Preliminary Bibliography of Lacustrine Diatomite Deposits in the Western United States and Related Topics

Chapter F of
Contributions to Industrial-Minerals Research

Bulletin 2209–F
Preliminary Bibliography of Lacustrine Diatomite Deposits in the Western United States and Related Topics

By Karen S. Bolm,¹ Alan R. Wallace,² Phillip R. Moyle,³ James D. Bliss,¹ and Greta J. Orris¹

Chapter F of
Contributions to Industrial-Minerals Research

James D. Bliss, Phillip R. Moyle, and Keith R. Long, Editors

Bulletin 2209–F

U.S. Department of the Interior
U.S. Geological Survey
CONTENTS

Introduction 1
References Cited 1
Bibliography 1
Abstracts 13
Index 15
References Cited 1

Figure

1. Sketch map of the Western United States, showing locations of principal diatomite operations 1
Preliminary Bibliography of Lacustrine Diatomite Deposits in the Western United States and Related Topics

By Karen S. Bolm,1 Alan R. Wallace,2 Phillip R. Moyle,3 James D. Bliss,1 and Greta J. Orris1

Introduction

As part of the assessment of lacustrine diatomite resources in the Western United States (Fig. 1), U.S. Geological Survey (USGS) project members conducted a review of literature relating to the formation, location, and nature of deposits in the study area. This preliminary bibliography consists of selected publications to identify, locate, and describe the deposits to be studied, to characterize common geologic factors about the deposits, and to better understand the factors that control their formation, preservation, or destruction. The bibliography also serves as a resource for other workers to research the topic.

References included in the preliminary bibliography were gathered by searching existing bibliographic data bases and library collections. Project researchers also contributed references that they found during the course of their work. This bibliography should be considered a working document that will grow as research and literature searches continue. Clearly, many significant publications may be missing from this preliminary list; therefore, USGS staff members intend to issue a revised bibliography as project work progresses. To assure completeness, input from other researchers and industry is welcome.

Although the focus of this bibliography is lacustrine diatomite deposits of the Western United States, additional references that provide a foundation of knowledge for the study of diatomites, diatoms, and diatom-related processes (ecology, geology, geochemistry) and for the uses and behavior of diatomite have also been included.

An index of keywords has been added to this bibliography, designed to help the user locate reports by topic or by geographic location. The letter “A” following a number indicates that the report referenced is an abstract.

Reference Cited


Figure 1. Western United States, showing locations of diatomite deposits. Many deposits near the Pacific coast formed in marine environments; the rest formed in freshwater environments. Data sources: yellow squares, Mineral Resources Data System (MRDS); green dots, Mineral Availability System/Minerals Industry Location System (MAS/MILS). Many deposits listed in MRDS are also listed in MAS/MILS. From McFaul and others (2000).

Bibliography

Bibliography

65. Cleveland, G.B., 1962, Economic geology of the Long
Valley diatomaceous earth deposit, Mono County, California: California Division of Mines and Geology Map Sheet 61, scale 1:31,680.


91. Dupras, Don, 1999, Plio-Pleistocene fossil trees found in ancestral Lake Britton diatomite deposits: California Geology, v. 52, no. 4, p. 15–19.


100. Fernette, Greg, 1983, Geology, energy and mineral (GEM) resource assessment of the Mt. Bennett Hills
Contributions to Industrial-Minerals Research

112. Gay, T.E., Jr., 1966, Economic mineral deposits of the

111. Gasse, Françoise, Barker, Philip, Gell, P.A., Fritz, S.C.,

Forester, R.M., 1991, Pliocene-climate history of the

Firby, J.R., 1979, Paleogeographic and biostratigraphic

Fillo, P.V., and Schilling, J.H., 1979, Minerals in the

Fillo, P.V., 1977, Nevada, in Mining and mineral operations


161. Kadey, F.L., Jr., 1967, The unique properties of diatomite and new filler uses: Society of Mining Engineers Pre-
print 67HI84, 8 p.
191. Lohman, K.E., 1972, A procedure for the microscopical...


227. Okuno, Haruo, 1958, Electron-microscopic fine struc-


255. Retallack, G.J., 1997, Neogene expansion of the North


282. Simandl, G.J., Simandl, Jana, and Aylen, Peter, 2001, Leonardite-type material at Red Lake diatomite


309. Toth, M.I., Stoneman, R.G., and Moyle, P.R., 1987, Min-


Abstracts


29. Starratt, S.W., 2001, Diatom studies in the western United States; from economic deposits to indicators of past climate change [abs.]: PaleoBios, v. 21, no. 2, supp., p. 121.


Index
Adrian, Oreg. 301
Alaska 39, 172
Aldrich Station Formation 17, 30A, 36A
Alkali Canyon Formation 286
Antelope Canyon, Nebr. 25
Apache County, Ariz. 205
Aravaipa deposit 277
arid environment 33, 241
Arizona 26, 27, 44, 54, 56, 77, 174, 205, 224, 242, 259, 275, 277, 306, 314
Arrow Canyon Range 240
ash falls 25, 244, 245
Alvord Desert 280
Baker County, Oreg. 19A
Battle Mountain 4, 94
Beaver Dam Formation 17A
Beaver Divide 192
Big Snowy Group 24
biogeography 16, 35, 199, 235
Birch Creek 134
Bishop Tuff 33
Black Mountain 213
Blackleaf Formation 24
Blackwater Draw 293
Boca Basin 311
Boca Reservoir 311
Bonneville Formation 32A
Boulder Dam 56
Box Canyon 239
Box Elder County, Utah 15A
clastic sedimentary deposits 90, 134, 136, 169, 174, 204, 205, 214, 240, 241, 255, 293, 2A, 10A, 13A, 15A
Clear Lake 328
climatic change 32, 35, 36, 41, 138, 241, 257
Clover Creek 260
Clovis, N.Mex. 293
Coal Valley Formation 9, 107, 117
Cobble Cuesta 298, 30A
Cochise County, Ariz. 205
Colorado 127, 204
Colorado Plateau 239, 18A
Colorado River 77
Columbia County, Oreg. 199
Columbia Plateau 68, 248, 262, 286, 18A
Columbia River 325, 13A
Columbia River Basalt Group 262, 2A, 27A
construction materials 6, 90, 115, 312, 313, 34A
Cottonwood Wilderness Study Area 165
Cretaceous 24, 122, 188, 189, 191, 209, 290
Cry Lake 4A
Crystal Lake 146
Camp Davis 131
Campbell County, Wyo. 129
Canada 53, 62, 120, 138, 141–143, 166, 282
Carboniferous 24, 53
Carlin 254, 290
Carson Range 33A
Cascade Range 112, 178, 286, 328, 13A
Casebier Hill 131
Cassia County, Idaho 245
Chalk Bluffs 311
Chalk Hills 9, 167, 168, 272, 311
Chalk Hills Formation 288, 289, 301, 304, 12A
Chaves County, N.Mex. 3A
Chief District 265
Chief Range 265
Chilcotin Group 142
Christmas Valley 68
Churchill Butte Quadrangle 263
Churchill County, Nev. 20, 108, 296, 297, 334
Clark area 263
Clark County, Nev. 216, 258
Clarkia 38
Clarkia Flora 18A
climate change 32, 35, 36, 41, 138, 241, 257
Clover Creek 260
Cottonwood Flora 299
Cottonwood Plateau 239, 18A
Cottonwood Wilderness Study Area 165
Cretaceous 24, 122, 188, 189, 191, 209, 290
Cry Lake 4A
Crystal Lake 146
<table>
<thead>
<tr>
<th>Location/Formation/Quadrangle</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuitzeo Basin</td>
<td>153</td>
</tr>
<tr>
<td>Cuitzeo Lake</td>
<td>153</td>
</tr>
<tr>
<td>Deep Creek-Owyhee River Wilderness Study Area</td>
<td>268</td>
</tr>
<tr>
<td>depositional environment</td>
<td>10, 14, 32, 41, 134, 144, 167, 174, 239, 240, 258, 262, 297, 298, 311, 5A, 16A, 30A, 31A</td>
</tr>
<tr>
<td>Desert Peak Quadrangle</td>
<td>196</td>
</tr>
<tr>
<td>Devils Gate</td>
<td>6A</td>
</tr>
<tr>
<td>Devils Lake</td>
<td>182, 267</td>
</tr>
<tr>
<td>diatomaceous earth</td>
<td>52, 64, 65, 67, 72, 75, 95, 96, 131, 132, 145, 175, 195, 214, 250, 251, 275, 302, 310, 1A, 27A, 34A</td>
</tr>
<tr>
<td>Donner Pass Zone</td>
<td>9A</td>
</tr>
<tr>
<td>Douglas County, Nev.</td>
<td>7, 210</td>
</tr>
<tr>
<td>Eagle-Picher mine</td>
<td>43, 152</td>
</tr>
<tr>
<td>Elko County, Nev.</td>
<td>213, 278, 290</td>
</tr>
<tr>
<td>Elko Formation</td>
<td>290</td>
</tr>
<tr>
<td>Ellensburg Formation</td>
<td>252, 284, 286, 2A</td>
</tr>
<tr>
<td>Emigrant Peak fault zone</td>
<td>255</td>
</tr>
<tr>
<td>Eocene</td>
<td>114, 192, 199, 256, 290, 35A</td>
</tr>
<tr>
<td>Esmeralda Basin</td>
<td>87</td>
</tr>
<tr>
<td>Esmeralda County, Nev.</td>
<td>87, 255</td>
</tr>
<tr>
<td>Esmeralda Formation</td>
<td>293, 22A, 25A</td>
</tr>
<tr>
<td>evaporites</td>
<td>28, 59, 60, 61, 204, 205, 220, 221, 3A</td>
</tr>
<tr>
<td>Fallon area</td>
<td>226</td>
</tr>
<tr>
<td>Fish Lake Valley Fault zone</td>
<td>255</td>
</tr>
<tr>
<td>Fort Rock Basin</td>
<td>68</td>
</tr>
<tr>
<td>Fort Rock Formation</td>
<td>68</td>
</tr>
<tr>
<td>Freemont County, Wyo.</td>
<td>192</td>
</tr>
<tr>
<td>Frenchman Coulee</td>
<td>1A, 2A</td>
</tr>
<tr>
<td>Frenchman Hills</td>
<td>1A</td>
</tr>
<tr>
<td>freshwater environment</td>
<td>32, 33, 172, 192, 199, 229, 235, 236, 328, 4A, 27A, 28A, 32A</td>
</tr>
<tr>
<td>Gabbs Valley</td>
<td>298</td>
</tr>
<tr>
<td>Gardnerville Basin</td>
<td>311</td>
</tr>
<tr>
<td>geochemistry</td>
<td>73, 104, 146, 244, 245, 257, 269, 279, 282, 298, 338, 4A, 8A</td>
</tr>
<tr>
<td>geomorphology</td>
<td>8, 167, 178, 240</td>
</tr>
<tr>
<td>Gila County, Ariz.</td>
<td>205</td>
</tr>
<tr>
<td>Gila Valley</td>
<td>45</td>
</tr>
<tr>
<td>Gillam Spring</td>
<td>13</td>
</tr>
<tr>
<td>Gold Creek and Sperry Creek Wilderness Study Area</td>
<td>98</td>
</tr>
<tr>
<td>Gooding City of Rocks</td>
<td>212</td>
</tr>
<tr>
<td>Gooding City of Rocks East Wilderness Study Area</td>
<td>309</td>
</tr>
<tr>
<td>Gooding City of Rocks West Wilderness Study Area</td>
<td>309</td>
</tr>
<tr>
<td>Gooding County, Idaho</td>
<td>212</td>
</tr>
<tr>
<td>Hawaii</td>
<td>251</td>
</tr>
<tr>
<td>Hawaiian County, Ariz.</td>
<td>205</td>
</tr>
<tr>
<td>Grouse Creek Mountains</td>
<td>15A</td>
</tr>
<tr>
<td>Hagerman Cliffs</td>
<td>289</td>
</tr>
<tr>
<td>Hamlin Valley</td>
<td>274</td>
</tr>
<tr>
<td>Harney County, Oreg.</td>
<td>17, 269, 280, 322</td>
</tr>
<tr>
<td>Harper Basin</td>
<td>160</td>
</tr>
<tr>
<td>Hay Ranch Formation</td>
<td>290</td>
</tr>
<tr>
<td>Hazen</td>
<td>46</td>
</tr>
<tr>
<td>Hidalgo County, N.Mex.</td>
<td>259</td>
</tr>
<tr>
<td>historical geology</td>
<td>9</td>
</tr>
<tr>
<td>Holly Joe Quadrangle</td>
<td>277</td>
</tr>
<tr>
<td>Holocene</td>
<td>85, 140, 239, 267, 328, 4A, 11A</td>
</tr>
<tr>
<td>Horse Camp Formation</td>
<td>144</td>
</tr>
<tr>
<td>Horse Creek</td>
<td>279</td>
</tr>
<tr>
<td>Hot Springs Mountain</td>
<td>296</td>
</tr>
<tr>
<td>Humboldt County, Nev.</td>
<td>278, 338</td>
</tr>
<tr>
<td>Humboldt Formation</td>
<td>290, 17A</td>
</tr>
<tr>
<td>Hunter Creek</td>
<td>311</td>
</tr>
<tr>
<td>Idaho Formation</td>
<td>28</td>
</tr>
<tr>
<td>Imperial County, Calif.</td>
<td>307</td>
</tr>
<tr>
<td>In-ko-pah Wilderness Study Area</td>
<td>307</td>
</tr>
<tr>
<td>Indian Wells Formation</td>
<td>290</td>
</tr>
<tr>
<td>industrial minerals</td>
<td>4, 6, 7, 19, 21, 22, 46, 49, 57–62, 74, 81, 86, 114–116, 118, 130, 136, 139, 141, 143, 145, 158, 159, 204–206, 218, 221, 224, 231, 232, 259, 270, 277, 278, 308, 312, 317, 318</td>
</tr>
<tr>
<td>Inyo County, Calif.</td>
<td>32, 33, 35, 41, 64, 255</td>
</tr>
<tr>
<td>Iron County, Utah</td>
<td>258</td>
</tr>
<tr>
<td>Jackson Lake</td>
<td>8A</td>
</tr>
</tbody>
</table>
Contributions to Industrial-Minerals Research

Jacumba Wilderness Study Area 307
Juntura 322
K/Ar 11, 274, 17A
Kamloops, British Columbia, Canada 282
Kansas 256
Lake Bonneville 32A
Lake Britton 91, 203, 285
Lake Canyon 239
Lake County, Oreg. 68
Lake Idaho 287, 325
Lake Lahontan 287, 325
Lake Lahontan 32A
Lake Lahontan 32A
Lake County, Oreg. 68
Lake Lassen, Calif. 279
Lake Lassen, Calif. 279
Lake Lassen, Calif. 107
Lake Mohave 2, 94
LompoC, Calif. 214, 225
Long Valley 65, 107
Luna County, N.Mex. 259
Lyons County, Nev. 7, 210
Maine 182
Malheur County, Oreg. 1, 14, 98, 165, 280, 301, 322
Malheur River-Bluebucket Creek Wilderness Study Area 269
Mammoth Quadrangle 275, 277
Maricopa County, Ariz. 205
Mayberry Park 311
McCarran Bridge 311
McCarran Bridge 311
McCarran Bridge 311
Medicine Lake 178
Mesozoic 24, 53, 108, 122, 155, 188, 189, 191, 209, 290
Mexico 36, 136, 153
Michoacán, Mexico 36, 153
Middleton Formation 297
Middleton, Nev. 297
Millard County, Utah 32A
Mineral County, Nev. 6, 20A
mineral exploration 42, 68, 218, 279, 280, 309, 316, 335, 338, 10A
mineralogy 71, 251, 314
mining 42, 81, 132, 156, 218, 302
models 120, 235, 239, 257, 276, 277, 286, 290
Modoc Plateau 55, 63, 112, 194
Mohave County, Ariz. 44, 205
Monarch Hill Formation 297
Mono County, Calif. 65, 71, 255
Mono Lake 71
Montana 24, 248, 316
Monterey Formation 302
Moon Lake 176
Morgan Ranch Formation 117
Mount Bennett Hills, Idaho 100
Mount Mazama 2
Mount Shasta 178
Muddy Creek Formation 44, 240, 258
Muggins Mountains 45
National Elk Refuge 131
Navajo County, Ariz. 205
Nebraska 25, 256
New Mexico 224, 238, 259, 3A
nonmarine deposits 1, 321
North Dakota 176, 267
Nye County, Nev. 219, 273, 298
Okanagan-Boundary District 62
Index
Snake River Basin 37, 38, 323, 12A, 35A
Snake River Plain 168, 245, 288, 289, 301, 304, 27A
Soda Lake 35
South Dakota 256
Spokane County, Wash. 190, 234, 262
Spokane Formation 316
Squaw Creek Member 2A
Stanislaus County, Calif. 10A
Stewart Valley 271, 20A–27A, 30A, 36A
Stewart Valley Group 17A
Storey County, Nev. 30
structural geology 8, 87, 135, 168, 255, 274, 290, 290, 290, 5A, 9A, 16A, 30A
Sucker Creek flora 7A
Sucker Creek Formation 5, 14, 6A, 7A, 12A, 17A
Sunrise Pass Basin 16A
Surprise Resource Area 218
Table Mesa Basin 240
Table Mountain Wilderness Study Area 280
taxonomy 16, 39, 7A, 19A
Teewinot Formation 17A
Teller County, Colo. 127
Terrebonne, Oreg. 93, 226
Teton County, Wyo. 8A
Texas 3A
thallophytes 1, 8, 16, 26, 39, 64, 95, 96, 121, 122, 140, 160, 187–189, 190–192, 225–229, 291, 302, 304, 320–322, 1A, 4A, 14A, 25A
Trapper Creek Tuff 245
Trinity Pass 217
Trinity Range 296
Trout Creek-Blue Mountains, Oreg. 103
Trout Creek Formation 17
Trout Creek Mountains 17
Truckee Formation 20, 107, 108, 296, 31A
Tule Lake 33, 178
Tule Valley 32A
Twin Falls County, Idaho 301
Union County, Oreg. 325
Unity, Oreg. 19A
Upper Deep Creek Wilderness Area 207
Utah 56, 72, 85, 137, 204, 245, 244, 258, 274, 306, 312, 313, 15A, 32A
Vancouver Slab 248
Verdi Basin 9, 31, 5A, 33A
Verdi Range 9A
Verdi-Boca Basin 135, 9A
Virgin River Valley 338
Virginia City area 270
volcanic ash 2, 5, 25, 90, 167, 168, 301, 28A
volcanism 15, 17, 87, 244, 245, 265, 266, 286, 337
Wadsworth Quadrangle 263
Wagon Bed Formation 192
Walker Lake 33, 5A, 9A, 31A
Warm Spring Valley 31A
Washington 47, 86, 116, 118, 158, 185, 190, 195, 214, 234, 252, 262, 284, 286, 317, 318, 320, 321, 324, 326, 1A, 2A, 13A, 14A
Washington County, Utah 258
Washoe County, Nev. 13, 29, 135, 9A
Wassuk Group 117, 17A
Webber Lake 36A
Wells Peak 213
Weston County, Wyo. 129
White Cliffs deposit 275, 277
White Hills 45
White Narrows Formation 258
White Pine County, Nev. 144, 274, 15A
Wildcat Canyon Wilderness Study Area 280
Windermere Hills 213
Winnemucca District 218
Wisconsin 146, 331
Wisconsinan 37
Woahink Lake 328
Wyoming 129–131, 192, 8A, 17A
Yakima Basalt 320, 324, 1A
Yakima Canyon 2A
Yakima County, Wash. 2A
Yakima region 321
Yavapai County, Ariz. 205
Yellowstone Lake 8A
Yellowstone National Park 131, 8A
Yellowstone hotspot 244, 248
Yoho National Park 138
Yuma County, Ariz. 205