Study designs for both ground-water and surface-water components focused principally on the Valley and Ridge province. The Valley and Ridge is home to the majority of the Study Unit population and is the most highly developed in terms of agriculture and urban land uses. Ground-water studies focused on the carbonate-based dolomites and limestones of the Valley and Ridge. These geologic units form the most prolific aquifers in the Upper Tennessee River Basin and also are the most susceptible to contamination because of their associated karst and solution features. Ground-water resources are very limited in the Blue Ridge and Cumberland Plateau provinces because of the relatively impermeable nature of the bedrock and the low water-storage capacity of the thin soils that overlie the bedrock.

Surface-water studies focused on the unregulated portions of the Upper Tennessee River Basin principally in the Valley and Ridge province, which contains the most intense agricultural activity in the basin. Thirteen basic fixed stream-sampling sites were operated during the study to monitor water-quality conditions with time in various parts of the basin. Data-collection sites were selected to cover the major subbasins of the Upper Tennessee River and to encompass the major land uses. An additional 61 sites were sampled during the study as part of three synoptic networks designed to better describe areal water-quality variations of the subbasins. In keeping with the NAWQA multiple lines of evidence approach to describe water-quality conditions,(34) data-collection activities included water-column chemistry at all sites, bed-sediment and Asiatic clam tissue samples at Basic Fixed Sites, and stream ecological sampling (fish communities, benthic invertebrates, habitat, and algae) at all Basic Fixed Sites and most Synoptic sites.

<table>
<thead>
<tr>
<th>Site number</th>
<th>Site name</th>
<th>Site type</th>
<th>Physiographic province*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Guest River near Millers Yard, Virginia</td>
<td>Indicator, Mining</td>
<td>CP</td>
</tr>
<tr>
<td>2</td>
<td>Middle Fork Holston River at Seven-Mile Ford, Virginia</td>
<td>Indicator, Mixed</td>
<td>VR</td>
</tr>
<tr>
<td>3</td>
<td>Copper Creek near Gate City, Virginia</td>
<td>Indicator, Agriculture</td>
<td>VR</td>
</tr>
<tr>
<td>4</td>
<td>Powell River near Arthur, Tennessee</td>
<td>Integrator</td>
<td>CP-VR</td>
</tr>
<tr>
<td>5</td>
<td>Clinch River at Tazewell, Tennessee</td>
<td>Integrator</td>
<td>VR-CP</td>
</tr>
<tr>
<td>6</td>
<td>Holston River at Surgoinsville, Tennessee</td>
<td>Integrator</td>
<td>VR</td>
</tr>
<tr>
<td>7</td>
<td>Big Limestone Creek near Limestone, Tennessee</td>
<td>Indicator, Agriculture</td>
<td>VR</td>
</tr>
<tr>
<td>8</td>
<td>Nolichucky River at Embreeville, Tennessee</td>
<td>Indicator, Mining</td>
<td>BR</td>
</tr>
<tr>
<td>9</td>
<td>Nolichucky River at Lowlands, Tennessee</td>
<td>Indicator, Mixed</td>
<td>BR-VR</td>
</tr>
<tr>
<td>10</td>
<td>French Broad River near Newport, Tennessee</td>
<td>Indicator, Agriculture</td>
<td>BR</td>
</tr>
<tr>
<td>11</td>
<td>Pigeon River at Newport, Tennessee</td>
<td>Integrator</td>
<td>BR-VR</td>
</tr>
<tr>
<td>12</td>
<td>Clear Creek at Lilly Bridge, Tennessee</td>
<td>Integrator</td>
<td>CP</td>
</tr>
<tr>
<td>13</td>
<td>Tennessee River at Chattanooga, Tennessee</td>
<td>Integrator</td>
<td>CP-VR-BR</td>
</tr>
</tbody>
</table>

* CP - Cumberland Plateau, BR - Blue Ridge, VR - Valley and Ridge
STREAM CHEMISTRY

<table>
<thead>
<tr>
<th>Study component</th>
<th>What data were collected and why</th>
<th>Types of sites sampled</th>
<th>Number of sites</th>
<th>Sampling frequency and period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom-sediment survey</td>
<td>Sediment in depositional zones was sampled for pesticides, other synthetic organic compounds, and trace elements to determine the presence of potentially toxic compounds. Water-quality samples also were taken at each site, including major ions, nutrients, organic carbon, pesticides, bacteria, and suspended sediment.</td>
<td>Selected rivers and streams.</td>
<td>15</td>
<td>Once (1995, 1996, 1998)</td>
</tr>
<tr>
<td>Water-chemistry sites</td>
<td>Water-chemistry data, including major ions, nutrients, organic carbon, pesticides, bacteria, and suspended sediment, were used to describe concentrations and loads.</td>
<td>Sampling occurred near selected continuous streamflow sites.</td>
<td>13</td>
<td>Variable (1996–98)</td>
</tr>
<tr>
<td>Storm sampling program</td>
<td>Water-chemistry data, including major ions, nutrients, organic carbon, pesticides, bacteria, and suspended sediment, were used to describe concentrations and loads.</td>
<td>Samples were taken at water-chemistry sites during high-flow conditions.</td>
<td>variable</td>
<td>Variable (1996–98)</td>
</tr>
<tr>
<td>Nutrient/pesticide synoptic studies</td>
<td>Water-chemistry data, including major ions, nutrients, organic carbon, pesticides, bacteria, and suspended sediment, were used to describe concentrations of selected constituents.</td>
<td>Surface-water sampling sites in the Cumberland Plateau, French Broad River Basin, and the Valley and Ridge were selected to describe conditions across the Study Unit.</td>
<td>64</td>
<td>Variable (1996) (1997) (1998)</td>
</tr>
<tr>
<td>Intensive pesticide sampling</td>
<td>Pesticides, major ions, organic carbon, suspended sediment, bacteria, and nutrients were analyzed to determine seasonal variations in concentrations and loads.</td>
<td>Water-chemistry sites located in intensive agricultural basins or mixed land-use basins.</td>
<td>3</td>
<td>Biweekly (March–Nov.,1996)</td>
</tr>
</tbody>
</table>

STREAM ECOSYSTEM

<table>
<thead>
<tr>
<th>Study component</th>
<th>What data were collected and why</th>
<th>Types of sites sampled</th>
<th>Number of sites</th>
<th>Sampling frequency and period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminants in Asiatic clams</td>
<td>Asiatic clams were sampled for pesticides, other synthetic organic compounds, and trace elements to determine the presence of potentially toxic compounds.</td>
<td>Selected rivers and streams.</td>
<td>15</td>
<td>Once (1995, 1996, 1998)</td>
</tr>
<tr>
<td>Aquatic biology</td>
<td>Biological communities and stream habitat were assessed and fish, macroinvertebrates, and algae were quantitatively sampled.</td>
<td>Biological communities and habitat at basic fixed water-chemistry sites, and biological communities at synoptic sites.</td>
<td>13 fixed sites, 63 synoptic sites</td>
<td>Once (1995–98)</td>
</tr>
<tr>
<td>Spring synoptic study</td>
<td>Macroinvertebrates were qualitatively sampled.</td>
<td>Spring sites.</td>
<td>35</td>
<td>Once (Aug.–Nov.,1997)</td>
</tr>
</tbody>
</table>

GROUND-WATER CHEMISTRY

<table>
<thead>
<tr>
<th>Study component</th>
<th>What data were collected and why</th>
<th>Types of sites sampled</th>
<th>Number of sites</th>
<th>Sampling frequency and period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural land-use survey</td>
<td>Water-chemistry data, including major ions, nutrients, organic carbon, pesticides, and radon, were analyzed to determine the effects of burley tobacco production on shallow ground-water quality.</td>
<td>Shallow 2-inch monitoring wells were installed adjacent to tobacco fields in the Valley and Ridge in northeastern Tennessee and southwestern Virginia.</td>
<td>30</td>
<td>Once (June and July, 1997)</td>
</tr>
<tr>
<td>Study Unit spring survey</td>
<td>Water-chemistry data, including major ions, nutrients, organic carbon, pesticides, bacteria, and radon were analyzed to determine the quality of ground water.</td>
<td>Randomly selected springs in the Valley and Ridge.</td>
<td>35 springs</td>
<td>Once (Aug.–Nov.,1997)</td>
</tr>
<tr>
<td>Study Unit well survey</td>
<td>Water-chemistry data, including major ions, nutrients, organic carbon, pesticides, bacteria, and radon, were analyzed to determine the quality of ground water.</td>
<td>Randomly selected wells in the Valley and Ridge.</td>
<td>30 wells</td>
<td>Once (Sept. 98–Nov. 99)</td>
</tr>
</tbody>
</table>
Aquatic-life criteria—Water-quality guidelines for protection of aquatic life. Often refers to U.S. Environmental Protection Agency water-quality criteria for protection of aquatic organisms.

Aquifer—A water-bearing layer of soil, sand, gravel, or rock that will yield usable quantities of water to a well.

Basic Fixed Sites—Sites on streams at which streamflow is measured and samples are collected for temperature, salinity, suspended sediment, major ions and metals, nutrients, and organic carbon to assess the broad-scale spatial and temporal character and transport of inorganic constituents of stream water in relation to hydrologic conditions and environmental settings.

Bed sediment—The material that temporarily is stationary in the bottom of a stream or other watercourse.

Bed sediment and tissue studies—Assessment of concentrations and distributions of trace elements and hydrophobic organic contaminants in streambed sediment and tissues of aquatic organisms to identify potential sources and to assess spatial distribution.

Benthic invertebrates—Insects, mollusks, crustaceans, worms, and other organisms without a backbone that live in, on, or near the bottom of lakes, streams, or oceans.

Constituent—A chemical or biological substance in water, sediment, or biota that can be measured by an analytical method.

Contamination—Degradation of water quality compared to original or natural conditions and due to human activity.

Cubic foot per second (ft³/s, or cfs)—Rate of water discharge representing a volume of 1 cubic foot passing a given point during 1 second, equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meter per second.

Degradation products—Compounds resulting from transformation of an organic substance through chemical, photochemical, and/or biochemical reactions.

Detection limit—The minimum concentration of a substance that can be identified, measured, and reported within 99 percent confidence that the analyte concentration is greater than zero; determined from analysis of a sample in a given matrix containing the analyte.

Discharge—Rate of fluid flow passing a given point at a given moment in time, expressed as volume per unit of time.

Drainage area—The drainage area of a stream at a specified location is that area, measured in a horizontal plane, which is enclosed by a drainage divide.

Drinking-water standard or guideline—A threshold concentration in a public drinking-water supply, designed to protect human health. As defined here, standards are U.S. Environmental Protection Agency regulations that specify the maximum contamination levels for public water systems required to protect the public welfare; guidelines have no regulatory status and are issued in an advisory capacity.

Indicator sites—Stream sampling sites located at outlets of drainage basins with relatively homogeneous land use and physiographic conditions; most indicator-site basins have drainage areas ranging from 20 to 200 square miles.

Integrator or Mixed-use site—Stream sampling site located at an outlet of a drainage basin that contains multiple environmental settings. Most integrator sites are on major streams with relatively large drainage areas.

Intensive Fixed Sites—Basic Fixed Sites with increased sampling frequency during selected seasonal periods and analysis of dissolved pesticides for 1 year. Most NAWQA Study Units have one to two integrator Intensive Fixed Sites and one to four indicator Intensive Fixed Sites.

Karst—A type of topography that results from dissolution and collapse of carbonate rocks such as limestone and dolomite, and characterized by closed depressions or sinkholes, caves, and underground drainage.

Load—General term that refers to a material or constituent in solution, in suspension, or in transport; usually expressed in terms of mass or volume.

Main stem—The principal course of a river or a stream.

Metamorphic rock—Rock that has formed in the solid state in response to pronounced changes of temperature, pressure, and chemical environment.

Micrograms per liter (µg/L)—A unit expressing the concentration of constituents in solution as weight (micrograms) of solute per unit volume (liter) of water; equivalent to one part per billion in most stream water and ground water. One thousand micrograms per liter equals 1 mg/L.

Milligrams per liter (mg/L)—A unit expressing the concentration of chemical constituents in solution as weight (milligrams) of solute per unit volume (liter) of water; equivalent to one part per million in most stream water and ground water.

Nonpoint source—A pollution source that cannot be defined as originating from discrete points such as pipe discharge. Areas of fertilizer and pesticide applications, atmospheric deposition, manure, and natural inputs from plants and trees are types of nonpoint source pollution.

Point source—A source at a discrete location such as a discharge pipe, drainage ditch, tunnel, well, concentrated livestock operation, or floating craft.

Synoptic sites—Sites sampled during a short-term investigation of specific water-quality conditions during selected seasonal or hydrologic conditions to provide improved spatial resolution for critical water-quality conditions.

Tributary—A river or stream flowing into a larger river, stream, or lake.

Volatile organic compounds (VOCs)—Organic chemicals that have a high vapor pressure relative to their water solubility. VOCs include components of gasoline, fuel oils, and lubricants, as well as organic solvents, fumigants, some inert ingredients in pesticides, and some by-products of chlorine disinfection.

Water-quality standards—State-adopted and U.S. Environmental Protection Agency-approved ambient standards for water bodies. Standards include the use of the water body and the water-quality criteria that must be met to protect the designated use or uses.

Water table—The point below the land surface where ground water is first encountered and below which the earth is saturated. Depth to the water table varies widely across the country.

Yield—The mass of material or constituent transported by a river in a specified period of time divided by the drainage area of the river basin.
REFERENCES

This appendix is a summary of chemical concentrations and biological indicators assessed in the Upper Tennessee River Basin. Selected results for this Basin are graphically compared to results from as many as 36 NAWQA Study Units investigated from 1991 to 1998 and to national water-quality benchmarks for human health, aquatic life, or fish-eating wildlife. The chemical and biological indicators shown were selected on the basis of frequent detection, detection at concentrations above a national benchmark, or regulatory or scientific importance. The graphs illustrate how conditions associated with each land use sampled in the Upper Tennessee River Basin compare to results from across the Nation, and how conditions compare among the several land uses. Graphs for chemicals show only detected concentrations and, thus, care must be taken to evaluate detection frequencies in addition to concentrations when comparing study-unit and national results. For example, tebuthiuron concentrations in Upper Tennessee River Basin major aquifers were similar to the national example, tebuthiuron concentrations in Upper Tennessee River Basin major aquifers were similar to the national example. For a complete view of Upper Tennessee River Basin data and for additional information about specific benchmarks used, visit our Web site at http://water.usgs.gov/nawqa/. Also visit the NAWQA Data Warehouse for access to NAWQA data sets at http://infotrek.er.usgs.gov/wdbctx/nawqa/nawqa.home.

CHEMICALS IN WATER

Concentrations and detection frequencies, Upper Tennessee River Basin, 1995–98

- **Detected concentration in Study Unit**
 - Frequency of detection in percent. Detection frequencies were not censored at any common reporting limit. The left-hand column is the study-unit frequency and the right-hand column is the national frequency.
 - Not measured or sample size less than two.
- **Study-unit sample size**
 - For ground water, the number of samples is equal to the number of wells sampled.

National ranges of detected concentrations, by land use, in 36 NAWQA Study Units, 1991–98

- **Ranges include only samples in which a chemical was detected**
- **Middle 50 percent**
- **Lowest 50 percent**
- **Highest 50 percent**
- **Major aquifers**
- **Streams in agricultural areas**
- **Streams in urban areas**
- **Shallow ground water in agricultural areas**
- **Shallow ground water in urban areas**

National water-quality benchmarks

National benchmarks include standards and guidelines related to drinking-water quality, criteria for protecting the health of aquatic life, and a goal for preventing stream eutrophication due to phosphorus. Sources include the U.S. Environmental Protection Agency and the Canadian Council of Ministers of the Environment.

- **Drinking-water quality (applies to ground water and surface water)**
- **Protection of aquatic life (applies to surface water only)**
- **Prevention of eutrophication in streams not flowing directly into lakes or impoundments**
- No benchmark for drinking-water quality
- No benchmark for protection of aquatic life

Pesticides in water—Herbicides

Study-unit frequency of detection, in percent

- **Study-unit sample size**

National frequency of detection, in percent

- **Study-unit sample size**

Other herbicides detected

- Acetochlor (Harness Plus, Surpass) **
- Alachlor (Lasso, Bronco, Lariat, Bullet) **
- Bromacil (Hyvar X, Urox B, Bromax)**
- Cyanazine (Bladex, Fortrol)**
- DCPA (Dacthal, chlorthal-dimethyl) **
- Dichlorprop (2,4-DP, Seritox 50, Lentemal) **
- Diuron (Crisuron, Karmex, Diurex)**
- Metribuzin (Lexone, Sencor)
- Molinate (Ordram) **
- Napropamide (Devrinol) **
- Pendimethalin (Pre-M, Prowl, Stomp)**
- Prometon (Pramitol, Princep) **
- 2,4,5-T **
- 2,4,5-TP (Silvex, Fenoprop)**
- Trifluralin (Treflan, Gowan, Tri-4, Trific)

Herbicides not detected

- Actifluoren (Blazer, Tackle 2S)**
- Benfluralin (Balan, Benfern, Bonanox) **
- Bentazon (Basagran, Bentazone) **
- Bromoxynil (Buctril, Brominal)**
- Butylate (Sultan +, Genate Plus, Butilate) **
- Chloramben (Amiben, Amilon-WP, Vegiben) **
- Clopyralid (Stinger, Lontrel, Transline) **
- Daconil (Butoxone, Embutox Plus, Embutone) **
- Dacthal mono-acid (Dacthal breakdown product) **

Water-Quality Data in a National Context 27
Pesticides in water—Insecticides

<table>
<thead>
<tr>
<th>Pesticide Name</th>
<th>Study-unit Frequency of Detection, in Percent</th>
<th>National Frequency of Detection, in Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis-Permethrin (Ambush, Astro, Pounce)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Parathion (Roethyl-P, Alkron, Panthion, Phoskil)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Methyl parathion (Penncap-M, Folidol-M)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Methomyl (Lanox, Lannate, Acinate)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Methiocarb (Slug-Geta, Grandslam, Mesurol)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>3-Hydroxycarbofuran (Carbofuran breakdown product)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>alpha-HCH (alpha-BHC, alpha-lindane)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Fonofos (Dyfonate, Captos, Cudgel, Tycap)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Ethoprop (Mocap, Ethoprophos)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Disulfoton (Disyston, Di-Syston)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Dieldrin (Panoram D-31, Octalox, Compound 497)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Azinphos-methyl (Guthion, Gusathion M)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Aldicarb sulfoxide (Aldicarb breakdown product)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Aldicarb sulfone (Standak, aldoxycarb)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Aldicarb (Temik, Ambush, Pounce)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Malathion (Malathion)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Diazinon (Basudin, Diazatol, Neocidol, Knox Out)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Chlorpyrifos (Brodan, Dursban, Lorsban)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Carbofuran (Furadan, Curaterr, Y altox)</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Terbufos (Contraven, Counter, Pilarfox)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Propargite (Comite, Omitte, Ornamente)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Propoxur (Baygon, Blattanex, Unden, Proproxot)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Terbuthiol (Contraven, Counter, Pilarfox)</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Other insecticides detected
- Carbofuran (Furadan, Curaterr, Y altox)
- Chlordane (Curaterr, Y altox)
- Diazinon (Basudin, Diazatol, Neocidol, Knox Out)
- Malathion (Malathion)

Insecticides not detected
- Aldicarb (Temik, Ambush, Pounce)
- Aldicarb sulfone (Standak, aldoxycarb)
- Aldicarb sulfoxide (Aldicarb breakdown product)
- Azinphos-methyl (Guthion, Gusathion M)
- Dieldrin (Panoram D-31, Octalox, Compound 497)
- Disulfoton (Disyston, Di-Syston)
- Ethoprop (Mocap, Ethoprophos)
- Fonofos (Dyfonate, Captos, Cudgel, Tycap)
- alpha-HCH (alpha-BHC, alpha-lindane)
- 3-Hydroxycarbofuran (Carbofuran breakdown product)
- Methiocarb (Slug-Geta, Grandslam, Mesurol)
- Methomyl (Lanox, Lannate, Acinate)
- Methyl parathion (Penncap-M, Folidol-M)
- Oxamyl (Vydaste L, Pratt)
- Parathion (Roethyl-P, Alkron, Panthion, Phoskil)
- cis-Permethrin (Ambush, Astro, Pounce)
- Prorate (Thimet, Granutox, Geomet, Rampart)
- Propargite (Comite, Omitte, Ornamente)
- Propoxur (Baygon, Blattanex, Unden, Proproxot)
- Terbutylazine (Contraven, Counter, Pilarfox)

Volatile organic compounds (VOCs) in ground water

These graphs represent data from 16 Study Units, sampled from 1996 to 1998

- Chloromethane (Methyl chloride)
- Methyl tert-butyl ether (MTBE)
- Trichloromethane (Chloroform)

Other VOCs detected
- tert-Butylmethylether (tert-amyl methyl ether (TAME))
- Benzene
- Bromodichloromethane (Dichlorodichloromethane)
- 2-Butanone (Methyl ethyl ketone (MEK))
- n-Butylbenzene (1-Phenylbutane)
- Carbon disulfide
- Chlorobenzene (Monochlorobenzene)
- Chloroethene (Ethyl chloride)
- 1,3-Dichlorobenzene (m-Dichlorobenzene)
- 1,4-Dichlorobenzene (p-Dichlorobenzene)
- Dichlorodifluoromethane (CFC 12, Freon 12)
- 1,1-Dichloroethane (Ethylidene dichloride)
- 1,1-Dichloroethene (Vinylidene chloride)
- cis-1,2-Dichloroethene (Z-1,2-Dichloroethene)
- Dietethyl ether (Ethyl ether)
- Diisopropyl ether (Diisopropylether (DIEP))
- 1,2-Dimethylenbenzene (o-Xylene)
- Ethylbenzene (Styrene)
- 1-Ethyl-2-methylbenzene (2-Ethyltoluene)
- Ethylbenzene (Phenylethane)
- Isopropylbenzene (Cumene)
- p-Isopropyltoluene (p-Cymene)
- Methylbenzene (Toluene)
- 2-Propanone (Acetone)
- n-Propylbenzene (Isocumene)
- Tetrachloroethylene (Perchloroethylene)
- 1,2,3,4-Tetramethylbenzene (Prehnitene)
- 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)
- 1,1,1-Trichloroethane (Methylchloroform)
- Trichloroethylene (TCE)
- 1,2,3-Trimethylbenzene (Hemimellitene)
- 1,2,4-Trimethylbenzene (Psuedocumene)
- 1,3,5-Trimethylbenzene (Mesitylene)

VOCs not detected
- Bromobenzene (Phenyl bromide)
- Bromochloromethane (Methylene chloride)
- Bromoethene (Vinyl chloride)
- 1-Chloro-2-methylbenzene (o-Chlorotoluene)
- 3-Chloro-1-propene (3-Chloropropene)
- 1-Chloro-2-methylbenzene (o-Chlorotoluene)
- 1-Chloro-4-methylbenzene (p-Chlorotoluene)
- Chlorodibromomethane (Dibromochloromethane)
- Chloroethene (Vinyl chloride)
- 1,2-Dibromo-3-chloropropane (DBCP, Nemagon)
- 1,2-Dibromoethane (Ethylene dibromide, EDB)
Dissolved solids in water

Study-unit frequency of detection, in percent

National frequency of detection, in percent

Study-unit sample size

Trace elements in ground water

Study-unit frequency of detection, in percent

National frequency of detection, in percent

Study-unit sample size

Nutrients in water

Study-unit frequency of detection, in percent

National frequency of detection, in percent

Study-unit sample size

Other nutrients detected

Dissolved ammonia plus organic nitrogen as N * **
CHEMICALS IN FISH TISSUE AND BED SEDIMENT

Concentrations and detection frequencies, Upper Tennessee River Basin, 1995–98—Detection sensitivity varies among chemicals and, thus, frequencies are not directly comparable among chemicals. Study-unit frequencies of detection are based on small sample sizes; the applicable sample size is specified in each graph.

- Detected concentration in Study Unit
- Not measured or sample size less than two

<table>
<thead>
<tr>
<th></th>
<th>Study-unit sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>38</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

National ranges of concentrations detected, by land use, in 36 NAWQA Study Units, 1991–98—Ranges include only samples in which a chemical was detected

<table>
<thead>
<tr>
<th></th>
<th>Study-unit frequency of detection, in percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish tissue from streams in agricultural areas</td>
<td>66</td>
</tr>
<tr>
<td>Fish tissue from streams in urban areas</td>
<td>38</td>
</tr>
<tr>
<td>Fish tissue from streams draining mixed land uses</td>
<td>12</td>
</tr>
<tr>
<td>Sediment from streams in agricultural areas</td>
<td></td>
</tr>
<tr>
<td>Sediment from streams in urban areas</td>
<td></td>
</tr>
<tr>
<td>Sediment from streams draining mixed land uses</td>
<td></td>
</tr>
</tbody>
</table>

National benchmarks for fish tissue and bed sediment

National benchmarks include standards and guidelines related to criteria for protection of the health of fish-eating wildlife and aquatic organisms. Sources include the U.S. Environmental Protection Agency, other Federal and State agencies, and the Canadian Council of Ministers of the Environment.

- Protection of fish-eating wildlife (applies to fish tissue)
- Protection of aquatic life (applies to bed sediment)
- No benchmark for protection of fish-eating wildlife
- No benchmark for protection of aquatic life

Other organochlorines detected
- \(\alpha,\beta'-DDD \) (sum of \(\alpha,\beta'-DDD \) and \(\beta,\beta'-DDD \)) *
- \(\alpha,\beta'-DDDE \) (sum of \(\alpha,\beta'-DDDE \) and \(\beta,\beta'-DDDE \)) *
- \(\alpha,\beta'-DDDT \) (sum of \(\alpha,\beta'-DDDT \) and \(\beta,\beta'-DDDT \)) *

Organochlorines not detected
- Chloroneb (Chloronebe, Demosan) **
- DCPA (Dacthal, chlorothal-dimethyl) **
- Endosulfan I (alpha-Endosulfan, Thiodan) **
- Endrin (Endrine)
- Gamma-HCH (Lindane, gamma-BHC, Gammexane) *
- Heptachlor+heptachlor epoxide (sum of heptachlor and heptachlor epoxide) **
- Hexachlorobenzene (HCB) **
- Isodrin (Isodrine, Compound 711) **
- \(\alpha,\beta'-DDT \) (Marlate, methoxychlore) **
- \(\alpha,\beta'-DDE \) Methoxychlor **
- Mirex (Dechlorane) **
- Total PCB
- Pentachloronapthalene (PCA) **
- cis-Permethrin (Ambush, Astro, Pounce) **
- trans-Permethrin (Ambush, Astro, Pounce) **
- Toxaphene (Camphechlor, Hercules 3956) **

Semivolatile organic compounds (SVOCs) in bed sediment

<table>
<thead>
<tr>
<th></th>
<th>Study-unit frequency of detection, in percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthraquinone **</td>
<td></td>
</tr>
<tr>
<td>9H-Carbazole **</td>
<td></td>
</tr>
<tr>
<td>Dibenzothiophene **</td>
<td></td>
</tr>
<tr>
<td>2,6-Dimethynaphthalene **</td>
<td></td>
</tr>
<tr>
<td>bis(2-Ethylhexyl)phthalate **</td>
<td></td>
</tr>
<tr>
<td>Fluoranthene</td>
<td></td>
</tr>
</tbody>
</table>

Organochlorines in fish tissue (whole body) and bed sediment

<table>
<thead>
<tr>
<th></th>
<th>Study-unit frequency of detection, in percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Chlordane (sum of 5 chlordanes)</td>
<td>57</td>
</tr>
<tr>
<td>Total DDT (sum of 6 DDTs) **</td>
<td>69</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>41</td>
</tr>
</tbody>
</table>

CONCENTRATION, IN MICROGRAMS PER KILOGRAM
(Fish tissue is wet weight; bed sediment is dry weight)
Other SVOCs detected

- Acenaphthene
- Acenaphthylene
- Acridine **
- C8-Alkylphenol **
- Anthracene
- Benzo[a]anthracene
- Benzo[a]pyrene
- Benzo[b]fluoranthene **
- Benzo[g,h,i]perylene **
- Benzo[k]fluoranthene **
- 2,2-Biquinoline **
- Butylbenzylphthalate **
- Chrysene
- p-Cresol **
- Di-n-butylphthalate **
- Di-n-octylphthalate **
- Dibenzo[a,h]anthracene
- Diethylphthalate **
- 1,2-Dimethylnaphthalene **
- 1,6-Dimethylnaphthalene **
- Dimethylphthalate **
- 2-Ethylphenothiole **
- 9H-Fluorene (Fluorene)
- Indeno[1,2,3-cd]pyrene **
- Isophorone **
- Isoquinoline **
- 1-Methyl-9H-fluorene **
- 2-Methylanthracene **
- 4,5-Methyleneanthranthrene **
- 1-Methylanthracene **
- 1-Methylpyrene **
- Phenanthride **
- Pyrene
- Quinoline **
- 2,3,6-Trimethylnaphthalene **

SVOCs not detected

- Azobenzene **
- Benzo[c]chinnoline **
- 4-Bromophenyl-phenylether **
- 4-Chloro-3-methylphenol **
- bis(2-Chloroethoxy)ethane **
- bis(2-Chloroethoxy)ether **
- 2-Chloronaphthalene **
- 2-Chlorophenol **
- 4-Chlorophenyl-phenylether **
- 1,2-Dichlorobenzene (o-Dichlorobenzene) **
- 1,3-Dichlorobenzene (m-Dichlorobenzene) **
- 1,4-Dichlorobenzene (p-Dichlorobenzene) **
- 3,5-Dimethylphenol **
- 2,4-Dinitrotoluene **

Trace elements in fish tissue (livers) and bed sediment

- Arsenic *
- Cadmium *
- Chromium *
- Copper *
- Lead *
- Mercury *
- Nickel **
- Selenium *
- Zinc *
BIOLOGICAL INDICATORS

Higher national scores suggest habitat disturbance, water-quality degradation, or naturally harsh conditions. The status of algae, invertebrates (insects, worms, and clams), and fish provide a record of water-quality and stream conditions that water-chemistry indicators may not reveal. **Algal status** focuses on the changes in the percentage of certain algae in response to increasing siltation, and it often correlates with higher nutrient concentrations in some regions. **Invertebrate status** averages 11 metrics that summarize changes in richness, tolerance, trophic conditions, and dominance associated with water-quality degradation. **Fish status** sums the scores of four fish metrics (percent tolerant, omnivorous, non-native individuals, and percent individuals with external anomalies) that increase in association with water-quality degradation.

Biological indicator value, Upper Tennessee River Basin, by land use, 1995–98
- Biological status assessed at a site

National ranges of biological indicators, in 16 NAWQA Study Units, 1994–98
- Streams in undeveloped areas
- Streams in agricultural areas
- Streams in urban areas
- Streams in mixed-land-use areas
- 75th percentile
- 25th percentile

Algal status indicator

- Undeveloped
- Agricultural
- Urban
- Mixed

Invertebrate status indicator

- Undeveloped
- Agricultural
- Urban
- Mixed

Fish status indicator

- Undeveloped
- Agricultural
- Urban
- Mixed
A COORDINATED EFFORT

Coordination with agencies and organizations in the Upper Tennessee River Basin was integral to the success of this water-quality assessment. We thank those who served as members of our liaison committee.

Federal Agencies
- Tennessee Valley Authority
- U.S. Fish and Wildlife Service
- National Park Service
- U.S. Department of Energy, Oak Ridge National Laboratory
- U.S. Environmental Protection Agency
- U.S. Forest Service
- U.S. Department of Agriculture, Natural Resources Conservation Service

State Agencies
- Tennessee Wildlife Resources Agency
- Tennessee Department of Environment and Conservation
- Tennessee Department of Agriculture
- North Carolina Department of Environment and Natural Resources
- North Carolina Wildlife Resources Commission
- Virginia Department of Environmental Quality
- Virginia Department of Game and Inland Fisheries
- Virginia Department of Mines, Minerals, and Energy

Local Agencies
- Knox County, Tennessee
- City of Johnson City, Tennessee

Universities
- University of Tennessee
- Virginia Polytechnic and State University
- Tennessee Technological University

Other public and private organizations
- Southern Appalachian Man and the Biosphere Program
- Nature Conservancy

We thank the following individuals for contributing to this effort.

Edward Oaksford, Ben McPherson, Michael Woodside, Rebecca Deckard, and Sandra Cooper (USGS), Roberta Hylton (U.S. Fish and Wildlife Service), Karen Koehn and Celia Hampson (Knox County, Tennessee) for reviewing the report.

Charles Saylor and Edward Scott (Tennessee Valley Authority) for assistance in site selection and data collection.

The numerous property owners that allowed the use of their property by the USGS for access to specific stream reaches, the installation of monitoring wells, or the sampling of existing wells.