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Catalog of Worldwide Tidal Bore 
Occurrences and Characteristics 

By Susan Bartsch-Winkler and David K. Lynch 1 

Abstract 

Documentation of tidal bore phenomena occurring 
throughout the world aids in defining the typical geographical 
setting of tidal bores and enables prediction of their 
occurrence in remote areas. Tidal bores are naturally 
occurring, tidally generated, solitary, moving water waves up 
to 6 meters in height that form upstream in estuaries with 
semidiurnal or nearly semidiurnal tide ranges exceeding 4 
meters. Estuarine settings that have tidal bores typically 
include meandering fluvial systems with shallow gradients. 
Bores are well defined, having amplitudes greater than wind­
or turbulence-caused waves, and may be undular or 
breaking. Formation of a bore is dependent on depth and 
velocity of the incoming tide and river outflow. Bores may 
occur in series (in several channels) or in succession 
(marking each tidal pulse). Tidal bores propagate up tidal 
estuaries a greater distance than the width of the estuary and 
most occur within 100 kilometers upstream of the estuary 
mouth. Because they are dynamic, bores cause difficulties in 
some shipping ports and are targets for eradication. 

Tidal bores are known to occur, or to have occurred in 
the recent past, in at least 67 localities in 16 countries at all 
latitudes, including every continent except Antarctica. Parts 
of Argentina, Canada, Central America, China, Mozambique, 
Madagascar, Northern Europe, North and South Korea, the 
United Kingdom, and the U.S.S.R. probably have additional 
undiscovered or unreported tidal bores. 

In Turnagain Arm estuary in Alaska, bores cause an 
abrupt increase in salinity, suspended sediment, surface 
character, and bottom pressure, a decrease in illumination of 
the water column, and a change in water temperature. Tidal 
bores occurring in Turnagain Arm, Alaska, have the 

Manuscript approved for publication, July 26, 1988. 
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hydrological characteristics typical of tidal bores worldwide, 
and confirm models of turbulence and diffusion in naturally 
occurring waves described by others. 

INTRODUCTION 

A tidal bore is a tidally generated wave whose 
amplitude, in some regions, may exceed 6 m (Tricker, 
1965; Rowbotham, 1964; Lynch, 1982). Tidal bores 
occur both in estuarine and freshwater environments. A 
bore is a solitary wave that typically propagates up a 
slowly flowing estuary with the incoming tide (fig. 1). 
Those that ascend the estuary a greater distance than the 
width of the estuary are contained in this listing, with the 
exception of the Araguari River bore which forms at sea. 
Exposed mudflats and broad, beach-like washes which 
experience a bore-like incoming tide, such as occurs at 
Mont St. Michel in France, are not included. 

Only a few bores have been described in detail 
(Champion and Corkan, 1936; Waters, 1947; Dalton, 
1951; Destriau, 1951; Barnes, 1952; Chitale, 1954; 
Abbott, 1956; Rowbotham, 1964; Tricker, 1965; Roy, 
1972; Jouanneau and Latouche, 1981). Early explorers 
made accounts of bores that are now primarily of 
historical interest (Martius, ca. 1837; Moore, 1888, 1893; 
Branner, 1884; Beaver, 1914). Sykes (1937, 1945) 
studied the now-rare bore on the Colorado River in 
Mexico. Many bores are mentioned incidentally in 
scientific papers and unpublished field reports which 
discuss other subjects (for example, Maxwell, 1968; 
Komori, 1979; Amos and Long, 1980; Bartsch-Winkler, 
1982; Murphy, 1983; Bartsch-Winkler and Ovenshine, 
1984). 

Worldwide tidal bore localities document the 
characteristics of known tidal bores, existing now and in 
the past, and facilitate locating additional areas where 
undocumented bores might exist. Unreported bores 
undoubtedly occur in inaccessible and unpopulated 
regions and have never been witnessed by scientists; 
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Figure 1. Tidal bore of about 1.5 m amplitude; marks low tide in Turnagain Arm, Alaska. The bore is moving from right to left, 
followed by the flood tide. 

some identified herein may have existed at one time but 
are now eliminated or diminished by dredging of harbors 
and channels and otherwise altering the hydraulic 
characteristics of an estuary. A very large bore once 
occurred on the Seine River in France, but, in about 
1970, was eliminated by harbor dredging at the mouth. 
The once common (but now rare) bore that occurred in 
the Gulf of California at the mouth of the Colorado River 
has been greatly diminished by the reclamation projects 
on the Colorado River, located many kilometers 
upstream from the mouth in Arizona and California. 

FIELD METHODS AND 
DATA COLLECTION 

Several means were utilized to collect information 
on tidal bore characteristics and on their worldwide 
occurrence. These methods include sending 
questionnaires to agencies and earth scientists, 
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conducting computerized library searches, and 
undertaking field and laboratory experiments on the 
Turnagain Arm bore in Alaska. 

Survey and Literature Search 

Almost 270 questionnaires requesting specific 
information about bores, tides, and rivers, and published 
or unpublished documents on these topics, were sent to 
hydrological, geological, and educational institutions in 
108 countries bordering the oceans (table 1 ). Listings of 
geological and hydrological organizations were taken 
from Bergquist and others (1981) and American 
Geological Institute (198t ); when possible, at least three 
organizations in each wunlry were contacted. A total of 
41 percent of the countries responded to the 
questionnaire. 

A literature search on tidal bores was conducted 
utilizing such computerized indices and sources as 
GeoRef, Selected Water Resources Publications, Smith-



sonian Institution, and the Library of Congress. In 
addition, a request was made for information on tidal 
bores from attending scientists at the XXI International 
Congress on Sedimentology, held in Hamilton, Ontario, 
Canada (Lynch and Bartsch-Winkler, 1982). Certain 
institutions thought to have such knowledge were 
contacted for information on specific tidal bores. 
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CATALOG OF TIDAL BORES 

Figures 2 and 3, respectively, show the worldwide 
types and ranges of tides (Davies, 1977). Table 2lists the 
tidal data collected in the survey arranged alphabetically 
by river name in each country; figure 4 locates each 
occurrence on the world map. Tidal information in table 
2 includes data on the major bodies of water into which 
the estuaries flow. 

Approximately half the world's coasts have mixed 
diurnal and semidiurnal tides, or diurnal tides; the rest 

have semidiurnal tides. Because semidiurnal tides that 
occur nearly every 12 hours rise approximately twice as 
fast for the same tide range as diurnal tides that occur 
nearly every 24 hours, bores are restricted to regions with 
semidiurnal or nearly semidiurnal tides with ranges in 
excess of 4 m (figs. 2, 3, 4). Nearly all tidal bores occur in 
regions of high amplitude (greater than 4 m) semidiurnal 
tides (table 3). Thus, tidal bores form in regions where 
the tide influx is rapid. In addition, the fluvial discharge 
must be relatively slow moving. A requirement for the 
formation of the hydraulic jump (a sudden change in 
water height) represented by the bore is that fluvial 
discharge in the estuary must flow more slowly than the 
shallow water wave velocity (Tricker, 1965; Lynch, 1982). 
Therefore, bores typically form on gently sloping river­
beds commonly identified as meandering and having 
large deltas. Typically, bores occur in settings where the 
estuary crosses broad lowland regions along the coast, 
but this characteristic is not limiting. One exception to 
this is the bore or bores that occur in Turnagain Arm of 
Upper Cook Inlet, Alaska. Turnagain Arm estuary is 
surrounded by glaciated peaks of the Chugach Range 
which exceed 1,200 m within 2 km of tidewater, but it is 
also a Late Holocene fiord that has been infilled with 
unconsolidated intertidal sediment. Bore-bearing river­
beds are typically composed of unconsolidated clay, silt, 
or sand that is easily transported and deposited 
contemporaneously in relatively broad intertidal zones. 

Most bores occur within about 100 km of the 
estuary mouth even though the tidal effects are evident 
much farther inland. The deepest inland penetration of 
bores is apparently in the Amazon Basin where bores on 
the Capim, Guajara, and Moju Rivers, which flow into 
the Amazon, occur more than 150 km inland. Due to the 
large size and great width of the Para River, into which 
the Capin, Guama, and Moju Rivers flow, and the 
Amazon River, into which the Guajara River flows, bores 
may form 100 km inland. Conversely, due to the vast 
Araguari River delta built into the Atlantic Ocean, an 
undular bore occurs as much as 10 km offshore from the 
river mouth (fig. 5). 

Tidal bores apparently form at all latitudes, 
although reports in areas from about lat 60° to 90° N. and 
60° to 90° S. are missing. The most northerly region 
reported in this survey is in upper Cook Inlet, Alaska, at 
lat 61° N. However, bores are suspected to occur in the 
Baffin Island region, Canada, at lat 65° N. 

This survey is intended to be ·a general guide to 
tidal bore occurrence in the world and not an all-inclusive 
or final documentation. Undoubtedly more tidal bore 
locations exist than are listed here, but either they occur 
in remote settings from which no information is available, 
they are ephemeral, or they are insignificant and go 
unnoticed by commercial interests. Our information, in 
some cases, was limited to older or rare published 
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Table 1. Responses of countries sent questionnaires inquiring about the existence of tidal bores in their country 

[( + ), tidal bores exist in country; ( -), no tidal bores exist in country; undesignated, no reply] 

Angola 
Argentina (-) 
Australia (+) 
Bangladesh (+) 
Belgium (-) 
Benin 
Brazil (+) 
Burma (+) 
Cameroon 
Canada (+) 
Chile (-) 
China, People's Rep. (+) 
Colombia (-) 
Congo 
Costa Rica (-) 
Cuba 
Denmark 
Djibouti 
Dominican Republic 
Ecuador (-) 
Egypt 
El Salvador 
England (+) 
Ethiopia 
Finland (-) 
France (+) 
French Guiana 
Gabon 
Gambia 
Germany, Fed. Rep. (-) 
Germany, Dem. Rep. 
Ghana 
Greenland (-) 
Guadeloupe 
Guatemala 
Guinea 
Guinea-Bissau 

Guyana 
Haiti 
Honduras 
Hong Kong 
Iceland 
India 
Indonesia 
Iran 
Iraq 
Ireland 
Israel 
Ivory Coast 
Jamaica 
Japan 
Kenya 
Korea, North 
Korea, South 
Kuwait 
Liberia 
Madagascar 
Malaysia 
Martinique 
Mauritania 
Mauritius 
Mexico 
Morocco 
Mozambique 
Netherlands 
New Caledonia 
New Guinea 
New Zealand 
Nicaragua 
Nigeria 
Norway 
Oman 

papers, which may be inaccurate today because of 
changes in the estuary concerned. Much of the data 
comes from unpublished government documents, 
obscure scientific publications, popular articles, and 
reports from knowledgeable lay persons and scientists 
who took an interest in, and sporadically observed, 
particular bores. Some tidal bores are known locally by 
special names unfamiliar to scientists ("pororoca" is the 
name of the bore on the Amazon River, and "eagre" is 
the name given to bores in England). In some cases, only 
one bore in a series of bores that occur along many 
waterways in a region is well known and publicized, and 
the others receive no recognition. For example, in Can­
ada the Petitcodiac bore is well reported, though bores 
on the Maccan, Shubenacadie, Hebert, and Salmon 
Rivers also occur (all draining to Bay of Fundy; table 2). 

4 Worldwide Tidal Bores 

(-) 

(-) 

(+) 
(-) 
(+) 
(+) 
(+) 
(-) 
(-) 
(-) 
(-) 

(+) 

(-) 
(+) 

(-) 

(-) 

(-) 
(-) 

Pakistan 
Panama 
Peru 
Philippines 
Poland 
Portugal 
Qatar 
Reunion 
Saudi Arabia 
Scotland 
Senegal 
Sierra Leone 
Solomon Islands 
Somalia 
South Africa 
Southwest Africa 
Spain 
Sri Lanka 
Sudan 
Surinam 
Sweden 
Taiwan 
Tanzania 
Thailand 
Togo 
Tonga 
Trinidad/Tobago 
u.s.A. 
U.S.S.R. 
Uruguay 
Vanuatu 
Venezuela 
Viet Nam 
Western Samoa 
Yemen 
Zaire 

(+) 
(-) 
(-) 
(-) 

(+) 
(-) 
(-) 
(-) 

(-) 
(-) 

(-) 
(-) 
(-) 

(-) 

(+) 

(-) 
(+) 

(-) 

Several countries consider information on tidal bores as 
classified, limiting knowledge, in these cases, to older 
publications. It is also possible that some bores (for 
example, the Orinoco) do not exist at all, the reports 
being erroneous or misinterpretations. 

The best data on tidal bores result from detailed 
studies performed as part of a systematic engineering 
effort to eliminate them. Bores occasionally cause 
damage to river commerce and, as a result, have become 
targets for control (Komori, 1979; Zeheng, 1982). Also, 
tidal bores may have once occurred in rivers that have 
been dammed for irrigation or flood control, and have, 
thus, been eliminated. The large bores on the Seine 
(France), Colorado (Mexico), and Qiantang Jiang 
(China) have decreased to relative insignificance or have 
been eliminated by engineering and hydrologic projects. 
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Table 2. Known tidal bore locations in the world and their characteristics 

[Numbers are keyed to map locations shown on figure 4. Where river name is enclosed in parentheses, information source is an historical document or eye-witness account 
unaccompanied by photography or other documentation. Latitude and longitude of river mouths are approximate and do not represent any officially accepted geographic 
location. Usual location of the bores is given; where two locations are given, the bore typically forms near first and dissipates near second. References listed include most detailed 
reports on the specific bore; degree of uncertainty of occurrence is inferred by list of information sources. Leaders(---), no information] 

Map River 
No. 

Location Tidal information Characteristics 

Latitude Longitude Sourcel 

Daly 13°2I'S 130°2l'E Timor Sea-! 

2 Herbert 22°25 1 S 149°53'E Coral Sea-P 

3 
4 
5 
6 
7 
8 

9 

Howard 
Keep 
King 
Mick.ett 1 8 

Ord 
Prince 
Regent 

Victoria 

10 (Brahma­
putra) 

11 (Ganges) 
12 Meghna 

13 Amapa 
14 Amazon 

15 Araguari 

16 Capim 

15°13'S 
15°29'S 

15°01 'S 

15°24'S 
15°00' s 

24°12'N 
22°00'N 
23°00'N 

02°10' N 
00°14'N 

Ol 0 14'N 

Ol 040'S 

17 
18 
19 

Cassipore 03°57'N 
Guajara Ol 0 47'S 
Guama 01°20'S 

20 
21 

Mea rim 
Moju 

03°09'S 
01°41 Is 

22 (Tocan- 01°45'S 
tins) 

129°10'E 
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oso0 ss•w 
050°45'W 

049°55'W 

047°47'W 
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044°58'W 
048°27'W 

Timor Sea-r 
Timor Sea-l 
Timor Sea-l 
Timor Sea-l 
Timor Sea-r 

Ti11or Sea-l 
Timor Sea-l 

B Bengal-I 
B Bengal-I 
B Bengal-I 

-A 
-A 

-A 

Guama R 
Para R 
B de Marajo 
-A 
-A 
Amazon 
B de Marajo 
-A 
-A 
Para R 
B de Marajo 
-A 

049°12'W Para R 
B de Marajo 
-A 

Ranfe 
(m) }I 

Channel4 
w d 

~idal Bore 
Location, extent ht 

(m) (m) (m) 

Australia 

r, 6-7 s 15 5 30 km from mouth 1.5 
I3°31 1 S, 130°29'E. 

r, 10.8 8 30- 0-5 Charon Pt to Banyon Cr--- 0.6 

D, )6 s 
r, 3.5;D, )6 8 
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D, )6 8 

r, 5.9 s 

D, )6 8 

D, )6 s 
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D, 2-4 
D, 2-4 
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D, 4-6 

D, 4-6 

D, 4-6 

D, 4-6 

8 

8 

8 

8 

8 

8 

8 

s 
s 
s 

8 

s 

8 

1,000 
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Bangladesh 

Brazil 

var var 

soo- o-s 
3,000 

C Norte, Ile Verte, Ile 
Norte, lle Cazeau, 
C Macau, Ile Caviana. 

20 km upstream; reputed 
to form offshore. 
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Confluence of Guama R 
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3 
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Map River Location Tidal information Characteristics References6 

No. 
Latitude Longitude Source I 

~ 11 
Channe14 ~idal Bore 

( w d Location, extent ht sp 
(m) (m) (m) (m/s) 

Bunaa 

23 Pegu 16°29'N 096°19'E Andaman Sea D, 4-6 8 --- --- --- 3 --- NOAA, 1982a. 
B Bengal-I 

24 Sit tang 17°24' N 096°53'E Andaman Sea D, 4-6 8 --- --- --- o.s --- NOAA, 1982a. 
B Bengal-I 

Canada 

25 Hebert 45°47'N 064°18'W B Fundy, -A St. John,)13 s --- --- Amherst Pt to Hebert R--- 0.3 --- * ' P• 
26 Maccan 45°47'N 064°18'W B Fundy, -A St. John,>l3 s --- --- Amherst Pt to Athol------ 0.3 --- * ' P• 
27 Petit- 45°52'N 064°3S'W B Fundy, -A St. John,)l3 s 600 dry Dover to 10 km upstream 1.0- --- Doodson and Warburgh, 1941; 

codiac r, 17.5 at from Moncton; Bore View 1.5 Dalton, 1951; Mitchell, 1968; 
MLW Park at Moncton. NOAA, 1982c; *, P• 

28 Salmon 45°2l'N 063°24'W B Fundy, -A St. John,>l3 s --- --- Truro-------------------- 1.0 4-5 Redfield, 1981; *, P• 
r, 17.5 

29 Shubena- 45°09'N 064°14'N B Fundy, -A St. John,)13 8 --- --- --- 0.3 --- Amos and Long, 1980;Dalrymple 
cadie r, 16.3 and others, 1982; NOAA, 1982c. 

Otina 

30 Qiantang- 30°15'N 120°49'W East China Sea D, 4-6 s 2,000- 2-10 Jianshan to 40 km upstream 1-3 5-12 Moore, 1888; 1893; Zeheng, 
Jiang -P 10,000 from Hangzow; daily. 1982; NOAA, 1982a. 

31 Zhu-Jiang 22°00'N 114°00' E East China Sea D, 2-4 m --- --- Hong Kong to Zhao-ching, --- --- *· 
(Pearl) -P Shi-chiao, Shi-long; 

bores in tributaries. 

England 

32 Dee 53°21' N 003°15'W Liverpool B D, )6 8 --- -- --- --- --- Doodson and Warburgh, 1941; 
Irish Sea, -A Chitale, 1954; Zerbe, 1972. 

33 Kent 54°ll'N 002°52'W Horecambe B D, >6 s --- --- --- --- --- Tricker, 1965; *· 
Irish Sea, -A 

34 Hersey 53°27'N 003°02'W Liverpool B D, >6 s --- --- --- --- --- Tricker, 1965; Clancy, 1968; 
Irish Sea, -A Zerbe, 1972; *, P• 

35 Ouse 53°42'N 000°42'W Humber R, Black toft, s --- --- --- --- --- *· 
North Sea, -A 6-7 

36 Parrett 51°13'N 003°01 'W Bristol Ch, -A Sharpness, 8 --- --- Near Bridgewater--------- 0.5 --- Chitale, 1954; Tricker, 1965; 
0 )10 NOAA, 1982c; *, P• 
I» 
Dr 37 Severn 51°30'N 002°45'W Bristol Ch, -A Sharpness, s --- --- Severn Bridge, Gloucester 1-2 2-6 Waters, 1947; Abbott, 1956; 

0 )10 Rowbotham, 1964; Tricker, 1965; 
co Lynch, 1982; *· 
2. 38 Trent 53°42'N ooo0 42'W Humber R, Blacktoft, 8 --- --- Burton Strather (mi. 6) to 1-2 6 Champion and Corkan, 1936; 

::t North Sea, -A 6-7 Gainsborough (mi. 46). Doodson and Warburgh, 1941; 
Q. Barnes, 1952; Tricker, 1965; 
!. *; P• 
m 39 Wye 51°37'N 002°41'-W Bristol Ch, -A Sharpness, 8 --- --- --- --- --- Darwin, 1898; Doodson and 
0 
; )10 Warburgh, 1941. 

• 
.... 



C» Table 2. Known tidal bore locations in the world and their characteristics-Continued 

~ 
References6 ... Map River Location Tidal information Characteristics a: 

~ No. 
a: Latitude Lonsitude Sou reel 

~ 11 
Channel4 ~idal Bore 

CD ( w d Location, extent ht sp 
:t (m) (m) (m) (m/s) 
a. 
!. France 
aJ 
0 ... 40 (Charent) 45°47'N OOI 0 06'W B Biscay, -A D, 4-6 s -- --- --- --- --- *· CD • 41 (Coues- 48°39 N 001°30'W G St. Malo, D, )6 8 --- --- --- --- --- *· 

non) English Ch, -A 
42 Dordogne 45°02'N 000°35'W Gironde R --- 8 --- --- Ambes I to Vignonnet; var 1.0 Destriau, 1951; Jouanneau 

B Biscay, -A small bore in Isle R. and Latouche, 1981; *• p. 
43 Garonne 45°00'N ooo0 Js•w Cironde R --- s --- --- Bordeaux to Cadillac----- --- --- Destriau, 1951; Jouanneau 

B Biscay, -A and Latouche, 1981; *• P• 
44 Gironde 45°31 'N 001°00'W B Biscay, -A D, 4-6 8 --- --- Below Bee D'Ambes, --- --- Destriau, 1951; Jouanneau 

Canal Macau. and Latouche, 1981; *• P• 
45 Orne 49°19'N 000°13'W B Seine, D, )6 8 --- --- --- --- --- Defant, 1958; Wylie, 1979; *· 

English Ch, -A 
46 Seine 49°26'N 000°20'E B Seine, D, )6 s --- --- LeHavre to Rouen; reduced o.s. --- Tricker, 1965; *• p. 

English Ch, -A by engineering works. spring 
47 (Vilane) 47°30'N 002°26'W B Biscay, -A D, )6 --- --- --- *· 

India 

48 Hooghly 22°00'N 88°07'E B Bengal, -I Saugor (5.6) s 700- 4-9 Hooghly Pt to Balagarh--- 2.0; 7.5 Chitale, 1954; Roy, 1972; 
1,000 spring NOAA, 1982a; *· 

49 Mahi 22°15'N 72°30'E G Cambay, D, 4-6 m --- --- --- --- --- *· 

50 Narmada 21°36'N 72°53'E 
Arabian Sea,-I 
G Cambay, D, 4-6 m --- --- --- --- --- *· 
Arabian Sea,-I 

Iran and Iraq 

51 (Shat el 29°58'N 48°30'E Persian G D, 2-4 m -- --- --- --- --- Waters, 1946. 
Arab) Arabian Sea,-I 

Ireland 

52 (Cashen) 52°29'N 009°41 'W St George, -A D, 4-6 s --- --- --- o.s- *· 
1.0 

53 (Suir- 52°08'N 006°58'W -A D, 4-6 s --- --- --- 0.5- *· 
Barrow) 1.0 

Malaysia (Sarawak) 

54 Lupar 01°38'N 110°58'E South China D, 2-4 m --- --- Lingga to Lui------------ 1.0 s.o Maugham, 1949; Komori, 1979. 
Sea, -P, I 

55 Sadong 01°38'N 110°48'E South China D, 2-4 m --- --- Buluku to Sebamban------- --- --- Komori, 1979. 
Sea, -P, I 

56 Samarahan 01°50'N 110°44'E South China D, 2-4 m --- --- Malaya to New Samarahan-- 1.0 5.0 Komori, 1979. 
Sea, -P, I 

57 Sari bas 01°45'N 111°05'E South China D, 2-4 m --- --- Supa to Padah------------ --- --- Komori, 1979. 
Sea, -P, I 
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Map River 
No. 

Location Tidal Information 

Latitude Longitude Source1 ~ 

58 Colorado 31°40'N 

59 Aramia 

60 
61 

Bamu 
Fly 

62 (Indus) 

63 Forth 

64 Solway 
Firth 

08°03'S 

08°30'S 

23°55'N 

56°0S'N 

54°55'N 

65 Knik Arm 61°15'N 

66 Turnagain 61°00'N 
Arm 

67 (Orinoco) 09°00'N 

l 

ll4°37'W 

143°40'E 

143°27'E 

67°53'E 

003°00'W 

004°30'W 

(m)"' 

Sea of Cortez r, 7 

Coral Sea, -P D, 2-4 

Coral Sea, -P 
Coral Sea, -P 

Arabian Sea, 
-I 

D, 2-4 
D, 2-4 

r, 3.3; 
D, 4-6 

North Sea, -A r, 5.5; 
D, 4-6 

Irish Sea, -A D, )6 

150°00'W Cook Inlet, 
G Alaska, -P 

Anchorage, 
11.5 

150°00'W Cook Inlet, 
G Alaska, -P 

061°30'W 

Anchorage, 
u.s 

0, 4-6 

11 
m 
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m 
m 

m 

s 

s 

s 

s 
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Characteristics 

Channel4 _w ___ d ~idal Bore 
Location, extent ht Sp 

(m/s) (m) (m) 

Mexico 

Formerly Montague 1 to 
El Mayor. 

New Guinea (Papua) 

Domori 1 to Strickland R 

Pakistan 

1,000 10 

Scotland 

(m) 

5-6 

1.0; 
spring 

2.0; 
spring 

2.0 

Near Allon--------------- 0.1 

United States 

Knik village; simulta­
neous bores in tidal 
channels. 

Fire I to Twentymile R; 
simultaneous bores in 
tidal channels. 

Venezuela 

0.2 )4 
daily 

1.5 )4 
daily 

References6 

Gordon, 1924; Sykes, 1937; 
1945; Waters, 1946; *, p. 

Beaver, 1914; *· 

Beaver, 1914; * 
Blake, 1972; MacKay, 1976. 

Doodson and Warburgh, 1941; 
Clancy, 1968; Zerbe, 1972. 

Clancy, 1968. 

Doodson and Warburgh, 1941; 
Chitale, 1954; Clancy, 1968; 
Zerbe, 1972. 

Bartsch-Winkler, 1982; NOAA, 
1982d; Bartsch-Winkler and 
Ovenshine, 1984; p. 

Bartsch-Winkler and Ovenshine, 
1984; Bartsch-Winkler and 
Schmoll, 1984; p. 

* 

2
I, Indian Ocean; A, Atlantic Ocean; P, Pacific Ocean; B, Bay (of); R, River; G, Gulf (of); Ch, Channel. 

3
spring tidal range at the indicated location or station; r, river mouth; D, information from Davies, 1980; >, greater than. 

4
s, semidiurnal tide; m, mixed tide (from Davies, 1980). 

5
w, width; d, mean depth; var, variable; MLW, mean low water. 

6
cr, Creek; Pt, Point; C, Canal; R, River; I, Island; B, Bay. 
*, data obtained from unpublished material or survey response; p, photograph of bore in authors' files or published in cited reference. 
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Table 3. Bore-producing regions classified according to 
tidal type 

Country 

1. u.s.A.------
2. China-------
3. Australia---
4. New Guinea-­
S. Burma-------
6. Bangladesh--
7. India-------
8. England and 

Ireland. 
9. Canada------

10. Brazil------

11. Mexico------
12. Malaysia----
13. India-------
14. Pakistan----

Tidal body 

Seaidiurnal tides 

Cook Inlet---------­
East China Sea-----­
Timor Sea----------­
Coral Sea----------­
Bay of Bengal-----­
Bay of Bengal-----­
Bay of Bengal------­
North Sea, Irish Sea, 
English Channel. 
Bay of Fundy-------­
Amazon River--------

Mixed tides 

Sea of Cortez------­
South China Sea----­
Arabian Sea--------­
Arabian Sea---------

Ocean 

Pacific. 
Pacific. 
Indian. 
Pacific. 
Indian. 
Indian. 
Indian. 
Atlantic. 

Atlantic. 
Atlantic, 

Pacific. 
Pacific. 
Indian. 
Indian. 

The data display a large variation in tidal bore 
characteristics, in part due to the diverse sources and to 
the various estuarine settings. In some cases, estuary 
mouths are not well defined and tidal stations are at a 
distance from them, resulting in only approximate tidal 
information. Properties of tidal bores may change in any 
given location from one year, season, month, or week, to 
the next. Certain tidal bores may form only during 
specific times of the lunar monthly cycle (for example, 
during spring tides, when tide range is the highest). 
Deposition and erosion by the river may result in a 
change in channel configuration. River outflow may 
increase at certain times of the year, changing the ratio of 
outflow to inflow. Thus, tidal bore occurrence is 
unpredictable, in some cases, because the formation of 
the wave depends on such variable properties as tide 
range, amount and velocity of runoff and inflow, and 
channel depth and configuration. 

TIDAL BORE CHARACTERISTICS 

Tidal rhythms in shallow estuaries are asymmetric 
in time due to deceleration of flood current speeds 
caused by bottom friction and the adverse outflow 
current; that is, the length of time required for the flood 
cycle is less than the time required for the ebb cycle. At 
points further up the estuary this asymmetry becomes 
progressively pronounced; flood cycle duration becomes 
shorter and ebb cycle duration grows longer. The result 
of this fact is that the water rises faster than it falls, 
inferring faster flood current speed. In extreme cases, the 
first flood stage (at low tide) occurs as a bore. Bores 
typically occur in series, moving simultaneously up 
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closely spaced river systems or intertidal channels within 
an estuary with the incoming tide. They also may occur in 
succession within a tidal channel, marking tidal pulses or 
plateaus following the initial pulse, each separated by a 
bore. 

Initially, the bore may be an impulsive influx of 
brackish or fresh water depending on the accumulation 
of fresh water at the estuary mouth prior to the turn of 
the tide, but rapid increase in salinity occurs at any given 
location shortly after the bore passes (for example, Roy, 
1972; Bartsch-Winkler and others, 1985). The bore also 
causes an abrupt increase in turbidity, temperature, 
surface structure, and bottom pressure at any given 
location, and, of course, flow direction is reversed after 
passage of the bore. The kinetic energy of bores is 
partially dissipated within the channel and at the 
shoreline, causing rapid erosion and consequent increase 
in suspended load. 

A tidal bore, a hydraulic jump, forms in response to 
the increased shallowing in the estuary upstream from 
the mouth, producing disequilibrium in the opposing 
energy levels of the incoming tide and the river outflow. 
In high tide range areas with the proper characteristics, a 
bore is the leading edge of the incoming tide and, at 
various locations in the estuary, the bore may be either 
turbulent (breaking, fig. 1) or undular (nonbreaking, fig. 
5). The form of the bore depends on the ratio of the 
water depth on either side of the bore (downstream or 
oceanward depth/upstream or landward depth). If the 
ratio is small or close to unity, the form is nonbreaking; 
as it nears a ratio of 1.4, the form becomes breaking 
(Tricker, 1965; Lynch, 1982). Most bores change form 
and decrease in height as they move upstream into 
shallower water due to increase in friction and due to 
change in the bottom configuration of the estuary. 

Numerous smaller waves (whelps) may form 
immediately behind a bore (fig. 5). Where the bottom 
configuration and river depth remain relatively constant, 
whelps increase in number and propagate in time 
downstream (oceanward) relative to the leading edge 
(Favre, 1935; Benjamin and Lighthill, 1954). Whelps, 
because they have less height, do not propagate as rapidly 
as the larger leading wave and are left behind to 
eventually dissipate. 

The surface transverse (shore-to-shore) profile of a 
bore depends on the depth profile of the channel and the 
flow velocity in the river, with those portions of the bore 
in deeper water propagating faster than those in 
shallower water (fig. 6). Where the bottom configuration 
changes (shallows) upstream, a secondary wave with 
greater height may form behind the leading wave 
(because it is in relatively deeper water). This secondarily 
formed wave may temporarily propagate faster than the 
leading wave. Also, since the bore propagates 
perpendicular to the leading edge, the near-shore parts 



Figure 5. Undular bore and whelps near the mouth of Araguari River, Brazil. View is oblique toward mouth from airplane at 
approximately 100ft altitude. 

develop a transverse velocity component and approach 
the shore obliquely. Refraction and reflection of the wave 
continuously transfer energy between deeper parts of the 
river and shallower parts. The effects of depth and flow 
speed variation combined with refraction and reflection 
lead to subtle and complex patterns in transverse profile; 
bores may get larger, smaller, and, in some cases, 
dissipate in one area, only to reappear in another. 

Bores reach their maximum height soon after 
formation, and decay gradually upstream due to bottom 
friction and shore break (Roy, 1972). The average 
amplitude of tidal bores is about 1 m, but they range in 
amplitude from 0.2 to 6.0 m. One of the last occurrences 
of the 6-m-high bore on the Seine River was 
photographed by Tricker (1965; also see Lynch, 1982) 
just prior to its eradication by engineering techniques. 
Bores whose amplitudes are reputed to exceed 6 m have 
been reported from the Amazon and Qiangtang Rivers 
(Branner, 1884; Moore, 1888, 1893). Although these are 
not verified in this report by recent scientific 
investigations or scaled photographs, they are not 
rejected, and could well occur or have occurred owing to 

the variability of bore height and occurrence with season, 
stage in the lunar month, and frequent change in 
sediment accumulation within an estuary that will affect 
bed configuration. 

OBSERVATIONS AND EXPERIMENTS IN 
TURNAGAIN ARM, ALASKA 

In Turnagain Arm, Alaska, tidal bores form with 
each incoming tide (marking low tide), range to 1.5 min 
height, and occur throughout the year. In an effort to 
elucidate and verify tidal bore characteristics, 
experiments were conducted and measurements were 
made on various aspects of the Turnagain Arm tidal 
regime. During July 1982, mixing experiments were 
carried out on the daily tidal bores in order to observe the 
surface mixing between pre- and post-passage flow. 
Lightweight plastic bags containing approximately 10 g of 
red fluorescein dye and a small sharp rock were dropped 
from aircraft at 300-600 m altitude near the leading edge 
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Figure 6. Complex wavefront of the Turnagain Arm bore. The bore is moving from right to left and is followed by flood tide. 
Photograph taken from airplane at approximately 100ft altitude. 

of 10 tidal bores occurring simultaneously in a single tidal 
cycle in various channels in the estuary. Dye was released 
upon impact by the weight and angularity of the rock 
which broke the plastic bag. The dye was observed and 
photographed for 2 minutes after impact in bores with 
estimated heights ranging from 0.3 to 1.5 meters and 
estimated upstream water depths ranging from nil to 2 m. 

Interpretations from dye experiments in Turnagain 
Arm are limited to surface observations because of the 
turbidity of the water, rendering it opaque; subsurface or 
boundary layer dynamics were not visible. In cases where 
the dye was dropped onto exposed banks adjacent to the 
channel (upstream depth nil), upon its arrival, the bore 
carried the dye upstream laterally along the leading edge, 
presumably by turbulent diffusion; the dye showed little 
tendency to diffuse with the stream. In these cases, the 
persistence of the dye at the leatling edge of the bores 
moving over exposed tidal channel banks suggests a 
trapping of the dye by a horizontal vortex or turbulence 
in the bore, as described by Longuet-Higgins and Turner 
(1974) and Madsen and Svendsen (1983). When dye was 
dropped into upstream water of the tidal channel, 
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however, the amount of mixing (spreading) varied in 
proportion to upstream water depth. Under these 
conditions, the dye patch was spread in the direction of 
stream flow after passage of the bore, showing little 
lateral mixing; the dye patch moved upstream at a slower 
rate than the rate of the leading wave, increasing the 
distance between dye patch and bore. Such streamwise 
spreading of the dye is consistent with models of bores 
defined by Tsubaki (1950) and Madsen and Svendsen 
(1983). 

Changes in tidewater were monitored in Turnagain 
Arm at various tidal stages anti cycles during the spring 
and summer months (May through September) of 1981 
and 1982 (Bartsch-Winkler, Emanuel, and Winkler, 
1985). In the study, suspended sediment samples were 
collected from tidal channel surfaces at regular intervals 
throughout a single tidal cycle during both flood and ebb 
tide. Specific conductance, water and air temperature, 
and water level changes were measured from several 
field sites; grain size analyses were undertaken. All the 
measurements show immediate change in amount or 
character soon after passage of the tidal bore. 



In addition to a change in direction and a rapid rise in 
surface level of the water in the tidal channels after 
passage of the bore, the water also showed a marked 
increase in suspended sediment. The turbulent wave 
scours into the channel bottoms, and is a major force in 
sediment redistribution. The saline wedge, a feature 
typical of most estuaries caused by freshwater flow atop 
saltwater, is diffuse in this dynamic hydrologic system. 
Near the mouth of Turnagain Arm, salinity increased 
markedly after the change in tide, but near the head of 
the arm, the salinity patterns were more complex 
(Bartsch-Winkler and others, 1985). At the head, the 
arrival of saline water occurred on the flood-dominant 
south side as much as 30 min after arrival of the bore. 
Although most streams in the area are glacially derived 
and frigid, on some days shallowing outflow water had a 
temperature that was higher due to solar heating than 
incoming tidewater temperature. Thus, though the 
freshwater temperature varied with the weather, the 
temperature of the deeper marine water was more 
constant. Upon passage of the bore, surface water 
temperature typically changed by several degrees. 

CONCLUSIONS 

Settings in which tidal bores occur are generally 
meandering river systems having gentle gradients, where 
discharge is relatively slow moving with respect to the 
tidal flow. The mouths of the rivers typically are large 
deltas. Tidal bores generally occur within the estuary less 
than 100 km from the mouth, although the Araguari bore 
forms offshore. Formation of tidal bores is dependent on 
the rapid rate in the rise of tide level, so they occur in 
regions with high tides where the range exceeds 4 m and 
the tides are semidiurnal or nearly semidiurnal. Tidal 
bores in this catalog propagate up the tidal estuary a 
greater distance than the width of the estuary. In some 
places in the world, tidal bores have been purposely 
eradicated because they have caused havoc in port areas. 

Tidal bores are solitary, tidally generated, naturally 
occurring, moving waves that range from 0.2 to 6.0 min 
height. They have a greater amplitude than wind- or 
turbulence-caused waves. The wave is undular if the ratio 
of downstream to upstream depth is less than about 1.4; 
greater than that, the wave is breaking. The transverse 
profile of a tidal bore changes with the depth 
configuration of the channel up which it moves and with 
the depth and velocity of incoming tidewater and river 
outflow. Subtle variations due to the effects of refraction 
and reflection along the shore also may take place. Bores 
may form as initial waves of the flood tide, and may occur 
in several channels simultaneously, or as successive 
waves that identify tidal pulses or plateaus. The speed of 
a bore is faster in deeper water than in shallower water. 

Refraction and reflection of the wave at the channel 
edges transfer energy from deeper to shallower water. 
Whelps, slower moving, undular waves, may form behind 
and follow the bore. 

Tidal bores occur or have occurred throughout the 
world in at least 67 locations in 16 countries. Areas (see 
fig. 4) favorable for tidal bore occurrence but where no 
occurrences are documented, or areas where there may 
be additional occurrences to the ones reported, include: 
(A) Argentina from Montevideo to Tierra del Fuego, (B) 
northern Canada in the region of lower Baffin Island and 
upper Hudson Bay, (C) Central America along the 
Pacific Coast from Guatemala to Colombia, (D) 
southeastern Africa and western Madagascar, (E) 
western Iceland, the United Kingdom, and Northern 
Europe, (F) northeastern U.S.S.R. in the Sea of Okhotsk 
west of Kamchatka Peninsula, and (G) North and South 
Korea in Korea Bay and the Yellow Sea. Such areas are 
suspect to have bores because they have high tide ranges 
and semidiurnal tidal characteristics. If bores are never 
reported from these areas, it will probably be due to the 
presence of either swiftly moving rivers with steep 
gradients or ephemeral river systems, both of which 
generally are associated with mountainous coastlines. 

In Turnagain Arm, Alaska, bores occur daily with 
each incoming tide. They cause an increase in salinity, 
suspended sediment, surface character, and bottom 
pressure, a decrease in water illumination due to 
turbidity, and a change in temperature. Studies of bores 
show that their behavior corresponds to that modeled for 
turbulence and diffusion in naturally occurring waves, as 
has been hypothesized by others. 
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