs, W.N., and Bradbury, J.P., 1995, Geologic ranges of lacustrine Actinocyclus species, Western United States, in Bradbury, J.P., and Krebs, W.N., eds., The diatom genus Actinocyclus in the Western United States: U.S. Geological Survey Professional Paper 1543A–B, p. 51–67.
- 173. Krebs, W.N., Bradbury, J.P., and Theriot, E.C., 1987, Neogene and Quaternary lacustrine diatom biochronology, western U.S.A.: Palaios, v. 2, no. 5, p. 505–513.
- 174. Ladd, T.W., 1975, Stratigraphy and petrology of the Quiburis Formation near Mammoth, Pinal County, Ari-

zona: Tucson, University of Arizona, M.S. thesis, 103 p.

- 175. Ladoo, R.B., and Myers, W.M., 1951, Diatomite or diatomaceous earth, in Nonmetallic minerals (2d ed.): New York, McGraw-Hill, p. 185–193.
- 176. Laird, K.R., Fritz, S.C., and Cumming, B.F., 1998, A diatom-based reconstruction of drought intensity, duration, and frequency from Moon Lake, North Dakota; a sub-decadal record of the last 2300 years: Journal of Paleolimnology, v. 19, no. 2, p. 161–179.
- 177. LaRivers, I.L., 1953, A lower Pliocene frog from western Nevada: Journal of Paleontology, v. 27, no. 1, p. 77–81.
- 178. Lavine, Alexis, 1994, Geology of Prisoners Rock and The Peninsula; Pleistocene hydrovolcanism in the Tule Lake basin, northeastern California: California Geology, v. 47, no. 4, p. 95–103.
- 179. Lazell, E.W., 1936, Diatomite deposits in Oregon: Mineralogist, v. 4, no. 4, p. 9–10.
- 180. Lemons, J.F., 1997, Diatomite: American Ceramic Society Bulletin, v. 76, no. 6, p. 92.
- 181. Leng, M.J., Barnker, P., Greenwood, P., Roberts, N., and Reed, J., 2001, Oxygen isotope analysis of diatom silica and authigenic calcite from Lake Pinarbasi, Turkey: Journal of Paleolimnology, v. 25, no. 3, p. 343–349.
- 182. Lent, R.M., and Lyons, W.B., 2001, Biogeochemistry of silica in Devils Lake—implications for diatom preservation: Journal of Paleolimnology, v. 26, no. 1, p. 53–66.
- 183. Lenz, P.E., and Morris, C.L., 1993, Diatomite in Nevada: Society for Mining, Metallurgy, and Exploration Annual Meeting Reprint 93–93, 11 p.
- 184. Lepple, P.W., 1953, Diatomite: Mineral Information Service, v. 6, no. 11, p. 1–8.
- 185. Livingston, V.E., 1966, Diatomite, in Mineral and water resources of Washington: report to U.S. 89th Congress for Committee on Interior and Insular Affairs, p. 185–189.
- 186. Lohman, K.E., 1957, Cenozoic non-marine diatoms from the Great Basin: Pasadena, Calif., California Institute of Technology, Ph.D. thesis, 190 p.
- 187. Lohman, K.E., 1960, The ubiquitous diatom—a brief survey of the present state of knowledge: American Journal of Science, v. 258–A, p. 180–191.
- 188. Lohman, K.E., 1962, Stratigraphic and paleoecologic significance of Tertiary diatoms of California and Nevada: American Association of Petroleum Geologists Bulletin, v. 46, no. 2, p. 271–272.
- 189. Lohman, K.E., 1962, Stratigraphic and paleoecologic significance of the Mesozoic and Cenozoic diatoms of California and Nevada, in Cross, A.T., ed., Palynology in oil exploration—a symposium, San Francisco, Calif., 1962: Tulsa, Okla., Society of Economic Paleontologists and Mineralogists, p. 58–64.
- 190. Lohman, K.E., 1965, Miocene diatoms from Washington: U.S. Geological Survey Professional Paper 525–A, 127 p.
- 191. Lohman, K.E., 1972, A procedure for the microscopical

study of diatomaceous sediments: Nova Hedwigia, v. 39, p. 267–283.

- 192. Lohman, K.E., and Andrews, G.W., 1968, Late Eocene nonmarine diatoms from the Beaver Divide area, Fremont County, Wyoming: U.S. Geological Survey Professional Paper 593–E, p. E1–E26.
- 193. Lydon, P.A., and O'Brien, J.C., 1974, Diatomite, in Mines and mineral resources of Shasta County, California: California Division of Mines and Geology County Report 6, p. 78–79.
- 194. Macdonald, G.A., and Gay, T.E., 1968, Geology of the Modoc Plateau: Mineral Information Service, v. 21, no. 6, p. 92–93.
- 195. Mackin, J.H., 1947, Diatomite deposits in eastern Washington: Northwest Science, v. 21, no. 1, p. 33.
- 196. Mason, R.S., 1951, Key to Oregon mineral deposits map (QM-12): Oregon Department of Geology and Mineral Industries Miscellaneous Paper MP-2, 15 p.
- 197. Mason, R.S., 1951, Lightweight aggregate industry in Oregon: Oregon Department of Geology and Mineral Industries Short Paper SH–21, 23 p.
- 198. Mayerle, R.T., 1991, Diatomite, in Principal deposits of industrial minerals in Idaho (excluding phosphate): Spokane, Wash., U.S. Bureau of Mines, p. 53–56.
- 199. McKnight, B.K., Niem, A.R., Kociolek, Pat, and Renne, Paul, 1995, Origin of freshwater-diatom-rich pyroclastic-debris-flow deposit in a shallow-marine Tertiary forearc basin, NW Oregon: Journal of Sedimentary Research, v. 65, no. A3, p. 505–512.
- 200. Meisinger, A.C., 1976, Diatomite, in Mineral facts and problems: U.S. Bureau of Mines Bulletin 667, p. 339–347.
- 201. Meisinger, A.C., 1985, Diatomite, in Mineral facts and problems, 1985 edition: U.S. Bureau of Mines Bulletin 675, p. 249–254.
- 202. Meisinger, A.C., 1989, Diatomite: American Ceramic Society Bulletin, v. 68, no. 5, p. 1040–1041.
- 203. Mining Engineering, 1983, Testing of diatomite deposit underway: Mining Engineering, v. 35, no. 4, p. 305.
- 204. MINOBRAS, 1974, Colorado and Utah industrial minerals: Santa Ana, Calif., 119 p.
- 205. MINOBRAS, 1975, Arizona industrial minerals: Santa Ana, Calif., 73 p.
- 206. MINOBRAS, 1975, Idaho industrial minerals: Santa Ana, Calif., 55 p.
- 207. Minor, S.A., King, H.D., Kulik, D.M., Sawatzky, D.L., and Capstick, D.O., 1987, Mineral resources of the upper Deep Creek Wilderness Study Area, Owyhee County, Idaho: U.S. Geological Survey Bulletin 1719– G, 14 p.
- 208. Moore, B.N., 1935, Diatomite and pumice in eastern Oregon: Mining and Metallurgy, v. 15, no. 330, p. 263.
- 209. Moore, B.N., 1937, Nonmetallic mineral resources of eastern Oregon: U.S. Geological Survey Bulletin 875, 180 p.
- 210. Moore, J.G., 1969, Geology and mineral resources of Lyon, Douglas, and Ormsby Counties, Nevada: Nevada

Bureau of Mines and Geology Bulletin 75, 45 p.

- 211. Mou, Yun, 1999, Biochronology and magnetostratigraphy of the Pliocene Panaca Formation, Southeast Nevada: Tucson, University of Arizona, Ph.D. thesis, 351 p.
- 212. Moyle, P.R., 1985, Mineral resources of the Gooding City of Rocks study areas, Gooding County, Idaho: Spokane, Wash., U.S. Bureau of Mines, Western Field Operations Center Open-File Report MLA 46–85, 49 p.
- 213. Mueller, K.J., 1993, Geologic map of the Windermere Hills, northeastern Nevada: Nevada Bureau of Mines and Geology Field Studies Map 4, scale 1:48,000.
- 214. Mulryan, Henry, 1939, Fresh-water diatomite in the Pacific Coast region: American Institute of Mining, Metallurgical, and Petroleum Engineers Technical Publication 3, 8 p.
- 215. Murawski, D.A., 1999, Diatoms, plants with a touch of glass: National Geographic, v. 195, no. 2, p. 114–121.
- 216. Murphy, T.D., 1954, Silica resources of Clark County, Nevada: Nevada Bureau of Mines Bulletin 55, 28 p.
- 217. Nash, J.T., 1995, Reconnaissance geology and resources of Miocene diatomite, Trinity Pass area, Pershing County, Nevada: U.S. Geological Survey Open-File Report 95–84, 16 p.
- 218. Nash, J.T., 1996, Resource assessment of the U.S. Bureau of Land Management's Winnemucca District and Surprise Resource Area, Northwest Nevada and Northeast California; resources of industrial rocks and minerals: U.S. Geological Survey Open-File Report 96–721, 33 p.
- 219. Nevada Bureau of Mines and Geology, 1985, Nevada mining and you: Special Publication 8, 40 p.
- 220. Nevada Bureau of Mines and Geology, 1993, Major mines of Nevada, 1992: Special Publication P–4, 27 p.
- 221. Nevada Bureau of Mines and Geology, 1994, Major mines of Nevada, 1993: Special Publication P–5, 27 p.
- 222. Nevada Division of Minerals, 1995, Major mines of Nevada, 1994; mineral industries in Nevada's economy: Nevada Bureau of Mines and Geology Special Publication P–6, 32 p.
- 223. Oakeshott, G.B., 1957, Diatomite, in Wright, L.A., ed., Mineral commodities of California; geologic occurrence, economic development, and utilization of the State's mineral resources: California Division of Mines Bulletin 176, p. 183–193.
- 224. O'Driscoll, Mike, 1990, Minerals in the US South-West; breaking rocks in the hot sun: Industrial Minerals (London), v. 272, p. 52–53, 55–56, 59, 61, 63–64, 67, 69, 71–72, 75, 77, 79–80, 83.
- 225. Okuno, Haruo, 1955, Electron-microscopic fine structure of fossil diatoms, III: Palaeontological Society of Japan Transactions and Proceedings, new ser., v. 19, p. 53–58.
- 226. Okuno, Haruo, 1956, Electron-microscope fine structure of fossil diatoms, IV: Palaeontological Society of Japan Transactions and Proceedings, new ser., v. 21, no. 31, p. 133–139.
- 227. Okuno, Haruo, 1958, Electron-microscopic fine struc-

ture of fossil diatoms; V, Observation on some diatoms found in the "celatoms": Palaeontological Society of Japan Transactions and Proceedings, new ser., v. 31, p. 237–242.

- 228. Okuno, Haruo, 1959, Electron-microscope fine structure of fossil diatoms, VI, Stereoscopic observations: Palaeontological Society of Japan Transactions and Proceedings, new ser., v. 36, p. 185–191.
- 229. Okuno, Haruo, 1974, Freshwater diatoms: Vaduz, Liechtenstein, A.R. Gantner, 44 p.
- Olson, R.H., 1964, Diatomite, in Mineral and water resources of Nevada: Nevada Bureau of Mines Bulletin 65, p. 190–194.
- 231. Papke, K.G., 1980, Sources of information on selected industrial minerals: Nevada Bureau of Mines and Geology Report 34, 4 p.
- 232. Papke, K.G., 1987, Industrial minerals in Nevada, in Peirce, H.W., ed., Proceedings of the 21st Forum on the Geology of Industrial Minerals: Arizona Bureau of Geology and Mineral Technology, Geological Survey Branch Special Paper 4, p. 24–30.
- 233. Papke, K.G., 1992, Nevada diatomite, in Adams, Opal, ed., Industrial minerals and gold deposits along the I–80 corridor; Lockwood to Battle Mountain; 1992 fall field trip guidebook: Geological Society of Nevada Special Publication 16, p. 50.
- 234. Pardee, J.T., and Bryan, Kirk, 1926, Geology of the Latah Formation in relation to the lavas of Columbia Plateau near Spokane, Washington, U.S. Geological Survey Professional Paper 140, 16 p.
- 235. Parrish, J.T., 1998, Interpreting pre-Quaternary climate from the geologic record: New York, Columbia University Press, 338 p.
- 236. Patrick, Ruth, 1977, Ecology of freshwater diatoms diatom communities, in Werner, Dietrich, ed., The biology of diatoms (Botanical Monographs, v. 13): Berkeley, University of California Press, p. 284–332.
- 237. Patrick, Ruth, and Reimer, C.W., 1966, The diatoms of the United States: Philadelphia Academy of Natural Sciences Monograph 13, n.p.
- 238. Patterson, S.H., 1965, Diatomite, in Mineral and water resources of New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin 87, p. 322–324 [reprint].
- 239. Pederson, J.L., 2000, Holocene paleolakes of Lake Canyon, Colorado Plateau; paleoclimate and landscape response from sedimentology and allostratigraphy: Geological Society of America Bulletin, v. 112, no. 1, p. 147–158.
- 240. Pederson, J.L., Pazzaglia, F.J., Smith, G.R., and Mou, Yun, 2000, Neogene through Quaternary hillslope records, basin sedimentation, and landscape evolution of southeastern Nevada, in Lageson, D.R., Peters, S.G., and Lahren, M.M., eds., Great Basin and Sierra Nevada: Geological Society of America Field Guide 2, p. 117–134.
- 241. Pederson, Joel, Smith, Gary, and Pazzaglia, Frank, 2001,

Comparing the modern, Quaternary, and Neogene records of climate-controlled hillslope sedimentation in Southeast Nevada: Geological Society of America Bulletin, v. 113, no. 3, p. 305–319.

- 242. Peirce, H.W., 1969, Diatomite, in Mineral and water resources of Arizona: Arizona Bureau of Mines Bulletin 180, p. 337–342 [reprint].
- 243. Perkins, M.E., Brown, F.H., Nash, W.P., McIntosh, W.C., and Williams, S.K., 1998, Sequence, age, and source of silicic fallout tuffs in middle to late Miocene basins of the northern Basin and Range Province: Geological Society of America Bulletin, v. 110, no. 3, p. 344–360.
- 244. Perkins, M.E., and Nash, B.P., 2002, Explosive silicic volcanism of the Yellowstone Hotspot—the ash fall tuff record: Geological Society of America Bulletin, v. 114, no. 3, p. 367–381.
- 245. Perkins, M.E., Nash, W.P., Brown, F.H., and Fleck, R.J., 1995, Fallout tuffs of Trapper Creek, Idaho—a record of Miocene explosive volcanism in the Snake River Plain volcanic province: Geological Society of America Bulletin, v. 107, no. 12, p. 1484–1506.
- 246. Pettifer, Lee, 1982, Diatomite—growth in the face of diversity: Industrial Minerals, no. 175, p. 47–69.
- 247. Phoenix, D.A., 1948, Geology and ground water in the Meadow Valley Wash drainage area, Nevada, above the vicinity of Caliente: Nevada Water Resources Bulletin 7, 117 p.
- 248. Pierce, K.L., Morgan, L.A., and Saltus, R.W., 2000, Yellowstone plume head—postulated tectonic relations to the Vancouver slab, continental boundaries, and climate: U.S. Geological Survey Open-File Report 00–498, p. 39.
- 249. Pike, Jennifer, and Kemp, A.E.S., 1996, Preparation and analysis techniques for studies of laminated sediments, in Kemp, A.E.S., ed., Palaeoclimatology and palaeoceanography from laminated sediments: Geological Society of London Special Publication 116, p. 37–48.
- 250. Powers, H.A., n.d., Diatomaceous earth of Idaho and the Pacific Northwest: unpub. manuscript, 8 p.
- 251. Powers, H.A., 1947, Diatomite deposits of southwestern Idaho: Idaho Bureau of Mines and Geology Idaho Mineral Resources Report 4, 27 p.
- 252. Ralston, J.K., 1984, A study of the diatomites from a portion of the type area of the Ellensburg Formation of south central Washington: Seattle, University of Washington, M.S. thesis, 112 p.
- 253. Rapier, P.M., 1955, The indomitable diatom: Engineering and Mining Journal, v. 156, no. 12, p. 90–93.
- 254. Regnier, J.P.M., 1960, Cenozoic geology in the vicinity of Carlin, Nevada: Geological Society of America Bulletin, v. 71, no. 8, p. 1189–1210.
- 255. Reheis, M.C. and Sawyer, T.L., 1997, Late Cenozoic history and slip rates of the Fish Lake Valley, Emigrant Peak, and Deep Springs fault zones, Nevada and California: Geological Society of America Bulletin, v. 109, no. 3, p. 280–299.
- 256. Retallack, G.J., 1997, Neogene expansion of the North

American prairie: Palaios, v. 12, no. 4, p. 380-390.

- 257. Retallack, G.J., 2001, Cenozoic expansion of grasslands and climatic cooling: Journal of Geology, v. 109, no. 4, p. 407–426.
- 258. Reynolds, R.E., and Lindsay, E.H., 1999, Late Tertiary basins and vertebrate faunas along the Nevada-Utah border, in Gillette, D.D., ed., Vertebrate paleontology in Utah: Utah Geological Survey Miscellaneous Publication 99–1, p. 469–478.
- 259. Richter, D.H., and Sharp, W.N., 1984, Mineral resource potential of the Silver City 1° by 2° Quadrangle, New Mexico-Arizona; map L, Zeolites and diatomite resource potential: U.S. Geological Survey Open-File Report 84–629–L, scale 1:250,000.
- 260. Rishel, J., and Dee, L., 1984, An evaluation of the Clover Creek diatomites: Anchorage, Alaska, WGM, Inc., report to U.S. Bureau of Land Management under contract YA–533–CT2–1039 (amended study), 50 p.
- 261. Robertson, R.H.S., 1960, Mineral use guide or Robertson's spider's webs: London, Cleaver-Hume, 44 p
- 262. Robinson, J.D., 1991, Stratigraphy and sedimentation of the Latah Formation, Spokane County, Washington: Cheney, Eastern Washington University, M.S. thesis, 141 p.
- 263. Rose, R.L., 1969, Geology of parts of the Wadsworth and Churchill Butte quadrangles, Nevada: Nevada Bureau of Mines and Geology Bulletin 71, 27 p.
- 264. Ross, T.E., 1982, Diatomite; origins, occurrences, and uses: Rocks and Minerals, v. 57, no. 4, p. 145–147.
- 265. Rowley, P.D., Snee, L.W., Mehnert, H.H., Anderson, R.E., Axen, G.J., Burke, K.J., Simonds, F.W., Shroba, R.R., and Olmore, S.D., 1992, Structural setting of the Chief mining district, eastern Chief Range, Lincoln County, Nevada, in Thorman, C.H., ed., Application of structural geology to mineral and energy resources of the central and western United States: U.S. Geological Survey Bulletin 2012, 17 p.
- 266. Rytuba, J.J., and Vander Meulen, D.B., 1991, Hot-spring precious-metal systems in the Lake Owyhee volcanic field, Oregon-Idaho, in Raines, G.L., Lisle, R.E., Schafer, R.W., and Wilkinson, W.H., eds., Geology and ore deposits of the Great Basin; symposium proceedings: Reno, Geological Society of Nevada, p. 1085–1096.
- 267. Ryves, D.B., Juggins, Stephen, Fritz, S.C., and Battarbee, R.W., 2001, Experimental diatom dissolution and the quantification of microfossil preservation in sediments: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 172, no. 1–2, p. 99–113.
- 268. Sawlan, M.G., King, H.D., Hoffman, J.D., Kulik, D.M., Gabby, P.N., Capstick, D.O., and Buehler, A.R., 1987, Mineral resources of the Owyhee River Canyon and Deep Creek-Owyhee River Wilderness Study Areas, Owyhee County, Idaho: U.S. Geological Survey Bulletin 1719–D, p. D1–D12.
- 269. Sawlan, M.G., Turner, R.L., Jachens, R.C., Peters, T.J., and Winters, R.A., 1995, Mineral resources of the Malheur River-Bluebucket Creek Wilderness Study Area,

Harney County, Oregon: U.S. Geological Survey Bulletin 1741–H, p. H1–H16.

- 270. Schilling, J.H., 1965, Virginia City, field-trip guidebook; trip 1, Metals; trip 2, Industrial minerals; AIME Pacific Southwest Mineral Industry Conference, May 1965: Reno, Nevada Bureau of Mines, 27 p.
- 271. Schorn, H.E., Bell, C.J., Starratt, S.W., and Wheeler, D.T., 1994, A computer-assisted annotated bibliography and preliminary survey of Nevada paleobotany: U.S. Geological Survey Open-File Reports 94–441–ABC, 182 p., 2 diskettes.
- 272. Schwartz, K.M., 2001, Evolution of the Middle to Late Miocene Chalk Hills Basin in the Basin and Range-Sierra Nevada Transition Zone, Western Nevada: Reno, University of Nevada, M.S. thesis, 160 p.
- 273. Seiple, Eric, 1988, Field trip; Buffalo Canyons opals: Rock & Gem, v. 18, no. 9, p. 22–26.
- 274. Shah Alam, A.H.M., and Pilger, R.H., Jr., 1991, An integrated geologic and geophysical study of the structure and stratigraphy of the Cenozoic extensional Hamlin Valley, Nevada-Utah, in Raines, G.L., Lisle, R.E., Schafer, R.W., and Wilkinson, W.H., eds., Geology and ore deposits of the Great Basin; symposium proceedings: Reno, Geological Society of Nevada, p. 93–100.
- 275. Shenk, J.D., 1990, Economic geology of the White Cliffs diatomite deposit, Mammoth, Arizona: Tucson, University of Arizona, M.S. thesis, 157 p.
- 276. Shenk, J.D., 1991, Descriptive model of lacustrine diatomite, in Orris, G.J., and Bliss, J.D., eds., Some industrial mineral deposit models—descriptive deposit models: U.S. Geological Survey Open–File Report 91–11, p. 23–25.
- 277. Shenk, J.D., 1992, Geology of the White Cliffs diatomite deposit and Aravaipa Creek gypsum deposit, lower San Pedro Valley, Arizona, in Houser, B.B., ed., Industrial minerals of the Tucson area and San Pedro Valley, southeastern Arizona: Tucson, Arizona Geological Society, p. 48–52.
- 278. Sheppard, R.A., and Gude, A.J., III, 1983, Zeolites in Tertiary tuffs along the Little Humboldt River, Humboldt and Elko Counties, Nevada: U.S. Geological Survey Open-File Report 83–458, 10 p.
- 279. Sherlock, M.G., and Campbell, H.W., 1986, Mineral resources of the Pit River Canyon Wilderness Study Area, Lassen County, California: U.S. Geological Survey Bulletin 1706–E, p. E1–E8.
- 280. Sherrod, D.R., Griscom, Andrew, Turner, R.L., Minor, S.A., Graham, D.E., and Buehler, A.R., 1988, Mineral resources of the Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas, Malheur and Harney counties, Oregon: U.S. Geological Survey Bulletin 1719–A, p. A1–A16.
- 281. Shuck, G.R., 1952, Filtration properties of Pacific Northwest diatomites: Seattle, University of Washington, M.S. thesis, 55 p.
- 282. Simandl, G.J., Simandl, Jana, and Aylen, Peter, 2001, Leonardite-type material at Red Lake diatomite

deposit, Kamloops area, British Columbia: Canadian Ministry of Energy, Mines and Petroleum Resources Paper 2001–1, p. 371–378.

- 283. Smedman, Gunilla, 1969, An investigation of the diatoms from four Tertiary lake bed deposits in western Nevada: PaleoBios, no. 9, 16 p.
- 284. Smiley, C.J., 1963, The Ellensburg flora of Washington: University of California Publications in Geological Sciences, v. 35, no. 3, p. 237–240.
- 285. Smith, C.M., 1980, Shasta diatomite, in Loyd, R.C., and Rapp, J.S., eds., Mineral resource potential of California; transactions: Sacramento, Calif., Society of Mining Engineers, p. 79–92.
- 286. Smith, G.A., Bjornstad, B.N., and Fecht, K.R., 1989, Neogene terrestrial sedimentation on and adjacent to the Columbia Plateau, Washington, Oregon, and Idaho, in Reidel, S.P., and Hooper, P.R., eds., Volcanism and tectonism in the Columbia River flood-basalt province: Geological Society of America Special Paper 239, p. 187–198.
- 287. Smith, G.R., 1987, Fish speciation in a western North American Pliocene rift lake: Palaios, v. 2, no. 5, p. 436–445.
- 288. Smith, G.R., and Patterson, W.P., 1994, Mio-Pliocene seasonality on the Snake River Plain—comparison of faunal and oxygen isotopic evidence: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 107, no. 3–4, p. 291–302.
- 289. Smith, G.R., Swirydczuk, Krystyna, Kimmel, P.G., and Wilkinson, B.H., 1982, Fish biostratigraphy of late Miocene to Pliocene sediments of the western Snake River Plain, Idaho, in Bonnichsen, Bill, and Breckenridge, R.M., eds., Cenozoic geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 519–541.
- 290. Smith, J.F., Jr., and Ketner, K.B., 1976, Stratigraphy of post-Paleozoic rocks and summary of resources in the Carlin-Piñon Range area, Nevada: U.S. Geological Survey Professional Paper 867–B, 48 p.
- 291. Sovereign, H.E., 1963, New and rare diatoms from Oregon and Washington: California Academy of Sciences Proceedings, ser. 4, v. 31, no. 14, p. 349–368.
- 292. Staley, W.W., 1964, Diatomite, in Mineral and water resources of Idaho: Idaho Bureau of Mines and Geology Special Report 1, p. 74–79.
- 293. Stanford, Dennis, Haynes, C.V., Saunders, J.J., and Agogino, G.A., 1986, Blackwater Draw, Locality 1; history, current research and interpretations, in Holliday, V.T., ed., Guidebook to the archaeological geology of classic paleoindian sites on the southern High Plains, Texas and New Mexico: College Station, Texas A&M University, p. 82–112.
- 294. Starratt, S.W., 1996, Diatom studies in the Great Basin, in A guidebook to the far western field trip in California and Nevada: International Organization of Palaeobotanists Conference, 5th, Santa Barbara, Calif., 1996, p. 80–81.
- 295. Starratt, S.W., 1999, Diatoms: M.A.P.S. Digest (Expo

XXI ed.), v. 22, no. 4, 187-224.

- 296. Stewart, J.H., and Perkins, M.E., 1999, Stratigraphy, tephrochronology, and structure of part of the Miocene Truckee Formation in the Trinity Range-Hot Springs Mountains area, Churchill County, west-central Nevada: U.S. Geological Survey Open-File Report 99–330, 23 p.
- 297. Stewart, J.H., Sarna-Wojcicki, A.M., Meyer, C.E., Starratt, S.W., and Wan, Elmira, 1999, Stratigraphy, tephrochronology, and structural setting of Miocene sedimentary rocks in the Middlegate area, west-central Nevada: U.S. Geological Survey Open-File Report 99–350, 17 p.
- 298. Stewart, J.H., Sarna-Wojcicki, A.M., Meyer, C.E., and Wan, Elmira, 1999, Stratigraphy, tephrochronology, and structural setting of Miocene sedimentary rocks in the Cobble Cuesta area, west-central Nevada: U.S. Geological Survey Open-File Report 99–352, 21 p.
- 299. Stoermer, E.F., and Smol, J.P., eds., 1999, The diatoms applications for the environmental and earth sciences: Cambridge, U.K., Cambridge University Press, 469 p.
- 300. Swift, R.E., 1940, The characteristics and uses of Pacific Northwest diatomite: Seattle, University of Washington, M.S. thesis, 164 p.
- 301. Swirydczuk, K., Larson, G.P., and Smith, G.R., 1982, Volcanic ash beds as stratigraphic markers in the Glenns Ferry and Chalk Hills Formations from Adrian, Oregon, to Bruneau, Idaho, in Bonnichsen, Bill, and Breckenridge, R.M., eds., Cenozoic geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 543–558.
- 302. Taylor, G.C., 1981, California's diatomite industry: California Geology, v. 34, no. 9, p. 183–192.
- 303. Taylor, H.A., 1995, Diatomite: American Ceramic Society Bulletin, v. 74, no. 6, p. 122–122.
- 304. Theriot, E.C., and Bradbury, J.P., 1987, Mesodictyon; a new fossil genus of the centric diatom family Thalassiosiraceae from the Miocene Chalk Hills Formation, western Snake River plain, Idaho: Micropaleontology, v. 33, no. 4, p. 356–367.
- 305. Thompson, R.S., 1991, Pliocene environments and climates in the western United States: Quaternary Science Reviews, v. 10, no. 2–3, p. 115–132.
- 306. Thompson, R.S., 1994, Mid-Pliocene vegetation, environment, and climate in the Western Interior of the United States, in Thompson, R.S., ed., Pliocene terrestrial environments and data/model comparisons: U.S. Geological Survey Open-File Report 94–23, p. 16–20.
- 307. Todd, V.R., Kilburn, J.E., Detra, D.E., Griscom, Andrew, Kruse, F.A., and McHugh, E.L., 1987, Mineral resources of the Jacumba (In-ko-pah) Wilderness Study Area, Imperial County, California: U.S. Geological Survey Bulletin 1711, 18 p.
- 308. Tooker, E.W., 1992, Industrial minerals in the Basin and Range region—workshop proceedings: U.S. Geological Survey Bulletin 2013, 132 p.
- 309. Toth, M.I., Stoneman, R.G., and Moyle, P.R., 1987, Min-

eral resources of the Gooding City of Rocks East and West Wilderness Study Area, Gooding County, Idaho: U.S. Geological Survey Bulletin 1721–A, 13 p.

- 310. Treco Industries, Inc., 1974, Diatomaceous earth marketing plan presented to AIA: Spokane, Wash., private company report to U.S. Geological Survey, Spokane Field Office, 15 p.
- 311. Trexler, J.H., Jr., Cashman, P.H., Muntean, T.W., Schwartz, Kenneth, Ten Brink, Andy, Faulds, J.E., Perkins, Michael, and Kelly, T.S., 2000, Neogene basins in western Nevada document the tectonic history of the Sierra Nevada-Basin and Range transition zone for the last 12 Ma, in Lageson, D.R., Peters, S.G., and Lahren, M.M., eds., Great Basin and Sierra Nevada: Boulder, Geological Society of America Field Guide 2, p. 97–116.
- 312. Tripp, B.T., 1992, Industrial rock and mineral production in Utah, 1990, in Tooker, E.W., ed., Industrial minerals in the Basin and Range region—workshop proceedings: U.S. Geological Survey Bulletin 2013, p. 11–22.
- 313. Tripp, B.T., 1999, Industrial rock and mineral resources and developments in Utah, in Bon, R.L., Riordan, R.F., Tripp, B.T., and Krukowski, S.T., eds., Proceedings of the 35th Forum on the Geology of Industrial Minerals; the Intermountain West Forum, 1999: Utah Geological Survey Miscellaneous Publication 01–2, p. 79–92.
- 314. Trischka, Carl, 1929, Diatomite in Arizona: Engineering and Mining Journal, v. 127, no. 1, p. 13–14.
- 315. Tschanz, C.M., and Pampeyan, E.H., 1970, Geology and mineral resources of Lincoln County, Nevada: Nevada Bureau of Mines and Geology Bulletin 73, 188 p.
- 316. Tysdal, R.G., Reynolds, M.W., Carlson, R.R., Kleinkopf, M.D., Rowan, L.C., and Peters, T.J., 1991, Mineral resources of the Sleeping Giant Wilderness Study Area, Lewis and Clark County, Montana: U.S. Geological Survey Bulletin 1724–E, 31 p.
- 317. U.S. Geological Survey, 1999, Diatomite: American Ceramic Society Bulletin, v. 78, no. 8, p. 127, 129.
- 318. Valentine, G.M., 1960, Diatomite, in Nonmetallic minerals, pt. 1 of Inventory of Washington minerals (2d ed.): Washington Division of Mines and Geology Bulletin 37, p. 35–38.
- 319. Van Houten, F.B., 1956, Reconnaissance of Cenozoic sedimentary rocks of Nevada: American Association of Petroleum Geologists Bulletin, v. 40, no. 12, p. 2801–2825.
- 320. VanLandingham, S.L., 1964, Chrysophyta cysts from the Yakima Basalt (Miocene) in south-central Washington: Journal of Paleontology, v. 38, no. 4, p. 729–739.
- 321. VanLandingham, S.L., 1964, Miocene non-marine diatoms from the Yakima region in south central Washington: Nova Hedwigia, v. 14, 78 p.
- 322. VanLandingham, S.L., 1967, Paleoecology and microfloristics of Miocene diatomites from the Otis Basin-Juntura region of Harney and Malheur counties, Oregon:

Nova Hedwigia, v. 26, 77 p.

- 323. VanLandingham, S.L., 1985, Potential Neogene diagnostic diatoms from the western Snake River Basin, Idaho and Oregon: Micropaleontology, v. 31, no. 2, p. 167–174.
- 324. VanLandingham, S.L., 1991, Precision dating by means of traditional biostratigraphic methods for the middle Miocene diatomaceous interbeds within the middle Yakima (Wanapum) Basalt of south-central Washington (U.S.A.): Nova Hedwigia, v. 53, no. 3–4, p. 349–368.
- 325. Van Tassell, Jay, Ferns, M.L., McConnell, V.S., and Smity, G.R., 2001, The mid-Pliocene Imbler fish fossils, Grande Ronde Valley, Union County, Oregon, and the connection between Lake Idaho and the Columbia River: Oregon Geology, v. 63, no. 3, p. 77–96.
- 326. Vervacke, R.G., n.d., Diatomite in Washington: Quincy, Wash., Frarkenhoff Corp., 9 p.
- 327. Vinyard, W.C., 1979, Diatoms of North America: Eureka, Calif., Mad River Press, 120 p.
- 328. Vogel, A.H., 1995, Some relationships between sedimentary trace metal concentrations and freshwater phytoplankton and sedimentary diatom species composition: Portland, Oreg., Portland State University, Ph.D. thesis, 437 p.
- 329. Wagner, N.S., 1969, Diatomite, in Mineral and water resources of Oregon: Oregon Department of Mineral Industries Bulletin 64, p. 205–210.
- 330. Walker, R.C., 1996, Diatomite, in Industrial minerals, 1995: Mining Engineering, v. 48, no. 6, p. 20–21.
- 331. Webster, K.E., Kratz, T.K., Bowser, C.J., and Magnusson, J.J., 1996, The influence of landscape position on lake chemical responses to drought in northern Wisconsin: Limnology and Oceanography, v. 41, no. 5, p. 977–984.
- 332. Weight, H.O., 1952, Fossil leaves from an ancient Nevada forest: Desert Magazine, v. 15, no. 1, p. 12–17.
- 333. Wetzel, R.G., 2001, Limnology—lake and river ecosystems (3d ed.): San Diego, Calif., Academic Press, 1,006 p.
- 334. Willden, Ronald, and Speed, R.C., 1974, Geology and mineral deposits of Churchill County, Nevada: Nevada Bureau of Mines and Geology Bulletin 83, 95 p.
- 335. Williamson, D.R., 1966, Exploration for diatomites: Colorado School of Mines Mineral Industries Bulletin, v. 9, no. 3, 14 p.
- 336. Wolfe, J.A., Schorn, H.E., Forest, C.E., and Molnar, Peter, 1997, Paleobotanical evidence for high altitudes in Nevada during the Miocene: Science, v. 276, no. 5319, p. 1672–1675.
- 337. Zachos, James, Pagani, Mark, Sloan, Lisa, Thomas, Ellen, and Billups, Katharina, 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present: Science, v. 292, no. 5517, p. 686–693.
- 338. Zielinski, R.A., 1982, Uraniferous opal, Virgin Valley, Nevada; conditions of formation and implications for uranium exploration: Journal of Geochemical Exploration, v. 16, no. 3, p. 197–216.

Abstracts

- Brunstad, K.A., 1987, A study of diatomite of the Yakima Basalt Formation, southcentral Washington [abs.]: Geological Society of America Abstracts with Programs, v. 19, no. 6, p. 362.
- 2. Brunstad, K.A., and Lowther, J.S., 1989, A comparative study of the Squaw Creek Member in Grant and Yakima counties, Washington [abs.]: Geological Society of America Abstracts with Programs, v. 21, no. 5, p. 61.
- Caran, S.C., 1988, Bottomless lakes, New Mexico—a model for the origin and development of ground-water lakes [abs.]: Geological Society of America Abstracts with Programs, v. 20, no. 2, p. 93.
- Carnahan, J.W., Filippelli, G.M., Derry, L.A., and Kurtz, A.C., 1997, A basin-scale study of germanium/silicon ratios in freshwater diatoms during the Holocene [abs.]: Geological Society of America Abstracts with Programs, v. 29, no. 6, p. 97.
- Cashman, P.H., Trexler, J.H., Jr., Henry, C.D., and Perkins, M.E., 1999, Deformation recorded in the Neogene Verdi Basin, Sierra Nevada-Basin and Range transition, western Nevada [abs.]: Geological Society of America Abstracts with Programs, v. 31, no. 7, p. 116.
- Downing, K.F., and Swisher, C.C., III, 1993, New ⁴⁰Ar/³⁹Ar dates and refined geochronology of the Sucker Creek Formation, Oregon [abs.]: Journal of Vertebrate Paleontology, v. 13, no. 3, supp., p. 33.
- Fields, P.F., 2002, Important outcomes from studies of the Succor Creek flora of the middle Miocene Sucker Creek Formation, Idaho/Oregon [abs.]: Geological Society of America Abstracts with Programs, v. 34, no. 5, p. A10.
- Goodwin, J.H., and Schmit, C.R., 1974, Sedimentology and geochemistry of piston cores from Yellowstone and Jackson Lakes, Wyoming [abs.]: Geological Society of America Abstracts with Programs, v. 6, no. 7, p. 760.
- Henry, C.D., Trexler, J.H., Jr., Cashman, P.H., and Perkins, M.E., 2000, The Sierra Nevada Basin and Range boundary near Reno, Nevada developed in two stages at approximately 12 and 3 Ma [abs.]: Geological Society of America Abstracts with Programs, v. 32, no. 7, p. 44.
- Higgins, C.T., Dupras, D.L., Chapman, R.H., and Churchill, R.K., 1993, Mineral resources and land use in Stanislaus County, California [abs.]: Geological Society of America Abstracts with Programs, v. 25, no. 5, p. 52.
- Kelsey, H.M., Nelson, A.R., Hemphill-Haley, Eileen, and Witter, R.C., 1998, Short-term and long-term changes in ocean level recorded by a coastal, freshwater meromictic lake, Cascadia subduction zone, southern Oregon [abs.]: Geological Society of America Abstracts with Programs, v. 30, no. 7, p. 162.
- Krebs, W.N., and Bradbury, J.P., 1982, Neogene lacustrine diatom biostratigraphy of western Snake River basin, Idaho and Oregon [abs.]: American Association of Petroleum Geologists Bulletin, v. 66, no. 10, p. 1693.
- 13. Lindsey, K.A., 1994, Large Pliocene-aged lakes in southcentral Washington; evidence for damming of the

ancestral Columbia River [abs.]: Geological Society of America Abstracts with Programs, v. 26, no. 7, p. 68.

- Lowther, J.S., and Brunstad, K.A., 1989, Two new large diatoms from the Miocene of central Washington State [abs.]: Geological Society of America Abstracts with Programs, v. 21, no. 5, p. 109.
- Martinez, C.M., 2001, Characteristics of sedimentary basins formed above low-angle detachment faults examples from the basin and range province, western U.S. [abs.]: Geological Society of America Abstracts with Programs, v. 33, no. 6, p. A–391.
- 16. Muntean, T.W., Cashman, P.H., and Trexler, J.H., Jr., 2000, Tectonic evolution of the Neogene Sunrise Pass sedimentary basin, western Nevada [abs.]: Geological Society of America Abstracts with Programs, v. 32, no. 7, p. 44.
- Perkins, M.E., Nash, W.P., and Brown, F.H., 1994, Tephrochronology of selected Miocene floras and faunas of the Great Basin and some adjacent areas [abs.]: Geological Society of America Abstracts with Programs, v. 26, no. 7, p. 520.
- Rember, W.C., 2002, The Clarkia Flora—its diversity and stratigraphic position relative to other Miocene floras of the Columbia Plateau [abs.]: Geological Society of America Abstracts with Programs, v. 34, no. 5, p. 9–10.
- Retallack, G.J., 2002, Late Miocene (Clarendonian) fossil plants and animals from Unity, Baker County, Oregon [abs.]: Geological Society of America Abstracts with Programs, v. 34, no. 5, p. 10.
- 20. Schorn, H.E., and Erwin, D.M., 2002, Miocene Stewart Valley, Nevada—the best little terrestrial ecosystem in the Neogene of North America [abs.]: Geological Society of America Abstracts with Programs, v. 34, no. 5, p. A10.
- Starratt, S.W., 1986, Middle Miocene diatomaceous shale deposits in Stewart Valley, Nevada [abs.]: Geological Society of America Abstracts with Programs, v. 18, no. 5, p. 416.
- 22. Starratt, S.W., 1986, Micropaleontology and paleoecology of Miocene lacustrine facies belonging to the "Esmeralda" Formation in Stewart Valley, Nevada [abs.]: Geological Society of America Abstracts with Programs, v. 18, no. 6, p. 761.
- 23. Starratt, S.W., 1986, Paleoecology of middle Miocene diatomaceous shale deposits in Stewart Valley, Nevada [abs.]: Eos (American Geophysical Union Transactions), v. 67, no. 44, p. 986–987.
- 24. Starratt, S.W., 1987, Biochronology and paleoecology of fine-grained sediments belonging to the "Esmeralda" Formation in Stewart Valley, Nevada [abs.]: American Association of Petroleum Geologists Bulletin, v. 71, no. 5, p. 618.
- 25. Starratt, S.W., 1987, Micropaleontology, paleolimnology, and biochronology of middle Miocene lacustrine and nearshore facies belong to the "Esmeralda" Formation in Stewart Valley, west-central Nevada [abs.]: Geological Society of America Abstracts with Programs, v. 19, no.

5, p. 336.

- 26. Starratt, S.W., 1993, Paleolimnology of lacustrine rocks in Stewart Valley, Nevada; Evidence for middle Miocene climatic cooling? [abs.]: Geological Society of America Abstracts with Programs, v. 25, no. 5, p. 150.
- 27. Starratt, S.W., 1994, Freshwater diatom response to global climatic change and local tectonic influence; evidence from Neogene lacustrine deposits in west-central Nevada [abs.]: Geological Society of America Abstracts with Programs, v. 26, no. 7, p. A–521.
- 28. Starratt, S.W., 1998, Diatom studies in the Great Basin; from economic deposits to indicators of past climate change [abs.]: Geological Society of America Abstracts with Programs, v. 30, no. 7, p. 163.
- 29. Starratt, S.W., 2001, Diatom studies in the western United States; from economic deposits to indicators of past climate change [abs.]: PaleoBios, v. 21, no. 2, supp., p. 121.
- 30. Stewart, J.H., Sarna-Wojcicki, A.M., Perkins, M.E., and Dumitru, T.A., 2000, Age of Basin and Range faulting based on coarse clastics in Miocene sedimentary rocks, west-central Nevada [abs.]: Geological Society of America Abstracts with Programs, v. 32, no. 7, p. 44.
- 31. Ten Brink, A.L., Cashman, P.H., and Trexler, J.H., Jr., 2000, Neogene depositional and deformational history of Warm Springs Valley, northern Walker Lake [abs.]:

Geological Society of America Abstracts with Programs, v. 32, no. 6, p. 71.

- 32. Tinl, T.L., 1984, Diatom paleoecology of the Bonneville Formation, Tule Valley, Millard County, Utah [abs.]: Geological Society of America Abstracts with Programs, v. 16, no. 4, p. 258.
- Trexler, J.H., Jr., Cashman, P.H., Kelly, T.S., and Perkins, M.E., 2002, Neogene sedimentary record of paleogeography along the eastern edge of the Sierra Nevada from 11 to 3 Ma—Verdi Basin, western Nevada [abs.]: Geological Society of America Abstracts with Programs, v. 34, no. 5, p. A44.
- 34. Unruh, M.E., and Ruff, R.W., 1982, Lacustrine diatomaceous deposits of Piute Valley, California and Nevada [abs.]: American Association of Petroleum Geologists Bulletin, v. 66, no. 10, p. 1702.
- 35. VanLandingham, S.L., 1985, Snake River basin versus Great Basin and other areas as a standard for lacustrine diatom stratigraphy [abs.]: Geological Society of America Abstracts with Programs, v. 17, no. 4, p. 269.
- 36. Wolfe, J.A., and Schorn, H.E., 1994, Fossil floras indicate high altitude for west-central Nevada at 16 Ma & collapse to about present altitudes by 12 Ma [abs.]: Geological Society of America Abstracts with Programs, v. 26, no. 7, p. 521.

Index

Adrian, Oreg. 301 Alaska 39, 172 Aldrich Station Formation 17, 30A, 36A algae 1, 8, 16, 17, 25, 26, 31-33, 35-39, 41, 63, 64, 68, 95, 96, 120-122, 127, 140, 146, 153, 160, 172, 173, 178, 188-192, 199, 215, 217, 225-229, 235, 267, 291, 293, 302, 304, 320-323, 328, 1A, 2A, 4A, 11A, 12A, 14A, 20A, 25A, 27A, 28A, 32A, 34A, 35A Alkali Canyon Formation 286 Antelope County, Nebr. 25 Apache County, Ariz. 205 Aravaipa deposit 277 arid environment 33, 241 Arizona 26, 27, 44, 54, 56, 77, 174, 205, 224, 242, 259, 275, 277, 306, 314 Arrow Canyon Range 240 ash falls 25, 244, 245 Alvord Desert 280 Baker County, Oreg. 19A Basin and Range Province 14, 33, 112, 135, 144, 155, 173, 245, 255, 265, 272, 273, 293, 296, 298, 308, 311, 334, 5A, 9A, 15A, 17A, 20A, 27A, 28A, 30A, 33A, 35A Battle Mountain 4, 94 Beaver Dam Formation 17A Beaver Divide 192 **Big Snowy Group 24** biogeography 16, 35, 199, 235 biostratigraphy 16, 20, 35, 37, 38, 41, 68, 85, 107, 109, 134, 153, 167, 168, 172, 173, 190, 199, 235, 289, 293, 296, 297, 324, 1A, 2A, 6A, 7A, 12A, 18A, 25A, 28A Birch Creek 134 **Bishop Tuff 33** Black Mountain 213 Blackleaf Formation 24 Blackwater Draw 293 Boca Basin 311 Boca Reservoir 311 Bonneville Formation 32A Boulder Dam 56 Box Canyon 239 Box Elder County, Utah 15A brackish-water environment 33 Bradley Lake 11A British Columbia 53, 62, 138, 141-143, 282 Bruneau, Idaho 301 Bryce Canyon National Park 72 Buffalo Canyon 273 Buffalo Valley 28A, 36A Burney, Calif. 91 Burney Falls 8 California 8, 28, 32-34, 41, 47, 49, 50, 51, 52, 55, 56, 63-66, 71, 79-81, 90, 91, 104, 107, 112, 178, 184, 188, 189, 191, 193, 194, 203, 214, 218, 223–225, 255, 279, 285, 302, 306, 307, 311, 317, 4A, 10A, 17A, 34A Camp Creek Wilderness Study Area 165

Camp Davis 131 Campbell County, Wyo. 129 Canada 53, 62, 120, 138, 141-143, 166, 282 Carboniferous 24, 53 Carlin 254, 290 Carson Range 33A Cascade Range 112, 178, 286, 328, 13A Casebier Hill 131 Cassia County, Idaho 245 Cenozoic 1, 5, 8-10, 12, 14, 16, 17, 20, 25, 31-33, 35-39, 55, 68, 91, 102, 107–109, 117, 122, 127, 134, 135, 137, 140, 142, 144, 153, 155, 157, 160, 167, 168, 172-174, 188–192, 199, 207, 208, 211, 217, 226, 227, 233, 234, 239-241, 244, 245, 248, 252, 254-258, 262, 267, 269, 273, 274, 277-279, 284, 286-293, 296-298, 301, 302, 304-306, 311, 319-323, 328, 332, 337, 338, 1A, 2A, 4A-9A, 11A-14A, 16A-20A, 25A, 27A, 28A, 30A-33A, 35A, 36A Chalk Bluffs 311 Chalk Hills 9, 167, 168, 272, 311 Chalk Hills Formation 288, 289, 301, 304, 12A Chaves County, N.Mex. 3A Chief District 265 Chief Range 265 Chilcotin Group 142 Christmas Valley 68 Churchill Butte Quadrangle 263 Churchill County, Nev. 20, 108, 296, 297, 334 Clark area 263 Clark County, Nev. 216, 258 Clarkia 38 Clarkia Flora 18A clastic rocks 5, 17, 37, 44, 47, 53, 65, 67, 72, 75, 87, 95, 118, 131, 132, 144, 145, 162, 174, 195, 204, 205, 245, 251, 252, 297, 302, 1A, 3A, 5A, 16A, 27A, 30A, 31A, 33A, 34A clastic sedimentary deposits 90, 134, 136, 169, 174, 204, 205, 214, 240, 241, 255, 293, 8A, 10A, 13A, 15A Clear Lake 328 climate change 32, 35, 36, 41, 138, 241, 257 Clover Creek 260 Clovis, N.Mex. 293 Coal Valley Formation 9, 107, 117 Cobble Cuesta 298, 30A Cochise County, Ariz. 205, 259 Colorado 127, 204 Colorado Plateau 239, 18A Colorado River 77 Columbia County, Oreg. 199 Columbia Plateau 68, 248, 262, 286, 18A Columbia River 325, 13A Columbia River Basalt Group 262, 2A, 27A construction materials 6, 90, 115, 312, 313, 34A Cottonwood Wilderness Study Area 165 Cretaceous 24, 122, 188, 189, 191, 209, 290 Cry Lake 4A Crystal Lake 146

15

Cuitzeo Basin 153 Cuitzeo Lake 153 Deep Creek-Owyhee River Wilderness Study Area 268 depositional environment 10, 14, 32, 41, 134, 144, 167, 174, 239, 240, 258, 262, 297, 298, 311, 5A, 16A, 30A, 31A Desert Peak Quadrangle 196 Devils Gate 6A Devils Lake 182, 267 diatomaceous earth 52, 64, 65, 67, 72, 75, 95, 96, 131, 132, 145, 175, 195, 214, 250, 251, 275, 302, 310, 1A, 27A, 34A diatomite 8, 15, 19, 28, 42–44, 47, 49–54, 56, 58–70, 72, 74-76, 78, 82-84, 86, 88-96, 98, 99, 105, 106, 118, 119, 121–126, 129–134, 136, 142, 147–154, 159, 161-163, 171, 174, 175, 178-180, 183-185, 193, 195, 198, 200-209, 214, 217-224, 230, 231, 233, 238, 242, 246, 251, 252, 259-261, 263, 264, 268, 269, 273, 275-277, 279-282, 285, 292, 293, 300, 302, 303, 309, 313, 314, 317, 318, 320, 321, 324, 326, 329, 330, 332, 335, 338, 2A, 3A, 8A, 10A, 13A, 14A, 16A, 31A, 32A, 34A. 35A diatoms 1, 2, 8, 15, 16, 17, 23, 25-27, 31-33, 35, 36, 38-41, 64, 68, 77, 95–97, 104, 111, 113, 121, 127, 138, 140, 153, 160, 166, 170, 172, 173, 176, 178, 181, 186–192, 199, 212, 215, 217, 225–229, 235–237, 253, 267, 283, 291, 293-295, 299, 302, 304, 321-323, 327, 328, 1A, 2A, 4A, 11A, 12A, 14A, 20A, 21A, 27A-29A, 32A, 34A. 35A Donner Pass Zone 9A Douglas County, Nev. 7, 210 Eagle-Picher mine 43, 152 economic geology 6, 14, 15, 18, 21-24, 28, 42-44, 47, 49-51, 53, 56, 58-66, 68, 72, 75, 76, 79-81, 90, 92, 95, 96, 101, 106, 112, 114, 129, 131, 136, 142, 143, 145, 155, 158, 159, 162, 179, 184, 195, 200-209, 212, 214, 216, 219-222, 231, 238, 242, 246, 251, 252, 259, 265, 268, 270, 275–280, 282, 285, 290, 292, 302, 307–309, 312-314, 316, 317, 329, 330, 334, 338, 10A, 29A, 34A Elko County, Nev. 213, 278, 290 Elko Formation 290 Ellensburg Formation 252, 284, 286, 2A Emigrant Peak fault zone 255 Eocene 11, 142, 192, 199, 256, 290, 35A Esmeralda Basin 87 Esmeralda County, Nev. 87, 255 Esmeralda Formation 293, 22A, 25A evaporites 28, 59, 60, 61, 204, 205, 220, 221, 3A Fallon area 226 Fish Lake Valley Fault zone 255 Fort Rock Basin 68 Fort Rock Formation 68 Freemont County, Wyo. 192 Frenchman Coulee 1A, 2A Frenchman Hills 1A freshwater environment 32, 33, 172, 192, 199, 229, 235, 236,

Gardnerville Basin 311 geochemistry 73, 104, 146, 244, 245, 257, 269, 279, 282, 298, 338, 4A, 8A geomorphology 8, 167, 178, 240 Gila County, Ariz. 205 Gila Valley 45 Gillam Spring 13 Glenns Ferry Formation 167, 168, 287, 289, 301, 306, 12A Glenns Ferry Lake 134 Gold Creek and Sperry Creek Wilderness Study Area 98 Gooding City of Rocks 212 Gooding City of Rocks East Wilderness Study Area 309 Gooding City of Rocks West Wilderness Study Area 309 Gooding County, Idaho 212 Graham County, Ariz. 54, 205, 259 Grand Canvon 77 Grande Ronde Valley 325 Grant County, N.Mex. 259 Grant County, Wash. 1A, 2A Grassy Mountain deposit 266 Great Basin 14, 32, 33, 112, 120, 173, 186, 294, 17A, 27A, 28A. 35A Great Plains 256, 267, 293 Great Valley 10A Greenlee County, Ariz. 205 Grouse Creek Mountains 15A Hagerman Cliffs 289 Hamlin Valley 274 Harney County, Oreg. 17, 269, 280, 322 Harper Basin 160 Hawaii 251 Hay Ranch Formation 290 Hazen 46 Hidalgo County, N.Mex. 259 historical geology 9 Holly Joe Quadrangle 277 Holocene 85, 140, 239, 267, 328, 4A, 11A Horse Camp Formation 144 Horse Creek 279 Hot Springs Mountain 296 Humboldt County, Nev. 278, 338 Humboldt Formation 290, 17A Hunter Creek 311 Idaho 3, 21, 22, 37, 38, 103, 115, 134, 167, 168, 198, 206, 207, 212, 244, 245, 248, 250, 251, 266, 268, 286-289, 292, 301, 304, 306, 309, 323, 7A, 12A, 18A, 27A Idaho Formation 28 Imperial County, Calif. 307 In-ko-pah Wilderness Study Area 307 Indian Wells Formation 290 industrial minerals 4, 6, 7, 19, 21, 22, 46, 49, 57-62, 74, 81, 86, 114–116, 118, 130, 136, 139, 141, 143, 145, 158, 159, 204–206, 218, 221, 224, 231, 232, 259, 270, 277, 278, 308, 312, 317, 318 Invo County, Calif. 32, 33, 35, 41, 64, 255 Iron County, Utah 258 Jackson Lake 8A

328, 4A, 27A, 28A, 32A

Gabbs Valley 298

Jacumba Wilderness Study Area 307 Juntura 322 K/Ar 11, 274, 17A Kamloops, British Columbia, Canada 282 Kansas 256 lacustrine environment 15, 33, 35-39, 41, 87, 108, 109, 120, 127, 134, 144, 146, 153, 160, 172, 235, 239, 262, 267, 269, 273, 276, 277, 286, 287, 293, 306, 311, 322, 3A, 5A, 6A, 11A-13A, 16A, 22A, 25A-28A, 30A, 31A, 34A, 35A Lake Bonneville 32A Lake Britton 91, 203, 285 Lake Canyon 239 Lake County, Oreg. 68 Lake Idaho 287, 325 Lake Lahontan 35 Lake Mojave 35 Lake Oswego 328 Lake Owyhee 266 lake sedimentary deposits 2, 35, 41, 85, 102, 120, 181, 267, 11A Lake Washington 2 Lassen County, Calif. 279 Latah Formation 190, 234, 262, 286 Lava Beds National Monument 178 Laramie County, Wyo. 129 Lassen County, Calif. 107 Lewis and Clark County, Mont. 316 light penetration 2 limnology 35, 120, 267 Lincoln County, Nev. 241, 258, 265, 315 Little Humboldt River 278 Little Owyhee River 3 Llano Estacado 293 Lockwood 2, 94 Lompoc, Calif. 214, 225 Long Valley 65, 107 Luna County, N.Mex. 259 Lyon County, Nev. 7, 210 Maine 182 Malheur County, Oreg. 1, 14, 98, 165, 280, 301, 322 Malheur River-Bluebucket Creek Wilderness Study Area 269 Mammoth Quadrangle 275, 277 Maricopa County, Ariz. 205 Mayberry Park 311 McCarran Bridge 311 McDermitt caldera complex 17 McKay Formation 286 Meadow Valley 211, 247 Medicine Lake 178 Mesozoic 24, 53, 108, 122, 155, 188, 189, 191, 209, 290 Mexico 36, 136, 153 Michoacán, Mexico 36, 153 microfossils 1, 8, 15-17, 25-27, 31-33, 35-41, 64, 68, 95, 96, 109, 121, 122, 127, 146, 153, 160, 172, 173, 178, 187-192, 199, 215, 217, 225-229, 235, 267, 291, 293, 302,

22A, 25A, 27A, 28A, 32A, 34A, 35A Middlegate Formation 297 Middlegate, Nev. 297 Millard County, Utah 32A Mineral County, Nev. 6, 20A mineral exploration 42, 68, 218, 279, 280, 309, 316, 335, 338, 10A mineral resources 3, 6, 18, 21, 42, 50, 51, 56, 66, 76, 79, 80, 81, 90, 98, 100, 101, 106, 110, 112, 114, 136, 143, 155, 158, 162, 165, 185, 196, 204, 207-210, 212, 217-219, 231, 235, 238, 268, 269, 276, 279, 280, 282, 290, 292, 307, 309, 315, 316, 334, 10A mineralogy 71, 251, 314 mining 42, 81, 132, 156, 218, 302 Miocene 1, 5, 12, 14, 17, 20, 25, 37, 39, 103, 107, 117, 142, 144, 160, 167, 168, 172, 190, 207, 217, 225–227, 233, 243, 245, 248, 252, 262, 271-273, 284, 288, 289, 296-298, 301, 302, 304, 320-322, 324, 336, 338, 1A, 2A, 5A-7A, 9A, 14A, 17A-27A, 30A, 31A, 36A models 120, 235, 239, 257, 276, 277, 286, 290 Modoc Plateau 55, 63, 112, 194 Mohave County, Ariz. 44, 205 Monarch Mill Formation 297 Mono County, Calif. 65, 71, 255 Mono Lake 71 Montana 24, 248, 316 Monterey Formation 302 Moon Lake 176 Morgan Ranch Formation 117 Mount Bennett Hills, Idaho 100 Mount Mazama 2 Mount Shasta 178 Muddy Creek Formation 44, 240, 258 Muggins Mountains 45 National Elk Refuge 131 Navajo County, Ariz. 205 Nebraska 25, 256 Neogene 1, 5, 8-10, 12, 14, 17, 20, 25, 31, 37-39, 44, 68, 91, 107–109, 117, 134, 135, 142, 144, 153, 160, 167, 68, 172-174, 207, 211, 217, 225-227, 233, 240, 241, 244, 245, 248, 252, 255–257, 262, 269, 271, 273, 277, 284, 286–290, 293, 296–298, 301, 302, 304–306, 311, 320-323, 338, 1A, 2A, 5A-7A, 9A, 12A-14A, 16A 20A, 24A, 25A, 27A, 30A, 31A, 33A, 36A Nevada 4, 6, 9, 10, 12, 13, 20, 29, 46, 56-61, 87, 105-107, 117, 135, 144, 155, 156, 171, 177, 183, 188, 189, 191, 210, 211, 213, 214, 216-222, 224, 226, 227, 230-233, 240, 241, 244, 247, 254, 255, 258, 263, 265, 270-274, 278, 283, 290, 296, 297, 311, 315, 317, 319, 332, 334, 336, 338, 5A, 9A, 15A-17A, 20A-27A, 30A, 33A, 34A, 36A New Mexico 224, 238, 259, 3A nonmarine deposits 1, 321 North Dakota 176, 267 Nye County, Nev. 219, 273, 298 Okanagan-Boundary District 62

304, 306, 320-323, 1A, 2A, 4A, 7A, 12A, 14A, 20A,

Oligocene 199, 256, 290 Oregon 1, 5, 14, 17, 38, 43, 47, 68, 93, 97, 98, 101, 103, 110, 114, 139, 160, 165, 168, 179, 196, 197, 199, 208, 209, 214, 226, 245, 248, 256, 266, 269, 276, 280, 286, 301, 317, 322, 323, 325, 328, 329, 6A, 7A, 11A, 12A, 17A, 19A Ormsby County, Nev. 7, 210 Otis Basin 322 Oviatt Creek 38 Overton 216 Owens Lake 32, 33, 35, 34, 41, 50 **Owens Valley 32** Owyhee County, Idaho 110, 134, 167, 207, 268, 301, 304 Owyhee Mountains 134 Owyhee Plateau 207 Owyhee River Canyon 110, 268 paleobotany 1, 9-11, 13, 25-27, 91, 121, 157, 160, 188, 189, 191, 192, 215, 229, 256, 291, 294, 304, 320-322, 332, 336, 7A, 14A, 28A paleoclimatology 10, 12, 32-34, 36, 41, 85, 109, 235, 239, 240, 241, 248, 249, 256, 257, 284, 288, 305, 306, 337, 17A, 27A-29A, 36A paleoecology 1, 9, 15-17, 31, 32, 35, 37, 38, 85, 127, 134, 157, 167, 192, 199, 217, 257, 258, 284, 287, 293, 306, 322, 6A, 20A, 22A, 24A, 25A, 28A, 32A, 35A Paleogene 127, 142, 192, 199, 290, 28A, 35A paleohydrology 32, 33, 239 paleolimnology 2, 31, 33, 35-37, 40, 111, 120, 181, 182, 239, 267, 11A, 13A, 26A, 28A paleontology 8-10, 20, 26, 27, 95, 96, 104, 121, 137, 157, 167, 188, 189, 191, 192, 225, 226, 227, 251, 287, 291, 320, 321, 322, 332, 19A, 25A Paleozoic 24, 115, 155, 316 Panaca area 247 Panaca Basin 240, 241 Panaca Formation 211, 240, 258 Pasco Basin 286 Payette, Idaho 103 Payette Formation 160 Peavine Mountain 33A Pecos River Valley 3A Permian 115, 316 Pershing County, Nev. 155, 217 petrology 9, 55, 174, 338 Pettus Lake Member 68 Phosphoria Formation 316 phosphorus 2 physical geology 9 Pima County, Ariz. 205 Pinal County, Ariz. 174, 205, 277 Pine Nut Mountains 16A Piñon Range 290 Pit River Canyon Wilderness Study Area 279 Pittsburg Bluff Formation 199 Piute Valley 34A plankton 2 Plant Ridge 273

Plantae 1, 8-10, 13, 15, 16, 17, 25-27, 31-33, 35-39, 41, 64, 68, 91, 95, 96, 107, 120-122, 127, 140, 146, 153, 157, 160, 172, 173, 178, 187–192, 199, 215, 217, 225–229, 235, 256, 257, 267, 273, 291, 293, 302, 304, 306, 320-323, 328, 332, 1A, 2A, 4A, 7A, 11A, 12A, 14A, 17A-20A, 24A, 25A, 27A, 28A, 32A, 34A, 35A Platte County, Wyo. 129 Pleistocene 33, 36, 41, 44, 85, 91, 122, 255, 289, 293, 16A, 32A Pliocene 8-10, 44, 68, 91, 107, 109, 134, 167, 168, 174, 177, 211, 226, 233, 240, 252, 277, 284, 286-288, 290, 301, 305, 306, 322, 325, 1A, 5A, 9A, 13A Poison Creek Formation 12A Pole Creek Top 14 Poverty Hills 64 Priest Rapids Member 38 Prisoners Rock 178 Provo Formation 32A Quaternary 32, 33, 35, 36, 38, 41, 44, 85, 91, 122, 138, 140, 173, 239-241, 255, 267, 289, 291, 293, 4A, 8A, 11A, 16A. 32A Quaternary geology 31, 35, 36, 38, 41, 239, 255, 267, 293, 328, 332, 4A, 8A, 11A, 32A Quiburis Formation 174, 277 Railroad Valley 144 Ramsey County, N.D. 267 Red Lake deposit 282 Reno, Nev. 171, 9A Ricardo Group 17A Ringold Formation 286, 13A Rocky Mountains 316 Rodent Hill 211 Roosevelt County, N.Mex. 293 Saint Maries River Valley 18A San Pedro River 277 San Pedro Valley 174, 277 Santa Ana River 4A Santa Cruz County, Ariz. 205 Scaponia Member 199 Searles Lake 35 sedimentary petrology 67, 132, 169, 174, 199, 241, 252, 286, 8A Sequoiadendron 10 Shasta County, Calif. 91, 193, 285 Sheepshead Mountains Wilderness Study Area 280 Shoofly Creek 134 Sierra Nevada 135, 272, 311, 5A, 9A, 10A, 31A, 33A, 36A silicon 2, 5, 159, 4A Silver City Quadrangle 259 Silver Lake 35 Silver Peak Range 87 Simtustus Formation 286 Siskiyou County, Calif. 178 Sisquoc Formation 302 Sleeping Giant Wilderness Study Area 316 Snake Range 274, 15A

Snake River 287

Snake River Basin 37, 38, 323, 12A, 35A Snake River Plain 168, 245, 288, 289, 301, 304, 27A Soda Lake 35 South Dakota 256 Spokane County, Wash. 190, 234, 262 Spokane Formation 316 Squaw Creek Member 2A Stanislaus County, Calif. 10A Stewart Valley 271, 20A-27A, 30A, 36A Stewart Valley Group 17A Storey County, Nev. 30 stratigraphy 10, 14, 17, 31, 37, 38, 68, 85, 102, 107, 109, 117, 134, 137, 153, 167, 168, 173, 174, 190, 211, 234, 235, 241, 245, 248, 252, 254–258, 262, 284, 288–290, 293, 293, 296-298, 301, 305, 306, 323, 338, 1A, 2A, 6A, 12A, 13A, 17A, 18A, 20A, 25A, 27A, 28A, 32A, 33A, 35A, 36A structural geology 8, 87, 135, 168, 255, 274, 290, 5A, 9A, 16A, 30A Sucker Creek flora 7A Sucker Creek Formation 5, 14, 6A, 7A, 12A, 17A Sunrise Pass Basin 16A Surprise Resource Area 218 Table Mesa Basin 240 Table Mountain Wilderness Study Area 280 taxonomy 16, 39, 7A, 19A Teewinot Formation 17A Teller County, Colo. 127 Terrebonne, Oreg. 93, 226 Tertiary 1, 5, 8–10, 12, 14, 16, 17, 20, 25, 31, 37–39, 44, 53, 55, 68, 91, 102, 107–109, 117, 122, 127, 134, 135, 137, 142, 144, 153, 157, 160, 167, 168, 172-174, 188, 190-192, 199, 207, 211, 217, 225-227, 233, 234, 240, 241, 244, 245, 248, 252, 255-258, 262, 269, 273, 277-279, 283, 284, 286-291, 293, 296-298, 301, 302, 304-306, 311, 320-323, 338, 1A, 2A, 5A-7A, 9A, 12A-14A, 16A, 17A, 19A, 20A, 25A, 27A, 28A, 30A, 31A, 33A, 35A, 36A Teton County, Wyo. 8A Texas 3A thallophytes 1, 8, 16, 26, 39, 64, 95, 96, 121, 122, 140, 160, 187-189, 190-192, 225-229, 291, 302, 304, 320-322, 1A, 4A, 14A, 25A Trapper Creek Tuff 245 Trinity Pass 217 Trinity Range 296 Trout Creek-Blue Mountains, Oreg. 103 Trout Creek Formation 17 Trout Creek Mountains 17 Truckee Formation 20, 107, 108, 296, 31A Tule Lake 33, 178 Tule Valley 32A

Twin Falls County, Idaho 301 Union County, Oreg. 325 Unity, Oreg. 19A Upper Deep Creek Wilderness Area 207 Utah 56, 72, 85, 137, 204, 245, 244, 258, 274, 306, 312, 313, 15A, 32A Vancouver Slab 248 Verdi Basin 9, 311, 5A, 33A Verdi Range 9A Verdi-Boca Basin 135, 9A Virgin River Valley 338 Virginia City area 270 volcanic ash 2, 5, 25, 90, 167, 168, 301, 28A volcanic rocks 53, 60-62, 135, 153, 178, 199, 204-209, 220, 222, 224, 244, 245, 255, 266, 269, 278-280, 286, 301, 311, 313, 319, 334, 338, 5A, 17A, 27A volcanism 15, 17, 87, 244, 245, 265, 266, 286, 337 Wadsworth Quadrangle 263 Wagon Bed Formation 192 Walker Lake 33, 5A, 9A, 31A Warm Spring Valley 31A Washington 47, 86, 116, 118, 158, 159, 185, 190, 195, 214, 234, 252, 262, 284, 286, 317, 318, 320, 321, 324, 326, 1A, 2A, 13A, 14A Washington County, Utah 258 Washoe County, Nev. 13, 29, 135, 9A Wassuk Group 117, 17A Webber Lake 36A Wells Peak 213 Weston County, Wyo. 129 White Cliffs deposit 275, 277 White Hills 45 White Narrows Formation 258 White Pine County, Nev. 144, 274, 15A Wildcat Canyon Wilderness Study Area 280 Windermere Hills 213 Winnemucca District 218 Wisconsin 146, 331 Wisconsinan 37 Woahink Lake 328 Wyoming 129-131, 192, 8A, 17A Yakima Basalt 320, 324, 1A Yakima Canyon 2A Yakima County, Wash. 2A Yakima region 321 Yavapai County, Ariz. 205 Yellowstone Lake 8A Yellowstone National Park 131, 8A Yellowstone hotspot 244, 248 Yoho National Park 138 Yuma County, Ariz. 205