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COMPUTATION OF PEAK DISCHARGE AT CONTRACTIONS

By C. E. Kindsvater, R. W. Carter, and H. J. Tracy

INTRODUCTION

Measurement of peak discharge directly by the usual
current-meter method is often impossible; roads be-
come impassable; structures from which current-
meter measurements could be made are washed out,
knowledge of the flood rise may not be available suf-
ficiently in advance to permit reaching the site near
the time of the peak; the flow of debris or ice maypre-
vent use of thé current meter, or the rise and fall of
the stream may be too rapid to allow a complete
measurement even if an engineer is at the site withthe
necessary equipment. Consequently, at times it is
necessary to use indirect methods of determining peak
discharge. This report deals with a method for deter-
mining peak discharge at abrupt contractions from a
survey of high-water marks and characteristics of the
channel.

The method has been in general use for manyyears
without adequate verification of the coefficients used
in the basic formula. In recent years the Geological
Survey has attempted to obtain field verification of the
method at sites where the discharge was already
known by current-meter measurement. Certain unex-
plained inconsistencies brought out in these investi-
gations resulted in a program of fundamental labora-
tory research on the method. This researchlwas
carried out in the hydraulic laboratory at the Georgia
Institute of Technology.

This report describes a new procedure for comput-
ing peak discharges at contractions based on the labo-
ratory study. The procedure has been verified by .sur-
veys at a limited number of bridge openings where the
peak discharge was known from current-meter measu-
rement. Additional field vertification of the method is
being sought and it is possible that the procedure pre-
sented in this report may be modified in the future on
the basis of additional data obtained either in the field
or the laboratory. '

THE DISCHARGE FORMULA

When computing peak discharge at a contraction, the
drop in water-surface level between an upstream sec-
tion and a contracted section is related to the corre-
sponding change in velocity. The discharge equation
results from writing the energy and continuity

1 Kindsvater, C. E., and Carter, R. W., 1952
Tranquil flow through open-channel constrictions, Coi.-
vention Preprint no. 21, Am. Soc. Civil Engineers.,

equations for the reach between these two sections,
designated section 1 and 23 on figure 1:

v.2
Q= C-A, ‘/2‘(Ah + 0.‘ —;-‘- - h,) ‘l)

Q. = discharge in cfs;

in which,

C = coefficient of discharge;

A\Is = gross area of section 3 in square feet; this is
the minimum section parallel to the constric-
tion between the abutments and is not neces-
sarily at the downstream side of [the bridge;

Lp, = difference in elevation of the water surface
between sections 1 and 3 in feet;

2
a,—-;% = weighted average velocity head in feet at sec-
tion 1, where V, is the average velocity,
©Q/A;, and a; (alpha) is a coefficient which
takes irito account the variation in velocity
in that section (see page 4 for discussion
of d|). |

hy = the head loss in feet due to fricFion between

sections 1 and 3. |

The procedure recommended for evaluating each term
in the discharge equation is described in detail below.
LOCATION OF SECTIONS

Approach Section (1)

As there is an appreciable variation in elevation of
the water-surface across the channel within the draw-
down zone, it is important to locate the approach sec-
tion upsiream from the beginning of drawdown. Figure
2, based on the laboratory tests, shows that the dis-
tance to the beginning of drawdown is related to the
width of the bridge opening b and the degree of channel
contraction m. It also shows that the drawdown curve
is shorter along the face of the constriction than along
the center line of the channel. In order that section 1
he located above the drawdown zone for all degrees of

2 Formerly, a cross section would be taken at the
upstream side of bridge and designated section 2. The
method outlined in this report does not use a section2,
but the former system of designating the approach sec-
tion as 1 and the contracted section as 3 has been re-
tained.

Note. --The investigation was under the general direction of C. E. Kindsvater, Professor of Civil Engineering,
Georgia Institute of Technology, acting as a consultant under part-time employment with the U. 8. Geological Sur-
vey. The work was carried out by R. W. Carter and H. J. Tracy, assisted in the laboratory by personnel of the
Atlanta district, Geological Survey and several student assistants. :
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Figure 1. --Definition sketch of an open-channel constriction,



DETERMINATION OF WATER-SURFACE LEVELS 3

channel contraction, it is recommended that it be lo-
cated at least one bridge-opening width b upstream
from the constriction. This section is considered toin-
clude the entire width of the valley perpendicular to the
line of flow, Where the degree of contraction is large,
section 1| may be omitted if the difference in roughness
at section | and section 3 is not great. A large degree

_of contraction is indicated if the water-surface profile
is level for some distance along the upsiream side of
the embankment. For this condition the upstream
water-surface elevation may be taken on the embank-
ment at a point one b distance from the center of the
opening. In absence of an approach section the factor
(Aa/A4 )2 isassumedtobe zero, the conveyance ratio K; /K,
isassumedtobe 1/10, the percent of channel-contraction
m is assumed to be 80, and a length L, , equal to the
width of the bridge b, is assumed.

When the degree of contraction is large and the ap-
proach section lies in a zone of heavy vegetation, the
friction loss from section 1 to section 3 will be,a large
part of the total fall and can no longer be estimated.
However, surveying an approach section through such
a heavily wooded zone would be a formidable task, Often
a cross section along the edge of the right-of-way will
be representative of a section b distance upstream in-
sofar as ground elevations are concerned, and the
ground elevation of the approach section may be ap-
proximated in this manner. The value of n selectedfor
the approach section should be representative of the
‘upper half of the reach from the proper location of the
approach section to the bridge opening. The water-
surface elevation of the approach section may be taken
along the embankment at a point one b distance from
the center of the bridge opening.

Where there is more than one bridge opening or if

water is flowing over part of the embankment, section
1 must be divided'into separate approach channels to
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Figure 2. --Distance to beginning of drawdown along
center line of channel and along the embankments.

the various openings. This is accomplished by assum-

ing that the discharges in the subsections of section 1

are proportional to the conveyances of the subsections.
An assumed discharge may thus be distributed across

section | and the width of the approach section to each
opening apportioned on basis of the assumed discharge
through the opening. This process is repeated until the
assumed discharge and the computed discharge are in

agreement.

Contracted Section (3)

Section 3 is defined by a straight line parallel to the
constriction which marks the minimum area between
the two abutments of the bridge. The area, 4,, to be
used in the discharge equation is always the gross area
of the section, without regard to the area occupied by
piles or piers if they lie in the plane of the section.
Similarly, if the lower portion of the bridge is sub-
merged, the area at section 3 is considered to extend
to the level of the free water surface as determined by
the methods described below. However, in computing
the conveyance of section 3 the areas of the piers,
piles, and submerged portion of the bridge are de-
ducted from the section.

At some sites large scour holes under the bridge
make the selection of the minimum section doubtful.
Under extreme conditions of scour, where a minimum
section could be taken around the lip of the scour holes
upstream from the embankment, the bridge geometry
no longer forms the '"control" for the flow through the
constriction and the coefficients presented inthis man-
ual are not applicable. Such sites should be avoided un-
til further investigation of this special problem is
completed.

DETERMINATION OF WATER-SURFACE LEVELS

The determination of the water levels at sections 1
and 3 should be based on the criteria described below
in order that the coefficients derived from the labora-
tory studies be applicable.

Average water-surface elevations at sections 1 and 3
will ordinarily be determined from high-water marks
on the boundaries of the channel and the constriction.
To make best use of the high-water marks, they should
be plotted to yield a profile of the maximum water level
along the river banks and the embankments. Elevations
corresponding to sections 1 and 3 can then be taken
from these profiles.

A typical water-surface configuration in the vicinity
of a constriction is shown in figure 3. As shown inthe
illustration average level at section 1 will be clearly
indicated by the high-water profiles along the upstream
boundaries.

Where the ratio of abutment length L to bridge
width b is small, as in (figure 3 and 4, there will be
an appreciible variation in level across the opening at
section 3. As indicated in figure 3, however, the
super-elevation of the stream at the center w:ll dlsap-
pear a short distance below the opening at the vena
contracta, It is assumed in the derivation of the dis-
charge equation that the elevation of the water surface
at section 3 corresponds to the level at the vena con-
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tracta. The laboratory observations have shown that
the level at the vena contracta can be very closely ap-
proximated by the level of the water on the downstream
face of the embankment adjacent to the abutment. This
means that the level at section 3 is conveniently deter=
mined from the high-water profiles for the downstream
embankment. In this connection, oneé exception should
be noted. Where the opening approaches the degree of
eccentricity illustrated by figure 4, with a constriction
on only one side of the channel, the water surface will
be superelevated at the point designated (4) infigure 4.
In this case, the level at {B) should be taken as the
average for section 3. .

COMPUTATION OF THE VELOCITY HEAD
The weighted Sverage velocity head at section l‘is
2

defined in the disc%arge equation as a,;? , where V; is

the average velocity in the section and &; (alpha) is a
coefficient which accounts for the nanuniformity of

velocity in the section. The value of « for any section ‘
is equal to
a4, !
« = Lvide
V3.

This is equivalent to weighing the velocity head ac-
cording to the discharge of the subsection . However,
in the present application, neither the velocity dis- .
tribution nor the discharge is known.

o1 may be approximated if the cross section is first
divided into subsections, a, b, ¢ .... n, of approxi-
mately constant hydraulic properties. Alpha is then
computed from the equation .

x,? *x,’ +K..‘,
— — a4 EBEENEN —
4,2 4,3 A2
oy = P (2)
. 1
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Figure 3, --Typical water-surface configuration in the vicinity of an open-channel constriction.
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where: K,, Ky, and K,, are the conveyances of the
component sections of areas 4,, 4y, and 4,, re-
spectively: K, =K, + Kp .... + Ka = the total area
of section 1; and 4, =4, + 45 ++++. + Ay = the total
area of section 1. Here conveyance is defined in

. 3
terms of the Manning formula as Kk = 1.486 AR A

where R is the hydraulic radius and 4 is the area of
the section. This method assumes that the velocity
within subsection a, b, ¢, or n is constant and that
the discharge of each subsection is proportional to its
relative conveyance.

COMPUTATION OF THE FRICTION LOSS

The {riction loss term, hs, in the discharge equa-
tion is defined as the total loss of head due to friction
between section 1 and 3. This loss is computed in
accordance with standard Survey procedure. The
distance between the two sections is divided into two
reaches: the approach reach from section 1 to the
upstream side of the bridge opening, and the bridge
opening reach ( fig. 1), The average friction slope in
the approach reach is taken to be the geometric mean
of the computed slopes at the end sections. It follows
that the total head loss due to friction will be obtained
from the equation:

2 0] 2 )
h,=L.(:)+L (x,) - (3

where L, is the length of the approach reach, L is
the length of the abutment, and K, = YK, K, , in
which K, and K, are thetotal conveyances of sections 1

High-water line \‘

and 3. If section 3 contains piers or piles, or'if the
bridge is partially submerged, the section is sub-
divided at the edge of each pier or pile bent, and the-
area term in the conveyance equation will be computed
as the gross area, 43 , minus the total submerged
area of the obstructions projected on the plane defined
by section 3. In this case, too, the wetted perimeter
used in computing the hydraulic radius, R, will in-
clude the lengths of the sides of the piles, piers, or
bridge surfaces in contact with the water. It is again
noted that section 3 is always taken parallel to the
bridge.

Laboratory tests indicate that about one-~half the
total fall from section 1 to section 3 occurs between
section 1 and the upstream side of the bridge. This
may be used as a rule of thumb in deciding whether
the lower bridge members were submerged when it
cannot be determined from field evidence.

THE DISCHARGE COEFFICIENT

Definitions

In the derivation of the discharge equation on the
basis of the Bernoulli energy equation and the equation
of continuity, the coefficient C is taken to represent
the combination of (1) a coefficient of contraction, (2)
a coefficient which takes into account the eddy losses
due to the contraction, and (3) the velocity-head coef-
ficient, a,, for the contracted section. It follows
from a dimenswnal analysis of the factors which in~
fluence the flow pattern that C can be expressed as a

O

i
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Figure 4. --Definition sketch of an open-channel constriction with a limiting condition of the eccentricity
ratio (e = 0)
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function of certain governing geometric and fluid
parameters. Thus, in functional notation

r X Yat¥p.
A ' 2’

(==

t
sm i e e B) (4)

The terms contained in the right-hand side of equation
(4) are illustrated in figures 5-12, without which the
following brief word definitions are necessarily in-
sufficient:

m= chanml~contréction ratio, expressed as percent
of chamnel contraction (figs. 11-12);

b = width of bridge opening, defined as the distance
between tabutment faces (figs. 5-8);

L = length of abutment, variously defined for dif-
ferent types of bridge openings (figs. 5-8);

r = radius of rounding of entrance corner of abut-

ment for vertical-faced constrictions (fig. 22);

W. = a' convenient measure of the length of a wing wall
or chamfer (fig. 8);

0 = the .acute angle between a wing wall and the plane
of the constriction (fig. 8);

x = horizontal distance from the point of intersec-
tion of the abutment and embankment slopes to a.
point on the upstream embankment having the
same elevation as the water surface at section
1 (fig. 7);

Yo ¥, = depths of ‘water at the toe of each sbutment (hg.
6); .
. . A;
vy = average depth of water in section 3, =b‘— .
t
where A4 is the ‘gross area and b, is the top
width of section 3 (fig. 7);

-

= vertical dxstance between water level at sectior
1 and lowest horizontal member of a pattmlly
submerged bridge, (fig. 30B);

J = ratio of the projected area of the submerged
portions of piers or piles in the bridge open-
xn§ to the gross area of the bndge opening =
A; /AL

F = the Froude number of the contracted section =
AA 3V g}’;)

It is necessary to assume a discharge for initial
computation of the Froude number. The final
value of the Froude number can be determined
by successive approximation. If the value of
the Froude number is greater than 0.8, critical
velocities may occur in section 3 and the method
outlined in this report should not be used to
determine the peak discharge.

® = the acute angle between the plane of the con-
striction and a line normal to the thread of
the stream (fig. 9);

e = an eccentricity ratio = K,/Kbé 1.0 (fig. 10);
E'= a synbol representing the slope of the embank-

ments expressed as, for example, 2 : 1, this
being a ratio of the horizontal distance to

Ah = difference in elevation of water surface between
section 1 and section 3.

Other synbols contained in the figures but not included in
equation (4) are:

AI = the area of piers or piles in section 3;

h = the height of water surface above an arbitrary
datum;

the difference between h and the average depth, y,
at a section.

N
L]

b, = width of bridge opening at the water surface.

Classification of Brxdse Openings

The only ratios mcluded in equahon (4) which are
common to all types of bridge openings are m, L/b, and"
F. Of these, m is the most critical and F is of the
least general significance as determined by the -labo~
ratory studies. Thus,'m and L/b have been selected as:
primary variables for the presentation of the experi-
mental results. The remaining ratios in equation (4)
are descriptive of the geometric properties of the var-
ious types of bridge openings. In this manual, there-
fore, it is convenient to classify all bridge openings
into four categories representing the distinctive fea~
tures of their major geometric characteristics,

- Type I--vertical embankments, vert1ca1 abutments

(fig. 5).

Type II--sloping embankments, verhcal abutments
(fig. 6).

Type III--sloping embankments, sloping abutments
(fig. 7).

Type 1V--sloping embankments, vertical abutments
with wing walls (fig. 8).

Percent of Channel Contraction

The importance of m as a primary independent vari~
able governing the magnitude of the discharge coeffi-
cient is pointed out above. It is the function of the
channel-contraction ratio to describe the relative’de-
gree of contraction imposed by the constriction on the
normal river channel. As used here, m is a measure of -
the proportion of the total flow which is required to en-
ter the contraction from the, lateral regions or the
regions upstream from the embankments. Thus,

Q—qzl_g_v‘

0 0 ‘ .
where Q is the total discharge and qis the dis- .

m=

‘charge that could pass through the opening with-

out contraction.

For the normal river-channel cross section com-
posed of one or more deep channels and adjacent shal-
lows, the total discharge is assumed to be distributed
across the approach section in proportion to the con-
veyance of the arbitrarily defined subsections. This
assumption is based on the approximation that the en-
ergy slope is constant across the section, Thus, as il-
Instrated in figures 11 and 12, if - I(,l is taken to be the
conveyance of the subsection occupied by gand K, is

the total conveyance of the approach section, m=1 — ¥q/Kos

_or, expressed as a percentage in order to indicate

“percent of channel contraction',

‘ / 'K,,) :
= -2 5
m=100 1~ (5)
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Figure 5. --Definition sketch of a Type I opening, vertical embankments and vertical g!;utx_i_nenta.
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Figure 7. --Definition sketch of .t Type III opening, sloping embankments and sloping abutments.
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Evaluation of the Discharge Coefficient

The process of evaluating the discharge coefficient,
C, involves, first, the determination of a standard value,
C: corresponding to the given values of the two primary
variables, m and L/b, and certain arbitrary ""standard"
values of all the other pertinent variables. These
standard-value relationships are called base curves and
are shown in figures 22-30 for the four types of bridge
openings. The standard values of the secondary vari-
ables used for each type bridge opening are shown on
each base curve. These secondary variables listed un-
der "standard conditions' on the base curves are the
only variables to be considered for each type abutment.

After C' is determined from the base curve it is suc-
cessively adjusted for the effect of each of the secondary
variables on the basis of adjustment curves also shown
in figures 22-30. The adjustment process consists of
multiplying C' by the adjustment coefficients, For ex-
ample, if a certain bridge departs from the standard
conditions only with respect to the Froude number and
angularity, then the discharge coefficient will be ob-
tained from the equation, ’

C=C"" ky + kg

wheré:

C' = the standard value of the coefficient of discharge cor-
responding to the giveri values of m and L/b and the
standard values of each of the remaining variables,
including F and o;

k, = a coefficient that adjusts C' for the influence of a non-
standard value of F; : ’

kg = a coefficient that adjusts C' for the influence of angu-
larity. ' .

For those bridges which involve sloping embank-
ments or abutments, curves are presented for 1 : 1 and
2 : 1 slopes. The vertical-faced constriction (0 : 1
slope) is a limiting slope condition. When an inter-
mediate embankment slope is encountered it will be
necessary to obtain C by interpolation. When the abut-
ment slope is different than the embankment slope, an
average slope should be used. An average slope for the
two ends of the bridge may also be used,. Where the two
abutments are of different type, a C should be computed
for each side, a and b,and the final C obtained by

_C K +Cy K,
K, +K,

. It is emphasized that certain combinations of the em-
pirical adjustment coefficients applied to C'will appear
to yield a value of C greater than 1.0, This is unrea-
sonable, of course. A value of C = 1.0 should be taken
as the maximum under all circumstances.

Many bridge openings cannot be classified exactly in
any of the four major categories described above. The
discharge coefficient must be obtained by interpolation
based on a knowledge of the relative effects of the fac-
tors that influence the flow pattern. For example, m and
L/b arethe mostcritical variablesanda reasonable esti-
mate of the adjustment coefficients will give results
which are within the range of accuracy expected of the
method.

The discharge equation on page 1 requires a trial and
error solution.' However, if Q/4, is substituted for vy
and L, (O-’/K,K,) + L(O/K3 ? for h; an equation which
may be solved directly is obtained. Thus

0=8.02 C4, Ah
1 -a.C? (.1,

2 { 2
4,)" + 2g02 (4 /x )" @ oL Ry
The equation could be simplified further, but in its
present form the effect of the approach velr ity and
friction loss can be identified.

FIELD AND OFFICE PROCEDU &

A step-by-step outline of the procedure r deter-
mining the peak discharge at constrictions 3 given to
aid in obtaining the proper information in e field

survey and to serve as a guide in the com lation of
peak discharge. :

Field Survey

It is recommended that a transit be us¢ in making a
location and elevation survey of the site. ‘he two-peg
method of surveying is recommended, an . if this
method is not used, as where only one int trument set-
up is made, the adjustment of the transit should be
checked before beginning the survey.

(1) Locate and obtain the elevation of floodmarks
near the constriction. Obtain floodmarks in the vicinity
of the approach section (about one b distarice upstream)
and along the upstream and downstream side of the em-
bankment. ’

" '(2) Locate the river channel, the bridge opening and
all features pertinent to the hydraulics of the site.

(3) Obtain ground elevations for cross sections at
sections ) and 3. Section 1 should extend completely
across the channel and the flood plain and should be
one "b" distance upstream from the bridge opening.
For exceptions to this rule see page 3, 3

Section 3 is the minimum section parallel to the
constriction between the abutments and is not neces-
sarily at the downstream side of the bridge.

(4) Survey the bridge abutments and embankments in
order that both plan and elevation drawings can be
made. Accurate field definition of embankment prop- .
erties is necessary, iucluding elevation of roadway,
top width of embankment, side slopes, abutment
slopes, and elevation of toe of abutment slopes.

(5) Select values of Manning's n for sections 1 and 3.
(6) Photograph views of the channel, the embank-

ments, the abutments, and the bridge structure. A
stereo camera is recommended for this work.

Computation Procedure

Steps of procedure

(1) Plot location sketch, high-water profiles, detail
of abutments and embankments, and cross sections 1
and 3, See figures 13-16 for example.
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High-water line
‘Jppvooch section ' ‘“3.

,a—Low-water channel

@ is measure of ongularity

" Figure 9. --Definition sketch showing a éonstrigtion at an angle to the itreﬁm; o

. Secfion 1))

!
SRR vy poveriiy ey IR
High-water line - : ‘ ' B WO |
it 1 —{ -
{ - - ™ Section (3)7 R

. Eccentricity mlio-c-—:-:il.oo

Figure 10. --Definition sketch showing the eccentricity of a constriction,
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(2) Determine from high-water profiles the elevation
of the water surface.at sections 1 and 3.

~(3) Determine b from the drawing of section 3 and
lay out a length equal to bon section 1. The center of
.the low-water channel should occupy the same relative
position on b in sections 1 and 3. The entire b dis-
tance is used regardless of the angle of skew ($).

. The length, b, on the approach section should em-
‘brace the flow. which could pass through the opening
without contraction. At sites where the low-flow chan-
nel is winding above the coastriction, judgement will
be required to lay out the b length’ xn the proper
position )

(4) Subdivide the a_pproacﬁ section at the _ende'ot b
le‘ngt?\ and at abrupt changes in hydraulic properties.

(5) List the properties of section 1 on form 9-191
and compute the area and wetted p_erim'eter.

~ (6) Add the areas and wetted perimeters for each of
the subsections and list as shown in figure 20. Com-
pute the conveyance of each subsection on the form.
Denote whether the subsections lie within the b length
or to the left or right of it by the symbols X, ,

and X, .

) Measure the slope of the embankment and the
abutment and list the average slope as shown in fig-
ure 20,

(8) Classify the abutmente am' type I 1L, m, or.

* 1V (see page 6 ). If the abutments are different types,

the value of C should be computed for each abutment
as explained on page 11, .

(9) Find the ihscharge coefficient base curve .
corresponding ta the type and slope of the ubutmenta
as classified in (8). If the slope is intermediate be- -
lween the slopes for which base curves are shown. '
‘the final value of C lhould be determined by inter-
potahom

(10) Note the "standard condihons“ for which the
base curve was drawn. These are the only secondary .
variables whichmust be considered in determining the
discharge coefficient.

{(11) List the value of the.items necessary to com-
pute the ratios shown under ''standard conditions" - -
as shown in figure 20,

(12) Compute the pertinent rsti.on as shown in fig-
© ure 20, | .

(13) Determine 'C' from the base curve and the
adjustment. k's, from the secondary curves.

(14) Determine C by multxplying ¢ bylhe proper
k's

~(15) List water-suriace elevations at sections 1 and

3, the discharge coefficient, the gross area of section ‘

3, and the lengths L and L as shown in figure 21.

(16) Ignoring the subdivision at the ends of length
‘b on section 1, sum the areas and wetted perimeters
of the subsections and list as shown in figure 21. Com-
pute the conveyances of the subsections, Compute @,

| figures 13-16.

‘ : 13
(17) List the properties of section 3 on form 9-191
and compute the areas and wetted perimeters.: Sub-
divide the section at the edge of each pier or pile .
bent and at abrupt chengee iu..hydra,ulic’ properties,

(18) Sum the areas and wetted perlmetera foreach
subsection of section 3 and list as shown in figure 21,
Compute the conveyance of each subsection.

(19) Gpmpute the discharge by suhetﬂtuﬁng in the
formula as shown in !ig\u-e 2l

(20) Compute the mean velocity ineecﬁénl land3,

Dehill . _‘

'l'he following example is given tc {llustrate the
determination of a peak dt:el\nrge at a contraction,

From information obtained in the field survey, the
location sketch, the high-water profiles, the cross
sections at 1 and 3, and the detailed sketch of the
abutments were plotted. The drawings are shown as

'

The wbeequent steps in the computations, as il-
lustrated on the computation forms (fxgs 17 21) are
as follows' : .

Determination of €

1. For ﬁurpoee of computing the charinel contraction

' ‘ratio, section.l was divided into subsections of con-

veyances K,, K,, and K, as illustrated in figure 12,
The section was also lubdivided at points of abrupt

'change in hydunlic propertiee

2. The embankmentt and‘ abutments were illult‘uted

‘4in figure 16. The bridge opening was classified as a

Type m opening with l 1/2:1 llopeo.

3. THe ﬂm pefﬁnm to t&eﬂemuﬂmﬁmvfc for
this type opening are wand L/b dnd the ratios listed
under “standard condulonl" on the base curves, -

Foeiom, @.-5-. i+ The dimensions. necessary’

vy + Ah
for the computatlou of these ratios were taken from
the drawings.

~

4. For computed values of mand L/b, standard values

. of the coefficient of discharge, C', were determined

from the Type III curves (figo. 26-27)for 1:1 and 2:1
slopes

Corresponding values of k;’ and k, were determined
from the adjustment curves (figs. 26-27); the value of
k;, was determined from the curve as shown in figure -
30. The ratios F, e, and t/(yamh) have no efiect be-
cause (1) the Froude number was within the range
given under 'standard conditions", (2) k, = 1.00, and
(3) the lowest bridge chord was above the water-sur-
face elevation of the approach section. .

5. The values of C for slopes of 1{ 1 and 2:1 were
computed from the equation C=C' « kg « k, o‘k’ .
Then € for the 11/2:1 slope was taken as the average
(straight line interpolation on basis of the denominator
of the slope ratio).
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Section (I)

L Triadomming
Approach ,section

Low-w

b

V{'

Section (3)/

Figure 11, --Definition sketch showing degree of channel contraction.,
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TSeEﬁonf( 3?\
b r o \
i ' >
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Figure 12. --Definition sketch showing degree of channel contraction at a bend in the stream channel.
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Computation of Discharge

6. Elevations of the water surface at sections 1 and
3 which are listed on the discharge computation form
were obtained from the high-water profiles. The
lengths L and L, were taken from figures 13-16. It
is emphasized that the area of the submerged portions
of the bridge piers was not deducted from the gross
area of the contracted section, 4,.

7. To compute the total conveyance, section 3 was
subdivided at the edge of each pier. For computation
of conveyance of section 3, the submerged areas of
the bridge piers were subtracted from the gross area
of the section, Similarly, the lengths of the sides of
the piers were included in the computation of the wet-
ted perimeter.

8. The discharge was computed directly from the
equation shown in figure 21, The equation is simply
an algebraic transformation of the general discharge
equation given in the manual.

DISCHARGE-COEFFICIENT CURVES

Base curves that give the relation between C',L/b ,
and m are presented for various embankment and abut-
ment slopes. The base curves were defined under
""'standard conditions' of the secondary variables as
listed on the figures 22-30. The value of C' from the
base curve is multiplied by the various & factors when
any of the secondary variables are nonstandard. The
applicable k factors are defined on the same page as
the base curve except for the factors k,, k,, and k, .
which are used with all the base curves.

The value of k, , which accounts for the effect otf
bridge piles, is a function of three variables, and the
use of the diagram, figure 30, may not be clear. To
define k; enter the horizontal scale at the proper value
of m and move vertically to the value of L/b; then move
horizontally to the line marked j = 0. 10, then verti-
cally to the value of j and horizontally to the value of
k.

The following curves for definition of the discharge
coefficient are presented:

Type I opening, vertical embankment, vertical abut-
ment.

A. Base curve,

B. Variation with Froude number.
C. Variation with eqtrance rounding.
D. Variation with 45% wing walls.

E. Variation with 60° wing w;lls.

F. Variation with 30° wing walls.

G. Variation with angularity,

Type II opening, embankment slope 1 to 1, vertical
abutment.

A. Base curve.
B. Variation with entrance geometry,
C. Variation with angularity.

Type Il opening, embankment slopé 2 to 1, vertical
abutment.

A. Base curve.
B. Variation with entrance geometry, -
C. Variation with angularity.

Type Il opening, embankment and abutment slope 1 to
1.

A. Base curve,
B. Variation with angularity.
C. Variation with entrance geometry.

Type III opening, embankment and abutment slope 2
to 1.

A. Base curve.
B. Variation with angularity.
C. Variation with entrance géometry.

Type IV opening, embankment slope 1 to 1, vertical
abutment with wing walls. )

A. Base curve.
B. Variation with angularity.
C. Variation with wing -wall angle,

Type IV opening, embankment slope 2 to 1, vertical
abutment with wing walls.

A. Base curve,

B. Variation with angularity.

C. Variation with Frou.de number.
D. Variation with wing-wall angle.

Type I through Type IV openings, k,e kg and kl
curves, .

A. Variation with eccentricity.
B. Variation with submergence.
C. Variation with bridge piles. .

D. - Variation with bridge piers.



:

Dogwood Rwer near Sweetbriar, Ga-
Flood of Augusf 30, /9‘52
Scale 1“: 100’

\

\ Fence fine '
* ¥ X X —x \\ / - X \ x
. . A i : oe of filf \

+5¢ @i%e, Sec 7""” O EaE

i 4225
-~

< [ ow-water channel

Fence [ine -

Pasfure
Scatfered small frees \

and lrigh? wvnderb rush X Corn field 4227
n=0.050 Stalks /lard orer
n=00s0
¥ ' \
x 42.33

\Apprqm Sectwon \

Y grass
\ “ L/g/)/ wnderbrush
: N =00485 x

42.33 o \ \
\4—//,_9/;;wafer tne
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Figure 14. --Profile of high-water marks, Dogwood River near Sweetbriar, Ga.
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Figure 15.--Channel cross sections, Dogwood River near Sweetbriar‘, Ga,
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Figure 16. --Details of embankment and abutment, Dogwood River near Sweetbriar, Ga.
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Figure 17. --Station number of high-water marks,
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| SECTION.—......A pRroach
st | Dist. | Py | Evev. | Deera | BIEAN AREA W. P.
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Figure 18. --Cross-section propertiesv of approach section.
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Figure 19. --Cross-section properties of contraction section
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APPROACH SECTION PROPERTIES
Subsection | n -]%8—6' a W.P. r r2/e K= 1-:36 a 1r2/3
Kp .
Sta. 2/?- 260 |0.050| 29.7 20/3 240.6| 839 4./4 247000
 Sta.260-290 |.050| 29.7 502 Jo.l1| 167 653 97,000
_Lk? | é ‘
Sk 290- 437 ‘ a_
| y ‘ 03,000
Sta. 4.;1— 440 |.050| 2937 33 Zol o 4.95 4 850
Sta 490-690 |.050] 2971 4579 250.| &3/ .40 159,000
————iledsel_ _
CHARACTERISTICS OF CONSTRICTION
Embankment and abutment slope _ _/ __5‘ _/_0_ _{ _______
Type of abutment _ _ _ _ _ _ _ _ _ - /¢ =
ITEMS AND RATIOS
" Items Ratios
Ah . S mm Y- 37
: —'-Qﬁi——v Ktta‘l
b (80 L/b Q.25
L ‘ 45’ 'r/o
: w/v
x/b . 08!
. yg. e s e ¥3 + Ah ) .
Ho — " = v/ VES —
f ' j= AJ/AS ‘ 2077
s e = K /Ep e @5
" 224 ¢ N 1
Ay v 2,928 © SRR
K, a f/.fz oao
&y - 247009
‘ ¢! . ‘k' kx kj k ' : k' ) . " ‘
‘ ‘c‘"": 0.780_x _f.00 x 4£12_x 965 x x . -" ?.543 (I /? /) R
o ‘ _ . . 0.810 .
6= 0.800x 980% 4025 x 965X x s 0776(2 4 1)
Computed by -/ Date //-28 Checked by S N4 Date _s-£9:92

Figure 20. --Computation of coefficients.
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vwood

e, near:

Cont racted opening measurement of ees. Leg,

.....................................................‘.!'or....{.......{:..

Sweetbriar, G,

Fllo e s cecscvcsscaconcss:
Meas. NOeeeon .;......... easse

aes S eeeccsccctescrcannes

qost 39, /952,

5L Z 4 AR &

. levatt . . o Left Right Aversge gage helght _ Nof _ i.a.i‘J _ _ __ feet
Water-surface elevation at approach section .
‘ —42—2% 42,231 4233 ) piacharge _ _ _/5,;.4 /00 _ _ second-feet
Water-surface elevat%on at contracted section|yg,s6| £1.52 4/ 5 Drainage area _ _ _ _ _ ‘sq“s” miles
Fall in water surface Ah® 069 1nit punoff _ _ _ _cfs per sq. mile
C (discharge coefficlent) _ _ _ _ _ 0.8/0 _ _ _ _ _ _ L, (above contraction)__ _ _-_/88_ _ _ feet
A3 (gross area)  _ _ _ _ __.____.2928 _ ____ L' (through contraction) 45 . feet
APPROACH SECTION
Subsection| n 1.486| ¢ WeP. r r2/3 K2 1.486 4 2/3 /a2 | e,
) n n 8 ! .
S/a 20-290 Q.050} 29,7 2615 |- 270.7 928 443 334,000 $.139,000,000
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Figure 21. -~-Computation of discharge.
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COMPUTATION OF PEAK DISCHARGE AT CONTRACTIONS
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Figure 22. --Type I opening, vertical embankment, vertical abutment,.
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COMPUTATION OF PEAK DISCHARGE AT CONTRACTIONS
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Figure 24, -~Type II opefxing. embankment siope 1 to 1, vertical abutment. See figure 30.
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Figure 26. ~-Type III opening, embankment and abutment slope 1 to 1. See figure 30.
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Figure 28. --Type IV opening, embankment slope 1 to 1, vertical abutment with wing walls, See figure 30,
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Figure 29. --Type IV opening, .embankment slope 2 to 1, vertical abutment with wing walls. See figure 30.
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