Mineral Resources of the Grandfather Mountain Window and Vicinity North Carolina
CONTENTS

Abstract
Introduction
Summary of geology
Metallic resources
Iron
Titanium
Uranium
Gold
Zinc and lead
Manganese
Copper
Nonmetallic resources
Mica and feldspar
Kaolin
Asbestos
Road metal
Sand and gravel
Building stone
Other commodities
References

ILLUSTRATIONS

Figure 1. Generalized map of Grandfather Mountain area showing location of some of the mineral resources
Figure 2. Sketch of uraninite veinlets at the foot of Bard Falls
Figure 3. Map of uranium prospects on North Harper Creek

TABLES

Table 1. Metal content of selected specimens from iron prospects on Big Ridge, Linville quadrangle
Table 2. Copper content of samples of Montezuma Member of the Grandfather Mountain Formation
Mineral Resources of the Grandfather Mountain Window and Vicinity, North Carolina

By Bruce Bryant and John C. Reed, Jr.

ABSTRACT

The most valuable and largest mineral resources presently known in the Grandfather Mountain area are gravel, sand, road metal, and building stone. Mica, feldspar, kaolin, iron, titanium, and asbestos have been produced, and additional resources may be available in modest amounts. Uranium, lead, zinc, manganese, gold, and copper occur in small amounts, but no deposits minable under present economic conditions are known.

INTRODUCTION

This circular summarizes the information collected on mineral deposits during a study of the Grandfather Mountain window and vicinity in northwestern North Carolina and presents these data independently of the description and interpretation of the general geology of this large and complex area. The Grandfather Mountain area comprises the Linville, Linville Falls, Lenoir, and Blowing Rock 15-minute quadrangles and parts of the Marion 15-minute quadrangle and the Little Switzerland and Marion East 7½-minute quadrangles. Geologic information on the area is in published geologic maps (Bryant, 1963, 1965; Reed, 1964a, b) and in the open-file map (Reed and Bryant, 1964). Information in this report pertaining to the Linville and Linville Falls quadrangles has previously been published (Bryant, 1962; Reed, 1964b). The specific localities mentioned in this report can be found on the published quadrangles, for many of the geographic features are too small to be shown on figure 1.

SUMMARY OF GEOLOGY

From northwest to southeast the area is composed of the following tectonic units: the Mountain City window, the Blue Ridge thrust sheet, the Grandfather Mountain window, the Brevard fault zone, and the Inner Piedmont (fig. 1).

In the Mountain City window, weakly metamorphosed Lower Cambrian rocks of the Rome Formation, the Shady Dolomite, and the Chilhowee Group are exposed.

The Blue Ridge thrust sheet consists of upper Precambrian schist, gneiss, amphibolite, migmatite, and granitic rock formed during a metamorphic-plutonic event 1,000-1,100 million years ago and intruded by ultramafic rock of early Paleozoic(?) age and leucogranodiorite and pegmatite of early or middle Paleozoic age. These rocks have been metamorphosed one or more times during the Paleozoic. In late Paleozoic time the Blue Ridge thrust sheet moved relatively northwestward at least 35 miles over Precambrian granitic rocks and migmatite and a thick sequence of upper Precambrian sedimentary and volcanic rocks that are now exposed in the Grandfather Mountain window. An intermediate thrust sheet, the Tablerock thrust sheet, occurs above the autochthonous rocks and beneath the Blue Ridge thrust sheet in the southern part of the window. The Tablerock thrust sheet is composed of the Shady Dolomite and rocks of the Chilhowee Group. The rocks in the window and the thrust sheet were pervasively metamorphosed at low grade during the Paleozoic.

The Brevard fault zone, a strike-slip fault of regional extent, truncates the Grandfather Mountain window and the Blue Ridge thrust sheet to the southeast. The fault zone contains slices of exotic rock, and the zone and adjacent rocks showing structural and metamorphic effects related to the faulting form a belt 5 miles wide. Right-lateral movement along the Brevard fault took place in late Paleozoic and early Mesozoic time and may
Figure 1.—Generalized map of the Grandfather Mountain area showing location of some of the mineral resources: A, asbestos; Au, gold; Fe, iron; K, kaolin; Pb, lead; Ti, titanium; U, uranium; Zn, zinc.
METALLIC RESOURCES

have been closely related to the northwestward transport of the Blue Ridge thrust sheet.

In the inner Piedmont, which is southeast of the Brevard fault, layered biotite and biotite-amphibole gneiss, mica, and sillimanite schist and concordant bodies of cataclastic augen gneiss of Precambrian or early Paleozoic age have been invaded by granitic rocks of early or middle Paleozoic age and by ultramafic rocks of early Paleozoic (?) age. These rocks were subjected to one or more episodes of metamorphism during the Paleozoic.

METALLIC RESOURCES

IRON

Historically, iron has been an important mineral resource of the Grandfather Mountain area. A belt of iron prospects and mines in the Linville quadrangle extends northwestward from near Newland through Cranberry and about 6 miles west into Tennessee. The principal producing mine in this belt was the Cranberry mine at Cranberry, N.C.

The first published description of the Cranberry deposit, including several analyses of the ore, was written by Kerr (1875) before any extensive mining had been done. Bayley (1923) gave a rather complete review of the literature on Cranberry mine. During the present survey the underground workings at Cranberry were only partly accessible; most of the description, therefore, is summarized from the literature.

The ore mineral is magnetite; the gangue minerals are, principally, pyroxene, amphibole, epidote, quartz, feldspar, and, subordinately, garnet, and calcite. According to Ross (1935), the country rock contains augite and the ore deposits hedenbergite. Other minerals in the gangue include biotite, pyrite, pyrrhotite, sphalerite, and chalcopyrite. The ore is nontitaniferous and low in phosphorus. The iron content is 30–35 percent.

Keith (1903) recognized that the ore occurs in separate lenses peneconcordant with the foliation of the Cranberry Gneiss; he believed that the ore was postmetamorphic. However, Bayley (1923, p. 87, pl. 4) found that the ore and gangue at the Cranberry deposit were sheared, indicating that the mineralization occurred before or during the latest metamorphism. Goldich and Wedow (1943) considered the ore bodies as discus-shaped tectonic lenses. The lenses mined ranged in thickness from a few feet to 200 feet and were as much as 900 feet long. Kline and Ballard (1948, p. 11) referred to an unpublished report by Lucien Easton, which stated that the ore occurs in shoots that strike N. 57° W., dip 30° SW., and are elongate in a S. 70° W., 30° SW., direction of plunge.

Surface float from the Cranberry deposit was mined as early as 1820 (Bayley, 1923, p. 98), but systematic mining did not begin until 1882 when a railroad was completed to Cranberry from Johnson City, Tenn. (Nitze, 1893). In 1884 a small blast furnace capable of handling 40 tons of ore per day was built at Cranberry. After 1900 the ore was shipped to Johnson City where a 100-ton-per-day blast furnace had been built. From 1882 to 1930, about 1½ million tons of ore was produced (Kline and Ballard, 1948). During and after World War II the U.S. Bureau of Mines made a geophysical survey of the Cranberry iron belt, did some core drilling, and processed ore in a pilot plant (Kline and Ballard, 1948). Since 1930 the mine has not been operated except during the Bureau of Mines' test, although in recent years some ore has been salvaged from dump material which has been crushed for gravel.

The Cranberry mine was worked by open-cut; it was also worked underground on two levels by an adit and slopes from the upper level. The workings underlie an area about 3,700 feet long and 700 feet wide (Kline and Ballard, 1948). Goldich and Wedow (1943) estimated that between 450,000 and 500,000 tons of ore might be taken from the mine by robbing the pillars if the mine were abandoned in the process. They estimated that there might be 1–2 million tons of ore below the present mine workings. Kline and Ballard (1948, p. 85) believed that there are more ore shoots at Cranberry like those already mined, and possibly others elsewhere along the iron-bearing belt.

Other iron prospects in the Cranberry belt in the Grandfather Mountain area have had negligible production, and many are overgrown and difficult to locate. The U.S. Bureau of Mines conducted magnetometer surveys in the Fork Mountain area northwest of Newland and along a strip from the Cranberry
mine to the Tennessee Stateline. One mag­
etic anomaly was drilled about half a mile
west of Elk Park; as much as 44.5 feet of ore
having more than 30 percent total iron con­
tent over a length of 52.5 feet was found in
one hole (Kline and Ballard, 1948), but the
other drill holes suggest that ore of that
thickness and grade is of limited extent to
the depth of 250-440 feet tested.

The origin of the Cranberry deposits is
not really known. Keith (1903), who recog­
nized that replacement played an important
role in their genesis, attributed the iron­
bearing solutions to the Bakersville Gabbro
and suggested the Roan Gneiss (his name for
the amphibolites) as a possible source of the
iron. Bayley (1923) thought that the iron de­
posits were formed by intrusion of magmas
composed of (1) magnetitic pyroxene pegma­
tite, (2) pyroxene-magnetite, and (3) magnet­
ite. He also thought that the material of these
intrusives originated by differentiation from
Precambrian or upper Precambrian mafic
magmas.

Megascopic and microscopic textures (Bay­
ley, 1923; Ross, 1935) show that the magnetite
and iron-rich silicates replaced the wall­
rock—probably during the plutonic meta­
morphism when the Cranberry Gneiss was
formed—because the ore is cut by pegmatite and
because both the ore bodies and pegma­
tite were sheared and partly metamorphosed
to low grade along the wallrock. The ore has
zones which lack much cataclasis and retro­
gressions. The lenses as a whole may be
largely tectonic in their present distribution
and shape. The linear distribution of the
mines and prospects in the Linville quad­
rangle and 6 miles west into Tennessee sug­
gests that their present position is related to
Paleozoic tectonism, for they are subparal­
lel with the boundary between rocks of low
and medium-grade Paleozoic metamorphism.
This boundary may be major thrust fault of
Paleozoic age. Neither the distribution nor
any possible stratigraphic or tectonic con­
trol on the emplacement of the ore deposits
before the pervasive shearing is known. Any
theory for their origin would be highly spec­
culative. Perhaps the deposits were derived
by segregation of iron from amphibolites and
schists when those rocks were converted to
Cranberry Gneiss during the plutonic meta­
morphism.

In the northern part of the Linville quad­
rangle, near Big Ridge, phyllonite zones in
Cranberry Gneiss of the Blue Ridge thrust
sheet contain magnetite, hematite, and small
amounts of sphalerite. Concentrations of
hematite with or without magnetite are abun­
dant in phyllonite zones in the Cranberry
Gneiss throughout its outcrop area, but they
are generally less than 10 feet thick and 100
feet long. Some of the concentrations have
been explored.

Hematite is also locally concentrated in
phyllonite in the Wilson Creek Gneiss near
Tar Ridge in the Blowing Rock quadrangle.
We located only one of the four prospects
mentioned by Nitze (1893, p. 118-119).

TITANIUM

A deposit of ilmenite and magnetite in the
Wilson Creek Gneiss near Richlands in the
Blowing Rock quadrangle has been known for
a long time (Kerr, 1875). Selected ore con­
tained as much as 41.21 percent TiO2, but the
average was 14.90 percent TiO2 and 36.00
percent metallic iron (Nitze, 1893). The de­
posit was mined from 1942 to 1952 by the
Yadkin Valley Ilmenite Co., a subsidiary of
the Glidden Co. About 230,000 tons of titan­
um concentrates was produced.

The ore body consists of a series of nar­
row, closely spaced lenses forming a nearly
continuous vein which is about 1,000 feet
long, and which, as shown by core drilling,
extends to a depth of about 200 feet. Mining
was discontinued after soft ore near the sur­
face was removed.

The main part of the mine is an open pit
50-100 feet deep and about 400 feet long. Its
bottom is near the level of the Yadkin River.
The ore body trended N. 15° E. and dipped
25°-45° SE. The ilmenite and magnetite oc­
cur in a gangue of epidote, amphibole, chlo­
rite, biotite, talc, and accessory pyrite. Talc
and biotite form segregations. The deposit
has sharp contacts with partly layered cata­
clastic gneiss. The foliation in the gangue
material and the enclosing gneiss is parallel.
The ore contains concordant wisps of more
felsic gneiss 1 inch to 4 feet long and as
much as 3 inches thick. Locally, thin string­
ers rich in ilmenite are found in the wall­
rock.

In thin section a specimen of gneiss, which
was included in the ore and which resembles
typical Wilson Creek Gneiss, contains crys­
tals and fragments of crystals of plagioclase
altered to albite from the originally coarser grained granitic rock in a matrix of recrystallized albite, quartz, biotite, epidote, and chlorite.

The ore body parallels the regional structural trend of both Paleozoic and Precambrian structural and lithologic elements in this area of the Grandfather Mountain window. The ore apparently replaced the Wilson Creek Gneiss along a linear zone and is younger than the gneiss, which was emplaced 1,000–1,100 million years ago (Davis and others, 1962). The ore has been sheared along with the country rock and is pre-late Paleozoic in age. The iron and titanium may have been derived from preexisting rock and segregated during the plutonism, but their source is unknown.

A similar, but low-grade, ore body three-quarters of a mile to the southeast was reported by Hunter and Gildersleeve (1946, p. 81). It consists of ilmenite mixed with chlorite and serpentine minerals, and is as much as 25 feet thick and 3/4 mile long.

URANIUM

There was considerable prospecting for uranium in the Grandfather Mountain area in the middle 1950's, but no minable deposits were found. The areas of greatest activity were in the Wilson Creek Gneiss in the Linville Falls and Linville quadrangles and in the Cranberry Gneiss north of the window in the Linville quadrangle. Radioactive minerals were prospected in (1) heavy mineral partings rich in zircon in the clastic rocks of the Chilhowee Group in the tectonic slices north and west of the window and in arkoses of the Grandfather Mountain Formation within the window; (2) small pegmatites (mostly less than 10 ft in diameter) in Cranberry Gneiss, especially in pegmatites rich in biotite and quartz; and (3) strongly sheared and phyllonitic zones in the Wilson Creek Gneiss.

The most promising of the three occurrences is that in the Wilson Creek Gneiss. The principal prospects were on Ripshin Ridge near North Carolina Highway 181 in the Linville Falls quadrangle, north of the road between Edgemont and Pineola in the Linville quadrangle (the Little Lost Cove prospect), and on and near North Harper Creek at and north of the boundary between the Linville and Linville Falls quadrangles. These prospects were stripped and trenched, and the North Harper Creek deposit was core drilled.

The most abundant uranium minerals occur in scattered uraninite-filled joints in sheared pegmatites in phyllonite zones. The joints commonly dip steeply and strike almost parallel to the regional northwest-trending mineral lineation in the wallrocks. The joints are poorly developed in the surrounding phyllonite and are sparsely mineralized or barren in the phyllonite (fig. 2). Secondary uranium minerals are disseminated in the phyllonites; but their distribution is spotty, and the phyllonite zones themselves are discontinuous.

The following information concerning claims on the Wilson Creek Gneiss is summarized from unpublished data compiled in 1955 and 1956 by S. J. Meliherscik of E. J. Longyear Co.

The uranium-bearing mineral in the phyllonites is torbernite. Selected samples from phyllonites contained as much as 0.28 percent

![Figure 2](image-url)
The prospects in phyllonite on Ripshin Ridge and Little Lost Cove were explored by bulldozer cuts. At Ripshin Ridge the radioactive rock was destroyed by the first cut of the bulldozer, and no more could be located in a pit 20 by 100 by 15 feet. Bulldozing at the Little Lost Cove anomalies showed that there the phyllonite lacked horizontal and vertical continuity. The torbernite showings were interpreted as resulting from near-surface weathering and secondary enrichment of disseminated uraninite.

The best surface showing is at North Harper Creek just below Bard Falls (fig. 3). The average analysis of 6 samples cut at 10-inch intervals across the showing was 1.01 percent \(U_3O_8 \). These samples contained

Figure 3. — Map of uranium prospects on North Harper Creek showing locations of diamond-drill holes and surface radiometric anomalies. Lengths of lines of drill hole represent approximate projection of hole to surface along foliation planes. Numbers indicate, in descending order, length of hole, thickness of pegmatite in hole, number of uraninite-bearing veins penetrated, and number of radiometric anomalies indicating 0.1 percent \(U_3O_8 \) in first 500 feet of hole. From map by E. J. Longyear Co.
METALLIC RESOURCES

a trace of gold, silver, and ThO₂, and about 0.1 percent copper. Channel and chip samples over a 4-foot width in brecciated granitic rock in Shatley Fork averaged 0.23 percent U₃O₈. The country rock has a radioactivity 1.5 times background.

In addition to the obvious northwest-trending veinlets, some paper-thin veinlets of uraninite occur on shear planes parallel to the regional structure. Pyrite, pyrrhotite, and chalcopyrite are also found on thin seams parallel to the foliation. Uraninite is also disseminated in a pegmatite about 350 feet downstream from Bard Falls.

Seven holes, totaling 3,055 feet, were drilled inclined steeply to the northwest (fig. 2) in order to intersect the zones of more sheared rock and phyllonite, which are parallel with the regional structural trend. They intersected the pegmatites which occur as tectonic lenses in and parallel to the zones of phyllonite and strongly sheared gneiss and the very thin seams of uraninite which are parallel with the shear planes. However, as the prominent minerals in the surface showings are in veins trending northwest parallel with the drill holes, the principal uranium-bearing structures were not intersected. Radioactive logging showed only a few anomalies exceeding 0.1 percent U₃O₈.

Drilling and detailed surface mapping indicated that it was difficult to draw contacts between phyllonite, sheared gneiss, and less sheared granitic rock. These subdivisions are not continuous along strike or downdip.

According to our interpretation, the uranium mineralization occurred during and immediately after the Paleozoic retrogressive metamorphism of the Wilson Creek Gneiss. The high background readings on that rock unit suggest that the showings formed by local mobilization of uranium during the metamorphism and concentration in shear zones in the gneiss and joints in the pegmatites, which formed relatively brittle competent lumps in the shear zones.

GOLD

A few small gold prospects and mines are found on quartz veins in the rocks of the Inner Piedmont. At the time of our survey these workings were either overgrown or inaccessible. According to Bryson (1936, p. 136), the quartz veins of the South Mountain region, including the southern part of the Grandfather Mountain area, are generally too small to be worked profitably for gold, and no vein in the South Mountain region has ever been worked on a large scale.

Many of the gold prospects are northeast of, and aligned parallel to, the northwest-trending diabase dike in the Lenoir quadrangle. However, Nitze and Wilken (1897) reported that the quartz veins in several of the prospects strike N. 50°-60° E. and are 8-10 inches thick, although in the Baker mine the vein strikes N. 35°-45° W. and is 2-5 feet thick. The prospects we saw are in the belt of polymetamorphic rocks adjacent to and southeast of the Brevard fault.

The most recent prospecting has been near the Miller and Scott Hill mines on Celia Creek in the Lenoir quadrangle. There the small growth on the dumps and the state of preservation of the headframe suggest that work has been done since 1936.

Keith (1903) reported that a quartz vein containing gold-bearing pyrite was mined on the north side of Grandfather Mountain in the Grandfather Mountain window in the Linville quadrangle and that similar veins were prospected on the east side of the mountain. Several of these old prospects, at which little or no work has been done in this century, were located in our survey. Most of the prospects are in sericite phyllite and phyllitic siltstone containing quartz veins and lenses and some pyrite. Two prospects are in phyllonitic gneiss on the ridge south of Bellows Creek in the Linville and Blowing Rock quadrangles.

Placer mining has yielded small amounts of gold on the Blue Ridge upland on Howard Creek in the Blowing Rock quadrangle and near Gragg in the Linville quadrangle (Keith, 1903).

ZINC AND LEAD

Disseminated sphalerite associated with small amounts of cuprite, chalcopyrite, pyrite, and some secondary copper minerals is found in the Shady Dolomite of the Taberock thrust sheet near Linville caverns in the Linville Falls quadrangle. The ore minerals with quartz and calcite occur in veinlets and irregular replacements in dolomite. One small prospect trench has been opened on the hillside, and in 1943-44, four holes were
Selected samples from old iron prospects in phyllonite zones in the Cranberry Gneiss on Big Ridge north of Beech Mountain in the Linville quadrangle contain interesting amounts of zinc. The zinc occurs in black sphalerite associated with sericite, magnetite, epidote, albite, fluorite, chlorite, quartz, and accessoryapatite and carbonate. No significant amount of copper or lead accompanies the zinc (table 1). A brief examination of surface exposures and the prospects suggest that the sphalerite has a spotty distribution; no minable bodies were seen.

Analysis of a somewhat mineralized grahotitic phyllonite, from a graphite prospect south of Dark Ridge Creek in the Cranberry Gneiss lying above the Mountain City window but below the Blue Ridge thrust sheet, revealed 0.1 percent zinc and no unusual amounts of Pb, Cu, or Ni.

Galena reportedly was mined on the ridge where Buckeye Creek turns east to join Beech Creek in the Linville quadrangle (Keith, 1903). A shaft was still visible in 1957, but no lead minerals were found in the phyllonite on the dump.

Galena, in euhedral cubes as much as 5 mm across, and small amounts of chalcopyrite and sphalerite were found in a 25- to 30-foot-thick vein of granular quartz on the north side of Upper Creek in the Linville Falls quadrangle. The vein strikes northeastward parallel to the foliation of the enclosing schist and gneiss of the Piedmont. It is exposed in several prospect pits over a distance of 200 feet; but no recent work has been done, and the pits are slumped and overgrown. Reportedly, the galena carries small quantities of silver.

Reports of the occurrence of native lead are widespread in the area, but no specific localities are mentioned. Such reports have a long history, for Elisha Mitchell (1905), who visited the area in 1828, heard them and recorded in his diary: "Such in substance is the account that I received in so many different places and from so many different persons that I am ready to knock down the man who shall tell the tale again."

MANGANESE

Botryoidal psilomelane, clayey pyrolusite, and ocherous wad occur in alluvial and colluvial clay which caps a small quartzite knob 0.5 mile S. 20° W. of the village of North Cove (formerly Pitts Station) in the Linville Falls quadrangle. The clay contains lenses of gravel. D. A. Brobst (written commun., 1960) estimated that the manganiferous clay is at least 30 feet thick and that it is covered by a soil mantle 5–10 feet thick. Some prospecting and development work was done on the deposit between 1943 and 1950, and several carloads of ore were shipped. All the opencuts and small adits described by Brobst were caved, and the workings were partly overgrown at the time of our visit in 1959.

Concentrations of manganese oxides a few inches thick are locally found in alluvium and fan deposits.

COPPER

The Montezuma Member of the Grandfather Mountain Formation contains copper minerals at scattered localities. Malachite is the copper mineral more commonly visible in

<table>
<thead>
<tr>
<th>Lab. No.</th>
<th>Field No.</th>
<th>Fe</th>
<th>Ti</th>
<th>Cu</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>291880</td>
<td>G-70-1-b</td>
<td>5.0</td>
<td>0.2</td>
<td>0.015</td>
<td>0.01</td>
<td>0.002</td>
<td>0</td>
<td>Phyllonite containing pyrite.</td>
</tr>
<tr>
<td>291881</td>
<td>G-70-1-d</td>
<td>M</td>
<td>.05</td>
<td>.05</td>
<td>.0015</td>
<td>.005</td>
<td>2.0</td>
<td>Mineralized phyllonite.</td>
</tr>
<tr>
<td>291882</td>
<td>G-71-1-a</td>
<td>M</td>
<td>.07</td>
<td>.02</td>
<td>.0015</td>
<td>.02</td>
<td>M</td>
<td>Do.</td>
</tr>
</tbody>
</table>
Table 2.—Copper content of samples of Montezuma Member of the Grandfather Mountain Formation

[Determined by colorimetric method by Dwight L. Skinner]

<table>
<thead>
<tr>
<th>Lab. no.</th>
<th>Field no.</th>
<th>Source</th>
<th>Cu (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>271275</td>
<td>RE-71-1___</td>
<td>Outcrop</td>
<td>10</td>
</tr>
<tr>
<td>271276</td>
<td>AC-14-1___</td>
<td>......... do</td>
<td>16</td>
</tr>
<tr>
<td>271277</td>
<td>H-5-3-e___</td>
<td>Prospect; no obvious evidence of copper minerals in specimen.</td>
<td>38</td>
</tr>
<tr>
<td>271278</td>
<td>H-5-5_____</td>
<td>Outcrop; evidence of copper mineralization nearby</td>
<td>88</td>
</tr>
</tbody>
</table>

hand specimen; it occurs in amygdules, along fractures, and in epidote segregations. Azurite also occurs but is less abundant. No extensive area of mineralized rock of ore grade has yet been found. Analyses (table 2) show that the copper content of the Montezuma Member is very low, even in areas containing visible copper minerals. Several prospects were found in the upper part of the valley of Pigeonroost Creek in the Linville quadrangle.

NONMETALLIC RESOURCES

MICA AND FELDSPAR

Both sheet and scrap muscovite has been obtained from the granodiorite pegmatites of the Blue Ridge thrust sheet in the Grandfather Mountain area. Most of the production has come from the southwestern part of the Linville quadrangle and the northwestern part of the Linville Falls quadrangle. This area is part of the Spruce Pine pegmatite district. Most of the productive pegmatites occur in the mica schist and gneiss unit, some in the amphibolite, a few in the granodiorite, and a very few in the unit of mixed rocks. No pegmatites containing commercial muscovite have been found in the Cranberry Gneiss.

Some mica has been produced from pegmatites in mica schist and gneiss north of Boone in the Blowing Rock quadrangle. The prospects near Deep Gap do not appear to have been very productive. A few mica prospects and one mine reportedly are in rocks of the Blue Ridge thrust sheet southeast of the window in the Blowing Rock quadrangle, but we did not visit them.

Various mines in the Grandfather Mountain area have been described (Sterrett, 1923; Kesler and Olson, 1942; Olson, 1944; F. G. Lesure, written commun., 1964), and the economic geology of the pegmatites has been summarized (Brobst, 1962).

Most of the pegmatites form peneconcordant lenses and pods, the largest a few hundred feet long and several tens of feet thick. Many small ones have been completely removed by mining. Most of the pegmatites lack conspicuous zoning, although a few have quartz cores. The smaller pegmatites have conspicuous cataclastic textures, and their muscovite books are bent and ruled; yet commercial mica has been produced from some foliated pegmatites only a few feet thick. The pegmatites in the Blue Ridge thrust sheet southeast of the window are on the average more strongly deformed than elsewhere, and the largest muscovite we saw there was about 3 inches in diameter.

Scrap mica is obtained as a byproduct of kaolin mining in the northwestern part of the Linville Falls quadrangle.

Feldspar is commonly recovered as a byproduct of the mica mines, but in some mines it is more valuable than the mica. The prospects and small mines in the mixed unit on Bellevue Mountain in the Linville quadrangle appear to have produced only feldspar. These pegmatites are rich in biotite and poor in muscovite, and the micas are very deformed. A small amount of feldspar has been produced from pegmatites in the Cranberry Gneiss.

The value of sheet mica production fluctuates, depending upon the demand and on the encouragement given by the U.S. Government through its lending and buying policies. For instance, Avery County produced about $186,000 worth of sheet mica in 1958 under Government support (Vallely and others, 1959),
but only $9,850 worth in 1962 after support was withdrawn (Beck and others, 1963).

The reserves of sheet mica in the Spruce Pine district probably are at least equal to the production to date, according to Brobst (1962, p. 19).

KAOLIN

Kaolin is mined from light-colored muscovite granodiorite saprolite along the north side of Brushy Creek in the northwestern part of the Linville Falls quadrangle. The deposits were opened in 1937, and several large open-pit mines are currently being operated. Scrap muscovite is recovered as a byproduct. Smaller deposits on the north side of Threemile Creek (Parker, 1946), at the west margin of the Linville Falls quadrangle, had not yet been mined in the quadrangle at the time of our mapping (1957).

Twelve samples from the Gusher Knob deposit (just outside the Linville Falls quadrangle north of Threemile Creek) contained an average of about 24 percent quartz, 16 percent mica, 0.5 percent feldspar, 47 percent hydrated halloysite, and 12 percent kaolin (Sand, 1956). The hydrated halloysite is derived from feldspar and the kaolin from muscovite.

The kaolin is as much as 60 feet thick and is overlain in part by terrace gravels averaging 16 feet in thickness and in part by residual soil and stained kaolin averaging 6 feet in thickness (Parker, 1946). The deposits have been formed by deep weathering of the light-colored granodiorite, which almost lacks mafic minerals. The deep weathering took place on broad valley floors, the bottoms of which now stand as gravel-covered terraces as much as 100 feet above the present streams. Commercial kaolin is found as high as 250 feet above Brushy Creek on relatively gently sloping valley sides (Parker, 1946).

Reserves in 1942 were estimated by Parker (1946) to be 1 1/2–3 million tons in the Brushy Creek deposits and 1 1/2–3 1/2 million tons in the deposits north of Threemile Creek (Gusher Knob deposits). No records of production or estimates of current reserves are available.

A possible additional source of kaolin in the Grandfather Mountain area is near Deep Gap in the northeast corner of the Blowing Rock quadrangle. The rocks on the gentle slopes near Gap Creek appear to be deeply weathered and to contain numerous bodies of pegmatite and granitic rock, some of which are plagioclase rich and lack mafic minerals. Judged from exposures in the Stony Fork drainage, whatever bodies of kaolin are found would be relatively small compared to those in the Brushy Creek area and would have a width of only several tens of feet.

ASBESTOS

Small amounts of anthophyllite asbestos have been mined from ultramafic rocks in the Blue Ridge thrust sheet and the Inner Piedmont in the Grandfather Mountain area.

In 1957, just west of Cow Camp Gap in the Linville quadrangle, an ultramafic body 320 feet long and 60 feet wide was being mined for anthophyllite asbestos. The fibers commonly are \(\frac{3}{4} \) inch long, and some are as much as 4 inches. Most are slip fibers and are parallel to the fabric of the rock. Some veins of cross fibers, which are perpendicular to walls of veins, transect the mass; these veins are as much as 2 inches thick. The ultramafic body appears to be concordant with the amphibolite and hornblende gneiss which forms the wallrock. Talc is common at the margin of the body.

Other small ultramafic bodies on the south side of Hawshore Mountain and south of Hughes in the Linville quadrangle have been prospected unsuccessfully for commercial anthophyllite. Asbestos prospects on Snake-den Mountain in the Blowing Rock quadrangle appear to be much older because the pits are overgrown.

The prospect on Camp Branch in the northeastern Blowing Rock quadrangle contains veinlets of asbestiform tremolite with fibers several inches long parallel to the veins and one-fourth inch long perpendicular to the veins.

In the Inner Piedmont one small anthophyllite asbestos mine has been worked northeast of the junction of the Johns River and Wilson Creek in the Lenoir quadrangle. There the
asbestos occurs in veins about 1 foot thick in a dunite which has been entirely serpentini-
ized in its interior and converted to talc schist at its margins.

The mines near Cow Camp Gap and the Johns River have been more fully described by Conrad and others (1963, p. 21–22, 42–44).

ROAD METAL

Road metal has been quarried from many different rock units throughout the Grandfather Mountain area. The largest active quarries in 1961 were in the Shady Dolomite at Woodlawn in the Little Switzerland quadrangle and in migmatitic gneiss at the Causby quarry in the southwestern part of the Lenoir quadrangle. The quarry at Woodlawn, which was operated by the State Highway Department, and an inactive one in Shady Dolomite at Ashford were described by Conrad (1960).

SAND AND GRAVEL

Sand and gravel is obtained from stream beds and flood plains at various localities throughout the area. Although many of the operations last only a few months in one place, they have been noted on the quadrangle maps where they were in progress at the time of mapping or had been recently completed.

The coarser grained deposits containing the fewest fragments of weathered rock are found in streams draining quartzite or ar-
kose. Such deposits have been exploited at the head of the Watauga River and along the Linville River just west of the gorge through the Tablerock thrust sheet in the Linville quadrangle (where the deposits are as much as 15 ft thick) and along the Linville River and Paddy Creek in the Linville Falls quadrangle. In the pits on Paddy Creek and the Linville River in the Linville Falls quadrangle, the gravel is poorly sorted and consists of rounded pebbles to boulders of quartzite 1 inch to 3 feet in diameter in a matrix of gray sandy clay. The deposit ranges in thickness from 4 to 10 feet and rests on bedrock. It is overlain by 2–5 feet of gray-yellow or brown sandy clay containing scattered pebbles and cobbles; the clay, in turn, is overlain by brown organic soil.

Most of the larger streams draining the steep southeast-facing margin of the Blue Ridge have considerable fresh sand and grav-
el in their alluvial deposits. In 1961, gravel operations at the junction of Buffalo Creek with the Yadkin River in the southeast corner of the Blowing Rock quadrangle exposed above water level 6–10 feet of sand, gravel, carbonaceous sand, and clay. Sand is the dominant material. The gravel consists mainly of pebbles and cobbles, and it has a maximum grain size of 1 foot.

Sand is obtained from the bed of the Catawba River near Morgantown.

Plentiful supplies of sand and gravel remain to be exploited on the flood plains of the major streams, such as Wilson Creek, the Johns River, Buffalo Creek, and Elk Creek. In 1962, sand and gravel was probably the most valuable commodity produced in the Grandfather Mountain area. Production for that year was valued at $122,000 in Watauga County and $208,000 in Burke County (Beck and others, 1963).

BUILDING STONE

In the Grandfather Mountain area, building stone is obtained principally from the meta-
morphosed sedimentary rocks of the Grandfather Mountain window. The most actively worked quarries are in the lowest arkose of the Grandfather Mountain Formation south and east of Grandfather Mountain in the Lin-
ville quadrangle. The arkose most used for building is medium grained, light greenish gray, has cleavage parallel with bedding, and is known as "Grandfather Stone." Council (1955) described the quarries on the road between U.S. Highway 221 and Gragg, and also the Green and Taylor quarry east of Linville. Other small quarries are found in the arkose unit north of Foscoe in the Lin-
ville quadrangle and north and east of Shulls Mills in the Blowing Rock quadrangle.

Slices of Chilhowee quartzite which are quarried for building stone are along the Linville Falls fault in the Linville Falls quadrangle near North Carolina Highway 181 (Causby and Dula quarries of Council, 1955), on U.S. Highway 221 at the south edge of the Little Switzerland quadrangle (Woodlawn [Teastor] quarry of Council, 1955), and at
other places in that vicinity. The quartzite in these quarries is light gray to light greenish gray and has bedding parallel with cleavage.

On Timber Ridge in the northwestern part of the Linville quadrangle a well-foliated medium-grained phase of the Beech Granite is quarried for building stone.

Along the Blue Ridge Parkway, Blowing Rock Gneiss was quarried for bridge construction. The inactive quarry in this unit near Spruce Knob was a building stone quarry rather than a road-metal quarry, as was shown on the Blowing Rock quadrangle map. This quarry was the source for the bridge materials.

North of Rock View Church on Elk Creek in the northeastern part of the Blowing Rock quadrangle, a layer of coarse-grained uniform well-jointed cataclastic biotite-quartz monzonite gneiss, at least 30 feet thick, is quarried for building stone.

East of Turkey Knob in the Blowing Rock quadrangle, soapstone was quarried from an ultramafic body.

OTHER COMMODITIES

Graphitic phyllonite has been prospected for graphite, but none of the deposits is of sufficient grade or tonnage to be considered minable.

Quartz crystals have been found in the Blue Ridge thrust sheet in the southwestern part of the Linville quadrangle, but few of them are salable for manufacture of oscillator plates (Mertie, 1959, p. 281). The better ones have value as specimens. Well-shaped but small crystals are also found locally in some veins in the rocks of the Grandfather Mountain Formation in the Linville quadrangle.

Small amounts of pure silica might be obtained near the Bradshaw School in the Blowing Rock quadrangle where a lens of almost pure white granular quartzite 10–30 feet thick and at least 500 feet long is found in Wilson Creek Gneiss. Similar but mostly less pure quartz bodies are found on White Rock Ridge.

In a study of high-silica materials in North Carolina, Broadhurst (1949) listed analyses of the upper quartzite of the Chilhowee Group in the Tablerock thrust sheet that range, in percent, from 96.7 to 91.0 SiO₂; 2.7 to 7.2 Al₂O₃; and 0.12 to 0.27 Fe₂O₃. He pointed out that Al₂O₃ content should be less than 0.5 percent in material for silica refractory industries.

The sillimanite schist unit in the southeastern part of the Lenoir quadrangle was investigated by Hash and Van Horn (1951) as a potential source of refractory material. In the laboratory they were unable to make a satisfactory concentrate of marketable grain size.

Agricultural lime has been quarried from the Shady Dolomite in the North Cove area in the Linville Falls quadrangle (Conrad, 1960). It is somewhat impure to be ideal for many industrial uses, but geographic location in relation to the industry needing dolomite is usually of prime importance in determining the economic potential of a dolomite deposit. Partial analyses of the Shady show the following ranges, in percent: MgO, 10–21; CaO, 27–31; ignition loss, 41–46; Fe, 0.25–0.6; and acid insoluble 0.7–8.6 (Hunter and Gildersleeve, 1946, p. 27–28). Complete analyses show the following ranges, in percent: SiO₂, 0.60–5.96; Al₂O₃, 0.60–1.76; Fe₂O₃, 0.49–0.73; CaO, 29.13–30.93; MgO, 19.56–21.22; K₂O, 0.26–0.41; P₂O₅, 0.01–0.02; and CO₂, 40.07–47.10 (Loughlin and others, 1921).

REFERENCES

REFERENCES

