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The Alaska Mineral Resource Assessment Program­
Background Information to Accompany Geologic and 
Mineral-Resource Maps of the Valdez Quadrangle, 
South-Central Alaska 

By G.R. Winkler, R.j. Goldfarb, W.j. Pickthorn, and George Plafker 

Abstract 

The Valdez 1 °X3° quadrangle in south-central Alaska 
contains potentially significant resources of gold, chromium, 
copper, and possibly a few other commodities. This report 
summarizes recent results of integrated geological, geochemi­
cal, and geophysical field and laboratory studies conducted by 
the U.S. Geological Survey that were designed to provide an 
assessment of the mineral resources of the quadrangle. The 
results have been published principally as maps and data 
releases in U.S. Geological Survey Open-File Reports and Mis­
cellaneous Field Studies maps, which are cited herein and pro­
vide background information for the assessment. This report 
also cites numerous additional references for published reports 
and maps that describe the mineral resources and the geologic 
and tectonic setting of the Valdez quadrangle. 

INTRODUCTION 

Purpose and Scope 

Recent U.S. Geological Survey field and laboratory stud­
ies of the geologic setting of mineral and energy deposits in 
the Valdez l 0 X3° quadrangle in south-central Alaska were 
conducted as part of the Alaska Mineral Resource Assess­
ment Program (AMRAP), mineral surveys of public lands 
within Chugach National Forest, and the Trans-Alaska 
Crustal Transect (TACT) study of the deep crustal structure 
of southern Alaska. The overall objective of the geologic, 
geochemical, and geophysical investigations was to provide 
modem mineral-resource information as potential input for 
land-use planning and minerals-policy development and to 

Manuscript approved for publication April 3, 1992. 

guide minerals exploration. The studies also aimed to 
enhance the geologic knowledge of an area that had received 
few recent earth-science investigations. These studies were 
completed in 1988; however, they incorporate much funda­
mental geologic information that was obtained in the 1950's, 
1960's, and 1970's during studies of the Copper River Basin 
area, the Gulf of Alaska Tertiary province, the epicentral 
region of the 1964 Alaska earthquake, the major fault sys­
tems of southern Alaska, and the mineral resources of the 
contiguous McCarthy 1 °X3° quadrangle to the east. A list of 
maps and reports that provide the primary mineral-resource 
data for the Valdez quadrangle is given in table 1. Other 
sources of information on the geology and mineral deposits 
of the quadrangle are cited in the text and listed in the accom­
panying references. 

Geography and Access 

The Valdez quadrangle includes about 18,000 km2 of 
south-central Alaska (fig. 1). The quadrangle is bounded by 
the 61 o and 62° parallels and by the 144° and 147° meridi­
ans. The quadrangle includes, from north to south, the south­
west end of the scenic Wrangell Mountains dominated by the 
broad shield volcano of Mount Wrangell, part of the low­
lands of the Copper River Basin drained by the Copper River 
and numerous tributaries, and the rugged, glacier-clad crest 
of the Chugach Mountains indented on the southwest by the 
fiord of Port Valdez. Mount Wrangell is still mildly active, 
and periodically small ash eruptions darken snowfields near 
the summit crater. 

Near the village of Chitina at the southern margin of the 
Copper River Basin, the Chitina River joins the Copper 
River from the east to form Alaska's third most voluminous 
drainage (fig. 1). Below the confluence, the Copper River 
flows south across the Chugach Mountains through a deep 
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Table1. Geologic, geochemical, geophysical, and mineral-resource maps of the Valdez 1°X3" quadrangle, Alaska 

Reference Subject 

Cobb and Matson (1972) ............ Location, identification, and reported commodities of known lode and 
placer deposits. 

Cobb (1979) ............ Compilation of references on mineral-resource occurrences. 
U.S. Geological Survey (1979) ............ Aeromagnetic survey. 
Winkler, Miller, MacKevett, and Holloway (1981) ............ Characteristics and geologic controls of mineral-resource occurrences. 
Winkler, Silberman, and others (1981) ............ Bedrock geology and K-Ar geochronology. 
Williams and Johnson (1981) ............ Surficial geology. 
LeCompte (1981) ............ Interpretation of satellite imagety. 
Miller and others (1982) ............ Geochemical survey; analytical results and sample locality maps. 
Case, Burns, and Winkler (1986) ............ Aeromagnetic map and interpretation. 
Goldfarb and others (in press) ............ Geochemical interpretation; maps and tabulations of areas with 

geochemical anomalies for metals. 
Pickthorn and others (in press) ............ Mineral-resource assessment; delineation and characterization of 

areas having potential for undiscovered resources of precious, base, 
and ferrous metals. 

canyon to be joined at the southern boundary of the quadran­
gle by the Tasnuna and Bremner Rivers. Other major tribu­
taries, such as the Klutina and Tonsina Rivers, originate in 
glaciers near the crest of the Chugach Mountains and flow 
northward into the Copper River Basin. Where these rivers 
emerge from the mountains, they flow into large lakes 
impounded by terminal moraines that mark the maximum 
advance of former valley glaciers. The glaciers have receded 
tens of kilometers southward to leave remnants near the crest 
of the Chugach Mountains. All of these rivers have large sea­
sonal flows and carry enormous loads of sediment, which are 
being deposited as broad alluvial plains encroaching upon 
the lakes or transported to the turbid Copper River to be car­
ried to its coastal delta in the Cordova quadrangle to the 
south. South of the crest of the Chugach Mountains, the 
Lowe River and drainages from the Valdez Glacier also 
carry a large load of sediment, which is deposited as a steep­
fronted delta in deep water where the rivers meet tidewater 
in Port Valdez. 

Topographic relief in the quadrangle exceeds 4,250 m, 
from sea level in Port Valdez to the crater rim of Mount 
Wrangell. Most ridges in the Chugach and Wrangell Moun­
tains are rugged and steep sided, having been quarried by 
and submerged beneath glaciers until recently. The two 
mountain ranges are separated by broad open lowlands along 
the Copper and Chitina Rivers. 

The earliest published descriptions of the geography and 
geology of parts of the Valdez quadrangle resulted from 
expeditions in 1885 and 1891 (Allen, 1887; Hayes, 1892) 
that generally followed the Copper and Chitina Rivers. The 
discovery of rich placer gold deposits on the Klondike River 
in the Yukon Territory of Canada prompted more thorough 
exploration as well as a stampede of fortune hunters. At least 
4,000 people landed at Valdez during the winter of 
1897-1898 with the intention of being among the ftrst to 
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reach the gold ftelds in the spring of 1898 (Schrader, 1900); 
most lacked any experience in pioneering or mining. A few 
remained to prospect the local drainages for placer gold or 
the Prince William Sound region for lodes of copper; how­
ever, about 3,000 stampeders endured severe hardships to 
pioneer routes from the coast to the interior that soon became 
trails or roads. Today' s Richardson Highway from Valdez to 
Copper Center follows what was the most common route. In 
1899 and 1900, bonanza copper lodes were discovered near 
Kennicottl Glacier in the southern Wrangell Mountains. 
Between 1905 and 1911, the Copper River & Northwestern 
Railway was constructed more than 200 km from Cordova 
up the Copper River Canyon to Chitina from which it 
extended approximately another 100 km eastward to the 
mines in the McCarthy quadrangle. Between 1911 and 1938, 
more than 1.2 billion pounds of copper and 9 million troy 
ounces of silver from the Kennecott mines (Douglass, in 
MacKevett and others, 1977) were carried by the railroad 
through Chitina to shipping docks on tidewater at Cordova. 
Production ceased in 1938, and most of the rails were sal­
vaged for scrap me~ during World War II. The roadbed 
later was regraded between Chitina and McCarthy, and in the 
late 1960's a new bridge was constructed across the Copper 
River; in the summer months, the road now is maintained for 
passenger vehicles. An unmaintained spur road extends 
northward from the former transfer point of Strelna follow­
ing a preexisting trail to mineral prospects on the Kotsina 
River; it becomes virtually impassable, however, within a 
short distance from Strelna. From Chitina, an early trail 
called the Edgerton Cutoff now has been widened and paved 

1The company formed to develop the copper properties took its name 
from the nearby glacier, which had been named for a pioneer surveyor in the 
region, but somehow (probably inadvertently), an "e" was substituted for an 
"i" in the spelling of Keilllecott Copper Corporation. 
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Figure 1. Selected geographic features of the Valdez quadrangle. Heavy stippling indicates tidewater or lakes; light shading in­
dicates glaciers or permanent ice fields. 

and extends northwestward to reach the Richardson High­
way near the historic Tonsina roadhouse. A short segment of 
the Glenn Highway runs through the northwest comer of the 
Valdez quadrangle. It follows one of the earliest trails from 
upper Cook Inlet to the interior of Alaska and is the most 
direct route for highway travel between the metropolis of 
Anchorage and Glennallen. The southern end of the Trans­
Alaska Pipeline System (TAPS) follows the Richardson 
Highway closely across most of the Valdez quadrangle. Dur­
ing its construction in the mid-1970's, large camps were 
maintained near the old road houses of Wortmanns, Ptarmi­
gan, Tiekel, and Tonsina; the only remaining TAPS facili­
ties, however, are the southernmost pump station (no. 12) at 
which the oil is heated and speeded for its ascent over 
Thompson Pass on the final leg of its 1,250-kmjourney from 
Prudhoe Bay to the pipeline terminus and marine shipping 
facility on the south side of Port Valdez. 

Prior to the 1964 Alaska earthquake, the town of Valdez 
was located on the composite delta formed by the Lowe and 

Valdez Glacier Rivers. Following catastrophic submarine 
sliding of the seaward part of the delta during the earthquake, 
much of the settlement that remained standing was inundated 
by slide-generated waves. The town subsequently was 
rebuilt in its present location behind bedrock headlands 
along the north shore of Port Valdez. When it became a ship­
ping and staging area during construction of the southern end 
of the TAPS, Valdez burgeoned to become a city; it now is 
Alaska's 14th largest city and has a population (1990) of 
4,635. Valdez has year-round harbor facilities. lt is the base 
for a large fleet of fishing and pleasure vessels, a port of call 
for ferries on the Alaska Marine Highway system, and head­
quarters for U.S. Coast Guard facilities that monitor shipping 
in Prince William Sound and oil tanker traffic to and from 
the TAPS marine facility near the head of Port Valdez. 
Valdez also is served by an all-weather airport with daily ser- . 
vice. 

Copper Center is the only other town in the quadrangle; 
its 1990 population was 449. Most residents are Alaska 
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Natives of the Copper River Athabascan tribe; the headquar­
ters for the AHTNA, Inc., Regional Native Corporation is 
located a few kilometers north of Copper Center. Population 
elsewhere in the quadrangle is sparse and fluctuates season­
ally. Permanent settlements are located at Chitina, Lower 
Tonsina, and Kenney Lake on the Edgerton Highway, 
numerous homesteads and hay farms are in the surrounding 
area, and seasonal cabins or lodges are on the shores of 
several outlying lakes. The transient population increases 
markedly during the summer months. Copper Center and 
Chitina have long graded runways and frequent seasonal air 
service; several shorter landing strips provide air access to 
scattered places in the quadrangle. 

All of the Valdez quadrangle east of the Copper River is 
included within the Wrangell-Saint Elias National Park and 
Preserve, which was created in December 1980 by enact­
ment of the Alaska National Interest Lands Conservation Act 
(ANILCA). The Park headquarters is a few kilometers from 
Copper Center just north of the quadrangle boundary. 

Acknowledgments.~Many colleagues participated in the 
earth-science investigations of the Valdez quadrangle that 
are summarized in this circular. We gratefully acknowledge 
their important contributions, many of which are cited in the 
accompanying list of references. In particular, the detailed 
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vett, Jr., and his coworkers in the McCarthy quadrangle and 
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southern Alaska provided the vital framework on which sub­
sequent AMRAP and TACT investigations were built. Col­
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rangle include D.P. Barnes, D.L. Campbell, J.E. Case, C.L. 
Connor, Arthur Grantz, C.D. Holloway, K.M. Johnson, J.R. 
LeCompte, R.J. Miller, R.L. Morin, W.J. Nokleberg, R.M. 
O'Leary, M.L. Silberman, S.C. Smith, S.J. Sutley, R.B. 
Tripp, R.G. Tysdal, andJ.R. Williams of the U.S. Geological 
Survey; L.E. Bums and G.H. Pessel of the State of Alaska 
Division of Geological and Geophysical Surveys; T.L. Hud­
son, ARCO Alaska, Inc.; and R.J. Newberry and W.K. 
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SUMMARY OF MINERAL AND ENERGY 
PRODUCTION AND EXPLORATION 

Lode mines in the Valdez quadrangle produced gold, 
copper, and silver, and probably lead and zinc, in the first 
three decades of the 20th century, principally in the Port 
Valdez and Tonsina districts between 1910 and 1929. The 
characteristics and probable geologic controls of known 
mines, prospects, and occurrences in the quadrangles are 
summarized by Winkler, Miller, MacKevett, and Holloway 
(1981). During the gold rush to the Klondike and exploration 
and development of copper mines near McCarthy in the 
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Wrangell Mountains and near Latouche and Ellamar in 
Prince William Sound, prospecting for gold and copper was 
widespread; many claims were located and some were devel­
oped throughout the quadrangle area. Dilapidated structures 
in the Chugach Mountains on Columbia and Shoup Glaciers, 
above Mineral Creek, east of Valdez Glacier, Solomon 
Gulch, between the Tiekel and Tonsina Rivers, between 
Taral and Canyon Creeks, between Marshall Mountain and 
Klutina Lake, and on Barnette Creek, in the Wrangell Moun­
tains on the upper reaches of Elliott Creek and the Kotsina 
River, and along the route of the Copper River & Northwest­
em Railroad are vestiges of this era. No properties outside 
the Port Valdez and Tonsina districts are known to have 
produced metals, with the possible exception of minor gold 
production from small lodes west of Chitina in the late 
1970's and early 1980's. Placer gold production from the 
Valdez quadrangle apparently has been very minor, although 
most drainages near known auriferous lodes have showings. 

Bulldozer trenches that explore iron-stained zones in 
calc-schist and greenschist on the Chetaslina River in the 
Wrangell Mountains are of uncertain vintage but may date 
from the late 1960's or early 1970's. The trenches expose 
small veins containing pyrite, chalcopyrite, and barite; sam­
ples contain trace to minor amounts of detectable gold. In the 
mid-1970's, active development began on the Opal claims 
on the upland surface between Liberty and Fivemile Creeks 
west of Chitina (Winkler, Miller, MacKevett, and Holloway, 
1981). The claims encompass numerous widely spaced 
quartz veins that cut semischistose rocks of the McHugh 
Complex and Eocene tonalite. The veins contain arsenopy­
rite, pyrite, galena, and sphalerite and have anomalous val­
ues of gold and silver. The claims currently are active, and 
there probably has been minor production of precious 
metals. 

Exploratory drilling for petroleum was conducted during 
the 1960's in the southwestern part of Copper River Basin 
just north of the quadrangle boundary (Alaska Geological 
Society, 1970). The test wells bottomed between 850 and 
2,700 min Jurassic or Cretaceous marine rocks, testing pos­
sible structural and stratigraphic traps in the Mesozoic sec­
tion. The wells penetrated as much as 600 m of Tertiary 
nonmarine coal-bearing shale, sandstone, and conglomerate 
correlative with the Chickaloon Formation, 1,500-1,900 m 
of Lower and Upper Cretaceous rocks correlative with the 
Nelchina Limestone and Matanuska Formation, and as much 
as 1,200 m of Middle and Upper Jurassic rocks correlative 
with the Chinitna and Naknek Formations and the Tuxedni 
Group in the nearby Nelchina area and the Kotsina Con­
glomerate in the Wrangell Mountains (Arthur Grantz, U.S. 
Geological Survey, oral common., 1991). At least two wells 
reached the Talkeetna Formation. Apparently no encourag­
ing shows were encountered in the Mesozoic rocks. The 
wells also tested without success the possibility that petrolif­
erous Tertiary nonmarine sequences that are productive in 
upper Cook Inlet might be present in the area. 



Heat flux at the summit crater of Mount Wrangell 
increased notably during the 1970's (Benson and Motyka, 
1979), causing melting of the summit ice cap and seasonal 
exposure of bare ground on the north slope of the crater. 
Intermittent ash falls darkened the summit area. Although 
the volume of the magma chamber under Mount Wrangell is 
estimated to be approximately 50 kJn3 (Smith and Shaw, 
1975), its potential use as a large-scale source of geothermal 
power is limited by its lofty elevation and its remoteness 
from potential power demand. Areas of abnormally high 
heat flux are not known at lower elevations on the west flank 
of the volcano, where development would be less hazardous 
and costs less prohibitive. 

Recent exploration activity in the quadrangle has been 
quite limited and has focused mainly on the search for mas­
sive sulfide deposits, precious metal veins or lodes, and 
chromium, nickel, or platinum-group elements hosted in lay­
ered mafic-ultramafic igneous complexes. No major discov­
eries have been announced; however, several discoveries, 
including some resulting from our own investigations, may 
be significant, and they warrant additional detailed evalua­
tion. 

Copper 

Although the use of native copper implements by interior 
and coastal Alaska Native peoples had been known for more 
than a hundred years, their provenance was not revealed until 
the late summer of 1899 when prospectors were led to occur­
rences in the McCarthy area by an informant of Chief 
Nikolai, head of the Taral band of the Copper River Indians. 
Claims also were staked in upper Elliott Creek in 1899. Pros­
pecting soon focused on the Nikolai Greenstone-Chitistone 
Limestone contact near which most occurrences were 
located. The subsequent discovery of the Bonanza lode in the 
summer of 1900 in the McCarthy quadrangle intensified 
prospecting throughout south-central Alaska for Kennecott­
type deposits. Most occurrences that crop out near the con­
tact were discovered between 1900 and 1902 (Mendenhall 
and Schrader, 1903). For example, prospects in the moun­
tains east ofTaral were located in 1901 (Moffit, 1912, 1914). 
The practical access that was provided by completion of the 
railroad in April 1911 prompted another two-year spurt in 
prospecting during which several additional properties were 
discovered. Within the northern part of the Valdez quadran­
gle, however, most copper occurrences are in veins of lim­
ited extent or associated small pods, disseminations, or 
surface coatings (Winkler, Miller, MacKevett, and Hollo­
way, 1981 ). Most are in or near fractures or faults and exhibit 
hydrothermally altered wallrock. MacKevett (1976) inferred 
that similar deposits in the McCarthy quadrangle were pro­
duced by hydrothermal process related to Late Jurassic or 
Tertiary plutonism, an inference that probably is equally 

warranted for deposits in the Valdez quadrangle. Few, if any, 
of the deposits in the Valdez quadrangle display features of 
sabkha remobilization that typify the largest and richest 
lodes of the Kennecott type (Armstrong and MacKevett, 
1976, 1982). None of the numerous deposits on Elliott Creek 
or the Kotsina or Cheshnina Rivers in the Wrangell Moun­
tains or the lodes in the Chugach Mountains on the uplands 
between Taral Creek and Divide Creek were able to compete 
with the phenomenally rich Kennecott lodes, which during 
26 years of shipments averaged about 13 percent copper 
(Douglass, in MacKevett and others, 1977). 

Active prospecting for submarine volcanogenic deposits 
of copper began in the Prince William Sound region in 1897 
with the staking of claims in the Ellamar area just south of 
the Valdez quadrangle boundary (Grant and Higgins, 1910). 
The Midas mine in Solomon Gulch near Valdez was discov­
ered in 1901, and the first shipment of ore occurred in 1912 
(Johnson, 1915). Between 1912 and 1919, the two lodes at 
the mine produced more than 500 tons of copper (Moffit and 
Fellows, 1951); ore shipments also contained between 0.25 
and 0.42 oz/ton silver and 0.05 and 0.062 oz/ton gold (Rose, 
1965). Ore remains underground. Jansons and others (1984) 
estimated additional reserves of 62,000 tons of 1.6 percent 
copper. Prospects south of the divide in Jack Bay apparently 
are much smaller and lower grade (Johnson, 1919). Pros­
pects several kilometers to the east near Sulphide Gulch 
(Johnson, 1916) probably have greater tonnage but are sig­
nificantly lower grade (Rose, 1965). Additional occurrences 
at Wortmanns and Tsina Glaciers (Winkler, Miller, 
MacKevett, and Holloway, 1981) also probably are large, 
low-grade deposits. Many of the larger deposits, such as 
those of the Midas mine, are hosted by sedimentary rocks, 
indicating that they are of the Besshi-type of volcanogenic 
massive sulfide deposit (Nelson and Koski, 1987; Crowe and 
others, in press). 

During the regional prospecting induced by the 
Kennecott finds, massive copper-nickel sulfide lenses were 
discovered about 1907 near Spirit Mountain in peridotite 
dikes intruding schist, gneiss, and marble. The prospect was 
abandoned in 1917 (Overbeck, 1918). Because of the strate­
gic importance of nickel during World War II, the prospect 
was reevaluated in 1942 and found to contain minor amounts 
of cobalt, as well as the nickel and copper (Kingston and 
Miller, 1945). Estimated reserves included 6,500 short tons 
of material grading from 0. 22 to 7. 61 percent nickel and 0.12 
to 1.56 percent copper; however, the relative inaccessibility 
of the prospect and its small tonnage and low grade were 
deemed to make it subeconomic, even under the favorable 
price conditions prevailing at that time (Kingston and Miller, 
1945). Additional investigations in the late 1960's (Herreid, 
1970) and late 1980's (Foley and others, 1989) demonstrated 
that the massive sulfide lenses also contained minor values 
of silver and platinum-group elements (chiefly palladium), 
but there has been no subsequent development activity. 
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Gold 

Pay gravels had been known on many of the streams near 
Valdez as early as 1894, when minor sluicing was underway 
on Mineral Creek (Schrader, 1900), and nearby quartz veins 
were staked as early as 1897. Valdez principally was 
regarded, however, as a starting point for the interior until 
the Cliff mine was located in 1906 and began to produce 
gold in 1910 (Johnson, 1915). Prompted by its success, in 
1909 and 1910 prospectors located numerous additional 
occurrences in a large area extending from Valdez Glacier 
west to Columbia Glacier (Brooks, 1912). Additional depos­
its that soon became productive, including the Cameron­
Johnson on Shoup Glacier and the Rose Johnson and the 
Ramsey-Rutherford east of Valdez Glacier, were discovered 
in 1911; by 1914, nine mills of various types were in opera­
tion in the productive area north of Port Valdez, which came 
to be included in the Port Valdez district. During its lifetime, 
more than 61,000 ounces of gold were produced from lode 
deposits in the district (Jansons and others, 1984). 

Gold-bearing quartz veins south of Port Valdez are 
included in the Jack Bay district. The area was thoroughly 
prospected between 1910 and 1915, but workings are small 
and no gold is known to have been produced; however, sig­
nificant unrecorded gold production from the copper ores of 
the Midas mine is likely. 

Many of the streams draining northward into the Copper 
River Basin or eastward into the Copper River had placer 
activity around the tum of the century before any workable 
quartz veins were discovered (Rohn, 1900; Schrader, 1900; 
Brooks, 1914); however, only the gravels on Quartz and Fall 
Creeks are known to have produced small amounts of gold 
(Moffit, 1918, 1935). Jansons and others (1984) evaluated 
the placer gold potential of many of the tributaries of the 
Lowe and Tasnuna Rivers along the southern edge of the 
Valdez quadrangle. They found significant showings below 
Marshall Glacier and sites having moderate placer potential 
along Bench Creek (a tributary of the Lowe River at the 
mouth of Heiden Canyon) and Cleave Creek (a tributary of 
the Copper River upstream from the mouth of the Tasnuna 
River) and in the alluvial flats of the Tasnuna River between 
its junction with the Copper River and the Schwan Glacier. 

The development of the Cliff mine near Valdez stimu­
lated extensive prospecting for lode sources of gold along 
the route of the Richardson Highway beginning in 1911. 
Most of the gold-bearing quartz veins near Tiekel in the 
Tonsina district were discovered within a few years thereaf­
ter (Moffit, 1918). Only properties on the east side of Hurtle 
Creek and near the head of Boulder Creek are known to have 
produced gold, although there also was extensive develop­
ment of claims near Stuart Creek in the 1920's (Moffit, 
1935). 

Gold placers were discovered on the Little Bremner 
River in 1901 and probably produced small quantities of 
gold in the first two decades of the 20th century (Moffit, 
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1912, 1914). No lode occurrences are known to be present in 
the drainage. 

In the Wrangell Mountains, gold-bearing quartz veins 
cutting mafic volcanic rocks and gabbro along Benito Creek 
were discovered in 1913 (Moffit and Mertie, 1923); they 
have been prospected intermittently to the present time, but 
there has been no development. 

Chromium 

Chromite was discovered at Bernard Mountain near Ton­
sina in 1954, and by 1956 claims had been extended more 
than 5 km to the northeast to include exposures of layered 
ultramafic rocks at so-called "Sheep Hill" west of Dust 
Creek (Foley and Barker, 1985). U.S. Government incentive 
prices under the Minerals Stockpile Program were halted in 
1956 before the deposits could be developed, and the claims 
were allowed to lapse soon thereafter. From time to time in 
the ensuing years, small-scale investigations have been 
renewed in the Bernard Mountain area, but no major activity 
has occurred. The U.S. Bureau of Mines has identified 
resources in three deposits at Bernard Mountain that exceed 
343,000 tons Cr20 3; one deposit at Sheep Hill is estimated 
to contain 26,000 tons Cr20 3 (Foley and Barker, 1985). 
Chromian spinels in dunite and peridotite at these locations 
are anomalous in platinum-group elements and in clinopy­
roxenite also contain anomalous gold (Foley and Barker, 
1987). Nearby, magmatic-sulfide prospects in layered gab­
broic rocks near the benchmark "Scarp" contain as much as 
5 percent pyrite and lesser marcasite and chalcopyrite (New­
berry, 1986). Near the head of Barnette Creek in the western 
part of the Valdez quadrangle, small test pits of uncertain 
vintage also have been excavated on stringers of chromite in 
sheared ultramafic rocks (Winkler, Miller, MacKevett, and 
Holloway, 1981), and disseminated and irregular masses of 
chalcopyrite, pyrrhotite, and lesser pentlandite are present in 
layered gabbronorite at several locations between the 
Nelchina and Tazlina Glaciers (Newberry, 1986; G.R. 
Winkler, unpublished data); however, these occurrences are 
remote and very limited in extent. Other bodies of serpenti­
nized ultramafic rocks emplaced near or along the Border 
Ranges and Second Lake fault zones along the north flank of 
the Chugach Mountains are essentially unexplored. 

GEOLOGIC INVESTIGATIONS 

Early Investigations 

The earliest published geologic observations from the 
Valdez quadrangle are incidental products of two pioneering 
U.S. Army expeditions into the largely unexplored interior 
of Alaska. The first expedition, under the direction of Lieu­
tenant H.T. Allen, in 1885 explored the main valleys of the 



Copper and Chitina Rivers on the way to the interior (Allen, 
1887). The second, which was led by Lieutenant Frederick 
Schwatka and included geologist C.W. Hayes, in 1891 
descended the Chitina and Copper Rivers on the way from 
the interior (Hayes, 1892). In 1898, F.C. Schrader of the 
Geological Survey was assigned to the Copper River mili­
tary explorations under Captain W.R. Abercrombie; 
Schrader ( 1900) made extensive observations on a trip that 
began at Valdez, reached the Copper River Basin by way of 
Valdez and Klutina Glaciers, and returned to Valdez via the 
Copper, Tasnuna, and Lowe Rivers. The Harriman Alaska 
Expedition visited Prince William Sound in 1899 and pro­
vided detailed descriptions of Columbia Glacier for the first 
time (Gilbert, 1904). Oscar Rohn's geologic circuit of the 
Wrangell Mountains from Valdez in 1899 (Rohn, 1900) led 
to the beginning of systematic U.S. Geological Survey inves­
tigations in the area in 1900. Schrader and Spencer (1901) 
conducted the frrst detailed geologic studies of parts of 
Prince William Sound, the Copper River Basin, and the 
southwestern Wrangell Mountains. Mendenhall and 
Schrader (1903) and Mendenhall (1905) provided the first 
surveys of the western part of the copper belt in the Wrangell 
Mountains, and detailed studies of the Kotsina-Kuskulana 
area were continued by F.H. Moffit and his coworkers 
(Moffit and Maddren, 1909; Moffit and Capps, 1911; Moffit, 
1918; Moffit and Mertie, 1923). Grant (1906, 1909), Moffit 
(1908), Grant and Higgins (1909), Brooks (1912, 1914), and 
Capps and Johnson (1913, 1915) provided early reports on 
copper and gold mining and prospecting in Prince William 
Sound during the period of greatest activity. Grant and Hig­
gins (1910) provided a regional summary of the geologic 
knowledge of Prince William Sound that was gained during 
the first decade of investigations, and Johnson (1915, 1916, 
1919) continued detailed studies of copper and gold occur­
rences in the northeastern part of the sound. During this same 
period, F.H. Moffit also investigated the geologic setting of 
copper and gold resources in the Chugach Mountains, first 
east of the Copper River (Moffit, 1912, 1914) and then west 
of the river in the Tonsina district (Moffit, 1918, 1935). In 
1917, Overbeck (1918) completed a brief examination of the 
copper-nickel prospects near Spirit Mountain east of the 
Copper River. 

Following these pioneering geological studies, the focus 
of most investigations shifted to other regions of Alaska until 
the 1940's and 1950's, when some activity resumed in south­
em Alaska. The resumption was prompted largely by cutoffs 
or limitations in supplies of strategic commodities prior to 
and during World War II and the Korean War. Investigations 
of the copper-nickel prospects near Spirit Mountain were 
renewed during 1942 (Kingston and Miller, 1945), and the 
copper deposits of the Prince William Sound region were 
reevaluated in 1943 (Moffit and Fellows, 1951). F.H. Mof­
fit's culminating report on Prince William Sound (Moffit, 
1954) provides a wealth of basic information on the geologic 
setting of the region. In the early 1950's, the U.S. Govern-

ment was purchasing chromite concentrates at incentive 
prices under the Mineral Stockpile Program. The U.S. 
Bureau of Mines conducted several evaluations of chromite 
occurrences in southern Alaska in the late 1940's and 
1950's, including extensive assays and mineral dressing 
tests of samples in 1957 from the chromite deposits near 
Tonsina (Pittman, Wells in Foley and Barker, 1985). 

Recent Investigations 

As part of a program of petroleum investigations in 
southern Alaska (Miller and others, 1959), the U.S. Geolog­
ical Survey began stratigraphic and structural studies in the 
Nelchina area in the 1950's. The petroleum potential of 
Mesozoic rocks on the west shore of Cook Inlet was well 
known, but the correlation of these rocks with Mesozoic 
sequences that are exposed widely in the eastern Talkeetna 
Mountains and western Copper River Basin was virtually 
unstudied. Through detailed geologic mapping and biostrati­
graphic studies, Arthur Grantz and numerous colleagues 
were able to correlate Jurassic sequences in the two regions 
(summarized in Grantz, 1965, and Imlay and Detterman, 
1973). The Cretaceous rocks in the eastern Talkeetna Moun­
tains, however, differ from coeval rocks on the west shore of 
Cook Inlet and are assigned to the Matanuska Formation 
(summarized by Grantz, 1964 ). During subsequent recon­
naissance work in the southwestern Wrangell Mountains, 
Grantz and others (1966) described Upper Jurassic(?) and 
Lower Cretaceous rocks near Chitina that are temporal 
equivalents of the Nelchina rocks. 

Also in the 1950's, the U.S. Geological Survey began 
studies of the thick and complexly intertonguing upper Ter­
tiary and Quaternary deposits of the Copper River Basin, 
work that continued with interruptions until the early 1980's. 
The focus of the early work was to distinguish and define 
local and regional glacial deposits that capped the mountains 
and filled much of the basin in late Wisconsin time (Nichols, 
1965; Ferrians and Nichols, 1965) and also filled Port Val­
dez (Williams and Coulter, 1980). At the outset, it was 
apparent that the Copper River Basin contains an array of 
unconsolidated deposits including lacustrine deposits of gla­
cial Lake Atna (Ferrians and Schmoll, 1957; Nichols, 1965) 
and lava flows and volcaniclastic debris flows from the 
Wrangell Mountains that are interbedded with glacial depos­
its (Nichols and Yehle, 1969; Yehle and Nichols, 1980). The 
lake persisted during retreat of the glaciers into the moun­
tains, as shown by lake sediments in the mountain valleys 
and locally prominent shorelines (Ferrians and Nichols, 
1965). Apparently the waters were impounded by a solid gla­
cier dam in the Copper River canyon south of the quadrangle 
that was breached before 9,000 years ago. 

Studies in the region also focused on geologic and hydro­
logic hazards. Hydrologic hazards (Post and Mayo, 1971) 
include flooding by high runoff, glacier outburst floods, and 
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icings in winter. The sudden release of water stored within or 
adjacent to glaciers has damaged roads and bridges on 
Tazlina and Tsina Rivers and Sheep Creek near Valdez. 
Winter icings on the Klutina River have inundated the 
village of Copper Center and are common on the Copper 
River and some of its tributaries (Williams and Johnson, 
1981). 

Geologic hazards include the effects of permafrost, vol­
canic activity, and earthquakes. Permafrost is widespread 
north of the Tsina River in the Chugach Mountains (Ferrians 
and Nichols, 1965; Ferrians and others, 1969; Williams, 
1970) and, in unconsolidated deposits, poses an engineering 
problem during construction. Descriptions of the engineer­
ing properties of the unconsolidated ·units in the Copper 
River Basin (Nichols and Yehle, 1969) and along the Rich­
ardson Highway in the Chugach Mountains (Coulter and 
Coulter, 1961, 1962) provided important information during 
construction of highways and public facilities in the region. 
Concerns with ground stability became paramount during 
construction of the Trans-Alaska Pipeline System in the 
1970's. Disturbance of the thermal regime in fine-grained 
sediments, particularly the glaciolacustrine silt and clay that 
is common near the surface in much of the Copper River 
Basin (Ferrians, 1971), thaws the ice-rich permafrost, lead­
ing to differential settlement. As a result, the Trans-Alaska 
Pipeline was elevated over most of these sensitive deposits 
and is consistently buried for only the southernmost 69 km 
from near Ptarmigan to its terminus at Fort Liscum. 

Mount Wrangell is the only active volcano in the 
Wrangell Mountains. The summit caldera includes three cra­
ters that have active fumaroles (Benson and Motyka, 1979), 
and ash darkens the summit snowfield from time to time. 
Personnel of the University of Alaska Geophysical Institute 
have been studying glacier-volcano interaction on Mount 
Wrangell since 1953 and have reported a major increase in 
heat flux at the summit since 1970 (Benson and Motyka, 
1979); however, activity apparently has been limited to the 
caldera since pre-late Wisconsin time (Williams and 
Johnson, 1981). Pre-late Wisconsin lava flows and volcani­
clastic debris flows from Mount Wrangell are interbedded 
with unconsolidated deposits in nearby areas of the Copper 
River Basin and extend as far west as Lower Tonsina and 
south as far as Chitina (Yehle and Nichols, 1980). A recur­
rence of larger eruptions such as these, although unlikely, 
could spread devastation beyond the Copper and Chitina 
Rivers, and showers of volcanic ash, depending on wind 
direction at the time, might extend over large areas of the 
Valdez quadrangle. The most likely hazards of a small erup­
tion would be local flooding and mud flows that would be 
confined to canyons on the flanks of the volcano. 

U.S. Geological Survey investigations in the Valdez 
quadrangle and throughout southern Alaska were acceler­
ated in response to the 1964 Alaska earthquake, the epicenter 
of which was about 40 km west of the southwest corner of 
the quadrangle. Evaluations of the aftereffects of this 

8 Alaska Mineral Resource Assessment Program-Valdez Quadrangle 

extremely powerful tectonic event include detailed studies in 
the Port Valdez (Coulter and Migliaccio, 1966) and Copper 
River Basin (Ferrians, 1966) areas, as well as regional syn­
theses (for example, Case and others, 1966; Plafker, 1969). 
Ground-motion values for a Richter magnitude 8.5 earth­
quake were used to formulate design criteria for the Trans­
Alaska Pipeline from Valdez to Willow Lake, and values for 
a Richter magnitude 7.0 earthquake were used from Willow 
Lake northward to the quadrangle boundary (Page and oth­
ers, 1972). The potential earthquake hazards posed by activ­
ity on major faults in the region led to detailed studies of the 
Border Ranges fault (MacKevett and Plafker, 1974; Plafker, 
Nokleberg, and Lull, 1985) and the Contact fault system 
(Plafker and Lanphere, 1974; Winkler and Plafker, 1975, 
1981; Plafker and others, 1977, 1986), as well as regional 
studies of major fault systems throughout southern Alaska 
(for example, Plafker and others, 1977). Conjunctive 
regional studies of the plutonic rocks of southern Alaska also 
were completed (Hudson, 1979, 1983). 

In the early 1970's, thesis studies were carried out in the 
Tonsina area by graduate students at the University of 
Alaska. Hoffman (1974) described the geologic setting for 
the layered ultramafic and mafic rocks at Bernard Mountain, 
and Metz (1976) described blue-amphibole-bearing schis­
tose rocks west of Chitina, the first discovery of blueschists 
in the quadrangle. 

During the 1970's and 1980's, the U.S. Geological Sur­
vey conducted interdisciplinary mineral-resource assess­
ments of several nearby 1°X3° quadrangles: the McCarthy 
quadrangle on the east (Singer and MacKevett, 1976; MacK­
evett, 1978); the Seward and Blying Sound quadrangles on 
the southwest (Tysdal and Case, 1979, 1982); the Cordova 
and Middleton Island quadrangles on the south (Winkler and 
Plafker, 1981, 1992; Goldfarb and others, in press); and the 
Anchorage quadrangle on the west (Madden-McGuire and 
others, in press; Winkler, in press). These investigations 
under the auspices of the Alaska Mineral Resources Assess­
ment Program (AMRAP) provide detailed information on 
the geology and mineral resources of geologic terranes that 
extend directly into the Valdez quadrangle as well as a 
wealth of basic earth-science information. 

For the AMRAP investigations summarized herein, a 
series of reports was prepared that provides information on 
the geology, geochemistry, geophysics, telegeology, and 
known and speculated mineral resources of the Valdez quad­
rangle (table 1). The reports provide multidisciplinary, con­
temporary mineral-resource information as potential input 
for land-use planning and minerals-policy development and 
as guidance for minerals exploration. The reports also 
enhance the geologic knowledge of a region that had 
received few recent earth-science investigations. 

In the early 1980's, a regional study of the potential for 
undiscovered mineral resources in the Chugach National 
Forest was completed (Jansons and others, 1984; Nelson and 
others, 1984). Additional geological mapping (Nelson and 



others, 1985) and geochemical sampling (Goldfarb and 
others, 1984) in the southern part of the Valdez quadrangle 
provide much better delineation and characterization of 
several areas that are likely to contain base-and precious­
metal resources in massive-sulfide and vein deposits. In the 
mid-1980's, multidisciplinary geophysical investigations of 
the deep crustal structure of south-central Alaska were con­
ducted along the southern part of the TACT corridor. 
Detailed surface geologic studies were carried out in support 
of the geophysical studies (Plafker, Nokleberg, and Lull, 
1985), including mapping of five 15-minute quadrangles in 
the Valdez quadrangle (Plafker, Lull, and others, 1989) and 
a variety of structural, geochemical, and isotopic studies near 
the transect. Plafker, Nokleberg, and Lull (1989) and Nokle­
berg and others (1989) described the lithologic and st.~ctural 
features and the tectonic evolution of the four lithostrati­
graphic terranes that make up the Valdez quadrangle. 

GEOCHEMICAL INVESTIGATIONS 

In a detailed study of massive-sulfide occurrences south­
east of Port Valdez, Rose (1965) reported chemical analyses 
for about 18 sulfide-bearing rock samples and about 80 
stream-sediment samples. The rock samples contained 
anomalous amounts of copper, gold, zinc, and silver, several 
of the stream-sediment samples contained anomalous 
amounts of copper, and two panned-concentrate samples 
contained visible gold. Jasper (1967) collected 102 stream­
sediment samples for chemical analysis and panned­
concentrate samples for microscopic examination from sites 
close to the Richardson Highway between Valdez and Ton­
sina and the Edgerton Highway between Lower Tonsina and 
Chitina. The resulting. data indicate nothing of economic 
interest. Herreid (1970) conducted detailed stream-sediment, 
soil, and rock-chip sampling in the vicinity of the Spirit 
Mountain nickel-copper prospect and examined the prospect 
in detail. In the 1980's, the U.S. Bureau of Mines conducted 
regional investigations of mafic and ultramafic complexes 
along the Border Ranges fault in southern Alaska, collecting 
bulk samples that were concentrated and assayed for cobalt, 
copper, chromium, gold, nickel, palladium, platinum, and 
silver (Foley and Barker, 1985; Foley and others, 1987, 
1989). 

During the 1970's, 457 stream-sediment, 500 lake-sedi­
ment, and 1,205 water samples were collected in the Valdez 
quadrangle for the National Uranium Resource Evaluation 
(NURE) program of the U.S. Department of Energy (Sharp 
and Hill, 1978; D'Andrea and others, 1981; Los Alamos 
National Laboratory, 1983). Many sample sites were clus­
tered in areas of easy access; remote parts of the quadrangle 
were not sampled nor were heavy-mineral-concentrate sam­
ples collected. A reconnaissance stream-sediment geochem­
ical survey was conducted throughout the Valdez quadrangle 
in 1978 and 1979 as part of the AMRAP study. Chemical 

analyses for the composite stream-sediment and heavy-min­
eral-concentrate samples that were collected are reported in 
Miller and others (1982). In the early 1980's, stream­
sediment and concentrate samples were collected at an 
additional 98 sites along the southern edge of the Valdez 
quadrangle (Goldfarb and others, 1984). Sutley and others 
(1990) collected additional stream-sediment and heavy­
mineral-concentrate samples in the vicinity of Bernard 
Mountain. The AMRAP and NURE geochemical data were 
evaluated by Goldfarb and others (in press), who included an 
extensive R-mode factor analysis of chemical associations, 
described 31 areas of geochemical anomalies in detail, and 
interpreted sources for the anomalous values. 

Two-thirds of the anomalous areas defined by Goldfarb 
and others (in press) are within the Chugach terrane, which 
is dominated by greenschist-grade metasedimentary rocks. 
Anomalous concentrations of gold, silver, arsenic, and many 
base metals in both sediment and concentrate samples indi­
cate a high geochemical favorability for the presence of 
mesothermal, precious- and base-metal-bearing quartz veins 
(Goldfarb and others, in press). The largest of these areas 
covers about 750 km2 between Columbia Glacier and the 
Lowe River and includes the Port Valdez mining district. 
Reports by Pickthorn (1982), Pickthorn and Silberman 
(1984), Goldfarb and others (1986), and Goldfarb (1989) 
describe the geologic setting and chemical and isotopic char­
acteristics of mineral deposits within this area. Anomalies 
for iron, cobalt, nickel, and copper in many samples from the 
south-central margin of the Valdez quadrangle between 
Solomon Gulch and Schwan Glacier indicate the upstream 
presence of disseminated or massive sulfide occurrences. 
These volcanogenic occurrences are spatially associated 
with mafic volcanic rocks within the Chugach terrane (Win­
kler, Miller, MacKevett, and Holloway, 1981; Crowe and 
others, in press; Goldfarb and others, in press). Concentrate 
samples containing anomalous amounts of manganese char­
acterize the area between Bench and Marshall Glaciers and 
the southeast comer of the quadrangle. The anomalies most 
likely are derived from erosion of recognized manganese 
enrichments in phyllite and schist of the Chugach terrane in 
upstream areas (Goldfarb and others, in press). 

Stream-sediment samples containing consistently anom­
alous amounts of cobalt and copper and commonly 
anomalous amounts of silver, chromium, iron, nickel, lead, 
and zinc are derived from rocks of the Wrangellia terrane 
south of the Chitina River. The anomalies define geochemi­
cally favorable ground for (1) both disseminated and 
massive volcanogenic or Kennecott-type copper-sulfide­
dominant mineral occurrences associated with upper Paleo­
zoic and Triassic mafic volcanic rocks and Triassic 
carbonate sedimentary rocks and (2) magmatic cobalt- and 
nickel-bearing sulfide minerals in ultramafic bodies. North 
of the Chitina River, samples from the Wrangellia terrane are 
anomalous in copper, boron, vanadium, antimony, barium, 
zinc, and molybdenum (Goldfarb and others, in press). Some 
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of the anomalies reflect known volcanogenic copper occur­
rences; others may indicate the presence of weakly mineral­
ized porphyry systems in Jurassic plutons of the Chitina 
Valley batholith (Winkler, Miller, MacKevett, and Hollo­
way, 1981). 

Silicified, pyrite-rich volcanic rocks of the Talkeetna 
Formation crop out at Heavenly Ridge in the northwestern 
part of the Valdez quadrangle, where they are intruded by 
numerous felsic plugs and dikes (Winkler, Miller, 
MacKevett, and Holloway, 1981). Several similar occur­
rences are nearby in the Anchorage quadrangle and at 
Willow Mountain along the Richardson Highway, both areas 
where felsic plutons have not been identified. According to 
Newberry (1986), the alteration is probably syngenetic with 
the volcanic activity. 

A large region likely to contain chromite lenses in lay­
ered ultramafic and mafic rocks of the Peninsular terrane is 
defined around Bernard and Dust Creeks by stream sedi­
ments containing anomalous amounts of chromium, iron, 
nickel, magnesium, and vanadium. Samples collected along 
the Border Ranges fault between Barnette and Klanelneech­
ena Creeks contain anomalous levels of a similar suite of ele­
ments as well as copper. A few samples containing 
anomalous amounts of gold, silver, and boron suggest that 
precious-metal-bearing occurrences may be present locally 
in drainages tributary to Klanelneechena Creek (Goldfarb 
and others, in press). 

GEOPHYSICAL INVESTIGATIONS 

An aeromagnetic survey was flown over the northern part 
of the Valdez quadrangle in 1954 and 1955 (Andreason and 
others, 1958) in connection with a topical study of the Cop­
per River Basin. In 1978, an aeromagnetic survey was flown 
over the remainder of the quadrangle to provide regional 
data for the AMRAP study (U.S. Geological Survey, 1979). 
Prior interpretations of aeromagnetic maps to the northeast 
in the Nabesna quadrangle (Griscom, 1975), to the east in the 
McCarthy quadrangle (Case and MacKevett, 1976), to the 
northwest in the Talkeetna Mountains quadrangle (Csejtey 
and Griscom, 1978), and to the southwest in the Seward and 
Blying Sound quadrangles (Case and others, 1979) aided the 
interpretation of data in the Valdez quadrangle. For the sur­
vey of the Valdez quadrangle, Case, Burns, and Winkler 
(1986) spliced the contoured data sets of the two aeromag­
netic surveys, provided measurements of magnetic suscepti­
bilities for samples of the main rock units, interpreted the 
combined aeromagnetic maps in terms of the units causing 
geophysical anomalies, and illustrated five aeromagnetic 
profiles and interpetative cross sectional models. Burns 
(1982) made a detailed interpretation of aeromagnetic data 
over the northern Chugach Mountains in the northwestern 

part of the quadrangle. The most conspicuous aeromagnetic 
anomalies of the Valdez quadrangle, attaining amplitudes of 
several thousand gammas, are over the layered mafic rocks 
of the Nelchina River Gabbronorite (Plafker, Nokleberg, and 
Lull, 1989). Locally, these rocks contain 10-15 percent 
modal magnetite and ilmenite. This aeromagnetic feature 
was called the Northern Chugach Mountains anomaly by 
Andreason and others (1964). It also has a relative positive 
gravity of 20-30 milligals (mGals) (Barnes, 1977). Five 
north-south magnetic profiles modeled across the 
gabbronorite (Bums, 1982) indicate a general northerly dip 
to the body and a steep truncation on its south margin. The 
aeromagnetic anomaly in the northern Chugach Mountains 
extends discontinuously westward across the Anchorage 
quadrangle to the vicinity of Palmer, where it turns south­
ward (Burns and others, 1991) to connect with the Knik Arm 
anomaly of Grantz and others (1963). Fisher (1981) and 
Case, Fisher, and others (1986) have proposed linkage with 
a similar aeromagnetic anomaly extending southwest along 
the continental shelf and the west sides of Afognak and 
Kodiak Islands, where layered mafic plutonic rocks are 
exposed. If the inference is correct, this gabbroic body con­
stitutes a major geologic feature of southern Alaska. Layered 
rocks of the Tonsina ultramafic-mafic sequence of Plafker, 
Nokleberg, and Lull (1989) and the fault-bounded layered 
mafic body on Klanelneechena Creek also have pronounced 
positive magnetic expressions; the Tonsina ultramafic-mafic 
sequence coincides with a general gravity high of about +20 
to +30 mGals (Barnes, 1977). 

In the northeastern part of the quadrangle, the magnetic 
anomaly field is heterogeneous and includes numerous high­
amplitude, steep-gradient, positive anomalies separated by 
low-amplitude negative anomalies (Case, Bums, and 
Winkler, 1986). Most of the positive anomalies probably are 
of composite origin and are caused by volcanic rocks of the 
Wrangell Lava and by Jurassic intermediate to mafic plutons 
of the Chitina Valley batholith. Some anomalies are caused 
by the Triassic Nikolai Greenstone, gabbroic plutons 
mapped as part of the Skolai Group (Winkler, Silberman, 
and others, 1981 ), and mafic metaplutonic and ultramafic 
rocks in the Haley Creek metamorphic assemblage of 
Plafker, Nokleberg, and Lull (1989). In the northwestern part 
of the Valdez quadrangle, isolated high-amplitude anomalies 
are over volcanic rocks of the Talkeetna Formation, similar 
to the main area of Talkeetna outcrops in the Anchorage 
quadrangle to the west (Burns and others, 1991 ). South of the 
Border Ranges fault, magnetic anomalies are few, small, and 
subdued, indicating a great depth to magnetic basement 
(Case, Bums, and Winkler, 1986). The few small positive 
anomalies are caused by mafic volcanic rocks in the 
McHugh Complex and the Valdez and Orca Groups. The 
gravity field is equally subdued, with a broad low on the 
order of -20 mGals between Klutina Lake and Chitina 
(Barnes, 1977), where rocks of the Valdez Group are 
intruded by abundant felsic dikes and sills. 
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In the mid-1980's, geophysical investigations of the deep 
crustal structure of southern Alaska were conducted along 
the southern part of the Trans-Alaska Crustal Transect (Page 
and others, 1986). The combined geologic and geophysical 
data indicate that the upper crust beneath the Valdez quad­
rangle consists of rootless sheets less than 10 km thick 
formed of rocks of the Chugach, Wrangellia, and Peninsular 
terranes. The sheets are bounded on the south by north­
dipping thrust faults that sole into shallow, almost horizontal 
low-velocity zones (Page and others, 1986). Puis and Plafker 
(1991) inferred that undulating reflectors in the upper crust 
at depths between about 6 and 10 km are tonalitic plutons, 
which fed swarms of dikes and sills that are exposed at the 
surface directly above (Winkler, Silberman, and others, 
1981). Subparallel, north-dipping, strong seismic reflectors 
between about 8 and 24 km depth in the Chugach Mountains 
have been interpreted (Puis and Plafker, 1991) as under­
plated oceanic crust and possibly upper mantle. Studies of 
earthquake seismicity (Page and others, 1989), seismic 
reflection (Fisher and others, 1989) and refraction (Puis and 
others, 1991), and potential fields (Campbell, 1991) yielded 
abundant data on the deep crust that show a gently inclined 
north-dipping Benioff zone deepening from about 25 km 
near the southern boundary of the quadrangle to about 40 km 
near Tonsina. P-wave velocities are about 5.9-7.4 km/sec in 
the lower crust beneath the Chugach Mountains and about 
7.8 krnlsec in the upper mantle (Puis and others, 1991). 

GEOLOGIC AND TECTONIC SUMMARY 

The Valdez quadrangle encompasses four distinctive 
fault-bounded lithotectonic terranes of contrasting stratigra­
phy, age, and structural style (Winkler, Silberman, and oth­
ers, 1981; Plafker, Nokleberg, and Lull, 1989). From north 
to south, they are the Wrangellia, Peninsular, Chugach, and 
Prince William terranes (figs. 2, 3) (Jones and others, 1987). 
Rocks of the Yakutat terrane (outboard of the other four to 
the south) are not exposed in the Valdez quadrangle, but 
impingement of the Yakutat terrane against and beneath the 
continental margin is manifested by arc volcanism in the 
Wrangell Mountains (Plafker, 1987). 

Wrangellia Terrane 

The Wrangellia terrane occupies the northeastern part of 
the Valdez quadrangle and is bounded on the south by the 
Border Ranges fault and on the west by the Tarat fault (fig. 
2). The Taral fault is not exposed north of the Chitina River; 
its position beneath unconsolidated deposits of the Copper 
River Basin is inferred from aeromagnetic data (Case, Bums, 
and Winkler, 1986) to connect with the West Fork fault in 

the Gulkana quadrangle (Nokleberg and others, 1986). The 
Wrangellia terrane is divided into two distinct domains sep­
arated by the Chitina fault system (Gardner and others, 
1986): (1) a southern domain consisting of penetratively 
deformed greenschist to lower amphibolite facies metasedi­
mentary, metavolcanic, and metaplutonic rocks and (2) a 
northern domain consisting of the typical Triassic sequence 
of the Wrangellia terrane (hereinafter referred to as the type 
Wrangellia sequence or terrane) (Jones and others, 1977; see 
also, Plafker, Nokleberg, and Lull, 1989). Metamorphic 
rocks south of the Chitina fault system include Pennsylva­
nian and Jurassic metaplutonic rocks (Aleinikoff and others, 
1988) and Permian and older metasedimentary and metavol­
canic rocks of the southern Wrangellia terrane margin 
(Plafker, Nokleberg, and Lull, 1989). The metasedimentary 
rocks include marble containing diagnostic Early Pennsylva­
nian conodonts (Plafker, Harris, and Reed, 1985). Based on 
detailed work between the Richardson Highway and the 
Copper River and reconnaissance work in the Dadina River 
area, Plafker, Nokleberg, and Lull (1989) redefined these 
rocks as the Haley Creek metamorphic assemblage, includ­
ing the Uranitina River metaplutonic unit and the Strelna 
Metamorphics. These rocks are penetratively deformed into 
elongate map patterns (Winkler, Silberman, and others, 
1981; Plafker, Lull, and others, 1989) and contain zones of 
large ductile strike-slip shear of unknown sense (Pavlis and 
Crouse, 1989). They are similar in composition, however, to 
parts of the type Wrangellia sequence north of the fault. 
Locally, the southern Wrangellia terrane margin includes the 
Triassic Nikolai Greenstone and the Chitistone and Nizina 
Limestones, the most characteristic rocks of the type 
Wrangellia terrane north of the fault. Rocks north of the 
Chitina fault system include upper Paleozoic mafic volcani­
clastic and flow rocks correlative with the Station Creek For­
mation of the Skolai Group (Smith and MacKevett, 1970). In 
nearby areas, these rocks and associated lithologically vari­
able plutonic rocks define the Pennsylvanian and Early Per­
mian Skolai magmatic arc that constitutes the basement 
sequence of the Wrangellia terrane (Bond, 1973; Richter and 
Jones, 1973; MacKevett, 1978; Platker, Nokleberg, and 
Lull, 1989). The arc rocks are overlain successively by 
Lower Permian shallow-marine rocks (correlative with the 
Hasen Creek Formation; Smith and MacKevett, 1970), Mid­
dle and (or) Upper Triassic rift-fill tholeiitic basalt (the 
Nikolai Greenstone), and Upper Triassic and Lower Jurassic 
shallow-marine evaporitic, calcareous, and argillaceous 
strata (Chitistone and Nizina Limestones and McCarthy For­
mation). Late Jurassic tonalitic plutons of the Chitina Valley 
batholith (MacKevett, 1978) intrude both the type Wrangel­
lia terrane and the southern Wrangellia terrane margin 
(Winkler, Silberman, and others, 1981); however, in the 
southern Wrangellia terrane margin, these plutons are more 
abundant, more mafic, and generally foliated, indicating a 
deeper level of exposure (Plafker, Nokleberg, and Lull, 
1989). 
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Figure 2 (facing page). Generalized geology of the Valdez 
quadrangle including major geologic units and their lithostrati­
graphic terrane affinities, selected structural and geographic 
features, and the names of adjacent 1 :250,000-scale quadran­
gles. BRF, Border Ranges fault; IF, Iceberg fault; KF, Klutina 
fault; SlF, Second lake fault; TF, Tazlina fault. Modified from 
Plafker , Nokleberg, and lull (1989). 

Plutonic rocks of the Chitina Valley batholith and meta­
plutonic rocks of the Uranatina River metaplutonic unit are 
part of a belt of Late Jurassic plutons that extends at least 
from Chichagof Island in southeastern Alaska to Tonsina 
(Hudson, 1983). These plutons define the Chitina magmatic 
arc (Plafker, Nokleberg, and Lull, 1989); late stages of their 
intrusion overlap onset of major regional orogeny in the Late 
Jurassic that culminated in the Early Cretaceous with the ini­
tial development of the Chitina and Border Ranges fault sys­
tems (MacKevett and Plafker, 1974; MacKevett, 1978). 

In the Valdez quadrangle, synorogenic deposits include 
very thick and coarse, local wedges of the nonmarine Middle 
or Upper Jurassic Kotsina Conglomerate that are overlain 
with probable unconformity by Upper Jurassic(?) and Lower 
Cretaceous marginal-marine sedimentary rocks. These Neo­
comian and older(?) rocks include unnamed rocks in the 
Cheshnina and Chetaslina River canyons (Grantz and others, 
1966) and the Berg Creek Formation (MacKevett and others, 
1978). 

The Chitina fault is completely concealed in the Valdez 
quadrangle but is well exposed to the east in the McCarthy 
quadrangle (MacKevett, 1978; Gardner and others, 1986). 
Apparently, Early Cretaceous uplift between the southwest­
dipping thrust faults and related folds of the Chitina fault 
system and the Border Ranges fault has exposed deeper lev­
els of the basement sequence for the Wrangellia terrane in 
the southern Wrangellia terrane margin. Furthermore, the 
position of deep-seated Jurassic plutons at the Border 
Ranges fault indicates that a substantial segment of the 
southern Wrangellia terrane margin has been tectonically 
removed since the Late Jurassic (MacKevett, 1978; Plafker, 
Nokleberg, and Lull, 1989). 

Peninsular Terrane 

The Peninsular terrane occupies the north-central and 
northwestern parts of the Valdez quadrangle and is bounded 
on the south by the Border Ranges fault and on the east by 
the Taral fault. The Peninsular terrane includes both intru­
sive and extrusive phases of a Late Triassic(?) through Mid­
dle Jurassic intraoceanic magmatic arc (Barker and Grantz, 
1982; Bums, 1985) and Cretaceous marine sedimentary 

strata deposited in fore-arc basins. To the west in the 
Anchorage quadrangle, a Middle Jurassic marine fore-arc 
sequence also is present. In the Valdez quadrangle, the extru­
sive phase of the arc is represented by the Talkeetna Forma­
tion and consists dominantly of bedded andesitic and basaltic 
tuff, tuff breccia, flow rocks, shallow intrusive rocks, and 
volcanogenic marine sedimentary rocks (Winkler, Silber­
man, and others, 1981). The Cretaceous rocks are repre­
sented by the Matanuska Formation, a transgressive marine 
sequence that deepened through time from shallow shoal­
water deposition in its lower part to deposition on the distal 
reaches of a deep-sea fan in its upper part (Grantz, 1965). 

The Peninsular terrane generally dips northward, thereby 
exposing deeper structural levels, the crystalline roots of the 
early Mesozoic Talkeetna magmatic arc, along its southern 
edge. The crystalline roots of the arc in the Valdez quadran­
gle are composed principally of layered gabbronorite, peri­
dotite, and dunite, the Border Ranges ultramafic-mafic 
assemblage of Plafker, Nokleberg, and Lull (1989) (or the 
Border Ranges ultramafic and mafic complex of Bums, 
1985). The assemblage has two subdivisions: the deeper 
level Tonsina ultramafic-mafic sequence (Plafker, Nokle­
berg, and Lull, 1989; see also Coleman and Bums, 1985, and 
DeBari and Coleman, 1989), consisting of a distinctive 
cumulate sequence of dunite, peridotite, and garnet-bearing 
gabbro, and the shallower level Nelchina River Gab­
bronorite (Plafker, Nokleberg, and Lull, 1989; Bums, in 
press). The Tonsina ultramafic-mafic sequence is exposed 
only in low hills and stream cuts from just west of the 
Richardson Highway to the east bank of the Copper River 
(Winkler, Silberman, and others, 1981). Probable correlative 
ultramafic-mafic sequences, the Wolverine Complex of 
Carden and Decker (1977) and Eklutna Complex of Bums 
(1985), are present along the northern margin of the Border 
Ranges fault system to the west in the Anchorage quadrangle 
(Clark, 1972a; Burns, 1985; Winkler, 1990). The Nelchina 
River Gabbronorite is widely exposed from just east of the 
Richardson Highway westward along the southern margin of 
the Peninsular terrane to the vicinity of Palmer in the 
Anchorage quadrangle (Winkler, Miller, Silberman, and oth­
ers, 1981; Winkler, Silberman, and others, 1981; Bums, 
1985; Winkler, 1990). The Nelchina River Gabbronorite and 
its cover rocks, the Talkeetna Formation, are locally exposed 
and produce prominent, almost continuous _geophysical 
anomalies southwestward to the Kodiak Island area and the 
Alaska Peninsula, an additional 600 km, that define the full 
extent of the Talkeetna arc. 

West of the Valdez quadrangle, the southern margin of 
the Peninsular terrane includes a multiply deformed meta­
morphic assemblage of probable Paleozoic protoliths, the 
informally named Knik River schist terrane (Carden and 
Decker, 1977), which was basement for part of the Talkeetna 
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arc (Pavlis, 1983). Near Anchorage, carbonate rocks in the 
assemblage contain Permian Tethyian fusulinids (Clark, 
1972b). The basement assemblage, and Early and Middle 
Jurassic plutons that intrude it, contains anastomosing zones 
as wide as a kilometer of distributed ductile and brittle shear 
of unknown sense that Pavlis (1982) related to Early Creta­
ceous underthrusting on the Border Ranges fault. 

The bedded and intrusive sequences of the Wrangellia 
and the Peninsular terranes differ in several characteristics 
(Plafker, Nokleberg, and Lull, 1989). The Peninsular terrane 
lacks the distinctive Middle Triassic to Lower Jurassic rift­
fill basalt and intertidal to shallow-marine sedimentary 
sequence of the Wrangellia terrane, and the Wrangellia ter­
rane lacks the characteristic Late Triassic and Early Jurassic 
arc-related volcaniclastic and plutonic rocks of the Talkeetna 
arc. The intrusive histories of the two terranes contrast mark­
edly as well; the distinctive Late Jurassic tonalitic plutons of 
the Wrangellia terrane and the Early to Middle Jurassic ultra­
mafic-mafic suite of the southern Peninsular terrane both ter­
minate abruptly at the Taral fault, the terrane boundary 
(Winkler, Silberman, and others, 1981). 

Although the Wrangellia and Peninsular terranes differ in 
detail in the geology of their basement rocks, their intrusive 
sequences, and their bedded cover rocks, they apparently 
have been juxtaposed since at least the Middle Jurassic. Mid­
dle Jurassic and younger clastic sections exposed in the 
southwestern Wrangell Mountains and the Nelchina area of 
the western part of Copper River Basin are probably overlap 
assemblages (Csejtey and others, 1978). Plafker, Nokleberg, 
and Lull (1989) suggested that the abrupt termination of the 
Talkeetna arc along the Taral fault may have originated dur- · 
ing a total of 600-1 ,000 km of sinistral strike-slip offset that 
truncated a margin of the Wrangellia terrane in British 
Columbia where parts of the Queen Charlotte and Vancou­
ver Islands are composed of coeval arc rocks. During the 
larger dislocation, about 40 km of relative overthrusting 
occurred along the Taral fault to juxtapose a flap of the 
Wrangellia terrane over the Peninsular terrane (Nokleberg 
and others, 1989). If this reconstruction is correct, then the 
Talkeetna Formation and correlative rocks in British Colum­
bia also constitute an overlap assemblage that linked the 
Wrangellia and Peninsular terranes by Late Triassic time 
(Plafker, Nokleberg, and Lull, 1989). Furthermore, the 
occurrence in both terranes of coeval Permian carbonate 
rocks suggests that their amalgamation may have occurred 
even earlier during the late Paleozoic. 

The large sinistral displacement between the Wrangellia 
and Peninsular terranes must have occurred between the Late 
Jurassic and middle Early Cretaceous because Late Jurassic 
plutons are sheared but overlapping Valanginian to Hau­
terivian sedimentary rocks, the Berg Creek Formation and 

Nelchina Limestone, respectively, are apparently unaf­
fected. The displacement also must have occurred prior to 
suturing of the amalgamated Wrangellia and Peninsular ter­
ranes (Talkeetna superterrane of Csejtey and St. Aubin, 
1981) to North America by the mid-Cretaceous. 

Chugach Terrane 

The Chugach terrane (Berg and others, 1972) occupies 
most of the southern half of the Valdez quadrangle; it is the 
central part of a continuous belt of accreted deep-marine sed­
imentary and mafic volcanic rocks approximately 2,000 km 
long and 60-100 km wide in the coastal mountains of south­
ern Alaska (Plafker and others, 1977). From north to south, 
the Chugach terrane consists of three major fault-bounded 
sequences: (1) Jurassic or older greenschist- and transitional 
blueschist-facies rocks; (2) Upper Triassic to mid-Creta­
ceous polygenetic broken formation and melange of the 
McHugh Complex; and (3) Upper Cretaceous volcaniclastic 
flysch and oceanic basaltic rocks of the Valdez Group, which 
comprise the major part of the terrane in the quadrangle 
(Winkler, Silberman, and others, 1981). Rocks of the 
Chugach terrane record intermittent accretion and deforma­
tion beginning in the Early Jurassic and continuing into the 
latest Cretaceous or earliest Tertiary. The rocks are variably 
metamorphosed: rocks of the prehnite-pumpellyite, green­
schist, blueschist, and lowest amphibolite facies are present, 
but rocks of the lower greenschist facies are the most wide­
spread. The terrane was extensively intruded and thermally 
metamorphosed by plutons and dikes about 50 Ma. 

Along its northern margin, the Chugach terrane is juxta­
posed against the Wrangellia and Peninsular terranes along 
the Border Ranges fault system. In different areas of the 
quadrangle, the schist of Liberty Creek, the McHugh Com­
plex, or the Valdez Group are juxtaposed against the north­
ern terranes. At its southern margin, the Chugach terrane is 
juxtaposed against the Paleogene sequence of the Prince 
William terrane along the Contact fault. 

The Border Ranges fault, as mapped in the Valdez quad­
rangle, is a composite feature. According to MacKevett and 
Plafker (1974), it originated as a subduction thrust along the 
trailing edge of a microcontinent·(including the Wrangellia 
and Peninsular terranes) that collided with the North Ameri­
can continental margin in mid-Cretaceous time (Csejtey and 
others, 1982; Monger and others, 1982; Pavlis, 1982). 
Subduction-related Early(?) Jurassic metamorphism of the 
schist of Liberty Creek was attributed by Nokleberg and oth­
ers (1989) to an earliest episode of subduction under an 
"unknown backstop" to the north along a proto-Border 
Ranges fault. Alternatively, Roeske (1986) suggested that 
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the schist formed in a distant subduction zone and was dis­
tributed subsequently along the Border Ranges fault by 
strike-slip displacement. Vestiges of this contact are present 
as near-vertical broad shear zones in ultramafic rocks of the 
Tonsina ultramafic-mafic sequence along the Border Ranges 
fault between the Second Lake and Taral faults. In the cen­
tral part of the Valdez quadrangle, belts of the McHugh 
Complex apparently were accreted successively beneath the 
Peninsular terrane along the Border Ranges, Klutina, and 
Iceberg faults, apparently principally in the Late Jurassic and 
Early Cretaceous but possibly beginning as early as the Late 
Triassic or Early Jurassic (Winkler, Silberman, and others, 
1981). The main episodes of melange formation are roughly 
coeval with successive magmatic events in the adjacent Tal­
keetna, Chitina, and Chisana arcs (Plafker, Nokleberg, and 
Lull, 1989). Syntectonic intrusion of Late Jurassic plutons of 
the Uranatina River metaplutonic unit in the Valdez quad­
rangle (Pavlis and Crouse, 1989) and Early Cretaceous 
tonalite-trondhjemite plutons in the Anchorage quadrangle 
(Pavlis and others, 1988) into the Border Ranges fault zone 
have been inferred to date episodes of strike-slip and thrust 
activity along the Border Ranges and related faults. Accre­
tion of the Valdez Group in the latest Cretaceous or earliest 
Tertiary beneath both the Peninsular and Wrangellia terranes 
reactivated the Border Ranges fault as a megathrust. Ves­
tiges of this contact are preserved beneath several klippen 
consisting of rocks of the southern Wrangellia terrane mar­
gin between Tonsina Lake and the Taral fault. The sinuous 
trace of the Border Ranges fault between the Copper and 
Tonsina Rivers results from folding and faulting of the thrust 
plate during accretion of terranes to the south along the Con­
tact fault (Nokleberg and others, 1989). Much of the present 
trace of the Border Ranges fault in the Valdez and adjacent 
quadrangles is steeply dipping to vertical and resulted from 
Eocene reactivation of the system as an oblique-slip bound­
ary (Little and Naeser, 1989). 

The schist of Liberty Creek forms an outcrop belt 28 km 
long and 13 km wide along the northern margin of the 
Chugach terrane between Dust Creek and the Copper River 
(Winkler, Silberman, and others, 1981; Plafker, Lull, and 
others, 1989). The unit consists of greenschist and minor 
crossite-bearing blueschist containing rare lawsonite. The 
unit is intensely ductilely deformed, and its original strati­
graphic thickness is unknown (Nokleberg and others, 1989). 
Its structural thickness is at least 5 km. In the two places 
where it is exposed, the northern contact of the schist of Lib­
erty Creek is marked by a broad, almost vertical shear zone 
of schistose serpentine and strongly deformed ultramafic 
rocks of the Tonsina ultramafic-mafic sequence (Plafker, 
Lull, and others, 1989). Along the southern boundary of the 
unit, the schist of Liberty Creek is juxtaposed against the 
McHugh Complex along an east-west-trending, almost ver­
tical zone of strongly sheared country rocks, serpentinite, 
pyroxenite, and gabbro. The southern boundary of this zone 
is the Second Lake fault ofMetz (1976). The lithology, relict 

textures, and geochemistry of the schist of Liberty Creek 
indicate that it is an oceanic assemblage of basalt flow rocks, 
breccia, tuff, and minor argillaceous and calcareous sedi­
mentary rocks. Its protolith age is unknown, but its position 
in the accretionary complex indicates only that it likely is 
older than the less metamorphosed Upper Triassic to mid­
Cretaceous McHugh Complex against which it is juxta­
posed. Plafker, Nokleberg, and Lull (1989) correlated the 
schist of Liberty Creek with dated blueschist and greenschist 
of the schist of Iceberg Lake in the western part of the Valdez 
quadrangle (Winkler, Miller, Case, and others, 1981). The 
schistose rocks near Iceberg Lake have Early to Middle 
Jurassic metamorphic ages (Sisson and Onstott, 1986; 
Plafker, Nokleberg, and Lull, 1989) and are in close associ­
ation with paleontologically dated Upper Triassic oceanic 
rocks along the south side of the Border Ranges fault (Win­
kler, Silberman, and others, 1981). This association may 
indicate that the schistose rocks are a more deeply subducted 
part of the Upper Triassic oceanic assemblage (Plafker, Nok­
leberg, and Lull, 1989). The metamorphic age of the schist 
of Liberty Creek has been difficult to determine because of 
its very fine grain size. The Early Cretaceous K-Ar ages 
(Winkler, Silberman, and others, 1981; Plafker, Nokleberg, 
and Lull, 1989) were probably reset, perhaps during accre­
tion of the McHugh Complex to the south. 

The McHugh Complex crops out in an irregular belt 3-37 
km wide between the Border Ranges or Second Lake fault on 
the north, the Tazlina fault on the south, and the Taral fault 
on the east (Winkler, Silberman, and others, 1981; Plafker, 
Lull, and others, 1989). The McHugh Complex consists of 
pervasively disrupted and regionally metamorphosed broken 
formation and melange. Its maximum structural thickness is 
estimated to be about 20 km (Plafker, Nokleberg, and Lull, 
1989). The broken formation originally was mainly tholeiitic 
basalt and related fragmental volcanic rocks, argillite or tuf­
faceous argillite, radiolarian chert, argillaceous siltstone and 
sandstone, and carbonate rocks. The lithology and geochem­
istry of the McHugh indicates it originated as an assemblage 
of oceanic volcanic rocks and pelagic sediments mixed with 
lesser amounts of siliciclastic sediments derived from an 
active continental arc (Plafker, Nokleberg, and Lull, 1989). 
Stratal disruption in the McHugh records a complex history 
of superimposed processes. Wispy intercalations and dishar­
monic folding record either submarine slumping or tectonic 
deformation of unlithified sediments, or both. Postconsoli­
dation brittle disruption is pervasive and randomly oriented 
and varies in scale from microscopic fractures to large-scale 
mixing of rock types in complex fault networks. Broad zones 
of intense faulting lack any stratal continuity, and wide­
spread faulting of unknown offset has juxtaposed contrasting 
rocks. Disrupted brittle phacoids at all scales in sheared 
argillite and tuff impart a characteristic blocks-in-matrix 
appearance to these melangelike parts of the unit. Large, 
coherent, exotic blocks of layered gabbro and other plutonic 
rocks were derived from the Peninsular or Wrangellia ter-
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ranes. The roughly circular klippe more than 10 km in cir­
cumference that occupies much of the drainage of 
Klanelneechena Creek between Tazlina and Nelchina Gla­
ciers may be the largest of these exotic blocks derived from 
the microcontinental block to the north; however, several 
blocks of mafic plutonic rocks as large as 1 km are included 
in McHugh melange between the Border Ranges and Klutina 
faults. Large, exotic blocks of schistose rocks and marble 
also are present in the McHugh (Winkler, Miller, and Case, 
1981; Winkler, Silberman, and others, 1981). The schist of 
Iceberg Lake forms a discrete faulted slab 40 km long and as 
wide as 4 km enclosed within melange marked by conspicu­
ous elongated aligned blocks of marble as long as 2 km; 
other smaller blocks of schist and marble are particularly 
conspicuous along the Iceberg and Klutina faults. 

The best age for the McHugh Complex is provided by 
radiolarians, which are relatively common in chert in the 
melange matrix. In the western part of the Valdez quadran­
gle, the McHugh contains radiolarian assemblages of Late 
Triassic to mid-Cretaceous ages, the inferred depositional 
age span for the unit (Winkler, Silberman, and others, 1981). 
In general, the older samples are near the northern margin of 
the unit, and the youngest are near the southern margin. This 
age distribution is interpreted to indicate progressive accre­
tion of slices of the McHugh Complex from north to south, 
and the structural style is interpreted to indicate disruption at 
a convergent plate margin. The age of these accretionary epi­
sodes is not known, but accretion must have been completed 
before accretion of the Upper Cretaceous Valdez Group that 
is outboard (south) of the McHugh. 

The Valdez Group crops out in a belt more than 50 km 
wide that encompasses the crest of the Chugach Mountains. 
The Valdez is emplaced beneath rocks of the McHugh Com­
plex along the Tazlina fault, a broadly folded thrust that dips 
moderately to the north (Winkler, Silberman, and others, 
1981). The Tazlina fault occupies a comparable structural 
position to the Eagle River fault in the Anchorage quadran­
gle (Clark, 1972b; Winkler, 1990). Immediately beneath the 
Tazlina fault, surfaces of intense deformation in the Valdez 
are defined by isoclines and by metasandstone boudins that 
are elongated subparallel with the main fault surface. Rocks 
of the overlying McHugh Complex do not show a similar 
increase in deformation above the fault. Between Tonsina 
Lake and the Taral fault, the Valdez is surmounted by a thin, 
folded and faulted thrust sheet and outlying klippen of rocks 
of the southern Wrangellia terrane margin (Plafker, Lull, and 
others, 1989). Maximum structural thickness of the sheet is 
estimated to be 1-2 km. East of the Taral fault, the Valdez 
Group is separated from the southern Wrangellia terrane 
margin on the north by a steeply north dipping trace of the 
Border Ranges fault The southern limit of the Valdez Group 
is the Contact fault along which rocks of the Prince William 
terrane are thrust relatively beneath the Chugach terrane 
(Plafker and others, 1977; Nokleberg and others, 1989). 

The Valdez Group consists of a thick, monotonous 
sequence of strongly deformed volcanogenic flysch and 

subordinate tholeiitic basalt flows and tuffs. The rocks are 
foliated, tightly folded, and commonly overturned to the 
south, and they are imbricated along numerous steeply north 
dipping faults. The volcanic rocks are not widespread in the 
Valdez quadrangle but extend southward into the adjacent 
Cordova quadrangle where they are much more abundant 
(Winkler and Plafker, 1981, 1992). Although the volcanic 
rocks are rarely more than a few tens of meters thick, they 
persist for more than 20 km along strike and are conspicuous 
in a broad east-west zone from east of the Copper River to 
near Hogback Glacier (Winkler, Silberman, and others, 
1981). The aggregate stratigraphic thickness of the Valdez 
Group is not known, but at least several kilometers of strata 
are present; the structural thickness of the unit, based on geo­
physical data, is slightly less than 20 km (Plafker, 
Nokleberg, and Lull, 1989). 

In most places in the Valdez quadrangle, structural fea­
tures of the Valdez Group contrast markedly with those in 
the McHugh Complex: the Valdez is characterized by pene­
trative fabrics that record two major deformational events 
(Nokleberg and others, 1989). The first event produced tight 
isoclinal folds and transposition of fold hinges and is mani­
fested by a pervasive planar or slaty cleavage that is gener­
ally parallel with bedding. This event is related to accretion 
of the Valdez Group against the continental margin and 
resulted in a series of imbricated coherent stratigraphic 
sequences bounded by shear zones or thrusts and only local 
preservation of fold hinges. The age of the frrst event is not 
constrained well but is believed to be latest Cretaceous to 
earliest Tertiary, prior to accretion of the Prince William ter­
rane along the southern margin of the Chugach terrane. 
Underplating of a structural thickness of almost 20 km of the 
Valdez Group resulted in vertical uplift along the Border 
Ranges fault sufficient to expose the deepest metamor­
phosed levels of the accretionary prism by no later than 50 
million years ago. At least 3 km of uplift within 15 million 
years of deposition of the Valdez Group probably occurred 
to the west in the Anchorage quadrangle (Little and Naeser, 
1989). The second deformational event produced upright, 
open to tight folding of earlier structures and is manifested 
by one or more generations of crenulation cleavage in pelitic 
rocks, generally at high angles to earlier planar cleavage. At 
deeper structural levels, this second event produced intense 
ductile deformation and flattening. The second event proba­
bly is related to regional metamorphism and intrusion of plu­
tons and dikes into the southern part of the Chugach terrane 
in the middle Eocene and again in the Oligocene, concurrent 
with deformation and intrusion in the Prince William terrane 
to the south. 

Although internal primary sedimentary structures are 
well preserved in many of the coarser grained sedimentary 
rocks, the Valdez Group is regionally metamorphosed to 
lower greenschist facies. Fluid inclusion studies of metamor­
phic segregation veins near Tiekel indicate minimum tem­
peratures of metamorphism of 230°C-300°C (Sisson and 
others, 1989); crosscutting quartz veins near Valdez have 
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minimum trapping temperatures of 21 0°C-280°C and mini­
mum trapping pressures of 1.5 kbar (Goldfarb and others, 
1986). Metamorphic grade increases ~along strike to the 
southeast and culminates in the adjacent Bering Glacier 
quadrangle in a schist and gneiss crystalline complex con­
taining sillimanite-grade migmatitic rocks (Hudson and 
Plafker, 1982). The metamorphic grade decreases westward 
to lowermost greenschist facies in the adjacent Anchorage 
quadrangle (Winkler, 1990). Superimposition of progressive 
metamorphism across regional structural trends within the 
Valdez Group indicates that metamorphism occurred after 
deformation and accretion against the continental margin. A 
minimum age for metamorphism of the Valdez Group is 
given by K-Ar ages of 53.5-47 .6±1.6 Ma (Winkler and 
Plafker, 1981; Winkler, Silberman, and others, 1981). The 
higher grade metamorphic rocks represent deeply buried 
parts of the accretionary prism, and their development is 
believed to be related to emplacement of early Eocene ana­
tectic granitic plutons in the region (Hudson and others, 
1979) that culminated about 52±3 Ma. 

The voluminous flysch of the Valdez Group probably 
accumulated in a continental-margin trench adjacent to an 
Andean-type arc (Monger and others, 1982; Nilsen and 
Zuffa, 1982; Plafker, Nokleberg, and Lull, 1989). Regional 
petrologic and sedimentologic data (Hollister, 1979; Zuffa 
and others, 1980; Nilsen and Zuffa, 1982; Dumoulin, 1987) 
indicate that the bulk of this sediment was derived from an 
evolved arc in the region of southeastern Alaska and coastal 
British Columbia, transported northwestward along the con­
tinental margin, and deposited as elongated fans mostly 
within a marginal trench. The mafic volcanic rocks of the 
Valdez Group are interpreted to represent oceanic crust upon 
which the clastic materials were deposited (Plafker, Nokle­
berg, and Lull, 1989; Lull and Plafker, 1990). 

Prince William Terrane 

In the southwest comer of the Valdez quadrangle, the 
Chugach terrane is separated from the Prince William ter­
rane by the steeply north-dipping Contact fault (Plafker and 
others, 1977; Winkler, Silberman, and others, 1981). The 
fault trace in the Valdez quadrangle is a small part of a major 
early Tertiary terrane boundary that extends from near 
Mount Saint Elias to the continental shelf south of Kodiak 
Island (Plafker and others, 1977, 1986). The Prince William 
terrane consists primarily of the very thick and complexly 
deformed Orca Group, an accreted deep-sea fan complex 
interbedded with tholeiitic basalt and minor pelagic deposits 
(Winkler, 1976). Lenses of conglomerate in the Orca in the 
Sawmill Bay area are thought to represent feeder channels 
that distributed finer grained sediment to mid-fan deposi­
tional lobes where the great bulk of Orca flysch was depos-

ited (Winkler and Tysdal, 1977). The sediment was derived 
mainly from the Coast Mountains of southeastern Alaska 
and British Columbia during the principal phase of plu­
tonism and uplift in the Paleocene to middle Eocene 
(Hollister, 1979) and deposited as submarine fans on the 
Kula oceanic plate as it moved relatively northwestward. 
Interbedded basalt resulted from magma leakage as sea-floor 
spreading brought the Kula-Farallon Ridge near the conti­
nental margin. Widespread middle Eocene anatexis, intru­
sion, and low-pressure high-temperature metamorphism in 
the southern Wrangellia terrane margin and the Peninsular, 
Chugach, and Prince William terranes (Hudson and others, 
1979; Winkler, Silberman, and others, 1981; Hudson and 
Plafker, 1982; Sisson and others, 1989) manifest subduction 
of the still active ridge in the eastern Gulf of Alaska 
Intrusion of early middle Eocene plutons across both the 
Contact and Border Ranges faults indicates that there has 
been little or no younger horizontal displacement along the 
faults (Winkler and Plafker, 1981). 

The stratigraphic thickness of the Orca Group in the 
region is unknown but may be as much as 6-10 km (Winkler 
and Plafker, 1981); the structural thickness is much greater, 
perhaps as much as 20 km. 

Successive accretion of wedges of flysch and basalt pro­
duced complex deformation of the Orca Group. Intense fold­
ing and faulting in both the upper and lower plates of the 
Contact fault resulted in parallel structures in both the 
Valdez and Orca Groups adjacent to the fault. At depth in the 
region, the Contact fault marks an abrupt change in deep 
crustal structure manifested by a sharp increase in seismic 
velocities (Fuis and Plafker, 1991 ). 

The structural effects of underplating the Orca Group are 
not well understood in the Valdez quadrangle. They are com­
plicated by the initial development of the southern Alaska 
orocline at about this time during rapid oblique subduction 
of Pacific oceanic crust beneath the Alaskan continental 
margin (Engebretson and others, 1986). Bends in the traces 
of the Border Ranges, Contact, and Castle Mountain faults, 
deflections in regional metamorphic and structural fabrics of 
Paleogene age in the Chugach and Prince William terranes, 
and paleomagnetic data indicating early Tertiary counter­
clockwise rotation of southwestern Alaska have been 
adduced as evidence for the orocline (summarized in 
Plafker, 1987, Little and Naeser, 1989, and Nokleberg and 
others, 1989). To the west in the Anchorage quadrangle, suc­
cessive episodes of accretion in the Eocene are recorded by 
renewed normal offset on the Border Ranges fault and 
reverse-slip uplift on the Castle Mountain fault, followed by 
dextral oblique-slip of several tens of kilometers on the 
Border Ranges and Castle Mountain faults (Fuchs, 1980; 
Little, 1990). The obliquity of offset accommodated simulta­
neous accretionary thickening and oroclinal bending of the 
continental margin and created wrench faults, en echelon 
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folds, fault-bend folds, and local pull-apart basins along the 
Border R~ges fault in the Anchorage quadrangle (Little, 
1990), none of which are known in the Valdez quadrangle. 

Yakutat Terrane 

The Y ak.utat terrane is a composite terrane along the 
northern Gulf of Alaska continental margin that is composed 
mostly of relatively buoyant crustal rocks (Plafker, 1987). 
Rocks of the Yakutat terrane are not exposed in the Valdez 
quadrangle; in fact, the nearest exposures are approximately 
65 km to the south in the Cordova quadrangle (Winkler and 
Plafker, 1981, 1992). The effects of the terrane's accretion 
are manifested, however, in the Valdez quadrangle by volca­
nism in the Wrangell Mountains and by renewed rapid uplift 
of the Chugach Mountains and deep erosion along the 
Border Ranges fault indicated by apatite cooling ages of 
22-16 Ma for samples from the Chugach terrane (Little and 
Naeser, 1989). By Miocene time, the Yakutat terrane 
became coupled to the Pacific plate along the Fairweather­
Queen Charlotte dextral transform fault and was displaced 
northwestward to impinge against the continental margin 
between approximately Mount Saint Elias and the Copper 
River (Plafker, 1987). Northward displacement of the ter­
rane is inferred to coincide roughly with the duration of arc 
volcanism in the Wrangell Mountains from about 20 Ma to 
the present (Plafker, 1987). At least 2,000 m of andesitic 
flows, tephra, hypabyssal plugs and dikes, and minor volca­
nogenic sedimentary rocks in the northeast part of the 
Valdez quadrangle issued principally from the shield vol­
cano of Mount Wrangell and may represent only a part of the 
volcanic pile that is Quaternary in age. 

POTENTIAL MINERAL RESOURCES 

Potentially significant undiscovered resources of pre­
cious, base, and ferrous metals may be present in several 
areas of the Valdez quadrangle near known occurrences 
(Winkler, Miller, MacKevett, and Holloway, 1981; Pick­
thorn and others, in press). North of the Border Ranges fault 
system, gold, silver, copper, zinc, and lead are present in dis­
seminations and veins in late Paleozoic metavolcanic and 
metaplutonic rocks in several places in the southwestern 
Wrangell Mountains and the northern Chugach Mountains; 
in disseminations and veins in Triassic subaerial volcanic 
rocks near Elliott Creek in the Wrangell Mountains; in 
replacements and veins in Triassic and Jurassic marine sedi­
mentary rocks near Elliott Creek in the Wrangell Mountains; 
and in veins and breccia zones in Jurassic volcanic rocks at 
Willow Mountain and Heavenly Ridge in the northern 
Chugach Mountains. Molybdenum is present in veins and 

disseminations in Jurassic plutonic rocks along the Chitina 
River west of the mouth of the Kuskulana River. East of the 
Copper River between Spirit Mountain and Summit Lake, 
ultramafic sills enriched in copper and nickel and minor sil­
ver, gold, and platinum-group elements intrude the late Pale­
ozoic metamorphic sequence. Between the Richardson 
Highway and the Copper River at Bernard Mountain, Dust 
Mountain, and Sheep Hill, layered rocks in the Tonsina 
ultramafic-mafic sequence contain numerous lenses and dis­
seminations of chromite and local enrichments in platinum­
group elements and gold. Near the head of Barnette Creek, 
ultramafic rocks in a broad shear zone along the southern 
boundary of the Nelchina River Gabbronorite also contain 
lenses of chromite, none of which are known to be large. In 
several places between Tazlina Lake and the western bound­
ary of the Valdez quadrangle, layered rocks in the Nelchina 
River Gabbronorite contain elevated values of copper and 
nickel. Sulfide minerals have been noted locally and may be 
disseminated through much of the layered pluton; in places, 
their presence is marked by weak copper staining. 

South of the Border Ranges fault system in the Chugach 
Mountains, gold, silver, copper, zinc, lead, and antimony are 
present in massive sulfide deposits and veins hosted by Cre­
taceous and Paleogene sedimentary and volcanic rocks and 
in veins hosted by felsic dikes and stocks that cut these 
sequences. Manganese is present in veins in schistose rocks 
along Liberty Creek northwest of Chitina. Placer gold may 
be present in small alluvial deposits underlain by rocks of the 
Valdez Group near known auriferous lodes and in alluvial 
sands within the canyons of the Copper, Bremner, Tasnuna, 
and Lowe Rivers and their tributaries. 
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