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Abstract

Thirty samples of well cuttings, collected from marine 
shales from the Cretaceous Thermopolis and Mowry Shales in 
the Bighorn Basin, were analyzed using Rock-Eval and total 
organic carbon analysis to determine their source rock poten-
tial. The samples were collected from wells located near the 
outcrop belt along the margins of the basin and are generally 
immature with respect to hydrocarbon generation. Results for 
the Thermopolis Shale indicate that it is composed of mainly 
Type-III gas-prone kerogen, however S2/S3 ratios indicate that 
the Thermopolis is capable of generating both oil and gas. 
Organic richness levels for the Thermopolis Shale are consid-
ered poor to fair. Results indicate that the Mowry Shale has a 
generative potential based on organic richness that is consid-
ered to be poor to very good, and hydrogen indices and S2/S3 
ratios indicate it is capable of generating both oil and gas.

Introduction

The Bighorn Basin is one of many structural and sedi-
mentary basins that formed in the Rocky Mountain foreland 
during the Laramide orogeny (Late Cretaceous through early 
Eocene). The basin is nearly 180 mi long, 100 mi wide, and 
encompasses about 10,400 mi2 in north-central Wyoming 
and south-central Montana (fig. 1). The basin is structurally 
bounded on the northeast by the Pryor Mountains, on the 
east by the Bighorn Mountains, and on the south by the Owl 
Creek Mountains. The north boundary as defined in this report 
includes a zone of faulting and folding referred to as the Nye-
Bowler lineament (Wilson, 1936). The northwest and west 
margins are formed by the Beartooth Mountains and Absaroka 
Range, respectively (fig. 2).

The first commercial hydrocarbon production from 
Cretaceous reservoirs in the basin was established at Garland 
and Greybull fields in 1906 and 1907, respectively (Fox and 
Dolton, 1996) (fig. 2). Since then cumulative production from 
Cretaceous and Tertiary reservoirs is about 94 million barrels 
of oil and 830 billion cubic feet of gas (IHS Energy Group, 
2007). In addition, a potential unconventional basin-centered 
gas accumulation may be present in Cretaceous reservoirs 
(Surdam and others, 1997; Johnson and Finn, 1998; Johnson 

and others, 1999; Finn and others, Chapter 3, this CD–ROM). 
It has been suggested that various Cretaceous marine shales 
are the principal hydrocarbon source rocks for these accumula-
tions in the Bighorn Basin (Burtner and Warner, 1984; Hagen 
and Surdam, 1984; Meissner and others, 1984). 

The purpose of this report is to present new data from 
results of Rock-Eval and total organic carbon (TOC) analysis 
for samples collected from immature Thermopolis and Mowry 
Shales in the Bighorn Basin and characterize their source 
rock potential. These new data supplement previously pub-
lished reports by Schrayer and Zarrella (1963, 1966, 1968), 
Nixon (1973), Burtner and Warner (1984), Hagen and Surdam 
(1984), Hagen (1986), Davis (1986), and Davis and others 
(1989). This study was conducted to support the U.S. Geologi-
cal Survey’s assessment of undiscovered oil and gas resources 
in the Bighorn Basin in 2007–08.
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Depositional Setting

During much of Cretaceous time, the part of central 
Wyoming that is now the Bighorn Basin was located near the 
west edge of the Rocky Mountain foreland basin, an elongate 
north-south structural depression that developed to the east 
of the tectonically active Western Cordilleran highlands prior 
to the Laramide orogeny. Throughout much of its history the 
foreland basin was flooded by a broad epicontinental sea, 
referred to as the Western Interior Seaway (WIS) that devel-
oped in response to foreland basin subsidence and eustatic 
sea-level rise (Steidtmann, 1993). At its maximum extent, the 
WIS extended for more than 3,000 mi from the Arctic Ocean 
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Figure 1.  Rocky Mountain region extending from southern Montana to northern New Mexico 
showing locations of Laramide sedimentary and structural basins and intervening uplifts. Modified 
from Dickinson and others (1988).
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Figure 2.  Index map showing the location of the Bighorn Basin Province, major structural elements, and oil 
and gas fields that produce from Cretaceous or Tertiary reservoirs.

to the Gulf of Mexico (fig. 3) (Kauffman, 1977). Erosion of 
the Western Cordilleran highlands supplied sediment to the 
basin by eastward-flowing streams, whereas the eastern shore 
was part of the stable craton that was topographically low and 
supplied little sediment westward into the seaway (Molenaar 
and Rice, 1988). During much of Cretaceous time, sediments 
accumulated in or adjacent to the WIS as the western shore-
line repeatedly advanced and retreated across the western part 
of the basin resulting in a complex pattern of intertonguing 
marine and nonmarine deposits (fig. 4). The marine deposits 

are represented by westward-thinning tongues of marine shale, 
siltstone, limestone, and marine sandstone. The nonmarine 
deposits are represented by eastward-thinning wedges of 
marginal marine and nonmarine sandstone, siltstone, shale, 
carbonaceous shale, and coal. The marine sediments were 
deposited during widespread marine transgressions creating 
highstand conditions that resulted in deepening of the seaway, 
limiting clastic input, and forming anoxic bottom conditions 
favorable for the preservation of organic matter (Meissner and 
others, 1984; Gries and others, 1992). Figure 5 is a generalized 
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stratigraphic chart and type log of the Lower Cretaceous and 
lowermost Upper Cretaceous rocks in the Bighorn Basin.

Stratigraphy

Thermopolis Shale

The Thermopolis Shale (known as the Skull Creek 
Shale in some other Rocky Mountain basins) as used in this 
report refers to lower Thermopolis Shale of Lupton (1916), 
Mills (1956), and Haun and Barlow (1962), which overlies 
the “rusty beds” of the Cloverly Formation, and underlies 
the Muddy Sandstone (fig. 5 and plate 1). The Thermopolis 
consists of 125 to 230 ft of marine shales and siltstones and 
represents a continuation of marine deposition that began with 
the “rusty beds” during sea-level rise in Albian time (Burtner 
and Warner, 1984; Hagen and Surdam, 1984). The shales are 
dark gray to black, contain thin layers of siltstone, sandy clay-
stone, and bentonite. The basal contact is gradational with the 
underlying “rusty beds” of the Cloverly Formation; the upper 
contact may be sharp and locally unconformable or grada-
tional with the overlying Muddy Sandstone.

Muddy Sandstone

The Muddy Sandstone is composed of very fine to 
medium-grained sandstone interbedded with minor amounts of 
shale, siltstone, carbonaceous shale, and coal of latest Albian 
age (Paull, 1962). The formation was deposited in fluvial, 
marginal marine, and estuarine environments and ranges in 
thickness from 7 to 125 ft. The thickest accumulations are 
associated with an incised valley-fill complex that developed 
on the exposed surface of the Thermopolis Shale during sea-
level lowstand (Dolson and others, 1991). 

Mowry Shale

According to Keefer and others (1998), the Mowry Shale 
in the Bighorn Basin consists of two distinct units (fig. 5 and 
plate 1). The lower part consists of about 160 to 400 ft of soft, 
fissile clay-rich shale similar to the Thermopolis Shale and is 
referred to as the upper Thermopolis Shale by several authors 
including Mills (1956) and Haun and Barlow (1962), and as 
the Shell Creek Shale by Eicher (1962) (fig. 5). The upper part 
consists of about 240 to 400 ft of hard, brittle siliceous shale. 
Numerous gray to tan bentonite beds are common throughout 
both parts and range in thickness from a fraction of an inch to 
about 7 ft (Byers and Larson, 1979). The siliceous shales are 
dark brown to black, organic-rich, and contain an abundance 
of fish scales (Burtner and Warner, 1984). Locally, thin fine-
grained sandstones occur in the middle to upper part of the 
siliceous part of the Mowry. These units, referred to informally 
as the “Kimball” and “Octh Louie” sands have produced oil 
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from fields on the east side of the basin (Pierce, 1948; Mills, 
1956; Cardinal and others, 1989). The Mowry Shale is marine 
in origin with a combined thickness for the lower and upper 
parts ranging from about 400 ft in the southeastern part of the 
basin to more than 800 ft near the Beartooth uplift (Finn and 
others, Chapter 3, this CD–ROM). Paleontologic evidence 
and radiometric dating indicate that the upper siliceous part 
of the Mowry is largely early Cenomanian in age (Cobban 
and Kennedy, 1989; Obradovich and others, 1996), however, 
radiometric dates for bentonite beds in the basal Mowry (Shell 
Creek equivalent) indicate an Albian (Early Cretaceous) age 
(Obradovich and others, 1996).

Methods

Thirty samples from 15 wells were collected from well 
cuttings of Thermopolis and Mowry Shales stored at the 
U.S. Geological Survey (USGS) Core Research Center in 
Lakewood, Colorado. The selected wells are located near the 
outcrop belt along the shallow margins of the basin in order to 
obtain samples that were not subjected to the effects of deep 
burial and therefore are immature with respect to hydrocarbon 
maturation (figs. 6, 7). Fifteen samples are from the Thermop-
olis Shale and 15 from the Mowry Shale. The 15 samples from 
the Mowry were collected from the lower 200 ft of the upper 
siliceous part, with the exception of the sample at location two 
that includes some of the upper part of the Shell Creek Shale 
interval of Eicher (1962) (plate 1). The 15 samples from the 
Thermopolis were collected from the middle to lower part 
of the unit (plate 1). Sample intervals were determined by 
examining a gamma-ray log, if available, and the interval(s) 
with higher gamma-ray intensities were selected, based on 
work by numerous authors who described a close association 
of gamma-ray intensity with higher TOC content (for example, 
Schmoker, 1981; Zelt, 1985; Hester and others, 1990; Her-
ron, 1991; Pratt and others, 1993; Dean and Arthur, 1998; 
Pasternack, 2005; and Rigoris and others, 2005). This relation, 
according to Hunt (1996), is a result of organic matter (OM) 
concentrating uranium from seawater.

The cuttings were examined under a binocular micro-
scope and the darkest chips were selected for analysis based 
on observations by Hosterman and Whitlow (1981), Char-
pentier and Schmoker (1982), Hunt (1996), and Landon and 
others (2001), all of whom suggested that TOC content gener-
ally increases as color goes from gray to black and therefore 
is a rough (although not always reliable) indicator of organic 
richness. If a gamma-ray log was not available or there was 
insufficient cuttings material present from a high gamma inter-
val then sample intervals were determined strictly by color. 
The cuttings were composited into one sample from thickness 
intervals that were generally 30 to 50 ft thick, but ranged from 
10 to 80 ft depending on how much material was available for 
a proper analysis (table 1).

The whole-rock samples were ground to a fine powder 
and splits were sent along with an internal USGS laboratory 

standard to an outside geochemical laboratory for analysis. 
Total organic carbon (TOC) content was determined using the 
Leco combustion method described by Jarvie (1991), and the 
pyrolysis analysis was done using a Rock-Eval 2 pyroanalyzer 
(Espitalie and others, 1977; Tissot and Welte, 1978; Peters, 
1986; and Hunt, 1996, contain detailed discussions of the 
pyrolysis method).

Results

Quantity of Organic Matter

According to Jarvie (1991), the quantity of organic matter 
in a formation measured as weight percent (TOC) is an indica-
tor of the organic richness and generative potential. Rocks 
with less than 0.5 weight percent TOC have poor generative 
potential, rocks with 0.5 to 1 weight percent TOC are consid-
ered fair, rocks with 1–2 weight percent TOC are considered 
good, rocks with 2–4 weight percent TOC are considered very 
good, and rocks with greater than 4 weight percent TOC are 
considered to have excellent generative potential (Peters and 
Casa, 1994). Table 1 and figure 8A show the results of TOC 
analyses of Cretaceous marine shales in the Bighorn Basin.

The results of TOC analyses of the 15 samples collected 
from the Thermopolis Shale show values ranging from 1.04 to 
1.91 percent, with an average of 1.5 percent  indicating good 
generative potential (fig. 8A). The 15 samples collected from 
the Mowry Shale have TOC contents that range from 1.11 to 
2.65 percent, with an average of 1.8 percent. Most of the sam-
ples fall in the 1 to 2 percent range indicating good generative 
potential, but a few samples fall into the 2 to 4 percent range 
indicating very good generative potential (fig. 8A).

Peters and Cassa (1994) pointed out that TOC is not 
always a good indicator of source rock potential because 
measurements may include inert carbon that has little or no 
generating potential. They (Peters and Cassa, 1994) stated 
that the S2 measurement derived from pyrolysis analysis is a 
better indicator of generative potential of source rocks. The 
value S2, expressed as milligrams of hydrocarbons per gram 
of rock, represents the fraction of original kerogen in a source 
rock capable of generating hydrocarbons that have not yet 
been converted to oil or gas or both (Tissot and Welte, 1978). 
According to Peters and Cassa (1994), rocks with S2 values 
less than 2.5 have poor generative potential, rocks with S2 
values between 2.5 and 5 have fair generative potential, rocks 
with S2 values ranging from 5 to 10 have good generative 
potential, rocks with S2 values from 10 to 20 are considered to 
have very good generative potential, and rocks with S2 values 
greater than 20 have excellent generative potential.

S2 measurements for the Thermopolis and Mowry Shales 
are presented in table 1 and on figure 8B. The 15 samples from 
the Thermopolis Shale show a range of S2 values from 0.82 to 
3.49, indicating that it is a poor to fair source rock (fig. 8B). 
Six of the 15 samples from the Mowry Shale have S2 values 
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Figure 6.  Index map of the Bighorn Basin showing sample localities.

less than 2.5, indicating poor generative potential (fig. 8B). 
Of the remaining samples, seven are in the fair range, and two 
fall in the good range, indicating the Mowry is generally a fair 
source rock.

Types of Organic Matter

According to Jacobson (1991) and Peters and Cassa 
(1994), there are four types of kerogen in sedimentary rocks: 
Type-I, composed of oil-prone hydrogen-rich organic matter 
generally in lacustrine and some marine sediments; Type-II, 

also composed of oil-prone hydrogen-rich organic matter 
mainly in marine sediments, Type-III composed of terrestrial 
organic matter derived mainly from woody plant material 
that is low in hydrogen content and generates mainly gas, and 
Type-IV composed of dead or inert carbon that has little or no 
generating capacity. Even though oil is the main product of 
Type-II kerogen, it actually produces more gas than Type-III 
kerogen (Hunt, 1996). Using the results of pyrolysis analysis, 
the type of kerogen present in a source rock can be deter-
mined by the hydrogen index (HI) and the oxygen index (OI), 
defined as (S2  /TOC) × 100, and (S3  /TOC) × 100, respectively 
(Espitalie and others, 1977; Tissot and Welte, 1978; and Hunt, 
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Figure 7.  Tmax values plotted versus depth. Plot shows 
that all samples are immature or are in the early stages of 
thermal maturity with respect to oil generation. Parameters 
describing stages of thermal maturity for oil generation 
are from Peters and Casa (1994). Tmax, temperature (°C) 
corresponding to S2 peak from Rock-Eval pyrolysis.

1996). According to Hunt (1996), the type of hydrocarbons 
(oil or gas) generated from a source rock depends on the 
hydrogen content of the organic matter.

The HI and OI results from pyrolysis of the samples 
collected for the Thermopolis and Mowry Shales are shown 
on table 1 and plotted in figure 9. The plots for the 15 samples 
from the Thermopolis Shale show that most of the kerogen is 
Type-III indicating that the Thermopolis is a potential source 
rock mainly for gas (fig. 9). The plots for the 15 samples from 
the Mowry Shale show that most of the kerogen types are 

intermediate between Type-II and Type-III, indicating that the 
Mowry is a potential source for both oil and gas (fig. 9). 

Another method of determining the type of hydrocarbons 
generated from a source rock is by using the ratio of the values 
S2 and S3 derived from pyrolysis analysis. According to Peters 
(1986), Peters and Cassa (1994), and Hunt (1996), the ratio 
S2 /S3 is proportional to the amount of hydrogen in a source 
rock and is an indicator of the potential to generate oil and 
gas. According to Peters and Cassa (1994), rocks with an S2 /S3 
ratio less than 1 are not likely to produce any oil or gas, those 
with ratios between 1 and 5 produce gas, those with ratios 
between 5 and 10 produce both oil and gas, and those with 
ratios greater than 10 produce mainly oil.

The S2 /S3 values for samples collected from the Ther-
mopolis and Mowry Shales, are shown on table 1 and plotted 
in figure 10. The S2 /S3 values for the Thermopolis Shale range 
from 1.35 to 7.76 indicating the Thermopolis is capable of 
generating both oil and gas (fig. 10). The S2 /S3 values for the 
Mowry Shale range from 1.5 to 11.84 indicating the Mowry is 
capable of generating both oil and gas (fig. 10).

Distribution of Organic Matter in the Mowry 
Shale

Maps were constructed for the Mowry Shale to 
show variations in TOC and kerogen type (HI) across the 
Bighorn Basin (fig. 11). Maps were not constructed for the 
Thermopolis Shale due to the narrow range of values in TOC 
and HI (figs. 8, 9 and table 1).

Basin-wide variations of the type and amount of organic 
matter present in the Mowry Shale are shown in figure 11. 
Figure 11A shows that all of the samples with TOC contents 
greater than 2 weight percent occur in the southeastern and 
northeastern parts of the Bighorn Basin. This trend is in gen-
eral agreement with mapping presented by Burtner and Warner 
(1984; their fig. 15). A similar trend was noted by Finn (2007) 
for the Mowry in the Wind River Basin to the south. Regional 
studies by Schrayer and Zarrella (1963, 1966, 1968), Nixon 
(1973), Byers and Larson (1979), Davis (1986), and Davis 
and others (1989) discussed a similar trend of decreasing TOC 
content from east to west and suggested several possibilities 
for this trend, including 1) clastic dilution of organic matter 
due to higher sedimentation rates along the western shoreline 
of the WIS as sediments were eroded from the Western Cordil-
lera, 2) greater input of marine organic matter in the central 
part of the seaway, and 3) post-depositional biodegradation of 
organic matter near the margins of the basin where less anoxic 
conditions existed. Differences in sampling methodology in 
this study from previous studies, and the small number of 
samples may also bias trends. Figure 11B shows little variation 
in kerogen types based on HI for the Mowry Shale in the Big-
horn Basin indicating that the Mowry is capable of generating 
both oil and gas throughout the basin.
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ing Part of the B
ighorn B
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1 49017205470000 Teton Energy 19-1 Hayes Ranch 42N 91W 19 740 770 Mowry 1.27 0.19 4.61 4.8 0.84 5.5 416 363 66 0.04
1 49017205470000 Teton Energy 19-1 Hayes Ranch 42N 91W 19 1,020 1,050 Thermopolis 1.55 0.17 2.36 2.53 0.57 4.14 432 152 37 0.07

2 49017202360000 Brinkerhoff Drlg. Husky 3X-A 44N 96W 7 1,115 1,195 Mowry 1.8 0.31 2.31 2.62 0.82 2.81 430 128 46 0.12
2 49017202360000 Brinkerhoff Drlg. Husky 3X-A 44N 96W 7 1,435 1,495 Thermopolis 1.5 0.34 2.32 2.66 0.52 4.46 433 155 35 0.13

3 49043202510000 Ashland Expl. Inc. 1-20 Chabot 43N 88W 20 630 690 Mowry 1.92 0.14 1.16 1.3 0.77 1.5 420 60 40 0.11
3 49043202510000 Ashland Expl. Inc. 1-20 Chabot 43N 88W 20 940 1,000 Thermopolis 1.71 0.22 3.49 3.71 0.45 7.76 433 204 26 0.06

4 49043201400000 Samedan Oil 1 Kellogg-Federal 46N 89W 13 520 560 Mowry 2.24 0.3 3.33 3.63 0.82 4.06 422 149 37 0.08
4 49043201400000 Samedan Oil 1 Kellogg-Federal 46N 89W 13 940 980 Thermopolis 1.45 0.21 2.19 2.4 0.48 4.56 432 151 33 0.09

5 49043050420000 Pacific Western 2 State Prescott 44N 92W 36 2,150 2,180 Mowry 2.13 0.44 4.47 4.91 0.75 5.96 425 210 35 0.09
5 49043050420000 Pacific Western 2 State Prescott 44N 92W 36 2,500 2,550 Thermopolis 1.5 0.24 2.67 2.91 0.5 5.34 437 178 33 0.08

6 49029213230000 Apache Corp. 36-11 State 47N 102W 36 930 990 Mowry 1.57 0.46 3.44 3.9 0.41 8.93 432 219 26 0.12
6 49029213230000 Apache Corp. 36-11 State 47N 102W 36 1,490 1,550 Thermopolis 1.19 0.16 1.53 1.69 0.24 6.38 435 129 20 0.09

7 4900320695000 DATA Bighorn DATA 43-6 51N 91W 6 1,100 1,160 Mowry 1.73 0.02 0.08 0.1 0.02 4 437 5 1 0.2
7 4900320695000 DATA Bighorn DATA 43-6 51N 91W 6 1,650 1,710 Thermopolis 1.42 0.15 2.06 2.21 0.37 5.57 432 145 26 0.07

8 49003305100000 Amerada 1 USA-Neal 49N 91W 28 2,140 2,220 Mowry 2.34 0.42 5.26 5.68 0.84 6.26 421 225 36 0.07
8 49003305100000 Amerada 1 USA-Neal 49N 91W 28 2,640 2,670 Thermopolis 1.91 0.35 3.19 3.54 0.58 5.5 431 167 30 0.1

9 49029210900000 National Oil Co. 33-30 Rawhide 49N 101W 30 2,000 2,010 Mowry 1.83 0.23 3.77 4 0.56 6.73 424 206 31 0.06
9 49029210900000 National Oil Co. 33-30 Rawhide 49N 101W 30 2,390 2,410 Thermopolis 1.84 0.2 3.09 3.29 0.42 7.36 431 168 23 0.06

10 49003205130000 Northern Natural Gas Fed. 362 1-32 54N 94W 32 2,240 2,260 Mowry 1.75 0.23 4.38 4.61 0.37 11.84 425 250 21 0.05
10 49003205130000 Northern Natural Gas Fed. 362 1-32 54N 94W 32 2,690 2,720 Thermopolis 1.42 0.11 2.15 2.26 0.34 6.33 433 151 24 0.05

11 49029212000000 National Oil Co. 42-10 Federal 57N 98W 10 1,950 1,960 Mowry 1.11 0.28 1.98 2.26 0.38 5.21 427 178 34 0.12
11 49029212000000 National Oil Co. 42-10 Federal 57N 98W 10 2,510 2,530 Thermopolis 1.34 0.12 1.41 1.53 0.41 2.78 432 105 31 0.08

12 49003050480000 True Oil 1 Dever 57N 96W 7 1,080 1,130 Mowry 1.71 0.48 3.71 4.19 0.54 6.87 431 217 32 0.11
12 49003050480000 True Oil 1 Dever 57N 96W 7 1,500 1,530 Thermopolis 1.07 0.21 1.04 1.25 0.77 1.35 432 97 72 0.17

13 49003063720000 Graves-Davis Oil 3 Asay 56N 96W 23 1,790 1,820 Mowry 2.65 0.65 8.41 9.06 0.92 9.14 425 317 35 0.07
13 49003063720000 Graves-Davis Oil 3 Asay 56N 96W 23 2,370 2,410 Thermopolis 1.04 0.21 0.82 1.03 0.5 1.64 432 79 48 0.21

14 49029055880000 Aztec Oil and Gas Federal-H M 1 51N 102W 27 930 970 Mowry 1.56 0.17 1.68 1.85 0.51 3.29 428 108 33 0.09
14 49029055880000 Aztec Oil and Gas Federal-H M 1 51N 102W 27 1,400 1,430 Thermopolis 1.53 0.14 2.29 2.43 0.54 4.24 432 150 35 0.06

15 49029214170000 Texaco Inc. 1 H C Sheets 54N 102W 21 1,610 1,650 Mowry 1.38 0.22 1.79 2.01 0.78 2.29 430 130 57 0.11
15 49029214170000 Texaco Inc. 1 H C Sheets 54N 102W 21 2,110 2,160 Thermopolis 1.62 0.21 2.52 2.73 0.54 4.67 437 156 33 0.08

Table 1.   Rock-Eval and total organic carbon data for the Wyoming part of the Bighorn Basin.  Map number in column 1 refers to the map location shown on figure 6.  Depths are in feet. 
S1, milligrams of hydrocarbons per gram of rock; S2, milligrams of hydrocarbons per gram of rock; S3, milligrams of CO2 per gram of rock; Pl, production index; TOC, total organic carbon in 
weight percent; HI, hydrogen index; OI, oxygen index; API, well number assigned by American Petroleum Institute; Tmax, temperature (°C) corresponding to S2 peak from Rock-Eval pyrolysis. 

Map no. API Operator Well name Township Range Section Top depth Bottom depth Formation TOC S1 S2 S1+S2 S3 S2/S3 Tmax HI OI Pl
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Figure 8.  Plots showing source rock potential of the Thermopolis and Mowry Shales based on 
(A) total organic carbon content and (B) S2 values derived from Rock-Eval pyrolysis. Parameters 
describing source rock generative potential are from Peters and Casa (1994). TOC, total organic 
carbon; mg HC/g rock, milligrams of hydrocarbons per gram of rock.
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or gas) from Peters and Casa (1994). 
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milligrams of CO2 per gram rock (Peters, 1986).
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Summary

Results of TOC and Rock-Eval analyses of potential 
hydrocarbon-source rocks for the Thermopolis and Mowry 
Shales in the Bighorn Basin are summarized as follows:

1.  The Mowry Shale has poor to good generative poten-		
	 tial, with organic matter intermediate between kero-		
	 gen Types-II and -III and the capability of generating 		
	 both oil and gas.

2.  The Thermopolis Shale has poor to fair generative    		
	 potential, and contains mainly Type-III gas-prone 		
	 kerogen based on hydrogen indices. However;  
	 S2/S3 ratios indicate that the Thermopolis is capable 		
	 of generating both oil and gas.
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