

GEOLOGICAL SURVEY CIRCULAR 592

Interpreting Pan-Concentrate Analyses of Stream Sediments in Geochemical Exploration for Gold

Interpreting Pan-Concentrate Analyses of Stream Sediments in Geochemical Exploration for Gold

By R. P. Fischer and F. S. Fisher

GEOLOGICAL SURVEY CIRCULAR 592

United States Department of the Interior WALTER J. HICKEL, Secretary

Geological Survey William T. Pecora, Director

First printing 1968 Second printing 1969

Free on application to the U.S. Geological Survey, Washington, D.C. 20242

CONTENTS

.

	Page		Page
Abstract	1 1 2 2	Sample data and analytical resultsContinued Quantitative compatibility of samples with known geologic relations Conclusions	2 2 2
	ILLUST	RATIONS	
			Page
 Figure 1. Graph of the range, on a logarithmic samples listed in tables 2 and 3 th splits	hat were	analyzed as two or three separate r of mineralized areas in San Juan	4 5
	TAE	BLES	
Table 1. Samples from streams durining ones	women have be		Page 6
Table 1. Samples from streams draining appa2. Samples from streams draining weakveins and prospects or small mines	ly miner	ralized areas that contain only a few	6

ш

8

i

Interpreting Pan-Concentrate Analyses of Stream Sediments in Geochemical Exploration for Gold

By R. P. Fischer and F. S. Fisher

Abstract

A study of methods of collecting and processing samples to determine whether or not gold is present in areas of moderate size was undertaken in the northwestern part of the San Juan Mountains, Colo. As part of this study, 57 samples of pan concentrates were taken from streams draining three types of areas: (1) "barren" areas, where gold mineralization might be geologically possible but no deposits are known, (2) slightly mineralized areas that contain only a few known veins and prospects and small mines, and (3) well-mineralized areas that contain numerous veins and some very productive mines. The concentrate samples were analyzed by the fire-assay-atomic-absorption method.

Replicate analyses of large samples gave results consistent enough to permit placing considerable confidence in the results obtained for smaller samples on which only one analysis was made. For general field practice, it is necessary to pan only enough sand and gravel to yield about 15 grams of concentrate.

The analytical results are also quantitatively compatible with known geologic relations and indicate that a few samples from a stream are adequate to distinguish between "barren" and mineralized areas and to determine the relative amount of gold in mineralized areas. In other areas of similar gold deposits, data of this type should help decide whether more intensive search for gold deposits is justified.

INTRODUCTION

As part of its Heavy Metals program to appraise and enhance domestic resources of mineral raw materials that are in short supply, the U.S. Geological Survey is studying techniques of geologic sampling and their application to mineral exploration. In 1967 a project was started in the northwestern San Juan Mountains, Colo., to study several methods of collecting and processing samples in order to determine easily and quickly whether or not gold is present in areas of a few square miles. One method tried is described here. It consisted of panning known amounts of sand and gravel from selected streams, weighing the heavymineral concentrates and analyzing them by fire assay and atomic absorption. The panning practice used did not differ from that of the oldtime prospector, but the more sensitive analytical procedure available today offers a distinct advantage. Reasonably reproducible results that seem to be quantitatively meaningful were obtained from 57 samples. This type of sampling should be usable in other areas where similar gold deposits might be present, and the results should help decide whether more intensive search for gold deposits might be justified.

Willard Leedy and Mark Voultsos help^ad in the collection and panning of samples in the field. W. D. Goss, L. B. Riley, Claude Huffman, Jr., and J. A. Thomas of the U.S. Geological Survey did the gald analyses.

SAMPLING AND ANALYTICAL TECHNIQUES

All samples were sand and gravel from the upper part of the alluvial fill, and at each sample locality this material was taken from one or more places along the stream where placer gold is apt to accumulate, such as the head or foot of stream bars, behind boulders, in moss-covered banks, and in ratural riffles on bedrock. The samples were taken to determine the presence of gold in the stream sediments and its relative amount; they were not adequate to determine or estimate the gold content of the streambad fill.

Samples were panned in the field in 11- and 14-inch gold pans. They were not weighed individually, but it was determined that the small pan contained about 3,500 grams (nearly 8 pounds) of sand and gravel when filled and the large pan, about 7,000 grams (nearly 16 pounds). Samples ranged in size from those that filled only one small pan to those that filled seven or eight pans of both sizes and totaled 40,000 to 50,000 grams, or about 100 pounds. The samples were concentrated by panning until most of the light-colored (light weight) mineral grains were washed from the pan. Concentrates consisted mostly of dark-cclored heavy minerals, commonly with some fresh sulfides, mainly pyrite. At each locality where two or more pans of sand and gravel were taken, the concentrates from each pan were combined into one sample for analysis. Samples of concentrate ranged in weight from a few grams to as much as 775 grams. Some samples were panned by one person alone; others, by two, three, cr four people.

In the laboratory, concentrate samples weighing more than about 50 grams were split in a Jones splitter to samples of about 50 grams. Using ceramic plates, these 50-gram splits were then ground to about 80 to 100 mesh. If the original concentrate sample was less than about 50 grams, the entire sample was ground. If the ground sample weighed less than about 15 grams, the whole sample was analyzed in one run. If the ground sample weighed more than about 15 grams, it was poured into a cone-shaped pile on a flat surface, and was spread out rather evenly; enough spatula scoops, each containing about 1 gram of sample, were taken to make two or three separate splits for analysis, usually of about 15 grams each. For each analysis, a gold-silver bead was obtained by the standard fireassay method. This bead was dissolved in acid and the gold was determined quantitatively by atomic-absorption spectrometry (Huffman and others, 1967). The limit of detection is 0.02 part per million (ppm) gold for samples of 10-15 grams and is slightly higher for smaller samples.

SAMPLE DATA AND ANALYTICAL RESULTS

Tables 1, 2, and 3 show sample data and analytical results. Not much significance is placed on the calculated amount of gold in the field samples beyond its order of magnitude—the weight of the field sample was only estimated; thus the concentration ratio cannot be figured precisely. Furthermore, the amount of gold in the concentrate is minimal, because gold can be lost in panning; however, the amount that might have been lost is not known. On the other hand, considerable significance can be placed on the consistency of the analytical results and their quantitative compatibility with geologic relations.

Consistency of analytical results

Because gold is particulate in habit, has a high specific gravity, and is malleable, it is commonly difficult to grind and mix a sample sufficiently to obtain consistent analytical results between sample splits. Splits of the pan concentrates used in this study, however, gave reasonably consistent results, as shown both by graphic plotting and by statistical analyses. The consistency between splits permits placing considerable confidence in the determinations for those samples on which only one analysis was made.

The analytical determinations for the samples listed in tables 2 and 3 that were analyzed as two or three separate splits are plotted on a logarithmic scale in figure 1. For most samples, the logarithmic range (length of line) between plotted points is small and is about the same for low-grade and high-grade samples. For a few low-grade samples (054, 114, and 335), as might be reasonably expected, the logarithmic range appears large although the actual differences are small—indeed, the happenstantial inclusion or exclusion of perhaps a single particle of gold in a sample split might make the difference between splits.

Quantitative compatibility of samples with known geologic relations

The 57 samples used in this study were taken from streams draining three geologic types of groundapparently barren, weakly mineralized, and wellmineralized (fig. 2). The analytical results show a quantitative compatibility between the samples and their source areas. Table 1 lists samples taken from the Middle and West Forks of Cimarron Creek. These two drainage areas contain no known ore deposits and only a few fractures along which hydrothermal alteration was relatively weak. All 21 samples, which are concentrates from a total of about 600 pounds of sand and gravel, and which were analyzed in 42 splits, were reported to contain less than the limit of detection, usually <0.02 ppm gold. Calculating these results into the volumes of the field samples gives values not exceeding tenths or hundredths of a part per billion (ppb), or 0.000X to 0.0000X ppm, probably one to two orders of magnitude less than crustal abundance.

Table 2 lists samples from streams that drain areas classed as weakly mineralized, in which veins are not abundant and only a few prospects or small mines are known. Table 3 lists samples from streams draining well-mineralized areas that contain numerous veins and some very productive mines. Of the 36 samples shown on these two tables, all were reported to be gold-bearing except one, sample 354 (table 2), which is from a stream draining a weakly mineralized area. The calculated gold content of the sand and gravel from streams draining weakly mineralized areas (table 2) ranges from a few tenths of a ppb to several ppb, or 0.0003 to 0.009 ppm. The samples from streams draining well-mineralized areas have calculated cold values ranging from several ppb to a few hundred ppb, or 0.006 to 0.3 ppm. Gold was reported in the analyses of all samples and sample splits, and was observed in the field in the pan concentrates in 13 out of 15 samples that were found on analysis to contain a calculated gold content of at least 0.01 ppm. It is worth noting that 0.01 ppm of gold is equivalent to about 1 cent per cubic yard of sand and gravel and is below the limit of detection by common analytical methods. Obviously, a fairly consistent field recognition of such low gold values gives useful information on the spot.

CONCLUSIONS

The consistency of replicate analyses permits placing considerable confidence in the sampling and analytical methods used, and the quantitative compatibility with known geologic relations indicates that a few samples are adequate to distinguish between "barren" and mineralized areas and to determine the relative amount of gold in mineralized areas. In other areas where similar gold deposits might be present, the analytical results of this type of sampling should be useful to determine easily and quickly whether more intensive search for gold deposits might be justified.

REFERENCE CITED

Huffman, Claude, Jr., Mensik, J. D., and Riley, L. B., 1967, Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry: U.S. Geol. Survey Circ. 544, 6 p. FIGURES 1, 2 AND TABLES 1-3

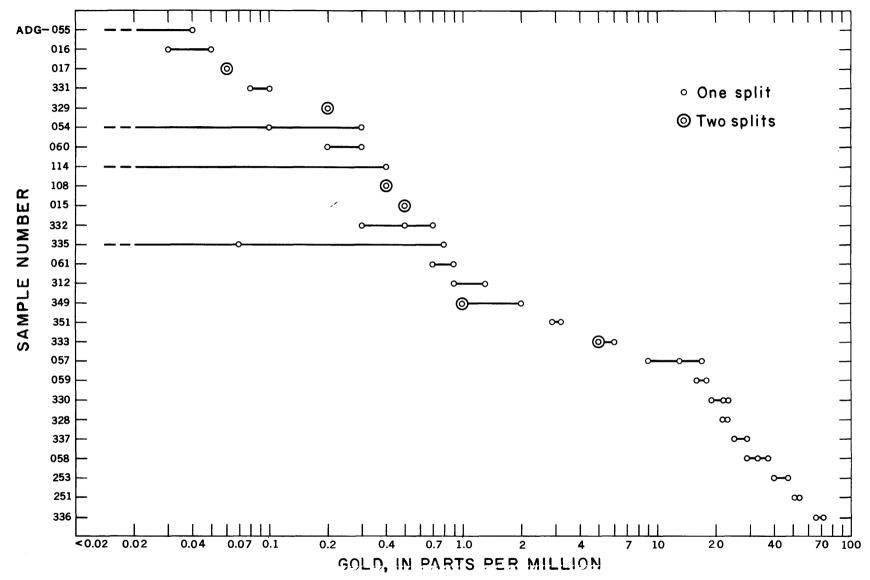


Figure 1.—Graph of the range, on a logarithmic scale, of analytical determinations for samples listed in tables 2 and 3 that were analyzed as two or three separate splits.

4

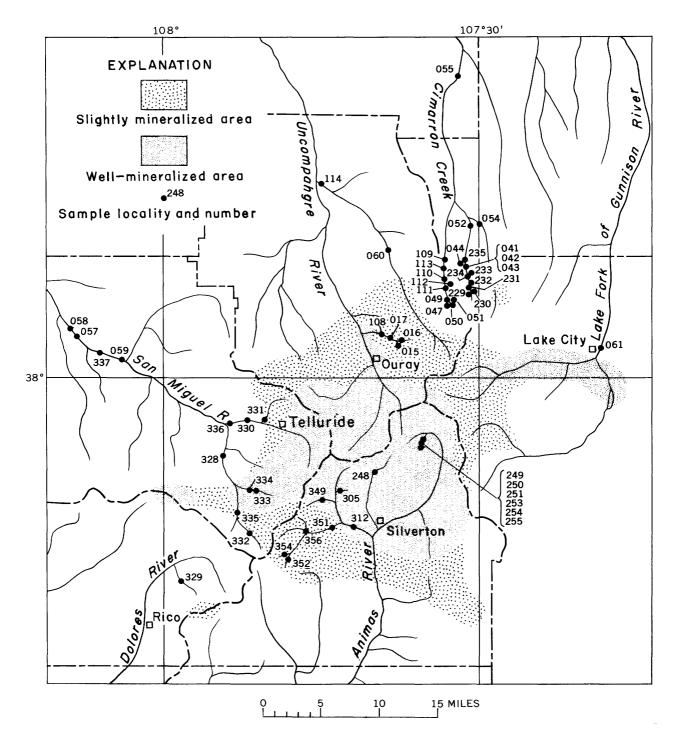


Figure 2.—Map showing sample localities and character of mineralized areas in San Juan Mountains, Colo.

Table 1.--Samples from streams

Sample <u>Field sample</u> No. Weight i		Concentrate	Concentrat	tion 📃	oncentrate a (weight in	grams)	
NO.	weight in	g1 ams	ratio			Split	
		West Fork Ci	marron Creek				
ADG-047	10,000	26.77	380	1	5	11.77	
049	7,000	18.35	380	10		8.35	
050	7,000	36.31	200	1		21.31	
051 109	7,000 40,000	24.27 775.8	280	12		12.27	
110	50,000	89.8	50 550	1:		15. 15.	
111	40,000	483.1	80	1:		15.	
112	3,500	40.2	90	1		15.	
113	20,000	219.4	90	1	5	15.	
	· · · · · · · · · · · · · · · · · · ·	Middle Fork C	imarron Creel	k			
041	7,000	142.7	50	1!	5	15	
042	7,000	96.8	70 1			15	
043	7,000	3.8	1,800		3.8		
044	7,000	33.68	200	15	5	10	
052	14,000	359.0	40	1		15	
229	40,000	278.7	140	1!		15	
230 231	3,500	28.90	120	19		13.90	
232	15,000 20,000	16.47 19.68	900 1,000	10		6.47 9.68	
233	3,500	19.04	180	10		9.04	
234	20,000	186.2	110	19		15	
235	3,500	64.1	60	15		15	
		Table 2Samples	from streams	draining wea	kly minerali	ized area	
					Concentrat	e analyze	
					(weight	in grams)	
ample No.	Sample locality	Field sample C Weight in g	Concentrate grams	Concentratio ratio	n Split 1	Split 2	
		Cimarron Creek	drainage are	a	····· ••• • • • • • • • • • • • • • • •		
DG-055	Cimarron Creek	14,000	266.9	50	15	15	
054	East Fort	17,000	270.1	60	15	15	
		Uncompahgre Rive	. ·				
		encompangie kive	er drainage a	rea			
060	Cow Creek	14,000	214.5	 60	15	15	
114	do	14,000 40,000	214.5 460.6	60 90	15	15	
114 015	do Dexter Creek	14,000 40,000 14,000	214.5 460.6 17.22	60 90 800	15 10	15 7.22	
114 015 016	do Dexter Creek do	14,000 40,000 14,000 7,000	214.5 460.6 17.22 53.5	60 90 800 130	15 10 15	15 7.22 15	
114 015	do Dexter Creek	14,000 40,000 14,000 7,000 9,000	214.5 460.6 17.22 53.5 59.7	60 90 800 130 150	15 10	15 7.22	
114 015 016 017	do Dexter Creek do do	14,000 40,000 14,000 7,000	214.5 460.6 17.22 53.5 59.7 265.3	60 90 800 130 150 150	15 10 15 15	15 7.22 15 15	
114 015 016 017 108	do Dexter Creek do do	14,000 40,000 14,000 7,000 9,000 40,000	214.5 460.6 17.22 53.5 59.7 265.3	60 90 800 130 150 150	15 10 15 15	15 7.22 15 15	
114 015 016 017	do Dexter Creek do do South Fork	14,000 40,000 14,000 7,000 9,000 40,000 Animas River d	214.5 460.6 17.22 53.5 59.7 265.3 Irainage area	60 90 800 130 150 150	15 10 15 15 15	15 7.22 15 15 15	
114 015 016 017 108 351	do Dexter Creek do do South Fork Mineral Creek	14,000 40,000 14,000 7,000 9,000 40,000 Animas River d 8,000	214.5 460.6 17.22 53.5 59.7 265.3 Irainage area 19.73	60 90 800 130 150 150 420	15 10 15 15 15 10	15 7.22 15 15	
114 015 016 017 108	do Dexter Creek do do South Fork	14,000 40,000 14,000 7,000 9,000 40,000 Animas River d 8,000 8,000	214.5 460.6 17.22 53.5 59.7 265.3 Irainage area	60 90 800 130 150 150	15 10 15 15 15	15 7.22 15 15 15 9.73	
114 015 016 017 108 351 352	do Dexter Creek do do South Fork Mineral Creek do	14,000 40,000 14,000 7,000 9,000 40,000 Animas River d 8,000	214.5 460.6 17.22 53.5 59.7 265.3 Irainage area 19.73 3.00	60 90 800 130 150 150 420 2,500	15 10 15 15 15 	15 7.22 15 15 15 	
114 015 016 017 108 351 352 354	South Fork Mineral Creek	14,000 40,000 14,000 9,000 40,000 Animas River d 8,000 8,000 8,000	214.5 460.6 17.22 53.5 59.7 265.3 Trainage area 19.73 3.00 124.9 14.28	60 90 800 130 150 150 2,500 60 550	15 10 15 15 15 	15 7.22 15 15 15 	
114 015 016 017 108 351 352 354	South Fork Mineral Creek	14,000 40,000 14,000 7,000 9,000 40,000 Animas River d 8,000 8,000 8,000 8,000	214.5 460.6 17.22 53.5 59.7 265.3 Trainage area 19.73 3.00 124.9 14.28	60 90 800 130 150 150 2,500 60 550	15 10 15 15 15 	15 7.22 15 15 15 	
114 015 016 017 108 351 352 354 356 331 332	do Dexter Creek do do South Fork Mineral Creek do do	14,000 40,000 14,000 7,000 9,000 40,000 Animas River d 8,000 8,000 8,000 8,000 8,000 8,000 San Miguel River	214.5 460.6 17.22 53.5 59.7 265.3 Trainage area 19.73 3.00 124.9 14.28	60 90 800 130 150 150 2,500 60 550 ea	15 10 15 15 15 15 10 3.00 15 14.28	15 7.22 15 15 15 15 15 15 	
114 015 016 017 108 351 352 354 356 331	do Dexter Creek do do do South Fork Mineral Creek do do Mill Creek	14,000 40,000 14,000 7,000 9,000 40,000 Animas River d 8,000 8,000 8,000 8,000 8,000 8,000 San Miguel River 16,000	214.5 460.6 17.22 53.5 59.7 265.3 Trainage area 19.73 3.00 124.9 14.28 or drainage area	60 90 800 130 150 150 2,500 60 550 ea 150	15 10 15 15 15 15 10 3.00 15 14.28	15 7.22 15 15 15 9.73 15 15	
114 015 016 017 108 351 352 354 356 331 332	do Dexter Creek do do do South Fork Mineral Creek do do Mill Creek Lake Fork	14,000 40,000 14,000 7,000 9,000 40,000 Animas River d 8,000 8,000 8,000 8,000 8,000 San Miguel River 16,000 25,000	214.5 460.6 17.22 53.5 59.7 265.3 Trainage area 19.73 3.00 124.9 14.28 drainage area 103.9 46.60 34.23	60 90 800 130 150 150 2,500 60 550 ea 150 550 480	15 10 15 15 15 15 10 3.00 15 14.28	15 7.22 15 15 15 15 15 15 	

 $\underline{l}\prime_{Gold}$ was recognized visually in the pan.

draining apparently barren areas

1	Concentrate		ld content in	i parts p	er milli	.on	
Sample	analyzed—Con. (weight in grams)	Cn1:4 1	Con	entrate			Field
No.	Split 3	Split 1	Split 2	Sp1i	t 3	Average	sample <u>(calculated</u>
		West Fo	ork Cimarron	Creek			Icalculated
ADG-047		<0.02	<0.02			<0.02	<0.0000X
049		<.02	<.02	-		<.02	<.0000X
050		<.02	<.02	-		<.02	<.0000X
051		<.02	<.02	-		<.02	<.0000X
109		<.02	<.02	-		<.02	<.000X
110		<.02	<.02	-		<.02	<.0000X
111		<.02	<.02	-		<.02	<.000X
112		<.02	<.02	-		<.02	<.000X
113		<.02	<.02	-		<.02	<.000X
		Middle	Fork Cimarro	n Creek			
041		<0.02	<0.02			<0.02	<0.000X
042		<.02	<.02	-		<.02	<.000X
043		<.05		-		<.05	<.0000X
044	8.68	<.02	<.02	< 0	.02	<.02	<.0000X
052		<.02	<.02	-		<.02	<.000X
229		<.02	<.02	-		<.02	<.000X
230		<.02	<.02	-		<.02	<.000X
231		<.02	<.04	_		<.03	<.0000X
232		<.02	<.02	-		<.02	<.0000X
233		<.02	<.02	_		<.02	<.000X
234		<.02	<.02	_		<.02	<.000X
235		<.02	<.02	-		<.02	<.000X
hat contain	n only a few veinsa	nd prospect	ts or small n	lines			
			Gold con	tent in p	oarts pe	r million	Field
Sample No. Concentrate (weight		yzedCon.	Concentrate				sample (calculated
				0 1 1 0	Split	1	
	Split			Split 2	Spiic	3 Average	
	Split :		Split 1 Creek draina		Spiit	3 Average	
			Creek draina <0.02	ge area 0.04		0.03	0.0006
ADG—055 054		Cimarron	Creek draina <0.02 .1	ge area 0.04 <.02	0.3	·····	0.0006
054	15	Cimarron	Creek draina <0.02 .1 e River drai	ge area 0.04 <.02 nage area	0.3	0.03	.002
054	15	Cimarron	Creek draina <0.02 .1 e River drai 0.3	ge area 0.04 <.02 nage area 0.2	0.3	0.03 .1	0.002
054	15	Cimarron	Creek draina <0.02 .1 e River drai 0.3 <.02	ge area 0.04 <.02 nage area 0.2 .4	0.3	0.03 .1	0.003
054 060 114 015	15	Cimarron	Creek draina <0.02 .1 e River drai 0.3 <.02 .5	ge area 0.04 <.02 nage area 0.2 .4 .5	0.3	0.03 .1 0.2 .1 .5	0.002
054 060 114 015 016	15	Cimarron	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05	ge area 0.04 <.02 nage area 0.2 .4 .5 .03	0.3	0.03 .1 0.2 .1 .5 .04	.002 0.003 .002 .0006 .0003
054 060 114 015 016 017	15	Cimarron	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05 .06	ge area 0.04 <.02 nage area 0.2 .4 .5 .03 .06	0.3	0.03 .1 0.2 .1 .5 .04 .06	.002 0.003 .002 .0006 .0003 .0004
054 060 114 015 016	15	Cimarron	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05	ge area 0.04 <.02 nage area 0.2 .4 .5 .03	0.3	0.03 .1 0.2 .1 .5 .04	.002 0.003 .002 .0006 .0003
054 060 114 015 016 017	15 15 15 	Cimarron Uncompahgr	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05 .06	ge area 0.04 <.02 nage area 0.2 .4 .5 .03 .06 .4	0.3 <0.02	0.03 .1 0.2 .1 .5 .04 .06	.002 0.003 .002 .0006 .0003 .0004
054 060 114 015 016 017 108	15 15 15 	Cimarron Uncompahgr	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05 .06 .4 iver drainag	ge area 0.04 <.02 nage area 0.2 .4 .5 .03 .06 .4 e area	0.3 <0.02	0.03 .1 0.2 .1 .5 .04 .06 .4	.002 0.003 .002 .0006 .0003 .0004 .003
054 060 114 015 016 017 108 351	15 15 15 	Cimarron Uncompahgr	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05 .06 .4 iver drainag 3.2	ge area 0.04 <.02 nage area 0.2 .4 .5 .03 .06 .4	0.3 <0.02	0.03 .1 0.2 .1 .5 .04 .06 .4 3.0	.002 0.003 .002 .0006 .0003 .0004 .003
054 060 114 015 016 017 108 351 352	15 15 15 	Cimarron Uncompahgr	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05 .06 .4 iver drainag 3.2 1.3	ge area 0.04 <.02 nage area 0.2 .4 .5 .03 .06 .4 e area 2.9	0.3 <0.02	0.03 .1 0.2 .1 .5 .04 .06 .4 3.0 1.3	.002 0.003 .002 .0006 .0003 .0004 .003
054 060 114 015 016 017 108 351	15 15 15 	Cimarron Uncompahgr	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05 .06 .4 iver drainag 3.2	ge area 0.04 <.02 nage area 0.2 .4 .5 .03 .06 .4 e area	0.3 <0.02	0.03 .1 0.2 .1 .5 .04 .06 .4 3.0	.002 0.003 .002 .0006 .0003 .0004 .003
054 060 114 015 016 017 108 351 352 354	15 15 15 	Cimarron Uncompahgr Animas R	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05 .06 .4 iver drainag 3.2 1.3 <.02	ge area 0.04 <.02 nage area 0.2 .4 .5 .03 .06 .4 e area 2.9 <.02	0.3 <0.02	0.03 .1 0.2 .1 .5 .04 .06 .4 3.0 1.3 <.02	.002 0.003 .002 .0006 .0003 .0004 .003
060 114 015 016 017 108 351 352 354 356	15 15 15 	Cimarron Uncompahgr Animas R	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05 .06 .4 iver drainag 3.2 1.3 <.02 5.1 River drain	ge area 0.04 <.02 nage area 0.2 .4 .5 .03 .06 .4 e area 2.9 <.02 age area	 	0.03 .1 0.2 .1 .5 .04 .06 .4 3.0 1.3 <.02 5.1	.002 0.003 .002 .0006 .0003 .0004 .003 10.007 .0005 <.000X .009
054 060 114 015 016 017 108 351 352 354 356 331	15 ' 15 	Cimarron Uncompahgr Animas R	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05 .06 .4 iver drainag 3.2 1.3 <.02 5.1 River drain	ge area 0.04 <.02 nage area 0.2 .4 .5 .03 .06 .4 e area 2.9 <.02 age area 0.1		0.03 .1 0.2 .1 .5 .04 .06 .4 .4 3.0 1.3 <.02 5.1 0.09	.002 0.003 .002 .0006 .0003 .0004 .003 10.007 .0005 <.000X .009
054 060 114 015 016 017 108 351 352 354 356	15 15	Cimarron Uncompahgr Animas R	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05 .06 .4 iver drainag 3.2 1.3 <.02 5.1 River drain	ge area 0.04 <.02 nage area 0.2 .4 .5 .03 .06 .4 e area 2.9 <.02 age area	 	0.03 .1 0.2 .1 .5 .04 .06 .4 3.0 1.3 <.02 5.1	.002 0.003 .002 .0006 .0003 .0004 .003 ¹ 0.007 .0005 <.000X .009
054 060 114 015 016 017 108 351 352 354 356 331 332	15 ' 15 16.60	Cimarron Uncompahgr Animas R San Miguel	Creek draina <0.02 .1 e River drai 0.3 <.02 .5 .05 .06 .4 iver drainag 3.2 1.3 <.02 5.1 River drain .08 .3	ge area 0.04 <.02 nage area 0.2 .4 .5 .03 .06 .4 e area 2.9 <.02 age area 0.1 .7 <.02	 	0.03 .1 0.2 .1 .5 .04 .06 .4 .4 3.0 1.3 <.02 5.1 0.09 .5	.002 0.003 .002 .0006 .0003 .0004 .003 10.007 .0005 <.000X .009 0.0006 .001

0 1 X					Concentrate analyzed tion (weight in grams		
Sample No.	Sample locality	Field sample Weight	Concentrate	Concentration ratio	Split 1	<u>in grams</u> Split	
	Lake F	ork of Gunniso	n River draina	ge area			
ADG-061	Lake Fork	5,000	25.79	190	12	13.79	
		Animas River	lrainage areas				
248	Cement Creek	8,000	11.49	700	11.49		
249	Placer Gulch	8,000	5.41	1,500	5.41		
250	do	8,000	4.46	1,800	4.46		
251	do	16,000	15.72	1,000	10	5.72	
253	do	8,000	15.73	500	10	5.73	
254	do	8,000	8.23	1,000	8.23		
255	do	8,000	1.35	6,000	1.35		
305	Brown Gulch, (North Fork Mineral Creek).	8,000	5.62	1,400	5.62		
312	Mineral Creek	3,500	21.21	170	12	9.21	
349	Middle Fork Mineral Creek.	16,000	51.4	320	15	15	
		San Miguel Riv	er drainage ar	ea			
057	San Miguel River, bench.	15,000	39.14	380	15	15	
059	do	15,000	65.0	240	15	15	
058	San Miguel River	15,000	65.5	320	15	15	
330	do	25,000	103.6	240	15	15	
336	do	8,000	32.02	240	15	17.02	
337	do	16,000	107.4	150	15	15	
328	South Fork, San Miguel River.	25,000	98.4	260	15	15	
333	Howard Fork, South Fork, San Miguel River.	16,000	43.22	380	15	15	
334	do	12,000	12.04	1,000	12.04		

 $\frac{1}{G}$ Gold was recognized visually in the pan.

that contain numerous veins and some very productive mines

	Gold content in parts per million					
centrate analyzedCon. (weight in grams)	Concentrate					
Split 3 Spl	it l	Split 2	Split 3	Average	sample (calculate	
Lake Fork of Gu				inued		
(.7	0.9		0.8	0.004	
Animas H	liver dr	ainage areas	Continued			
98	3			98	, 9.1	
41	L			41	$\frac{1}{1}$,03	
32				32	$\frac{1}{1}$.02	
52		54		53	$\frac{1}{1}$.05	
40		47		44	$\frac{1}{1}$.08	
45				45	$\frac{1}{1}$.05	
71				71 9.3	_,01 .007	
(9.3			9.3	.007	
	1.3	.9		1.1	.006	
15 2	2	1	1	1.3	.044	
San Migue	el River	drainage ar	eaContinue	1		
9.14	9	13	17	13	$\frac{1}{0.03}$	
1	0	16		17	$\frac{1}{1}$, 07	
18		16 39	47	43	$\frac{1}{2}$	
		19	22	21	. , . 09	
15 23		67		69	$\frac{1}{1}$,.3	
2		29		27	$\frac{1}{7}$.2	
2		22		22	$\frac{1}{1}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	
13.22	6	5	5	5	$\frac{1}{.01}$	
	го			5.8	.006	
10.00	5.8			5.8		

9

.