National Mapping Program

USGS Digital Cartographic Data Standards

Digital Elevation Models

Public Inquiries Office
U.S. Geological Survey
504 Custom House
555 Battery Street
San Francisco, California 94111

Geological Survey Circular 895-B **US GeoData**

USGS DIGITAL CARTOGRAPHIC DATA STANDARDS

USGS Circular 895-A: Overview and USGS Activities

- B: Digital Elevation Models
- C: Digital Line Graphs from 1:24,000-Scale Maps
- D: Digital Line Graphs from 1:2,000,000-Scale Maps
- E: Land Use and Land Cover Digital Data
- F: Geographic Names Information System
- G: Digital Line Graph Attribute Coding Standards

Questions regarding availability and ordering of US GeoData (all types of digital cartographic and geographic data produced and distributed by the U.S. Geological Survey) should be addressed to:

User Services Section
National Cartographic Information Center
U.S. Geological Survey
507 National Center
Reston, Virginia 22092

Technical questions and comments should be addressed to:

Chief, National Mapping Division U.S. Geological Survey 516 National Center Reston, Virginia 22092

Any use of trade names and trademarks in this publication is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

DIGITAL ELEVATION MODELS

By Atef A. Elassal and Vincent M. Caruso

USGS Digital Cartographic Data Standards

Edited by Robert B. McEwen, Richard E. Witmer, and Benjamin S. Ramey

Geological Survey Circular 895-B

United States Department of the Interior WILLIAM P. CLARK, *Secretary*

Geological Survey

Dallas L. Peck, Director

Library of Congress Cataloging in Publication Data

Main entry under title:

USGS digital caartographic data standards. Digital elevation models.

(U.S. Geological Survey circular; 895-B)

Bibliography: p.

Supt. of Docs. no.: 119.4/2:895-B

 Digital mapping—Standards.
 United States—Altitudes A. Geological Survey (U.S.) II. U.S.G.S. digital cartographic standards. Digital elevation models. III. Series: Geological Survey circular; 895-B.

GA139.U83

1983

526

83-600191

FOREWORD

In recent years, the disciplines of cartography and geography have undergone a rapid and striking reorientation as the techniques for digital collection and manipulation of data have evolved from fledgling laboratory procedures into dominant and driving forces that now pervade the disciplines. Digital techniques have provided a variety of new and powerful capabilities to collect, manipulate, analyze, and display spatial data. However, this evolution also has introduced a number of new and complex problems. One of the most pressing problems, and one which is receiving particular attention at present, is the issue of digital cartographic data standards.

The U.S. Geological Survey (USGS) has been actively developing digital cartographic and geographic techniques for over a decade and has taken significant steps to develop and define in-house standards governing the various types of digital cartographic data that are being collected and archived in a national digital cartographic data base. The in-house standards are expressed in the form of specifications documents that were prepared to govern collection of the data and in the form of user guides that were prepared for distribution with the data.

In an effort to fulfill lead agency requirements for promulgation of Federal standards in the earth sciences, the documents have been assembled with explanatory text into this USGS Circular consisting of separately bound chapters. This Circular describes some of the pertinent issues relating to digital cartographic data standards, documents the digital cartographic data standards currently in use within the USGS National Mapping Division, and details USGS efforts to define national digital cartographic data standards.

Chapter A is an overview in which the major issues involved in developing digital cartographic data standards are discussed and the activities of the USGS related to digital cartographic data production and standards development are described in detail. Succeeding chapters comprise the pertinent documents that establish USGS in-house standards for the various types of digital cartographic data currently produced by the National Mapping Division; that is, digital elevation data, digital planimetric data, digital land use and land cover data, and digital geographic names data.

This compendium of relevant material is prepared to serve as a benchmark and to assist ongoing efforts to establish acceptable standards and conventions for both Federal agencies and the public.

Sace I. Like a B Brothard

Dallas L. Peck Director,

U.S. Geological Survey
Department of the Interior

R. B. Southard Chief,

National Mapping Division U.S. Geological Survey

PREFACE

This Circular is the result of the efforts of numerous individuals who have contributed to the research, development, and preparation of various digital cartographic and geographic standards for the National Mapping Division of the U.S. Geological Survey. The individuals named as chapter authors represent both the originators of the various concepts as well as the writers who expanded and clarified these ideas. Their contributions, either to the concepts or the writing, are of such magnitude as to warrant crediting as authors.

Atef A. Elassal was largely responsible for the original data structures and computer file formats that are used for the digital line graphs and digital elevation models. The attribute coding scheme was first developed by members of the Digital Applications Team under the direction of Robert B. McEwen. The Geographic Names Information System was conceived and developed by Sam Stulberg and Roger L. Payne. The Geographic Information Retrieval and Analysis System was developed by Robin G. Fegeas, K. Eric Anderson, Stephen C. Guptill, Cheryl A. Hallam, and William B. Mitchell. The small-scale digital line graph data structure and attribute coding scheme was developed by Warren E. Schmidt and Michael A. Domaratz.

The Circular was compiled in part from various user guides and technical instructions of the National Mapping Division. These documents were originally prepared by several individuals; credit is acknowledged to G. Michael Callahan, A. Joan Szeide, William R. Allder, Vincent M. Caruso, Hugh W. Calkins, Donna Cedar-Southworth, and Cheryl A. Hallam. The compilation of the various guides, instructions, and other material into the Circular format was performed with major assistance by Clark H. Cramer, Eloise R. Byrd, and Cynthia L. Cunningham.

We acknowledge these substantial contributions that have led to this publication.

CONTENTS

	Page
Foreword Preface Abstract Introduction 7.5-minute digital elevation models Characteristics Data production 1:250,000-scale digital elevation models Characteristics Data production Geometry Accuracy Editing Data records Sample data records Sample applications	Page iii iv 1 2 2 2 4 4 5 5 9 9
Appendix A. DEM data elementslogical record type A	20
Appendix B. DEM data elementslogical record type B	23
Appendix C. DEM data elementslogical record type C	25
Appendix D. Sample quadrilateral coordinates	26
Appendix E. Codes for State plane coordinate zones Appendix F. Universal Transverse Mercator zone locations	27
and central meridians	29
projections	30
Appendix H. Digital terrain tapes	35
ILLUSTRATIONS	
ILLUSTRATIONS	
	Page
Figure 1. Structure of a 7.5-minute digital elevation model	3
2. Structure of a 1:250,000-scale digital elevation	
<pre>model 3. Computation of first data point in a DEM west of</pre>	4
the central meridian	6
 Computation of first data point in a DEM east of the central meridian	7
5. Geometry and nomenclature of the DEM file	8
6. Pre-eruption isometric plot of Mount St. Helens	17
7. Post-eruption isometric plot of Mount St. Helens	17
DEM	18

TABLES

			Page
Table	1.	Sample DEM type A logical recordsMount St. Helens NW, Washington, quadrangle (7.5-minute)	10
	2.	Sample DEM type B logical recordsMount St. Helens NW, Washington, quadrangle (7.5-minute)	12
	3.	Sample DEM type C logical recordsMount St. Helens NW, Washington, quadrangle (7.5-minute)	13
	4.	Sample DEM type A logical recordsReno, Nevada- California, quadrangle (west half) (1:250,000- scale)	14
	5.		16

USGS Digital Cartographic Data Standards

DIGITAL ELEVATION MODELS

By Atef A. Elassal and Vincent M. Caruso

Abstract

The discipline of cartography is undergoing a number of profound changes that center on the emerging influence of digital manipulation and analysis of data for the preparation of cartographic materials and for use in geographic information systems. Operational requirements have led to the development by the USGS National Mapping Division of several documents that establish in-house digital cartographic standards.

In an effort to fulfill lead agency requirements for promulgation of Federal standards in the earth sciences, the documents have been edited and assembled with explanatory text into а USGS This Circular describes some Circular. the pertinent issues relative to digital cartographic data standards. documents the digital cartographic data standards currently in use within the USGS, and details the efforts of the USGS related to the definition of national digital cartographic data standards. consists of several chapters; the first is a general overview, and each succeeding chapter is made up from documents that establish in-house standards for one of the various types of digital cartographic data currently produced. This chapter, 895-B, describes the digital elevation model data produced distributed by USGS and similar data at a smaller scale produced by the Defense Mapping Agency and distributed by USGS.

INTRODUCTION

The U.S. Geological Survey (USGS) distributes digital cartographic and geographic data as part of the National Mapping Program. One of the several types of data distributed is digital elevation data, which consists of arrays of elevations, usually at regularly spaced intervals, for a number of ground positions.

This document describes two distinct digital elevation data products that are distributed by the USGS in the standard elevation model (DEM) digital (1) DEM's produced by the USGS format: that correspond in coverage to standard 1:24,000-scale 7.5- x 7.5-minute quad-This type of digital elevation rangles. data is referred to in this document as 7.5-minute DEM data. (2) DEM's produced by the Defense Mapping Agency (DMA) that correspond in coverage to 1° x 1° blocks (one half of standard 1:250,000-scale 1° x 2° quadrangles). This type of digital elevation data is referred to in this document as 1:250,000-scale DEM data.

The 7.5-minute DEM data files and the 1:250,000-scale DEM data files are identical in logical data structure but differ in sampling interval, geographic reference system, areas covered, and accuracy of data. USGS 7.5-minute DEM data are available for selected quadrangles in the United States; DMA 1:250,000-scale DEM data are available for most of the United States.

The USGS also distributes another of digital elevation data--1:250,000-scale terrain/planar digital data (digital terrain tapes). Digital terrain tapes are a product of the Defense Mapping Agency and correspond in coverage to one half of a standard 1:250,000-scale 1° x 2° quadrangle. Digital terrain tapes are distributed, as produced by the DMA, and do not conform to the standard DEM tape format. Information on digital terrain tapes is provided in Appendix H.

7.5 MINUTE DIGITAL ELEVATION MODELS

CHARACTERISTICS

A 7.5-minute DEM has the following characteristics:

- The data consist of a regular array of elevations referenced in the Universal Transverse Mercator (UTM) coordinate system. Elevations randomly located in an irregular array also are allowed in the file structure, but only regular arrays have been produced to date.
- The unit of coverage is the 7.5minute quadrangle. Overedge coverage is not provided.
- The data are ordered from south to north in profiles that are ordered from west to east.
- The data are stored as profiles in which the spacing of the elevations along and between each profile is 30 m.
- The profiles do not always have the same number of elevations due to the variable angle between true north and grid north of the UTM coordinate system.

The generation of profiles for 7.5-minute DEM's is accomplished using a UTM cartesian coordinate system as a base. The profiles are clipped to the straight line intercept between the four geographic corners of the quadrangle--an

approximation of the geographic map boundary (neatline). The resulting area of coverage for the DEM is a quadrilateral, the opposite sides of which are not parallel. (See Appendix D for an example of UTM coordinates describing a 7.5-minute quadrilateral figure.)

The UTM coordinates of the DEM's four corners (bounds) are listed in the type A record, data element 10, and the UTM coordinates of the starting points of each profile are listed in the type B record (profiles), data element 3 (see pages 21 and 23). These coordinates describe the shape of the quadrilateral and the variable x,y starting position of each profile. Because of the variable orientation of the quadrilateral, relation to the UTM coordinate system, profiles intersect the east and west neatlines as well as the north and south neatlines. The intersections result in a regular stair-stepped arrangement of the 30-m nodes just inside the neatline.

DATA PRODUCTION

The 7.5-minute DEM data are produced in 7.5- x 7.5-minute blocks either from map contour overlays that have been digitized or from automated or manual scanning of photographs usually taken at an average height of 40,000 ft. (1:80,000-scale). The data are processed to produce a DEM with a 30-m sampling interval. The structure of a 7.5-minute DEM data file is shown in figure 1. (See pages 10 - 13 for sample data records.)

The USGS uses three systems to collect the digital elevation data for production of 7.5-minute DEM's: (1) the Gestalt Photo Mapper II (GPM2); (2) manual profiling from stereomodels; and (3) the Digital Cartographic Software System (DCASS).

The GPM2 is a highly automated photogrammetric system designed to produce orthophotos, digital terrain data, and contours. An electronic image correlation component of the GPM2 measures the parallax of 2,444 points within each 9- x 8-mm area of a photogrammetric stereomodel. Of these 2,444 correlated points, subunits of 576, 1,024, or 1,600 points are collected for inclusion in the

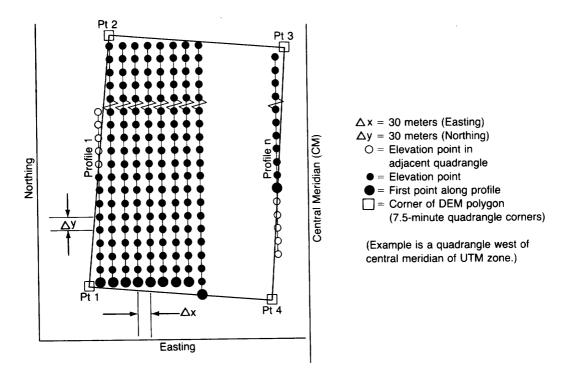


Figure 1.--Structure of a 7.5-minute digital elevation model.

elevation model. These subunits are called patches, and the patch size is selected to accommodate various terrain conditions. The horizontal (x and y) spacing of the elevation points within each patch is approximately 182 micrometers at photo scale (equivalent to a ground distance of approximately 47 ft. when using photographs at 1:80,000 scale). Each of the two stereomodels used to cover a standard 7.5-minute quadrangle contains over 500,000 correlated points; these are regridded to form a DEM in the standard format.

The manual profiling systems interfaced with stereoplotters, electronic digital profile recording modules, for scanning of stereomodels in the photo y direction. High-altitude aerial photographs are used as source material. scan speed and slot size (stepover interval) can be selected by the operator to accommodate steepness in topographic slope. The most commonly used slot size is 4-mm, which results in elevation profiles spaced approximately 90-m apart.

Elevations are normally recorded every 30-m along each profile. The profiled elevation data are reformatted regridded to a regular 30-m UTM spacing, written in standard DEM format, tested for vertical accuracy before placement in the National Cartographic Data Base (NDCDB). Digital profile data are collected in this manner as companion products with the production of orthophotos.

The DCASS forms a DEM from digitally encoded vector contour data. Stereoplotters, equipped with three-axis digital recording modules, are used to collect vector contour data while the instruments are being used for photogramstereocompilation of 1:24,000metric scale quadrangle maps. During the acquisition phase, the contours are assigned (attributes). elevation values vector contour data are processed into profile lines and the elevation matrix at a 30-m spacing is formed using a bilinear interpolation between the intersections of the lines with the contour vectors.

1:250,000-SCALE DIGITAL ELEVATION MODELS

CHARACTERISTICS

A 1:250,000-scale DEM in the United States (except Alaska) has the following characteristics:

- The data consist of a regular array of elevations cast on the geographic (latitude/longitude) coordinate system.
- The unit of coverage is a 1° x 1° block representing one-half of a 1° x 2° 1:250,000-scale map. The unit of coverage includes profiles coincident with the neatlines of the map.
- The data are ordered as profiles ascending northward. The origin is at the southwest corner of the map.
- The data are stored as profiles in which the spacing of the elevations along and between each profile is 3 arc-seconds.
- The data comprise an array having 1,201 profiles with 1,201 elevations per profile.

For the State of Alaska, the spacing of elevations along each profile is 3 arc-seconds (1,201 elevations per profile), and the normal spacing between profiles varies from 6 arc-seconds (601 profiles per DEM) in the south to 12 arc-seconds (151 profiles per DEM) on the north slope of the State. Some Alaska sheets have a 4-arc-second spacing of the profiles.

DATA PRODUCTION

The 1:250,000-scale DEM data are produced by interpolating elevations at intervals of 3 arc-seconds from contours, ridgelines, and drains digitized from 1:250,000-scale topographic maps. seconds of arc represents approximately 90 m in the north-south axis and a variable dimension (approximately 90 m at the equator to 60 m at 50° latitude) in the east-west axis due to convergence of the The area of each map is meridians. divided into an east half and a west half to accommodate the large volume of data required to cover the 1° x 2° topographic The structure of a 1:250,000map area. scale DEM data file is shown in figure 2. (See pages 14 - 16 for sample data records.)

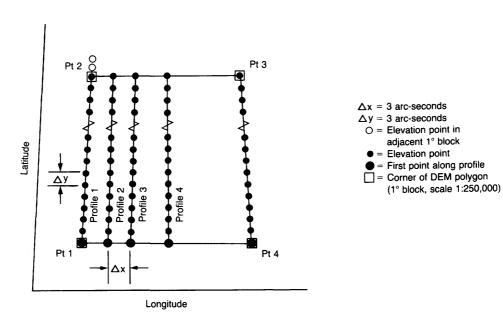


Figure 2.--Structure of a 1:250,000-scale digital elevation model.

GEOMETRY

Profiles are the basic building blocks of DEM's and are defined as one-dimensional patches, that is, arrays of dimension m rows x n columns, where m is the length of the profile (variable length for 7.5-minute DEM's or fixed length for 1:250,000-scale DEM's) and n is set to 1.

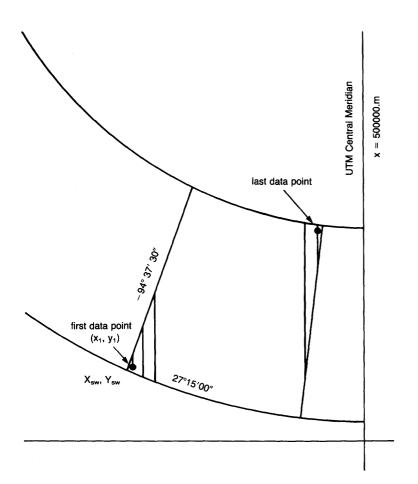
Figure 3 provides an example of the computation for the first data point inside the quadrilateral representing a 7.5-minute DEM west of the UTM central meridian. Figure 4 provides a similar example for a quadrangle east of the central meridian.

Figure 5 illustrates the internal relationship of elevations ordered as profiles in which the spacing of the elevations along each profile is Δy and the spacing between profiles is Δx . Figure 5 also relates the internal array structure to actual ground coordinates $(x_{Gp},\ Y_{Gp}),$ based on an origin of the DEM at the lower left corner $(x_{Go},\ Y_{GO}),$ and a rotation angle, if any (the rotation angle of 7.5-minute DEM's is normally set to zero).

ACCURACY

The accuracy of digital elevation models is partially dependent on the scale of the source materials from which the data are obtained. For example, the accuracy of 1:250,000-scale DEM's is consistent with the accuracy of the contours (50 ft. in flat terrain, 100 ft. in moderate terrain, and 200 ft. in steep terrain) on the 1:250,000-scale topographic maps used to produce the data. The accuracy of 7.5-minute DEM's depends on the data source (either aerial photographs, or contours on 7.5-minute maps of the USGS Topographic Map Series).

Vertical accuracy of 7.5-minute DEM's derived from aerial photographs is highly dependent on the original resolution and contrast of the source photographs, as well as the presence of natural or manmade features and an abundance of survey control for constraining the stereomodels. Vertical accuracy of 7.5-minute DEM's derived from contours is consistent


with the accuracy of the contours on the source map. The 7.5-minute DEM's are stored in one of the two separate DEM data bases in the NDCDB, depending on tested vertical accuracy. Accuracy is either less than 7-m vertical RMSE, or 7- to 15-m vertical RMSE. The 7-m RMSE was determined to be a reasonable standard for DEM's derived from highaltitude aerial photographs taken at 40,000 ft. (1:80,000-scale), attainable under a variety of terrain conditions and instrument constraints.

The methods used for determining vertical accuracy of 7.5-minute DEM's differ with the collection method. For DEM's collected with the GPM2, a weighted root mean square error (RMSE) value is derived from the relative elevation differences between patch joins and the relative elevation difference between coincident points in the overlay area of the two stereomodels covering a quadrangle. The RMSE of the elevation data derived from the manual profiling and the DCASS systems, however, is computed known ground vertical comparing control elevations (for a minimum of 10 discrete image points) to linearly interpolated DEM elevation points.

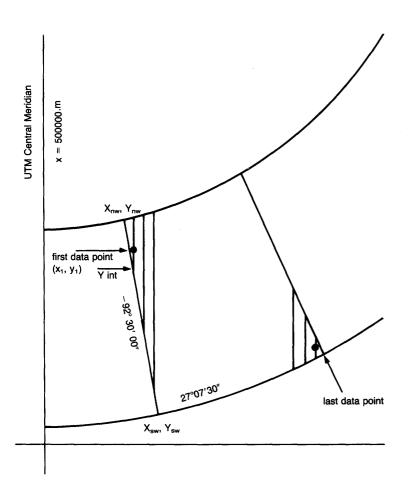
EDITING

All DEM data are classified into one of three levels depending on editing, enhancements, and spatial structuring:

- Level 1 Raw elevation data sets in a standardized format. Only gross blunders in data capture have been eliminated.
- Level 2 Elevation data sets that have been smoothed for consistency and edited to remove random errors.
- Level 3 Elevation data sets that have been edited and modified to insure positional consistency with planimetric data categories such as hydrography and transportation.

Example computation of UTM coordinates (x_1,y_1) of the first data point in a 7.5-minute DBM west of the central meridian.

The southwest corner of the 7.5-minute DEM used in this example is at latitude 27°15'00", longitude -94°37'30" (x_{sw} = 339117.754m, y_{sw} = 3015002.066m).


Compute x coordinate (x_1) of the first profile. The first profile is offset to the next integer multiple of 30m east of the soutwest corner.

X	= <u>339117.754</u>	m
30m	30m	
	= 11303.9 (round	up)
	= 11304	
x,	= 11304 (30m)	
•	= 339120m	

Compute y coordinate (y₁) of the first data point on the first profile. The first data point is offset to the next integer multiple of 30m north of the southwest corner.

У	= <u>3015002.066m</u>
30m	30m
	= 100500.07 (round up
	= 100501
y ₁	= 100501 (30m)
	= 3015030m

Figure 3.--Computation of first data point in a DEM west of the central meridian.

Example computation of UTM coordinates (x_1,y_1) of the first data point in a 7.5-minute DEM east of the central meridian.

The southwest corner of the 7.5-minute DBM used in this example is at latitude $27^{\circ}07^{\circ}30^{\circ}$, longitude $-92^{\circ}30^{\circ}00^{\circ}$ ($x_{sw}=549553.918m$, $y_{sw}=3000211.052m$). The northwest corner is at latitude $27^{\circ}15^{\circ}00^{\circ}$, longitude $-92^{\circ}30^{\circ}00^{\circ}$ ($x_{nw}=549498.713m$, $y_{nw}=3014056.068m$).

Compute x coordinate (\mathbf{x}_1) of the first profile. The first profile is offset to the next integer multiple of 30m east of the northwest corner.

```
x<sub>nw</sub> = <u>549498.713m</u>
30m
30m
30m
= 18316.6 (round up)
= 18317
x<sub>1</sub> = 18317 (30m)
= 549510m
```

Compute y coordinate (y_1) of the first data point on the first profile. The first data point is offset to the next integer multiple of 30m north of the intercept (y_{int}) of the first profile with the western longitude line of the 7.5-minute quadrangle.

(a) Use the slope intercept formula y=mx+b to compute y_{int}.

```
\begin{array}{c} m = (y_{nw}^{} - y_{sw}^{})/(x_{nw}^{} - x_{sw}^{}) \\ = 13845.016/-55.205 \\ b = y_{sw}^{} - mx_{sw}^{} \\ = 3000211.052m - [(-250.79)(549553.919)] \\ = 140822838.147m \\ \\ y_{int}^{} = b + mx_{1}^{} \\ = 140822838.147m + [(-250.79)(549510m)] \\ = 3011225.247m \\ \\ (b) \ \ Compute \ y_{1}^{} \\ y_{int}^{} = \frac{3011225.247m}{30m} \\ = 100374.175 \ (round \ up) \\ = 100375 \\ y_{1}^{} = 100375 \ (30m) \\ = 3011250 \\ \end{array}
```

Figure 4.--Computation of first data point in a DEM east of the central meridian.

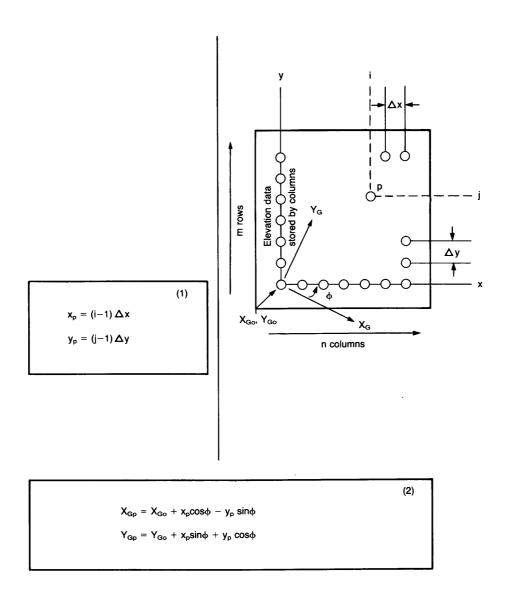


Figure 5.--Geometry and nomenclature of the DEM file.

Virtually all of the 7.5-minute DEM's produced to date are considered to be level 1. Only the limited number of 7.5-minute DEM's generated by interpolation from digital contours are presently considered to be level 2. The USGS does not currently produce level 3 DEM data.

All 1:250,000-scale DEM's have been classified as level 3, although the primary source materials, 1:250,000-scale topographic maps, are more generalized than the 7.5-minute DEM sources. The level 3 designation reflects inclusion of planimetric features as constraints in the DMA gridding process and also reflects editing, where needed, to insure agreement with the 1:250,000-scale source materials.

DATA RECORDS

A DEM file is organized into a series of three logical records formatted as shown in Appendixes A-C. Appendixes D-G consist of code definitions that are needed to interpret various data elements in the three records. The type A record contains information defining the general characteristics of the DEM, including descriptive header information relating to the DEM's name, boundaries, scale, units of measurement, minimum and maximum data values, number of type B records, and projection parameters. There is only one type A record for each DEM file, and it appears before any other record. The type B record contains elevation data and associated header information. All type B records of the DEM files currently being distributed are made up of data from one-dimensional bands called profiles. Therefore, the number of complete profiles covering the DEM area is synonymous with the number of type B records in the DEM. The type C record contains statistics on the accuracy of the data in the file.

SAMPLE DATA RECORDS

Following are sample sets of A, B, and C records, corresponding to a typical 7.5-minute DEM (tables 1-3), and sample sets of A and B records for a typical 1:250,000-scale DEM (tables 4, 5). Included in these samples are literal ASCII listings of records directly from DEM distribution tapes. Following literal listings are tabular explanations of each element in the type A, B, and C records. The tabular explanations may be used as direct references between the literal listings and the logical record type formats shown in Appendixes A-C. Appendixes D-G consist of code definitions that are needed to interpret various data elements in the three records.

SAMPLE APPLICATIONS

The DEM files may be used in the generation of graphics such as isometric projections displaying slope, direction of slope, and terrain profiles between designated points. They may also be used in combination with other data types, for example, with stream locations weather data to plan forest fire control or with remote sensing data to classify vegetation. Many nongraphic applications such as modeling terrain gravity data for use in locating energy resources, determining the volume of proposed reservoirs, calculating the amount of material removed during strip mining, and determining landslide probability have also been developed. Figures 6 and 7 show two graphic applications of DEM's.

Table 1.--Sample DEM Type A Logical Record--Mt. St. Helens NW, Washington, Quadrangle (7.5-minute)

MT ST HELENS NW.WA. SPIRIT LAKE FH: 20000 MSH-M80 3-176 09/06/80 B-8 N=2.00x1.00 s=2.00x1.00MM 9 PANEL FILES 30M x 30M INTERVAL 1 10 0.0 0.0 0.0 0.0 0.0 1 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 2 4 0.557945011821133D+06 0.510799133901730D+07 0.557813813954232D+06 0.512188002753253D+07 0.567449420312715D+06 0.512197873 846927D+07 0.567602487473599D+06 0.510809006713248D+07 0.679000000000D+03 0.2543000000000D+04 0.0 0.300000E+020.300000+E020.100000E+01 1 327

Data Element	Content	Content Explanation			
1	Mt. St. Helens NW, WA etc.	Quadrangle name field (144 characters) and other descriptive information relating to the digital production process.			
2	1	DEM level code.			
3	1	Pattern code indicating either a regular or random elevation pattern; l indicates a regular pattern.			
4	1	Planimetric reference system code; l indicates UTM coordinate system.			
5	10	Code defining the zone in the ground planimetric reference system.			
6	0.0 (15 sets of 0.0)	Map projection parameters; all 15 fields are set to zero for the UTM coordinate system and should be ignored.			
7	2	Units code; 2 represents meters as the unit of measure for ground planimetric coordinates throughout the file.			
8	2	Units code; 2 represents meters as the unit of measure for elevation coordinates throughout the file.			
9	4	Number (n) of sides in the polygon which defines the coverage of the DEM file (usually equal to 4).			

1

Table 1.--Sample DEM Type A Logical Record--Mt. St. Helens NW,
Washington, Quadrangle (7.5-minute)--continued

Data Element	Content	Explanation
10	0.5579450D+06	A 4,2 array containing the ground coordinates of the four corners of the DEM. Translation to decimal format yields: 557945.0, 5107991.3; 557813.8, 5121880.0; 567449.4, 5121978.7; 567602.5 5108090.1.
11	0.679D+03 0.2543D+04	Minimum and maximum elevations for the DEM.
12	0.0	Counterclockwise angle (in radians) from the primary axis of ground planimetric reference to the primary axis of the DEM local reference system.
13	1	Accuracy code; 1 indicates that a record of accuracy exists and is contained in record type C.
14	0.3000000E+02 0.3000000E+02 0.1000000E+01	A Three-element array containing DEM spatial resolution (x,y,z) ; usually set to 30, 30, 1.
15	1, 327	A Two-element array containing the number of rows and columns of profiles in the DEM. The row value m is usually set to 1 as an indication that the arrays are actually one dimensional profiles. The column value n equaling 327 indicates that the DEM file consists of a total of 327 profiles.

Table 2.--Sample DEM Type B Logical Record--Mt. St. Helens NW, Washington, Quadrangle (7.5-minute)

Data Element	Content	Explanation
1	1, 2	Rows and column identification number of the profile contained in this record; 1, 2 represents row 1, column 2, in the DEM data set.
2	128, 1	Number of rows (elevations) and columns in this profile; 128, 1 indicates there are 128 elevations and 1 column in this profile.
3	0.557850D+06 0.5118060D+07	Translated to the decimal, 557850.0 and 5118060.0 are the ground planimetric coordinates (UTM) of the first elevation in the profile.
4	0.0	Elevation of local datum for the profile.
5	0.890D+03 0.1205D+04	Minimum and maximum elevations for the profile.
6	1202 1204	An array of m x n elevations (m=128, n=1) for the profile expressed in units of measure of meters (record A, element 8, indicates meters as units of measure).

Table 3.--Sample DEM Type C Logical Record--Mt. St. Helens NW, Washington, Quadrangle (7.5-minute)

Data Element	Content	Explanation
1	0	Availability code; elements 1 through 3 relate to absolute accuracy and do not exist for this file.
2	Three "0"s	See above.
3	0	See above.
4	1	Availability code; l indicates that statistics are available in the next element.
5	0, 0, 7	RMSE of DEM data relative to datum (in x, y, and z); the first two zeros indicate that the x and y relative statistics are not available. The value 7 indicates that the DEM met relative vertical (z) accuracy criteria for the $7-m$ data base.
6	0	Sample size code; 0 indicates that the relative statistic of element 5 is based on an estimated value.

Table 4.--Sample DEM Type A Logical Records--Reno, Nevada-California, Quadrangle (West Half) (1:250,000-Scale)

NJ11-01E	W 3	1	0	0	0.0		0.0		0.0	0.0		0.0
	· ·	0.0	-			0.0		0.0	0.0	0.0		
0.0			0.	0			0.0	0.0		0.0	3	2
4 -0.428	34000000	00000D	+06	0.14	0400000	000000D+06	-0.4284000000	000000D+06 0.14		-0.42480000000000D+06	0.14	4000000
000000D+06	-0.42	480000	000000	0+q0	6 0.1	40400000000	0.99 0 +0000D	990000000000000000p+	03 0.26410000000	0000D+04 0.0		0
0.30000DE+	1010.300	000E+0	10.100	0000E	+01	1 1201						

Data Element	Content	Explanation
1	NJ11-01E W	Quadrangle name field (144 characters); NJ11-01E W is the designation for the DEM covering the west half of the Reno, Nevada, sheet.
2	3	DEM level code; 3 reflects processing by DMA which includes registration to planimetric features appearing on the source 1:250,000-scale topographic map.
3	1	Pattern code; 1 indicates a regular elevation pattern.
4	0	Planimetric reference system code; 0 indicates geographic coordinate system.
5	0	Zone code; there are no zones in the geographic system. Therefore, the zone code is set to zero.
6	0.0 (15 sets of 0.0)	Map projection parameters; all 15 fields are set to zero for the geographic system and should be ignored.
7	3	Units code; 3 represents arc-seconds as the unit of measure for ground planimetric coordinates throughout the file.
8 ,	2	Units code; 2 represents meters as the unit of measure for elevation coordinates throughout the file.
9	4	Number (n) of sides in the polygon which defines the coverage of the DEM file (usually equal to 4).

Table 4.--Sample DEM Type A Logical Records--Reno, Nevada-California,

Quadrangle (West Half) (1:250,000-Scale)--continued

Data Element	Content	Explanation
10	-04284D+06, 0.1404D+06 	A 4,2 array containing the ground coordinates of the four corners of the DEM. In this case translation from arc-seconds to degrees, minutes, and seconds yields: -119 00 00, 39 00 00; -119 00 00, 40 00 00; -118 00 00, 40 00 00; -118 00 00, 39 00 00.
11	0.9990D+03 0.2641D+04	Minimum and maximum elevations for the DEM.
12	0.0	Counterclockwise angle from the primary axis of ground planimetric reference to the primary axis of the DEM local reference system.
13	0	Accuracy code; 0 indicates that a record of accuracy does not exist and that no record type C will follow.
14	0.3000000E+01 0.3000000E+01 0.1000000E+01	A Three-element array containing DEM spatial resolution (x,y,z) ; usually set to 3, 3, 1.
15	1, 1201	A Two-element array containing the number of rows and columns of profiles in the DEM. The row value m is usually set to 1 as an indication that the arrays are actually one-dimensional profiles. The column value n set to 1,201 indicates that the DEM file consists of a total of 1,201 profiles.

Table 5.--Sample DEM Type B Logical Record--Reno, Nevada-California, Quadrangle (West Half) (1:250,000-Scale)

(As per 7.5-minute DEM's, element 6 contains elevations for the DMA DEM.

This field always contains 1201 elements per B.1 record.)

1422 1417 1412 1405 1401 1396 1391 1392 1394 1397 1398 1397 1398 1397 1398 1397 1398 1397 1398 1397 1398 1397 1398 1397 1398 1397 1398 1397 1398 1397 1398 1397 1398 1397 1398 1397 1398 1397 1379 1371 1371 1371 1371 1372 1370 1373 1373 1372 1376 1378 1381

Data Element	Content	Explanation
1	1, 1	Row and column identification number of the profile contained in this record; 1, 1 represents row 1, column 1, in the DEM data set.
2	1201, 1	Number of rows (elevations) and columns in this profile; 1201, 1 indicates there are 1201 elevations and 1 column in this profile.
3	-0.4284D+06 0.1404D+06	Translated to the decimal, -428400.0 and 1404000.0 are the ground planimetric coordinates (arc seconds) of the first elevation in the profile, thus -119 and 39 degrees.
4	0.0	Elevation of local datum for the profile.
5	0.1212D+04 0.1772D+04	Minimum and maximum elevations for the profile.
6	1538 1539 1378 1381	An array of m x n elevations (m=1201, n=1) for the profile expressed in units of measure of meters (record A, element 8, indicates meters as units of measure).

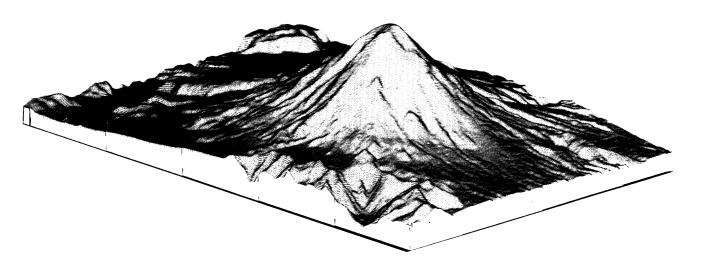


Figure 6.--Pre-eruption isometric plot of Mount St. Helens DEM. Generated from data obtained from July 15, 1979, photographs. View is from the northeast at a 45° altitude angle; vertical exaggeration is 3:1.

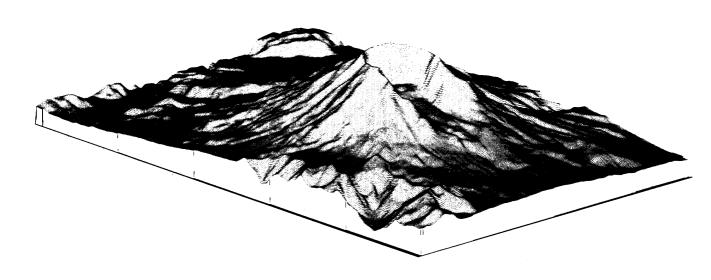


Figure 7.--Post-eruption isometric plot of Mount St. Helens DEM. Generated from data obtained from September 6, 1980, photographs. View is from the northeast at a 45° altitude angle; vertical exaggeration is 3:1.

APPENDIX A.--Digital Elevation Model Data Elements Logical Record Type A

Data		Type	Physical	Record Format	_	
Element	Contents	(FORTRAN Notation)	ASCII Format	BINARY Format (Bytes	Comment 3)	
1	File Name	ALPHA	A144	144		
2	DEM Level Code	INTEGER*2	16	2	Code l=DEM-1 2=DEM-2 3=DEM-3 Normally set to Code 1 for 1:24,000 scale DEM's and Code 3 for 1:250,000-scale DEM's.	
	Code defining elevation pattern (regular or random)	INTEGER*2	16	2	Code l=regular 2=random Normally set to Code 1.	
	Code defining ground planimetric reference system	INTEGER*2	16	2	Code 0,=Geographic 1,=UTM 2,=State Plane For codes 3-20, see Appendix G. Normally set to code 0 representing the geographic (latitude/longitude) system for 1:250,000-scale DEM's. Normally set to code 1 representing the UTM standard coordinate system for 1:24,000-scale DEM's.	
	Code defining zone in ground planimetric reference system	INTEGER*2	16	2	Codes for State plane and UTM coordinate zones are given in Appendixes E and F for 1:24,000-scale DEM's. Code is set to zero for 1:250,000-scale DEM's.	

APPENDIX A.--Digital Elevation Model Data Elements Logical Record Type A--continued

Data		Type	Physical	Record Format		
Element	Contents	(FORTRAN Notation)	ASCII Format	BINARY Format (Bytes	Comment	
6	Map projection parameters (see Appendix G)	REAL*8	15D24.15	15 x 8 = 120	Definition of parameters for UTM projection is given in Appendix G. All 15 fields of this element are set to zero and should be ignored when geographic, UTM, or State plane coordinates are coded in data element 4.	
7	Code defining unit of measure for ground planimetric coordinates throughout the file	INTEGER*2	16	2	Code 0,=Radians 1,=feet 2,=meters 3,=arc-seconds Normally set to Code 2 for 1:24,000-scale DEM's. Normally set to Code 3 for 1:250,000-scale DEM's.	
8	Code defining unit of measure for elevation coordinates throughout the file	INTEGER*2	16	. 2	Code 1,=feet 2,=meters Normally code 2 for meters for 1:24,000-scale DEM's and 1:250,000-scale DEM's.	
9	Number (n) of sides in the polygon which defines the coverage of the DEM file	INTEGER*2	16	2	Usually n=4.	
10	A 4,2 array containing the ground coordinates of the four corners for the DEM	REAL*8	4(2D24.15)	64	The coordinates of the quadrangle corners are ordered in a clockwise direction beginning with the southwest corner. The array is stored row-wise as pairs of eastings and northings.	

APPENDIX A.--Digital Elevation Model Data Elements Logical Record Type A--continued

Data		Туре	Physical Record Format		-	
Element	t Contents	(FORTRAN Notation)	ASCII Format	BINARY Format (Bytes	Comment)	
11	A two-element array containing minimum and maximum elevations for the DEM	REAL*8	2D24.15	16	The values are in the unit of measure given by data element 8 in this record.	
12	Counterclockwise angle (in radians) from the primary axis of ground planimetric reference to the primary axis of the DEM local reference system	REAL*8	D24.15	. 8	See figure 5. Normally set to zero to align with the coordinate system specified in element 4.	
13	Accuracy code for elevations	INTEGER*2	16	2	Code 0,=unknown accuracy l,=accuracy information is given in logical record type C.	
14	A three-element array containing DEM spatial resolution (x,y,z). Units of measure for these resolution elements are consistent with those indicated by data elements 7 and 8 in this record	REAL*4	3E12.6	12	These elements are usually set to 30, 30, 1 for 7.5-minute DEM's and 3, 3, 1 for 1:250,000-scale DEM's. These units should not be confused with accuracy of the data.	
15	A two-element array containing the number of rows and columns (m, n) of profiles in the DEM	INTEGER*2	216	4	See figure 5. Normally the row value m is set to 1. Thus, the n value normally describes the number of columns in the DEM file.	

APPENDIX B.--Digital Elevation Model Data Elements Logical Record Type B

Data		Type (FORTRAN Notation)	Physical	Record Format	_
Element	Contents		ASCII Format	BINARY Format (Bytes	Comment)
	A two-element array containing the row and column identification number of the DEM profile contained in this record	INTEGER*2	216	4	See figure 5. The identification numbers range from 1 to m and 1 to n. Rows are normally set to 1 and should be disregarded. The column identification is the profile sequence number.
	A two-element array containing the number of rows and columns (m,n) of elevations in the DEM profile	INTEGER*2	216	4	See figure 5. This first element is the field corresponds to the numbe of nodes in this profile. The second element in this field is normally set to 1, specifying 1 column per B record.
	A two-element array containing the ground planimetric coordinates (Xgo, Ygo) of the first elevation in the profile	REAL*8	2D24.15	16	See figure 5.
4	Elevation of local datum for the profile.	REAL*8	D24.15	8	The values are in the units of measure given by data element 8 in logical record type A.

APPENDIX B.--Digital Elevation Model Data Elements Logical Record Type B--continued

Data		Type	Physical	Record Format	_	
Elemen	t Contents	(FORTRAN Notation)	ASCII Format	BINARY Format (Bytes)	Comment)	
5	A two-element array of minimum and maximum elevations for the profile	REAL*8	2D24.15	16	The values are in the unit of measure given by data element 8 in logical record type A.	
6	An array of m x n elevations for the profile. Elevations are expressed in units of resolution elements	INTEGER*2	mn(16)	2mn	See data element 14 in Appendix A. A value in this array would be multiplied by the spatial resolution value and added to the elevation of the local elevation datum for the profile (data element 4 in this record) to obtain the elevation for the point. The planimetric ground coordinates of the point X _{gp} , Y _{gp} , are computed according to the formulas in figure 5.	

APPENDIX C.--Digital Elevation Model Data Elements Logical Record Type C

Data		Type	Physical	Record Format	_	
Element	t Contents	(FORTRAN Notation)	ASCII Format	BINARY Format (Bytes)	Comment)	
1	Switch indicating availability of statistics in data element 2	INTEGER*2	16	2	Code 1,=available 0,=unavailable	
2	RMSE of file's datum relative to absolute datum (x,y,z)	INTEGER*2	316	6	In same units as indicated by elements 7 and 8 of logical record type A record.	
3	Sample size on which statistics in data element 2 are based	INTEGER*3	16	2	<pre>If = 0 then accuracy will be assume to be estimated rather than computed.</pre>	
4	Switch indicating availability of statistics in data element 5	INTEGER*2	16	2	Code 1,= available 0,=unavailable	
5	RMSE of DEM data relative to file's datum (x,y,z)	INTEGER*2	316	6	In same units as indicated by elements 7 and 8 of logical record type A.	
6	Sample size on which statistics in datum 5 are based	INTEGER*2	16	2	If 0, then accuracy will be assume to be estimated rather than computed.	

APPENDIX D.--Sample Quadrilateral Coordinates

	Geographic	Coordinates	UTM Coordinates		
Quad Corner	Latitude	Longitude	Easting	Northing	
1	35°30'	107°37'30"	261897.700	3931463.000	
2	35°37'30"	107°37'30"	262267.500	3945330.700	
3	35°37'30"	107°30'	273590.400	3945035.600	
4	35°30'	107°30'	273238.300	3931168.300	

APPENDIX E.--Codes for State Plane Coordinate Zones

		- 11 ()	
Alabama, East (AL)	0101	Louisiana, North (LA)	1701
Alabama, West	0102	Louisiana, South	1702
Alaska (AK)	5001	Louisiana, Off Shore	1703
	5010	Maine, East (ME)	1801
Arizona, East (AZ)	0201	Maine, West	1802
Arizona, Central	0203	Maryland (MD)	1900
Arizona, West	0202	Massachusetts, Mainland (MA)	2001
Arkansas, North (AR)	0301	Massachusetts, Island	2002
Arkansas, South	0302	Michigan, East (MI)	2101
California (CA)	0401	Michigan, Central	2102
thru	0407	Michigan, West	2103
Colorado, North (CO)	0501	Michigan, North (Lambert)	2111
Colorado, Central	0502	Michigan, Central (Lambert)	2112
Colorado, South	0503	Michigan, South (Lambert)	2113
Connecticut (CT)	0600	Minnesota, North (MN)	2201
Delaware (DE)	0700	Minnesota, Central	2202
District of Columbia (DC)	1900	Minnesota, South	2203
Florida, North (FL)	0903	Mississippi, East (MS)	2301
Florida, East	0901	Mississippi, West	2302
Florida, West	0902	Missouri, East (MO)	2401
Georgia, East (GA)	1001	Missouri, Central	2402
Georgia, West	1002	Missouri, West	2403
Hawaii (HI)	5101	Montana, North (MT)	2501
	5105	Montana, Central	2502
Idaho, East (ID)	1101	Montana, South	2503
Idaho, Central	1102	Nebraska, North (NE)	2601
Idaho, West	1102	Nebraska, South	2602
Illinois, East (IL)	1201	Nevada, East (NV)	2701
Illinois, West	1202	Nevada, Central	2702
Indiana, East (IN)	1301	Nevada, West	2703
Indiana, West	1303	New Hampshire (NH)	2800
Indiana, west Iowa, North (IA)	1401	New Jersey (NH)	2900
•			3001
Iowa, South	1402	New Mexico, East (NM)	
Kansas, North (KS)	1501	New Mexico, Central	3002
Kansas, South	1502	New Mexico, West	3003
Kentucky, North (KY)	1601	New York, East (NY)	3101
Kentucy, South	1602	New York, Central	3102
New York, West	3103	Utah, Central	4302
New York, Long Island	3104	Utah, South	4303
North Carolina (NC)	3200	Vermont (VT)	4400
North Dakota, North (ND)	3301	Virginia, North (VA)	4501
North Dakota, South	3302	Virginia, South	4502
Ohio, North (OH)	3401	Washington, North (WA)	4601
Ohio, South	3402	Washington, South	4602
Oklahoma, North (OK)	3501	West Virginia, North (WV)	4701
Oklahoma, South	3502	West Virginia, South	4702
Oregon, North (OR)	3601	Wisconsin, North (WI)	4702
Oregon, South	3602	Wisconsin, Central	4802
Pennsylvania, North (PA)	3701	Wisconsin, South	4803
Pennsylvania, South	3702	Wyoming, Zone I, East (WY)	4901
Rhode Island (RI)	3800	Wyoming, Zone II, East	
South Carolina, North(SC)	3901	Central	4902

APPENDIX E.--Codes for State Plane Coordinate Zones--continued

South Carolina, South	3902	Wyoming, Zone III, West	
South Dakota, North (SD)	4001	Central	4903
South Dakota, South	4002	Puerto Rico (RQ)	5301
Tennessee (TN)	4100	Virgin Islands, St. John,	(VQ)
Texas, North (TX)	4201	St. Thomas	5201
Texas, North Central	4202	Virgin Islands, St. Croix	5202
Texas, Central	4203	American Samoa (AQ)	5300
Texas, South Central	4204	Guam (GQ)	5400
Texas, South	4205		
Utah, North (UT)	4301		

APPENDIX F.--Universal Transverse Mercator Zone Locations and Central Meridians

Zone	<u>C.M.</u>	Range	Zone	C.M.	Range
01	177W	180W-174W	31	003E	000E-006E
02	171W	174W-168W	32	009E	006E-012E
03	165W	168W-162W	33	015E	012E-018E
04	159W	162W-156W	34	021E	018E-024E
05	153W	156W-150W	35	027E	024E-030E
06	147W	150W-144W	36	033E	030E-036E
07	141W	144W-138W	37	039E	036E-042E
08	135W	138W-132W	38	045E	042E-048E
09	129W	132W-126W	39	051E	048E-054E
10	123W	126W-120W	40	057E	054E-060E
11	117W	120W-114W	41	063E	060E-066E
12	111W	114W-108W	42	069E	066E-072E
13	105W	108W-102W	43	075E	072E-078E
14	099W	102W-096W	44	081E	078E-084E
15	093W	096W-090W	45	087E	084E-090E
16	087W	090W-084W	46	093E	090E-096E
17	081W	084W-078W	47	099E	096E-102E
18	075W	078W-072W	48	105E	102E-108E
19	069W	072W-066W	49	111E	108E-114E
20	063W	066W-060W	50	117E	114E-120E
21	057W	060W-054W	51	123E	120E-126E
22	051W	054W-048W	52	129E	126E-132E
23	045W	048W-042W	53	135E	132E-138E
24	039W	042W-036W	54	138E	138E-144E
25	033W	036W-030W	55	147E	144E-150E
26	027W	030W-024W	56	153E	150E-162E
27	021W	024W-018W	57	159E	156E-162E
28	0′15W	018W-012W	58	165E	162E-168E
29	009W	012W-006W	59	171E	168E-174E
30	003W	006W-000E	60	177E	174E-180W

APPENDIX G.--Parameters Required for Definition of Map Projections

Parameter	(00)* Geographic	(01)** Universal Transverse Mercator (UTM)	(02) State Plane	(03) Albers Conical Equal Area	(04) Lambert Conformal
1	***	Longitude of any point within the zone	***		ellipsoid. If this field the value for Clarke's 186 will be assumed.
2	***	Latitude of any point within the UTM zone	***	If field is zero, t If the field is >1,	ed of ellipsoid (e ²). This will indicate a sphere. this field will be taining the semi-minor axis
3	***	***	***	Latitude of 1st Sta	ndard Parallel
4	***	***	***	Latitude of 2d Stan	dard Parallel
5	***	***	***	Longitude of Centra	l Meridian
6	***	***	***	Latitude of project	ion's origin
7	***	***	***	False easting in th the semi-major axis	e same units of measure as s of ellipsoid
8	***	***	***	False northing in t the semi-major axis	the same units of measure as

on this page)

^{*} Projection code number.

^{**} For the Northern Hemisphere, supplying UTM zone will result in ignoring any given projection parameters.

^{***} Parameter is not applicable to projection.

Note: All angles (latitudes, longitudes, or azimuth) are required in degrees, minutes, and arc-seconds in the packed real number format +DDDOMMOSS.SSSSS.

APPENDIX G.--Parameters Required for Definition of Map Projections--continued

Parameter	(05) Mercator	(06) Polar	(07) Polyconic	Equidis	(08) stant Conic
		Stereographic		Type A	Type B
	_	s of ellipsoid. is left blank (=0), the value	for Clarke's l	866 spheroid in meters	will be assumed.
	If this is lef	equared of ellipsoid (e). It blank (=0), this will indica s >1, this field will be inter	-	aining the semi-minor a	axis of the ellipsoid.
	***	***	***	Latitude of Standard Parallel	Latitude of lst Standard Parallel
	***	***	***	***	Latitude of 2d Standard Parallel
	Longitude of Central Meridian	Longitude directed straight down below pole of map		• Longitude of Central	Meridian
	***	Latitude of true scale		. Latitude of projection	on's origin
	Fal	se easting in the same units o	f measure as t	he semi-major axis of e	ellipsoid
	Fal	se northing in the same units	of measure as	the semi-major axis of	ellipsoid
)	***	***	***	Zero	Any non-zero number
.0-15 not used on this page)				

APPENDIX G.--Parameters Required for Definition of Map Projections--continued

Parameter	(09) Transverse Mercator	(10) Stereographic	(11) Lambert Azimuthal Equal-Area	(12) Azimuthal Equidistant	(13) Gnomonic	(14) Orthographic		
1	Same as Projections 03 thru 08		If this fi	e sphere of refer eld is left blan meters will be a	k, the value			
2	Same as Projections 03 thru 08	***	***	***	***	***		
3	Scale factor at Central Meridian	***	***	***	***	***		
ı	***	***	***	***	***	***		
5	Longitude of Central Meridian		Longitude of cent	er of projection		• • • • •		
6	Latitude of origin	• • • • • •	Latitude of cer	ter of projectio	on	• • • •		
7	False easting i	n the same units of	measure as the semi-ma	ijor axis or radi	us of the sph	ere		
3	False northing	False northing in the same units of measure as the semi-major axis or radius of the sphere						
9-15 (not used on this page)								

APPENDIX G.--Parameters Required for Definition of Map Projections--continued

Parameter	(15) General Vertical Near-Side Perspective	(16) Sinusoidal	(17) Equirectangular (Plate Caree)	(18) Miller Cylindrical	(19) Van Der Grinten 1
1		If	s of the sphere of refe this field is left bl 70997.0 meters will be	•	
2	***	***	***	***	***
3	Height of perspective point above sphere	***	***	***	***
4	***	***	***	***	***
5	Longitude of center of projection		• • • Longitude of Cen	tral Meridian	
6	Latitude of center of projection	***	***	***	***
7	False	easting in the	same units of measure	as radius of the sphere	
В	False	northing in the	same units of measure	as radius of the sphere	e
9-15 (not used on this page)					

APPENDIX G.--Parameters Required for Definition of Map Projections--continued

Parameter	(2 Oblique	0) Mercator	Parameter	(20 Oblique 1	•
	(Definition Format A)			(Definition Format A)	
1	Same as for projec		9	Longitude of first point defining central	***
2	Same as for projec	tions 03 thru 09		geodetic line of projection	
3	Scale factor at th	e center of projection			
4	***	Angle of azimuth east of north for central line of projection	10	Latitude of first point defining central geodetic line of projection	***
5	***	Longitude of point along central line of projection at which angle of azimuth is measured	11	Longitude of second point defining central geodetic line of projection	***
6	Latitude of origin	of projection	12	Latitude of second point defining central	***
7	Same as for projec	tions 03 thru 19		geodetic line of projection	
8	Same as for projec	tions 03 thru 19	13	Zero	Any non-zero number
			14 and 15 (not used projection		

APPENDIX H.--Digital Terrain Tapes

Contents

	1	Page
Introduction		36
Characteristics		36
Data production		36
Accuracy		37
Data records		37
Tables		
		Page
Table H1. Type A logical record data content for a		
digital terrain tape		38
H2. Type B logical record data content for a		
digital terrain tape		39
H3. Type C logical record data content for a		
digital terrain tape		40

DIGITAL TERRAIN TAPES

Introduction

Digital terrain tapes are a type of digital elevation data produced by the DMA and distributed by USGS. Each digital terrain tape file corresponds in coverage to a 1° x 1° block (one-half of a standard 1:250,000-scale 1° x 2° quadrangle). Digital terrain tapes are available for the conterminous United States and Hawaii. The data are distributed by USGS as produced by the DMA and, as such, they do not conform to the standard USGS DEM tape format.

Characteristics

A 1:250,000-scale digital terrain tape file has the following characteristics:

- The data consist of a regular array of elevations referenced in digitizer coordinates at increments of 0.01 inch.
- The unit of coverage is a 1° x 1° block representing one half of a 1:250,000-scale 1° x 2° map.
- The positions of the four corners of the 1° x 1° block are stated in digitizer and geographic (latitude/ longitude) coordinates.
- The data are ordered from south to north in profiles that are ordered from west to east.
- The data are stored as profiles in which the spacing of elevations along and between each profile is 0.01 inch (approximately 200 feet at the source map scale of 1:250,000).

Data Production

Digital terrain tapes were produced as a byproduct of the production of three-dimensional relief maps. Production began in the early 1960's with the

development the Digital οf Graphics Recorder (DGR) system. The DGR system consisted of manual line-following digitizer connected to a computer system; it was capable of recording digital elevation data by tracing contour lines etched Digital traces of on metal plates. ridges and streams were added to the digital contour data and an interpolation algorithm was applied to produce a cartesian grid of elevation values spaced at 0.01 inch intervals. The gridded elevation data were then employed as a digital template to control a tool for carving the plaster forms used to mold raised-relief maps.

Although the DGR system was initially developed solely to automate the production of raised-relief maps, the versatility of the gridded digital elevation data was quickly recognized, and the concept of a 1:250,000- scale digital elevation data base was born. As the demand for the digital terrain tapes increased, the data collection processing techniques were refined and streamlined, and the DGR system was eventually replaced by the Automated Graphic Digitizing System (AGDS). AGDS is an automated scanning system that digitizes data along regularly spaced For production of digital scan-lines. terrain tapes, stable base materials containing contour lines and ridge and stream traces, as depicted on 1:250,000scale topographic maps, were digitized on the AGDS. The data were then vectorized, tagged, and edited using an interactive digitizing station. An interpolation algorithm was subsequently applied to produce the cartesian grid of elevation values at 0.01 inch intervals.

The 1:250,000-scale digital terrain tape data base was completed for the conterminious United States and Hawaii in the late 1970's. Since that time, 1:250,000-scale DEM's (described on page 4) have been completed for nearly all of the area covered by the digital terrain tapes. In addition, 1:250,000-scale DEM data is available for most of Alaska where digital terrain tapes were never Because the 1:250,000-scale produced. DEM's are more rigorously checked for accuracy and consistency, they considered the generally preferable source of digital elevation data at this scale. The digital terrain tapes, however, remain a valuable resource and will continue to be distributed by USGS.

Accuracy

The accuracy of the digital terrain tapes is compatible with the accuracy of the stable-base 1:250,000-scale map sheets from which they were digitized. Neither the maps nor the tapes have been completely tested for vertical accuracy.

Data Records

Digital terrain tape data are distributed by the USGS on multifile nine-track magnetic tape, usually in odd parity at 1,600 bpi. Each data file represents elevations for a planimetric grid of points covering part (usually one-half) of a 1:250,000-scale map sheet.

Within each file, data are arranged in sequential logical records. Three types of logical record formats are used: Type A logical record—The first logical record in a digital terrain tape file is a type A record. It contains general information about the digital model. Figure H1 depicts the layout of the 78 bytes which constitute the record and provides a description of each data field in the record. Unless otherwise specified, all data fields represent binary integer numbers.

Type B logical record-The type B record is a variable length record which contains elevation profile data. Figure H2 depicts the layout of this variable length record and provides a description of each data field.

Type C logical record—The type C record is the last logical record in a digital terrain tape file and describes the number of profiles in the file. Figure H3 depicts the layout of the record's 12 bytes, and provides a description of each data field.

Table Hl.--Type A logical record data content for a digital terrain tape

Byte		Content
1-12		Chack number (EDCDIC)
	• • • • • • • • • • • • • • • • • • • •	Sheet number (EBCDIC)
13-18	• • • • • • • • • • • • •	Map series (EBCDIC)
19-24	• • • • • • • • • • • • •	Map edition (EBCDIC)
25-26	•••••	Map projection code number, code l is for UTM projection
27-28	• • • • • • • • • • • •	Map projection zone number
29-30	• • • • • • • • • • •	Code number for elevation-data units
		=0 for meters
		=l for feet
31-32		x-coordinate of southwest map corner
33-34		y-coordinate of southwest map corner
35-36		x-coordinate of northwest map corner
37-38		y-coordinate of northwest map corner
39-40		x-coordinate of northeast map corner
41-42		-
43-44	• • • • • • • • • • • • • • • • • • • •	y-coordinate of northeast map corner
	•••••	x-coordinate of southeast map corner
45-46	• • • • • • • • • • • • • • • • • • • •	y-coordinate of southeast map corner
47-50	• • • • • • • • • • • • •	Longitude of southwest map corner ²
51-54	• • • • • • • • • • • • •	Latitude of southwest map corner
55-58	• • • • • • • • • • • • •	Longitude of northwest map corner
59-62	• • • • • • • • • • • •	Latitude of northwest map corner
63-66	• • • • • • • • • • • •	Longitude of northeast map corner
67-70	• • • • • • • • • • • • • • • • • • • •	Latitude of northeast map corner
71-74	• • • • • • • • • • • •	Longitude of southeast map corner
75-78		Latitude of southeast map corner

 $^{^{1}\}mathrm{All}$ x and y coordinates are in 0.01-inch units. $^{2}\mathrm{All}$ longitudes and latitudes are in arc-second units.

Table H2.--Type B logical record data content for a digital terrain tape

Byte	Content
1-2	
	profile (x_0) in one-hundredths of an inch
3-4	Map y-coordinate of the first point in the profile (y_0) in one-hundredths of an inch
5-6	x-component of map step between profile elevation points (x) in one-hundredths of an inch (always equals 0)
7-8	y-component of map step between profile elevation points (y) in one-hundredths of an inch (always equals 1)
9-10	Number of elevation points (m) in the profile
11-12	Elevation of first profile point (H_1)
13-14	Elevation of second profile point (H_2)
•	
(2m+9) - (2m+10).	Elevation of m^{th} profile point (H_m)

Table H3.--Type C logical record data content for a digital terrain tape

Byte	Content
1-2	A string of 16 '1' bits
3-4	A string of 16 '1' bits
5-6	A string of 16 '1' bits
7-8	A string of 16 '1' bits
9-10	The number 1
11-12	Number of profiles (type B logical records) in the digital terrain file

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY RESTON, VIRGINIA 22092

MS 516

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE \$300

POSTAGE AND FEES PAID U. S. DEPARTMENT OF THE INTERIOR INT 413

Third Class Bulk Rate