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Review of Literature on the Finite-Element Solution 
of the Equations of Two-Dimensional Surface­
Water Flow in the Horizontal Plane 
By jonathan K. Lee and David C. Froehlich 

Abstract 

Published literature on the application of the finite­
element method to solving the equations of two-dimen­
sional surface-water flow in the horizontal plane is 
reviewed in this report. The finite-element method is 
ideally suited to modeling two-dimensional flow over 
complex topography with spatially variable resistance. A 
two-dimensional finite-element surface-water flow model 
with depth and vertically averaged velocity components 
as dependent variables allows the user great flexibility in 
defining geometric features such as the boundaries of a 
water body, channels, islands, dikes, and embankments. 

The following topics are reviewed in this report: 
alternative formulations of the equations of two­
dimensional surface-water flow in the horizontal plane; 
basic concepts of the finite-element method; 
discretization of the flow domain and representation of 
the dependent flow variables; treatment of boundary 
conditions; discretization of the time domain; methods 
for modeling bottom, surface, and lateral stresses; 
approaches to solving systems of nonlinear equations; 
techniques for solving systems of linear equations; 
finite-element alternatives to Galerkin's method of 
weighted residuals; techniques of model validation; and 
preparation of model input data. References are listed in 
the final chapter. 

CHAPTER 1. INTRODUCTION 

In the study of surface-water flow, vanattons in 
water-surface elevation and flow distribution frequently re­
quire analysis in both horizontal spatial dimensions. The 
finite-element method, which has been applied to fluid-flow 
problems only during the past 15 years, is ideally suited to 
modeling two-dimensional flow over complex topography 
with spatially variable resistance. A two-dimensional finite­
element surface-water flow model with depth and vertically 
averaged velocity components as dependent variables al­
lows the user great flexibility in defining geometric features 
such as the boundaries of a water body, channels, islands, 

dikes, and embankments. The modeler is able to use a fine 
network in regions where geometric or flow gradients are 
large and a coarse network in regions where geometry and 
flow are more nearly uniform. A two-dimensional finite­
element surface-water flow model eliminates the need to use 
empirical coefficients other than bottom-resistance coeffi­
cients in simulating subcritical flow through constrictions. 
In addition, the introduction of boundary conditions is easily 
handled in the finite-element approach. 

Alternative approaches to modeling surface-water 
flow in two horizontal dimensions have been developed 
using finite-difference methods. It is useful to compare 
briefly the relative advantages and disadvantages of the 
finite-element and the finite-difference approaches. 

Price and others ( 1968) show that the finite-element 
method requires fewer nodes and less computational time 
than the finite-difference method to achieve comparable ac­
curacy in solving the one-dimensional convection-diffusion 
equation with a trapezoidal-rule scheme. Thacker (1978a, 
p. 679) shows that finite-element solutions are more accu­
rate than finite-difference solutions in solving the equations 
of one-dimensional gravity-wave motion where both the 
depth and the grid are variable. 

However, any advantage that the finite-element 
method has in computational time is usually lost in going 
from one-dimensional problems to two- and three­
dimensional problems because the matrices generated by the 
finite-element method become relatively more complex than 
those generated by the finite-difference method as the num­
ber of dimensions increases (Thacker, 1978b). 

In particular, finite-element matrices for two- and 
three-dimensional problems have larger bandwidths and are 
less sparse than finite-difference matrices for the same prob­
lems. Moreover, the standard finite-element approach ap­
plied to time-dependent problems gives an ordinary­
differential-equation system coupled in the derivatives and 
requires the solution of large systems of algebraic equations 
at each time step, even for explicit time-stepping schemes. 
In addition, for an explicit time-integration scheme, the 
maximum allowable step size is smaller than that for the 
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corresponding finite-difference scheme (Cullen, 1973, 
p. 18;Lynch, 1978,p. 3-10,3-16,3-17;Thacker, 1978a, 
p. 677, 678; Baker and Soliman, 1979, p. 311, 312). 

These considerations lead Cooke (1977, p. 2) tore­
mark: "The greatest future *** appears to lie with the ap­
proach of seeking at the outset the solution of steady state 
equations, where the high overhead per iterative step is 
offset by rapid convergence with a minimum of iterations." 
In light of recent developments to be discussed later in this 
report, Cooke's views on the use of the finite-element 
method for transient computations may be too pessimistic. 
However, in solving problems of steady free-surface flow 
over variable terrain, Cooke's remarks suggest that the 
finite-element method ought to be competitive with the 
finite-difference approach. 

In the context of computational fluid dynamics, 
Roache (1975, p. 231-233) discounts the claimed geometric 
flexibility of the finite-element method because complex 
domains can be handled with regular finite-difference meth­
ods together with the use of boundary-fitted coordinates 
(Thames a,nd others, 1977). Although Roache's remark is 
valid for homogeneous domains, domain transformations 
are not very useful for flood plains interlaced with irregular 
channels. The finite-element method is much better adapted 
than the finite-difference method to modeling flow over 
variable terrain. A finite-element network can provide a 
much more realistic representation of topography and sur­
face cover for a given number of nodes than can a finite­
difference network. Cooke (1977, p. 29) states: 

Hence, the future of the method, if any, in transient calcu­
lations, may lie in those areas where the transformation 
approach encounters difficulty, e.g., where the simple 
stretching transformations are not sufficient. Here one 
could envision channel flows with significant channel 
curvature and irregularity in cross section which varies 
with flow direction. 

Although the finite-element method has potential ad­
vantages, most existing modeling systems based on the 
method are seriously flawed. A major difficulty is the large 
expense of using such models. Extensive manpower is re­
quired to prepare input data for model use if digitizing 
software is not available. Most finite-element models are 
costly to run in terms of both computer-core and processing­
time requirements. Often, models that are less costly are 
applicable only under very restrictive hypotheses or are of 
questionable accuracy. In addition, documentation and 
guidelines for model use are often inadequate. 

Before undertaking a program to develop an improved 
modeling system, it is important to survey the published 
literature on existing finite-element flow models. The litera­
ture on finite-difference approaches to fluid-flow modeling 
and other aspects of numerical analysis is also an important 
potential source of ideas for finite-element methods that are 
both more efficient and more accurate than those used in 
existing finite-element models. 

2 Two-Dimensional Surface-Water Flow, Horizontal Plane 

Each subsequent chapter of this literature review is 
devoted to a topic important in the development of an accu­
rate and efficient finite-element surface-water flow model. 

Chapter 2 surveys the different forms of the basic 
equations used to describe two-dimensional surface-water 
flow in the horizontal plane, presents appropriate boundary 
conditions for each equation system, and discusses the ad­
vantages and disadvantages of the different formulations. 

Chapter 3 outlines the basic concepts of the finite­
element method needed to understand the chapters that fol­
low. 

Chapter 4 discusses the discretization of the spatial 
domain and the representation of the dependent flow vari­
ables. Emphasis is given to the advantages and disadvan­
tages of equal-order and mixed interpolation with various 
forms of the flow equations, the use of discontinuous inter­
polation, the effects of the resolution of the domain and 
network irregularity, numerical integration, and the han­
dling of the convective terms. 

Chapter 5 is devoted to ways of treating boundary 
conditions. Essential and natural boundary conditions and 
the relationship between model accuracy and the method of 
treating the boundary conditions are discussed. 

Although many problems can be handled by steady­
state analysis, it is important that a model have the capabil­
ity to model unsteady flow. Moreover, time stepping is an 
important method for obtaining a steady-state solution. Ap­
proaches to discretizing the time domain are discussed in 
chapter 6. In addition, chapter 6 contains a discussion of 
lumping and a review of published comparisons of time­
stepping schemes. 

Chapter 7 presents methods for modeling bottom, sur­
face, and lateral stresses. Chapter 8 presents different ap­
proaches to handling the nonlinear terms of the flow equa­
tions, and chapter 9 discusses techniques, both direct and 
iterative, for solving the large systems of linear algebraic 
equations that are a major feature of most finite-element 
models. 

Chapter 10 presents finite-element alternatives to 
Galerkin' s method of weighted residuals. Chapter 11 pre­
sents techniques for model validation. Chapter 12 discusses 
the preparation of model input data, including such topics as 
automatic network generation, the automation of the data­
preparation process, and the automatic relabeling of nodes 
and elements. Chapter 13 presents a summary and conclu­
sions. 

Chapter 14 contains the references. Acronyms, such 
as FEWR 1 , refer to conference proceedings or other collec­
tions of papers and are defined at the beginning of chap­
ter 14. Additional references are found in the reviews of 
Cheng (1978) and Norrie and Vries (1978). 

The support of the U.S. Department of Transporta­
tion, Federal Highway Administration, is gratefully ac­
knowledged. 



CHAPTER 2. EQUATIONS OF 
TWO-DIMENSIONAL SURFACE-WATER FLOW 
IN THE HORIZONTAL PLANE 

Several related sets of equations are used to describe 
steady and unsteady two-dimensional surface-water flow in 
the horizontal plane. 

The most basic formulation consists of three nonlinear 
partial-differential equations, one for conservation of mo­
mentum in the x-direction, one for conservation of momen­
tum in they-direction, and one for conservation of mass 
(Pritchard, 1971, p. 22-30): 

au au au aH azo . -+U-+V-+g-+g--2 w Vsm <f> at ax ay ax ax 
(2.1) 

-pk [a: (HTx.J+ :y (HTxy)+T~-Tf]=O, 
av av av aH azo . 
Tt+U ax +V ay +g ay +g ay +2 w U sm <f> 

(2.2) 

and 

aH +~ (H U)+~ (H V)=O 
at ax ay (2.3) 

where 
x, y =Cartesian coordinates in the positive east and 

north directions, respectively, 
t =time, 

U, V =depth-averaged velocity components in the x­
and y-directions, respectively, 

H =total depth of water, 
z0 =bed elevation, 
p=density of water (assumed constant), 
w =magnitude of the angular velocity of the 

Earth, 
<f> =latitude, 
g =gravitational acceleration, 

T xx , T xy , =components of depth-averaged effective­
T yx , T YY stress tensor, 

T~, T~ =components of surface stress (wind) in the x­
and y-directions, respectively, and 

T~, Tt =components of bottom stress (friction) in the 
x- andy-directions, respectively. 

Equations 2.1 through 2.3 are commonly referred to 
as the "shallow-water equations," and the formulation 
given in equations 2.1 through 2.3 is referred to as the 
"primitive formulation." These equations are obtained from 
the three-dimensional Reynolds equations for turbulent flow 

by integrating with respect to the water depth under the 
assumption of hydrostatic pressure and by making simplify­
ing assumptions regarding the nonlinear terms. 

The first three terms of equations 2.1 and 2.2 are 
inertial-force terms, the first of the three representing tem­
poral acceleration and the second and third representing 
convective acceleration. The fourth and fifth terms represent 
the pressure force due to the water-surface gradient. The 
sixth term represents the Coriolis force, an inertial force 
describing the effect of the Earth's rotation. 

The seventh and eighth terms represent the combined 
effect of viscous stresses, Reynolds stresses, and momen­
tum transfers due to the vertical velocity distribution (Wang 
and Connor, 1975, p. 64; Lean and Weare, 1979, p. 18). 
Some authors (Pritchard, 1971, p. 30-32; Schaffranek, 
1976, p. 51) ignore the Reynolds-stress terms and handle the 
terms arising from vertical velocity shear in the depth­
averaged equations by modifying the inertial terms of the 
momentum equations. This procedure requires the use of 
momentum-correction factors. A special case of the use of 
momentum-correction factors is discussed by Zienkiewicz 
and Heinrich (1979), who assume that the vertical velocity 
distribution is described by a shape function. None of the 
other finite-element models reviewed for this study use 
momentum-correction factors. 

Many authors express the momentum-transfer terms 
in terms of the mean-flow variables by using Boussinesq' s 
eddy-viscosity concept, which assumes that momentum 
transfers due to turbulence and the vertical nonuniformity of 
velocity are proportional to the mean-velocity gradients. 
The coefficients of proportionality are referred to as "eddy 
viscosities." Positive and sometimes unrealistic values of 
eddy viscosities are often used to damp spurious oscillations 
in finite-element solutions of the shallow-water equations. 
Approaches other than viscous damping for handling un­
wanted oscillations are discussed in chapters 4 and 6. 

The ninth and tenth terms in equations 2.1 and 2.2 
represent surface and bottom stresses, respectively. 

Equation 2. 3 states that the change in storage in an 
infinitesimally small control volume accounts for the net 
flux of mass into or out of the control volume. 

If eddy viscosities are used to represent the turbulent 
stresses in equations 2.1 and 2.2, the momentum equations 
have a parabolic nature for positive, finite values of the 
Reynolds number, U0 H0/e0 , where U0 is a representative 
velocity, H0 a representative length, and Eo a representative 
value of the eddy viscosity. Large-Reynolds-number or 
convection-dominated flows have been the subject of much 
research in recent years (see reference FEMCDF), but rela­
tively little of this research has been devoted to free-surface 
flows. If the eddy viscosities are set equal to zero, the 
shallow-water equations are a system of quasilinear hyper­
bolic partial-differential equations (Katapodes and 
Strelkoff, 1979, p. 318, 319). 
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A variant of the primitive shallow-water equations 
based on unit discharges is used by Norton and King (1973), 
Norton and others (1973), King and Norton (1978), and 
Withum and others (1979). The dependent variables are the 
unit discharges, UH and VH, and the depth, H. King and 
Norton (1978, p. 2.82) state that the advantages of this 
formulation include ease of representation of discharge 
boundary conditions and linearization of the continuity 
equation. Withum and others (1979, p. 703) mention the 
ease of ensuring the continuity of mass and momentum 
transfer across interelement boundaries. On the other hand, 
it has been observed by Teeter and McAnally ( 1981, p. 255) 
and the writers that a finite-element model using the unit­
discharge formulation is much more sensitive to cross­
channel depth changes and low eddy-viscosity values than a 
finite-element model formulated in terms of velocities. 
Unit-discharge boundary conditions are easily handled at 
discharge boundaries by incorporating the equations 
UH =constant and VH =constant into the process for han­
dling the nonlinearities of the equations. A velocity formu­
lation is used together with this procedure by Norton (1980). 

Motivated by the experiences of earlier workers in 
applying finite-difference techniques to problems of compu­
tational fluid dynamics, several finite-element researchers 
have used different sets of equations to model two­
dimensional surface-water flow in the horizontal plane in an 
effort to obtain more accurate and efficient solution tech­
niques. 

It has been known for some time that in using a 
primitive-variable formulation of the Navier-Stokes equa­
tions, it is preferable to use a second-order Poisson pressure 
equation to enforce mass conservation rather than the prim­
itive continuity equation (Roache, 1972, p. 194-203). In 
the finite-element literature, a Poisson pressure equation is 
used in solving the Navier-Stokes equations by Olson 
(1977, p. 4.191-4.194) and by Gresho, Lee, Sani, and 
Stullich (1978, p. 18-25). 

If the nonlinear terms are neglected in equations 2.1 
and 2.2, then either the velocity, U, or the depth, H, can be 
eliminated and the system can be reduced to a second-order 
wave equation in either U or H. A number of recent finite­
element models have been based on this linearized system. 
Fugazza and Gallati ( 1977) use the finite-element method to 
solve a wave equation for water-surface elevation obtained 
from the shallow-water equations by neglecting the convec­
tive, Coriolis, and turbulence terms. In a similar model, 
Mattioli ( 1981) neglects friction and assumes that the mo­
tion is harmonic but includes the Coriolis terms. Platzman 
(1978) uses Stokes/Helmholtz potentials instead of velocity 
components in his formulation of the linearized two­
dimensional tidal equations and shows ( 1981) that the 
Stokes/Helmholtz formulation is equivalent to a finite­
element wave equation. The work of other authors using a 
similar approach is summarized by Lynch (1978, p. 1-31-
1-33). 

4 Two-Dimensional Surface-Water Flow, Horizontal Plane 

The work discussed in the preceding paragraph forms 
a basis for more interesting approaches which retain all the 
terms of equations 2.1 through 2.3. Lynch and Gray (1979, 
1980) replace the primitive continuity equation with a 
second-order wave continuity equation. Because the nonlin­
ear terms are retained, the wave continuity equation couples 
the velocities and the depth. Thus, the wave continuity 
equation must be solved together with equations 2.1 and 2.2 
to obtain a solution to the shallow-water equations. 

As a first step, equations 2.1 and 2.2, which are given 
in nonconservative form , are written in conservative form 
by use of equation 2. 3: 

a a ( ) a aH azo -(HU)+- HU2 +-(HVU)+gH-+gH­
at ax ay ax ax 

-2 w H V sin <f> (2.4) 

and 

a a a ( ) aH azo - (H V)+- (H U V)+- H V2 +g H-+g H­
at ax ay ay ay 

+ 2 w H U sin <f> (2.5) 

Then, differentiation of equation 2.3 yields 

azH +_Q_[.E_ (H U)] +_Q_[.E_ (H V)] =0 (2.6) 
at2 ax at ay at 

Substitution of equations 2.4 and 2.5 into equation 2.6 gives 

a~ a{a a m a~ --- - (H U2)+- (H V U) +g H-+g H-
at2 ax ax ay ax ax 

-2 w H V sin,~,._![..£.. (H T )+..£.. (H T )+-r8 

~ p ~ n ~ ~ x 

azo 1 [a ( ) + g H ay + 2 w H u sin <f> -p ax H Tyx 

+ :Y (H Ty)+r:: --rt ]}=o . 



Finally, substituting equation 2.3 into equation 2. 7, and 
writing 

(2.8) 

where cb is a bottom-stress coefficient, the nonlinear wave 
continuity equation is obtained: 

azo 1 [ a ( ) +g H --2 w H V sin<!>-- - H T 
OX P OX XX 

+~ (H T )+Ts]}-~{~ (H U V) oy xy X oy OX 

a ( ) aH ozo 
+ iJy H V2 

+ g H iJy + g H iJy + 2 w H U sin <!> 

-~[:x (H Ty.)+ :y (H 7yy)+T;]} 

_H u ~(cb)_H V ~(cb)=o . 
p ax p p iJy p 

(2.9) 

Lynch and Gray use the second-order equation obtained by 
setting T.u =Txy =Tyx =Tyy =0 in equation 2.9. 

A related approach is used by Pearson and Winter 
(1977), who treat periodic shallow-water flow by Fourier 
decomposition of the dependent variables, U, V, and H, in 
the time domain. They obtain two coupled elliptic 
Helmholtz equations for each pair of Fourier coefficients of 
the depth, H. Le Provost and others (1981) employ a similar 
technique to transform the hyperbolic shallow-water equa­
tions into a set of elliptic Helmholtz equations for periodic 
flow phenomena. The advantages of these formulations in 
terms of accuracy and efficiency are discussed in chapters 4 
and 6. 

The appropriate boundary conditions for use with the 
primitive momentum equations are discussed by Wang and 
Connor(1975, p. 68-71), Herding (1978, p. 314, 315), and 
Lynch (1978, p. 1-5, 1-6). If it is assumed that the 
boundaries of the flow domain are fixed, and if second-order 
eddy-viscosity terms are not included in the momentum 
equations, either the normal mass flux (normal discharge) or 
the normal force (normal stress) must be specified at all 
points on the boundary of the flow domain. If eddy-viscosity 
terms are included in the momentum equations, an addi­
tional boundary condition is needed at all points on the 
boundary. Either the tangential mass flux (tangential dis­
charge) or the tangential force (shear stress) must be speci­
fied at all boundary points. The continuity equation, used to 
find the elevation of the free surface, does not require any 
boundary conditions (Wang and Connor, 1975, p. 71). 

Katapodes ( 1980) discusses boundary conditions for 
flows that are not completely subcritical. Pearson and Win­
ter ( 1977) present appropriate boundary conditions for an 
open tidal boundary that account for landward tidal reflec-
tion. 

Most researchers solving two-dimensional flow prob­
lems that do not involve a free surface convert the primitive 
equations of flow to a parabolic vorticity-transport equation 
and an elliptic stream-function equation. Among the re­
searchers who use a vorticity-stream-function finite-element 
formulation to study viscous incompressible flow in two 
dimensions are Cheng (1972), Baker (1973), Brebbia and 
Smith (1977), Olson and Tuann (1978a), Tuann and Olson 
(1978), and Moult and others (1979). Unlike the two­
dimensional Navier-Stokes continuity equation, however, 
equation 2.3 couples the depth and the velocity components. 
Because of this, the vorticity-stream-function approach can­
not be applied to transient shallow-water flow. 

Only in the case of steady flow, where the time 
derivatives in equations 2.1 through 2.3 vanish, is it possi­
ble to apply a vorticity-stream-function approach to two­
dimensional surface-water flow. This is of considerable in­
terest because it is possible to handle as steady state most 
problems involving flood-plain constrictions. Franques 
(1971) and Franques and Yannitell (1974) develop such an 
approach. They define the stream function, \jl, by 

iJ\jl =-H V and ~=H U ox . iJy 
(2.10) 

and the vorticity, ,, by 

a a 
'=-(H U)--(H V) 

iJy ox (2.11) 

By neglecting the convective term in the vorticity-transport 
equation, the authors obtain a nonlinear elliptic partial­
differential equation in \jl. The validity of the assumption 
that the convective term in the vorticity-transport equation 
can be neglected deserves further investigation. Boundary 
conditions consist of constant values of \jl at lateral 
boundaries and zero values of the normal derivative of \jl at 
upstream and downstream boundaries, which are assumed 
to be normal to the flow. Water-surface elevations are ob­
tained from Bernoulli's equation. 

CHAPTER 3. BASIC CONCEPTS OF THE 
FINITE-ELEMENT METHOD 

The finite-element method is a numerical procedure 
for solving the differential equations encountered in prob­
lems of physics and engineering. Although it was originally 
devised to analyze structural systems, the finite-element 
method has developed into an effective tool for evaluating 
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a wide range of problems in the field of continuum mechan­
ics. This development has been encouraged primarily by the 
continued advancement of high-speed digital computers, 
which provide a means of performing rapidly the many 
calculations involved in the method. 

The fundamental concept of the finite-element 
method is that any smooth quantity can be approximated by 
a discrete model composed of a set of piecewise-smooth 
functions which are defined over a finite number of subdo­
mains called elements. The piecewise-smooth functions are 
called interpolation, shape, trial, or basis functions, are 
described in terms of the values of the smooth quantity at a 
finite number of points in its domain, and are typically 
polynomials of at most the third or fifth degree. The points 
at which the quantity is defined are called nodes and are 
usually located along the element boundaries, where adja­
cent elements are considered to be connected, although 
some nodes may be positioned in the element interiors. 

The nodal values of the quantity being modeled along 
with the selected interpolation functions completely de­
scribe the variation of the quantity within each element. For 
the finite-element solution of the problem, the nodal values 
become the unknowns. The behavior of the solution 
throughout the assemblage of elements is described by the 
interpolation functions once the unknown nodal quantities 
are found. 

Clearly, interpolation functions cannot be selected ar­
bitrarily; they should be able to approximate the true distri· 
bution of the field variable as closely as possible. In addi­
tion, at element boundaries the field variable and any of its 
partial derivatives up to one order less than the highest order 
derivative of the equation being solved must be continuous. 
This is known as the compatibility requirement. Elements 
whose interpolation functions satisfy this requirement are 
known as compatible or conforming elements. Another con­
dition that must be met is that as the element size shrinks to 
zero, values of the field variable and of all its partial deriva­
tives up the highest order appearing in the equation being 
solved must be constant over an infinitesimal part of the 
solution domain. This is known as the completeness re­
quirement. 

At this point it is helpful to introduce a standard defi,. 
nition and notation to describe the degree of continuity of 
the interpolation function. If the interpolated variable is 
continuous, it is said to have C0-continuity. If first deriva­
tives are continuous, the interpolation function is said to 
have C 1-continuity. Continuous second derivatives imply 
C2-continuity, and so on. 

Suppose the functions appearing under the integrals of 
the element equations contain derivatives up to the (r + 1 )st 
order. To satisfy the compatibility requirement, the interpo­
lation functions must be cr-continuous at element bound­
aries. The completeness requirement is met if the interpola­
tion functions are cr+ 1-continuous within each element. 
These requirements for interpolation functions representing 
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the behavior of a field variable are usually sufficient to 
ensure convergence to the solution as element size de­
creases. 

Once the finite-element model has been established 
(that is, once the elements and their interpolation functions 
have been chosen), the derivation of the element equations 
may be achieved by direct methods, variational methods, or 
weighted-residual methods. 

Direct methods for deriving finite-element equations 
are based on direct physical reasoning but can be applied 
only for relatively simple problems and element shapes. 
However, the finite-element equations that are found by 
direct physical reasoning can also be derived by minimizing 
an energy functional (Becker and others, 1981 , p. 60) with 
respect to the nodal variables. Thus, a general method for 
formulating the finite-element equations is obtained by ap­
plying variational principles governing the particular prob­
lem of interest. 

The variational approach to deriving element equa­
tions is the most widely used and is the most convenient 
when a classical variational statement exists for a particular 
problem. However, many practical problems are encoun­
tered for which classical variational principles are unknown. 
In these cases, more generalized procedures must be used to 
derive the element equations. 

Weighted-residual methods are general techniques for 
obtaining approximate solutions to linear and nonlinear 
partial-differential equations and include collocation, least 
squares, and Galerkin methods. In all of these, the unknown 
solution is approximated by a set of interpolation functions 
containing adjustable constants or functions. The chosen 
constants or functions define the type of weighted-residual 
method and attempt to provide the "best" approximation of 
the exact solution. Although the methods of weighted resid­
uals offer a more general means of formulating the element 
equations, they are not directly related to the finite-element 
method. 

To be more specific, the differential equation for a 
problem can be written as 

L u-J=O (3.1) 

on the domain R, where L is a differential operator, u is the 
field variable, and f is a known function. The dependent 
variable, u, is approximated as 

m 

u=u= 2: N;U; ' 

i=I 
(3.2) 

where theN; are the assumed interpolation functions and the 
u; are the unknown nodal variables. When u is substituted 
into equation 3. 1 , it is unlikely that the equation will be 
satisfied; in fact, the trial solution is defined as 



L u-J=e, (3.3). 

where e is the residual or error because the solution is only 
approximate. The method of weighted residuals seeks to 
determine them unknowns, u;, such that the error, e, over 
the entire solution domain is as small as possible (Huebner, 
1975, p. 106-110). One way of accomplishing this is to 
form a weighted average of the error and require that this 
weighted average vanish over the solution domain, R. If m 
linearly independent weighting or test functions, W;, are 
chosen, and the integral 

f W; edR 
R 

(3.4) 

is required to vanish for each of the weighting functions 
(that is, e is required to be orthogonal to the space spanned 
by theW;), then e equals zero in some average sense. Once 
the weighting functions have been specified, a set of m 
simultaneous equations remains to be solved for the un­
known nodal variables. 

The particular weighted-residual methods differ from 
one another in the choice of the weighting functions. The 
technique most often used to derive finite-element equations 
is known as Galerkin' s method. In this method, the weight­
ing functions are chosen to be the same as the interpolation 
functions of the trial solution, that is, W; =N; for i = 1, 
2, ... ,m. Thus Galerkin's method requires that 

f N; (L u -J) dR =0; i = 1, 2, ... ,m . (3.5) 
R 

The left-hand side of equation 3.5 can be written as the sum 
of expressions governing the behavior of equation 3.1 on 
individual elements. The variable u can be approximated on 
an element as 

n 

u<e>="" N~e) u~e> LJ I I ' 

i = 1 
(3.6) 

where the superscript (e) denotes the restriction of the rele­
vant variable or function to the element and n is the number 
of unknown nodal variables assigned to the element. Then 
the left-hand side of equation 3.5 can be written as the sum 
of expressions of the form 

( N;(e) (L u<e)_J(e>) dR<e>; i=l, 2, ... ,n (3.7) 
JR(e) 

A set of such expressions can be developed for each element 
of the system and then combined. This assembly of the 
element, or local, expressions results in a set of global 

algebraic equations, which must be solved simultaneously. 
The assembly process will not include any spurious contri­
butions as long as the interpolation functions, N;, satisfy the 
compatibility requirement discussed earlier. 

In many cases, it is possible to reduce the order of 
derivatives contained in the governing differential equations 
by applying integration by parts to the integral expressions 
of the finite-element equations. Hence, the interpolation 
functions will be required to satisfy a less stringent compat­
ibility condition. Not only will the choice of approximating 
functions be less restricted, but the surface or line integrals 
that arise from integration by parts provide a convenient 
means of applying certain boundary conditions of the prob­
lem. Such boundary conditions are called natural boundary 
conditions. These boundary integral terms are then usually 
moved to the right-hand side of the system of finite-element 
equations. Although these boundary terms will appear in the 
equations for every element of the system, they need only be 
evaluated on boundary elements since all internal contribu­
tions will cancel. Essential boundary conditions can be ap­
plied to the combined system of equations once the assem­
bly process is complete. Essential boundary conditions are 
those that the nodal values are required to satisfy directly. 
They are usually introduced by eliminating the finite­
element equations that govern the relevant nodal variables. 

The basic idea of the finite-element method is that a 
solution domain of arbitrary shape can be discretized by 
assemblages of elements in such a way that a sequence of 
approximate solutions defined on successively more refined 
discretizations will converge to the exact solution of the 
governing differential equations. In most cases, these ele­
ments are geometrically fairly simple. Common two­
dimensional elements are shown in figure 3 .1. The three­
node triangle is the simplest element that can be used to 
define the linear variation of a quantity in two dimensions. 
Because of its simplicity and its ability to model domains of 
nearly any shape, it is the most frequently used two­
dimensional finite element. The four-node quadrilateral is 
another commonly used linear two-dimensional element and 
may be formed directly or by the combination of two or four 
linear triangles. Elements with additional nodes are used to 
define higher order approximating functions. For example, 
the 6-node triangle can be used to model the quadratic vari­
ation of a field variable and the 10-node triangle can de­
scribe a cubic variation. Other higher order elements are 
possible but are not frequently used. 

It is also possible to construct elements with curved 
sides. These elements, two of which are shown in figure 
3.2, are useful in representing geometries of complex shape 
by allowing curved boundaries to be modeled with fewer 
elements. Such an element is formed by mapping a "parent" 
element defined in some local coordinate system into the 
distorted shape in the global coordinate system. The finite­
element equations are then evaluated by integrations in the 
local coordinate system over the parent element (Huebner, 
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Figure 3.1. Examples of two-dimensional elements: (A) Three-node triangle; (8) Four-node quadrilateral; (C) Six-node triangle; 
(0) Eight-node quadrilateral; (f) Nine-node quadrilateral; (f) Ten-node triangle. 

1975, p. 186). The element geometry is described by poly­
nomial functions in the same manner as the field variables 
using global coordinates as the nodal quantities. If the inter­
polation functions for the element geometry are of the same 
order as those for the field variables, the element is said to 
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be isoparametric. If, on -the other hand, a lower order poly­
nomial is used to describe the geometry than is used for the 
field variable, the element is called subparametric. Super­
parametric elements are those whose geometry is defined by 
a function of higher order. 



D 
"Parent" elements in 

local coordinates 
Curved-sided elements in 
Cartesian coordinates 

Figure 3.2. Two-dimensional "mapping" of some elements. 

Like other numerical techniques for solving 
boundary-value problems, the finite-element method is 
based on the concept of discretization. In contrast to finite­
difference methods, however, the idealization portrays the 
body as continuous and the solution is given as a piecewise­
smooth approximation to the governing differential equation 
over the entire assemblage of elements. Since these ele­
ments can vary widely in size and shape within a single 
network, they can be used to represent exceedingly complex 
geometries. (For accuracy reasons, such variation in size 
and shape should be gradual.) In addition, the finite-element 
method has proved successful in modeling systems com­
posed of various types of materials having very complicated 
properties. 

The more commonly known finite-difference method, 
on the other hand, is based on a pointwise approximation to 
the governing differential equation. In this method, the dif­
ferential equation is replaced by a difference equation writ­
ten at a discrete set of points over some continuous region. 
Usually, these points are arranged in a uniform rectangular 
grid. When irregular geometries are encountered, however, 
boundaries must be represented in a discontinuous 
"stairstep" fashion within the model. This creates a loss of 
accuracy near these boundaries, where the solution is often 
of greatest importance. In addition, the grid spacing re­
quired to represent the most detailed portions of the study 
region must be used throughout the entire solution domain 
unless special mapping procedures are used. In many cases, 
numerical detail is wasted in areas where a larger grid spac­
ing would suffice. 
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Figure 3.3. Finite-difference and finite-element discretiza­
tions: (A) Typical finite-difference grid, and (8) Typical finite­
element grid. 

As an example of how a finite-difference model and 
a finite-element model might be used to represent a complex 
geometrical shape, consider the two-dimensional body in 
figure 3. 3. A uniform finite-difference grid reasonably 
covers the region, but the boundaries must be approximated 
in a highly discontinuous manner. On the other hand, the 
finite-element representation, using the simplest two­
dimensional element, the three-node triangle, gives a much 
better approximation to the region and requires fewer grid 
points. Also, the boundary is approximated much more 
smoothly since it is represented by a series of straight lines. 

Another advantage of the finite-element method is the 
relative ease with which boundary conditions of the problem 
can be handled. Many physical problems have boundary 
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conditions involving derivatives and, in general, the 
boundary of the region being modeled is irregularly shaped. 
Using finite-difference techniques, each boundary condition 
involving a derivative must be approximated by using spe­
cial devices such as noncentered difference equations or 
fictitious external grid points. Since the finite-element 
method generally includes the boundary conditions as inte­
grals in a functional which is being minimized, application 
presents no special problem. 

Additional information on the theory and application 
of the finite-element method can be found in the books of 
Desai and Abel (1972), Strang and Fix (1973), Huebner 
(1975), Segerlind (1976), Pinder and Gray (1977), 
Zienkiewicz (1977), Chung (1978), Becker and others 
(1981), and Carey and Oden (1983). 

CHAPTER 4. DISCRETIZATION OF THE 
FLOW DOMAIN AND REPRESENTATION 
OF FLOW VARIABLES 

In simulating both steady and unsteady flow over 
nonuniform terrain, the method of discretizing the spatial 
domain requires the most careful consideration. The spatial 
discretization determines how well variations in topography 
and surface cover can be resolved and thus how well the 
flow model is able to resolve velocity and water-surface­
elevation gradients. The type of discretization used is re­
lated to the ability of the model to accurately approximate 
the solution of the continuous flow equations. 

The representation of the dependent variables of 
surface-water flow is closely related to the type of spatial 
discretization used and in tum influences both the numerical 
methods that can be used to solve the resulting equation 
systems and the accuracy of the discrete solution. 

In this chapter, we review the experience of re­
searchers who have used varying methods of spatial dis­
cretization in solving the shallow-water equations and vari­
ants of the shallow-water equations. We also review the 
more extensive literature concerning the finite-element solu­
tion of the Stokes and Navier-Stokes equations. Information 
obtained from this work can suggest useful techniques that 
may be applied to the shallow-water equations. 

Equal-Order and Mixed Interpolation for the 
Shallow-Water Equations and Their Variants 

Many researchers solving the primitive shallow-water 
equations by finite-element methods use the same order of 
interpolation for both the velocity components and depth 
(equal-order interpolation). Wang and Conner (197 5), 
Kelley and Williams (1976), Harrington and others (1978), 
Kawahara, Nakazawa, Ohmori, and Hasegawa (1978), 
Kawahara, Takeuchi, and Yoshida (1978), and Tanaka and 
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others ( 1980) use equal-order linear interpolation on trian­
gles in solving the primitive shallow-water equations, while 
Brebbia and Partridge (1976a, 1976b) and Partridge and 
Brebbia ( 1976) use equal-order quadratic interpolation on 
triangles. Malone and Kuo (1981) use equal-order bilinear 
interpolation on four-node quadrilaterals, Taylor and Davis 
( 1975) use equal-order quadratic interpolation on eight-node 
quadrilaterals, and Gray (1977) uses equal-order biquadratic 
interpolation on nine-node quadrilaterals. 

Researchers using equal-order interpolation report 
significant problems in obtaining solutions free of short­
wavelength noise and resort to a variety of techniques for 
dealing with this problem. Gray (1977, p. 4.45) reports 
oscillations in his water-surface-elevation solution. Wang 
and Connor (1975), Tanaka and others (1980), and Malone 
and Kuo ( 1981) report results at element centroids, in an 
attempt to filter out internode oscillations. Lynch (1978, 
p. 4-19) shows that reporting results at element centroids 
has a significant smoothing effect on the solution. Walters 
(written commun., 1984) has pointed out that this procedure 
is equivalent to sampling near the nodal points of an almost­
stationary short-wavelength oscillation. Brebbia and 
Partridge (1976b), Kawahara, Nakazawa, Ohmori, and 
Hasegawa (1978), and Malone and Kuo (1981) use smooth­
ing to obtain stable solutions. Wang and Connor (1975), 
Kelley and Williams (1976), Kawahara, Nakazawa, 
Ohmori, and Hasegawa (1978), Kawahara, Takeuchi, and 
Yoshida (1978), and Tanaka and others (1980) use eddy­
viscosity terms with equal-order interpolation to eliminate 
short-wavelength noise from the solution. Gray (1980, 
p. 1.126-1.128) observes that, in addition, Kawahara, 
Takeuchi, and Yoshida (1978) use a time-stepping scheme 
that is extremely dissipative. Brebbia and Partridge (1976a, 
1976b) use unrealistically large bottom friction to obtain 
results without noise. Harrington and others (1978) use arti­
fically large bottom friction, eddy-viscosity terms, and a 
dissipative fully implicit time-stepping scheme to damp spu­
rious oscillations. 

Workers solving the primitive Navier-Stokes equa­
tions have also used the same order of interpolation for both 
velocities and pressure. It is now recognized, however, that 
the use of equal-order interpolation is the cause of spurious 
oscillations in the pressure solution, as is discussed in detail 
below. Various approaches have been adopted to solve this 
problem. Because these approaches are useful to researchers 
applying finite-element methods to the shallow-water equa­
tions, they are reviewed at length below. 

A widely used approach for eliminating pressure os­
cillations is the use of mixed interpolation, in which a lower 
order of interpolation is used for the pressure than for the 
velocity components. Hood and Taylor (1974) ascribe the 
need for mixed interpolation to error consistency. They sug­
gest that the order of error associated with each dependent 
variable must be the same. Bratianu and Atluri (1980) state 
that the ratio of discrete constraint (continuity) equations to 



discrete momentum equations should be as close as possible 
to the continuum value of 0. 5. For several meshes with 
small numbers of elements, they show that mixed interpola­
tion satisfies this condition quite well and gives better results 
than equal-order interpolation. Schneider and others (1978) 
and Carey (1980) point out that the number of discrete 
constraint equations must not exceed the number of discrete 
momentum equations to avoid overconstraint of the discrete 
system. 

Carey (1980, p. 4.68), however, remarks that mixed 
interpolation is no guarantee that overconstraint will be 
avoided: 

The linear velocity-constant pressure triangle offers a con­
venient example. The velocity is conforming so the veloc­
ity nodes are at the vertices and the pressure node at the 
centroid. In an initial coarse mesh the dimension of the 
velocity space may exceed that of the pressure space. As 
the mesh is refined uniformly the number of elements 
increases faster than the number of nodes until the number 
of pressure degrees-of-freedom exceeds the number of 
degrees-of-freedom for velocity. This implies that the 
number of "constraint equations" in the finite element 
system increases relative to the "equilibrium equations" 
and the problem becomes overconstrained. 

Although these observations are valid, they do not 
adequately explain the difficulties that mixed interpolation 
is used to solve. Olson (1977) and Olson and Tuann (1978b) 
suggest that the real problem is that the system matrix result­
ing from finite-element discretization of the primitive 
Navier-Stokes equations is nonpositive definite because the 
continuity constraint is uncoupled from the momentum 
equations. Spurious pressure modes arise because of this 
and mask the desired pressure solution. Mixed interpolation 
can be used to eliminate the spurious modes in some cases. 

It is also known that solving different forms of the 
equations of flow eliminates the difficulties that mixed inter­
polation is used to solve. Schneider and others ( 1978) ob­
serve that equal-order interpolation is successful if the prim­
itive continuity equation is replaced by a Poisson pressure 
equation. Another approach is to replace the primitive equa­
tions with the vorticity-stream-function equations. Reddy 
and Warburton (1980) adopt this approach and successfully 
interpolate both vorticity and stream function with bilinear 
interpolation functions on four-node quadrilateral elements. 
This scheme is chosen on the basis of the observation of 
Jesperson (1974) that bilinear interpolation on a patch of 
rectangular elements is equivalent to a scheme of 
Arakawa's, which is known to conserve mean kinetic en­
ergy, mean vorticity, and mean square vorticity. 

Additional research into spurious pressure modes gen­
erated by some fmite-element techniques for solving the 
Navier-Stokes equations has accelerated in the last few 
years and is leading to a deeper understanding of the prob­
lem. 

Huyakorn and others ( 1978) report the results of nu­
merical experiments to compare the accuracy of several 

mixed-interpolation elements in solving the Navier-Stokes 
equations. The elements studied are the four-one, eight­
four, and nine-four rectangles and the six -three triangles. 
(The first number refers to the number of velocity nodes, the 
second to the number of pressure nodes. All interpolation is 
continuous except that for the pressure in the four-one 
rectangle.) The four-one element exhibits a spurious 
"checkerboard" pressure mode in an example involving 
steady free thermal convection. This spurious mode is sup­
pressed by specifying pressures or total stresses on at least 
one boundary. The nine-four rectangle is the most accurate 
for both velocities and pressures. The performance of the 
six-three triangles depends on the triangulation pattern used. 
Better results are obtained when six nodes are connected to 
each interior node (fig. 4.1A) than when alternately four and 
eight nodes are connected to each interior node (fig. 4.1C). 
These results also illustrate that solution quality usually 
decreases as the irregularity of the network increpses. 
Hence, one must be careful in inferring information about 
specific elements from their behavior in particular arrange­
ments. 

Hansen and Flotow (1982) discuss standard and up­
wind convection operators for the same two triangulation 
patterns studied by Huyakorn and his coworkers. The solu­
tions depend on the triangulation pattern used for both stand­
ard and upwind elements (see the section "The Convective 
Terms"). The differences are large only for Reynolds num­
bers greater than 100 because only the convection operator 
is nonsymmetric. For Reynolds numbers less than 100, 
there is little dependence on triangulation pattern or upwind 
weighting scheme. 

Carey and Oden (1983, p. 96-138) and Oden and 
Carey (1983, p. 99-150) explain the success of some types 
of mixed interpolation for the steady Stokes equations, for 
which the pressure-mode problem is the same as for the 
Navier-Stokes equations. The problem is put into the con­
text of constrained minimization of an appropriate discrete 
functional using a Lagrange multiplier. The Lagrange multi­
plier turns out to be the hydrostatic pressure, and, in gen­
eral, the approximate velocity and pressure solutions lie in 
different function spaces. Stability and convergence are ob­
tained for velocity and pressure spaces whose elements sat­
isfy a discrete Ladyzhenskaya-Babuska-Brezzi (LBB) in­
equality. Bercovier and Pironneau ( 1977) show that this 
inequality is satisfied for the following conforming approx­
imations: quadratic interpolation for velocities and linear 
interpolation for pressure on triangles, and biquadratic inter­
polation for velocities and bilinear interpolation for pressure 
on rectangles. In addition, the domain is required to be a 
polygon in the plane, and not more than one element side for 
triangles or two for rectangles can coincide with the 
boundary of the domain. On the other hand, linear interpo­
lation for velocities and constant interpolation for pressure 
on triangles fails to satisfy the LBB condition (Carey, 1980, 
p. 4.70). 
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Figure 4.1. Triangulation patterns for two-dimensional finite-element discretizations: (A) One-directional mesh with six nodes 
connected to each interior node and diagonals of negative slope; (8) One-directional mesh with six nodes connected to each 
interior node and diagonals of positive slope; (C) Mesh with alternately four and eight nodes connected to each interior node; (0) 
Hexagonal mesh with six nodes connected to each interior node; (f) Mesh of (0) rotated 90 degrees; (f) Two-directional mesh 
with six nodes connected to each interior node and diagonals of alternating positive and negative slope. 

Fix and others (1979) and Fix (1980) present an alter­
native approach for obtaining stable and convergent solu­
tions to the Navier-Stokes equations. These authors estab­
lish a necessary relationship between the pressure and 
velocity function spaces and show that the velocity spaces 
must satisfy a certain decomposition property. 

By studying the behavior of the algebraic equations 
derived by applying the finite-element method to small 
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patches of elements for steady Stokes flow, Sani, Gresho, 
Lee, and Griffiths ( 1981) and Sani, Gresho, Lee, Griffiths, 
and Engelman ( 1981) are able to characterize conditions 
giving rise to spurious pressure modes for a number of 
elements involving both equal-order and mixed interpola­
tion. Since the pressure-mode problem for the steady Stokes 
equations is equivalent to the pressure-mode problem for the 
steady Navier-Stokes equations, and since the steady 



Navier-Stokes equations are equivalent to the steady 
shallow-water equations with pressure corresponding to 
depth and other appropriate identifications (Zienkiewicz and 
Heinrich, 1979, p. 681), the characterizations made by Sani 
and his coworkers apply equally well to the steady shallow­
water equations. It must be noted, however, that the corre­
spondence between the steady Navier-Stokes equations and 
the steady shallow-water equations requires that the dis­
tance, h, to the bed from a horizontal reference plane be 
much greater than the distance, 11· from the water surface to 
the reference plane. 

Mixed interpolation on isoparametric quadrilaterals 
with continuous bilinear velocity and discontinuous constant 
pressure exhibits a spurious "checkerboard" pressure mode. 
(The discontinuous pressure approximations considered by 
Sani and his coworkers use Gauss-point pressure nodes.) 
Filtering and smoothing techniques (Sani, Gresho, Lee, and 
Griffiths, 1981, p. 36-38) must be used to obtain useful 
pressures. Equal-order interpolation with continuous bilin­
ear velocity and either continuous or discontinuous bilinear 
pressure on isoparametric quadrilaterals displays multiple 
pressure degeneracies. The situation is worse with equal­
order interpolation on higher order elements. 

Mixed interpolation with continuous biquadratic ve­
locity and continuous bilinear pressure has no spurious pres­
sure modes. Mixed interpolation with continuous bi­
quadratic velocity and discontinuous bilinear pressure 
exhibits one spurious pressure mode, which can be sup­
pressed by avoiding the specification of the tangential com­
ponent of velocity on the boundary of the domain. A pres­
sure filter is described by Sani, Gresho, Lee, Griffiths, and 
Engelman (1981, p. 177, 178) for obtaining physical pres­
sures in this case. 

The continuous eight-node "serendipity" velocity ele­
ment with continuous bilinear pressure exhibits no spurious 
pressure modes. However, the element has other difficulties 
related to the imbalance in the number of nodes along the 
side and through the center of the element. If discontinuous 
bilinear pressure is used with the same velocity element, at 
least three spurious modes occur. Mixed interpolation with 
continuous biquadratic velocity and discontinuous linear in­
stead of discontinuous bilinear pressure (the nine-three ele­
ment) has no spurious modes. This element is also discussed 
by Engelman, Sani, Gresho, and Bercovier (1982). 

These results are related to those of Bercovier and 
Pironneau ( 1977) by the fact that the existence of spurious 
pressures modes implies that the LBB inequality does not 
hold (Carey, 1980, p. 4.68, 4.69; Sani, Gresho, Lee, 
Griffiths, and Engelman, 1981, p. 180). 

Jackson and Cliffe (1981) examine in detail the spuri­
ous pressure modes on quadrilaterals with continuous nine­
node velocity interpolation and continuous eight-node pres­
sure interpolation and show that the spurious modes can be 
suppressed by including one eleven-eight element in a grid. 
The overall ratio of pressure unknowns to velocity un-

knowns is much closer to the continuum ratio of 0. 5 than it 
is for the continuous nine-four, eight-four, or six-three ele­
ments. Jackson and Cliffe (1981, p. 1677) state: "It seems 
reasonable to expect the above methods to give improved 
performance over the 9-node full biquadratic velocity inter­
polation 4-node bilinear pressure element, due to the higher 
order of approximation of the pressure, together with the 
fact that incompressibility is more closely enforced." Jack­
son and Cliffe point out that this suggests the possibility of 
using such special elements to suppress spurious modes with 
equal-order interpolation. 

The effect of isoparametric transformations on spuri­
ous pressure modes has been studied by both Sani and his 
coworkers and Jackson and Cliffe. Sani, Gresho, Lee, and 
Griffiths (1981, p. 32-36) note that a distorted isoparamet­
ric network gives rise to an "impure" spurious pressure 
mode for combinations of element types and boundary con­
ditions supporting "pure" spurious pressure modes. These 
impure modes can be manifested in large velocity errors. 
When no spurious pressure modes are present, Jackson and 
Cliffe ( 1981, p. 1677) observe that a "small" isoparametric 
transformation cannot lead to such modes. It is apparently 
unknown how large the "small" can be without introducing 
spurious modes. 

The remainder of this section is devoted to the shallow­
water equations, which differ from the Navier-Stokes equa­
tions in several respects. The behavior of solution al­
gorithms for the shallow-water equations is complicated by 
the coupling of depth (or water-surface elevation) and veloc­
ities in the continuity equation, which now contains the 
partial derivative of depth with respect to time. This added 
term is responsible for the phase speed (the ratio of the 
temporal frequency to the wavenumber in Fourier analysis) 
being finite for the shallow-water equations but infinite for 
the Navier-Stokes equations and leads to different spurious 
modes for the two systems of equations (R.A. Walters, 
written commun., 1984). In spite of these differences, many 
of the approaches that are useful for the Navier-Stokes equa­
tions are also useful for the shallow-water equations. 

Success in solving the Navier-Stokes equations with 
certain types of mixed interpolation led researchers working 
with the shallow-water equations to apply the same tech­
nique. Quadratic interpolation for velocity components and 
linear interpolation for depth or water-surface elevation on 
triangles is used by Norton and King (1973), Norton and 
others (1973), Tseng (1975a, 1975b), King and Norton 
(1978), Walters and Cheng (1978, 1980), Norton (1980), 
and Gee and MacArthur ( 1982). Thien pont and Berlamont 
( 1980) use quadratic interpolation for velocity components 
and bilinear interpolation for depth on eight-node quadrilat­
eral elements (see p. 4.12). 

In the last several years, research on the application of 
finite-element methods to the shallow-water equations has 
focused on the application of analytical techniques to under­
stand the behavior of solution algorithms. 
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Gray and Lynch (1977, 1979), Lynch (1978), and 
Lynch and Gray (1979) apply Fourier methods to study 
various time-stepping schemes for the shallow-water equa­
tions with both the primitive and wave continuity equations. 
.These studies are done in the context of the linearized one­
dimensional shallow-water equations with a linearized fric­
tion term. Equal-order interpolation is used for velocity and 
water-surface elevation. These authors observe that most 
schemes using the primitive continuity equation have seri­
ous problems with short-wavelength noise and that none of 

·the schemes using the primitive continuity equation propa-
. gate 2dx waves, that is, waves having a wavelength twice 

the grid spacing, dx (Gray and Lynch, 1979, p. 54, 55). 
Lynch and Gray (1979, p. 214-217) show that schemes 
using the wave continuity equation propagate 2dx waves 
and imply that this fact is related to the capability of wave­
equation models to yield water-surface-elevation solutions 
without spurious oscillations in cases where short­
wavelength modes are forced. It remained for Platzman to 
more fully explain the short-wavelength-noise problem. 

Platzman ( 1978, 1981) studies the effect of spatial dis­
cretization on model response for the linearized shallow­
water equations without friction in one and two dimensions. 
(Platzman does not discretize time.) He considers both 
primitive and derivative formulations. The derivative for­
mulation is obtained by using Stokes/Helmholtz potentials 
and is equivalent to a wave-equation formulation in surface 
elevation alone. Platzman studies these different formula­
tions by Fourier methods, in which the effect of the different 
semidiscretizations on a single term of a Fourier-series solu­
tion is analyzed. A single such term, in one dimension, is 
written as 

TJ = 11 exp [ i ( w t + k x)] 
(4.1) 

U = U exp [i (w t+k x)] 

in which tis time; xis distance; i =v'=T; w is the temporal 
frequency; k is ·the spatial frequency or wavenumber; 
TJ = H - h , the difference between the total depth, H, and the 
mean depth, h; U is the velocity; and 11 and U are coef­
ficients. Substituting equation 4.1 into the linearized 
shallow-water equations or the linear wave equation and 
requiring the existence of a nontrivial solution yields the 
requirement 

(4.2) 

for an exact solution. The phase velocity, c, is defined by 

w 
c=-

k 
(4.3) 

Thus, for the exact solution, the phase velocity is a constant, 
Vih, the celerity of a gravity wave. The frequency, w, as 
a function of wavenumber, k, is called the dispersion rela-
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tion. Thus, for the exact solution, the dispersion relation is 
linear with slope Viii . For the semidiscretizations consid­
ered by Platzman, the phase velocity is not constant and· the 
dispersion relation is not linear. For equal-order line~rinter­
polation with the primitive formulation, the dispersion curve 
is approximately linear for small wavenumbers but reaches 
a maximum and decreases to zero for a wavelength of 2dx . 
Such a dispersion relation is said to be "folded~' in that there 
are multiple wavenumbers corresponding to each frequency~ 
The shape of the curve implies that forcing the model at a 
given frequency will result in model response not only at a 
desired small wavenumber but also at an unwanted large 
wavenumber. In particular, 2dx waves have zero fre­
quency, as noted also by Gray and Lynch (1979, p. 54, 55). 
On the other hand, the wave-equation or derivative model 
gives a monotonically increasing dispersion relation, and no 
spurious modes exist. In particular, modes having a wave­
length of 2dx propagate. 

Platzman (1981, p. 41) also states that spurious 
modes can be avoided in primitive models by using linear 
interpolation for velocity and quadratic interpolation for 
water-surface elevation (one order higher for water-surface 
elevation). Walters and Carey (1983, p. 57, 58) observe that 
Platzman' s statement is based . on a cqtoff wavelength of 
4dx rather that 2d x. In fact, linear interpolatio1;1 for velocity 
and quadratic interpolation for water-surface elevation suf­
fers from multiple, spurious surface-elevation .. modes, as 
discussed below. 

Platzman ( 1981, p. 49-59) extends his results to the 
linearized shallow-water equations in two. dimensions. He 
considers longitudinal motions (no motion in the y­
direction) for the triangulation patterns shown in figures 
4.1£ and 4.1C. The results· complement the findings of 
Huyakom and others.(1978). When six nodes. are connected 
to each interior node, as in figure 4.1£, the results are 
analogous to those for one dimension. When alternately four 
and eight nodes are connected. to each interior node, . as in 
figure 4.1C, the surface-elevation solution exhibits short­
wavelength noise when a primitive model is used. This 
noise is eliminated by a derivative or wave-equation model. 

Walters and Carey (1983, 1984) also useFourier meth­
ods to characterize the behavior of various kinds of interpo­
lation for the linearized shallow-water equations in both one 
and two dimensions. Uniform meshes are used. Walters and 
Carey obtain the following results for one-dimensional 
semidiscretizations. Equal-order interpolation for velocity 
and water-surface elevation exhibits a spurious surface­
elevation mode. In the case of quadratic velocity and linear 
surface-elevation interpolation, the 4dx cutoff for surface 
elevation eliminates spurious surface-elevation modes. 
However, spurious velocity modes still exist. This explains 
the need for some dissipative mechanism even when 11}-ixed 
interpolation is used to solve the shallow-water equations. 

For quadratic surface elevation and linear velocity, 
there are a number of spurious surface-elevation modes. As 



noted above, this finding differs from the statements of 
Platzman (1981, p. 41). Walters and Carey also find no 
spurious modes for linear velocity and constant surface­
elevation interpolation. However, for this form of mixed 
interpolation, the surface elevation is discontinuous between 
elements. Furthermore, linear interpolation for velocity and 
constant interpolation for surface elevation may result in an 
overconstrained system. The effect of this form of interpola­
tion is similar to that of a staggered-grid finite-difference 
scheme. Such schemes are discussed in greater detail in the 
section "Discontinuous Interpolation." 

Walters and Carey also study the consequences of var­
ious types of discretization for the linearized two­
dimensional shallow-water equations. More spurious modes 
are exhibited by two-dimensional schemes than by their 
one-dimensional counterparts. 

Walters and Carey analyze equal-order linear interpola­
tion on triangles for the triangulation pattern shown in figure 
4.18, in which each interior node is connected to six adjoin­
ing nodes. Three spurious modes are found. The triangula­
tion pattern shown in figure 4.1C, with alternately four and 
eight nodes connected to each interior node, performs even 
more poorly. Mixed six-three interpolation on triangles has 
no spurious surface-elevation modes. The behavior of the 
velocity solution is not discussed, but it can be inferred from 
the discussion of the one-dimensional case that spatial oscil­
lations in velocity exist. Mixed nine-four interpolation on 
rectangles can be inferred to have no spurious surface­
elevation modes but again to exhibit spatial oscillations in 
velocity. Mixed three-six interpolation on triangles has 
many spurious modes. Mixed three-one triangular interpola­
tion leads to an overconstrained system for meshes with 
more than a few elements. Mixed four-one interpolation on 
rectangles exhibits a spurious "checkerboard" mode. 

Walters and Carey (1983, p. 60) discuss the relation­
ship between the steady shallow-water equations and the 
steady Navier-Stokes equations and observe that the evolu­
tion of spurious modes is different in the shallow-water and 
Navier-Stokes equations: 

The analysis of steady flows for the shallow water equa­
tions with H > >11 is indentical to that for the Navier­
Stokes equations: the time derivative in the continuity 
equation vanishes and the spurious elevation (pressure) 
modes are characterized by w=O as indicated in the one­
dimensional analysis. While the same modes exist for the 
shallow-water and Navier-Stokes problems, the evolution 
of these modes is entirely different, as is found experimen­
tally and can be inferred from the equations. The spurious 
modes for the Navier-Stokes equations exist independ­
ently of any time-dependence of the equations. These 
modes will appear at the outset and have different magni­
tude with each solution iteration, and are uncoupled from 
the velocity field (P. Gresho, personal communication, 
1980). On the other hand, the shallow water equations are 
generally free of these oscillations at least early in the flow 
simulation. When spurious modes exist, however, they 

increase as a function of time and are coupled between 
the surface elevation and velocity. 

Mullen and Belytschko ( 1982) carry out analyses of 
the two-dimensional wave equation similar to those of the 
linearized shallow-water equations performed by Lynch, 
Gray, Platzman, Walters, and Carey. (Recall that in the 
linearized case, the shallow-water equations can be reduced 
to a second-order wave equation in either velocity or surface 
elevation.) Mullen and Belytschko consider different direc­
tions of wave propagation in their analyses. Thus, their 
results add information to that obtained by the above au­
thors. Bilinear quadrilateral elements and linear triangular 
elements with four different triangulation patterns are con­
sidered. The ratio of the discrete-solution phase 'velocity to 
the continuum-solution phase velocity, the dispersion ratio, 
is shown to be affected by the direction of propagation. 
Triangular elements yield somewhat poorer dispersion 
curves than do quadrilateral elements. The four triangula­
tion patterns considered are as follows: the one-directional 
mesh, with six nodes connected to each interior node, 
shown in figure 4.1A; the hexagonal mesh, also with six 
nodes connected to each interior node, shown in figure 
4.1D; the mesh with alternately four and eight nodes con­
nected to each interior node, as discussed by Platzman 
(1981) and Walters and Carey (1983) and shown in figure 
4.1C; and the mesh, also with six nodes connected to each 
interior node, shown in figure 4.1F. The hexagonal ar­
rangement performs better than the other triangulation pat­
terns and also minimizes the directional dependence of the 
phase velocity. Again, as in the work of Huyakorn and 
others (1978), solution quality decreases as the irregularity 
of the network increases. 

Walters (1983) summarizes some of the results of 
Walters and Carey (1983). Six-three interpolation on trian­
gles and nine-four interpolation on rectangles are said to be 
the most successful mixed-interpolation elements. Results 
of numerical experiments are reported that corroborate the 
theoretical calculations of Walters and Carey (1983). 
Walters uses a rectangular basin with quadratically varying 
depth and reports results for both mixed-interpolation prim­
itive and equal-order-interpolation wave-equation formula­
tions. The mixed-interpolation formulation yields smooth 
water-surface elevations, but oscillations are observed in the 
velocities. Walters observes that a physically reasonable 
value of the eddy viscosity is used here. Much larger values 
are needed to smooth the observed velocity oscillations. The 
wave-equation formulation yields smooth elevations and ve­
locities. 

Walters observes that an additional problem with 
mixed-interpolation models is that continuity is not well 
enforced because the ratio of discrete continuity constraints 
to discrete momentum equations is much smaller than the 
continuum ratio of 0.5. The same observation is made by 
Gee and MacArthur (1978), King and Norton (1978), and 
Walters and Cheng (1978, 1980). 
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These difficulties are resolved by wave-equation 
models. Equal-order interpolation can be used for velocities 
and water-surface elevations, yielding a better ratio of con­
tinuity to momentum equations. There are no spurious 
modes, and it is not necessary to resort to unrealistically 
large eddy-viscosity values to obtain smooth solutions. 

Discontinuous Interpolation 

Although several authors use discontinuous finite­
element approximations to model variables that are discon­
tinuous (Thompson and Chen, 1970; Oden and Wellford, 
1974; Chung, 1979), our concern in this section is the use 
of discontinuous approximations of continuous variables. 
Several discontinuous approximations, the three-one trian­
gle, the four-one quadrilateral, and the discontinuous ele­
ments studied by Sani and his coworkers, were discussed in 
the preceding section. 

One difficulty with discontinuous approximations is 
that the solutions of the discrete problems may not converge 
to the solution of the continuum problem as the mesh is 
refined. The line integrals along interelement boundaries 
that arise when the finite-element method is applied to 
second-order partial-differential equations can be neglected 
only if the first-derivative terms in the line integrals exhibit, 
at most, a finite jump discontinuity at element interfaces. If 
they do not, the finite-element algorithm is not likely to be 
consistent. (A method is called consistent if the solutions of 
the discrete problems converge to the solution of the contin­
uum problem as the mesh size approaches zero.) 

In the shallow-water equations, the line integrals that 
arise from the application of Green's theorem to the second­
order viscous terms are potentially troublesome if the veloc­
ity approximation is discontinuous at element boundaries. 
Since only the first derivative of water-surface elevation 
appears in the primitive shallow-water equations, interele­
ment discontinuities in the surface-elevation approximation 
present no difficulties if the terms involving surface-eleva­
tion derivatives are intergrated by parts. 

In general, finite-element theory requires that the inter­
polation functions and their first m -1 derivatives be contin­
uous across element boundaries for a partial-differential 
equation of order 2m . Approximations satisfying this re­
quirement are called conforming (see chap. 3). Since m = 1 
for a second-order equation, continuity of interpolation 
functions across element boundaries is sufficient for an ap­
proximation to be conforming. 

A "patch test" was suggested by Irons and Strang (Irons 
and Razzaque, 1972; Strang, 1972; Strang and Fix, 1973, 
p. 174-181; Irons, 1975) for determining whether a non­
conforming approximation converges to the desired contin­
uum solution. Most nonconforming approximations that 
pass the patch test do so only for regular grids. For irregular, 
isoparametrically distorted grids, the patch test usually fails 

16 Two-Dimensional Surface-Water Flow, Horizontal Plane 

(Strang and Fix, 1973, p. 177). For Poisson's equation, 
there is one irregular nonconforming element that does pass 
the test. It involves linear functions on triangles with the 
nodes placed at the midpoints of the edges (Strange and Fix, 
1973, p. 178). Unfortunately, the patch test is not equivalent 
to consistency. A counterexample to the patch test is given 
by Stummel ( 1980), who proves a generalized patch test for 
a class of elliptic boundary-value problems (Stummel, 
1979). 

The use of nonconforming approximations has re­
ceived attention in solving the Navier-Stokes equations be­
cause it is necessary to weaken interelement continuity con­
straints to satisfy the continuity equation (iJu/iJx +iJvliJy =0) 
exactly. Approximations satisfying the continuity equation 
exactly are frequently referred to as "solenoidal" approxi­
mations. Detailed descriptions of the use of such approxi­
mations are given by Samuelsson (1978), Fortin and 
Thomasset (1979), and Raviart (1980). 

The use of discontinuous approximations has been 
further motivated by the success of finite-difference re­
searchers in solving the Navier-Stokes equations (Harlow 
and Welch, 1965) and the shallow-water equations 
(Leendertse, 1967) with the use of staggered grids, in which 
velocity and surface elevation are defined at alternating grid 
points. 

Piva and others ( 1980) implement the staggered-grid 
marker-and-cell (MAC) scheme of Harlow and Welch in a 
finite-element context for the Navier-Stokes equations. 
Boundary-fitted coordinates (Thames and others, 1977) are 
implemented for this algorithm, but the method does not 
appear capable of being generalized to completely irregular 
networks. 

Williams and Schoenstadt (1980) and Williams and 
Zienkiewicz ( 1981) show that the use of linear interpolation 
for velocity and constant (within an element) interpolation 
for surface elevation (or vice versa) applied to the linearized 
one-dimensional shallow-water equations has the same ad­
vantages as equal-order but staggered linear interpolation 
for both velocity and surface elevation. Fourier techniques 
are used to show the accuracy of these formulations. Al­
though not as accurate as staggered linear interpolation in 
one dimension, the linear-constant formulations can be 
readily generalized to two dimensions. However, as noted 
by Walters and Carey (1983), the two-dimensional formula­
tions employing linear velocity and constant surface­
elevation on triangles and bilinear velocity and constant 
surface elevation on rectangles have major difficulties (see 
the preceding section). 

A model employing linear surface elevation and con­
stant velocity on triangles has been implemented by 
Shubinski and Walton (1981). Reversing the order of inter­
polation on triangles eliminates the problem of an overcon­
strained system for large grids but makes the velocity inter­
polation discontinuous between elements. Shubinski and 
Walton (1981, p. 252) neglect the second-order terms in the 



shallow-water equations and thus avoid the problem of con­
sistency that arises with discontinuous velocity approxima­
tions in the context of second-order equations. 

Platzman (1981, p. 40), in his analysis ofthe linearized 
one-dimensional shallow-water equations, recognizes that 
the advantages of staggered interpolation can be achieved by 
interpolating not velocity, but the indefinite integral of ve­
locity (the Stokes/Helmholtz potential). In this way, discon­
tinuous interpolation of velocity is avoided, and equal-order 
interpolation can be used for both dependent variables. As 
discussed in the preceding section, this approach is equiva­
lent to the use of a wave continuity equation. 

Whenever an interpolation function is associated with 
a node in the interior of an element (not on the boundary of 
the element), the equations associated with that node can be 
eliminated at the element level. This reduces the size of the 
equation system that ultimately must be solved. Several 
researchers have used discontinuous velocity fields for this 
reason. Herding (1978) solves the shallow-water equations 
with a "hybrid" model, in which the momentum equations 
are satisfied at the element level only and surface elevation 
is solved on linear triangles. Ultimately, the velocity is 
computed at element centroids. Averaging is used to report 
nodal velocities. Although different terminology is used, 
this approach is similar to that of Shubinski and Walton 
( 1981). Herding uses second-order terms and does not ad­
dress the consistency question that arises in this case. 
Herrling' s approach is also used by Meissner ( 1978a, 
1978b) in solving the one-dimensional flow equations. 

Another implementation of the finite-element approach 
involving discontinuous approximations involves penalty 
functions. Most of the applications of this idea have been to 
the Navier-Stokes equations, but the penalty approach has 
also been applied recently to the shallow-water equations. 

In solving the Navier-Stokes equations in two spatial 
dimensions, this approach involves the replacement of the 
solenoidal velocity-field constraint, 

au+ av =0 
ax ay ' (4.4) 

by the expression 

A (au+ av)=-ax ay P ' (4.5) 

where A> >0 is the penalty parameter and p is the pressure. 
Under suitable conditions, the solution of the penalty prob­
lem converges to the solution of the Navier-Stokes equa­
tions as A~+ oo. Substitution of the penalty function into the 
momentum equations permits elimination of the pressure 
terms, thus reducing the size of the system to be solved. 

It has been found that the discrete problem is overcon­
strained unless the penalty term is underintegrated. The 
pressure approximation is then defined in terms of the 

penalty term at the reduced integration points. Thus, the 
pressure approximation is discontinuous across interelement 
boundaries, and the pressures can be eliminated at the ele­
ment level. 

Bercovier ( 1977) discusses a number of combinations 
of elements and corresponding reduced integration formu­
las. Malkus and Hughes ( 1978) show that mixed interpola­
tion for the Navier-Stokes equations is equivalent to a 
penalty-function approach with reduced integration of the 
penalty terms if the penalty-term integration points are the 
pressure nodes of the mixed method. Malkus and Hughes 
(1978, p. 71) give a table of velocity-element types, 
reduced-integration formulas, and corresponding pressure­
element types that can be used with the Navier-Stokes equa­
tions. If is suggested that nine-node and four-node quadrilat­
erals perform better than eight-node quadrilaterals and 
triangular elements, each with appropriate reduced integra­
tion formulas. 

Hughes and others (1978, 1979) use a penalty-function 
formulation of the Navier-Stokes equations with bilinear 
interpolation for velocity on quadrilateral elements and one­
point integration of the penalty term to solve a variety of 
incompressible viscous flow problems. 

Four-node and nine-node isoparametric quadrilaterals 
with selective reduced integration are used by Heinrich and 
others (1978). Heinrich and Marshall (1979) compare 
penalty results using four-node, eight-node, and nine-node 
rectangles. Nine-node rectangles are reported to be superior 
to the other two types. 

The use of the penalty method does not resolve the 
problem of spurious pressure modes discussed in the preced­
ing section. In the context of Stokes flow, Carey and Oden 
(1983, p. 148-166) point out that the bilinear quadrilateral 
with one-point integration of the penalty term exhibits the 
same spurious mode that four-one mixed interpolation on 
quadrilaterals exhibits. In general, Carey and Oden show 
that a penalty method must satisfy a discrete LBB inequal­
ity, just as mixed interpolation must. 

Oden and others ( 1980) and Song and others ( 1980) 
show that for certain choices of boundary conditions, bilin­
ear quadrilaterals with one-point integration of the penalty 
term and biquadratic quadrilaterals with four-point integra­
tion of the penalty term both fail the LBB test. These results 
contradict the results obtained numerically by several of the 
authors cited above. On the other hand, biquadratic quadri­
laterals with one-point integration and quadratic triangles 
with one-point integration both satisfy an LBB inequality. 
Nine-node biquadratic quadrilaterals with three-point inte­
gration (and thus a discontinuous linear pressure approxima­
tion) also satisfy an LBB inequality (J.T. Oden, oral com­
mun., 1981). 

The statements of Oden and his coworkers are contra­
dicted by numerical results presented by Sani, Gresho, Lee, 
Griffiths, and Engelman (1981, p. 194-197), who find con­
verging velocities and pressures for penalty formulations of 
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the Stokes problem using both bilinear quadrilaterals with 
one-point integration of the penalty term and biquadratic 
quadrilaterals with four-point integration of the penalty 
term. 

Bercovier and Engelman ( 1979) use the penalty 
method with nine-node isoparametric quadrilaterals and 
four-point integration of the penalty term (and thus a discon­
tinuous bilinear pressure approximation) to solve viscous 
incompressible flow problems. It is shown that this ap­
proach yields a stable, positive-definite system and thus 
allows Gaussian elimination without pivoting. 

Sani, Gresho, Lee, Griffiths, and Engelman (1981, 
p. 183) show that the penalty method automatically filters 
the pressure and suppresses spurious pressure modes as the 
mesh is refined. These authors also point out that this 
penalty filter is very effective for the nine-node element but 
less so for the four-note element. Using this element, 
Hughes and others (1979, p. 14) must smooth the penalty 
pressures to eliminate spurious oscillations. 

Olson and Tuann (1978a, p. 876) and Tuann and Olson 
(1978, p. 6) suggest that the penalty solutions of Hughes and 
others ( 1978) suffer from an artificial diffusion caused by 
the underintegration of the penalty term. This criticism is 
investigated by Engelman and others (1982), who compare 
the accuracy of two implementations of the penalty method. 
The first is the standard implementation, which uses the 
original divergence constraint in the momentum equations, 
together with selective reduced integration. The second uses 
a weaker divergence constraint, obtained by projecting the 
original constraint onto the function space containing the 
discrete pressures. Consistent integration is used with this 
formulation. Engelman and his coworkers show that, in 
general, the consistent method is more accurate than the 
selective-reduced-integration method. For the four-node bi­
linear quadrilateral and one-point integration, the two meth­
ods are equivalent. However, for the nine-node biquadratic 
quadrilateral with 2 x 2 integration, the methods are equiva­
lent only for straight-sided elements. For curved-sided ele­
ments, the selective-reduced-integration method is less ac­
curate than the consistent method. The situation is the same 
for the nine-node biquadratic quadrilateral with discontinu­
ous linear pressure. 

Zienkiewicz and Heinrich (1979) apply the penalty 
method to the steady shallow-water equations. The assump­
tion is made that the distance, h, to the bed from a horizontal 
reference plane is much greater than the distance, TJ, from 
the water surface to the reference plane. This assumption 
makes the application of the penalty method much easier, 
but it is not valid for many river flows. Following the ap­
proach used with the Navier-Stokes equations, the steady­
state continuity equation, 

~ [(h +TJ) U]+aa [(h +TJ) V]=O , (4.6) ax Y 

is replaced by the equation 
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(4.7) 

where X is the penalty function. This equation is used to 
eliminate the surface elevation, TJ, from the weak form of 
the momentum equations. Four-, eight-, and nine-node 
quadrilaterals are used with appropriate reduced integration 
of the penalty terms. Again, we note that the controversy 
about whether the penalty method converges as the mesh 
size approaches zero applies to the three elements used by 
Zienkiewicz and Heinrich. 

Resolution of the Domain and 
Network Irregularity 

In addition to model formulation, the topography, sur­
face cover, and boundaries of the flow domain, together 
with the boundary conditions, determine the response of the 
model. The modeler must be concerned with resolving not 
only the topography, surface cover, and boundaries of the 
flow system, but also water-surface elevation and velocity 
gradients. In addition, the shape, grading, and positioning 
of the elements affect the quality of the solution. 

In the section "Equal-Order and Mixed Interpolation 
for the Shallow-Water Equations and Their Variants," a 
number of finite-element algorithms that exhibit spurious 
short-wavelength oscillations are discussed. These short­
wavelength modes can be forced by network nonuniformity 
or by variations in model topography or boundaries. 

Kelley and Williams ( 1976) solve the shallow-water 
equations with equal-order linear interpolation for velocity 
components and depth on triangles. Some numerical noise 
is observed with a uniform grid, more with a nonuniform 
grid. The authors report that a low-resolution grid requires 
a much higher eddy-viscosity value to damp the noise than 
does a high-resolution grid. A smoothly varying grid gives 
somewhat better results than does an abruptly varying grid. 

Thacker ( 1978b), who solves the linearized shallow­
water equations with gravity and Coriolis forces but without 
viscous terms, uses equal-order linear interpolation for ve­
locity components and water-surface elevation on triangles. 
He is able to obtain a stable solution for a circular basin of 
constant depth using a regular grid, but is not able to for a 
circular basin of constant depth using an irregular grid or for 
a circular basin of varying depth using a regular grid. 

The experiences of Kelley and Williams and Thacker 
indicate that the spurious modes exhibited by equal-order 
interpolation are forced by both model topography and net­
work nonuniformity. Walters (1983, p. 602) makes a simi­
lar observation for mixed interpolation: 

Although mixed interpolation removes the spurious 
mode in sea level, it is still subject to the short wavelength 
mode in velocity. There is more energy being accumu­
lated than can be dissipated with realistic values of eddy 



viscosity. This can be demonstrated numerically with the 
use of constant depth, linearly varying depth, and quadrat­
ically varying depth in the rectangular network. In the first, 
viscosity is not required; in the second, moderate values 
are required, whereas in the last large values are required. 
Refinement can be of help in that it removes the short 
wavelength forcing (effectively, it moves it to longer wave­
lengths) and thus does not excite the troublesome eigen­
modes. However, the problem here is clearly not the fault 
of an improper subgrid-scale model; rather, it is due to the 
poor phase speed accuracy at small wavelengths. 
Mercer and Faust (1977, p. 1.31-1.35) claim that de-

creasing element size is effective in removing oscillations at 
sharp fronts for parabolic problems but not in reducing oscil­
lations for hyperbolic problems. This assertion is contra­
dicted by Platzman (1981), who shows that the problem is 
quite complex. Platzman (1981 , p. 41, 55) discusses the 
effect of grid resolution on tidal-model response. Even for 
primitive-equation models, a smooth response is possible in 
spite of a folded dispersion relation if the grid size is small 
with respect to the principal wavelength. In this case, Platz­
man (1981, p. 45, 55) shows that the spurious mode is not 
significant except very close to one of the spurious reso­
nances. Platzman points out that in modeling flow in a 
straight channel, Gray and Lynch (1979) chose their grid 
size such that the frequency of the slowest spurious reso­
nance was approximately that of the second natural reso­
nance. This explains the noisiness of their solution. 
Nonetheless, Platzman agrees that the absence of a folded 
dispersion relation in the derivative or wave-equation mod­
els gives a smoother response than can be obtained with a 
primitive model. 

The same point is made by Cheng and Walters (1982, 
p. 105), who state: "*** in space discretization one picks a 
sufficient refinement such that there is little energy at the 
smallest wavelengths." 

Although primitive models using mixed interpolation 
do not exhibit spurious surface-elevation modes (they do, 
however, exhibit velocity modes), they suffer from a ratio 
of discrete continuity equations to discrete momentum equa­
tions that is much less than the continuum ratio of 0. 5 . This 
can cause significant errors in mass conservation. Gee and 
MacArthur ( 1978) show that increasing network detail is 
effective in reducing these mass-conservation errors. 

Even for rectangular or other simple basins having 
constant or regularly varying topography, the quality of the 
solution depends on the network design. In their study of the 
two-dimensional wave equation, Mullen and Belytschko 
(1982, p. 14, 15) show that on a regular mesh, phase veloc­
ities are a function of the direction of propagation and the 
effect increases with the element aspect ratio. 

Cullen (1977, 1982) and Cullen and Morton (1980) 
state that the finite-element method on irregular grids is not 
recommended for time-dependent problems of a hyperbolic 
nature, but that the method is suitable for problems of a 
parabolic nature. Linear elements on a smoothly varying 

grid are recommended for hyperbolic problems. Higher 
order elements on irregular grids are seen as useful only for 
steady-state problems. 

The effect of element shape and distortion on solution 
accuracy has been studied by several researchers. The re­
sults of Mullen and Belytschko (1982) have already been 
mentioned. Zlamal (1968) shows that accuracy deteriorates 
if element angles are allowed to approach zero. In the con­
text of isoparametric elements, Strang and Fix ( 1973, 
p. 163) state that all angles should be bounded away from 
zero and 1T to ensure that Jacobians are bounded away from 
zero. Also, element edges should be defined by polynomials 
with uniformly bounded derivatives. 

Engelman, Sani, Gresho, and Bercovier (1982) study 
the effect of small changes in the locations of centroid and 
midside nodes of nine-node isoparametric quadrilaterals on 
the accuracy of solutions to the equations of incompressible, 
viscous flow by the penalty method. A large effect is found 
only when reduced integration of the nondiscretized penalty 
term is used. For consistent integration of the discretized 
penalty term, the effect is not large. 

Numerical Integration 

In most cases, especially those involving isoparametric 
transformations, analytic evaluation of the complicated area 
and line integrals that appear in finite-element formulations 
of two-dimensional flow equations is difficult or impossi­
ble. 

The basic aspects of numerical integration for triangu­
lar and quadrilateral elements are discussed in detail in 
Strang and Fix (1973, p. 181-192) and Zienkiewicz (1977, 
p. 195-204) and will not be repeated here. In this section 
several features of numerical integration that have been re­
ported in the literature and are important for finite-element 
formulations of the two-dimensional surface-water flow 
equations are presented. 

A rule of thumb on the accuracy of a numerical integra­
tion technique required for convergence, based on Irons' 
intuition (Strang and Fix, 1973, p. 186), is that the integra­
tion rule must be sufficiently accurate to compute the ele­
ment area exactly. (As discussed below, higher order inte­
gration than that necessary for convergence often gives a 
more accurate solution.) Strang and Fix discuss the number 
of integration points needed in an element, as does Jackson 
( 1981), who shows that the time matrix (also called the mass 
or capacity matrix), defined by 

(4.8) 

where \jli, i = 1, 2, ... ,N, are the interpolation functions and 
n is the discretized domain, is singular if the number of 
integration points is less than the number of interpolation 
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functions for the element. The time matrix is important in 
transient analyses, where it is multiplied by the partial 
derivative with respect to time of the vector of unknowns. 

Finite-element researchers solving a variety of partial­
differential equations have noted that the use of element 
nodes as integration points increases the sparsity and diago­
nal dominance of the time matrix and, under appropriate 
conditions, yields a diagonal time matrix. Mercer and Faust 
(1977, p. 1.33) make this observation in the context of 
immiscible flow in porous media. 

Gray (1977, p. 4.35-4.37) uses this idea in the form of 
Simpson's rule for nine-node biquadratic isoparametric 
quadrilateral elements. He shows that the Jacobian giving 
the element area is a cubic polynomial in each of two inde­
pendent variables and that a nine-point Simpson's rule is 
sufficient to integrate such a polynomial exactly. With an 
appropriate time-stepping scheme, the time matrix is diago­
nal. This work is extended in Gray and Genuchten (1978), 
where it is noted that Simpson's rule reduces the number of 
operations required to compute the elements of system mat­
rices. Nodal integration is also used by Lynch and Gray 
(1979) with both nine-node quadrilaterals and three-node 
triangles. 

On the other hand, several researchers have raised 
questions about whether the use of nodal lumping is suffi­
ciently accurate. Huyakom (FEWRI, p. 4.339) reports that 
the accuracy with which the convective terms in the Navier­
Stokes equations are integrated significantly affects the ac­
curacy of the solution. 

In solving the shallow-water equations in a rectangular 
basin having variable depth, Walters (1983, p. 597) notes 
larger oscillations in equal-order interpolation on nine-node 
quadrilaterals using nodal integration than in equal-order 
interpolation on six-node triangles using seven-point Gaus­
sian integration. He suggests that the difference may be due 
to the lower order accuracy of nodal integration. 

A related observation is made by Bercovier and 
Engelman (1980, p. 317). In solving the equations for in­
compressible non-Newtonian flow, they report that their 
algorithm is more stable if higher order Gaussian integration 
is used for the highly nonlinear terms. 

The Convective Terms 

The convective terms in the momentum equations are 
important in modeling flows that involve circulation and 
separation. (Circulation is defined as the line integral of the 
tangential component of fluid velocity around a closed 
curve.) Abbott and Rasmussen (1977, p. 236) point out that 
these phenomena can be simulated successfully only if the 
convective terms are correctly handled and the use of unre­
alistically large viscous terms is avoided. Large viscous 
terms tend to suppress circulations induced in part by the 
convective terms. Cheng and Walters (1982, p. 98, 99) 
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make the same point. From measurements of unsteady 
coastal flow, Ree and Schaap (1975) show that the convec­
tive terms are significant and should not be neglected. The 
importance of the convective terms is also discussed by 
Lean and Weare (1979, p. 23). 

In the section "Equal-Order and Mixed Interpolation 
for the Shallow-Water Equations and Their Variants," the 
short-wavelength noise generated by certain models is dis­
cussed. The nonlinear convective terms "cascade" energy to 
shorter wavelengths and thus can contribute to the spurious­
mode problem discussed there (Leendertse, 1967, p. 31-
34). 

In chapter 2, both conservative (divergence) and non­
conservative (convective) forms of the momentum equa­
tions were presented. In solving the steady Navier-Stokes 
equations, Hughes and others (1979, p. 18) report no differ­
ence in solutions using the different forms of the nonlinear 
terms, but Tuann and Olson (1978, p. 9) recommend the 
divergence form of the convective terms over the convective 
form in schemes that alternately solve the momentum and 
continuity (or Poisson pressure) equations. 

Cullen (1977, p. 4.238) and Cullen and Morton (1980, 
p. 257-261) consider different ways of computing the con­
vective terms in a finite-element code. The authors show 
that either of two two-stage methods of calculating the con­
vective terms is preferable to a single-stage method. 

Recently, much interest has been focused on 
convection-dominated (or high-Reynolds-number) flows 
(see FEMCDF), those in which the convective terms are 
large compared with the viscous terms. Many numerical 
solutions of such problems are plagued by spurious oscilla­
tions. 

Evans (1980, p. 208) points out that the convective 
terms in finite-difference models are often represented by 
upwind differences in order to ensure the diagonal domi­
nance of the coefficient matrix and eliminate spurious oscil­
lations. Upwind differencing involves the use of backward 
or forward differencing (depending on the flow direction), 
rather than central differencing, for the first-order (convec­
tive) terms. This procedure usually eliminates numerical 
oscillations but at the cost of a loss of accuracy (Tuann and 
Olson, 1978). 

Christie and others (1976) adapt upwinding to a finite­
element solution of the one-dimensional convection­
diffusion equation by using nonsymmetric weighting func­
tions. Piecewise linear elements are used in this work. 
Oscillations are eliminated but the solutions are not highly 
accurate. Heinrich and others ( 1977) extend this approach to 
two-dimensional bilinear quadrilateral elements and use it to 
solve the two-dimensional convection-diffusion equation. 
Heinrich and Zienkiewicz ( 1977) extend the procedure to 
biquadratic quadrilaterals. 

Hughes (1978) shows that this approach is equivalent 
to the use of standard test and trial functions together with 
the use of a special integration rule to evaluate the convec-



tive term. This finite-element upwinding procedure is ex­
tended to two-dimensional Navier-Stokes flows by Hughes 
and others (1979), who use bilinear quadrilateral elements. 
The work mentioned here and much more is summarized in 
review articles by Zienkiewicz and Heinrich ( 1978) and 
Heinrich and Zienkiewicz ( 1979). 

Other applications of upwinding to the finite-element 
solutions of the Navier-Stokes equations are given by Fortin 
and Thomasset (1979), Hughes and Brooks (1979), and 
Raviart (1980). 

There is considerable controversy about finite-element 
upwinding techniques. Upwinding advocates claim that 
their procedures do not result in the accuracy losses that 
plague finite-difference upwind solutions. On the other 
hand, a number of authors (Gresho and Lee, 1979; Leonard, 
1979; Leone and Gresho, 1981) state that finite-element 
upwinding causes a loss of accuracy and covers up solution 
features that are important to an understanding of the phys­
ical phenomenon under study. 

In the section "Equal-Order and Mixed Interpolation 
for the Shallow-Water Equations and Their Variants," it is 
shown that spurious short-wavelength oscillations can often 
be removed by a variety of procedures in the context of 
standard finite elements. In the section "Resolution of the 
Domain and Network Irregularity" it is stated that numerous 
authors suggest that adequate spatial resolution resolves 
many problems involving numerical oscillations. This ap­
proach is also recommended by Lam ( 1977), who compares 
a linear finite-element scheme with an upwind finite­
difference scheme using flux -corrected transport (Book and 
others, 1975) in solving the linear convection-diffusion 
equation. Gresho and Lee (1979, p. 54-57) disagree with 
the approach of Hughes and others (1979, p. 44-47), who 
use upwinding to remove oscillations in computing flow 
over a step in a channel. Gresho and Lee show that an 
accurate solution can be obtained by grid refinement without 
up winding. Leone and Gresho ( 1981) show that a smooth 
solution is not necessarily an accurate solution. 

Thornton and Dechaumphai (1980) use both standard 
and upwind finite elements to solve a one-dimensional con­
vective heat transport problem. They claim that the standard 
method is better except in regions of large gradients, where 
the upwind method performs better. 

CHAPTER 5. TREATMENT OF 
BOUNDARY CONDITIONS 

Boundary conditions for various formulations of the 
equations of two-dimensional surface-water flow in the 
horizontal plane are discussed in chapter 2. The two types 
of boundary conditions, essential and natural, that are used 
with the finite-element method are discussed in chapter 3. 
There are no unique weak differential equations of surface­
water flow, and thus there are no unique natural boundary 

conditions (Strang and Fix, 1973, p. 70). Most of the possi­
ble continuum boundary conditions have been implemented 
as both essential and natural boundary conditions by differ­
ent authors, as will be described below. Different ways of 
treating a given boundary condition affect the quality of the 
numerical solution. 

Neumann boundary conditions (boundary conditions 
involving normal derivatives of dependent variables) are no 
easier to implement as essential boundary conditions in a 
finite-element formulation than in a finite-difference formu­
lation unless higher order elements are used in which deriva­
tives are nodal variables (Cooke, 1977, p. 6). However, 
Neumann boundary conditions are often easily implemented 
as natural boundary conditions. 

We begin by discussing the implementation of 
boundary conditions for the equations of two-dimensional, 
viscous, incompressible flow. Roache (1972, p. 139-173) 
gives an extensive survey of approaches for handling 
boundary conditions for the vorticity and stream-function 
equations. 

Taylor and Hood (1973, p. 78-81) discuss the treat­
ment of boundary conditions for the primitive Navier-Stokes 
equations. Velocity and pressure boundary conditions are 
treated as essential boundary conditions, and stress and 
normal-velocity-gradient boundary conditions are handled 
as natural boundary conditions. Taylor and Hood (1973, 
p. 82-85) also discuss the implementation of boundary con­
ditions for the vorticity and stream-function equations. The 
authors conclude that it is much easier to handle boundary 
conditions for the primitive equations. Fix (1975, p. 67) also 
notes that implementing boundary conditions for the vortic­
ity and stream-function equations presents major diffi­
culties. 

Hughes and others (1978), who use a penalty-function 
formulation to solve the steady, viscous, incompressible 
flow equations, specify velocities and stresses (or tractions) 
on disjoint segments of the boundary and implement them as 
essential and natural boundary conditions, respectively. 

Huyakom and others (1978, p. 31, 32) use four-node 
quadrilateral elements to simulate steady, free, thermal con­
vection in a square cavity. The solution exhibits the spurious 
"checkerboard" mode if velocity boundary conditions are 
specified on the entire boundary. The spurious mode is 
suppressed if either pressures or stresses are specified on at 
least one side of the domain. 

In solving the steady, viscous, incompressible flow 
equations, McComber and others (1978, p. 133) also assert 
that boundary conditions are easier to handle for the primi­
tive formulation than for the vorticity-stream-function for­
mulation of the flow equations. Working with the steady 
Stokes equations, the authors (McComber and others, 1978, 
p. 135) show that the natural boundary condition for veloc­
ity can involve either stresses or velocity gradients. The 
authors state that the second is easier to handle. The pressure 
term can be integrated by parts or left alone. If it is inte-
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grated, pressure must be handled as part of the natural 
boundary condition (McComber and others, 1978, p. 136). 

Jackson and Cliffe ( 1981 , p. 1662, 1663) also remark 
that the pressure term in the Navier-Stokes equations can be 
left alone or integrated by parts. In the first case, normal­
velocity-gradient boundary conditions are used; in the sec­
ond, stress boundary conditions are used. 

Hughes and others (1979, p. 3, 4, 17) solve the steady 
Stokes and Navier-Stokes equations with velocity and stress 
boundary conditions. When velocities are specified every­
where on the boundary, a consistency condition derived 
from the continuity equation is used: the net flux across the 
boundary is zero. Sani, Gresho, Lee, Griffiths, and 
Engelman (1981, p. 200) also point out that if velocities are 
specified at all boundary nodes, an additional constraint 
equation must be satisfied. Either the boundary data must be 
adjusted to satisfy the constraint, or a natural boundary 
condition must be applied over part of the boundary. 

In both the convection-diffusion equation and the 
Navier-Stokes equations, the way in which boundary condi­
tions are handled greatly affects the quality of the numerical 
solution. Gartling (1978) points out that an essential outflow 
boundary condition is usually incorrect in a convection­
diffusion problem. The numerical solution usually exhibits 
oscillations for this boundary condition. The natural 
boundary condition is more appropriate. Similar observa­
tions are made by Roache ( 1972, p. 161-165), Gresho and 
Lee (1979, p. 49, 50), and Hughes and Brooks (1979, 
p. 26). 

Jackson and Cliffe (1981, p. 1663, 1675), who study 
mixed interpolation for the Navier-Stokes equations, note 
that specifying normal stresses instead of normal velocities 
on one boundary segment reduces the number of spurious 
pressure modes because the number of available test func­
tions is increased. 

Sani, Gresho, Lee, and Griffiths (1981) and Sani, 
Gresho, Lee, Griffiths, and Engelman (1981) discuss the 
relationship between boundary conditions and the existence 
of spurious modes in various finite-element formulations of 
the Navier-Stokes equations. For example, it is shown that 
for mixed interpolation with continuous biquadratic velocity 
and discontinuous bilinear pressure (the pressure nodes are 
located at the 2 x 2 Gauss points), the single spurious pres­
sure mode can be suppressed by avoiding the specification 
of tangential velocity components on the boundary (Sani, 
Gresho, Lee, Griffiths, and Engelman, 1981, p. 177). 

In solving the Navier-Stokes equations, Donea and 
others ( 1981) show that the spurious "checkerboard" mode 
on square meshes of four-node elements is caused by an 
incorrect pressure equation at the boundary, which in turn is 
caused by strict application of the essential tangential­
velocity boundary condition. In the context of a fractional­
steps method, the authors weaken the application of the 
tangential-velocity boundary condition and remove the spu­
rious mode. 
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Many of the ideas used in the treatment of boundary 
conditions for the Navier-Stokes equations can be carried 
over to the treatment of boundary conditions for the shallow­
water equations. 

Connor and Wang (1973) and Wang and Connor 
(1975, p. 84-87), whose models include viscous terms, 
specify flow components (including zero flow components 
at solid boundaries) or water-surface elevations at boundary 
nodes. Both dischage and surface-elevation boundary condi­
tions are treated as essential boundary conditions. Green's 
theorem is applied to the second-order viscous terms to give 
line integrals involving the boundary-stress terms. When 
discharge components are specified at boundary nodes, the 
relevant equations are deleted from the system of equations 
and the boundary-stress integrals for those nodes do not 
need to be calculated. When surface elevations are specified 
at boundary nodes, all forces except pressures are neglected 
and the boundary-stress integrals again are not calculated. 
Neglecting the boundary-stress integrals is equivalent to 
assuming that velocity gradients at the boundary are zero. 
The authors also point out that in a model without eddy 
viscosity, the boundary-stress integrals can be justifiably 
neglected at boundary nodes where normal flows are speci­
fied. Wang and Connor express the momentum equations in 
terms of coordinates normal and tangential to the boundary 
in order to simplify the application of discharge boundary 
conditions. At each node on the external boundary, unique 
normal and tangential directions are determined which per­
mit global conservation of mass (Wang and Connor, 1975, 
p. 99-104). This procedure is also discussed by Gray ( 1977, 
p. 4.41-4.44), Pinder and Gray (1977, p. 221-225, 275, 
276), and Engelman, Sani, and Gresho (1982). 

Norton and King (1973), Norton and others (1973), 
King and Norton (1978), and Norton (1980), who employ 
second-order terms in the shallow-water equations, specify 
flow components at the inflow-boundary nodes, zero normal 
flow at lateral-boundary nodes, and water-surface elevations 
at outflow-boundary nodes. Like Wang and Connor, these 
authors neglect the boundary-stress integrals at specified 
discharge and surface-elevation boundaries. They also ne­
glect these terms at specified-normal-flow boundaries and 
justify this by rationalizing that shear forces along a "slip" 
boundary are zero (W.R. Norton, written common., 1977). 
Walters and Cheng (1978, 1980) and Walters (1981), who 
use a similar formulation, make the same assumptions. Nor­
ton and King apply integration by parts to the water-surface­
gradient terms in the momentum equations. This procedure, 
which is analogous to that applied to the pressure terms in 
the Navier-Stokes equations by several of the authors dis­
cussed above, allows specified downstream water-surface 
elevations to be handled as natural boundary conditions. 
This permits continuity equations at the downstream 
boundary to be retained. 

Isoparametric elements permit the use of smooth, 
curved lateral boundaries. The improvement in accuracy 



obtained by using such boundaries, together with the speci­
fication of zero normal flow (tangential flow) there, is doc­
umented by Gee and MacArthur ( 1978), King and Norton 
(1978), and Walters and Cheng (1978, 1980) for the mixed­
interpolation formulation of the surface-water flow equa­
tions:· 

Lynch (1978, p. 1-20-1-25) observes that several au­
thors misapply boundary conditions. Taylor and Davis 
(1975), who do notuse viscous terms, specify both depth 
and velocity at the open end of a rectangular channel and 
apply no boundary conditions at the other end. Brebbia and 
Partridge (1976a, 1976b), also using no viscosity, apply 
no-slip boundary conditions at landward boundaries. In an­
other·application, Partridge and Brebbia (1976) use correct 
boundary conditions. 

In a formulation without viscosity, Katapodes ( 1980, 
p. 5.40) overspecifies inflow-boundary conditions by speci­
fying both normal and tangential velocities at the inflow 
boundary. 

Walters and Cheng (1978, 1980), who use a mixed­
interpolation formulation of the shallow-water equations, 
treat specified water-surface elevations at an open boundary 
as essential boundary conditions. Because this results in a 
lack of continuity constraints at the open boundary, such a 
boundary is handled by specifying the water-surface eleva­
tion· at only one node and specifying velocity directions at 
the remaining nodes. 

·Walters (1981, p. 161, 162) shows how integration by 
parts can be used to incorporate specified discharges, 
stresses, and water-surface elevations as natural boundary 
conditions. 

Pearson and Winter (1977, p. 526, 527) and Jamart 
and Winter (1982, p. 168-172) discuss open-boundary con­
ditions with the Coriolis force included. In this case, appli­
cation of a uniform elevation at the open boundary can lead 
to a spurious "half eddy" in the velocity field at the 
boundary. Pearson and Winter resolve the problem by speci­
fying a small phase shift in the tidal elevation across the 
boundary. Jamart and Winter apply the procedure of 
Walters and Cheng discussed above. 

Holz and Hennlich (1977, p. 4.29) describe the appli­
cation of specified-velocity boundary conditions as natural 
boundary conditions introduced by applying Green's theo­
rem to the divergence term in the continuity equation. The 
results (Ho1z and Hennlich, 1977, p. 4.26) are unsatisfac­
tory. Gray (1978, p. 24-29, 43-47) reports similar results. 

Herrling (1978, p. 314-316), who uses a "hybrid" 
method (see the section "Discontinuous Interpolation" in 
chapter 4) and viscous terms, specifies the symmetric stress 
tensor at the boundary to be zero. Specified water-surface 
elevations are treated as essential boundary conditions, nor­
mal discharges are introduced as natural boundary condi­
tions into the continuity equation, and the specified stress 
tensor is introduced as a natural boundary condition into the 
momentum equations. 

Withum and others (1979, p. 705) and Holz and 
Nitsche (1980, p. 5.115) treat depth, normal-flow, and· 
stress boundary conditions as natural boundary conditions. 

In their penalty-function treatment of the shallow~ 
water equations, Zienkiewicz and Heinrich (1979, p. 683) · 
treat the specified surface elevation as a natural boundary 
condition, which facilitates the elimination of surface eleva­
tion from the momentum equations by means of the penalty 
function. 

Several authors suggest neglecting the convective 
terms at the boundary (Leendertse, 1967, p. 67; Wang~ 
1977, p. 4.77). Gray, in FEWR1 (p. 4.348, 4.349), states 
that this procedure is not necessary if boundary conditions 
are applied carefully. 

CHAPTER 6. TIME DISCRETIZA liON 

The method of time discretization affects both the 
efficiency and accuracy of approximate solutions to' tran- · 
sient problems. In this chapter, recent finite-element litera­
ture on time discretization for both the shallow-water and 
other transient equations is reviewed. Published work on the· 
effects of diagonalizing the time matrix and spectral meth­
ods is also examined. 

Most finite-element models for transient problems· 
employ finite-element discretization in space and finite­
difference discretization in time. There are two basic types 
of finite-difference time discretization (Ames, 1977, p. 42-
54): explicit and implicit. In explicit methods, only one 
unknown value at time t 1 is specified in terms of known 
values at time t0, where t1>t0, and possibly known values at 
even earlier times. In implicit methods, two or more tin­
known values at time t1 are specified in terms of known 
values at time t0 and possibly known values at even earlier 
times. Typically, explicit methods do not require the simul­
taneous solution of a system of equations, but stability re­
quires that the size of the time step be restricted. Implicit 
methods, on the other hand, require simultaneous solution 
of a system of equations, but the size of the time step is 
usually unrestricted by stability requirements, although it 
must be restricted to obtain an· accurate solution. 

For most finite-element algorithms, a system of equa.;. · 
tions must be solved at least once at each time step in order' 
to advance the numerical solution one time step, regardless·, 
of whether explicit or implicit finite-difference time­
stepping techniques are used (Cooke, 1977, p.·12; Thacker, · 
1978b, p. 680; Baker and Soliman, 1979, p. 290; Malone 
and Kuo, 1981, p. 4029). 

Guderly and Clemm (1980, p. 30, 31) point out that 
if a small element size is needed to express the solution with 
sufficient accuracy, then, in principle, a small time step is 
also needed. Otherwise, information contained in the initial' 
conditions will be lost. For accuracy reasons, one cannot use 
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an implicit time step much larger than would be allowed in 
an explicit formulation. Morton and Parrott (1980, p. 250) 
make the same point, as do Hughes and others (1979, p. 40) 
for the transient Navier-Stokes equations and Cullen in 
FEWR1 (p. 4.339) for convective problems. Katapodes and 
Strelkoff (1979, p. 322, 323) claim that implicit methods are 
inappropriate for the solution of hyperbolic problems be­
cause only a part of the initial conditions affect the solution 
at a particular point. 

Cullen (1973, p. 18). Lynch (1978, p. 3-10, 3-16, 
3-17), and Baker and Soliman ( 1979, p. 311 , 312) point out 
that the maximum allowable time step for an explicit finite­
element scheme is smaller than the maximum allowable 
time step for a corresponding explicit finite-difference 
scheme. Kelley and Williams (1976, p. 24) observe that the 
maximum allowable time step for an explicit finite-element 
scheme is limited by the smallest element dimension. 

Weare (1976, p. 353-355) observes that all finite­
element time-stepping procedures lead to matrix-inversion 
problems. The cost of generating each new nodal value is 
proportional to the matrix bandwidth, which increases with 
the size of the grid. In both explicit and implicit finite­
difference schemes, the cost of generating each new nodal 
value does not depend on the grid size. Weare points out that 
this is true for implicit methods because alternating­
direction methods are usually used. Such methods break 
multidimensional problems down into a series of one­
dimensional problems. 

Weare (1976, p. 356) suggests that solutions to tran­
sient problems using finite-element models will become 
competitive with solutions using finite-difference models 
only when techniques are applied that allow transient finite­
element solutions to be obtained more efficiently. He sug­
gests consideration of iterative instead of direct methods of 
equation solution, the use of diagonalized time matrices, 
and the adaptation of alternating-direction methods to finite­
element problems. Literature on the first and third sugges­
tions is reviewed in chapter 9. Literature on the second 
suggestion is reviewed in this chapter. 

Time-Stepping Schemes 

If we denote by un the value of the variable u at time 
t=ntl.t, where tl.t is the time increment, the simplest time­
stepping methods involve the differencing of au/at between 
time levels n and n + 1: 

(6.1) 

If other terms are evaluated at time level n, the explicit Euler 
scheme is obtained. If other terms are evaluated by averag­
ing midway between time levels n and n + 1, the trapezoidal­
rule or Crank-Nicolson scheme is obtained. If they are eval­
uated at time level n + 1, the fully implicit scheme is 

24 Two-Dimensional Surface-Water Flow, Horizontal Plane 

obtained. Other implicit schemes can be obtained by evalu­
ating the other terms at various points between time levels 
nand n+l. 

The Euler scheme is used by Brebbia and Smith 
(1977, p. 4.212, 4.213) to solve the vorticity and stream­
function equations. The fully implicit approach is used by 
Bercovier and Engelman (1979, p. 188) to solve the Navier­
Stokes equations in two dimensions and by Harrington and 
others (1978, p. 2.46) to solve the shallow-water equations. 
Because the Euler scheme in the finite-element context is 
only marginally stable for the shallow-water equations 
(Wang and Connor, 1975, p. 108-115) and the fully im­
plicit scheme is first-order accurate and thus quite dissipa­
tive (Hirsch and Warzee, 1979, p. 275, 276), these methods 
are little used. The trapezoidal rule, which is second-order 
accurate and unconditionally stable, is used extensively in a 
variety of transient finite-element codes (Baker, 1978, 
p. 212; Baker and others, 1978, p. 4.55; Baker and 
Soliman, 1980, p. 1.44; Connor and Christodoulou, 1981, 
p. 640-643). 

Harrington and others (1978, p. 2.46, 2.47) employ 
both fully implicit and trapezoidal-rule time-integration 
schemes in solving the shallow-water equations. The fully 
implicit scheme is shown to be more stable than the trape­
zoidal scheme, probably because the dissipative fully im­
plicit scheme damps spurious oscillations while the more 
accurate trapezoidal scheme does not. 

Taylor and Davis (1975) and Partridge and Brebbia 
(1976, p. 1303) use the trapezoidal rule in solving the 
shallow-water equations. Wang and Connor (1975, p. 115-
117) consider using a trapezoidal-rule scheme in solving the 
same equations but reject it because of the need to solve for 
all variables simultaneously. Pinder and Gray (1977, 
p. 244-252) and Lynch (1978, p. 3-11-3-14) note that the 
trapezoidal rule, like most schemes, introduces both ampli­
tude and phase errors for short wavelengths when friction is 
included in the linearized one-dimensional shallow-water 
equations. 

Another two-level scheme is obtained by weighting 
the terms other than the time derivative two-thirds of the 
way between time levels n and n + 1. This is equivalent to 
the linear finite element in time used by Grotkop ( 1973), 
Gray and Pinder (1974), and Taylor and Davis (1975). 
Lynch's analysis (1978, p. 3-11-3-14) indicates that the 
performance of this scheme is inferior to that of the trape­
zoidal rule. Both the trapezoidal-rule and the finite-element­
in-time schemes are unconditionally stable (Gray and 
Lynch, 1977, p. 85-87; Lynch, 1978, p. 3-11). 

The leapfrog scheme approximates the time derivative 
by 

(6.2) 

For the leapfrog scheme, Lynch ( 1978, p. 3-16, 3-17) shows 



that f>..t must satisfy a stability constraint that is more restric­
tive than the stability constraint for the corresponding finite­
difference scheme. Like the trapezoidal-rule scheme, the 
leapfrog scheme exhibits both amplitude and phase errors 
for short wavelengths when friction is included in the lin­
earized one-dimensional shallow-water equations (Lynch, 
1978, p. 3-18). The leapfrog method is used by Kelley and 
Williams (1976, p. 24, 25), Gray (1977, p. 4.39-4.41; 
1978, p. 63, 64), and Gray and Lynch (1979, p. 49) in 
solving the primitive shallow-water equations and by Reddy 
and Warburton (1980, p.192, 193) in solving the vorticity 
and stream-function equations. Lynch (1978, p. 3-19) states 
that the water-surface elevation and the velocities at the new 
time levels are uncoupled and can be computed sequen­
tially. He also points out that the coefficient matrices are 
symmetric and time invariant and that there is no need to 
iterate at each time level (Lynch, 1978, p. 5-1-5-9). 

A split-step or split-time scheme is used by Wang and 
Connor (1975, p. 122-127). This scheme is equivalent to 
applying the leapfrog scheme at different time levels. For 
example, the time derivative in the continuity equation is 
approximated using time levels n + 1 and n -1, and the time 
derivatives in the momentum equations are approximated 
using time levels n + 2 and n. The equations are solved 
sequentially (Lynch, 1978, p. 3-19), and the matrices are 
time invariant. The nonlinear terms are not centered in time 
with the basic split-time scheme as they are with the 
leapfrog scheme. If the nonlinear terms are centered in the 
split-time scheme, iteration is required. The centered split­
time scheme exhibits amplitude and phase errors for short 
wavelengths when friction is included, but the errors are less 
than those generated by the leapfrog scheme (Lynch, 1978, 
p. 3-21-3-23). The split-time scheme is used by Koutitas 
and Xanthopoulos (1978, p. 2.155) and Shubinski and Wal­
ton (1981, p. 244) 

Gray and Lynch (1977, p. 89) and Lynch (1978, 
p. 3.23-3.26) discuss a second-order Adams-Bashforth 
scheme, which is shown to have poor phase and amplitude 
properties. Gray and Lynch (1977, p. 89, 90) and Lynch 
(1978, p. 3-26-3-28) also analyze a predictor-corrector 
scheme with an Adams-Bashforth predictor step and a 
trapezoidal-rule corrector step. In the explicit Adams­
Bashforth step, the nontime terms are extrapolated to time 
level n + 112 from the terms at time levels n and n - 1, and the 
extrapolated values are used to predict the velocities and 
water-surface elevation at time level n + 1. These predicted 
values are used in a scheme similar to the implicit 
trapezoidal-rule scheme to correct the values of the water­
surface elevation and the velocities at time level n + 1. 
Lynch (1978, p. 3- 28) suggests that the scheme may exhibit 
instabilities. A similar scheme with a full trapezoidal-rule 
corrector step is used by Gresho, Lee, Stullich, and Sani 
(1978, p. 3.50, 3.51) to solve the Navier-Stokes equations 
and by Cheng and Walters (1982, p. 99) to solve the 
shallow-water equations. Gresho, Lee, Stullich, and Sani 

(1978, p. 3.45, 3.46) assert that the scheme is stable and 
second-order accurate. 

Gray and Lynch (1977, p. 90, 91) and Lynch (1978, 
p. 3-28-3-33) show that a Lax-Wendroff scheme, although 
it damps 2f>..x waves, is too highly dissipative to be useful. 

Gray and Lynch (1977, p. 91, 92) and Lynch (1978, 
p. 3-33-3-38) analyze a three-level semi-implicit scheme, 
which is presented for the full shallow-water equations by 
Gray and Lynch (1979, p. 50, 51). In the momentum equa­
tions, the transient terms and the water-surface-gradient 
terms are treated implicitly, at time levels n + 1 and n - 1, 
the friction terms are evaluated at time level n -1, and all 
other terms are evaluated at time level n. The momentum 
equations are differentiated and substituted into the continu­
ity equation. This yields a continuity equation that is im­
plicit in water-surface elevation and the second partial 
derivatives of water-surface elevation. All other terms are 
evaluated at time levels n and n -1. In the semi-implicit 
scheme, the surface elevation and the velocities can be ob­
tained sequentially, and the time matrix is independent of 
time (Lynch, 1978, p. 3-37). Short wavelengths are damped 
although they do not propagate. For the linearized equa­
tions, Gray and Lynch (1977, p. 92) point out that the 
semi-implicit scheme is stable and similar in accuracy to the 
trapezoidal-rule scheme. 

A two-level semi-implicit scheme is also examined by 
Gray and Lynch (1977, p. 92, 93) and Lynch (1978, 
p. 3-38-3-41). Unlike the three-level scheme, the two-level 
scheme requires iteration. The two-level scheme is more 
accurate than the three-level scheme, is stable, and damps 
short wavelengths. 

Brebbia and Smith (1977, p. 4.214-4.219) use a 
semi-implicit fractional-steps scheme to solve the vorticity 
and stream-function equations. Bercovier and Pironneau 
(1978, p. 189) suggest a semi-implicit scheme, implicit in 
the viscous terms and explicit in the convective terms, to 
solve the Navier-Stokes equations. 

Malone and Kuo (1981, p. 4029-4031) apply to the 
shallow-water equations a three-level semi-implicit scheme 
similar to that of Gray and Lynch. The authors point out that 
the object is to treat the terms responsible for severe time­
step restrictions implicitly and all others explicitly. In the 
momentum equations, the time-dependent terms, the Cori­
olis terms, and the surface-elevation-gradient terms are 
treated implicitly and the convective and friction terms are 
treated explicitly. In the continuity equation, all terms are 
treated implicitly except those involving the spatial deriva­
tives of the product of surface-elevation and velocity. As in 
the model of Gray and Lynch, matrix decomposition is 
required only once for a problem, with calculation of the 
right-hand side and backsubstitution at each time step. The 
authors quote finite-difference results that indicate that the 
semi-implicit method removes the gravity-wave constraint 
on the time step. Walters (1981, p. 165) has used the same 
three-level semi-implicit scheme. 
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In their analysis of time-stepping schemes, Gray and 
Lynch (1977, p. 93, 94) and Lynch (1978, p. 3-41-3-47) 
analyze time discretization for schemes based on the wave 
continuity equation discussed in chapter 2. Central differ­
encing is used for the time derivative in the second-order 
continuity equation. In the linearized one-dimensional case 
with friction, the wave-equation schemes are shown to have 
monotonically increasing dispersion relations. The accuracy 
of the schemes and whether they are conditionally or uncon­
ditionally stable depend on where the spatial terms are eval­
uated between time levels n + 1 and n - 1. For the explicit 
wave-equation model presented by Lynch and Gray (1979, 
p. 212, 213), the solutions for the surface elevation and the 
velocities are uncoupled, and no iteration is required. Fric­
tion is handled in a way that causes the matrices to be 
independent of time. 

To solve the convection-diffusion equation, V aroglu 
and Finn ( 1978, 1980) use finite elements in space and time 
with element sides oriented along the characteristic lines of 
the hyperbolic equation obtained by setting the diffusion 
coefficient equal to zero. Guderly and Clemm (1980) rec­
ommend this approach to obtain more accurate transient 
finite-element solutions of hyperbolic equations. 

In conclusion, a number of time-stepping schemes 
seem, on the basis of the published literature, to be promis­
ing. Among the schemes deserving consideration are the 
trapezoidal, leapfrog, split-step, predictor-corrector, semi­
implicit, and wave-equation schemes. 

Lumping 

As mentioned above, Weare (1976) suggests that the 
inherent implicitness of the finite-element method can be 
dealt with by diagonalizing or lumping the time matrix and 
thus avoiding the need to solve a matrix equation. Of 
course, lumping has an effect on the accuracy of the numer­
ical solution. A number of authors address this issue. 

Baker (FEWR1, p. 4.349, 4.350) comments on the 
use of lumping in solving transient problems. In solving the 
heat-conduction equation, he finds that lumping degrades 
accuracy but that twice as many elements can be used for the 
same computer cost to get accuracy comparable to that ob­
tained with a consistent formulation. He also reports that for 
solving the boundary-layer equations, a lumped scheme is 
similar to an implicit trapezoidal-rule finite-difference 
scheme. 

Brebbia and Smith (1977, p. 4.224-4.228) use both 
consistent and lumped Euler schemes to solve the vorticity 
and stream-function equations. Lumping is done by dis­
tributing the mass of the linear triangular elements equally 
at the three nodes. In modeling quasi-steady flow around a 
cylinder at a Reynolds number of 100, the lumped formula­
tion gives distinctly inferior results. The authors point out 
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that lumping will have no effect on the solution if time 
stepping is used to obtain a steady-state solution. 

Cooke (1977, p. 12), in studying the usefulness of the 
finite-element method for solving the compressible Navier­
Stokes equations, writes: "For a nonuniform grid the lump­
ing process globally lowers to first order the accuracy of the 
transient solution. However, for uniform grids this occurs 
only near the boundary. This deterioration in accuracy on 
nonuniform grids is a compelling argument against lump­
ing." 

Ehlig (1977, p. 1. 96) compares consistent and 
lumped finite-element solutions of the one-dimensional 
convection-diffusion equation. Although a lumped formula­
tion is shown to be much less accurate than a consistent 
formulation, there is no discussion of the accuracy that can 
be obtained with the two formulations for the same com­
puter cost. 

Gresho, Lee, and Sani (1978, p. 339-343) study the 
effect of lumping on the accuracy of the finite-element 
method for convection-dominated flows. In a one­
dimensional pure convection problem, a consistent linear 
formulation is shown to be more accurate than a lumped 
quadratic formulation. Fourier techniques are used to com­
pute the phase speed for the finite-element schemes studied 
as well as for several finite-difference schemes. The results 
show that lumping causes a significant phase lag, but not as 
much as a second-order or even a fourth-order finite­
difference scheme. Lumping is also shown to degrade accu­
racy in pure convection in two dimensions when eight-node 
quadrilaterals are used. Lumped results obtained using nine­
node quadrilaterals are claimed to be relatively more accu­
rate. The authors state that in one-dimensional experiments 
with convection and diffusion, lumping errors increase with 
the ratio of convective to diffusive transport. In a two­
dimensional convection-diffusion problem, lumping is 
shown to cause a loss of accuracy. 

As stated on page 25, Gresho, Lee, Stullich, and Sani 
(1978, p. 3.57, 3.58) use nine-four mixed interpolation on 
quadrilaterals and a predictor-corrector scheme with an 
Adams-Bashforth predictor and a trapezoidal-rule corrector 
to solve the time-dependent Navier-Stokes equations. They 
state that lumped results are little different from consistent 
results for flow through a sudden expansion at a Reynolds 
number of 60 and suggest that lumping causes less loss of 
accuracy at low Reynolds numbers than at large Reynolds 
numbers. 

Gresho, Lee, Sani, and Stullich (1978, p. 13), who 
solve the same equations by the same techniques, report 
additional results on lumping. In modeling quasi-steady 
flow around a cylinder at a Reynolds number of about 100 
with nine-four mixed interpolation, consistent and lumped 
results are comparable. 

Gresho, Lee, and Upson (1980) present further results 
on vortex shedding behind a cylinder at a Reynolds number 



of about 100. Lumping with four-one mixed interpolation is 
shown to cause serious phase-speed errors. 

Gresho and Lee (1979, p. 48) report on observations 
made in solving the one-dimensional convection-diffusion 
equation using linear elements with both consistent and 
lumped schemes. That the consistent finite-element formu­
lation is more accurate than a central-difference method is a 
consequence of the improved phase characteristics of the 
consistent finite-element coefficient matrix. Lumping is re­
ported to cause these phase advantages to be lost (the 
lumped approach exhibits a larger phase lag than the consis­
tent approach). Gresho and Lee (1979, p. 58, 59) conclude 
by remarking that the consistent formulation is to be pre­
ferred with implicit schemes but that for explicit methods, 
lumping is virtually mandatory for cost effectiveness in 
solving higher dimensional transient problems. 

Baker and Soliman (1979, p. 311, 312) report that 
lumping reduces solution accuracy in finite-element solu­
tions of the convection-diffusion equation. The authors state 
that lumping is defensible with linear elements and an ex­
plicit integration algorithm, where the lumping procedure 
increases the maximum allowable time-step size. 

In solving the unsteady Navier-Stokes equations with 
a penalty-function formulation, Hughes and others (1979, 
p. 37, 38) use nodal integration to lump the time matrix for 
both four.,. and nine-node quadrilateral elements (see the 
section "Numerical Integration" in chap. 4). 

Reddy and Warburton (1980, p. 196-209) compare 
consistent and lumped formulations for the vorticity and 
stream-function equations using a trapezoidal-rule time­
stepping scheme. When lumping is used, six- and nine-node 
elements perform much better than three- and four-node 
elements. However, even with the nine-node element, 
where the lumped approach does best, the consistent ap­
proach is clearly superior. 

Cullen ( 1982, p. 235) considers lumped finite­
element formulations for hyperbolic problems. He agrees 
with Gresho, Lee, and Sani (1978) that eigenvalue errors 
resulting from lumping are less with quadratic elements than 
with linear elements. He states that eigenfunction errors are 
large. 

Mullen and Belytschko (1982) report results on 
lumped finite-element formulations of the two-dimensional 
wave equation. Like Gresho and his coworkers, Mullen and 
Belytschko report that lumping results in a phase velocity 
slower than the analytic value for both quadrilateral and 
triangular elements. They observe that the difference opera­
tor resulting from the lumped finite-element fonnulation for 
the one-directional mesh pattern shown in figure 4 .1A is 
identical to the five-point Laplacian finite-difference opera­
tor. 

Meissner (1978a, 1978b) uses a model for unsteady, 
one-dimensional streamflow in which some nodes are han­
dled implicitly (by the trapezoidal rule) and others are han-

died explicitly using a lumped time matrix. This approach is 
said to yield the advantages of each method in different parts 
of the domain. A similar concept is used by Neuman and 
Narasimhan (1977, p. 310, 311) and Narasimhan and others 
(1977). 

A number of authors have applied lumping techniques 
in solving the shallow-water equations. Wang (1977, 
p. 4. 77-4.80) uses both consistent and lumped formulations 
and compares the results of the two approaches in a model 
of Block Island Sound. Although differences are observed, 
the author recommends use of the lumped scheme because 
of its efficiency. 

Gray (1977, p. 4.38-4.41) and Gray and Lynch 
(1979, p. 52, 53), following Fried and Malkus (1975), use 
Simpson's rule with nine-node isoparametric quadrilateral 
elements and a leapfrog scheme to yield a diagonal coeffi­
cient matrix. No comparison is made of the lumped results 
and consistent results obtained with Gaussian integration 
instead of Simpson's-rule integration. Lynch and Gray 
(1979, p. 213, 214) use nodal lumping with three-node 
triangles and nine-node quadrilaterals in a wave-continuity­
equation model. Results are compared for the explicit wave 
equation with and without nodal lumping (Lynch and Gray, 
1979, p. 219-225) for several examples for which analytic 
solutions are available. The lumped results are of accuracy 
comparable to the consistent results. 

Kawahara, Nakazawa, Ohmori, and Hasegawa 
(1978, p. 2.134-2.138) use a lumped two-step explicit 
scheme, which is shown by Gray (1980, p. 1.126-1.128) to 
be excessively dissipative. 

Lumping with both first- and second-order time­
stepping schemes is discussed by Withum and others ( 1979, 
p. 708, 709). Shubinski and Walton (1981, p. 244, 245) use 
nodal integration with one-three mixed interpolation on tri­
angles and a split-time scheme. 

In conclusion, whether lumping is acceptable depends 
on the equations, the elements, and the time-stepping 
schemes used. 

Comparison of Time-Stepping Schemes 

A number of the authors discussed above compare 
different time-stepping methods. Taylor and Davis (1975) 
test an Adams-Moulton predictor-corrector scheme, a 
trapezoidal-rule scheme, and a finite-element-in-time 
scheme. The trapezoidal rule is selected. (See also Lynch, 
1978, p. 1-20-1-22.) Wang and Connor (1975, p. 107-127) 
consider an Euler scheme, a trapezoidal-rule scheme, a 
predictor-corrector scheme, a fourth-order Runge-Kutta 
scheme, and a split-step scheme. The split-step scheme is 
selected for their work. (See also Lynch, 197 8, p. 1-15-
1-20.) 

6. Time Discretization 27 



After performing numerical tests with the vorticity 
and stream-function equations, Reddy and Warburton 
( 1980) select the leapfrog scheme as superior to fully im­
plicit, finite-element-in-time, and trapezoidal-rule schemes, 
and a two-step scheme denoted the Matsuno scheme. 

Gray and Lynch (1977) and Lynch (1978) compare a 
large number of schemes using analytical methods: Euler, 
fully implicit, trapezoidal-rule, leapfrog, split-step, second­
order Adams-Bashforth, partially corrected second-order 
Adams-B ashforth, Lax-Wendroff, three-level semi­
implicit, two-level semi-implicit, and wave-equation 
schemes. They select the leapfrog, three-level semi­
implicit, and wave-equation schemes as the most promising. 
Gray and Lynch (1979) show that the three-level semi­
implicit scheme performs better than the leapfrog scheme. 
Lynch and Gray (1979) show that various wave-equation 
schemes perform better than either the leapfrog or the three­
level semi-implicit schemes because, as we have seen in 
chapter 4, spurious oscillations are avoided by use of the 
wave continuity equation. 

Spectral Methods 

As discussed in chapter 2, solutions to transient prob­
lems that involve periodic motion can be obtained by 
Fourier decomposition in the time domain and the solution 
of the resulting set of elliptic equations. In general, elliptic 
systems are easier to solve accurately than hyperbolic sys­
tems. This approach is used with the shallow-water equa­
tions by Pearson and Winter (1976, 1977), Le Provost and 
others (1981), Lynch (1981), and Walters (1983, p. 594, 
595). Pearson and Winter (1977, p. 521) warn that their 
approach is not applicable for "1) very shallow estuaries 
where nonlinear effects are large (since solution improve­
ment by the iterative process will then be slow), and 
2) episodic phenomena, such as storm surges, where the 
present method may require the inclusion of an excessive 
number of harmonics." 

Kawahara and others (1977) analyze periodic tidal 
flow by a finite-element perturbation method. A series of 
linear equations is generated and solved sequentially for the 
spectral components. 

When applicable, spectral models can yield large sav­
ings in computer costs. Lynch (1981) makes such a com­
parison. Walters (1983, p. 598) reports that a spectral wave­
equation scheme with six-node triangles is about 50 times 
more efficient than a semi-implicit scheme with six-three 
mixed interpolation. 

CHAPTER 7. COMPUTATION OF 
FLUID STRESSES 

The equations governing two-dimensional depth­
averaged surface-water flow are based on the fundamental 
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laws of conservation of mass and momentum. The 
conservation-of-momentum principle provides a relation be­
tween the summation of forces acting on the fluid in a 
vertical column and the time rate of change of the fluid's 
momentum. Horizontal forces acting on the column of water 
include those due to friction, pressure gradients, and the 
rotation of the Earth. Frictional forces consist of bottom and 
surface shear stresses caused by bed and wind resistance, 
respectively, as well as lateral shear and normal stresses. 
Lateral stresses on the column result from the viscous and 
turbulent horizontal transport of momentum and also from 
the vertical nonuniformity of velocity. 

Bottom Shear Stress 

The usual assumption for bottom shear stress, Tb, is 
that its magnitude is the same as that corresponding to 
steady, uniform flow and that it acts in the direction of the 
depth-averaged velocity. For one-dimensional flow, bottom 
shear stress (or bottom friction) is generally computed as 

(7.1) 

in which p is the water density, kb is a dimensionless local 
shear-stress coefficient which is equal to f/8, where f is the 
Darcy-Weisbach friction factor for conduits of noncircular 
cross section, and U is the average cross-sectional velocity. 
For two-dimensional flow, the directional components, T~ 
and~· of bottom shear stress are then given by 

(7.2) 

and 

(7.3) 

where U and V are the depth-averaged velocities in the 
horizontal x- and y -coordinate directions, respectively. 

The Darcy-Weisbach friction factor,f, depends on the 
bottom roughness and the Reynolds number of the flow in 
fixed open channels and is recommended for use by the 
Committee on Hydromechanics of the Hydraulics Division 
of the American Society of Civil Engineers (1963). 

Turbulent flows in most surface waters are often in the 
fully rough regime, and, consequently, f depends only on 
the relative roughness of the bottom surface. Since flow is 
considered two dimensional, fully developed velocity pro­
files for steady, uniform flow are assumed to approximately 
obey a logarithmic distribution (Chow, 1959, p. 200-202). 
On the basis of this assumption and the results of many 
experiments, the Committee on Hydromechanics (1963, 
p. 109, 110) suggests that a value for the resistance coeffi­
cient for fully rough, uniform flow in fixed channels can 
best be determined from 



(7.4) 

where R is the hydraulic radius, which is equal to the depth 
in two-dimensional flow, and k is a length parameter charac­
teristic of the surface roughness and is called the roughness 
height. The ratio k/R of the roughness height to the hy­
draulic radius is known as the relative roughness. 

Henderson ( 1966, p. 94) points out that "the choice of 
a value of k for a certain surface implies an equivalence 
between that surface and one which is uniformly coated with 
sand grains of diameter k. " If a knowledge of the bed com­
position is available, values of k can be computed directly; 
otherwise, estimates must be obtained from published 
values based on the surface description. Without direct field 
experience, however, it may not be easy to determine accu­
rate values of k for some surfaces. For this reason, the 
shear-stress coefficient, kb, is more often calculated from 
the well-known Chezy-Manning formulation (Chow, 1959) 
by the expressions 

g g n2 
k =- and kb 

b c2 2.208 H 1J3 , 
(7.5) 

where Cis the Chezy discharge coefficient, n is the Manning 
roughness coefficient, g is gravitational acceleration, and H 
is the depth of flow. The roughness coefficient, n, was 
presented by Manning in 1889 and by others before him (see 
Chow, 1959, p. 98, 99; Henderson, 1966, p. 96). The factor 
2.208 is necessary when g and H are expressed in inch­
pound units. 

The Chezy discharge coefficient may be expected to 
depend, like the Darcy-Weisbach friction factor, on the 
Reynolds number and on boundary roughness in a fixed 
channel since 

=(!K)l/2 c f . (7.6) 

From equation 7. 5, the coefficients C and n are related by 
the expression 

1J6 

C=l.49!f_ 
n 

(7.7) 

For fully rough, turbulent flow conditions, n is a constant 
for each surface type. 

Values of Manning's roughness coefficient, n, for 
natural channels and flood plains are available in a number 
of references, such as Chow (1959) and Barnes (1967). In 
addition, n may be related to a characteristic size of the bed 
material by any of several different formulas (Vanoni, 
1975). The major problem with these estimates, however, is 
that they have been developed under the assumption of 

one-dimensional flow and implicitly account for the effect 
of turbulence and deviations from a constant cross-sectional 
velocity. For this reason, values of Manning's n determined 
from calibration of a two-dimensional flow model that con­
siders independently the effect of turbulence have been 
found to be somewhat lower than those reported in the 
literature (Lee and others, 1983, p. 30, 31). 

Surface Shear Stress 

As wind moves across a body of water it exerts a drag 
force on the water surface. This shear stress between wind 
and water sets the upper layers of water in motion in the 
direction of the wind and may also cause waves to form and 
break. Movement of the upper layers, especially when 
waves are breaking, produces turbulent kinetic energy, 
which is transported to greater depths by turbulent diffusion 
or advective motion. Within a short period of time, this 
shear stress will be transmitted to the entire depth of flow in 
a shallow system, resulting in a mean horizontal velocity in 
the direction of the wind. Thus the water will become deeper 
on the leeward end of a water body and shallower on the 
windward end. 

The conventional method of relating surface wind 
stress, T 5

, to wind velocity is by the quadratic expression 

(7.8) 

where k5 is a drag coefficient, Pa is the density of the air, and 
W is a characteristic wind velocity near the water surface. In 
two-dimensional flow, the components, ,.~ and -r;, of the 
surface wind stress in the x- and y- coordinate directions, 
respectively, are usually expressed as 

(7.9) 

and 

s-k w2 · .1. 
T y - s Pa sm 'I' ' (7.10) 

where ~ is the angle between the direction of the wind and 
the positive x- axis. 

Wind velocity is customarily measured 10 m above 
the water surface; however, velocities taken at other eleva­
tions may be adjusted to give values corresponding to 10m. 
The drag coefficient has a nondimensional value on the 
order of 10-3 for wind velocities measured in meters per 
second, but its exact value is highly variable and depends on 
atmospheric parameters and water-surface conditions. 

Much research has been done on determining the rela­
tion between the drag coefficient and wind velocity. Garratt 
( 1977) and Phillips ( 1977) present detailed reviews of the 
literature dealing with this subject. For a neutral atmos­
pheric boundary layer, Garratt (1977) concludes that, for 
practical purposes, the relation between the drag coefficient 
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and the 10-m windspeed in meters per second is given either 
by the power law 

(7.11) 

or by the linear form 

(7 .12) 

over the range 4<W <21 m/s. For velocities less than 4 m/s, 
the drag coefficient can be assumed to have a constant value 
of LOX 10-3. 

It must be remembered, however, that factors other 
than wind velocity may influence the value of the wind­
stress coefficient. For example, Hicks and others (1974) 
show that as water becomes very shallow, less than 2.5 m 
deep, longer period waves are not able to fully develop and 
the water surface is smoother. Under these conditions, the 
value of the drag coefficient remains close to 1.0 x 1 o-3 for 
all windspeeds. 

Lateral Stresses 

The three-dimensional equations of motion and conti­
nuity governing turbulent fluid flow (the Navier-Stokes 
equations) are concerned with the spatial and temporal vari­
ations of fluid velocity and pressure. The time and space 
scales of the turbulent fluid motions are so small, however, 
that resolving these motions in a numerical solution is cur­
rently not feasible. For this reason, it is convenient to re­
place the instantaneous velocity, ui, in the xi- coordinate 
direction with the sum of a local time-averaged value, Uj, 
plus a fluctuating component, u/. Because the fluctuations 
about the mean are both positive and negative, their local 
time average is zero; however, the equations of motion 
contain products of various fluctuating velocity components 
which, when averaged over time, are generally not zero. 
These time-averaged products of the turbulent velocity fluc­
tuations express the mean transport of momentum by the 
turbulent motion and act on a fluid element as stresses. 
These "apparent" turbulent stresses are written as 

Tij=-p u/u/ , (7.13) 

where p is the fluid density and u/ u/ is the time-averaged 
product between fluctuating velocities in the xi- and xr 
coordinate directions. The turbulent stresses must be added 
to the stresses caused by the mean fluid motion. Equation 
7.13 was first deduced by the British physicist Osborne 
Reynolds in 1883 (Schlichting, 1968, p. 528) in direct anal­
ogy to the kinetic theory of gases. For this reason, the 
time-averaged products of the turbulent velocity fluctuations 
are commonly referred to as Reynolds stresses. 
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Because of the appearance of these turbulent-stress 
terms, the total number of unknowns in the governing equa­
tions is greater than the total number of equations. To close 
this set of equations, the unknown Reynolds stresses must 
be expressed in terms of the mean-flow quantities. Many 
attempts have been made to create a mathematical basis for 
the investigation of mean turbulent motion with the aid of 
semi-empirical formulations for the Reynolds stresses. 
These equations constitute models of turbulence which at­
tempt to deduce the still-missing fundamental ideas from the 
results of experimental measurements. 

Most of the investigations in turbulence modeling 
have been carried out in the fields of mechanical and aero­
nautical engineering. Various reviews are available (Laun­
der and Spalding, 1972; Reynolds, 1976; Rodi, 1980a, 
1980b) which provide a fairly comprehensive summary of 
the state of the art of turbulence modeling in these fields. 
Relatively few turbulence models have been used with the 
equations governing depth-averaged surface-water flow. 
The purpose of this section is to review those references to 
turbulence-modeling approaches that are applicable to river­
flood-plain flow situations either directly or with minor 
modifications. 

The depth-averaged lateral stresses, Tij, that result 
from vertical integration of the equations of motion include 
contributions from viscous stresses, turbulent stresses, and 
stresses resulting from vertical variations in horizontal ve­
locities. The first of these contributions is typically quite 
small compared with the others and may be safely ne­
glected. Although the last term is typically ignored, Flokstra 
( 1977) points out that it can be important when there is 
significant streamline curvature. Diffusive momentum 
transport supplied by the second and third terms is necessary 
to induce horizontal circulation of steady flow (Flokstra, 
1977). Consequently, steady circulating flows that are pro­
duced when lateral stresses are completely neglected are the 
result of numerical dispersion in the solution scheme. Lean 
and Weare (1979) support this conclusion through numeri­
cal experiments using a finite-difference model of two­
dimensional depth-averaged flow in a rectangular channel 
with an obstruction. Therefore, although cases may exist in 
which the effective lateral-stress terms may be neglected, 
such as flows in very shallow water bodies having large 
horizontal dimensions, the computation of turbulent stresses 
is, in general, an important feature of a computational flow 
model. 

The oldest proposal for modeling the Reynolds 
stresses in three-dimensional flows was formulated in 1877 
by Boussinesq (Schlichting, 1968, p. 544), who assumed 
the turbulent stresses to be directly proportional to the mean­
velocity gradients. For general flow situations, this concept 
is expressed as 

(7 .14) 



where v1 is a constant of proportionality, ui is the time­
averaged flow velocity in the xi- coordinate direction at a 
point in space, k=(u{u{+u:lu:l+u]u])/2 is the turbulent 
kinetic energy, and &ij is the Kronecker delta. The propor­
tionality constant, v1, is called a turbulent-exchange coeffi­
cient or an "apparent" or "eddy" viscosity and is analogous 
to the coefficient of molecular viscosity. 

The term in equation 7.14 that involves the Kronecker 
delta is required to satisfy the normal-stress condition (that 
is, when i = j). The term involving velocity gradients would 
yield by itself the normal stresses 

The continuity equation 

dU· 
-'=0 
dXi 

(7 .15) 

then would require the sum of the normal stresses to equal 
zero. All normal stresses are by definition positive quanti­
ties, however, and their sum is 

(7.16) 

Inclusion of the last term in equation 7 .14 ensures that the 
sum of the normal stresses will be correct. 

This concept has been extended to the vertically inte­
grated equations of motion by replacing v 1 and kin equation 
7.14 by vt and k' which are their depth-averaged counter­
parts (McGuirk and Rodi, 1978, p. 767). While not truly 
depth-averaged quantities in a mathematical sense, the eddy 
viscosity' vt' and the turbulent kinetic energy' k' are de­
fined in such a way that when used in equation 7 .14, the 
proper depth-averaged turbulent stress is obtained. 

Unlike the coefficient of molecular viscosity, the 
eddy-viscosity coefficient is not solely a property of the 
fluid but depends also on the state of turbulent motion and 
therefore may vary significantly from one point to another 
or with time. If not derived from another, more advanced 
model of turbulence, the eddy viscosity must be obtained by 
measurement or estimated on the basis of experience. Also, 
the assumption of an isotropic eddy viscosity as defined in 
equation 7 .14 is a simplification that is unrealistic for com­
plex flows. Therefore, directional eddy viscosities are 
sometimes used to define turbulent momentum transport. 

Despite the shortcomings of the eddy-viscosity con­
cept, it has been used with success in many practical 
surface-water flow applications simply because the turbu­
lent viscosity coefficient can be satisfactorily estimated in 
many cases. In .addition, the use of an eddy viscosity has the 
desirable effect of increasing the computational stability of 
a model (Pinder and Gray, 1977, p. 269). However, when 

the turbulent stresses are of major importance in determin­
ing the behavior of a flow, a constant-eddy-viscosity formu­
lation may be insufficient to accurately describe the fluid 
motion. 

Eddy-viscosity terms are used in solving the primitive 
shallow-water equations by Connor and Wang (1973), 
Norton and King (1973), Norton and others (1973), Wang 
and Connor (1975), Kelley and Williams (1976), Sunder­
mann ( 1977), Wang ( 1977), Harrington and others ( 1978), 
Kawahara, Nakazawa, Ohmori, and Hasegawa (1978), 
Kawahara, Takeuchi, and Yoshida (1978), King and Norton 
(1978), Walters and Cheng (1978, 1980), Withum and 
others ( 1979), Zienkiewicz and Heinrich ( 1979), Holz and 
Nitsche (1980), Tanaka and others (1980), Cheng and 
Walters (1981, 1982), and Kawahara and others (1982). 
Authors who avoid the use of eddy viscosities include 
Taylor and Davis (1975), Partridge and Brebbia (1976), 
Gray (1977), Holz and Hennlich (1977), Harrington and 
others (1978), Gray and Lynch (1979), Malone and Kuo 
(1981), and Shubinski and Walton (1981). 

In order to advance the eddy-viscosity concept ini­
tiated by Boussinesq, it is necessary to find relations de­
scribing the distribution of the eddy viscosity. The first such 
model was suggested by Prandtl in 1925 (Schlichting, 1968, 
p. 546-549) and is known as the Prandtl mixing-length 
hypothesis. By assuming that eddies move around in a fluid 
very much like molecules in a gas, an expression for two­
dimensional shear-layer flows was developed which relates 
the kinematic eddy viscosity to the local mean-velocity gra­
dient by 

_o21dul 
Vr-1/m dy ' (7.17) 

where u is the time-averaged velocity in the x -coordinate 
direction and em is defined as the mixing length. The mixing 
length is roughly analogous to the mean free path of a 
molecule in the kinetic theory of gases. A result similar to 
equation 7.17 was obtained earlier by G .1. Taylor (Schlicht­
ing, 1968, p. 550) on the basis of his vorticity-transport 
theory. 

The mixing length is a function of position because it 
depends on the state of turbulence. Von Karman (Schlicht­
ing, 1968, p. 551-553) attempted to relate em to the mean­
velocity profile by the equation 

(7 .18) 

in which K is a universal constant. Experiments have shown 
that K is not a universal constant but may vary considerably, 
having an average value of about 0.4. Other investigators 
have proposed relationships describing the distribution of 
the mixing length for particular types of flow. However, for 
flows in general the mixing-length formulation is of re­
stricted usefulness. 
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The mixing-length hypothesis may be extended to 
general flows (Rodi, 1980b, p. 18) in the form 

(7 .19) 

where the nonisotropic kinematic eddy viscosity is a func­
tion of em and the mean-velocity gradients. But this formu­
lation as well has been used infrequently because of the 
difficulty in specifying em for flows that are more complex 
than shear layers. 

Von Karman's expression for the mixing length in 
equation 7.18 may be used to derive the well-known loga­
rithmic velocity distribution. On the basis of this velocity 
distribution, Elder (1959) considered a flow down an in­
finitely wide inclined plane and derived the expression 

(7.20) 

for the vertical eddy viscosity, v~, where K is von Karman's 
constant, y is the vertical distance from the plane's surface, 
d is the total depth of flow, and u * is the shear velocity. 
Averaging over the depth and taking K equal to 0.4leads to 
the expression 

v~=0.067 d u* (7.21) 

for the average kinematic eddy viscosity in the vertical di­
rection. Experiments have shown that a similar relation ex­
ists for the transverse mixing of momentum. Values of v1/ 

(rr1du*) in straight uniform channels (where rr1 is the 
turbulent Prandtl number) are found to generally fall be­
tween 0.1 and 0.2 (Fischer and others, 1979, p. 107-112), 
while curves and sidewall irregularities increase the coeffi­
cient such that values of vtl(rrtdu *) in natural streams 
hardly ever fall below 0.4. For practical purposes, 

(7 .22) 

Higher values are likely if the channel has sharp curves or 
rapid changes in geometry. Lean and Weare (1979) use such 
a formulation to determine the depth-averaged horizontal 
eddy viscosity in a finite-difference model of two­
dimensional, horizontal flow in a rectangular channel. A 
similar relation is used by Falconer (1980) in a finite­
difference model study of tide-induced circulatory velocity 
fields within narrow-entranced harbors and estuaries. 

Horizontal-eddy-viscosity coefficients based on the 
theory of two-dimensional flow (Kraichnan, 1967; Leith, 
1968) are used by Haney and Wright (1975) in a barotropic 
model of wind-driven circulation in a closed, rectangular 
basin. Two-dimensional turbulence has the property that the 
enstrophy (defined as one-half of the square vorticity) cas­
cades from larger scales to smaller scales. To dissipate local 
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enstrophy in the model, Haney and Wright introduce a non­
linear eddy viscosity of the form 

(7 .23) 

where v0 and 'Y are constants, w is the vorticity, and dx is 
the finite-difference grid interval. The eddy viscosity, v1 , is 
a monotonically increasing function of the magnitude of the 
vorticity gradient computed on the grid, v0 is the minimum 
value of VI' and 'Y determines the variation of vt. Leen­
dertse and Liu ( 1977) adopt a similar model for the eddy 
viscosity, which is written 

(7.24) 

where dC=(dx 2+dy2) in which dx and dy are the finite­
difference grid intervals in the x- and y -coordinate direc­
tions, respectively. 

One of the main shortcomings of all the previously 
mentioned models, as pointed out by Rodi (1982, p. 45), is 
that they are based on the implied assumption that turbu­
lence is in local equilibrium, which means that at each point 
in the flow, turbulent energy or ens trophy is dissipated at the 
same rate at which it is produced. Consequently, there is no 
influence of turbulence production at other points or at other 
times; the eddy viscosity will be computed to be zero when­
ever the velocity gradients are zero. 

In order to account for transport and history effects, 
turbulence models have been proposed that employ trans­
port equations for the turbulence quantities in three­
dimensional flows. The simplest of these are referred to as 
"one-equation models." One such group of models ex­
presses the eddy-viscosity coefficient as a function of the 
locally available turbulent energy, k, and a length scale, L, 
characteristic of the turbulent flow. The governing system 
of equations is closed by introducing an expression for the 
transport of k and by specifying the distribution of L. The 
eddy viscosity is then computed as 

(7.25) 

where c~ is an empirical constant. This formula is known as 
the Kolmogorov-Prandtl expression (Rodi, 1980b, p. 21) 
and relates the eddy viscosity to the velocity scale, Vk, and 
the length scale, L, of large-scale turbulent motion. As with 
the mixing-length model, the length scale must be empiri­
cally determined. Examples of various algebraic expres­
sions for the length scale are given by Launder and Spalding 
(1972, p. 71-89). 

The finite-element method is applied by Taylor and 
others (1978) to solve two-dimensional, incompressible 
pipe-flow and free-shear-flow problems using a one­
equation turbulence model of kinetic-energy transport to 



determine the turbulent eddy-viscosity coefficient. Thomas 
and others ( 1981) use a similar one-equation model in a 
finite-element solution of two-dimensional confined flow 
over a backward-facing step. In both cases, good agreement 
is obtained between computed and measured values. How­
ever, the limitation of having to specify the length scale in 
equation 7. 25 restricts the application of one-equation 
models to mainly shear-layer flows where algebraic expres­
sions for the length scale are known. Gawain and Pritchett 
( 1970) have developed a method for calculating the length 
scale in general flows; however, it has not been tested suffi­
ciently owing to its complexity (Rodi, 1980b, p. 26). 

One-equation models that do not make use of the 
eddy-viscosity concept have been devised. Bradshaw and 
others ( 1967) solve a differential equation describing the 
transport of turbulent shear stress in boundary-layer flows. 
While this equation frees the shear stress from the local 
mean-velocity gradient, it still requires the specification of 
a turbulence length scale. Nee and Kovasznay (1969) pro­
pose an equation that directly describes the transport of the 
kinematic eddy viscosity. As in the other one-equation 
models that have been discussed, a length-scale distribution 
must still be prescribed. 

One-equation models of turbulence have been found 
to yield acceptable results in turbulent-flow computations, 
provided a precise algebraic prescription of the length scale 
is available. This can rarely be done for any but boundary­
layer flows, and, therefore, Prandtl's mixing-length model 
may often give as good an account of turbulent fluid motion 
at a much lower cost. The difficulty in finding widely valid 
equations for calculating the length scale has led to the 
development of models in which transport effects on the 
turbulence length scale are also considered. These two­
equation models have shown great promise in the fields of 
mechanical and aerospace engineering and have recently 
been used in simulating open-channel flow. 

Several two-equation models using various dependent 
variables have been presented in the literature and are re­
viewed by Launder and Spalding (1972, 1974), Reynolds 
(1976), and Rodi (1980a, 1980b). In his state-of-the-art 
review, Rodi (1980b, p. 33) concludes that the two-equation 
model in which the dependent variables are the turbulent 
energy, k, and the dissipation rate of turbulent energy, E, is 
perhaps the most universal and is well suited for application 
to hydraulic flow problems. Since, by dimensional reason­
ing, the dissipation rate, E, is proportional to k312JL, the 
parameter pair k-E is equivalent to the pair k-L. Once the 
parameters k and E have been computed, the kinematic eddy 
viscosity can be found (again by dimensional reasoning) as 

(7.26) 

where cJ.L is an empirically derived constant. The distribution 
of the parameters k and E, and thus v1 , over the flow field 

is computed by solving the transport equations for these 
variables simultaneously with those governing the mean­
flow behavior. 

Applications of the k- E model to the computation of 
two-dimensional, turbulent shear flows are discussed by 
Jones and Launder (1972), Castro (1979), and Durst and 
Rastogi (1979). Two-dimensional, laterally averaged ver­
sions of the k -E model are used by Raith by and others 
(1978) to simulate flow over a rectangular depression, by 
Schamber and Larock (1978, 1981) and Larock and 
Schamber ( 1980) to model flow in a sedimentation basin, by 
Keller and Rastogi (1975) to model flow development on a 
spillway, and by Smith and Takhar (1979) to simulate long­
period waves in an open channel. Schamber (1982) dis­
cusses the numerical solution of the system of finite-element 
equations that are formed when using the k -E turbulence 
model in the analysis of laterally averaged flow in a sedi­
mentation basin. McGuirk and Rodi ( 1979) use the k -E 

turbulence model in the calculation of three-dimensional 
free-jet flows. Baker and Soliman (1981) employ the k-E 
model in a finite-element solution of three-dimensional 
aerodynamic flows. 

McGuirk and Rodi (1978) use the k-E model in calcu­
lating depth-averaged open-channel flow and transport. 
Rastogi and Rodi ( 1978) use the k -E model to simulate both 
three-dimensional and depth-averaged flow and transport in 
open channels. Leschziner and Rodi (1979) use the k-E 
turbulence model in computing three-dimensional flow in 
strongly curved open channels. In adapting the k-E model 
for use in computing depth-averaged open-channel flow, 
McGuirk and Rodi (1978) and Rastogi and Rodi (1978) 
assume that the local depth-averaged state of turbulence can 
be characterized by the turbulent energy, k, and the dissipa­
tion rate, E, and that the eddy viscosity, V1 , USed in calculat­
ing the depth-averaged turbulent stresses is related to these 
parameters by 

(7 .27) 

where, as before, cJ.L is an empirical constant. Terms are also 
added to the transport equations to account for the produc­
tion and dissipation of turbulence by bottom shear stresses. 
It should also be mentioned that the terms that arise from the 
nonuniformities in the vertical distribution of the velocities 
are neglected in these depth-averaged models. 

Although two-equation turbulence models have been 
successful in simulating flows having complex geometries, 
it is assumed in these models that the state of turbulence is 
characterized by one length and one velocity scale and that 
the individual Reynolds stresses can be related to these 
scales by the Kolmogorov-Prandtl expression or some other 
relation. This concept implies an isotropic eddy viscosity, 
which may not accurately simulate the effect of turbulence 
on the flow. In order to determine the various Reynolds 
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stresses, higher order models have been proposed that do not 
use the eddy-viscosity concept but determine the turbulent 
transport terms directly (Hanjalic and Launder, 1972; Laun­
der and others, 1976). Second-order models provide equa­
tions for the first- and second-order quantities involving the 
fluctuating turbulent velocities and model the third-order 
terms involving the turbulent fluctuations that appear in 
these equations using the first- and second-order quantities 
(Lumley, 1980). Although these models may simulate the 
physical processes in a more realistic way, they involve the 
solution of a relatively large number of partial-differential 
equations and are therefore rather complex and expensive to 
apply. At present, they are relatively untested and have not 
reached the state of practical application (Rodi, 1982, p. 45, 
46). 

Stress-equation models do, however, offer a starting 
point for the development of two-equation models using 
nonisotropic algebraic stress relations. In many cases, a 
simplified algebraic stress model will yield results very 
close to those obtained using the complete stress-transport 
equations (Meroney, 1976). Rodi (1980b, p. 41), for exam­
ple, proposes an algebraic relation for Reynolds stresses 
based on the assumption that the transport of u;' u/ is propor­
tional to the transport of turbulent energy, k. N aot and Rodi 
( 1982) use such an expression to calculate the secondary 
currents in both closed- and open-channel flow where the 
use of an isotropic eddy viscosity would fail to produce the 
observed secondary motions. 

CHAPTER 8. SOLUTION OF SYSTEMS OF 
NONLINEAR FINITE-ELEMENT EQUATIONS 

The depth-averaged equations of motion and continu­
ity that describe shallow surface-water flow are, in their 
complete form, a coupled system of nonlinear partial­
differential equations. The many alternatives for numeri­
cally solving the system of nonlinear algebraic equations 
that results from the finite-element discretization of the gov­
erning partial-differential equations present such a wide 
choice that it is difficult to know which technique is best. 
Processes that are economical in one context may be uneco­
nomical or divergent in another. The purpose of this chapter 
is to review the literature dealing with those solution meth­
ods that may be applied successfully to a finite-element 
analysis of the equations governing shallow surface-water 
flow. 

The solution of the linear equation system 

Ka=f, (8.1) 

where K is a square global coefficient matrix, a is the 
column vector of nodal approximations to the unknown 
function or functions, and f is the column vector of nodal 
forces, can usually be accomplished without difficulty by 
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one of the methods discussed in the following chapter. This 
is not true for a nonlinear system in which the coefficient 
matrix is dependent on the state of the system, that is, 

K=K(a) . (8.2) 

The numerical solution of the nonlinear equation sys­
tem represents the major part of the cost in obtaining a 
finite-element solution to fluid-flow problems. Computa­
tional efficiency in terms of both time and storage space 
dictates that a symmetric equation system be solved if pos­
sible. The coefficient matrix that is formed, however, is 
nonsymmetric owing to the presence of the nonlinear inertia 
and bottom-friction terms. Attempts to modify the coeffi­
cient matrix by placing all or part of the nonlinear terms on 
the right-hand side have been successful only for low­
Reynolds-number flows where the nonlinear and linear 
terms of K (a) are of comparable magnitude (Gartling and 
Becker, 1976a, p. 55). 

A number of schemes have been used in the solution 
of systems of nonlinear finite-element equations that de­
scribe steady or unsteady fluid flow. These methods are all 
iterative in some sense and may be classified according to 
the principles used to generate them as 
• linearization methods, 
• nonlinear iteration methods, 
• continuation methods, 
• dynamic relaxation methods, or 
• perturbation methods. 
This classification is useful even though the different classes 
may overlap somewhat. In addition, some solution proc­
esses may employ a combination of methods from different 
classes. 

Linearization Methods 

The basic idea of all linearization methods consists of 
constructing a linear approximation of the nonlinear equa­
tion system and repeatedly solving the linear system until 
convergence is obtained. After each iteration or after only 
selected iterations, the system coefficient matrix is updated 
using the most recent approximations of the nodal variables. 
The simplest solution of this type -is one of fixed-point 
iteration of the form 

K(a;) a;+I=f , (8.3) 

in which the nonlinear terms are evaluated at the known 
iterate, a; , and an improved approximation is obtained as 

(8.4) 

This process is known as successive substitution or Picard 
iteration and is used in finite-element solutions of incom­
pressible, viscous flow problems by Taylor and Hood 



(1973), Hood and Taylor (1974), Gartling and Becker 
(1976a, 1976b), and Taylor and others (1978), and in finite­
element solutions of the shallow-water equations by Taylor 
and Davis (1975) and Withum and others (1979), to name 
just a few. 

As in the case of iterative solution processes for linear 
systems, it may be desirable to introduce relaxation. In 
relaxation, the step between iterates is lengthened or short­
ened by some factor w; >0 by means of the equation 

(8.5) 

where ai+I is the (i + 1)st Picard iterate. 
One of the most frequently used linearization schemes 

is the well-known Newton method, in which the improved 
approximation, ai+ I> is given by 

(8.6) 

where J(a;) is the Jacobian, or tangent, matrix at the known 
iterate and r(a) is the corresponding residual-force vector, 
equal to K(a;)a; -j(a). In practice, J(a;) is usually not 
inverted; instead, the linear system 

(8.7) 

is solved for the correction term, b.a;, with 

(8.8) 

The process is usually convergent in the vicinity of the 
solution; however, if the initial estimate is not sufficiently 
close, divergence can occur. 

The Newton method belongs to a more general class 
of linearization schemes of the form 

(8.9) 

for solving a set of n nonlinear equations, f(a )=0, where s; 
is a scaling (or acceleration) factor, H; is an n x n matrix 
determined by the particular method that is used, and 
fi=f(a;). Letting H;=l(a;)- 1 and s;=1 yields the Newton 
method. An iterative line search may be used, however, to 
compute an alternative value of s;. If H; =J(a0)-

1, where a0 

is the initial solution estimate, the modified Newton method 
is obtained. This method overcomes the disadvantage of 
having to refactor the Jacobian matrix at each iteration since 
J(a0)-

1 can be assembled and factored once, then stored for 
further use. This saving may occur, however, at the expense 
of slower convergence. A variation of this process would 
allow an updating of J (a) at selected iterations. Newton 
iteration and its variations have been used in a number of 
finite-element solutions of fluid problems; see, for example, 
Norton and others (1973), Gresho, Lee, Stullich, and Sani 
(1978), and Harrington and others (1978). 

To date, the linearization methods of successive sub­
stitution and Newton iteration have been the most widely 
used in the solution of fluid-flow problems. Gartling and 
others ( 1977) compare these methods and find that in most 
cases the Newton iteration scheme is more efficient in the 
solution of the Navier-Stokes equations. Gartling and 
Roache (1978) find that, for a particular finite-element grid 
consisting of eight-node quadrilateral elements with 20 de­
grees of freedom (16 velocity components and 4 pressures), 
the full Newton algorithm is more efficient because of the 
reduction in the number of Gaussian eliminations due to 
more rapid convergence, even though it requires three times 
the assembly effort of successive substitution. 

The major disadvantage of both successive substitu­
tion and full Newton iteration is the need to recompute and 
refactor the coefficient matrix. These computations can be 
prohibitively expensive for very large systems, especially if 
a converged solution is not attained within a few iterations. 
Successive substitution is linearly convergent, while New­
ton iteration converges quadratically but usually has a 
smaller radius of convergence. However, neither method is 
very effective in computing solutions to flows with very 
high Reynolds numbers. (See Engelman and others, 1981, 
p. 707.) 

In a subclass of linearization techniques described by 
equation 8.9 and known as update, quasi-Newton, variable­
metric, or modification methods (Rheinboldt, 1974, p. 53), 
H; is updated in a simple manner after each iteration rather 
than recomputed entirely (as in successive substitution or 
Newton iteration) or is left unchanged (as in the modified 
Newton method). These techniques were first applied to 
finite-element solutions by Matthies and Strang (1979) in 
the analysis of structures. While those applications led to 
only symmetric, positive-definite coefficient matrices, 
Engelman and others ( 1981) apply an update procedure to 
nonsymmetric coefficient matrices resulting from finite­
element analyses of fluid-flow problems. An effective tech­
nique using Broyden' s method to update the inverse of the 
Jacobian matrix is presented. For this reason, the algorithm 
may be thought of as a quasi-Newton method. It also main­
tains the same general convergence properties of full 
Newton iteration. Each iteration requires both the solution 
of a linear equation system, for which the triangular factors 
of the inverted coefficient matrix are already known, and the 
vector operations which provide the corrections or updates 
to the inverted matrix. 

In comparing the efficiency of successive substitu­
tion, Newton iteration, modified Newton iteration, and 
Broyden update methods in solving nonlinear fluid-flow 
problems, Engelman and others (1981 , p. 717) conclude 
that implementation of the Broyden update procedure can 
"constitute a very effective solution by itself or in combina­
tion with other basic techniques." For low-Reynolds­
number flows, it is found that significant reductions in solu­
tion time can be realized using the Broyden update method. 
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For strong nonlinearities, however, a periodic reformation 
of the coefficient matrix is required to achieve the most 
efficient solution. In addition, Engelman and others (1981, 
p. 717) state that "any general fluid mechanics code should 
allow the user a choice of solution algorithms and, more 
importantly, a possibility of combining them to form a solu­
tion strategy." 

Nonlinear Iteration Methods 

The linearization methods just discussed involve an 
iteration (Newton's method, say) in which a nonlinear­
equation system is approximated by a linear one, followed 
by the solution of the system of linear equations. This proc­
ess continues until convergence is achieved. An alternate 
class of solution methods, referred to as "nonlinear iteration 
methods" (Ames, 1977, p. 256), is derived from the solu­
tion of linear equation systems by iterative processes. In the 
nonlinear Jacobi iterative process, for example, the approx­
imate solution at step k + 1 is obtained by solving the ith 
equation for the i th variable using the approximate values at 
step k. If relaxation is introduced, this leads to 

a~+ 1 =a~ +wk (a~+J -a~) 
I I I I ' 

(8.10) 

where a[+ 1 is the i th component of the Jacobi iteration at 
step k + 1. If, in solving for the ith variable, all the other 
variables are set to their latest values, the nonlinear Gauss­
Seidel process is obtained. When combined with relaxation, 
nonlinear Gauss-Seidel iteration is called nonlinear overre­
laxation (NLOR). The optimum value of the relaxation 
parameter, w, lies invariably in the range 1 <w<2-hence 
the name "overrelaxation" rather than "underrelaxation." 

Linear iterative processes may be extended to the 
nonlinear case in other ways. Let.fi(a )=0, i = 1, 2, ... ,n, be 
a system of n nonlinear algebraic equations in the unknown 
vector a with ith component ai. If the Jacobi process is 
applied to one step of Newton's method, the one-step non­
linear Jacobi-Newton process is obtained as 

(8.11) 

with a similar formulation for the one-step NLOR-Newton 
process. (See Rheinboldt, 1974, p. 37-39.) 

The primary advantage of nonlinear iteration methods 
over linearization schemes is the reduction in both core and 
offline storage. For this reason, these techniques are well 
suited for use on small computers having limited storage. In 
addition, the nonlinear iteration methods may be more effi­
cient for very large systems owing to the number of opera­
tions required for complete elimination of the coefficient 
matrix in direct linearization-method solutions. The larger 
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number of nonlinear iterations that are needed may still 
demand fewer operations and thus require less computation 
time. 

Milthorpe and Steven ( 1978a) employ a "nodal solu­
tion technique" using an NLOR-type iteration in the finite­
element solution of fluid-flow problems. In the nodal solu­
tion technique, equations are assembled only on a local level 
for a particular node in the grid. Within the assembled 
subregion, an inner-boundary-value problem is solved using 
the peripheral nodal values as boundary conditions, and 
nodal unknowns are found using NLOR iteration. Two flow 
problems are used to compare the nodal solution method 
with a conventional direct bandwidth solution of the lin­
earized equations. It is found that, for the smaller problem 
having 300 unknowns, the conventional solution is faster, 
while, for the larger problem having 540 unknowns, the 
nodal solution scheme employing nonlinear iteration is 
much more efficient. These results tend to confirm the com­
mon belief that iterative matrix solution methods are rela­
tively more efficient for larger problems. 

A nonlinear iteration scheme based on a partial appli­
cation of the Gauss-Seidel technique in block form is used 
by Cooke and Blanchard ( 1977) to obtain finite-element 
solutions of the steady-state, compressible Navier-Stokes 
equations in primitive-variable form. The continuity and 
momentum solutions are uncoupled at each iterative step. 
First, the continuity equation is solved for density in terms 
of the current estimates of velocities. The momentum­
equation coefficient matrices are then formed simulta­
neously, in order to economize during the assembly process, 
and in tum are solved for the directional velocities. At each 
iterative step, the equations are solved using Crout's method 
of triangular decomposition. 

Continuation Methods 

The behavior of iterative methods for solving systems 
of nonlinear equations depends, in general, on the initial 
approximation of the solution. None of the methods dis­
cussed so far guarantees convergence in all instances. For 
one set of initial conditions, a process may result in rapid 
convergence, while a change in these data may cause the 
process to take more time before reaching the neighborhood 
of a solution, or it may result in divergence. Continuation 
methods (also known as incrementa/loading or pseudoload 
methods) attempt to reduce this dependence on the initial 
values. Essentially, the continuation process approximates 
the nonlinear problem as a series of linear problems in which 
the load is applied one increment at a time using the previ­
ous known solution as the initial estimate (Desai and Abel, 
1972, p. 220). The procedure amounts to a piecewise lin­
earization, and the number of loading increments should be 
determined by accuracy requirements. 

In many cases, a problem will depend naturally on 
some parameter t, which will vary, say, from zero to one. 



When t =0, the solution is known, and the desired solution 
occurs when t = 1. Even if no suitable parameter t is natu­
rally identifiable, it is possible to embed the equation set to 
be solved within a system of equations whose solution is 
already known. These equations may be written in the form 

K(a;,t)=t F+(l-t) F0 , (8.12) 

where F is the desired loading at t = 1 , F 0 is the initial 
loading at t = 0, and a solution is sought at t; + 1 = t; + 8t; with 
i=O, 1, 2, ... ,n-1 such that 

(8.13) 

Continuation methods are analogous to numerical 
methods used for the integration of systems of linear or 
nonlinear differential equations, such as the Euler and 
Runge-Kutta techniques. Since a new coefficient matrix, 
K(a;,t), must be computed at each loading step, it is obvi­
ous that increased solution stability may be gained at the 
cost of additional computational effort. Improved integra­
tion schemes, such as the various Runge-Kutta methods, 
improve accuracy but, again, at the cost of additional effort. 
Alternatively, an iteration scheme may be employed at each 
loading step that allows the governing finite-element equa­
tions to be satisfied exactly (Zienkiewicz, 1977, p. 456). 

Oden and Wellford (1972) employ a continuation 
scheme that uses density as the "load parameter" in the 
finite-element solution of the incompressible Navier-Stokes 
equations. In this process, density is incremented from an 
initial value at a known solution to its final desired value. At 
each load level, convergence is achieved by successive sub­
stitution, and the converged solution is used as the initial 
guess for the next load level. Hughes and others (1978) and 
Hughes and others ( 1979) use a similar continuation process 
with Newton's method to achieve convergence for steady, 
incompressible, high-Reynolds-number flows. Schamber 
(1982) describes the finite-element solution of a set of 
turbulent-flow equations using a Newton-continuation strat­
egy. These flow equations contain a transport model of 
turbulent kinetic energy and the dissipation rate of turbulent 
kinetic energy, which causes the system to be highly sensi­
tive to the initial conditions. The method was found to work 
well in the one-dimensional flow case that was studied. 

Dynamic Relaxation Methods 

An alternate method of solving systems of nonlinear 
equations involves using a time-stepping procedure in which 
a transient problem is formulated and the steady-state solu­
tion is approached asymptotically as oscillations are 
damped. This technique has been applied successfully in the 
context of finite-difference analyses under the name 
"dynamic relaxation" (Zienkiewicz, 1977, p. 604). When 

dynamic relaxation is used, storage requirements are mini­
mized. 

Gresho, Lee, Stullich, and Sani (1978) use a 
predictor-corrector finite-element scheme to solve the time­
dependent Navier-Stokes equations. The integration time 
step is varied on the basis of an estimate of the local time 
truncation error. Time stepping with this scheme is sug­
gested to be an effective way of solving steady flows having 
large Reynolds numbers. 

Bercovier and Engelman (1979, p. 199) use a fully 
implicit scheme to analyze steady flow over a square step. 
Convergence is obtained after 21 time steps. 

Hughes and others ( 1979, p. 40) apply the dynamic 
relaxation method to several flow problems and, regarding 
its effectiveness in finite-element analyses, suggest that 
"further research needs to be performed to deduce practical 
guidelines in this matter." However, they report that they 
have found it is often more reliable and cost effective to 
obtain a steady-flow solution with a dynamic-relaxation al­
gorithm than with a direct steady-flow algorithm. 

Perturbation Methods 

Another class of methods often considered practical in 
evaluating "slightly" nonlinear problems is based on obtain­
ing a solution to a perturbed system (Crandall, 1956, p. 145, 
146). A perturbed system is one that differs slightly from a 
known standard system. The basic idea of perturbation 
methods is to expand the solution variables in the form of a 
power series which is substituted into the governing equa­
tions. A system of linearized equations for the series compo­
nents is then formed which can be solved recursively once 
the zeroth-order, or unperturbed, solution is known. The 
zeroth-order solution is usually formed using one of the 
solution techniques already discussed. 

In the previous discussion of nonlinear-equation­
system solution schemes, a steady-state problem formula­
tion has been implied. Needless to say, the same iterative 
techniques may be applied to implicit solution techniques 
for transient problems to obtain a converged solution at each 
time step. An alternative to iteration is evaluation of the 
nonlinear terms at a previous time step. 

When the perturbation method is applied to time­
dependent problems with periodic forcing functions, the 
solution can take on a spectral form. The spectral approach 
has been used in finite-element modeling of periodic tidal 
motion by Kawahara and others ( 1977), Pearson and Winter 
(1977), Jamart and Winter (1978), Le Provost and Poncet 
(1978), and Le Provost and others (1981). The advantage of 
the spectral finite-element approach over time-stepping 
methods is the large reduction in computational require­
ments. Le Provost and others (1981, p. 1124) point out, 
however, that "such a method cannot be extended too far in 
very shallow estuaries where nonlinear effects are too large, 
and the method is not able to compute non-periodic phenom-
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ena, such as storm surges." For the general field problem 
involving arbitrary forcing functions, Lynch (1981, p. 810) 
states that''*** the time-stepping approach is most appro­
priate." 

CHAPTER 9. SOLUTION OF SYSTEMS OF 
LINEAR FINITE-ELEMENT EQUATIONS 

Finite-element analysis of fluid-flow problems gener­
ally results in a relatively large number of linear algebraic 
equations which must be solved simultaneously. This sys­
tem is of the standard form 

Ka=f, (9.1) 

where K is the square matrix of coefficients, a is the column 
vector of nodal unknowns, and f is the column vector of 
nodal forces, or loads. 

The two basic approaches for solving large systems of 
linear equations are direct and iterative (Burden and others, 
1978). Direct methods are based on Gaussian elimination 
and are direct in the theoretical sense that if rounding errors 
are ignored, the exact answer will be found in a finite num­
ber of steps. Iterative methods, on the other hand, consist of 
a series of successive corrections to an initial estimate of the 
unknowns, the process being performed repetitively until 
the size of the corrections becomes sufficiently small. Al­
though convergence of iterative methods can often be en­
sured, the amount of computation required to reach a suffi­
ciently accurate solution is not known in advance. Direct 
and iterative solution strategies are discussed in the follow­
ing two sections. Another solution technique, known as the 
alternating-direction method, which solves large multidi­
mensional problems as a series ofsmaller one:-dimension.al 
problems, is discussed in a separate section. 

Direct Methods 

Direct solution schemes based on Gaussian elimina­
tion and its variants· are numerous, and a detailed discussion 
of these techniques is beyond the scope of this review. It is 
sufficient to say that the basic objective of elimination is to 
reduce the original system Ka = f to an equivalent system 
Ua = g, in which U is an upper triangular matrix. This 
system can be easily solved by a process of backsubstitu­
tion. 

The direct solution methods that are best suited for 
finite-element analysis of fluid-flow problems are those that 
take advantage of the usually sparse and banded structure of 
the assembled coefficient matrices. By making use of these 
properties, computer storage and solution time can be 
greatly reduced. Algorithms for the direct solution of non-
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symmetric coefficient matrices such as those that arise in 
finite-element analysis of fluid-flow problems are generally 
based on bandwidth-, profile- (skyline-), or frontal-storage 
schemes. 

A significant savings in storage can be achieved if 
only those nonzero terms within a narrow band running 
parallel to the main diagonal of the coefficient matrix are 
stored. In finite-element computations, the maximum band­
width of nonzero coefficients can usually be made small in 
comparison with the number of unknowns. Several com­
puter programs used to solve systems of linear equations 
having a banded nonsymmetric coefficient matrix are pre.: 
sented and compared by Wells and others (1976). These 
schemes employ direct triangular decomposition, no pivot­
ing being used in the factorization. The lack of pivoting, 
however, is not a severe restriction when solving the 
shallow-water equations by finite elements since the assem­
bled system exhibits strong diagonal dominance (Walters, 
1980, p. 268). Even then, a partial-pivoting strategy may 
still be carried out within a bandwidth-storage scheme 
(Jennings, 1977, p. 177). 

It is possible to reduce the required storage and com­
putational effort still further by adopting a profile- or 
skyline-storage scheme, in which the lower triangular por­
tion of the coefficient matrix is stored by rows and the upper 
triangular portion by columns (or vice versa). It is necessary 
to store and compute only within the nonzero profile of the 
equations (Zienkiewicz, 1977, p. 722). This method has 
advantages over a diagonal-bandwidth-storage scheme since 
it never requires more storage and is not severely affected by 
a few long columns or rows. A solution algorithm incorpo­
rating such a profile-storage scheme is presented by Taylor 
(Zienkiewicz, 1977, chap. 24). 

In obtaining finite-element solutions to surface-water 
flow problems, the core-storage capacity of the computer 
being used may be exceeded, or core storage may become 
prohibitively expensive. Storage requirements can be re­
duced in these instances by using a block -storage strategy. 
Such schemes are presented for profile solutions by Has bani 
and Engelman (1979) and Stabrowski (1981). In a block­
storage algorithm, the coefficient matrix is partitioned into 
blocks which are temporarily stored on an offline device (a 
disk or tape drive) during solution. To reduce data transfer 
time, it is desirable to make the number of blocks a mini­
mum. In addition, the use of random-access files rather than 
sequential files greatly reduces the time required to transfer 
data to and from the storage device. 

An alternative to blocked-profile equation-solution 
schemes is the frontal method, which was applied first to 
symmetric coefficient matrices by Irons (1970) and later to 
nonsymmetric matrix equations by Hood (1976, 1977). The 
frontal solution technique is a direct solution scheme which 
is closely connected to the finite-element method. It is de­
signed to minimize core-storage requirements as well as the 
number of arithmetic operations needed to solve the system 



of equations. The main idea of the frontal method is to 
assemble and eliminate the element equations at the same 
time. As soon as an equation is completely formed from the 
contributions of all relevant elements, it is reduced and then 
eliminated from the "active" coefficient matrix, being writ­
ten to a buffer and, eventually, to an auxiliary storage de­
vice. Therefore, the entire coefficient matrix is never 
formed as such, the active matrix containing, at any given 
instant, only those equations that have been partly assem­
bled or are complete but not yet eliminated. 

The number of unknowns in the front at any particular 
time is called the frontwidth and will generally change con­
tinually during the assembly/elimination process. The max­
imum frontwidth determines the required size of the active 
coefficient matrix and is determined by the order in which 
the elements are assembled. When assembly is complete, 
the. upper triangular matrix will have been formed and will 
be ready for backsubstitution. Frontal solvers are used 
successfully in finite-element analyses of two-dimensional 
surface-water-flow problems by Walters (1980) and Lee and 
others (1983) and in a finite-element analysis of two­
dimensional confined flow by Gresho, Lee, Sani, and 
Stullich (1978), to name just a few. 

A possible drawback of the frontal solution as so far 
described is the need to fit the entire matrix of active coef­
ficients into central memory. Core storage may therefore be 
exceeded when evaluating large finite-element equation sys­
tems on small computers. To overcome this problem, Beer 
and Hass (1982) apply partitioning to solve symmetric sys­
tems. With additional programming effort, the technique 
could be applied to nonsymmetric systems as well. 

The question of which direct solution technique is 
best to use for nonsymmetric coefficient matrices generated 
by finite-element analyses of surface-water flow problems 
cannot be completely answered. In general, both profile and 
frontal methods will be superior to conventional band solu­
tion schemes (Zienkiewicz, 1977, p. 722). In reference to 
profile and frontal solution methods, R.L. Taylor 
(Zienkiewicz, 1977, p. 729) states that "the issue is not clear 
as to which is the better method and thus individual users 
must choose between the two." 

In the case of time-dependent problems that are 
treated explicitly, the resulting coefficient (mass) matrix is 
symmetric and positive definite. Very efficient direct solu­
tion techniques making use of these properties are available. 
Taylor (Zienkiewicz, 1977, chap. 24) presents a program 
that performs triangular decomposition of symmetric sys­
tems using a compact Crout method, which is a variation of 
Gaussian elimination. Jennings (1977, p. 155) presents a 
decomposition algorithm using a compact row-wise elimi­
nation procedure to obtain the Choleski triangular factor of 
a symmetric, positive-definite, variable-bandwidth matrix. 
Cooke (1978) outlines an out-of-core solution strategy for 
large symmetric systems also using Choleski decomposi­
tion. 

Iterative Methods 

Iterative methods for solving systems of linear equa­
tions may be classified broadly into stationary and gradient 
methods. In each class, initial estimates of the variables are 
improved by a series of iterative corrections. It is the correc­
tion technique that characterizes the method. One-point iter­
ation methods have the general form 

(9.2) 

This iterative process is called a stationary process if the 
matrix Bk and the vector ck remain constant from one itera­
tion to the next. If Bk and ck are dependent on k, the iteration 
becomes a gradient process. A detailed discussion of the 
many iterative solution methods is beyond the scope of this 
review. The interested reader is referred to any standard text 
on the subject such as Ames (1977), Jennings (1977), or 
Szidarovszky and Yakowitz (1978). 

The main advantages of iterative solution methods are 
reduced storage requirements and possibly less computa­
tional effort for very large systems. When equations have 
a repetitive form, it is possible to avoid storing the coeffi­
cients explicitly. In many finite-difference solutions, for 
example, coefficients may be rapidly computed for each 
equation at every iterative step. However, finite-element 
solutions usually require much more effort to assemble and 
solve an equation. The main disadvantages of iterative solu­
tion methods are the following: the convergence, even if 
assured, can often be slow, and hence the amount of compu­
tation required to obtain an acceptable solution is not very 
predictable; convergence can be guaranteed only for sym­
metric, positive-definite coefficient matrices; the speed of 
convergence depends heavily on the judicious choice of 
iteration parameters (for example, the tolerance and the 
relaxation factor). Although there has been some use of 
iterative methods for large systems of equations generated in 
applications of the finite-element method, most solutions 
have employed direct-elimination techniques primarily be­
cause of their proven versatility and reliability (Desai and 
Abel, 1972, p. 19). 

Taylor (Zienkiewicz, 1977, chap. 24) presents a 
Gauss-Seidel iteration procedure employing successive 
overrelaxation (SOR) to be used in a finite-element solution 
code. This solution scheme requires storage of the entire 
global coefficient matrix although an efficient storage 
scheme would take advantage of its banded structure. 
Taylor states, however, that "the disadvantages usually far 
outweight the advantages for SOR; consequently, most 
finite element solution programs today use direct solution 
methods to solve the algebraic equations" (Zienkiewicz, 
1977' p. 725). 

Gresho, Lee, Sani, and Stullich (1978) discuss the use 
and limitations of three iterative methods: block successive 
overrelaxation, Chebyshev polynomial semi-iterative, and 
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conjugate gradient. They note that all iterative methods be­
come somewhat uncertain when addressing the nonsymmet­
ric matrices that occur in solutions to fluid-flow problems 
when the advective terms are treated implicitly. They point 
out, however, that there is a potentially saving feature for 
time-dependent flows because the mass matrix, which is 
positive definite and symmetric, is multiplied by 11 At (At is 
the time increment) and added to the global matrix. If At is 
small enough, diagonal dominance and thus convergence is 
nearly assured. Of course, if the time-step requirements are 
too stringent, an implicit solution may not be cost effective 
in comparison with a strictly explicit method. A successful 
application using point SOR on a purely hyperbolic problem 
is also mentioned. In this example, 800 time-dependent 
equations were solved in the same (or less) time as when a 
direct band solver was used. However, the method did not 
converge as At became large. 

Neuman and Narasimhan (1977) and Neuman and 
others ( 1977) adopt an iterative scheme that can vary from 
Jacobi to Gauss-Seidel to solve a Galerkin finite-element 
formulation of diffusion processes. The method is shown to 
converge when the matrix composed of the convective and 
dispersive terms is locally diagonally dominant. Thacker 
( 1978b) uses a Gauss-Seidel type of iterative scheme in 
computing oscillations in shallow, circular surface-water 
basins by the finite-element method. Overrelaxation does 
not improve convergence. It is possible that the failure of 
overrelaxation in this case is due to the use of equal-order 
interpolation on triangular elements, which leads to short­
~avelength noise. 

Irons and Kan (1973, p. 508) present a solution tech­
nique attributed to Rashid that is based on block Gauss­
Seidel iteration. This method is next briefly described. Let 
X, Y, and Z be forces, or loads, in the x-, y-, and 
z- directions, respectively~ let U, V, and W be the nodal 
unknowns; let R, S, and T be the residual forces at any 
stage~ and let Kxx, Kxy, and so forth, be partitions of the 
global matrix. Then 

(9.3) 

The objective is to factor only Kxx, Kyy, and Kzz• thus reduc­
ing the cost of Gaussian elimination. This is accomplished 
by block Gauss-Seidel iteration of the form 

Ui+I = Ui+wKxx -I R (Ui, Vi, Wi) 
vi+ I = vi + w Kyy -I s ( ui+ I, vj. wi ) (9 .4) 

wi+I = Wi+w Kzz -I T(Ui+I• vi+I• Wi) 

where w is the overrelaxation parameter. Therefore, this 
scheme represents a successive-block-overrelaxation 
(SBOR) algorithm (Jennings, 1977, p. 202). This technique 
is similar to the nonlinear block iterative method presented 
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by Cooke and Blanchard (1977) and discussed in the pre­
ceeding chapter. 

The process of solving a set of n simultaneous equa­
tions is similar to that of minimizing an error function de­
fined over ann-dimensional space. In each step of a gradi­
ent method, a trial set of values is used to determine a new 
set with a corresponding smaller value of the error function. 
In most gradient methods, successive direction vectors can­
not be formed by means of a constant matrix; therefore, 
gradient methods are considered nonstationary processes 
(Jennings, 1977, p. 213). 

Irons and Kan ( 1973) discuss the use of the conjugate­
gradient method in solving systems of linear finite-element 
equations. In the method of conjugate gradients, successive 
direction vector p(O>, pO>, and so forth, are chosen to repre­
sent, as nearly as possible, the directions of steepest descent 
at their respective points, but with the condition that they be 
mutually conjugate. In this case the term "conjugate" im­
plies that each p(iJ is orthogonal to its predecessor, p(i-1), 

and hence satisfies the condition 

p(i) K p(i-l) = 0, (9.5) 

where K is the system coefficient matrix. 
Chung (1979, p. 49) solves a primitive-variable 

finite-element formulation of the Navier-Stokes equations 
using Newton iteration in combination with the conjugate­
gradient method and the method of steepest descent. The 
conjugate-gradient method is used to obtain a solution for 
the initial Newton iteration only. The method of steepest 
descent is found to produce more rapid convergence in suc­
cessive Newton iterations. Pfoertner and Raabe (1977) use 
an adapted version of the conjugate-gradient algorithm to 
solve the Navier-Stokes equations by the finite-element 
method. 

Gambolati (1979) describes a modified conjugate­
gradient method for solving nonsymmetric finite-element 
diffusion-convection equations. This method is similar to an 
approach presented by Kershaw (1978) and combines the 
gradient technique with an incomplete LU decomposition of 
the coefficient matrix, A. It is found that as long as most of 
the equations are diagonally dominant, fairly rapid conver­
gence is obtained. However, as the convective terms be­
come significant and the time step, At, becomes relatively 
large, the diagonal dominance of A is reduced and the 
method converges slowly. It is also found that convergence 
is faster when the initial estimate is first produced by some 
preliminary Newton iterations. Gambolati (1980) reports 
that preliminary processing with a few Newton iterations 
followed by application of the modified conjugate-gradient 
method leads to greatly accelerated convergence in the solu­
tion of finite-element ground-water-flow equations. The 
modified conjugate-gradient method is shown to be superior 
to the successive-overrelaxation technique when the system 
matrix is diagonally dominant. 



Alternating-Direction Methods 

An approach suggested by Weare (1976) for making 
transient finite-element models more efficient is to adapt 
alternating-direction-implicit (ADI) methods from finite­
difference theory to the finite-element approach. Cooke 
( 1977, p. 32) suggests that increased efficiency may be 
attained by the use of ADI methods but wonders whether 
this approach may also reduce the geometric flexibility of 
the finite-element method. Several authors have tried this 
approach. 

Hayes (1980, 1981) considers an alternating-direction 
Galerkin method for solving nonlinear parabolic boundary­
value problems. The method is applicable to general curved 
finite-element grids which can be mapped isoparametrically 
onto a rectangle or certain unions of rectangles. The 
alternating-direction procedure offers the possibility of re­
duced storage requirements since large multidimensional 
problems are solved as a series of smaller one-dimensional 
problems. In the generalized .method presented by Hayes, 
alternating along coordinate lines in the master region corre­
sponds to alternating along curved element boundaries in the 
original grid. A local approximation of the Jacobian of the 
isoparametric map is based on patches of finite elements. 

Baker ( 1979) and Baker and Soliman ( 1981) imple­
ment an alternating-direction scheme for the finite-element 
solution of the compressible Navier-Stokes equations. 
Baker and Soliman (1982) describe an alternating-direction 
Galerkin method for solving the shallow-water equations. 
Lapidus and Pinder (1982, p. 342-348) present an 
alternating-direction Galerkin method for the two­
dimensional heat equation for rectangular regions. 

CHAPTER 10. ALTERNATIVES TO GALERKIN'S 
METHOD OF WEIGHTED RESIDUALS 

Alternatives to Galerkin's method of weighted residu­
als are used by several authors in solving the shallow-water 
and other partial-differential equations. A subdomain or 
subdomain-collocation method is obtained by using elemen­
tal test or weighting functions which are constant and equal 
to one on some subdomain of an element containing the 
node under consideration. Subdomain collocation is used by 
Meissner ( 1978a. 1978b) and Meissner and Ratke ( 1980) in 
solving the one-dimensional shallow-water equations and by 
Stindermann (1977) in solving the two-dimensional 
shallow-water equations. 

A collocation or point-collocation method is obtained 
if the weighting functions are Dirac delta functions at points 
known as collocation points. If Gauss points are chosen as 
the collocation points, the method is called orthogonal col­
location. Mercer and Faust (1977, p. 1.30, 1.31) suggest the 
use of orthogonal collocation to reduce the generation time 

for coefficient matrices in solving the equations of immis­
cible flow in porous media. 

Pinder and others (1978) and Frind and Pinder (1979) 
use orthogonal collocation with bicubic Hermite polynomi­
als to solve Laplace's equation. Pinder and Shapiro (1979) 
use orthogonal collocation with cubic Hermite polynomial 
basis functions to solve the one-dimensional convection­
diffusion equation, and Celia and others (1980) use orthog­
onal collocation with bicubic Hermite polynomials to solve 
the two-dimensional convection-diffusion equation. 

To date, collocation methods have not been used in 
surface-water modeling, but application to one-dimensional 
flow problems is under investigation (L. L. DeLong, oral 
commun., 1983). 

A third alternative to Galerkin's method of weighted 
residuals is the least squares method, in which the square of 
the residual is minimized over the flow domain: 

min J (Lii-f)2dR , 
UES R 

(10.1) 

where S is the space of trial functions, R is the domain on 
which the members of S are defined, ii is a member of S, 
and E = Lii -jis the residual. (See eq. 3.1.) This is equiva­
lent to a weighted-residual scheme with the weighting func­
tion aE!aa;, where a; are the coefficients of the approximat­
ing trial functions (Pinder and Gray, 1977, p. 56). 

The method of least squares, which is equivalent to an 
optimal control problem, is used by Glowinski, Mantel, 
Periaux, and Pironneau (1978) and Mantel and others 
(1979) to solve the unsteady Navier-Stokes equations, by 
Glowinski, Periaux, and Pironneau (1978) to solve the 
transonic-flow equations, and by Brison and others (1980) 
to analyze air motion inside powerplant cooling towers. 

Mil thorpe and Steven ( 1978b) use the least squares 
approach to solve the vorticity and stream-function equa­
tions. Spatial gradients of the basic flow variables are intro­
duced as additional variables. This is done to reduce inter­
element continuity requirements and to facilitate the 
application of boundary conditions. The resulting matrices 
are symmetric and positive definite. 

A similar least squares approach is used by Chung and 
others ( 1980) to solve the Navier-Stokes equations. Penal­
ized constraint equations are used to reduce the order of the 
Navier-Stokes equations from second to first. The method is 
shown to be capable of yielding more accurate solutions at 
higher Reynolds numbers than standard Galerkin methods. 
In addition, the matrices generated are symmetric and posi­
tive definite. Thus, iterative solution techniques may be 
useful with this approach. A disadvantage is that there are 
more degrees of freedom per node since all gradients of 
variables must be included in the vector of unknowns. 

Kanarachos ( 1978) introduces a modified least 
squares method denoted the "discrete" least squares method. 

10. Alternatives to Galerkin's Method of Weighted Residuals 41 

L 



The resulting matrix is symmetric, and iterative techniques 
are used to solve the nonlinear algebraic system. 

In another variant of the method of weighted residu­
als, Hirsch and Warzee (1979) use weighting functions or­
thogonal to the interpolation functions. The weighting func­
tions lead to diagonal time matrices but cannot be 
continuous at interelement boundaries. The accuracy of the 
method is not discussed. 

On the basis of the literature, both point-collocation 
and least squares methods seem to offer the promise of being 
effective techniques for solving the shallow-water equa­
tions. 

CHAPTER 11. MODEL VALIDATION 

The user of a model s.hould be aware of the conditions 
under which the model is stable, convergent, and consistent. 
He must also have an idea of the accuracy of the model if 
he is to use it effectively. The analysis and numerical tests 
that are performed to obtain this information are termed 
"model validation." Such analysis and tests include (1) ana­
lytical studies of the model's basic numerical algorithm for 
linearized equations and regular grids, (2) application of the 
techniques of numerical and functional analysis to obtain 
information about the model's performance, (3) numerical 
tests of the model's performance for geometrically simply 
flow domains, ( 4) comparison of model results with existing 
analytical solutions, (5) study of the model's response to 
grid refinement (and refinement of the time increment for 
transient models), ( 6) comparison of model results with the 
results of already validated models, and (7) comparison of 
model results with laboratory and field data. 

Several analytical techniques are used frequently in 
the literature to examine the behavior of numerical schemes 
for solving the shallow-water and similar equations. Fourier 
analysis is the most common method for studying the behav­
ior of an algorithm for a linearized transient problem. 
Fourier analysis in one spatial dimension is applied by Gray 
and Pinder (1976) to the one-dimensional convection­
diffusion equation and by Gray and Lynch (1977), Pinder 
and Gray (1977, p. 239-261), Gray (1978, p. 12-24), and 
Lynch (1978, p. 3-1-3-52) to the linearized one­
dimensional shallow-water equations with friction. These 
authors work with the propagation factor, or the ratio of the 
velocity of a computed wave to the velocity of a physical 
wave as a function of wavenumber or wavelength. In addi­
tion, Lynch (1978, p. 3-53-3-92) uses the distribution fac­
tor, which describes the relative magnitude and phase of the 
surface-elevation and velocity solutions. 

Guderly and Clemm (1980, p. 17-28) use Fourier 
techniques to study the stability of finite-element schemes 
for solving the wave equation. 

Platzman ( 1981) uses Fourier methods to obtain dis­
persion relations (see p. 14) for various finite-element 
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schemes for solving the linearized one-dimensional shallow­
water equations without friction. Platzman extends this type 
of analysis to regular two-dimensional grids but considers 
only motion in the direction of the x-axis. 

Walters and Carey (1983) apply techniques similar to 
those applied by Gray, Lynch, and Platzman to study vari­
ous forms of mixed and equal-order interpolation. Both the 
one- and two-dimensional linearized shallow-water equa­
tions without friction and Coriolis terms are considered on 
uniform meshes. Dispersion relations and expressions for 
spurious eigenmodes are obtained. 

Williams and Schoenstadt ( 1980) and Williams and 
Zienkiewicz ( 1981) apply Fourier transforms in the spatial 
domain to the linearized one-dimensional shallow-water 
equations with Coriolis terms but without friction to com­
pare the behavior of various combinations of interpolation 
for surface elevation and velocity. 

Mullen and Belytschko (1982) apply Fourier tech­
niques to the two-dimensional wave equation to study the 
effects of different types of elements, lumping, and mesh 
patterns. Their analysis accounts for motion in any direc­
tion. 

Analytical techniques other than Fourier methods are 
occasionally used. Cullen (1977) artd Cullen and Morton 
( 1980) present a method for analyzing the error in evolution­
ary problems that generalizes the concept of truncation error 
used in analyzing finite-difference schemes. Carey (1979) 
applies Gershgorin circle theory and oscillation matrices to 
study phase and amplitude behavior of modes of the 
convection-diffusion equation. 

Hansen and Flotow (1982) use finite-element opera­
tors to study upwind schemes. The authors (1982, p. 77) 
state: "A finite element operator is formed by assembly of 
sufficient elements around the node of interest, so that the 
algebraic equations corresponding to that node are com­
plete." Hansen and Flotow find that the use of these opera­
tors is a useful method for qualitatively evaluating finite­
element schemes. 

The methods of numerical and functional analysis are 
frequently applied to determine the stability and conver­
gence characteristics of finite-element schemes for special 
classes of equations. Error bounds are usually obtained. An 
example of such an analysis is the work of Luskin (1979), 
who analyzes the finite-element scheme ofPlatzman (1978). 

Another useful procedure in model validation is the 
testing of model performance for geometrically simple flow 
domains. Grubert (1976, p. 10) tests a finite-difference 
scheme "on an 'L' shaped estuary with its axis tilted at 
various angles to the grid in order to test the inner consis­
tency of the model and its boundary value equations." Tests 
made with no flows across the model boundaries and with 
uniform depths provide checks on model consistency as well 
as on network design for an already proven model 
(McAnally and Thomas, 1980, p. 6.49). 



It is equally important to compare model results with 
analytical solutions for those cases in which such solutions 
are available. Since analytical solutions have been obtained 
only for the linearized shallow-water equations, it is neces­
sary to neglect or linearize the nonlinear terms in the equa­
tions or to use boundary data for which the nonlinear terms 
are relatively negligible. 

Several authors have obtained solutions of the lin­
earized shallow-water or tidal equations in two spatial di­
mensions. Lamb (1945, p. 271-290) solves the shallow­
water equations without friction for an annular section with 
constant bathymetry and for a rectangular basin with con­
stant and linearly varying bathymetry. Ippen (1966, p. 511, 
512) solves the equations with linearized friction for a 
rectangular basin with constant bathymetry. 

Briggs and Madsen (1973) solve the same equations 
without friction for a rectangular basin with constant 
bathymetry but with the gradient of surface elevation rather 
than the surface elevation specified at open boundaries. 

Lynch and Gray (1978) obtain analytical solutions of 
the linearized two-dimensional shallow-water equations 
with linearized friction and wind stress but without Coriolis 
terms. The domains considered are an annular section in 
polar coordinates and a rectangular section in Cartesian co­
ordinates. Constant, linearly varying, and quadratically 
varying bathymetry are considered. Thus, these results gen­
eralize those of Lamb and lppen. 

The solutions developed by Lynch and Gray are espe­
cially useful for flow-model testing because, as Gray and 
Lynch (1979, p. 66) point out, "verification of a finite 
element flow model by comparison of computed results with 
analytic results for a flat-bottomed straight channel is not 
sufficient." In a variable-depth basin, short-wavelength 
modes are forced by the bathymetry, and model perform­
ance can be tested for such conditions. 

Other methods of model validation are the study of 
model response to grid and time-step refinement, the com­
parison of model results with the results of already validated 
models, and the comparison of model results with labora­
tory and field data. Numerous examples of these techniques 
exist in the literature but will not be reviewed here. 

CHAPTER 12. AUTOMATIC DATA 
PROCESSING 

In order to use the finite-element method to solve 
surface-water-flow problems, a model must be constructed 
describing the geometry, physical properties, and boundary 
conditions of the system under study. For elementary prob­
lems, the required input data may be conveniently computed 
and assembled by hand, then keypunched or typed into a 
file. For moderate to large problems, manual preparation of 
the finite-element network data becomes a tedious and ex-

pensive task that is prone to errors. Once an error-free model 
has been constructed, however, many flow situations can be 
simulated. Output from a finite-element model consists sim­
ply of numbers which, for all but the most trivial of two­
dimensional problems, must be placed in a graphic format 
for analysis, especially for transient problems. 

Because of the large amounts of input and output data 
that are associated with a finite-element model, numerous 
pre- and postprocessing programs have been developed 
specifically for finite-element analysis of two-dimensional 
systems (Huyakorn and Dudgeon, 1975; Manhardt and 
Baker, 1976; Tracy, 1976, 1977a, 1977b; Haber and others, 
1978; Hoffman, 1978; Liggett and others, 1978; Gerhard, 
1979; Gerhard and Greenlaw, 1979; Kamel and Navabi, 
1979; Kleinstreuer and others, 1979; Merazzi and Fliick, 
1979; Holdeman and Kleinstreuer, 1980; Kleinstreuer, 
1980a, 1980b; Kleinstreuer and Patterson, 1980; LaGarde 
and Heltzel, 1980; Thacker and others, 1980; Haber and 
others, 1981). Although few of these data-processing pro­
grams have been developed with surface-water problems in 
mind, they all have the basic purpose of reducing the time 
and effort needed to construct a finite-element model and 
analyze the results. 

Preprocessing programs are generally capable of edit­
ing all input data and automatically generating all or part of 
the network geometry (element connectivity lists, node­
point coordinates and elevations, and so forth). Many of 
these programs operate in an interactive fashion with the 
computer and make use of graphic input/output devices such 
as digitizing tablets, interactive plotters, and graphics termi­
nals. In addition, they may execute additional tasks that 
contribute to greater flexibility and more efficient discretiza­
tions. Such functions include the following: online and off­
line plotting of the network; local network refinement and 
subsequent smoothing of the element distribution; and re­
labeling of elements and (or) nodal points to provide a small 
bandwidth, profile, or frontwidth (depending on the solution 
scheme) and thus reduce computation time when a system of 
simultaneous equations must be solved. 

Postprocessing programs are rather standard, taking 
data from a file generated by a finite-element analysis and 
plotting the output in a variety of ways. These plots may be 
in the form of numbers, vectors, contours, graphs, or dis­
placed grids. 

Undoubtedly the most important features of these data 
processors are the automatic development of all or part of 
the finite-element grid and the subsequent relabeling of all 
the elements and (or) node points in the network. These two 
functions have the potential for reducing a major part of the 
work required in constructing the grid and minimizing com­
putational expenses. Haber and others ( 1981) estimate that, 
in practice, roughly 80 percent of the total cost of analysis 
may be consumed using conventional (that is, manual) 
methods of data input. While this estimate is certainly prob­
lem dependent, it offers some idea of the effort to be saved. 
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The logic employed in grid generation and relabeling varies, 
depending on the type of application for which the preproc­
essor and analysis programs have been designed. The more 
successful and commonly used techniques are discussed in 
the next section. 

Automatic Grid Generation 

Generating all or part of a finite-element grid is usu­
ally accomplished by first subdividing the solution domain 
into one or more regions of relatively simple shape (Haber 
and others, 1981). A second-level subdivision is then im­
posed on each of the initial regions to generate an orderly 
assemblage of elements and nodes. The data created by this 
process include nodal coordinates and lists of nodes con­
nected to each element in the newly generated grid as well 
as other pertinent information (such as node-point ground 
elevations and element property types). 

Initial subdivisions typically define areas of homoge­
neous properties or areas within which the model and solu­
tion gradients will be relatively constant. Input of the initial 
subdivision data may be done completely by hand or with 
the aid of interactive computer-graphics equipment and soft­
ware. The allowable shape an initial subdivision may as­
sume is governed primarily by the method used in the 
second-level partitioning. The techniques most commonly 
used in the second-level partitioning can be classified as 
1. automatic triangulation techniques, 
2. smoothing techniques, and 
3. coordinate-transformation techniques. 
No single technique has proved superior in all applications, 
and often two methods are combined to produce a well­
conditioned grid. A brief but thorough review of automatic 
grid-generation techniques is presented by Thacker (1980). 

Automatic Triangulation Techniques 

Automatic triangulation techniques possess the desir­
able property of being able to generate a mesh for any 
two-dimensional geometry. The main disadvantage of these 
techniques is that they often produce ill-conditioned grids 
(Shephard and Yerry, 1983). Smoothing procedures are 
often used in combination with triangulation techniques to 
improve the shape of the resulting elements. The triangula­
tion algorithms presented below fall into two basic classes. 

In the first class of algorithms (Tracy, 1976; Sadek, 
1980), the initial subdivisions are discretized by placing 
nodes along their boundaries at desired locations. Triangular 
elements are then formed using boundary polygons by cut­
ting off sharp comers and by replacing selected points on the 
boundary with new ones in the interior of the subdivision. 
For example, in the routine presented by Tracy (1976), each 
vertex of the polygon having an internal angle of less than 
90 degrees is removed by connecting the two adjacent node 
points to form a triangle. Then, starting at some vertex 
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having an internal angle of less than 180 degrees, two trian­
gles are formed by placing a new node inside the polygon 
based on the coordinates of the vertex node and its two 
neighboring nodes. If this step creates any vertices having 
internal angles of less than 90 degrees, they are immediately 
removed by forming a new triangular element. This process 
continues until only three node points remain on the 
boundary of the polygon, thus defining the last element. 

The second class of triangulation techniques 
(Frederick and others, 1970; Cavendish, 1974; Bykat, 1976) 
also requires the initial subdivision to first be discretized by 
locating node points along its boundary. Then, all node 
points within the subdivision are located either manually or 
automatically. The node points along the boundary and in 
the interior are then connected in such a way as to form 
nearly equilateral triangles. 

Smoothing Techniques 

Smoothing techniques (Buell and Bush, 197 3; 
Herrmann, 1976) involve an iterative application of a 
difference-type equation to locate the nodes of a finite­
element grid. These techniques can be used alone or, as is 
often the case, in combination with another technique. 

The most commonly used grid-generation procedure 
for regions of arbitrary geometry is the Laplacian scheme 
described by Buell and Bush (1973). In this method, the 
interior nodes of a rectangular grid not directly specified by 
the user are located to satisfy the equations 

(12.1) 

and 

(12.2) 

where (x;. Y;) are the coordinates of interior node i and (xij, 
Y;). j = 1, 2, 3, 4, are the coordinates of its directly con­
nected neighbors, as shown in figure 12.1A. The method 
derives its name from the fact that equations 12.1 and 12.2 
constitute the Laplacian finite-difference operator for the 
unknowns X; andY;· The method is generalized to include 
nonrectangular grids composed of arbitrary quadrilateral re­
gions by the equations 

N; 

X;=~. L (xnj+xnJ 
1 n=1 

(12.3) 

and 

N; 

Y;=~. L (ynj+YnJ ' 
1 n=1 

(12.4) 



i2 

i3 i i1 nl 

n 

i4 nj nk 
A B 

Figure 12.1. Neighborhood of node i: (A) Rectangular grid, and (8) Nonrectangular grid. 

where N; is the number of elements connected to node i and 
(xni' Ynj) and (xnb Ynl) are the coordinates in neighboring 
element n, as shown in figure 12.1B. Since these equations 
form a nonlinear system, they are usually solved by an 
indirect iterative technique, which will present a large com­
putational expense for extensive grids. Meshes produced by 
the Laplacian scheme often do not reflect curvatures and 
nodal spacings that have been defined along the boundaries. 
Hence, grids generated by this method often appear dis­
turbed or skewed in regions having high boundary curvature 
and irregular nodal spacings. 

To remedy the insensitivity of the Laplacian grid­
generation scheme to information supplied along the 
boundary, Herrmann ( 1976) proposes a modification to the 
method based on a local quadratic isoparametric transforma­
tion of an eight-node quadrilateral (serendipity) element. 
Using the basic shape functions, the coordinates of the cen­
ter point (origin) of the serendipity element shown in figure 
12.2 are computed as 

(12.5) 

and 

Equations 12.5 and 12.6 can be generalized to admit non­
rectangular grids in the same way as equations 12.1 and 
12.2 to yield 

N; 

X;=~. 2: (xnj+Xnz-xnk) (12.7) 
1 n=1 

and 

N; 

Y;=~. 2: {ynj+Yni-Ynk) ' (12.8) 
1 n=1 
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Figure 12.2. lsoparametric quadrilateral element and center 
point located at origin, i, of 11~-coordinate system. 
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where the variables are as defined previously for equations 
12.3 and 12.4 and shown in figure 12 .1B . This formulation 
is termed the isoparametric generation procedure and 
should not be confused with the isopararnetric mapping 
scheme discussed previously. Herrmann then further gener­
alizes equations 12.3, 12.4, 12.7, and 12.8 by writing 

N; 

X; N.(21-w) .2: (xnj+xnl-w Xnk) 
1 n=1 

(12.9) 

and 

N; 

Yi N·(2
1
-w) .2: {ynj+Ynt-w Ynk) ' 

1 n=1 
(12.10) 

in which w is a weighting factor that is greater than or equal 
to zero and less than or equal to one. A value of w equal to 
zero yields the Laplacian scheme. When w is set to unity, 
the isopararnetric generation scheme is produced. Interme­
diate values of w yield mixtures of the two methods called 
Laplacian-isoparametric schemes . Although the "pure" iso­
pararnetric method (that is, when w equals unity) produces 
grids that appropriately reflect the boundary geometry on 
the interior of the grid, it has been found that the number of 
iterations required for convergence of equations 12.9 and 
12.10 increases sharply as w approaches one. Thus there is 
a tradeoff between grid quality and computational efficiency 
with this method. 

Coordinate-Transformation Techniques 

Coordinate-transformation techniques involve the 
mapping of coordinates between a simple polygon (usually 
a unit triangle or square in two-dimensional space) and the 
actual region. A coordinate-transformation technique that is 
a natural byproduct of isoparametric mappings used to rep­
resent curved-sided finite elements is presented by 
Zienkiewicz and Phillips (1971). In this method, the entire 
solution domain is divided into a coarse subdivision corn­
posed of a few very large isoparametric elements. Using 
polynomial interpolation functions (shape functions), a 
unique coordinate mapping is achieved. A desired subdivi­
sion of the simple polygon is then projected onto the actual 
space to determine the Cartesian coordinates of the node 
points. The main disadvantage of this method is its inability 
to adequately describe regions having complex boundaries 
without using a large number of initial subdivisions. 

A method for generating grids that is based on a 
mapping using blending functions is presented by Gordon 
( 1971). This procedure approximates a surface over a region 
that will match the values along the boundary of that region 
exactly. Sets of simple linear functions on the boundaries 
may be ''blended" to form more complex interpolation func-
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tions over the entire region. Considering a unit square on the 
edges of which a function, <1>, is specified as <I>(O,"fl), 
<l>(l,"fl), <1>(~,0), <1>(~,1), where ~ and 'TI are normalized 
parametric coordinates, the mapping function 

+~ <l>(l,T])-(1-~) (1-T]) <1>(0,0) (12.11) 

-(1-~) 'TI <1>(0,1)-~ 'TI <1>(1,1)-~(1-T]) <1>(1,0) 

interpolates <I> such that a smooth surface exactly reproduc­
ing the boundary values is obtained. When the function <I> 
describes the Cartesian coordinates of the quadrilateral re­
gion, this function can be used to map any grid defined in 
the unit square to the actual area. The function <I> is an 
example of a transfinite mapping. A transfinite mapping 
describes an approximate surface that matches a desired, or 
true, surface at a nondenurnerable number of points. 

Barnhill and others (1973) apply transfinite mapping 
of a unit triangle to a region defined by three boundary 
curves. Haber and others (1981) claim that linear transfinite 
mappings possess excellent characteristics for use in mesh 
generation and use these mapping functions to form the 
basis of their graphical finite-element preprocessing pro­
gram. When highly distorted boundary curves are used, 
however, elements may be formed outside the region 
boundaries. Gordon and Hall (1973) overcome this problem 
by introducing constraint curves on the interior of the re­
gion. Higher order mappings are then used to force the grid 
lines to pass through the constraint curves. Another option 
is to simply break up the region into smaller areas having 
more regular geometry. This technique is recommended by 
Haber and others (1981) for two-dimensional regions, 
though the constraint-curve technique is suggested for three­
dimensional applications. 

Automatic Relabeling 

The finite-element method generally leads to a set of 
linear algebraic equations, which may be written in matrix 
form as 

Ax=b , (12.12) 

where A is the square coefficient matrix, xis the unknown 
solution vector, and b is a vector composed of known 
values. In finite-element applications, the matrix A is usu­
ally sparsely populated (that is, the number of coefficients 
that are zero far exceeds the number of nonzero coefficients) 
since the off-diagonal matrix terms coupling any two nodal 
unknowns are zero unless those unknowns are common to 
the same element. It is essential that this sparseness be fully 
exploited in order to reduce the computer storage require-



ments and the total number of matrix operations needed to 
solve the system of equations. 

Most finite-element equation-solution routines have 
been expressly written to take advantage of the banded na­
ture of the coefficient matrix. The bandwidth of a single row 
in a square matrix is defined as the number of columns 
between the frrst nonzero coefficient in that row and the 
diagonal. The maximum bandwidth of the completely as­
sembled (global) coefficient matrix is the largest bandwidth 
of all its rows. The profile of a matrix is defined as the sum 
of all the individual row bandwidths. Solution schemes 
based on maximum-bandwidth or profile storage are fairly 
easy to program. 

The locations of nonzero coefficients of matrix A , and 
thus the row bandwidths, depend solely on the ordering of 
the unknown variables. In most banded-matrix solution al­
gorithms , this ordering is in some way based on the number­
ing of the network node points. In finite-element applica­
tions, the maximum row bandwidth, B, is typically 
calculated as 

B=(R+l) NDF , (12.13) 

where R is the largest difference between the node numbers 
in a single element of the grid (all elements are considered 
in its determination) and NDF is the number of unknowns 
(degrees of freedom) at each node. 

More recently, equation-solution routines based on 
the maximum frontwidth of the system coefficient matrix 
have been used in finite-element applications. These so­
calledfrontal solution techniques were presented by Melosh 
and Bamford ( 1969) and Irons ( 1970) at about the same 
time. The frontwidth of a particular row in the coefficient 
matrix is defined as the number of active columns in that 
row. A column, j, is said to be active in a given row, i, if 
j is greater than i and there is at least one nonzero coefficient 
in that column in some row with index, k, greater than or 
equal to i. Solution schemes based on maximum-frontwidth 
storage are directly related to the element assembly process 
of the finite-element method. 

Frontal solution techniques are based on either the 
decomposition of the system coefficient matrix or an 
element-by-element assembly and factorization procedure. 
If the frontal solution is based on the completely assembled 
equations, the maximum frontwidth is also dictated by the 
nodal-numbering scheme. However, if the element-by­
element assembly process is used, the maximum frontwidth 
depends only on the sequence in which the elements are 
processed and has nothing to do with the node-point num­
bers. 

Since, for either band or frontal solution techniques, 
storage requirements are determined by the node-point num­
bering scheme or the sequence in which the elements are 
assembled, it is desirable to assign these numbers or se­
quences in such a way as to reduce either the system band-

width, profile, or frontwidth as much as possible. For small 
networks, a hand labeling of node points or elements often 
leads to an efficient solution. Unfortunately, for large net­
works with complex topology, hand labeling becomes a 
tedious and uneconomical effort with little chance of suc­
cess. However, a number of algorithms have been devel­
oped to automate the assignment of labels. Since it is virtu­
ally impossible to investigate all the combinations of node 
numbers or element sequences, these algorithms are based 
on various strategies for obtaining good, but not necessarily 
optimal, labeling schemes. 

Although relabeling algorithms seem to have been 
developed specifically to reduce either the bandwidth, pro­
file, or frontwidth of a system of equations, many of these 
routines are effective in reducing all of these quantities. In 
addition, nodal renumbering schemes that are used to mini­
mize the frontwidth of the completely assembled system of 
equations are also used to define the assembly sequence for 
element-by-element reduction. Moreover, frontwidth­
reduction routines based on direct resequencing of elements 
may also be used to renumber node points. Therefore, in the 
following discussion, no attempt has been made to classify 
the relabeling algorithms; they are -simply presented and 
briefly described. Nor have all relabeling schemes been 
examined; only those that seem best suited to two­
dimensional finite-element applications have been re­
viewed. The interested reader is referred to Everstine (1979) 
for an extensive bibliography of relabeling algorithms. 

Perhaps the most popular relabeling technique for 
finite-element applications was developed by Cuthill and 
McKee (1969). This scheme employs a nodal renumbering 
in a layer-by-layer fashion. Once a starting node is chosen, 
the algorithm labels successively, in order of increasing 
degree, those nodes not already labeled that are adjacent to 
the node with label i for i = 1, 2, ... ,N, where N is the total 
number of nodes. Degree is defined as the number of unla­
beled nodes that are connected to the node in question. The 
algorithm is very fast and performs well in many cases of 
practical interest. A modification by George (1971) is to 
reverse the ordering of nodes produced by the original 
Cuthill-McKee algorithm. This often reduces the profile, 
although the bandwidth remains unchanged. This method is 
shown to perform very well for a class of two-dimensional 
finite-element problems (Liu and Sherman, 1976). Gibbs, 
Poole, and Stockmeyer (1976) present an algorithm that 
differs from the Cuthill-McKee strategy primarily in the 
selection of starting nodes. George and Liu (1978) incorpo­
rate a modified form of the Gibbs-Poole-Stockmeyer al­
gorithm with the reverse Cuthill-McKee strategy to form a 
technique that successfully reduces bandwidth in finite­
element networks with appendages and (or) holes. George 
and Mcintyre ( 1978) describe another nodal renumbering 
scheme based on a similar minimum-degree concept and the 
grouping of nodes into cliques (that is, sets of nodes, all of 
which are adjacent to one another). 
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King ( 1970) developed an algorithm based on the 
concept of a "minimum front growth" criterion. At each step 
after the selection of a starting node, all unlabeled nodes 
adjacent to already labeled nodes are considered and the one 
that increases the front the least is selected. Cuthill (1972) 
finds that a reverse-King relabeling scheme, in which the 
nodes are labeled in the reverse order in which they are 
selected, provides a superior reordering. Levy ( 1971) pre­
sents an algorithm similar to King's except that all unlabeled 
nodes are considered for selection instead of just those adja­
cent to already labeled nodes. Everstine (1979) shows that 
Levy's algorithm performs well in comparison with other 
techniques but generally requires much more computer time 
and, for some large networks, might be completely unfeasi­
ble. Snay (1976) describes a procedure referred to as the 
"banker's algorithm," which is also similar to King's rela­
beling strategy. In this method, unlabeled nodes adjacent to 
already labeled nodes, as well as unlabeled nodes adjacent 
to these unlabeled nodes, are considered for selection. 

Akin and Pardue (1976) present two techniques for 
obtaining an efficient element-assembly sequence for frontal 
solutions by minimizing the maximum frontwidth. The first 
requires a previous node renumbering using the Cuthill­
McKee strategy. Then, starting with the first node and pro­
ceeding in the newly computed order, each node is exam­
ined and the unsequenced elements to which it is connected 
are labeled starting with the element of smallest current 
element degree. The term "current element degree" is de­
fined as the current number of unlabeled elements adjacent 
to the element in question. The second procedure is similar 
to the first but employs a direct resequencing of the elements 
by considering only the current element degree. Fulford 
(1977) and Akin and Fulford (1979) modified the direct 
resequencing technique of Akin and Pardue by adding a 
series of tie-breaking strategies to be used when two or more 
considered elements have the same current element degree. 
Razzaque (1980) developed an algorithm similar to the first 
scheme of Akin and Pardue except that the elements are 
resequenced in an ascending order of their lowest numbered 
node. 

Pina ( 1981) describes another two-step technique for 
obtaining a good element-assembly sequence. In this 
scheme, nodes are first renumbered using a strategy similar 
to King's (1970). As each node is renumbered, all elements 
to which it is connected and which are not yet resequenced 
are labeled. Sloan and Randolph (1983) present a similar 
technique which also uses a modified version of King's 
algorithm to first reorder the nodes. The elements are then 
assembled in an ascending sequence of the lowest ordered 
node. 

Bykat (1977) presents a direct element-resequencing 
scheme that attempts to minimize the maximum frontwidth 
of a two-dimensional finite-element network. The first ele­
ment selected is the one having the fewest neighbors, where 
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elements sharing a common side are considered neighbors. 
The remaining elements are then chosen for assembly on the 
basis of the greatest number of neighboring elements al­
ready assembled. In case of a tie, the one having the most 
nodes on the current wavefront is selected. 

CHAPTER 13. SUMMARY AND 
CONCLUSIONS 

In this report, literature on various aspects of the 
finite-element solution of the equations of two-dimensional 
surface-water flow in the horizontal plane has been sur­
veyed. 

Several related formulations of the flow equations 
were presented in chapter 2. These include the primitive 
shallow-water equations, which consist of an equation for 
conservation of momentum in each coordinate direction and 
an equation for conservation of mass. These equations may 
be written in either conservative or nonconservative form. 
The conservation-of-mass equation may be replaced by a 
wave continuity equation. Appropriate boundary conditions 
were reviewed. The basic concepts of the finite-element 
method were sketched in chapter 3. 

The use of equal-order and mixed interpolation with 
various formulations of the flow equations was discussed in 
chapter 4. The short-wavelength noise that has been a major 
problem with most finite-element solutions of the shallow­
water equations was reviewed in detail. It was seen that both 
mixed interpolation and derivative or wave-continuity­
equation formulations are useful techniques for avoiding 
spurious oscillations. 

The effect of domain resolution on short-wavelength 
noise and the effect of element distortion on solution accu­
racy were discussed. Numerical integration of an order 
higher than that needed to compute element areas exactly 
may be necessary to obtain an accurate solution. Careful 
handling of convective (and viscous) terms is necessary in 
modeling flows involving circulation and separation. The 
controversy regarding upwinding versus mesh refinement to 
avoid spurious oscillations was reviewed. 

The treatment of specified velocities, discharges, 
stresses, and water-surface elevations as either essential or 
natural boundary conditions was discussed in chapter 5. It 
was seen in the literature that there are many possible ways 
of handling any given boundary condition. 

In chapter 6, various approaches for handling the dis­
cretization of time were discussed. Among the useful meth­
ods are the trapezoidal, leapfrog, split-step, predictor­
corrector, semi-implicit, and wave-equation schemes. 
Lumping was seen to increase the efficiency of dynamic 
models, but usually at the expense of accuracy. The severity 
of the accuracy loss is a function of the equations, the 



elements, and the time-stepping schemes used. Several au­
thors have shown that spectral methods are more efficient 
than time-stepping methods for problems involving periodic 
motion. 

Fluid stresses were considered in chapter 7. The treat­
ment of fluid stresses has been found to differ only slightly 
in various modeling approaches except for the treatment of 
turbulent stresses. In cases where velocity gradients are 
small, the effect of turbulence is often not even considered, 
except perhaps to enhance the stability of the numerical 
scheme. When turbulent stresses are important, a variety of 
models have been developed to simulate their effects. These 
turbulence models have quite a wide range of complexity. 
The more complex the model, however, the greater the 
effort required to solve the numerical expressions. The most 
advanced of these turbulence models are still only in their 
development stage for open-channel-flow computations. 

The numerical solution of the nonlinear equation sys­
tem, reviewed in chapter 8, represents by far the major part 
of the cost of obtaining a finite-element solution to the 
two-dimensional depth-averaged flow equations. Lineariza­
tion methods have been applied to the nonlinear equation 
system in all but the most stubborn cases and appear to be 
the most widely used solution technique. Of the lineariza­
tion methods, Newton iteration seems to have been most 
successful; however, the need to recompute and ref actor the 
coefficient matrix for a direct solution of the equations pre­
sents a major disadvantage. These computations can be pro­
hibitively expensive or time consuming for very large sys­
tems, especially if convergence is not achieved within just 
a few iterations. Use of a modified Newton method in which 
the initial factored coefficient matrix is used in successive 
iterations may require fewer matrix decompositions, but at 
the expense of slower convergence. A subclass of lineariza­
tion techniques known as update or quasi-Newton methods 
can significantly reduce the number of operations required 
by updating the factored coefficient matrix in a simple man­
ner after each iteration. 

Techniques for solving the linear equation systems 
generated by the finite-element method were reviewed in 
chapter 9. Of the direct solution techniques that have been 
used to solve the nonsymmetric coefficient matrices gener­
ated by applying the finite-element method to fluid-flow 
problems, both profile- and frontal-storage methods have 
been found to be superior to conventional band-storage solu­
tion methods. Which of the two is better is not clear. While 
iterative solution techniques have not received as much at­
tention as direct techniques in finite-element solutions of 
fluid-flow problems, certain gradient methods have been 
used with some success. Notable are the conjugate-gradient 
method and several of its variations. 

In chapter 10, several alternatives to Galerkin's 
method of weighted residuals were reviewed. Both point­
collocation and least squares methods offer the promise of 

being effective techniques for solving the shallow-water 
equations. 

Methods of model validation were discussed in chap­
ter 11. Much recent research has focused on such techniques 
as Fourier analysis and comparison of model results with 
analytical solutions for linearized equations. 

Automatic processing of finite-element data, consid­
ered in chapter 12, is essential for the solution of large 
problems. Portions of the finite-element grid can be rapidly 
generated without errors and element and (or) node order­
ings can be quickly determined. Many techniques for auto­
matic grid generation and reordering have been developed. 
The amount of computational effort required is directly re­
lated to the complexity of the different schemes. 
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METRIC CONVERSION FACTORS 

Factors for converting inch-pound units to the International System of Units (51) are shown to four significant figures. 

Multiply inch-pound unit By To obtain 51 unit 

(foot) ft 

(foot per second) ft/s 

,~U.S. G.P.O. 1987-181-407:60032 

3.04sx w- 1 

3.04sx w- 1 

(meter) m 

(meter per second) m/s 
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