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PROBABILITY ANALYSIS APPLIED TO A WATERrSUPPLY PROBLEM

By Luna B. Leopold

INTRODUCTION

The literature on probability techniques applicable 
to problems in hydrology is ^abundant but scattered 
through scientific journals of ̂ x>th hydrology and sta­ 
tistics. Important administrative and judicial deci­ 
sions presently face water-compact commissions, 
courts, and water-planning committees. These and 
other groups might find useful, a brief and simplified 
discussion of how statistical techniques can aid in 
analysing problems of water stipply. The interest ex­ 
pressed in this subject by various parties to the litiga­ 
tion concerning the Colorado RJiver prompts this pub­ 
lication of material, which was presented in August 
1958 before the Special Master of the Supreme Court 
hearing the proceedings of Arizona v. California et al. 
The examples presented here are the same as those 
used in testimony before the Special Master, but there 
are included the basic computations, which were too 
detailed to present in the actual testimony.

The specific example, which was analyzed in that 
testimony, was a 61-year series of annual discharge 
values of the Colorado River at Lees Ferry, 1896 to 
1956, inclusive. However, the methodology presented 
herein is generally applicable to many other stream- 
flow records; and the specific data discussed should 
be viewed as exemplifying the types of information, 
which can be obtained from any streamflow record.

The series of data used are the 61 years of recon­ 
structed record of annual discharge values represent­ 
ing the so-called virgin flow of the Colorado River at 
Lees Ferry.1 This particular series was used by 
witnesses from Arizona and California in the Colorado 
River litigation (California exhibit 2201 A). The series

*The division between the upper basin and lower 
basin of the Colorado River, as defined in the Colorado 
River compact of 1922, is a point on the Colorado 
River 1 mile downstream from the Paria River. This 
point is called Lee Ferry in the compact. Lees Ferry 
is the name of a nearby place where the Geological 
Survey makes river measurements.

was compiled from three sources. For the period 
1896 to 1947 the annual discharges were derived from 
the U. S. Bureau of Reclamation "Report on Colorado 
River Storage Project and Participating Projects," 
dated December 1950. The series from 1948 through 
1951 was obtained from the Bureau of Reclamation 
"Memorandum Supplement to Report on Water Supply 
of the Lower Colorado River Basin, Project Planning 
Report, November 1952," dated November 1953. The 
annual discharges for 1952 through 1956 were derived 
by the same methods used th the Bureau of Reclamation. 
The entire series from California exhibit 2201A is 
listed in columns 1 and 2 of table 1. The remaining 
columns are explained on page 4.

It is generally understood that the mean flow ex­ 
perienced during the period of record at a given gaging 
station will not necessarily be duplicated in future 
periods. However, it is not as well recognized that 
proper analysis can yield much information in addition 
to the mean flow for the period of record. Simple 
statistical techniques can be used to obtain values of 
the probability that any specific flow will be equaled 
or exceeded in the future, or that any particular value 
will not be reached in future periods. The objectively 
determined probabilities will not dictate a particular 
course of action of decision, but they do at least provide 
a framework within which decisions on water-supply 
problems can be made.

It should be emphasized that a statement of proba­ 
bility is not a forecast. Extensive studies of the varia­ 
tion of hydrologic phenomena clearly indicate that 
values of any hydrologic factor tend to vary with time, 
but these variations are not sufficiently regular to be 
deemed cyclic. For forecasting future hydrologic 
events there must be repetitive cyclical phenomena; 
cyclic phenomena imply that at some time in the future 
the experience of the past will tend to be duplicated. 
Repetitive cycles are, for all practical purposes, 
absent in hydrologic data. Therefore, the past record 
should be used as an indication only of the probability 
that certain events will occur in the future, not as a 
forecast.

1



PROBABILITY ANALYSIS APPLIED TO A WATER-SUPPLY PROBLEM

Table 1. Reconstructed annual flows of Colorado River at Lees Ferry, Ariz. 

(Flow represents discharge adjusted for upstream depletion]

(1)
Water 
year1

1896............
97............
98............
99............

1900............
01............
02............
03............
04............

1905............
0.6............
07............
08............
09............

1910............
11............
12............
13............
14............

1915............
16............
17............
18............
19............

1920............
21............
22............
23............
24............

1925............
OC

27............

(2) 
Annual flow 
(in thousands 
of acre-feet)

10,089 
18,009 
13.815 
15,874

13,228 
13,582 
9,393 

14,807 
15,645

16,027 
19,121 
23,402 
12,856 
23,275

14,248 
16,028 
20,520 
14,473 
21,222

14,027 
19,201 
24,037 
15,364 
12,462

21,951 
23,015 
18,305 
18,269 
14,201

13,033 
15,853 
18,616

(3) . 
Deviation 

from mean 
(in thousands 
of acre -feet)

-5,091 
+2,829 
-1,365 

+694

-1,952 
-1.598 
-5,787 

-373 
+465

+847 
+3,941 
+8,222 
-2,324 
+8,095

-932 
+848 

+5,340 
-707 

+6,042

-1.153 
+4,021 
+8.857 

+184 
-2,718

+6,771 
+7,835 
+3,125 
+3.089 

-979

-2,147 
+673 

+3.436

(4)
Square of 
deviation 

from mean 
(nx 10">)

2,590 
801 
186 
48

381 
255 

3,340 
13 
22

72 
1.550 
6,840 

540 
6,550

87 
72 

2,860 
50 

3.650

133 
1,615 
7,840 

3 
735

4,590 
6,060 

974 
954 

94

461 
45 

1,180

(1)
Water 
year1

1928..........

1929..........

1930..........
31..........
32..........
33..........
34..........

1935..........
36..........
37..........
38..........
39..........

1940..........
41..........
42..........
43..........
44..........

1945..........
46..........
47..........
48..........
49..........

1950..........
51..........
52..........
53..........
54..........

1955..........
56..........

(2) 
Annual flow 

(in thousands 
of acre -feet)

17,279 

21,428

14,885 
7,769 

17,243 
11,356 

5,640

11,549 
13,800 
13,740 
17,545 
11,075

8,601 
18,148 
19,125 
13,103 
15,154

13,410 
10,426 
15,473 
15,613 
16.376

12,894 
11,647 
20,290 
10,670 
7,900

9,150 
10,720

925,957

(3) 
Deviation 

from mean 
(in thousands 
of acre -feet)

+2,099 

+6,248

-295 
-7,411 
+2,063 
-3,824 
-9,540

-3,631 
-1,380 
-1,440 
+2.365 
-4,105

-6,579 
+2,968 
+3,945 
-2,077 

-26

-1,770 
-4,754 

+293 
+433 

+1,196

-2,286 
-3,533 
+5,110 
-4,510 
-7,280

-6,030 
-4,460

(4) 
Square of 
deviation 

from mean 
(n x 10 10 )

438 

3,900

9 
5,480 

425 
1,461 
9,100

1,318 
190 
207 
560 

1,685

4,330 
884 

1,555 
430 

0

314 
2,260 

9 
19 

143

522 
1,250 
2.610 
2,035 
5,300

3,640 
1,990

106,655

1 12 months ending September 30 of year shown. 

VARIABILITY

Probability analysis is in essence an analysis of the 
variability of a sample. A streamflow record repre­ 
sents a time sample out of an indefinitely long time 
period. Therefore, more information can be obtained 
if the data from that record are treated as other 
sampling data.

To determine the characteristics of any large popu­ 
lation by taking a sample, the most obvious parameter 
indicated by the sample is the mean value. Of equal 
significance is the spread or dispersion of individual 
values about the arithmetic mean. In streamflow, for 
example, the annual discharge values include a few 
exceptionally large ones, a few small ones, and a pre­ 
ponderance of discharges centered around some 
central value. The distribution of annual discharges 
is shown graphically by a histogram that shows the

number of years in which the discharge falls into dif­ 
ferent categories of size.

When the distribution of sizes or quantities in a pop­ 
ulation follows the so-called normal law, the histogram 
will present the shape of the normal distribution. A 
smooth curve drawn through the points on the histo­ 
gram will result in a bell-shaped curve, such as is 
shown in figure 1. A normally distributed population 
is; by definition, one whose histogram can be approxi­ 
mated by the bell-shaped curve illustrated.

Normal distributions have certain standard charac­ 
teristics. One is that the arithmetic mean of the values 
should be identical with the mode, which is that cate­ 
gory having the largest number of cases. This char­ 
acteristic will be present only when the bell-shaped 
curve is symmetrical. The symmetry of the bell- 
shaped curve is direct evidence that 50 percent of the



VARIABILITY

cases have values higher than the mean, and 50 per­ 
cent have values lower than the mean.

By the same reasoning, a characteristic of a 
normal distribution is that a spread of values may 
be defined within which 50 percent of the individual 
values fall. Such a spread is defined as one prob­ 
able deviation on each side of the mean. This 
spread is is indicated on the graph of figure 1.

For the same reason a given percentage of the total 
cases will fall within the limits defined by two prob­ 
able deviations on either side of the mean. It is a 
characteristic of normally distributed populations 
that 82 percent of the total number of cases will lie 
within 2 probable deviations on either side of the 
mean, and that 96 percent of the cases will lie 
within the limits of 3 probable deviations on either 
side of the mean.

SIZE OR QUANTITY

o z.
LU
z> 
o
HI
o: 
u_

' p.d.- -p. d.- -p.d. - -p.d.- -p.d- -p.d.-

NOTE: _
p. d. = probable deviation

  50  ' 
percent

82 percent 
96 percent

p. d. - probable deviation
Arithmetic average (mean)* size class having largest number of cases (mode)

Figure 1. The normal distribution: The frequency of occurrence of various sizes or quantities.
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The bell-shaped curve of a normal distribution is 
asymtotic to the abscissa or horizontal coordinate; 
that is, the two tails of the bell-shaped curve grad­ 
ually approach, but do not reach, the horizontal 
line of the graph.

The probable deviation may be computed for a 
normally distributed population in a simple manner. 
One probable deviation equals 0.6745 times a quantity 
called the standard deviation. The standard deviations 
may be computed by the following formula:

Standard deviation*

where 3t is the difference between the value of an 
individual measurement and the mean of all the 
measurements in a sample, and n is the number 
of measurements in the sample.

An example of the computation of the standard 
deviation is given in table 1. Column 2 in table 1 
shows the annual flow in acre-feet at Lees Ferry 
for each water year. The arithmetic mean of 
column 2 is computed to be 15,180,000 acre-feet. 
Deviations from the mean shown in column 3 are 
merely the difference between the individual annual 
discharge values and the above-mentioned mean. 
Column 4 is a tabulation of the square of the de­ 
viations or the square of each value in column 3. 
The probable deviation is indicated as the product 
of the factor 0.6745 times the standard deviation, or

Probable deviation = 0.6745 x 4.22 = 2.84 million 
acre-feet

By definition, therefore, one probable deviation 
on either side of the mean would include 50 per­ 
cent of all the values listed in column 2. That is, 
50 percent of the values in column 2 lie within the 
limits of 18.02 and 12.34 million acre-feet. The data 
in column 2 will verify this statement approximately.

2 The sums (table 1) of the annual flow, in thousands 
of acre-feet, and the square of deviation from the 
mean are 925,957 and 106,655 x 10 10 , respectively. The 
mean is derived by dividing the sum of the annual flow 
by the total number of years from 1896   1956, thus

Mean- 925,957. 15.130 million acre-feet. 
61

The computation of the standard deviation is as 
follows:

Standard deviation ;

by substituting values for symbols, the equation then 
simplifies to

106.655x1018- A777xlOio ; 
61-1

therefore.
Standard deviation- 4.22 million acre-feet.

Probability analysis is greatly simlified where the 
data in the sample are distributed in a normal manner.3 
That the data shown in table 1 are normally distributed 
will be shown, after a discussion of the use of prob­ 
ability paper for plotting.

PROBABILITY PLOTTING

For ease of analysis, the bell-shaped graph of a 
normal distribution can be plotted in a somewhat dif­ 
ferent manner by accumulating progressively the 
number of cases equal to, or less than, any particular 
value. Such a cumulative curve is shown in figure 2A. 
For the vertical scale, probable deviations on either 
side of the mean are used. Note that, as indicated 
above, in defining a normal distribution 50 percent of 
the cases are greater than the mean and^therefore, 
the value of 50 percent on the abscissa corresponds to 
0 on the ordinate scale. One probable deviation below 
the mean should also correspond with 25 percent of 
the cases, inasmuch as the spread between the mean 
and one probable deviation below the mean must con­ 
sist of 25 percent of the total values. Thus, the 25- 
percent point on the abscissa corresponds to -1 prob­ 
able deviation on the ordinate; and, similarly, 75 per­ 
cent on the abscissa corresponds to one probable 
deviation above the mean on the ordinate. It was also 
stated that one probable deviation on either side of the 
mean will include 50 percent of the total cases; on 
figure 2 the difference between 75 percent and 25 per­ 
cent is 50 percent of the total. Also note that in figure 
2A the cumulative distribution approaches but does 
not reach abscissa values of 0 and 100.

In order to further simplify the cumulative frequency 
distribution curve, the abscissa scale can be changed 
by spreading out the values in such a way that the S- 
shaped line of figure 2A becomes a straight line, as 
shown in figure 2B. The expanded horizontal scale 
should be such that the characteristics of a normal 
distribution are fulfilled. As an example, 82 percent 
of the cases should lie within two probable deviations 
on either side of the mean. Thus, the value of -2 on 
the ordinate scale will appear at an abscissa value of 
9 percent, and +2 on the ordinate scale will appear 
opposite 91 percent on the abscissa.

The abscissa scale so constructed that a normal 
cumulative frequency distribution will plot as a straight 
line is, by definition, a probability scale. Graph paper 
in which the probability scale is printed as the abscissa 
is widely used and can be purchased at most 
engineering-supply stores.

To test whether a series of data is normally distri­ 
buted, the values may be arranged in order of magnitude 
and plotted on probability paper. Table 2 lists the 
annual flows of the Colorado River in order of magni­ 
tude, beginning with the largest. If such data aline

3The annual discharges of all rivers are not normally 
distributed. In general, however, the annual flow of the 
larger streams, and those in humid regions tends to­ 
ward normality.
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6 PROBABILITY ANALYSIS APPLIED TO A WATER-SUPPLY PROBLEM

themselves approximately in a straight line on prob­ 
ability paper, the values in the sample may be consid­ 
ered to be normally distributed. In making such a graph, 
the abscissa position of any individual value is obtained 
by using the formula

Plotting position i

in which m is the rank of the individual number in the 
array and n is the total number of cases in the sample. 
The plotting positions for data in table 2 are computed 
by this formula and shown in column 3. In table 2, 1 
year of 61 years constitutes 1.6 percent of the total 
sample. Having arranged the 61 values in order of 
magnitude, as shown in column 2, the computed plotting 
position places each point in abscissa positions 1.6 
percent apart.

The data in table 2, plotted on arithmetic probability 
paper, are shown in figure 3, where the 61 points aline 
themselves in a reasonable approximation to a straight 
line, as illustrated by a line drawn to conform with 
the points.

As indicated previously (p. 4), the probable deviation 
is computed to be 2.84 million acre-feet; 2.84 million 
acre-feet on either side of the mean (fig. 3) should in­ 
clude 50 percent of the total values in table 2. The 
graph in figure 3 confirms this computation. The 
ordinate value of 12.34 corresponds to an abscissa 
value of 25 percent and 18.02 corresponds to an ab­ 
scissa value of 75 percent.

The value of one probable deviation can be obtained 
by reading the difference between the ordinates corre­ 
sponding to 50 percent and 25 percent on the plotted 
graph, without going through the numerical computation 
shown on page 4.

Not all hydrologic data are normally distributed. 
Such data should be transformed to use a statistical 
term to provide a series of values that are normally 
distributed. In some cases, though the individual values 
are not normally distributed, the logarithms of those 
values will be normally distributed. The handling of 
log-normal distributions is beyond the scope of this 
report.

Table 2. Computation of plotting position in probability analysis, annual flows of Colorado River at Lees Ferry

(1)
Serial

1. ............
2.............
3.............
4.............
5.............

6.............
7.............
8.............
9.............
10............

11 ...........
12 ...........
13 ...........
14 ...........
15 ...........

16 ...........
17 ...........
18 ...........
19 ...........
20 ...........

21 ...........
22 ...........
23 ...........
24 ...........
25 ...........

26 ...........
27 ...........
28 ...........
29 ...........
30 ...........

31 ...........

(2) 
Annual flow in order 

of magnitude 
(thousands of acre -feet)

24,037
23,402
23,275
23.015
21.951

21.428
21.222
20.520
20,290
19,201

19.125
19.121
18.616
18.305
18.269

18.148
18,009
17,545
17,279
17,243

16,376
16.028
16.027
15.874
15.853

15,645
15.613
15,473
15,364
15,154

14.885

(3) 
Plotting position 

(probability)

98.4
96.1
95.2
93.6
92.0

90.4
88.8
017 *

85.5
83.8

82.2
80.6
79.0
77.4
75.8

74 2

72.5
70.9
69.3
67.7

66.1
64.5
62.9
61.3
59.7

58.1
56.4
54.8
53.2
51.6

50.0

(1) 
Serial

32 ...........
33 ...........
34 ...........
35 ...........

36 ...........
^7
38 ...........
QQ

40 ...........

41 ...........
42 ...........
43 ...........
44 ...........
45 ...........

46 ...........
47 ...........
48 ...........
49 ...........
50 ...........

51 ...........
52 ...........
53 ...........
54 ...........
55 ...........

56 ...........
57 ...........
58 ...........
59 ...........
60 ...........

,61 ...........

(2) 
Annual flow in order 

of magnitude 
(thousands of acre-feet)

14.807
14.473
14.248
14,201

14,027
13.815
13,800
19 740

13,582

13.410
13.228
13.103
13.033
12.894

12.856
12.462
11.647
11,549
11,356

11,075
10,720
10,670
10.426
10.089

9,393
9,150
8,601
7,900
7.769

5,640

(3) 
Plotting position 

(probability)

48.4
46.8
45.2
43.6

42.0
40.4
38.7
37.1
35.4

33.8
32.2
30.6
29.0
27.4

25.8
24.2
22.5
21.0
19.3

17.7
16.2
14.4
12.8
11.2

9.6
8.0
6.4
4.8
3.2

1.6
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Figure 3. Cumulative distribution curve. Colorado River at Lees Ferry, 61 years '1896 1956.

In data obtained by sampling, where the individual 
values in the sample are normally distributed, the 
means of groups of data in the sample will also be 
normally distributed. For example, in a streamflow 
record the means of 10-year periods may be com­ 
puted, and the values of 10-year means may be 
treated as items in another sample. In a 61 -year 
record only 6 independent 10 -year means may be 
computed   a relatively small sample. However, the 
characteristics of the whole population may be 
approximated by the characteristics of a sample 
because the "standard error of the mean" of the 
sample is a close approximation to the standard 
deviation of the means of other samples from the 
same population. The standard error of the mean 
is

§ "x Standard deviation M»  *^ ~ "^  *      ^ *   ~ ~ f

where 11 is the number of items comprising the 
sample.

The standard error of the 61-year mean is computed 
to be

S y- *- 22. = 0.54 million acre-feet.~" V6T 

The probable error is

0.6745 x 0.54 a 0.364 million acre-feet.

This figure can be interpreted in two ways: (a) as a 
50-percent chance that the 61-year mean of record lies 
within 0.364 million acre-feet of the true mean of an 
indefinite series of years or (b)as the probable deviation 
of an indefinitely large number of 61-year means.

However, this calculation is based on an assumption 
that the data occur in random order a requirement 
not actually met in hydrologic data. That is, neither 
the individual annual values nor the means of other 
successive periods occur in random order. This lack 
of random sequence is explained below and a method 
of correcting for it is discussed.
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EFFECT OF PERSISTENCE IN HYDROLOGIC DATA

Experience in our daily lives verifies the fact that 
rainy days occur together and dry days occur together. 
For similar meteorological reasons wet years tend to 
occur in groups and dry years similarly occur together. 
This tendency for grouping is called persistence. It is 
clear that if the means of groups that included a non- 
random assortment of individuals were computed, the 
spread or deviation among the means would be greater 
than if the groups consisted of a random selection of 
individuals. As an example, imagine measurements of 
the mean height of 10-men groups on a college campus 
Suppose the groups were made up by a random process 
so that each individual group of 10 consisted of some 
short men and some tall ones. In contrast, suppose 
that one of the 10-man groups consisted of the football 
team, another the basketball team, a third the cox­ 
swains of the crew, and so forth. The mean height of 
the basketball players would be larger than the mean 
of 10 randomly selected individuals. The mean of the 
coxswains would be smaller than the mean of a ran­ 
domly selected group. Thus, the variation among the 
means of 10-men groups would be larger in the team 
groups the nonrandomly selected groups than in the 
randomly selected ones. Likewise, the spread of 
means of groups consisting of wet years and those 
consisting of dry years would be greater than if the 
groups consisted of randomly ordered individual years.

That the variability of groups of streamflows in 
their natural order of occurrence is actually larger 
than if the same flow values occurred in random se­ 
quence was sharply brought to the attention of the 
engineering profession by a distinguished British

engineer, H. E. Hurst (1950). By working with the long­ 
est record of river stage in the world, the 1,050 years 
of recorded stage of the Nile at the Roda gage, Hurst 
obtained evidence that the tendency for wet years to 
occur together and dry years together increased varia­ 
bility of means of various periods. Other scientists 
confirmed this tendency with independent data.

Some records which show this effect are presented 
in table 3. These samples include some of the longest 
stream-discharge records in existence. Column 5 
shows the standard deviation of the means of annual 
discharges for natural 5-year groups, for example, 
1901   05, 1906 10, and so forth. Column 7 shows 
standard deviation of 10-year means in the same re­ 
cords, such as 1901 10, 1911-20, etc. Similarly, 
columns 9 and 11 are for 15- and 20-year groups.

Column 3 shows the standard deviation of annual 
discharge values. The standard deviation of annual 
values is unaffected by sequence; and, thus, the varia­ 
bility of annual values, expressed by the standard 
deviation, can be used as a yardstick against which the 
variability of means of 5-year, 10-year, and other 
periods may be compared. For this reason the ratio 
of variability of 5-year means to 1-year values is a 
factor that is independent of length of record, and 
various streams can be compared by their ratios as 
shown in column 6. Similarly, the ratio of standard 
deviation of 10-year means to that of annual values 
appears in columns 8, 10, and 12.

The data in table 3 were plotted to derive the dashed 
curve of figure 4. Ordinate values of individual points 
through which the dashed curve was, drawn are not
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shown; the ordinates are, for example, values shown 
in column 6, table 3, and a corresponding abscissa of 
5 years. For Niagara River at Niagara Falls, for 
example, 5-year means (abscissa value of 5) have a 
ratio of 0.74 or 74 percent of the variability of the 
annual values in the same record. The dashed curve 
was extended beyond the 20-year abscissa to follow a 
smooth logarithmic line with slope of -0.35.

The actual values of the Colorado River at Lees 
Ferry (table 3) are plotted as circles in figure 4. For 
example, in 61 years of record, the 12 five-year means 
had a standard deviation, which was 64 percent of the 
standard deviation of the 61 annual values. Thus the 
cross at abscissa value of 5 has an ordinate position 
of 64 percent.

The circles representing Colorado River data plot 
consistently with the dashed line representing the data 
for the other rivers in table 2. The above results can 
be compared with similar results from a group of data 
that are not only normally or randomly distributed about 
their mean, but are randomly ordered as well. If group 
means are comprised of randomly chosen individuals, 
then the variability of these group means would decrease 
as the square root of the number of individuals making 
up the groups. Thus, if annual values of streamflow 
were randomly ordered occurred in random sequence  
variability of means of groups would decrease inversely 
as the square root of the number of years comprising 
the group. Thus, the means of 100-year groups would
be -JL or   as variable as 1-year values. 
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Randomly ordered data are described by the solid 
line in figure 4. Relative to the variability of 1-year 
values, means of 100-year records would be VlO as 
variable. Thus, the solid line goes through the ordinate 
value of 10 percent for an abscissa value of 100 years.

The difference between the variability of naturally 
occurring groups of streamflow data and the same data 
randomly ordered is defined by the difference between 
the dashed line and solid line of figure 4. For periods 
of equal length (for example, 5-year group averages) 
the variability (ordinate value) is larger in naturally 
ordered data than the same values randomly ordered.

The same idea can be presented in another way, as 
shown on figure 5. An actual record of 100 years has 
about the same variability as means randomly ordered 
in a 25-year record. Similarly, the means of 200 years 
of actual records have about the same variability as 
the means of 40 years if these discharges occurred in 
random order rather than in their natural order. A 
100-year record is, therefore, required to estimate 
the mean flow with the same confidence as could be 
estimated from 25 years of record were the flows to 
occur in random order. After a record exceeds 100 
years in length (fig. 5), the estimate of the long-term 
mean improves at a decreasing rate that is, the effec­ 
tiveness of a record of 200 years is but 20 percent 
better than that of ah estimate based on TOO years of 
record.

To summarize, the tendency toward persistence in 
meteorologic and climatic events leads to a larger 
variability of mean values than if the same events 
occurred in random order. A group of values, such as 
annual discharge quantities, may be normally distributed 
about their mean value but occur in nonrandom se­ 
quence. The greater variability caused by this linkage 
is similar in data from rivers of widely different size 
and type; and as shown below, the similarity between 
rivers provides a means of correcting for this linkage in 
making probability analyses of any given streamflow 
record.

PROBABLE VARIATION AMONG MEANS OF 
FUTURE SAMPLES

Variability is defined as the dispersion or spread of 
values about their mean. Thus, in figure 3 the slope of 
the line on the graph is a measure of the variability in 
the sample data. Figure 4 defines the variability of 
means of groups of various sizes (periods of years) 
in terms of the variability of annual streamflow 
quantities. This ratio, read as percentage on the 
ordinate of figure 4, can be used to express the slope 
of a line representing the probable dispersion of means 
of future samples. The percentage is merely multi­ 
plied by the slope of the line showing distribution of 
annual values to obtain the slope of a line representing 
the dispersion of means of 5-year, 10-year, or some 
other period.

The dispersion of 10-year means and 61-year means 
is indicated by appropriate lines on figure 6 as ex­ 
amples. For comparison, the dispersion of the annual 
values is also shown. The position and slope of the 
line representing annual values is the same as that 
shown in figure 3. It will be recalled that the slope of 
that line can be expressed by two points. One point is

the mean plotted at 50-percent probability. The second 
point is the mean, 15.18 million acre-feet, plus the 
probable deviation, 2.84 million acre-feet, plotted at 
75-percent probability.

To obtain the slope of the line representing 10-year 
means, the 10= year abscissa in figure 4 is read from 
the dashed curve representing actually ordered or 
linked hydrologic data; a value of 44 percent is indi­ 
cated. The slope would be determined as follows: 

0.44 x 2.84 - 1.25 million acre-feet
(probable deviation)

Thus, if the mean for the 61 years is the true mean, 
75 percent of 10-year means would be expected to be 
equal to, or less than,

15.18 + 1.25s 16.43 million acre-feet. 
In figure 6, the 10-year line has an ordinate value of 
16.43 at an abscissa value of 75 percent.

Similarly, the line representing the dispersion of 
means of 61-year periods will have an ordinate value 
of

15.18 + (0.24 x 2.84) = 15.86
corresponding to an abscissa value of 75 percent. This 
can be interpreted as follows: Assuming the 61-year 
mean to be the true mean, three-fourths of the discharge 
values representing means of 61-year periods will be 
equal to or less than 15.86 million acre-feet. By the 
same token, one-fourth of the means of future 61-year 
periods will be equal to or less than

15.18 - (0.24 x 2.84) . 14.5 million acre-feet. 
Throughout this discussion it will be understood that 
the computations are for the reconstructed record of 
virgin flow-at Lees Ferry and the actual runoff will 
be less than these figures owing to upstream depletion.

CONFIDENCE IN ESTIMATE OF FUTURE 
VARIABILITY

In figure 6 shows the most probable distribution of 
means of future 10-year and 61-year periods, assuming 
the 61-year mean to be the true mean. The phrase 
"most probable" implies that the true variation, which 
actually will be experienced, may be somewhat differ­ 
ent. This is reasonable because an estimate made 
from a sample would be unusual if it were a perfect 
expression of the whole population. Probability theory 
allows an objective estimate of the expected deviation 
of any sample or group of samples from the true 
attributes of the whole population. In the previous 
analysis, the sample mean was assumed to be the same 
as the true mean. The probability that the sample 
mean may differ from the true mean is considered 
below.

The objective estimate of sampling differences is 
called the confidence limit or confidence band. Con­ 
fidence limits are derived from the characteristic of 
normal distributions already employed, so that the 
standard error of the mean of a sample is an approxi­ 
mation of the standard deviation of the means of many 
samples of equal size.

The mean value of the 61-year sample of annual dis­ 
charge values is 15.18 million acre-feet. The probable 
error (p.e.) of this mean is equal to

0.24 x 2.84   0.68 million acre-feet. 
Stated more simply, there is a 50 percent chance that 
the true mean of the whole population (indefinitely long
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Figure 6. Probable distribution of mean discharge values for periods of various lengths, Colorado River
at Lees Ferry.

period of time) lies within one probable deviation on 
either side of the mean of the sample, or

15.18+ 0.68s 14.50-15.86 million acre-feet. 
Thus, the line representing the most probable distrib­ 
ution of means of future 61-year periods drawn on 
figure 6 could lie in a slightly upward or downward 
position on the chart. There is a 50 percent chance 
that its true position is within a spread upward or 
downward of the mean by an amount equal to 0.24 prob­ 
able deviation or 0.68 million acre-feet.

As defined earlier, there is an 82-percent chance 
that a limit of twice this value above or below the 
sample mean would include the true mean of the whole 
population. In such a manner bands expressing any

desired confidence could be defined. The present 
discussion deals with only one of these various pos­ 
sible confidence limits that represents a 50-percent 
chance.

The 50-percent confidence band has been drawn on 
figure 7 as a pair of parallel lines lying 0.68 million 
acre-feet above and below the mean at the abscissa 
value of 50 percent. The slope of the parallel lines 
was determined previously; that is, the ordinate value 
at 75-percent probability is 0.68 million acre-feet 
higher than the ordinate at 50-percent probability. 
Thus, the confidence-limit lines are parallel to the 
line on figure 6 that represented the most probable 
dispersion of means of future 61-year periods.
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A more elegant but only slightly different construc­ 
tion of confidence limits yields curved lines rather 
than the parallel straight lines of figure 7.

Because a sample yields only an estimate of value 
of the true mean of the whole population and only an 
estimate of the dispersion of the means of other 
samples drawn from the same population, there is a 
50-percent chance that the line representing the actual 
distribution of means of future samples may be any­ 
where within the band defined by the confidence limits. 
Two possible positions of the line representing such a 
distribution are shown by the dashed lines within the 
confidence band shown on figure 7. An infinite number 
of such possible positions exist, having various slopes 
within the limit of the confidence band and having 
various vertical positions within that band. Any of

these possible positions are equally probable; therefore, 
according to the assumptions used in figure 7, there 
is also a 50-percent chance that the distribution of 
future 61-year means will lie outside of the confidence 
band drawn.

PROBABLE VALUE OF MEAN FLOW IN NEXT 
61-YEAR PERIOD

When the probable value of the mean of some pro­ 
spective period in the future, such as the next time 
period, is discussed, then it must be considered that 
the period will also be a sample with the same prob­ 
ability of variation from the true mean as was the 
sample already available. The variation from the true 
value of the mean of the available sample must be
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coupled with the variation in the next sample to obtain 
the total possible variation from the true, but unknown, 
value applicable to the whole population.

These errors used in a statistical sense are not 
added together but combined as the square root of the 
sums of their respective squares.

To present a practical example, in a water-supply 
problem the engineer is interested in the probability 
of the mean discharge of flae next period of time being 
higher or lower than the mean value during the period 
of available record. He is particularly interested in 
estimating the probability of a lower value of stream- 
flow in the next period than he observed in the last one, 
because in water-supply problems, deficient flow can 
be critical. In the case of the 61-year period of the 
Colorado River at Lees Ferry, compute the lowest 
value that the mean of the next 61 years is likely to be 
in 1 chance out of 4. Inasmuch as the variability of 
means of particular future 61-year periods relative to 
the variability of annual data from a 61-year sample 
equals the statistical sum of the variability of the 
sample and the future periods,

\/(0.24) 2 + (0.24)2 = 0.34.

The width of the 50-percent-confidence band is, thus,
0.34 x 2.84 = 0.96 million acre-feet 

above and below the mean already experienced in the 
available sample. Therefore, there is a 50-percent 
chance that the next 61-year mean lies between 
15.1810.96 million acre-feet or between 16.14 and 
14.22 million acre-feet. Thus, it can be said that 
there is a 25-percent chance, or 1 chance in 4, that 
the mean of the next 61 years would be less than 14.22 
million acre-feet.

By a similar procedure the variability means of 
future 10-year periods can be computed and the lower 
limit for the probable mean value of the next 10-year 
period can be found. In this case, the combined 
variability would be

\/(0.24)2 + (0.44)2 = 0.50.

There is a 50-percent chance that the mean flow 
during a specific 10-year period, such as the next 
10-year period, will be

15.18t (0.5 x.2.84) = 16.60-13.76
million acre-feet.

There is also an 82-percent chance that the next 
10-year mean will lie within two probable deviations 
from the sample mean or

15.18t (2 x 0.5 x 2.84) = 18.02-12.34
million acre-feet.

Therefore, it can be stated that there is a 9-percent 
chance (1 out of 11) that the next 10-year mean will be 
less than 12.34 million acre-feet.

With regard to the record of the Colorado River at 
Lees Ferry, an inquiry could be made as to whether 
the means actually experienced during the driest 
10-year period of record greatly exceeded reasonable 
expectations. The lowest 10-year period was the 
decade 1931-40, with a mean of 11.83 million acre- 
feet. This discharge was only slightly below that for 
the 9-percent probability. Thus, it may be concluded 
that the lowest 10-year mean in the 61-year period at 
Lees Ferry might have been expected in 1 chance out 
of 11 a reasonable probability of occurrence.

EFFECT OF STORAGE ON STREAMFLOW 
VARIABILITY

Variability of discharge is an inherent characteristic 
of rivers. Storage reservoirs are devised by man to 
make variable river flows match his needs for water; 
that is, water-supply reservoirs are built to hold over 
water from wet periods in order that it may be dis­ 
charged during dry ones. Reservoir storage, therefore, 
is merely a feasible way for man to reduce the natural 
variability of stream discharge.

In figure 8, the line having the greatest slope is the 
most probable distribution of 10-year means and is 
identical with the 10-year line of figure 6; it may be 
considered to represent what nature has provided. The 
line having the lesser slope (fig. 8) is arbitrarily 
drawn on the graph to indicate the lower variability, 
which man desires to achieve by reservoir storage. 
The hatched area between the two lines is a quantitative 
measure of the regulation achieved by storage. Abso­ 
lutely even flow would be represented in figure 8 by 
the horizontal dashed line, but it is theoretically and 
physically impossible to achieve a uniform outflow 
because, as indicated on figure 4, even long periods, 
say 200 years, have means which are likely to vary by 
a considerable amount. Thus, if successive 200-year 
periods have considerably different mean values of 
flow, a relatively large amount of reservoir storage 
would have to be built to hold over water, which 
occurred as high flows in one 200-year period, to 
supply low periods in a succeeding 200 -year period of 
relative dryness.

By the same reasoning, each additional increment of 
storage capacity yields a smaller and smaller incre­ 
ment of actual flow regulation; that this is the actual 
experience with reservoirs built and operated in the 
United States is shown in figure 9 (Langbein, 1959). 
The ordinate of this chart represents the present regu­ 
lation, in which regulation is defined as the average of 
the total increments to storage that occurred on an 
annual basis. Regulation on this graph is expressed as 
a percentage of the mean annual flow. It would be 
physically impossible to add, on the average, more 
water to storage than the average annual flow of the 
stream. For this reason, ordinate values cannot 
possibly exceed 100 percent of the mean annual flow.

The abscissa scale represents the storage capacity, 
expressing capacity as a ratio to mean annual flow. 
Each point represents reservoir data tabulated in 
table 4. The reservoirs listed in table 4 were chosen 
to represent a reasonable sample of different kinds of 
reservoirs and have a variety of storage capacities in 
terms of the annual flow of the respective streams. 
Reservoirs built exclusively for flood control are not 
included. The point representing Lake Mead, for 
example, is plotted at an abscissa value of about 2 in­ 
asmuch as the 29 million acre-feet of usable storage 
in that reservoir represents approximately 2 times 
the annual mean discharge of the river. The ordinate 
value for Lake Mead represents the average annual 
increment to storage actually experienced since the 
reservoir was built. It will be noted that the operating 
experience at Lake Mead, represented by a point on 
figure 9, fits reasonably well with the points for other 
reservoirs plotted on this chart.
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Table 4. Capacity and regulation of some representative reservoirs

15

Reservoir and State

Usable capacity

Acre-feet 2
Detention

period 
(years) 3

Mean annual regulation 1

Acre-feet 
per year

Ratio to 
capacity

Ratio to
mean annual

flow

Piney, Pa............................................ 13,000
Great Falls, Tenn................................. 49,400
Ocoee No. 1, Tenn................................ 33;000
Claytor, Va......................................... 100,000
Mascoma Lake, N. H............................. 7,744
Franklin D. Roosevelt Lake, Wash........... 5,072,000
West Fork Bitterroot, Mont.................... 31,700
Hiwassee, N. C.................................... 1,376,000
Green Mountain, Colo............................ 146,900
Gibraltar, Calif.................................... 7,731
Stillwater, N. Y.................................... 106,000
Sacandaga, N. Y................................... 762,300
First and Second Connecticut Lakes, N. H. 88,106
Norris, Tenn....................................... 2,281,000
Shasta Lake, Calif................................ 4,377,000
Lake Alamanor, Calif............................ 649,800
Salmon River Canal Co., Idaho................ 182,650
Henrys Lake, Idaho .............................. 79,351
Lake Mead, Ariz.-Nev........................... 27,207,000
Lake Mead plus Lake Mohave................. 29,000,000
Fort Phantom Hill, Tex......................... 69,500
Lake Kickapoo, Tex.............................. 106,000
Elephant Butte, N. Mex.......................... 2,185,000
Elephant Butte plus Caballo, N. Mex........ 2,526,000
Quabbin, Mass..................................... 1,279,000
San Carlos, Ariz.................................. 1,205,000
Lake Henshaw, Calif............................. 194,320

0.011
.021
.035
.04
.05
.07
.14
.265
.34
.39
.40
.51
.60
.72
.80

1.0
1.6
2.1
2.1
2.3
2.3
2.6
2.6
3.0
6.0
6.7

21.8

70,000
204,000
204,000
150,000
22,000

4,800,000
26.000

330,000
111,000

4,300
91,000

560,000
62.000

1,070,000
1,530,000

250,000
57,500
20,600

45,750,000
46,500,000

11,900
20,200

4 375,000
4 470,000

119,000
4 117,000

8,170

5.4
4.1
3.6
1.5
2.8
.95
.82
.90
.75
.55
.86
.75
.70
.47
.35
.38
.31
.26
.21
.22
.175
.19
.17
.185
.09
.097
.042

0.06
.089
.13
.06
.14
.07
.12
.24
.26
.21
.34
.38
.42
.34
.28
.38
.54
.54
.44
.51
.40
.49
.45
.55
.56
.65
.91

1 For reservoirs with monthly detention period greater than 0.1 year, regulation was computed from monthly 
changes in reservoir contents. Daily data were used for smaller reservoirs. 

2Thomas and Harbeck, 1956. 
3Ratio of usable capacity to mean annual flow. 
Including evaporation losses.

The smooth line representing the general experience 
of reservoir operation has been drawn through the 
points; it approaches but does not reach the ordinate 
value of 100 percent, as has been explained above. 
Thus, both theoretically and from actual operating 
experience, complete regulation yielding the mean 
annual flow of the stream is impossible to achieve. 
The smooth line in figure 9 confirms that successive 
increments of reservoir capacity add increasingly 
smaller increments to regulation.

In plotting figure 9, evaporation losses from the 
reservoirs have been computed and included in the 
annual regulation. If the regulation less evaporation 
losses were computed, the smooth curve drawn in 
figure 9 would lie at a lower value and become asymp­ 
totic or even fall away from the horizontal line where 
large values of reservoir capacity are shown.

By applying the generalized experience indicated by 
the smooth curve in figure 9 to the Colorado River, 
ordinate values have been read off the smooth curve 
and used to compute the increments of regulation that 
would be attained by different assumed reservoir 
capacities constructed in the upper Colorado River 
basin. The results of this computation, again including

evaporation losses as a part of the annual regulation, 
define the solid line in figure 10. Evaporation losses 
subtracted from ordinate values yield net regulation 
as defined by the dashed line. It can be seen from this 
dashed line that total reservoir capacity in excess of 
about 40,000,000 acre-feet would achieve practically 
no additional water regulation if evaporation loss is 
subtracted from annual regulation. Thus, generalized 
experience with representative reservoirs in the 
United States indicates that if reservoirs with capacity 
beyond an additional 10 million to 15 million acre-feet 
are constructed in the upper Colorado River basin, 
evaporation loss will thereafter offset the hydrologic 
benefit of the regulation so achieved.
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NOTE: For computation, historic mean flow taken as 13 million acre-feet, 
representing depleted flow at Lees Ferry> evaporation /oss 
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Figure 10. The effect of various amounts of storage capacity on flow regulation, Colorado River basin.
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