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Abstract
An assessment of in-place oil shale resources of the 

Eocene Green River Formation, regardless of grade, was 
conducted in the Greater Green River Basin of Wyoming, 
Colorado, and Utah. However, no attempt was made  to 
estimate the amount of oil that is economically recoverable, 
largely because there has not yet been an economic method 
developed to recover the oil. The Radial Basis Function 
method was used to generate the isopach maps, resource 
maps, and resource estimates. The three units assessed here 
are, in ascending order, the Tipton Shale Member, the Wilkins 
Peak Member, and the LaClede Bed of the Laney Member. 
Four maps were generated for each zone: (1) isopach map, 
(2) isoresource map showing variations in gallons per ton, (3) 
isoresource map showing variations in barrels per acre, and 
(4) isoresource map showing total amount of in-place oil in 
each 6-mile by 6-mile township. Total in-place resources for 
the three assessed units are: (1) Tipton Shale Member, 362,816 
million barrels of oil (MMBO), (2) Wilkins Peak Member, 
704,991 MMBO, and (3) LaClede Bed of the Laney Member, 
377,184 MMBO, for a total of 1.44 trillion barrels of oil in 
place. This compares with estimated in-place resources for 
the Piceance Basin of Colorado of 1.53 trillion barrels and 
estimated in-place resources for the Uinta Basin of Utah and 
Colorado of 1.32 trillion barrels. The assessed area of the 
Greater Green River Basin–about 5,500 mi2, however, is about 
1.4 times larger than the assessed area of the Uinta Basin 
(3,834 mi2) and more than four times larger than the assessed 
area of  the Piceance Basin (1,335 mi2).

Introduction
This report presents an assessment of all in-place oil 

shale resources of the Eocene Green River Formation, regard-
less of grade, in the Greater Green River Basin of southwest-
ern Wyoming, northwestern Colorado, and northeastern Utah 
(figs. 1 and 2). Green River oil shale is also present in the 

Piceance Basin of western Colorado and the Uinta Basin of 
eastern Utah and western Colorado (fig. 1), and the results of 
these assessments are published separately (Johnson and oth-
ers, 2010a, b). 

A considerable amount of oil-yield data was collected 
subsequent to the previous assessments, making it possible 
to better assess in-place resources. Furthermore, there have 
been major advances in computational power and computer 
programming since the last assessments were published, and 
these were used to the extent possible for our assessment. All 
of the Fischer assay data, location data, and tops file were 
assembled into one Access database (Mercier and others, this 
report, chapter 6) similar to the one recently published for the 
Piceance Basin (Mercier, 2010). Due to the number of data 
records and the complexity of the spatial data involved in the 
assessment, Microsoft Access database management software 
and ESRI’s ArcGIS software were used to combine, store, and 
analyze the raw data. The ability to create custom forms in 
Access was a crucial element in the assessment methodology, 
as it allowed us to write Visual Basic scripts and SQL state-
ments to filter subsets of the data and perform the necessary 
calculations using Access form controls. The public benefits 
from this process, as the original forms used to calculate 
resources also serve as the end-user interface to view the 
raw data in a more simplified and meaningful manner. After 
resources were calculated for each core hole, the resultant 
Access tables were linked seamlessly with ESRI’s ArcGIS 
software to model, extrapolate, and quantify the data spatially. 
The end product is a large database of tables (spreadsheets), 
forms to view the data, and a series of maps quantifying the 
results of those calculations. For a complete description of the 
process used for our resource assessment, see Mercier and oth-
ers (chapter 6, this report).

In our assessment, we tried two extrapolation methods 
for spatial interpolation that are easier for a non-statistician 
to apply: the Radial Basis Function (RBF) method, and the 
Inverse Distance Weighted (IDW) method. Both methods gave 
similar results and we ultimately decided on the RBF method, 
which was recently demonstrated to give comparable results to 
those obtained from kriging (Rusu and Rusu, 2006). 

Assessment of In-Place Oil Shale Resources in the 
Eocene Green River Formation, Greater Green River Basin, 
Wyoming, Colorado, and Utah

By Ronald C. Johnson, Tracey J. Mercier, Robert T. Ryder, Michael E. Brownfield, and Jesse G. Self
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This overall effort has been hampered by difficulties 
in recovering the digital files that were used in the previous 
assessments both by the U.S. Geological Survey (USGS) and 
the former U.S. Bureau of Mines (USBM). The USBM was 
disbanded in 1996, and the considerable amount of oil shale 
data stored on its computers is, at present, not accessible. From 
the late 1940s to the early 1980s, the former USBM analyzed 
many cores and cuttings from holes drilled in Green River oil 
shale deposits in the three-state area using the Fischer assay 
method, a standardized laboratory test for determining oil 
yield from oil shale. During the 1970s and 1980s, the USBM 
and USGS each prepared digital databases of Fischer assays of 
the Green River oil shale deposits, and these data were made 
available to the public through the National Technical Infor-
mation Service (NTIS) (Pitman, 1982; Pitman and Van Trump, 
1974, 1975). However, it was later discovered that these tapes 
had degraded in storage and could no longer be read. 

In the early 1990s, the U.S. Department of Energy (DOE) 
and the USGS initiated a cooperative project to create a digital 
National Oil Shale Database (NOSDB) that would combine 
all available Fischer assay information in the possession of the 
USBM and the USGS and prepare it for publication. The origi-
nal assay data sheets were scanned and saved as Adobe PDF 
files. As a result of this effort, Fischer assay data for boreholes 
in all three basins–Piceance, Uinta, and Greater Green River–
have now been published (Dyni, 1998; Dyni and others, 2006, 
2008). Oil-yield histograms that plot variations in oil yield 
with depth have also been published for the Greater Green 
River Basin (Brownfield and others, 2008). 

The reconstructed Fischer assay files constitute the foun-
dation of this present assessment. In order to assess individual 
oil shale units in the basin, however, a file listing the tops and 
bases of the various oil shale units in all the drill holes used 
in the assessment was also needed. Such a file for the Green 
River Basin was not known to exist, so a new digital tops file 
was generated. A series of cross sections constructed to aid in 
this effort are published as chapter 5 of this report (Ryder and 
others, 2010). 

The Fischer assay method is a standardized laboratory 
test that has been almost universally used to determine oil 
yields from oil shale, including the Green River Formation 
oil shales (Stanfield and Frost, 1949; American Society for 
Testing Materials, 1984). The Fischer assay standard method 
consists of heating a crushed and screened (-8 mesh (2.38-mm 
mesh))100-gram sample in a small aluminum retort to 500°C 
at a rate of 12°C per min and then holding it at that tempera-
ture for 40 min. The volatile vapors of shale oil, gas, and water 
pass through a condenser cooled with ice water (about 5°C) 
and collected in a graduated centrifuge tube. The oil and water 
are then separated by centrifuging and weighed. The quantities 
reported in the original sample are the weight percentages of 
shale oil, water, shale residue (contains carbon char), and “gas 
plus loss” (noncondensable gas yield) by difference. The spe-
cific gravity of the shale oil is measured and used to calculate 
the oil yield in gallons per ton (GPT).

The Fischer assay method does not determine the total 
amount of hydrocarbons in an oil shale sample, and the 
method does not measure the amount or composition of the 
gases released during the heating of the sample. These gases—
chiefly light hydrocarbons, hydrogen, and carbon dioxide—are 
reported as the “gas plus loss.”

Fischer assay does not necessarily measure the maxi-
mum amount of oil that an oil shale can produce, and there 
are retorting methods that yield more than the Fischer assay 
yield (see Dyni, 2003, p. 196–196 for a discussion of methods 
to determine oil yields). However, the oil yields achieved by 
other technologies are typically reported as a percentage of the 
Fischer assay oil yield, and thus Fischer assay is still consid-
ered the standard by which other methods are compared.

Much of the Fischer assay data for the Greater Green 
River Basin is not from core holes drilled to evaluate oil shale 
resources but rather from cuttings collected from oil and gas 
tests. The cuttings analyses are quite old, mainly from the 
1950s and 1960s, and were done to supplement the limited 
core data available at the time. Although a significant number 
of oil shale core holes were drilled subsequent to the previous 
assessments of the Greater Green River Basin, there are still 
large areas where only cuttings data are available and in which 
resources could not be estimated using core data alone. There 
are, however, significant problems with cuttings data. Oil shale 
core is generally sampled every foot or so for Fischer assay. 
The sampling interval for rotary drill hole cuttings, in contrast, 
varies from about 5 ft to possibly as much as 50 ft, thus much 
of the detail of oil yield variation is lost. Up-hole cavings also 
pose a problem; average oil yield for rich zones is greater 
than the overlying strata, thus cavings from overlying leaner 
zones could dilute the samples resulting in a lowering of the 
average GPT. In like manner, cuttings from lean zones would 
be contaminated by cuttings from richer zones above result-
ing in an increase in oil yield as observed. This was recently 
demonstrated for cuttings data in the Uinta Basin of Wyoming 
and Colorado (Johnson and others, 2010 b). When a rotary 
hole is drilled, there is always a delay between the time the 
drill bit produces the cuttings and when the cuttings reach the 
surface. Drillers try to compensate for this delay, but they are 
not always entirely successful. A comparison between the geo-
physical logs and plots of the Fischer assay results revealed 
many relatively minor discrepancies in log depths and cuttings 
depths for oil shale zones. To minimize this problem, the 
depths at which oil shale zones appear in the cuttings based on 
Fischer assay were used in this assessment rather than the log 
depths. 

Previous Assessments of the Greater 
Green River Basin 

Trudell and others (1973) reported that several members 
of the Green River Formation along the west flank of the 
Washakie Basin contained significant oil shale resources but 
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did not attempt to estimate resources in the entire Washakie 
Basin due to a lack of subsurface control. Culbertson and oth-
ers (1980) assessed only the Green River Basin (figs. 1 and 2) 
and only those resources that averaged at least 15 ft thick and 
15 GPT. Culbertson and others (1980) separately assessed the 
oil shale resources of the three oil shale-bearing members of 
the Green River Formation: Tipton Shale Member, Wilkins 
Peak Member, and Laney Member (fig. 3), using oil-yield data 
from 32 cores, 40 rotary holes, and results from two channels 
cut in outcrops. Intervals thinner than 15 ft were included if 
they were sufficiently rich as to yield at least the same amount 
of oil as 15 ft of 15 GPT shale (about 17,300 barrels per acre). 
In some cases, the method resulted in the inclusion of signifi-
cantly thick intervals of very low grade oil shale that would 
probably be discarded during the mining operation. As a result 
Culbertson and others (1980) eliminated lean intervals that 
were generally more than 10 ft thick. 

Culbertson and others (1980) had to contend with a 
sparse data set that included many drill holes in which only 
part of an oil shale zone had been recovered or only part of 
a core had been assayed. They filled in the missing data by 
“extrapolation of nearby core data or from the lithologic 
description of the unassayed core, or by using geophysical 
logs (sonic, neutron, density), where available.”  In areas 
where no assay data were available, both geophysical logs and 
outcrop measurements were used. Based on these kinds of 
data, estimated in-place oil was estimated at 123 billion bar-
rels in the Tipton Shale Member, 100.5 billion barrels in the 
Wilkins Peak Member, and 20.5 billion barrels in the Laney 
Member. Culbertson and others (1980, p. 14) also divided the 
resource into “demonstrated” which included resources near 
closely spaced cores and “inferred.” 

Culbertson and others (1980) manually calculated their 
resource numbers. Pitman and others (1989), in their assess-
ment of the in-place oil shale resources of the Piceance Basin 
in western Colorado, used geostatisticial interpolation by 
kriging to generate resource maps and resource numbers. 
However, kriging requires an understanding of advanced sta-
tistical concepts and tools, and completely false results can be 
obtained if not done correctly. Pitman and others (1989) found 
that the method gave good results in areas with large numbers 
of control points, but that it produced unrealistic resource 
numbers with unreasonably large error limits in areas with 
little control. They resorted to manual contouring and calcula-
tion of resources in these problem areas. 

Geology of the Eocene Green River 
Formation and Related Strata, Greater 
Green River Basin

The Greater Green River Basin is a structural and sedi-
mentary basin formed during the Laramide orogeny (Late 
Cretaceous through Eocene). It is bounded on the north by 
the Wind River Range and Granite Mountains; on the east 

by the Rawlins uplift, Sierra Madre, and Park Range; on the 
south by the Axial Basin uplift and Uinta Mountains; and on 
the west by the Wyoming and Utah portions of the Wyoming 
thrust belt. (fig. 2). The basin is subdivided by broad structural 
arches into five sub-basins, the Green River, Great Divide, 
Sand Wash, Washakie, and Hoback Basins (fig. 2). Arches 
include the Rock Springs uplift, the Cherokee ridge, Moxa 
arch (and La Barge platform), Wamsutter arch, and Sandy 
Bench arch (fig. 2). The term “Bridger Basin” is commonly 
applied to the Green River Basin (for example, Surdam and 
Stanley, 1979). The term Hoback Basin is not always used 
and is generally confined to a limited area in the extreme 
northwestern part of the Greater Green River Basin (fig. 2). 
As used here, the Green River Basin is applied to that part of 
the Greater Green River Basin lying west of the Rock Springs 
uplift and south of the Hoback Basin (fig. 2). It includes all the 
oil shale deposits of the Green River Formation west of the 
Rock Springs uplift.

The stratigraphy of the Green River Formation and asso-
ciated rocks in the Greater Green River Basin is highly vari-
able and complex (fig. 3). Only a brief discussion is included 
here, but detailed descriptions are given in many of the 
references that are cited herein (for example, Smith and oth-
ers, 2008). There are many excellent recent studies covering 
various aspects of the Green River Formation in the Greater 
Green River Basin (for example, Smith and others, 2008). 
For our purpose, we used the work of Roehler (1992a; 1992b; 
1993) as a primary source of data, as it represents the latest 
comprehensive synthesis of the stratigraphic framework of 
the entire Green River Formation in the Greater Green River 
Basin including detailed measured sections and cross sections, 
paleogeographic maps, and isopach maps. 

The Green River Formation in the Greater Green River 
Basin was deposited in Eocene Lake Gosiute, a long-lived lake 
that occupied varying parts of the Greater Green River Basin 
from about 52.5 to 47.5 Ma (Smith and others, 2008). Paleo-
geographic maps presented here, representing various time 
periods in the development of Lake Gosiute, are from Roehler 
(1993), and isopach maps included with these reconstructions 
are from Roehler (1992b). The reconstructions and isopach 
maps were originally published separately, but are combined 
here. Isopach maps were also constructed for assessment 
purposes using the tops file that we assembled supplemented 
by surface sections measured by Roehher (1989a–e). These 
isopach maps are of different stratigraphic intervals than those 
constructed by Roehler (1992b). 

Lake Gosiute underwent two expansive periods, one early 
and one late in its history, during which the lake expanded to 
cover much of the Greater Green River Basin. A prolonged 
period, during which the lake contracted to a comparatively 
small area, separated these two expansive periods. The early 
expansion is represented by the Tipton Shale Member, the 
contracted period is represented by the Wilkins Peak Member, 
and the later expansion is represented by the Laney Member 
(fig. 3; pl. 1). Significant oil shale was deposited during all 
three periods. However, oil shales in the Tipton Shale and 
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Laney Members are in thick continuous intervals over large 
areas of the basin, whereas oil shales in the Wilkins Peak 
Member are restricted to a much smaller area and are, for the 
most part, interbedded with sandstone, mudstone, and the 
saline minerals trona (a sodium bicarbonate mineral), shortite 
(sodium calcium carbonate), and halite (pl. 1). Although most 
of the oil shale in the Greater Green River Basin is in the 
Tipton Shale, Wilkins Peak, and Laney Members, low-grade 
oil shale is also present in the freshwater Lumen Tongue of 
the Green River Formation below the Tipton (fig. 3). Oil shale 
resources in these rocks are not assessed here due to a lack 
of data, but these rocks will be described briefly. Units of the 
Green River Formation and intertonguing strata of the Wasatch 
Formation will be described from oldest to youngest.

Ramsey Ranch Member of the Wasatch 
Formation 

Widespread lacustrine conditions first developed in the 
Greater Green River Basin during deposition of the Ramsey 
Ranch Member of the Wasatch Formation (figs. 3 and 4). 
Swamps, small shallow freshwater lakes and numerous ponds 
developed in the southernmost part of the basin north of the 
Uinta Mountains and into the central parts of the Washakie 
and Great Divide Basins (fig. 4). Carbonaceous shale, coal, 
freshwater limestone, and oil shale were deposited in these 
fresh-water lakes and ponds (Roehler, 1993). The Ramsey 
Ranch Member is more than 600 ft thick in the trough north 
of the Uinta Mountains and more than 800 ft in the center of 
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the Washakie Basin. It thins to less than 400 ft across the south 
part of the Rock Springs uplift (fig. 4).

Lumen Tongue of Green River Formation

The freshwater lakes and ponds expanded and coalesced 
during deposition of the Lumen Tongue of the Green River 
Formation (figs. 3 and 5) (Roehler 1993). The Lumen stage of 
Lake Gosiute, at its maximum extent, covered about 6,650 mi2 
of the Washakie and Great Divide Basins, the western part of 
the Sand Wash Basin and the southern part of the Green River 
Basin (fig. 5, Roehler, 1993). The freshwater Lumen Tongue 
varies from about 200 to 400 ft thick along the trough, north 
of the Uinta Mountains and in the Washakie Basin (fig. 5). 
It consists of clay-rich oil shale, mollusk-bearing sandstone 
and limestone, carbonaceous shale with thin coal beds, and 
siltstone deposited mainly in lacustrine environments (Pipir-
ingos, 1961; Roehler, 1993). Molluscs are freshwater types, 
consisting mainly of the gastropods Goniobasis terera and 
Viviparus sp., and the pelecypod Lampsilis sp. Roehler (1993, 
p. F38) believed that Lake Gosiute during the Lumen stage 
drained southward near the east end of the Uinta Mountains 
and into the Piceance Basin to the south. Johnson (1985) noted 
similarities between the Lumen Tongue of the Green River 
Formation and the Cow Ridge Member of the Green River 
Formation, a roughly contemporaneous freshwater lake phase 
in the Piceance and Uinta Basins.

Low-grade oil shales were deposited throughout much 
of the lake during Lumen time (fig. 5). There has been little 
Fischer assay data collected for the Lumen Tongue and it 
has not been the target of an oil shale project. The unit was 
assayed in the Farmers Union Twin Buttes Unit 1 well in sec. 
33, T. 14 N., R. 106 W., in the trough of the Green River Basin 
north of the Uinta Mountains where it is 380 ft thick and aver-
aged 9.2 GPT. One 30-ft-thick interval in the lower part of the 
Lumen averaged 26.7 GPT, with a maximum reading of 31.6 
GPT. It appears that the tongue includes significant oil shale 
in the subsurface north of the Uinta Mountains, but at present 
there is too little information to assess it. 

Niland Tongue of Wasatch Formation

The Niland Tongue of the Wasatch Formation lies 
between the Lumen Tongue and the Tipton Shale Member of 
the Green River Formation and represents a contraction of 
lacustrine deposition from the preceeding Lumen phase into 
a comparatively small area north of the Uinta Mountains and 
in the trough of the Washakie and Great Divide Basins (figs. 
3 and 6). Maximum thickness is about 400 ft along the trough 
north of the Uinta Mountains and in the Washakie Basin 
(fig. 6). In the Great Divide Basin, the Niland Tongue consists 
of coal beds, clay shale, siltstone, sandstone, and low-grade 
oil shale (Pipiringos, 1961). It grades laterally into variegated 
mudstones and sandstones of the main body of the Wasatch 
Formation. Samples were assayed in the Farmers Union Twin 

Buttes Unit 1 well mentioned above, where the unit is 170 ft 
thick and averages 7.3 GPT; it does not appear to contain oil 
shale of high enough grade to be considered a resource.

Tipton Shale Member of the Green River 
Formation

The Tipton Shale Member is the oldest member of the 
Green River Formation in the Greater Green River Basin that 
contains widespread oil shale of sufficient grade to have been 
considered for oil shale development. The member has been 
subdivided into the lower Scheggs Bed and the upper Rife Bed 
(Roehler, 1991a), which are separated by the Farson Sand-
stone Member of the Green River Formation (fig. 3). Maxi-
mum expansion during Tipton time was during deposition of 
the Scheggs Bed, when Lake Gosiute expanded to cover most 
of the Greater Green River structural and sedimentary basin 
(fig. 7). Lake Gosiute was freshwater during deposition of 
the Scheggs Bed, as freshwater mollusks are present in lake-
margin deposits. Roehler (1993, his fig. 50) believed that Lake 
Gosiute drained southward into Lake Uinta during deposition 
of the Scheggs Bed, keeping the lake’s waters fresh. By the 
beginning of deposition of the Rife Bed, Lake Gosiute had sig-
nificantly shrunk in size, the outlet had been lost, and the lake 
waters evolved from fresh to saline (Roehler, 1993, p. F43). 

The Scheggs Bed consists, in offshore areas, of mostly 
brown-weathering, clay-rich oil shale with a few beds of thin 
tuff (Roehler, 1991a) (fig. 7). In lake-margin areas, it includes 
limestone, dolomite, conglomerate, sandstone, siltstone, 
carbonaceous shale, and coal (Roehler, 1991a). The bed is 
more than 200 ft thick along the trough of the Green River 
Basin just north of the Uinta Mountains, exceeds 300 ft in the 
troughs of the Washakie and Sand Wash Basins (fig 7), and is 
less than 50 ft thick throughout the northern part of the Green 
River Basin and Great Divide Basin (fig 7). The upper part 
grades into the Farson Sandstone Member toward the north in 
the Green River Basin. Two stacked sandy shoreline sequences 
consisting of, in ascending order,  nearshore, strandline, 
swamp, mudflat, and fluvial channel have been described in 
the upper part of the Scheggs Bed along the southeast margin 
of the Sand Wash Basin (Roehler, 1990a). Total thickness of 
the two shoreline sequences is about 200 ft. Late in the deposi-
tion of the Scheggs Bed, marginal lacustrine sandstone of the 
Farson Sandstone Member prograded from north to south 
across the northern part of the Green River Basin (fig. 8).

A generally northward-thickening wedge of sandy mar-
ginal lacustrine rocks, the Farson Sandstone Member of the 
Green River Formation, overlies the Scheggs Bed throughout 
the northwestern part of the Green River Basin (Roehler, 
1992b) (figs. 3and 8) and is, in part, laterally equivalent to the 
upper part of that bed. The predominantly fluvial Alkali Creek 
Tongue of the Wasatch Formation overlies the Farson Sand-
stone in the northwest part of the Green River Basin (Roehler, 
1991a) (fig. 8). Where the Rife Bed is absent the Wilkins Peak 
Member directly overlies the Farson Sandstone Member and 
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Alkali Creek Tongue (fig. 3). According to Roehler (1992b), 
the Farson Sandstone Member reaches a maximum thickness 
of over 400 ft in the northeastern part of the Hoback Basin 
and wedges out in the southern part of the Green River Basin 
(fig. 8). We combined the Farson Sandstone Member and the 
Alkali Butte Member in our study because the two cannot be 
distinguished using only geophysical logs and Fischer assay 
results. Using our tops file, the combined Farson Sandstone 
Member and Alkali Creek Tongue reaches a maximum thick-
ness of 790 ft in the northern part of the Green River Basin 
(fig. 9). The Farson Sandstone Member is represented in the 
Washakie Basin by a thin interval of lean, silty oil shale that is 
generally less than 10 ft thick between the Scheggs and Rife 
Beds. 

Roehler (1991a; 1992b) believed that the Farson Sand-
stone Member was deposited by drainages that originated in 
the Wind River Range, north of the Greater Green River Basin 
(fig. 8), and noted that the Farson contains pebbles of schist 
and gneiss sourced from the Precambrian core of that range 
as a result of a major tectonic uplift. More recently, Pietras 
and others (2003) and Smith and others (2008) suggested that 
(1) the Farson Sandstone Member was deposited by through-
going drainage systems that originated north of, and flowed 
southward across the Wind River Range, which was charac-
terized as being topographically subdued at the time; and (2) 
uplift of the range after deposition of the Farson Sandstone 
Member diverted these drainages to the north and away from 
the Greater Green River Basin, causing a retreat of Lake Gos-
iute during deposition of the overlying Wilkins Peak Member. 

The Rife Bed (figs. 3 and10) overlies the Scheggs Bed 
or Farson Sandstone Member where present. It consists of (1) 
light-gray-weathering, brown to black dolomitic oil shale with 
scattered lenses of dolomite, and thin layers of siltstone and 
tuff in offshore areas; (2) largely gray and green mudstone, 
algal limestone, and siltstone in lake-margin areas, strata that 
Roehler (1991a) included in the lithologically similar Wilkins 
Peak Member (fig. 3); and (3) mainly sandstone and conglom-
erate along the north margin of the Uinta Mountains (Roehler, 
1991a). According to Roehler (1992b), the Rife Bed attains a 
maximum thickness exceeding  200 ft along the trough north 
of the Uinta Mountains and in the Great Divide and Washakie 
Basins (fig. 10). The isopach map of the unit generated by 
the tops file compiled for this assessment indicates maximum 
thicknesses of 123 ft for the Rife Bed along the Uinta Moun-
tain trough and 230 ft in the Washakie Basin (fig. 10). The area 
occupied by Lake Gosiute decreased throughout deposition of 
the Rife Bed with the lake retreating out of the northern part 
of the Green River  Basin and most of the Sand Wash Basin 
(fig 10).

Figure 11 is a structure contour map on the top of the 
Tipton Shale Member. For most of the Greater Green River 
Basin the contour horizon is the top of the Rife Bed, but in 
the northern part of the Green River Basin, where the bed is 
missing, the contour horizon is the top of the Scheggs Bed. 
The map was constructed using subsurface data from core 
holes and oil and gas tests (Mercier and others, this report) 

and surface elevations and locations from published geologic 
maps. Published geologic maps used include Roehler (1972a, 
b; 1973b; 1974b, c, d, e; 1977; 1978a, b, c), Tweto (1976; 
1979), and W. C. Culbertson (USGS, unpub. mapping). 

Wilkins Peak Member of the Green River 
Formation

The Wilkins Peak Member, named by Bradley (1959), 
represents a major contraction of Lake Gosiute to mostly the 
central part of the Green River Basin and the western parts of 
the Great Divide and Washakie Basins (figs. 3 and 12). This 
contraction was attributed by Bradley (1963) to a shift to a 
hotter, drier climate. However, Wilf (2000), in his study of 
plant species in the Greater Green River Basin found little evi-
dence that climate played the dominant role in the expansions 
and contractions of Lake Gosiute. Pietras and others (2003), as 
previously discussed, attributed the contraction of Lake Gos-
iute during Wilkins Peak time to a loss of water supply due to 
the diversion of major drainages entering the basin from the 
north due to uplift of the Wind River Range. 

Unlike the underlying Tipton Shale Member and over-
lying Laney Member the Wilkins Peak Member generally 
does not include thick intervals of continuous oil shale, but 
rather the oil shale beds are interbedded with other litholo-
gies including sandstone, mudstone, and beds of the sodium 
bicarbonate mineral trona, shortite, and halite. The member 
intertongues with and is replaced by strata of the Wasatch 
Formation toward the basin margins (figs. 3 and 12). The 
world’s largest known deposit of trona is in the Wilkins Peak 
Member, and it is being extensively mined today. The Wilkins 
Peak Member was originally defined by Bradley (1959), who 
thought that it was confined to the Green River Basin. Subse-
quent work by Roehler (1989a, b) demonstrated that it is also 
present east of the Rock Springs uplift, in the western parts of 
the Great Divide and Washakie Basins. Lake Gosiute dur-
ing Wilkins Peak time was described by Bradley and Eugster 
(1969) as a chemically stratified lake, with the deeper parts 
having a strong brine of sodium carbonate-sodium chloride 
composition. Eugster and Surdam (1973) and Eugster and 
Hardie (1975), however, interpreted the lake at that time to be 
a shallow “playa lake” complex that had many similarities to 
Lake Magadi in Africa . Roehler (1993) estimated that, during 
expanded lake stages, Lake Gosiute was a permanent lake that 
occupied as much as 8,700 mi2 and persisted for as long as 20 
thousand years and thus could not be classified as a playa lake 
during these periods. 

Eugster and Hardie (1975) subdivided the Wilkins Peak 
Member into six major lithofacies: flat-pebble conglomer-
ate, lime sandstone, mudstone, oil shale, trona-halite, and 
siliciclastic sandstone. Trona-halite beds generally range in 
thickness between 1 and 15 ft but are locally as much as 30 ft 
(Roehler, 1993). Not all trona beds contain halite. Culbertson 
(1971) identified 42 trona beds in the Wilkins Peak Mem-
ber, with 25 attaining a thickness of at least 3 ft. Culbertson 
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Figure 9.  Isopach map of the Farson Sandstone Member of the Green River Formation. 
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(1971) noted that most trona and halite beds are underlain by 
oil shale. Roehler (1990b; 1992b) identified 77 depositional 
cycles in the depocenter of the Wilkins Peak Member, each 
consisting, in ascending order, of oil shale, trona and halite, 
and mudstone, but he observed that trona and halite beds were 
not present in every cycle (fig. 12). Beds 1–11 were placed by 
Roehler in the “lower part of the Wilkins Peak Member,” beds 
12–67 in the “middle part of the Wilkins Peak Member”, and 
beds 68–77 in the “upper part of the Wilkins Peak member.”  
Figures 13–15 show the various environments of deposition. 
The lower part, which extends across much of the Greater 
Green River Basin, is thickest in the southern parts of the 
Green River and Washakie Basins, locally reaching a maxi-
mum thickness of more than 200 ft (fig. 13). At least 10 beds 
of trona or trona and halite are present in the lower member in 
the southern part of the Green River Basin. The middle part is 
largely confined to the Green River Basin and is thickest just 
north of the Uinta Mountains where it reaches a maximum 
thickness of over 900 ft (fig. 14); it contains at least 28 beds 
of trona or trona and halite in the “middle member” (Roehler, 
1992b). The upper part is comparatively thin (40–125 ft thick), 
represents a transition to less saline conditions that character-
ize the overlying Laney Member, and contains no bedded 
trona or halite (fig. 15). Roehler (1993) believed that Lake 
Gosiute began to drain south into Lake Uinta in the Piceance 
and Uinta Basins at this time, causing the water in Lake Gos-
iute to become fresher (fig. 15).

Laney Member of the Green River Formation

The Laney Member of the Green River Formation 
overlies the Wilkins Peak Member and represents a major 
expansion of Lake Gosiute (figs. 3 and 16). At the onset of 
Laney deposition, Lake Gosiute evolved from a comparatively 
small, highly saline lake that may have periodically dried up 
to a much larger and deeper permanent lake that varied from 
saline-alkaline to fresh water (Roehler, 1973a; 1993; Sur-
dam and Stanley, 1979). Bradley (1964) and Roehler (1993) 
attributed this expansion to a climatic shift from hot and dry to 
more humid. Surdam and Stanley (1980), in contrast, believed 
that the cause of this expansion was related to an enlargement 
of the drainage basin to include water from basins to the north 
and cited as evidence the sudden arrival of volcaniclastic sedi-
ments from the Absaroka volcanic field along the north margin 
of the Greater Green River Basin at the onset of this expan-
sion. Surdam and Stanley (1979; 1980), and Roehler (1993) 
noted the abundant freshwater mollusks in parts of the Laney 
Member and suggested that Lake Gosiute drained southward 
into Lake Uinta near the eastern terminus of the Uinta uplift at 
this time (fig. 16). 

Originally named the “Laney Shale Member” by Schultz 
(1920) for exposures along Laney Rim in the northern part of 
the Washakie Basin, the name was shortened to Laney Mem-
ber by Roehler (1973a) because it includes other lithologies 

besides shale at its type locality. It has been described by 
Bradley (1964), Culbertson (1969), Roehler (1973a), and Sur-
dam and Stanley (1980), all of whom generally recognized a 
lower oil shale unit and an upper sandstone and mudstone unit. 
Roehler (1973a) subdivided the member, in ascending order, 
into the LaClede Bed, the Sand Butte Bed, and the Hartt Cabin 
Bed (figs. 3, 16–18). The LaClede Bed is mainly oil shale, the 
Sand Butte bed is tuffaceous sandstone and siltstone, and the 
Hartt Cabin Bed is interbedded sandstone, siltstone, mudstone, 
shale, oil shale, tuff, limestone, and dolomite. The Laney 
Member unconformably overlies the Wilkins Peak Member 
and Cathedral Bluffs Tongue of the Wasatch Formation in the 
vicinity of the LaBarge Platform in the northern part of the 
Green River Basin (Roehler, 1992b, p. E3) (fig. 2).

Figure 19 is a structure contour map drawn on the top of 
the LaClede Bed in the Green River and Washakie Basins. The 
map was constructed from subsurface data obtained from core 
holes and oil and gas tests (Mercier and others, this report) and 
surface elevations and locations from geologic maps includ-
ing Roehler, (1972a, b; 1973b; 1974b– e; 1977; 1978a– c), 
Love and Christiansen (1985), and W. C. Culbertson (USGS, 
unpub. mapping). Elevation of the top of the LaClede varies 
from about 6,500 to 8,000 ft around the perimeter of the three 
basins to minimums of about 5,100 ft in the southeastern part 
of the Green River Basin and about 3,600 ft in the southwest-
ern part of the Washakie Basin (fig. 19).

The Sand Butte and Hartt Cabin Beds are characterized 
by dacite and andesite fragments sourced from the Absaroka 
volcanic field north of the Greater Green River Basin (Ebens, 
1963; Surdam and Stanley, 1980). These volcaniclastics 
entered the Greater Green River Basin from one or more 
points along the north margin and first appeared about the 
same time as the transgression that initiated deposition of the 
Laney Member began. Volcanic-rich sediments prograded 
southward throughout deposition of the Laney Member, fill-
ing in Lake Gosiute from north to south. The volcaniclastic 
sediments complexly intertongue with oil shale of the LaClede 
Bed or the  lower part of the Laney Member. This intertongu-
ing and southward progradation of volcaniclastic sediments 
was documented in detail in the Green River Basin by Culbert-
son (1969, his fig. 3) and Culbertson and others (1980, their pl. 
1, C–C’) (fig. 20, sandstone, marlstone and thin beds of lime-
stone and oil shale facies). Gilbert-type deltas, with foresets 
ranging from 10 to 25 meters high, have been described in the 
Laney Member in the northwestern part of the Washakie Basin 
(Stanley and Surdam, 1978). The upper part of the member is 
overlain by fluvial strata of the Washakie and Bridger For-
mations, indicating an end to the prolonged and widespread 
lacustrine conditions in the Greater Green River Basin.
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Factors Affecting the Precision of Oil-
Yield Measurements

Determining the Volume of Oil in a Given 
Volume of Rock

Determining GPT from a Fischer assay is a straight-
forward calculation that involves the weight of the original 
sample and the volume of oil generated, both of which are rou-
tinely measured. However, this is not the case for the density 

of the sample prior to retorting which is a part of the equa-
tion that must also be known in order to calculate the amount 
of oil present in an oil shale interval over a prescribed area. 
Typically, in-place oil in the Green River Formation is given 
in the rather arcane unit of barrels of oil per acre (BPA). The 
method used to convert GPT into BPA in the previous assess-
ment by Pitman and others (1989) was not discussed in their 
publication. An equation that computes BPA was recovered 
with the FORTRAN program that was used at the time of the 
previous assessment. This equation seemed to generate reason-
able results, but there was no reference as to its origin or an 
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explanation of how the many constants used in the equation 
were generated, so we decided not to use it. 

Stanfield and others (1954) reported summary data on 
volume-weight and oil-yield relationships from about 20,500 
USBM oil-yield analyses (table 1). Smith (1956) reported that 
oil-yield values were related to the specific gravity of the oil 
shale. Table 1 contains original values for oil yield, gallons 
per ton, as well as specific gravity and was regenerated using 
Microsoft Excel. Values for weight of oil shale, volume of oil 
shale, and oil yield per unit volume were updated using cur-
rently accepted formulas (table 2). A 3rd-order trend line with a 
R2 value of 0.9998 was generated comparing oil yield vs. spe-
cific gravity (fig. 21). As the original table (table 1) contained 
only integer values for GPT, new records were inserted to fill 
in values to one decimal place (0.1 ft) creating a new look-up 
table (Mercier, chapter 3, this report). A linear-trend series 
fill function in Microsoft Excel 2007 was then used to calcu-
late specific gravity values for each 0.1 ft value for the GPT 
column. A 3rd-order trend line was then regenerated comparing 
new oil yield vs. specific gravity data yielding a R2 value of 
0.9997. Values for weight of oil shale, volume of oil shale, and 
oil yield per unit volume were then calculated using the new 
values for oil yield and specific gravity. The final look up table 
contained records for oil yield in GPT, specific gravity, and oil 
yield per unit volume for oil values ranging from 1.0 to 80.0 
GPT.

Shale oil resource numbers in BPA were calculated using 
the formula:

    oil shale interval thickness × 43,560 (sq. ft/ acre) × oil yield
	 per unit volume

from the final look-up table, containing values on a 0.1 ft 
basis / 42 (gals/barrel of oil).

Anomalously High Oil-Yield Values from 
Cuttings

In a few cases, assay results from a particular rotary hole 
appeared to give anomalously high oil-yield values based on 
data from nearby core holes or from regional oil-yield trends; 
the cause for such values is unclear so they were not included 
in the resource calculations. One possibility is that the cuttings 
were high graded prior to assaying by removing sandstone and 
siltstone chips on the assumption that they were cavings from 
above rather than from interbeds from within the oil shale.

Discrepancies Between Geophysical Logs and 
Cuttings Data

The true tops and bases of oil shale intervals, such as for 
the LaClede Bed and the Tipton Shale Member, can commonly 
be picked on geophysical logs. However, when these identi-
fied well depths are compared to those reported for cuttings, 

there is commonly a discrepancy because of the difficulty in 
accurately compensating for the time delay between when a 
particular interval is drilled through and when the cuttings 
from that interval reach the surface. For this assessment, we 
chose to use the reported tops at which the oil shale units were 
encountered in the cuttings, because using the geophysical 
log data would have resulted in portions of rich oil shale units 
being excluded in many of the holes.

Broken Core and Missing Intervals

Almost all core holes and rotary holes have missing 
intervals that are not recovered during the drilling process. 
In addition, portions of a core can be moderately to severely 
broken, and only a quantity of rubble is recovered instead of 
a continuous core. These circumstances lead to difficulties 
in properly distributing that portion of the core that is recov-
ered over the entire interval, and consequently to determining 
the average oil yield for that interval. In any case, assigning 
oil-yield values to all the missing intervals is essential for 
calculating resources. As previously discussed, Culbertson 
and others (1980) filled in the missing data by “extrapolation 
of nearby core data or from the lithologic description of the 
unassayed core, or by using geophysical logs (sonic, neutron, 
density) where available.”  Pitman and others (1989) did not 
discuss how missing intervals were handled in their assess-
ment of the Piceance Basin; however, Janet Pitman (U.S. Geo-
logical Survey, written commun., 2008) recalled that a missing 
interval was assigned the average of the oil-yield values of the 
intervals immediately above and below the missing interval. 
John R. Donnell (U.S. Geological Survey, oral commun., 
2008), who was involved in early assessments of the Piceance 
Basin, recalled that missing intervals were assigned values 
based on nearby core holes where the intervals were not miss-
ing. Vanden Berg (Utah Geological Survey, written commun., 
2009), used both methods in his recent assessment of the Uinta 
Basin, and stated that missing intervals were assigned oil yield 
values “based on oil shale above and below and based on 
nearby wells.” 

The method used here to assign values to missing inter-
vals was to calculate the average oil yield  for the recovered 
intervals for a particular oil shale zone in a given drill hole 
and assign that average to all the missing intervals in that 
zone. Johnson and others (2010a) used this method to assign 
values to missing intervals in their recent assessment of the 
oil shale resources in the Piceance Basin of western Colorado. 
In one example, Johnson and others (2010a) determined that 
this method calculated similar average oil yield values for 
the Mahogany zone, a rich oil shale zone in the Piceance and 
Uinta Basins in five closely-spaced core holes with missing 
intervals ranging from 0 to 41.2 percent of the total zone. One 
major concern is that the richness of the oil shale affected 
the probability of it being recovered. For instance, if rich 
beds were more likely to be preserved than lean beds, then 
the calculated average oil yield for a zone would be expected 
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Table 1.  Original volume-weight-oil yield relationships of Green River Formation oil shale. From Stanfield and 
others (1954). 

[GPT, gallons per ton, lbs/ft3, pounds per cubic foot, ft3/ton, cubic feet per ton, gal/ft3, gallons per cubic foot]

Oil yield by
assay (GPT)

Specific gravity 
of oil shale

Weight of oil 
shale (lbs/ft3)

Volume of oil 
shale (ft3/ton)

Oil yield, per 
unit volume 

(gal/ft3)

1 2.740 170.98 11.70 0.085
2 2.715 169.42 11.80 0.169
3 2.690 167.86 11.91 0.252
4 2.655 166.30 12.03 0.333
5 2.640 164.74 12.14 0.412
6 2.618 163.36 12.24 0.490
7 2.596 161.98 12.35 0.567
8 2.574 160.61 12.45 0.642
9 2.552 159.24 12.56 0.716
10 2.530 157.87 12.67 0.789
11 2.508 156.49 12.78 0.860
12 2.486 155.12 12.89 0.930
13 2.464 153.75 13.01 0.999
14 2.442 152.38  13.13 1.067
15 2.420 151.01 13.24 1.133
16 2.400 149.76 13.35 1.198
17 2.380 148.51 13.47 1.262
18 2.360 147.26 13.58 1.325
19 2.340 146.02 13.70 1.387
20 2.320 144.77 13.80 1.448
21 2.302 143.64 13.92 1.508
22 2.284 142.52 14.03 1.567
23 2.266 141.40 14.14 1.625
24 2.248 140.78 14.26 1.683
25 2.230 139.15 14.37 1.740
26 2.216 138.28 14.46 1.797
27 2.202 137.40 14.56 1.854
28 2.188 136.53 14.65 1.910
29 2.174 135.66 14.74 1.966
30 2.160 134.78 14.83 2.022
31 2.147 133.97 14.92 2.077
32 2.134 133.16 15.02 2.131
33 2.121 132.35 15.11 2.184
34 2.108 131.54 15.20 2.236
35 2.093 130.73 15.30 2.288
36 2.082 129.92 15.44 2.339
37 2.069 129.11 15.49 2.389
38 2.056 128.29 15.59 2.438
39 2.043 127.48 15.69 2.486
40 2.030 126.67 15.79 2.534
41 2.018 125.92 15.88 2.581
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Table 1.  Original volume-weight-oil yield relationships of Green River Formation oil shale. From Stanfield and 
others (1954).—Continued

[GPT, gallons per ton, lbs/ft3, pounds per cubic foot, ft3/ton, cubic feet per ton, gal/ft3, gallons per cubic foot]

Oil yield by
assay (GPT)

Specific gravity 
of oil shale

Weight of oil 
shale (lbs/ft3)

Volume of oil 
shale (ft3/ton)

Oil yield, per 
unit volume 

(gal/ft3)

42 2.006 125.17 15.98 2.628
43 1.994 124.43 16.07 2.674
44 1.982 123.68 16.17 2.720
45 1.970 122.93 16.27 2.766
46 1.959 122.24 16.36 2.811
47 1.948 121.56 16.45 2.856
48 1.937 120.87 16.55 2.901
49 1.926 120.18 16.64 2.945
50 1.915 119.50 16.74 2.938
51 1.904 118.81 16.83 3.030
52 1.893 118.12 16.93 3.071
53 1.882 117.44 17.03 3.112
54 1.871 116.79 17.12 3.152
55 1.860 116.06 17.23 3.192
56 1.849 115.38 17.33 3.231
57 1.838 114.69 17.44 3.269
58 1.827 114.00 17.54 3.306
59 1.816 113.32 17.65 3.343
60 1.805 112.63 17.76 3.379
61 1.794 111.95 17.87 3.414
62 1.783 111.26 17.98 3.449
63 1.772 110.57 18.09 3.483
64 1.761 109.89 18.20 3.516
65 1.750 109.20 18.32 3.549
66 1.740 108.58 18.42 3.582
67 1.730 107.95 18.53 3.615
68 1.720 107.33 18.63 3.648
69 1.710 106.70 18.74 3.681
70 1.700 106.08 18.85 3.713
71 1.690 105.46 18.96 3.744
72 1.680 104.83 19.08 3.774
73 1.670 104.21 19.19 3.804
74 1.660 103.58 19.31 3.833
75 1.650 102.96 19.43 3.861
76 1.640 102.34 19.54 3.889
77 1.630 101.71 19.66 3.916
78 1.620 101.09 19.78 3.943
79 1.610 100.46 19.91 3.969
80 1.600 99.84 20.03 3.994
90 1.500 93.75 21.33 4.219
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Table 2.  Recalculated volume-weight-oil yield relationships for Green River Formation oil shale. From 
Stanfield and others (1954). 

[GPT, gallons per ton, lbs/ft3, pounds per cubic feet, ft3/ton, cubic feet per ton, gal/ft3 , gallons per cubic foot] 

Oil yield by 
assay (GPT)

Specific gravity 
of oil shale

Weight of oil 
shale (lbs/ft3)

Volume of oil 
shale (ft3/ton)

Oil yield, per 
unit volume 

(gal/ft3)

1 2.740 171.06 11.69 0.086

2 2.715 169.50 11.80 0.169

3 2.690 167.94 11.91 0.252

4 2.655 165.75 12.07 0.332

5 2.640 164.82 12.13 0.412

6 2.618 163.44 12.24 0.490

7 2.596 162.07 12.34 0.567

8 2.574 160.69 12.45 0.643

9 2.552 159.32 12.55 0.717

10 2.530 157.95 12.66 0.790

11 2.508 156.57 12.77 0.861

12 2.486 155.20 12.89 0.931

13 2.464 153.83 13.00 1.000

14 2.442 152.45 13.12 1.067

15 2.420 151.08 13.24 1.133

16 2.400 149.83 13.35 1.199

17 2.380 148.58 13.46 1.263

18 2.360 147.33 13.57 1.326

19 2.340 146.09 13.69 1.388

20 2.320 144.84 13.81 1.448

21 2.302 143.71 13.92 1.509

22 2.284 142.59 14.03 1.568

23 2.266 141.47 14.14 1.627

24 2.248 140.34 14.25 1.684

25 2.230 139.22 14.37 1.740

26 2.216 138.34 14.46 1.798

27 2.202 137.47 14.55 1.856

28 2.188 136.60 14.64 1.912

29 2.174 135.72 14.74 1.968

30 2.160 134.85 14.83 2.023

31 2.147 134.04 14.92 2.078

32 2.134 133.23 15.01 2.132

33 2.121 132.41 15.10 2.185

34 2.108 131.60 15.20 2.237

35 2.093 130.67 15.31 2.287

36 2.082 129.98 15.39 2.340

37 2.069 129.17 15.48 2.390

38 2.056 128.36 15.58 2.439

39 2.043 127.54 15.68 2.487
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Table 2.  Recalculated volume-weight-oil yield relationships for Green River Formation oil shale. From 
Stanfield and others (1954).—Continued

[GPT, gallons per ton, lbs/ft3, pounds per cubic feet, ft3/ton, cubic feet per ton, gal/ft3 , gallons per cubic foot]

Oil yield by 
assay (GPT)

Specific gravity 
of oil shale

Weight of oil 
shale (lbs/ft3)

Volume of oil 
shale (ft3/ton)

Oil yield, per 
unit volume 

(gal/ft3)

40 2.030 126.73 15.78 2.535

41 2.018 125.98 15.88 2.583

42 2.006 125.23 15.97 2.630

43 1.994 124.49 16.07 2.676

44 1.982 123.74 16.16 2.722

45 1.970 122.99 16.26 2.767

46 1.959 122.30 16.35 2.813

47 1.948 121.61 16.45 2.858

48 1.937 120.93 16.54 2.902

49 1.926 120.24 16.63 2.946

50 1.915 119.55 16.73 2.989

51 1.904 118.87 16.83 3.031

52 1.893 118.18 16.92 3.073

53 1.882 117.49 17.02 3.114

54 1.871 116.81 17.12 3.154

55 1.860 116.12 17.22 3.193

56 1.849 115.43 17.33 3.232

57 1.838 114.75 17.43 3.270

58 1.827 114.06 17.53 3.308

59 1.816 113.37 17.64 3.344

60 1.805 112.69 17.75 3.381

61 1.794 112.00 17.86 3.416

62 1.783 111.31 17.97 3.451

63 1.772 110.63 18.08 3.485

64 1.761 109.94 18.19 3.518

65 1.750 109.25 18.31 3.551

66 1.740 108.63 18.41 3.585

67 1.730 108.00 18.52 3.618

68 1.720 107.38 18.63 3.651

69 1.710 106.76 18.73 3.683

70 1.700 106.13 18.84 3.715

71 1.690 105.51 18.96 3.745

72 1.680 104.88 19.07 3.776

73 1.670 104.26 19.18 3.805

74 1.660 103.63 19.30 3.834

75 1.650 103.01 19.42 3.863

76 1.640 102.39 19.53 3.891

77 1.630 101.76 19.65 3.918
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Table 2.  Recalculated volume-weight-oil yield relationships for Green River Formation oil shale. From 
Stanfield and others (1954).—Continued

[GPT, gallons per ton, lbs/ft3, pounds per cubic feet, ft3/ton, cubic feet per ton, gal/ft3 , gallons per cubic foot] 

Oil yield by 
assay (GPT)

Specific gravity 
of oil shale

Weight of oil 
shale (lbs/ft3)

Volume of oil 
shale (ft3/ton)

Oil yield, per 
unit volume 

(gal/ft3)

78 1.620 101.14 19.78 3.944

79 1.610 100.51 19.90 3.970

80 1.600 99.89 20.02 3.996

90 1.500 93.65 21.36 4.214
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Figure 21.  Graph showing the relationship between oil yield for Green River oil shales and 
specific gravity.
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to increase as the percentage of missing core increases. This 
does not seem to be the case. In addition (Johnson and others, 
2010a) demonstrated that both the number of missing intervals 
and thickness of individual missing intervals are also impor-
tant because a large number of thin missing intervals randomly 
distributed throughout an oil shale zone are less likely to affect 
the average for that zone than if most of the missing core is 
concentrated in a single or a few missing intervals. Clearly, as 
the percent of missing intervals increases, the probability that 
the calculated oil-yield value for a zone will deviate from the 
true oil yield also increases. To minimize this problem, only 
those drill holes where there was 30 percent or less missing 
intervals for a particular oil shale zone were included in the 
assessment calculations.

Zero Values on Assay Tables

Zero values on the assay tables (chapter 2, this report) 
could represent  (1) missing intervals; (2) intervals that were 
not assayed because they consist of lithologies, such as sand-
stone, siltstone, mudstone, limestone, and the saline minerals 
trona and halite, that were assumed to have no oil; and (or) 
(3) intervals that were assayed but produced no oil. As previ-
ously discussed, any missing interval in a particular oil shale 
zone was ascribed the average   assay values of all core or 
cuttings for that zone, thus the missing intervals are assumed 
to have had “average” oil yields for that zone. If, however, 
an interval with a zero oil yield was assayed but produced no 
oil or was not assayed because it was assumed to have no oil, 
then assigning the average oil yield for the entire zone to that 
interval would artificially inflate the resource calculations for 
that zone.

 When a sample is analyzed using Fischer assay, it will 
invariably yield some water even if no oil is produced. Of the 
47,003 samples analyzed for the Greater Green River Basin, 
10,864 listed zero oil recovered. Of these, 4,681 reported that 
some water was recovered, and it is assumed that these were 
assayed samples that yielded zero oil. These were given a 
minimum oil-yield value of 0.0001 GPT to distinguish them 
from the first two possibilities. 

A large number of intervals with zero oil and zero water 
listed in the assay tables were apparently not assessed because 
they contain little or no kerogen. An examination of avail-
able sample descriptions revealed that many zero values 
corresponded to intervals in which sandstone, siltstone, and 
mudstone had been recovered. Unfortunately, sample descrip-
tions were not recovered for many of the drill holes that were 
assayed, so other methods had to be used to try to identify 
unassessed intervals. 

The Tipton Shale Member is subdivided into the Rife and 
Scheggs Beds, separated by the Farson Sandstone Member 
of the Green River Formation (fig. 3), a clastic-rich, kerogen-
poor interval. The Rife and Scheggs Beds consist of nearly 
continuous oil shale, and it is likely that zero oil-yield values 
in these units represent missing intervals instead of unassessed 

intervals. These intervals were assumed to be missing and 
were assigned the average GPT value of the recovered sam-
ples. The Farson Sandstone, however, appears to have rarely 
been assessed, as the   assay results for that interval list mainly 
zero oil and water yield values. For simplicity, we eliminated 
the entire Farson interval from the assessment of the Tipton. 

Similarly, the LaClede Bed of the Laney Member con-
sists mainly of oil shale, and any zero values were assumed 
to be missing intervals and assigned the average GPT value 
of the recovered samples. The LaClede Bed also contains a 
kerogen-poor clastic-rich zone, the buff marker bed, confined 
largely to the Washakie Basin. Like the Farson Sandstone, the 
carbonate marker appears to have been rarely assessed, and 
the interval was not included in the assessment of the LaClede 
Bed. Thus the Tipton Shale and the LaClede Bed both have 
clastic intervals that were not included when calculating the 
estimated GPT values for these zones. Had these clastic inter-
vals been included the GPT values for the Tipton and LaClede 
would have been significantly lower. The BPA values for these 
assessed units should not be greatly affected by the omission 
of these clastic intervals as they contain little oil shale.

The Wilkins Peak Member throughout much of its extent 
consists of complexly interbedded oil shale and kerogen-poor 
lithologies such as sandstone, siltstone, mudstone, limestone, 
trona, and halite. Available sample descriptions and geophysi-
cal logs indicate that the majority of the intervals with zero oil 
and and water yields were not assessed rather than missing. 
The highest percentage of reported zero oil and water yield 
values is in the upper part of the Wilkins Peak near its western 
limit in the western part of the Green River Basin, where that 
part of the member grades into the Cathedral Bluffs Tongue of 
the Wasatch Formation (fig. 3). This “transitions zone”, which 
contains minor thin oil shale beds interbedded with kerogen-
poor rocks, was excluded from the Wilkins Peak and thus was 
not assessed. Figure 22 shows the percent of missing core in 
drill holes of the assessed part of the Wilkins Peak, generally 
18 percent or less, except for six with 19 to 29 percent. All of 
the remaining zero GPT values reported within the assessed 
area were assumed to be missing intervals rather than non-
analyzed intervals and thus were assigned the average GPT 
for the recovered Wilkins Peak core in that drill hole. By using 
this assumption, the in-place oil shale resources in the Wilkins 
Peak could possibly have been overestimated by some small 
amount. However, GPT values for the six drill holes with the 
highest missing percentages are similar to nearby drill holes 
with much smaller percentages of missing intervals, so it is 
unlikely that this overestimation is large. This is clearly an 
imperfect process for evaluating resources; the results could 
be improved if additional sample descriptions are obtained in 
the future. 

Problems Related to Saline Minerals

The Wilkins Peak Member contains significant thick-
nesses of trona and halite beds throughout much of the Green 
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Figure 22.  Percent missing intervals in the control points used to assess the Wilkins Peak Member.
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River Basin that needed to be identified prior to making 
resource calculations. Sample descriptions of core holes indi-
cate that trona and halite beds were commonly not analyzed. 
These beds were assigned minimum GPT value of 0.0001 GPT 
to distinguish them from missing intervals. In rotary holes, 
however, it is likely that all of the halite and much of the trona 
dissolved out of the cuttings before reaching the surface. Thus, 
the cuttings collected for these intervals would be largely from 
oil shale beds interbedded with the trona and halite and (or) oil 
shale cavings from above. Fischer assay analysis of intervals 
where geophysical logs indicated the presence of thick trona 
and halite beds commonly yielded significant oil apparently 
from the thin oil shale interbeds and oil shale cavings. There 
is no apparent way to precisely compensate for the dissolved 
trona and halite beds in these rotary holes, so we decided to 
simply calculate the percent of the total thickness that the 
trona and halite beds represented, and subtract that percent 
from the total BPA calculation for that hole. 

Methods Used to Generate Isopach 
Maps and Isoresource Maps

Pitman and others (1989), in their assessment of the 
Piceance Basin, used geostatistical interpolation by kriging to 
generate their resource maps and resource numbers. Accord-
ing to them, statistical tests that were done  prior to kriging 
indicated that oil shale resource values were “statistically 
homogeneous” or that BPA resource values for oil shale core 
holes spaced a short distance apart tended to be more alike 
than values for core holes  that were farther apart. Pitman and 
others (1989) used a computer program called BLUEPACK to 
determine that variations in oil yield were linear for all of the 
oil shale zones except for two. For these two zones there was 
a significant amount of variation that could not be predicted 
from available data and a “nugget-only” model was used to try 
to capture this variability. Pitman and others (1989) deter-
mined that universal kriging gave good results in areas with 
good control, but in areas with little control such as basin-mar-
gin areas, universal kriging calculated anomalously large error 
limits—as much as nearly 1,300 percent,—and several town-
ships had insufficient control for universal kriging to calculate 
any resource numbers. They manually determined in-place oil 
shale resources using isoresource contours and compared the 
results with those obtained from kriging. Their results were 
comparable for areas with good control, but for areas with lim-
ited control, such as the basin-margin areas, universal kriging 
greatly overestimated resources. For example, in the township 
with the approximately 1,300 percent error, kriging estimated 
1.1 billion barrels of oil in place for one of the oil shale zones 
in the Piceance Basin, while hand contouring estimated only 
219 million barrels. 

We chose to use an RBF-multiquadric function instead 
of kriging as it facilitated a more rapid generation of models 
while providing better results than kriging in the areas with 

little data. The Inverse Distance Weighted (IDW) method was 
also tried. Both the RBF method and IDW method gave fairly 
similar results in areas with large numbers of control points, 
but the RBF method seemed to generate more reasonable 
results in marginal areas with little control. The RBF-multi-
quadric function in ESRI’s Geostatistical Analyst provided 
a quick, exact interpolator, and kept the model within our 
methodology’s native software format (ESRI’s ArcGIS). Rusu 
and Rusu (2006) recently demonstrated that “soft comput-
ing methods” such as Radial Basis Functions (RBF) compare 
favorably with conventional “hard computing methods” such 
as kriging, and compared results when the RBF method and 
kriging were applied to the same data set. They cited a recent 
study in which the Radioactivity Environmental Monitoring 
Group of the Institute for Environment and Sustainability 
at the Joint Research Center of the European Commission 
invited participants to apply both RBF and kriging to a data set 
depicting variations in daily mean values of gamma-ray doses 
in southwestern Germany. Part of the data points were hidden, 
and the participants were asked to estimate values at these 
hidden locations using the data points given. In general, both 
the RBF method and kriging were equally good at predicting 
the correct results, except for areas with limited data where a 
proper variogram  required for kriging is difficult to construct. 
In these areas, the RBF method gave better results. According 
to Rusu and Rusu (2006, p. 126) “The results and the execu-
tion time are quite similar for RBF and kriging, but the ease of 
use of RBF is overwhelming, compared to the use of kriging. 
When using RBF, the user has to choose only the radial func-
tions type and the smoothing parameter. When using kriging, 
complex variogram modeling has to be done.”  The problems 
with generating a proper variogram with limited data may be 
in part why, in the previous assessment by Pitman and others 
(1989) kriging gave values with unacceptable margins of error 
for areas with limited data.

The RBF method in ESRI’s GeoStatistical Analyst (GA) 
is an exact interpolator that will honor all data points and not 
introduce errors at those data point locations unless a smooth-
ing function is used. If a smoothing function is used, the RBF 
can also extrapolate values above or below the actual values 
outside the data point locations. The final resource models 
were created with the RBF method using a sampling method 
containing eight moving window sectors with eight neighbors 
in each sector. No smoothing function was used. After numer-
ous iterations, we determined that the RBF method using these 
parameters yields surfaces that we believe to best fit geologic 
relations. 

Although the RBF method does not generate as complete 
an error estimate as kriging it does give the difference between 
the predicted and measured value for each control point, as 
well as the overall error for an entire map. To obtain the differ-
ence between the predicted value and the measured value, the 
RBF method predicts a value at a given control point from the 
eight nearest control points without knowing  the actual value 
measured at that control point. That predicted value is then 
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compared with the measured value, and the difference between 
the two is calculated. 

Four maps were generated for each oil shale zone 
assessed: (1) an isopach map, ( 2) variations in oil yield 
in GPT, (3) variations in BPA, and (4) total in-place oil in 
each 36 square mile township in the basin. The barrels-per-
township maps were generated by first intersecting the Greater 
Green River Basin township polygon file with the outcrop 
polygon files. The resultant files included only those town-
ships or parts of townships that are underlain by the oil shale 
zones to be assessed. Using ESRI’s Spatial Analyst’s Zonal 
Statistics function, we were able to quantify each township 
in each BPA resource model (cell size = 1 acre) by using 
each “clipped” township polygon (the result of intersecting 
the township polygon with the outcrop polygon) as the zone 
to quantify. In short, the function totals the sum of all of the 
one-acre cells contained by each polygon to be assessed in the 
zone dataset. The resultant summary table (table 3) contains a 
sum total of barrels for each township, as well as several other 
statistics. Maps were then generated by joining the summary 
table to each zone polygon file. For a more complete explana-
tion of this procedure see Mercier and others (this report).

Assessment Results
An assessment is presented here of all oil shale regard-

less of grade in the Tipton Shale Member, the Wilkins Peak 
Member and the LaClede Bed of the Laney Member in the 
Green River and Washakie Basins of the Greater Green River 
Basin (fig. 2). The oil shale resources in the Great Divide and 
Sand Wash Basins were not assessed because surface sec-
tions (Roehler, 1989a, d, e) and the limited Fischer assay data 
available indicate that only very low-grade oil shale is present 
there. No attempt was made to estimate the amount of oil that 
is economically recoverable, largely because there has yet 
to be a process developed to recover oil economically from 
Green River oil shale. Estimates of the amount of shale oil that 
is technically recoverable without considering economics have 
been made for the Piceance Basin of western Colorado but not 
for the Greater Green River Basin. Estimates for the Piceance 
Basin using underground room-and pillar mining methods 
vary from 45 percent (Taylor, 1987) to 55 to 75 percent (Prien, 
1974) and as high as 80 percent for open pit mining (Taylor, 
1987). Recoveries will be likely lower in the Greater Green 
River Basin, if indeed production does take place, because 
most of the oil shale in the Wilkins Peak Member (fig. 3) is 
interbedded with barren rock. At present, there are no esti-
mates of the percent of the resource that could be recovered 
using the in-situ methods that are currently being developed. 
However, Taylor (1987) stressed that the amount of oil that 
can be recovered from any in-situ process depends on both the 
percent of oil that can be recovered from within the retort and 
the amount of oil left behind in the spaces between retorts. The 
in-situ method, currently being developed by Shell Explora-
tion and Development in the Piceance Basin (Vinigar, 2006), 

uses a freeze wall to isolate the in-situ retort, and it would 
probably not be possible to recover oil in the area occupied 
by the freeze walls. The dimensions of the freeze wall that 
Shell will ultimately use in commercial retorts have not been 
established.

Although it is not feasible to estimate volumes of 
economically recoverable shale oil at this time, our primary 
goals here is to provide basic geologic and resource data that 
will facilitate the making of such estimates once extraction 
methods are developed. For instance, Mercier and others (this 
report) calculate cubic meters of overburden on the Laney and 
Tipton Shale Members. These calculations can be integrated 
with estimates of in place oil to generate “strip ratio” maps 
for strip mining the oil shale. For each of the three units of the 
Green River Formation included in this assessment in ascend-
ing order: the Tipton Shale Member, Wilkins Peak Member, 
and LaClede Bed of the Laney Member, four maps were gen-
erated: (1) isopach map, (2) isoresource map showing varia-
tions in GPT, (3) isoresource map showing variations in BPA, 
and (4) isoresource map showing total amount of in-place oil 
in each 36-square mile township. Figure 23 is an isopach map 
that includes all three assessed units, as well as the thick, unas-
sessed clastic-rich intervals of the Farson Sandstone Member 
of the Green River Formation and the Cathedral Bluffs Tongue 
of the Wasatch Formation (fig. 3). Only in the southeastern 
part of the Green River Basin do all three assessed oil shale 
units occur in a continuous stratigraphic sequence, but even 
in this limited area there are numerous sandstone, siltstone, 
and mudstone units within the Wilkins Peak Member. The 
isopach interval thickens from 750 ft in the northern part of 
the Green River Basin to more than 2,200 ft in the southern 
part of the Green River Basin adjacent to the Uinta Mountains, 
and reaches a maximum of 3,360 ft in the central part of the 
Washakie Basin (fig. 23). The southward and southeastward 
thickening of this interval is largely due to increased subsid-
ence in those directions. In addition, the upper contact of the 
LaClede Bed climbs stratigraphically to the south and south-
east as northward-thickening units of mainly volcaniclastics 
rocks wedge out (pl. 1, fig. 20, sandstone, marlstone, and thin 
beds of limestone and oil shale facies).

Tipton Shale Member

The Tipton Shale Member is assessed as a single unit and 
not subdivided into the Scheggs and Rife Beds. This is in large 
part because the Farson Sandstone Member, which separates 
the Scheggs and Rife Beds, is thin or absent throughout much 
of the Green River and Washakie Basins, and in these areas it 
is difficult to distinguish between the Scheggs and Rife Beds 
in the subsurface. The base of the member as mapped by 
Tweto (1979) and Love and Christiansen (1985), was used to 
define its extent in the Washakie Basin and along the eastern 
margin of the Green River Basin. The base of the Wilkins 
Peak Member, as mapped by Love and Christiansen (1985), 
is used to define the extent of the Tipton in the western part 
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Table 3.  In-place oil resources, in barrels of oil, in the Green River Formation, Greater Green River Basin, Wyoming.

Township Range Tipton Wilkins Peak LaClede Township

T29N R108W 0 118,371,000 0 118,371,000
T29N R107W 0 47,217,400 0 47,217,400
T28N R112W 0 364,673 55,265 419,938
T28N R111W 0 162,311,000 21,241,900 183,552,900
T28N R110W 567,039,000 983,327,000 0 1,550,366,000
T28N R109W 703,808,000 1,019,430,000 0 1,723,238,000
T28N R108W 0 764,592,000 0 764,592,000
T28N R107W 0 634,965,000 0 634,965,000
T27N R112W 0 189,180,000 29,545,100 218,725,100
T27N R111W 0 1,185,690,000 164,510,000 1,350,200,000
T27N R110W 940,662,000 1,869,190,000 0 2,809,852,000
T27N R109W 944,541,000 1,983,820,000 0 2,928,361,000
T27N R108W 0 1,507,820,000 0 1,507,820,000
T27N R107W 0 1,411,850,000 386,140,000 1,797,990,000
T27N R106W 0 1,179,830,000 347,082,000 1,526,912,000
T27N R105W 0 1,375,840,000 397,413,000 1,773,253,000
T27N R104W 0 0 121,845,000 121,845,000
T26N R112W 0 423,138,000 77,620,800 500,758,800
T26N R111W 0 1,304,840,000 235,771,000 1,540,611,000
T26N R110W 794,690,000 1,633,470,000 346,832,000 2,774,992,000
T26N R109W 821,072,000 2,399,880,000 466,563,000 3,687,515,000
T26N R108W 0 2,670,630,000 562,789,000 3,233,419,000
T26N R107W 0 2,481,340,000 674,743,000 3,156,083,000
T26N R106W 358,551,000 2,244,360,000 578,356,000 3,181,267,000
T26N R105W 174,846,000 2,253,530,000 536,132,000 2,964,508,000
T26N R104W 0 0 473,514,000 473,514,000
T25N R112W 364,385,000 968,957,000 147,107,000 1,480,449,000
T25N R111W 480,018,000 1,799,530,000 314,869,000 2,594,417,000
T25N R110W 591,912,000 2,020,850,000 502,032,000 3,114,794,000
T25N R109W 548,298,000 3,070,010,000 612,637,000 4,230,945,000
T25N R108W 774,453,000 5,000,210,000 877,371,000 6,652,034,000
T25N R107W 723,634,000 4,444,390,000 821,023,000 5,989,047,000
T25N R104W 0 2,470,920,000 648,569,000 3,119,489,000
T25N R105W 155,270,000 3,406,710,000 723,947,000 4,285,927,000
T25N R103W 0 189,488,000 0 189,488,000
T25N R106W 326,532,000 3,864,680,000 724,874,000 4,916,086,000
T24N R112W 640,307,000 1,965,960,000 265,792,000 2,872,059,000
T24N R111W 580,023,000 2,489,040,000 423,959,000 3,493,022,000
T24N R110W 434,462,000 3,625,670,000 478,522,000 4,538,654,000
T24N R109W 315,678,000 4,988,040,000 1,260,550,000 6,564,268,000
T24N R108W 717,101,000 5,307,110,000 1,550,220,000 7,574,431,000
T24N R107W 756,340,000 4,182,100,000 1,089,590,000 6,028,030,000
T24N R104W 0 614,855,000 166,798,000 781,653,000
T24N R105W 157,872,000 3,683,760,000 783,550,000 4,625,182,000
T24N R106W 474,460,000 4,665,350,000 971,158,000 6,110,968,000



38    Assessment of In-Place Oil Shale Resources in the Eocene Green River Formation, Wyoming, Colorado, and Utah

Table 3.  In-place oil resources, in barrels of oil, in the Green River Formation, Greater Green River Basin, Wyoming.—Continued

Township Range Tipton Wilkins Peak LaClede Township

T23N R112W 793,128,000 2,663,720,000 304,983,000 3,761,831,000
T23N R109W 732,497,000 7,191,740,000 1,120,420,000 9,044,657,000
T23N R110W 636,501,000 5,313,160,000 658,092,000 6,607,753,000
T23N R105W 166,240,000 5,044,030,000 1,042,370,000 6,252,640,000
T23N R106W 919,517,000 7,391,330,000 1,126,240,000 9,437,087,000
T23N R107W 1,473,040,000 5,947,250,000 1,536,340,000 8,956,630,000
T23N R111W 713,382,000 3,201,840,000 447,111,000 4,362,333,000
T23N R108W 993,281,000 8,087,850,000 1,762,860,000 10,843,991,000
T22N R112W 805,259,000 3,229,930,000 0 4,035,189,000
T22N R111W 914,680,000 4,097,450,000 0 5,012,130,000
T22N R110W 956,437,000 5,480,680,000 814,455,000 7,251,572,000
T22N R105W 464,511,000 4,505,770,000 1,009,700,000 5,979,981,000
T22N R106W 1,820,580,000 8,837,310,000 1,471,140,000 12,129,030,000
T22N R107W 2,695,680,000 8,106,310,000 1,471,410,000 12,273,400,000
T22N R108W 1,654,720,000 8,291,250,000 1,122,970,000 11,068,940,000
T22N R109W 1,093,570,000 7,025,720,000 924,211,000 9,043,501,000
T21N R112W 944,487,000 4,108,300,000 0 5,052,787,000
T21N R111W 1,402,360,000 4,645,230,000 0 6,047,590,000
T21N R110W 1,547,710,000 5,942,400,000 534,469,000 8,024,579,000
T21N R109W 1,578,250,000 8,298,960,000 688,156,000 10,565,366,000
T21N R108W 1,978,500,000 9,803,840,000 873,463,000 12,655,803,000
T21N R107W 2,154,980,000 9,943,940,000 1,442,790,000 13,541,710,000
T21N R106W 2,575,180,000 8,351,110,000 2,045,170,000 12,971,460,000
T21N R105W 1,354,860,000 3,154,240,000 1,035,890,000 5,544,990,000
T20N R113W 691,468,000 4,709,110,000 0 5,400,578,000
T20N R112W 1,244,620,000 5,289,080,000 0 6,533,700,000
T20N R111W 2,112,160,000 4,631,450,000 273,540,000 7,017,150,000
T20N R110W 2,472,840,000 7,435,490,000 539,873,000 10,448,203,000
T20N R109W 2,272,600,000 13,158,600,000 778,710,000 16,209,910,000
T20N R107W 2,707,450,000 10,311,200,000 2,699,300,000 15,717,950,000
T20N R106W 3,416,220,000 5,640,800,000 2,507,170,000 11,564,190,000
T20N R105W 376,586,000 292,160,000 118,184,000 786,930,000
T20N R108W 2,277,180,000 17,353,600,00 1,312,040,000 20,942,820,000
T19N R113W 615,626,000 5,708,720,000 0 6,324,346,000
T19N R112W 1,286,320,000 7,335,280,000 50,875,500 8,672,475,500
T19N R111W 2,751,080,000 6,518,500,000 417,838,000 9,687,418,000
T19N R109W 3,094,890,000 14,722,300,00 1,422,870,000 19,240,060,000
T19N R110W 3,415,140,000 8,993,320,000 889,339,000 13,297,799,000
T19N R108W 2,853,190,000 17,088,600,00 2,034,990,000 21,976,780,000
T19N R107W 3,171,760,000 11,358,600,00 2,578,470,000 17,108,830,000
T19N R106W 3,559,460,000 8,704,130,000 2,264,880,000 14,528,470,000
T19N R105W 646,397,000 817,385,000 269,759,000 1,733,541,000
T19N R97W 373,225,000 0 0 373,225,000
T19N R94W 1,001,430,000 0 0 1,001,430,000
T19N R95W 2,167,270,000 0 0 2,167,270,000
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Table 3.  In-place oil resources, in barrels of oil, in the Green River Formation, Greater Green River Basin, Wyoming.—Continued

Township Range Tipton Wilkins Peak LaClede Township

T19N R96W 1,734,000,000 0 0 1,734,000,000
T18N R113W 1,370,600,000 5,571,100,000 0 6,941,700,000
T18N R112W 2,201,250,000 6,677,730,000 112,916,000 8,991,896,000
T18N R111W 3,865,510,000 7,404,940,000 796,567,000 12,067,017,000
T18N R109W 3,798,490,000 14,240,100,00 2,637,050,000 20,675,640,000
T18N R110W 4,756,560,000 10,307,000,00 2,254,900,000 17,318,460,000
T18N R108W 3,076,960,000 14,961,800,00 2,826,470,000 20,865,230,000
T18N R107W 3,413,290,000 6,972,110,000 2,068,050,000 12,453,450,000
T18N R106W 2,921,200,000 3,004,000,000 585,228,000 6,510,428,000
T18N R105W 13,030,800 0 0 13,030,800
T18N R98W 360,180,000 0 11,752,900 371,932,900
T18N R97W 2,700,400,000 0 1,404,010,000 4,104,410,000
T18N R94W 2,301,010,000 0 0 2,301,010,000
T18N R93W 155,992,000 0 0 155,992,000
T18N R95W 3,286,470,000 0 0 3,286,470,000
T18N R96W 3,428,610,000 0 2,575,320,000 6,003,930,000
T17N R113W 2,254,450,000 4,677,370,000 30,926,300 6,962,746,300
T17N R112W 3,769,110,000 5,153,430,000 353,822,000 9,276,362,000
T17N R111W 5,247,060,000 6,662,620,000 1,293,510,000 13,203,190,000
T17N R110W 5,548,620,000 9,974,220,000 2,868,580,000 18,391,420,000
T17N R109W 4,111,750,000 13,645,200,00 3,409,900,000 21,166,850,000
T17N R108W 3,586,250,000 16,458,700,00 3,054,030,000 23,098,980,000
T17N R107W 4,585,560,000 10,432,800,00 3,056,280,000 18,074,640,000
T17N R106W 2,835,760,000 12,590,900 2,883,760 2,851,234,660
T17N R100W 235,093,000 0 11,922,000 247,015,000
T17N R99W 1,843,090,000 0 171,965,000 2,015,055,000
T17N R98W 2,517,620,000 0 2,646,740,000 5,164,360,000
T17N R97W 3,324,440,000 0 3,976,900,000 7,301,340,000
T17N R94W 1,537,990,000 0 0 1,537,990,000
T17N R93W 510,771,000 0 0 510,771,000
T17N R96W 4,098,010,000 0 3,932,250,000 8,030,260,000
T17N R95W 3,351,260,000 0 3,447,080,000 6,798,340,000
T16N R113W 3,075,390,000 3,616,660,000 312,939,000 7,004,989,000
T16N R112W 4,209,960,000 3,563,380,000 765,435,000 8,538,775,000
T16N R111W 6,047,200,000 6,058,530,000 1,691,340,000 13,797,070,000
T16N R110W 6,106,510,000 8,921,940,000 2,758,660,000 17,787,110,000
T16N R109W 4,556,530,000 10,939,600,000 3,561,850,000 19,057,980,000
T16N R108W 4,077,520,000 10,902,000,000 4,043,240,000 19,022,760,000
T16N R107W 4,359,320,000 4,993,070,000 2,090,310,000 11,442,700,000
T16N R106W 1,813,750,000 0 0 1,813,750,000
T16N R100.5 654,163 0 0 654,163
T16N R100W 1,484,400,000 0 3,450,770,000 4,935,170,000
T16N R99W 2,690,670,000 0 7,309,480,000 10,000,150,000
T16N R98W 3,135,460,000 0 7,892,140,000 11,027,600,000
T16N R96W 4,455,430,000 0 6,175,040,000 10,630,470,000
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Table 3.  In-place oil resources, in barrels of oil, in the Green River Formation, Greater Green River Basin, Wyoming.—Continued

Township Range Tipton Wilkins Peak LaClede Township

T16N R97W 3,836,310,000 0 7,078,270,000 10,914,580,000
T16N R95W 2,811,110,000 0 4,655,720,000 7,466,830,000
T16N R94W 750,275,000 0 2,019,790,000 2,770,065,000
T16N R93W 320,025,000 0 1,466,460 321,491,460
T16N R92W 22,227,700 0 0 22,227,700
T15N R112W 4,640,330,000 2,868,270,000 1,146,440,000 8,655,040,000
T15N R111W 6,078,260,000 5,484,680,000 1,804,660,000 13,367,600,000
T15N R110W 6,565,230,000 7,891,340,000 2,795,220,000 17,251,790,000
T15N R109W 5,223,050,000 9,739,810,000 3,537,150,000 18,500,010,000
T15N R108W 4,615,580,000 9,605,490,000 4,590,050,000 18,811,120,000
T15N R107W 4,471,050,000 5,676,700,000 2,893,380,000 13,041,130,000
T15N R113W 3,075,170,000 2,402,210,000 575,103,000 6,052,483,000
T15N R106W 2,927,100,000 884,462,000 424,779,000 4,236,341,000
T15N R101W 596,454,000 0 0 596,454,000
T15N R100.5 42,345,200 0 0 42,345,200
T15N R100W 3,531,500,000 0 4,019,350,000 7,550,850,000
T15N R99W 3,918,240,000 0 10,112,400,000 14,030,640,000
T15N R98W 3,626,860,000 0 10,715,000,000 14,341,860,000
T15N R97W 3,765,790,000 0 10,000,900,000 13,766,690,000
T15N R96W 3,329,130,000 0 7,478,500,000 10,807,630,000
T15N R95W 0 0 5,600,990,000 5,600,990,000
T15N R94W 0 0 4,139,440,000 4,139,440,000
T15N R93W 0 0 1,380,870,000 1,380,870,000
T14N R112W 3,645,780,000 2,966,840,000 1,249,240,000 7,861,860,000
T14N R111W 4,264,060,000 4,279,390,000 1,965,630,000 10,509,080,000
T14N R108W 4,907,040,000 9,703,760,000 4,546,940,000 19,157,740,000
T14N R107W 4,822,490,000 7,752,330,000 4,023,480,000 16,598,300,000
T14N R110W 4,871,570,000 6,678,950,000 3,317,750,000 14,868,270,000
T14N R109W 5,192,870,000 9,240,780,000 4,457,840,000 18,891,490,000
T14N R106W 4,337,120,000 651,988,000 332,465,000 5,321,573,000
T14N R105W 740,429,000 0 0 740,429,000
T14N R113W 2,313,190,000 2,887,030,000 660,602,000 5,860,822,000
T14N R100W 3,260,940,000 0 358,705,000 3,619,645,000
T14N R99W 4,111,950,000 0 8,218,970,000 12,330,920,000
T14N R98W 2,886,920,000 0 10,532,500,000 13,419,420,000
T14N R97W 2,262,140,000 0 11,541,600,000 13,803,740,000
T14N R96W 2,097,770,000 0 9,887,620,000 11,985,390,000
T14N R95W 0 0 6,801,990,000 6,801,990,000
T14N R94W 0 0 5,589,650,000 5,589,650,000
T14N R93W 0 0 5,005,050,000 5,005,050,000
T14N R92W 0 0 572,058,000 572,058,000
T13N R111W 2,504,850,000 2,386,970,000 1,500,270,000 6,392,090,000
T13N R110W 3,631,030,000 5,052,830,000 3,219,030,000 11,902,890,000
T13N R112W 1,715,410,000 2,575,270,000 912,083,000 5,202,763,000
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Table 3.  In-place oil resources, in barrels of oil, in the Green River Formation, Greater Green River Basin, Wyoming.—Continued

Township Range Tipton Wilkins Peak LaClede Township

T13N R108W 4,612,720,000 8,757,290,000 4,735,060,000 18,105,070,000
T13N R109W 4,480,920,000 7,791,190,000 4,657,260,000 16,929,370,000
T13N R107W 0 2,974,070,000 1,617,100,000 4,591,170,000
T13N R113W 1,243,750,000 3,203,940,000 0 4,447,690,000
T13N R100W 1,333,210,000 0 0 1,333,210,000
T13N R99W 2,017,270,000 0 3,652,090,000 5,669,360,000
T13N R98W 1,663,890,000 0 9,644,310,000 11,308,200,000
T13N R97W 1,178,630,000 0 10,951,600,000 12,130,230,000
T13N R96W 1,168,570,000 0 10,172,100,000 11,340,670,000
T13N R95W 0 0 7,763,970,000 7,763,970,000
T13N R94W 0 0 5,147,800,000 5,147,800,000
T13N R93W 0 0 1,188,330,000 1,188,330,000
T13N R92W 0 0 80,333,000 80,333,000
T12N R111W 0 1,564,730,000 1,087,430,000 2,652,160,000
T12N R112W 0 1,432,400,000 631,477,000 2,063,877,000
T12N R109W 0 3,167,760,000 2,032,660,000 5,200,420,000
T12N R108W 0 2,032,600,000 1,215,810,000 3,248,410,000
T12N R110W 0 2,833,810,000 1,980,000,000 4,813,810,000
T12N R107W 0 19,232,200 11,182,300 30,414,500
T12N R99W 717,026,000 0 0 717,026,000
T12N R98W 708,072,000 0 0 708,072,000
T12N R97W 529,838,000 0 0 529,838,000
T12N R96W 475,228,000 0 0 475,228,000

Total  377,184,520,285 1,444,991,951,321 362,816,116,863 704,991,314,173
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Figure 23.  Isopach map of the total assessed interval in the Green River Basin.
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of the Green River Basin where the base of the Tipton has not 
been mapped. In the northern part of the Green River Basin 
(fig. 3), the base of the Laney Member, as mapped by Love 
and Christiansen (1985) was used, as the base of the Tipton 
has not been mapped there. According to Roehler (1992b), the 
top of the Rife Bed is close to the base of the Laney in that 
area (fig. 12). 

The top and base of the Tipton, as defined by us in the 
Washakie Basin, are stratigraphically different than those of 
Roehler (1989d, e). He picked his contacts based on his con-
cepts concerning the development of Lake Gosiute, whereas 
we chose contacts that would best characterize the oil shale 
deposit. Roehler (1989d, e) included an interval of lacustrine 
shale with low oil yields in the lower part of his Tipton that 
we excluded because it does not contain significant oil shale; 
if included, it would have significantly lowered the average oil 
yield of the Tipton Shale Member in the Washakie Basin. An 
oil shale sequence immediately overlying the Tipton as defined 
by Roehler (1989d, e) in the Washakie Basin, was included 
by him in the overlying Wilkins Peak Member because he 
believed it to be genetically related to the Wilkins Peak phase 
of the lake. This sequence forms a single unbroken oil shale 
sequence  with the underlying Tipton Shale, and we included it 
in the Tipton for assessment purposes. 

Figure 24 is an isopach map of the Tipton Shale Mem-
ber. In the Washakie Basin, it is 310 to 390 ft thick along a 
northeast-trending area that includes the deep trough of the 
basin and a portion of the southwest basin margin. In the 
Green River Basin, it varies in an irregular fashion from 128 
to over 400 ft thick. The Tipton thickens to as much as 411 ft 
in the northern part of the Green River Basin as a result of the 
northward thickening of the Farson Sandstone Member, which 
separates the Rife Bed and Scheggs Beds of the Tipton (fig. 3). 
The Farson thickens to the north across the Green River Basin 
from a minimum of less than 5 ft in the southeast part to a 
maximum of 790 ft in the northern part (figs. 8, 12). The Rife 
Bed, however, could only be recognized locally in the northern 
part of the Green River Basin. Where the Rife bed is absent, 
the Tipton consists of only the Scheggs Bed and thins to as 
little as 20 ft (fig. 24). 

A total of 18 core holes and 65 rotary holes were used in 
assessing the oil shale resources in the Tipton Shale Member 
(fig. 24); total area assessed is 5,088 mi2, which excluded 
some basin margin areas where control is sparse (fig. 24). As 
previously discussed, the Farson Sandstone Member where 
present was subtracted from the Tipton Shale Member interval 
and not assessed. Figure 25 is an isoresource map showing 
variations in GPT; oil yields are generally greater than 15 GPT 
throughout much of Green River Basin, reaching a maximum 
of 22.3 GPT in the south-central part. Oil yields decrease to 
the north across the Green River Basin with values reaching 
a minimum of less than 7.5 GPT in the northern part of the 
Basin (fig. 25). Oil yields in the Washakie Basin vary from 
1.2 to 11.5 GPT, with the highest values along the northwest 
margin of the basin. Total in-place oil (1) reaches a maximum 
of 345,000 BPA in the south-central part of the Green River 

sub-basin, decreasing in all directions away from this dep-
ocenter, and (2) varies from 160,000 to 253,000 BPA along 
a northeast trend in the northern part of the Washakie Basin 
(fig. 26). Maximum in-place oil in a single township is nearly 
6.6 billion barrels in the south-central part of the Green River 
Basin (fig. 27). Total in-place oil in the Tipton Shale Member 
is estimated at 362,816,000,000 barrels, of which some 4.1 
billion barrels are in the Washakie Basin (table 3).

Wilkins Peak Member

The Wilkins Peak Member is assessed here as a single 
unit, however, as more data become available it should be pos-
sible to assess individual oil shale zones based on the regional 
stratigraphic framework that has been established (fig. 12). 
The top of the Wilkins Peak Member–base of the Laney Mem-
ber as mapped by Love and Christiansen (1985) was used to 
define the limits of the Wilkins Peak assessment unit.

Figure 28 is an isopach map from the base of the LaClede 
Bed of the Laney Member to the top of the Tipton Shale 
Member (see fig. 3). It includes the entire stratigraphic interval 
of the Wilkins Peak as well as laterally equivalent parts of the 
Cathedral Bluffs Tongue of the Wasatch Formation in basin 
margin areas (fig. 3). In areas of the northern part of the Green 
River Basin where the Rife Bed of the Tipton Shale Mem-
ber is absent, the isopach interval extends from the base of 
the LaClede Bed to the top of the Scheggs Bed of the Tipton 
Shale Member. Although both the upper and lower contacts 
of this interval are time transgressive, the thickness variations 
shown are generally related to variations in subsidence during 
this time period. The interval thickens to the south across the 
Green River Basin from less than 100 ft in the northern part of 
the basin to 1,800 ft along the south margin of the Green River 
Basin adjacent to the Uinta Mountains (fig. 28). There are only 
four control points in the Washakie Basin, but the interval is 
thickest near the middle of the basin, 2,160 to 2,440 ft and 
thinnest near the basin margins, 1,803 to1,870 ft (fig. 28).

Figure 29 is an isopach map of that part of the Wilkins 
Peak Member that was assessed. This interval reaches a maxi-
mum thickness of over 1,500 ft locally in the southern part of 
the Green River Basin. It thins to the west and south due to the 
upper part grading laterally into the Cathedral Bluffs Tongue 
of the Wasatch Formation. It also thins to the north due to a 
combination of lower subsidence rates and grading in part 
into the Cathedral Bluffs Tongue of the Wasatch Formation 
and Farson Sandstone Member of the Green River Forma-
tion (fig. 12). A comparatively thin interval of the member 
was identified along the west margin of the Washakie Basin 
between the Cathedral Bluffs Tongue of the Wasatch Forma-
tion and the Tipton Shale Member by Roehler (1989d), but 
was not assessed here because it lacks significant oil shale. 
Farther to the east in the Washakie Basin the entire Wilkins 
Peak grades into the Cathedral Bluffs Tongue. 

A total of 33 core holes and 58 rotary holes were used 
in our assessment of oil shale resources in the Wilkins Peak 
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Figure 24.  Isopach map of the Tipton Shale Member.
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Member. Total area assessed is 4,102 mi2; the west margin of 
the Green River Basin and the northeastern part of the Green 
River Basin were not assessed due to lack of control (fig. 30). 
Oil yield is greatest in the north-central part of the Green 
River Basin, averaging between 12 and 18.2 GPT (fig. 30) 
in an area where the Wilkins Peak is comparatively thin but 
contains a higher proportion of oil shale beds as kerogen-poor 
lithologies pinch out. Oil yields in the saline depocenter in 
the central part of the Green River Basin (fig. 14) are much 
lower, averaging about 5 to 10.5 GPT (fig. 30). Maximum 
in-place oil, in contrast, is in the northern part of the saline 
depocenter, in large part because the Wilkins Peak is much 
thicker there than in the northern part of the Green River Basin 
(figs. 29 and 31). Maximum in-place oil in a township, over 17 
billion barrels, is in the central part of the Green River Basin 
(fig. 32). Total in-place oil in the Wilkins Peak Member is 
704,991,000,000 barrels (table 3).

LaClede Bed of the Laney Member

The LaClede Bed includes most of the oil shale in the 
Laney Member. It is the only unit in the member that was 
assessed, and is the area extending into the subsurface from 
mapped outcrops of the base of the Laney Member (base of 
LaClede). As the unit typically forms a steep slope or cliff in 
the lowermost part of the Laney Shale Member, the top of the 
LaClede Bed is generally shown in map view to be close to 
the base of the Laney. The top of the LaClede Bed has been 
mapped only locally in the Washakie Basin (Roehler, 1973b; 
1974b, c; 1977; 1978a, c). Laney Member strata above the 
LaClede Bed, which contains little oil, generally form a slope, 
and the top of the Laney typically crops out many miles from 
the outcrop line for the base of the Laney. Thus, assessing 
the LaClede Bed to the outcrop line at the base of the Laney 
Member very slightly overestimates its in-place resources as 
opposed to markedly underestimating the resources if the top 
of the Laney had been used. 

The lower part of the LaClede Bed, as defined by Roehler 
(1991b) in the Washakie Basin, is laterally equivalent to the 
upper part of the underlying Wilkins Peak Member in the 
Green River Basin to the west (pl. 1). The Sand Butte Bed, 
which overlies the LaClede Bed in the vicinity of the Rock 
Springs uplift, is tuffaceous sandstone and siltstone, and the 
Hartt Cabin Bed, which overlies the LaClede Bed in other 
areas of the Greater Green River Basin, is interbedded sand-
stone, siltstone, mudstone, shale, oil shale, tuff, limestone, and 
dolomite (figs. 3 and 17). 

The LaClede Bed thickens generally toward the south-
east from less than 50 ft in the northwestern part of the Green 
River Basin to a maximum of 650 ft in the central part of the 

Washakie Basin (fig. 34). Most of this thickening is due to the 
inclusion of progressively younger tongues of oil shale in the 
LaClede Bed towards the southeast (fig. 20, plate. 1), which 
were not assessed until they merged with the LaClede Bed. 
In plate 1, for example, a tongue of oil shale that is separated 
from the LaClede Bed by 80 ft of marginal lacustrine rock 
containing little oil in the Union Pacific RR Co. El Paso 44-3 
well was not assessed, but was assessed as part of the LaClede 
Bed in the Natl. Pk. Serv. Buckboars Crossing well 5.7 miles 
to the southeast. 

A total of 54 core holes and 71 rotary holes were used to 
assess the LaClede; total area that was assessed is 4,686 mi2, 
which did not include areas where control is absent in basin 
margin areas (fig. 33). Average GPT is highest, varying from 
about 11 to 23 GPT, along the east margin of the Green River 
Basin as well as along the west margin of the Washakie Basin 
(fig. 34). Maximum BPA is about 350,000 to 570,000 in the 
southwestern part of the Washakie Basin where the bed is 
thickest (fig. 35). Maximum in-place oil in a single township 
is more than 11.5 billion barrels in the southwestern part of the 
Washakie Basin (fig. 36). Total in-place oil is 377,185,000,000 
barrels (table 3).

Discussion

Estimated total in-place oil shale resources for the 
Eocene Green River Formation in the Greater Green River 
Basin is 1.44 trillion barrels (table 3), not too dissimilar from 
the estimated in-place resources of 1.52 trillion barrels for the 
Piceance Basin of Colorado of (Johnson and others, 2010a) 
and 1.32 trillion barrels for the Uinta Basin of Utah (Johnson 
and others, 2010a). However, the assessed area of the Greater 
Green River Basin, about 5,500 mi2, is about 1.4 times larger 
than the assessed area of the Uinta Basin (3,834 mi2) and over 
4 times larger than the assessed area of  the Piceance Basin 
(1,335 mi2). Thus, the oil shale deposits of the Greater Green 
River Basin are, overall, the lowest grade of the three basins. 
Maximum in-place oil in a single 6-mile by 6-mile township 
in the Greater Green River Basin is 23.1 billion barrels in T. 
17 N., R. 108 W (fig. 37). This compares with a maximum 
of 74.3 billion barrels of oil in place in a single township in 
the Piceance Basin (fig. 38). It should be noted that none of 
these estimates includes all of the oil shale that is present, as 
many marginal areas of the Greater Green River and Uinta 
Basins and the southernmost part of the Piceance Basin were 
not assessed due to lack of data. Oil shale in some of the early 
freshwater lacustrine stages in all three basins was excluded 
from all three assessments.
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Figure 30.  Isoresource map showing the oil yield in gallons per ton for the Wilkins Peak Member.
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Figure 31.  Isoresource map showing the oil yield in barrels per acre for the Wilkins Peak Member. 
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Figure 32.  Isoresource map of the Wilkins Peak Member of the Green River Formation showing total barrels of oil in each Township.
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Figure 33.  Isopach map of the LaClede Bed of the Laney Member.
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Figure 34.  Isoresource map showing the oil yield in gallons per ton for the LaClede Bed.
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Figure 35.  Isoresource map showing the oil yield in barrels per acre for the LaClede Bed.
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Figure 36.  Isoresource map of the LaClede Bed of the Laney Member of the Green River Formation showing total barrels of oil in each Township.
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Figure 37.  Isoresource map for the Greater Green River Basin showing total barrels of oil in each township for all three assessed units combined.
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