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Preface

Tampa Bay is recognized internationally for its remarkable progress towards recovery 
since it was pronounced “dead” in the late 1970s. Due to significant efforts by local 
governments, industries and private citizens throughout the watershed, water clarity in 
Tampa Bay is now equal to what it was in 1950, when population in the watershed was 
less than one-quarter of what it is today. Seagrass extent has increased by more than 
8,000 acres since the mid-1980s, and fish and wildlife populations are increasing.

Central to this successful turn-around has been the Tampa Bay resource management 
community’s long-term commitment to development and implementation of strong 
science-based management strategies. Research institutions and agencies, including 
Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, 
Mote Marine Laboratory, National Oceanic and Atmospheric Administration, 
the Southwest Florida Water Management District, University of South Florida, 
U.S. Environmental Protection Agency, U.S. Geological Survey, local and State 
governments, and private companies contribute significantly to the scientific basis 
of our understanding of Tampa Bay’s structure and ecological function. Resource 
management agencies, including the Tampa Bay Regional Planning Council’s Agency on 
Bay Management, the Southwest Florida Water Management District’s Surface Water 
Improvement and Management Program, and the Tampa Bay Estuary Program, depend 
upon this scientific basis to develop and implement regional adaptive management 
programs.

The importance of integrating science with management has become fully recognized 
by scientists and managers throughout the region, State and Nation. Scientific studies 
conducted in Tampa Bay over the past 10–15 years are increasingly diverse and 
complex, and resource management programs reflect our increased knowledge of 
geology, hydrology and hydrodynamics, ecology and restoration techniques. However, 
a synthesis of this research and its integration into resource management has not been 
prepared for Tampa Bay since the mid-1980s. 

The need for an up-to-date synthesis of Tampa Bay science and management has 
resulted in the production of this document. The U.S. Geological Survey recently 
completed a 5-year Tampa Bay Integrated Science Study, and the Tampa Bay Estuary 
Program updated the Comprehensive Conservation and Management Plan for Tampa 
Bay in 2006. These efforts build upon results of the many research and management 
studies and programs summarized here.

Kimberly K. Yates 
Senior Research Scientist 
U.S. Geological Survey

Holly Greening 
Executive Director 
Tampa Bay Estuary 
Program
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Box 8–2, Figure 3.  Graph showing transition in mangrove tree species along a  
		  transect perpendicular to a mosquito ditch at Weedon Island  
		  in Old Tampa Bay  247
Box 8–2, Figure 4.  Photograph showing sampling of fish in mangrove forest creeks in  
		  Tampa Bay  247
Box 8–2, Figure 5.  Photograph showing hydroleveling of spoil mounds created by  
		  mosquito ditching of mangrove forests in Tampa Bay  247
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Conversion Factors

Inch/Pound to SI

Multiply By To obtain

Length

inch (in.) 2.54 centimeter (cm)

foot (ft) 0.3048 meter (m)

mile (mi) 1.609 kilometer (km)

mile per hour (mph) 1.609 kilometer per hour (kmh)

Area

acre 0.4047 hectare (ha)

acre per year (acre/yr) 0.4047 hectare per year (ha/yr)

square mile (mi2) 2.59 square kilometer (km2)

Volume

gallon (gal) 3.785 liter (L)

Flow

million gallons per day (Mgal/d) 0.04381 cubic meters per second (m3/s)

Mass

tons per year (tons/yr) 0.9072 megagram per year (mg/yr)

Temperature in degrees Fahrenheit (°F)can be converted to degrees Celsius (°C) 
as follows:  °C = (°F - 32)/1.8

Vertical coordinate information is referenced to the North American Vertical  
Datum of 1988 (NAVD 88). 

Horizontal coordinate information is referenced to the North American  
Datum of 1983 (NAD 83). 

Tide and water depth measurements are given in metric units (meters).

Box 8–3.	 Tampa Bay Tidal Tributaries Initiative  254–257

Box 8–3, Figure 1.  Map showing locations of study sites used in tidal tributaries  
		  assessment project  255
Box 8–3, Figure 2.  Schematic showing four nitrogen pathway scenarios for  
		  tidally influenced systems in Tampa Bay  256

Box 8–4.	 Avifuanal Populations in Tampa Bay  264–265

Box 8–4, Figure 1.  Photographs showing waterbirds that nest in the Tampa  
		  Bay area  264–265
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Abbreviations and Acronyms

BRACE Bay Regional Atmospheric Chemistry Experiment Study
COC contaminant of concern
DDT dichlorodiphenyltrichloroethane
EDS effects dataset

EPCHC Environmental Protection Commission of Hillsborough County
DO dissolved oxygen

FDACS Florida Department of Agriculture and Consumer Services
FDEP Florida Department of Environmental Protection
FWRI Florida Fish and Wildlife Conservation Commission Fish and  

Wildlife Research Institute
FGFWFC Florida Game and Freshwater Fish Commission

FOCC Florida Oceans and Coastal Council
> greater than

IPCC Intergovernmental Panel on Climate Change
< less than

μE m-2 s-1 microEinsteins, the unit used for photosynthetically active radiation (PAR)
μg/L microgram per liter

μ micron
mg/L milligram per liter

Ma million years ago
ng nanogram

NASA National Aeronautics and Space Administration
N nitrogen

NOAA National Oceanic and Atmospheric Administration
NRC National Research Council

NEDS no-effects dataset
ppt parts per thousand
‰ per mil

PPCP pharmaceutical and personal care products
P phosphorus

PAR photosynthetically active radiation
PCB polychlorinated biphenyl
PAH polycyclic aromatic hydrocarbon
PEL probable effects level

SWFWMD Southwest Florida Water Management District
SHARQ submersible habitat for analyzing reef quality

TBBI Tampa Bay Benthic Index
TBEP Tampa Bay Estuary Program

TBNEP Tampa Bay National Estuary Program
TBNMC Tampa Bay Nitrogen Management Consortium
TBRPC Tampa Bay Regional Planning Council

TBTTRT Tampa Bay Tidal Tributary Research Team
TAC Technical Advisory Committee (of the TBEP)

ka thousand years ago
TEL threshold effects level

TMDL total maximum daily load
USEPA U.S. Environmental Protection Agency

USF University of South Florida
USGS  U.S. Geological Survey
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