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Abstract

The U.S. Geological Survey (USGS) recently completed 
an assessment of the undiscovered oil and gas resources of the 
Western Oregon and Washington Province, which includes 
about 40,000 mi2 in western Oregon and Washington. The 
assessment was geology based using the total petroleum sys-
tem (TPS) concept. The primary geologic elements of a TPS 
include hydrocarbon source rocks (source rock maturation 
and hydrocarbon generation and migration), reservoir rocks 
(quality and distribution), and traps for hydrocarbon accumu-
lation. Using these criteria, the USGS assessment team defined 
three TPSs, each with one assessment unit (AU): (1) the 
Cretaceous-Tertiary TPS and the Western Oregon and Wash-
ington Conventional Gas AU, (2) the Tertiary Marine TPS and 
the Tertiary Marine Gas AU, and (3) the Tertiary Coalbed Gas 
TPS and the Eocene Coalbed Gas AU. 

More than 23,000 ft of Paleogene volcanic rocks, marine 
mudstone and sandstone, and nonmarine arkosic sandstone, 
mudstone, carbonaceous shale, and coal are present in western 
Oregon and Washington. These rocks include potential mature 
petroleum source rocks and reservoir rocks.

The USGS assessed both undiscovered conventional oil 
and gas and undiscovered continuous (unconventional) gas 
in the Western Oregon and Washington Province, resulting 
in estimated mean volumes of 2,214 billion cubic feet (BCF) 
of undiscovered natural gas and 15 million barrels of oil 
(MMBO). Sixty-seven percent (1,489 BCF) of the undiscov-
ered gas is contained within the hypothetical Eocene Coalbed 
Gas AU in western Oregon and Washington. The mean esti-
mated volume of gas for the Western Oregon and Washington 
Conventional Gas AU is 454 billion cubic feet of gas (BCFG), 
with an estimated mean size of the largest reported gas field 
of 85 BCFG. For the Tertiary Marine AU, the estimated mean 
volume is 249 BCFG, with the estimated mean size of the 
largest expected gas field of 101 BCFG. The assessed mean 
undiscovered volume of oil in the Tertiary Marine Gas AU is 
15 million barrels of oil (MMBO), with estimated means of 
22 BCFG for associated gas and 1 million barrels of natural 
gas liquids. The mean size of the largest expected oil field is 9 
MMBO.

Introduction

As part of the U.S. Geological Survey’s (USGS) effort 
to assess the potential for undiscovered petroleum accumu-
lations, the USGS recently conducted an assessment of the 
undiscovered oil and gas resources of the Western Oregon 
and Washington Province (fig. 1). This report supplements the 
2009 assessment (Brownfield and others, 2009) of the prov-
ince by providing additional geologic detail concerning the 
defined total petroleum systems (TPS) and assessment units 
(AU), as well as a more detailed rationale for the quantitative 
assessment input.

The Western Oregon and Washington Province includes 
all of Oregon and Washington north of the Klamath Mountains 
and west of the approximate crest of the Cascade Range. The 
province extends offshore to the 3-mi limit of State waters 
on the west and to the U.S.-Canada International Bound-
ary in the Strait of Juan de Fuca and Canada on the north. 
The province measures about 450 mi in a north–south direc-
tion and 50–160 mi east–west, encompassing approximately 
40,000 mi2 (fig. 1).

Before 1979, the only oil and gas production in the prov-
ince was in Washington. In Watcom County, near Bellingham, 
Wash., small amounts of gas were produced from the Paleo-
gene Chuckanut Formation below Quaternary gravels, and 
about 12,000 barrels of oil and associated gas were produced 
west of Aberdeen, Wash., from 1957 to 1961. Currently, the 
only hydrocarbon production is gas from the Mist field in 
northwestern Oregon (fig. 1) that was discovered in May 1979. 
The Mist field has produced about 65 billion cubic feet of gas 
(BCFG) through 2008 (Oregon Department of Geology and 
Mineral Industries, 2009).

In 1995, eight conventional plays were assessed in Prov-
ince 4 by the USGS (Johnson and Tennyson, 1995): Belling-
ham Basin Gas Play (0401), Southeastern Puget Lowland Gas 
Play (0402), Puget Lowland Deep Gas Play (0403), Tofino-
Fuca Basin Gas Play (0404), Western Washington Melange 
Play (0405), Southwest Washington Miocene Sandstone Play 
(0406), Cowlitz-Spencer Gas Play (0407), and Southwestern 
Oregon Eocene Gas Play (0410). Another conventional play, 
the Astoria Play (0408), was not formally assessed because 
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Figure 1.  Western Oregon and Washington Province located in western Oregon 
and Washington; boundary is shown in red. Cretaceous-Tertiary Composite Total 
Petroleum System (TPS) is shown in orange. Eocene Coalbed Gas TPS is shown 
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of uncertainty about the presence of suitable reservoirs and 
source rocks. Three unconventional (coalbed gas) plays were 
also assessed, Western Washington-Bellingham Basin (0450), 
Western Washington-Western Cascade Mountains (0451), and 
Western Washington-Southern Puget Lowland (0452).

For the eight conventional petroleum plays assessed in 
Province 4 (Johnson and Tennyson, 1995), a mean undiscov-
ered hydrocarbon resource of 590 BCFG and 19.3 million 
barrels of oil (MMBO) was estimated. Mean estimated undis-
covered gas resource from the three hypothetical coalbed-gas 
plays was 697.3 BCFG.

This new assessment of the Western Oregon and Wash-
ington Province was geology based, and the total petroleum 
system (TPS) concept was applied. The geologic elements of 
a TPS include hydrocarbon source rocks (source rock matura-
tion and hydrocarbon generation and migration), reservoir 
rocks (quality and distribution), and traps for hydrocarbon 
accumulation. Using these geologic criteria, the USGS defined 
three TPSs and two conventional assessment units (AU) and 
one continuous AU. The Cretaceous-Tertiary Composite and 
the Tertiary Marine TPSs contain the Western Oregon and 
Washington Conventional Gas and the Tertiary-Marine Gas 
AUs, respectively. The Tertiary Coalbed Gas TPS contains the 
continuous Eocene Coalbed Gas AU. Undiscovered hydrocar-
bon resources were assessed in each of the defined AUs.

Geologic Setting of Western Oregon 
and Washington Province

The Western Oregon and Washington Province (fig. 1) 
occupies a complex geologic setting along the northwest-
ern continental margin of North America (figs. 2 and 3). 
The region overlies a major north-trending crustal boundary 
between the pre-Tertiary terranes of the Cascade and Klamath 
Provinces and the mafic basement of the Oregon and Wash-
ington Coast Range (Eocene Crescent Formation and Siletz 
River Volcanics). The boundary fault between these terranes is 
exposed in two places: the southern part of Vancouver Island 
where the Leach River thrust fault is the crustal boundary and 
the southwestern part of Oregon where the Wildlife Safari 
fault is the boundary (fig. 4). The eastern boundary fault likely 
is buried beneath the Puget Lowland and the Willamette Valley 
(fig. 2).

Rocks accreted during pre-Tertiary subduction crop 
out around the margins of the province in the north Cascade 
Range, San Juan Islands, and Klamath Mountains and prob-
ably underlie much of the Paleogene rocks in the eastern part 
of the province (figs. 2, 3, and 4). They include ultramafic 
rocks, mafic volcanic rocks, graywacke, mudstone, chert, and 
plutonic and metamorphic rocks and are considered unlikely 
to be prospective for hydrocarbons.

Basement rocks for the western part of the province (the 
Coast Range block) consist of a thick complex of Paleocene 
to Eocene mafic submarine volcanic rocks consisting of the 

Crescent Formation of northwestern Washington and the 
Siletz River Volcanics of the Oregon Coast Range (figs. 3 
and 4). These rocks are now widely believed to have formed 
in a continental-margin rift setting (Wells and others, 1984; 
Snavely, 1987; Babcock and others, 1992). In the Olympic 
Peninsula of western Washington, the thick submarine basalt 
of the Crescent Formation is structurally underlain by a 
subducted Eocene to Miocene melange complex consisting of 
the Ozette terrane (Snavely and others, 1993b) and the Hoh 
rock assemblage (Rau, 1973) that record ongoing subduction 
through Cenozoic time (fig. 5). Similar rocks are inferred at 
depth beneath the entire continental margin of Washington and 
Oregon.

Throughout the province, Cenozoic forearc-basin strata, 
as much as 20,000 ft thick, onlap the diverse pre-Tertiary base-
ment and the Paleocene to Eocene volcanic basement. Forearc 
deposition occurred in a wide range of settings, including 
fluvial, fan-delta, delta, shallow-marine, continental-slope, and 
submarine-fan environments. The lower part of this sequence 
is interbedded with, and intruded by, Eocene volcanic rocks. 
The strata show general patterns of progradation northward 
from a southern Klamath igneous and metamorphic source and 
westward from both volcanic source terranes in the Cascade 
Range and distant crystalline rocks in northeastern Washing-
ton, eastern Oregon, and Idaho. Sandstones derived from the 
more distant crystalline terranes typically are Eocene in age 
and are more promising as reservoir rocks because they are 
less susceptible to diagenetic deterioration of porosity and 
permeability by alteration of unstable volcanic lithic grains. 
Such sandstone units include parts of the shallow marine 
Spencer and Cowlitz Formations, the deltaic Coaledo Forma-
tion, several members of the deltaic to submarine fan or ramp 
Tyee Formation, the fluvial Chuckanut Formation, and parts 
of the deltaic Puget Group (fig. 5; also see fig. 8). During 
the Eocene, the region was deformed by oblique subduction 
along the continental margin, as well as extension and clock-
wise rotation of the Coast Range block (fig. 3). This Eocene 
deformation caused widespread and heterogeneous folding, 
faulting, uplift, and subsidence. The upper middle and upper 
Eocene coal-bearing rocks crop out in the western foothills of 
the Cascade Range, on the eastern flank of the Puget Lowland, 
and in Chehalis Basin and Willamette Valley (fig. 2).

Oligocene strata generally record a westward prograda-
tion of the coastline, have a significant volcaniclastic compo-
nent, and are not generally prospective for petroleum. Uplift 
of most of the Oregon Coast Range of the Oregon part of the 
forearc basin and Washington’s Olympic Mountains took place 
in Oligocene to Pliocene time, while local depositional centers 
such as the Grays Harbor Basin of southwest Washington 
continued to subside.

Formation of the Cascade volcanic arc began in the 
late Eocene to early Oligocene. Quaternary volcanoes in the 
Pacific Northwest include Mount Adams, Mount Baker, Mount 
Rainier, Mount Hood, Mount Jefferson, and the recently active 
Mount St. Helens (fig. 3).
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Figure 2.  Locations of selected Tertiary basins in the Western Oregon and Washington Province (red outline), and the 
approximate locations of oil and gas fields and Eocene coal fields. Isopach contours of Tertiary rocks are in thousands of feet. 
Modified from Braislin and others (1971), Snavely and Wagner (1980), and Armentrout and Suek (1985).

In middle and late Miocene time, flood basalt of the 
Columbia River Basalt Group erupted in eastern Washington 
and Oregon. Huge volumes of basalt repeatedly surged down 
the course of the Columbia River, ponding in the floor of the 
northern part of the Willamette Valley and continuing on to the 
Pacific Ocean. These basalt flows built lava deltas and invaded 
the continental margin strata as voluminous sills and other 
intrusive bodies, possibly contributing to heating of potential 
petroleum source rocks in the pre-middle Miocene section.

During Miocene and Pliocene time, the ancestral Colum-
bia River deposited large volumes of shallow marine and 
deltaic sediments in what is now coastal southwestern Wash-
ington and northwestern Oregon (Astoria and Montesano 
Formations), supplemented by smaller coastal river systems. 

Late Cenozoic deformation, continuing today, has involved 
gentle folding, rapid uplift of the Olympic Mountains, and 
both reverse and strike-slip faulting.

During the Pleistocene, alpine glaciers occupied parts 
of both the Cascade Range and the Olympic Mountains. The 
Puget Lowland, an elongate topographic trough between these 
two highlands, was occupied by a lobe of the continental ice 
sheet. The Puget Lowland is now mantled by unconsolidated 
glacial deposits of variable thickness.

Figures 6 and 7 are generalized geologic maps of the 
western parts of Oregon (modified after Walker and MacLeod, 
1991; and Walker and others, 2003) and Washington (modified 
after Schuster, 2005).
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Western Oregon

The western Oregon part of the province is bounded on 
the south by the northern margin of the pre-Tertiary Klamath 
Mountains and on the east by upper Eocene to Quaternary 
arc-related volcanic rocks of the Cascade Range (fig. 2) and 
extends offshore to the 3-mile limit of State waters on the 
west. The northern boundary is the Columbia River.

Siletz River Volcanics

The basement rocks of western Oregon consist of 
Paleocene to lower Eocene marine basalts and volcaniclastic 
rocks of the Siletz River Volcanics (figs. 8 and 9), which are 
as much as 19,700 ft thick (Wells and others, 2000) in the 
southern part of the Oregon Coast Range. Based on seismic 
studies (Trehu and others, 1994), the Siletz River Volcanics 

forms a continuous basement unit beneath the Oregon coastal 
region and the Willamette Valley ranging from 15.5 to 22 mi 
thick in the central part of the Coast Range; equivalent rocks 
thin to about 3.7 mi thick near Vancouver Island (Trehu and 
others, 1994). The Siletz River Volcanics, also known as the 
Siletz terrane, are thought to represent an oceanic plateau, 
an island chain, or a marginal basin that was accreted to the 
North American continent in the early Eocene (Simpson and 
Cox, 1977; Duncan, 1982; Wells and others, 1984; Clowes and 
others, 1987; Snavely, 1987; Babcock and others, 1992; Wells 
and others, 2000).

The Siletz River Volcanics, in the southern part of the 
province, consists of two submarine lithofacies. The first 
lithofacies is located mostly in the southern part of the Oregon 
Coast Range near Roseburg (figs. 3, 8, and 9), which con-
sists of massive to pillowed basalt (fig. 10), pillow breccia, 
lapilli tuff, laminated tuff, basaltic sandstone, and mudflow 
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breccia, with minor turbidite sandstone and mudstone (fig. 11), 
sandstone, and conglomerate interbeds (Molenaar, 1985; Wells 
and others, 2000). The turbidite interbeds contain clasts and 
rock fragments that appear to be derived from the Klamath 
Mountains, indicating that the basalts and associated volcani-
clastic rocks were likely extruded near the Juan de Fuca-North 
American plate margin (fig. 3). The second lithofacies exposed 
north of Roseburg (fig. 9) consists of flow basalt and breccia 
and minor sedimentary interbeds. The age of the Siletz River 
Volcanics in the southern Oregon Coast Range is determined 
from microfauna in the sedimentary interbeds (Baldwin, 1974, 

1975; Wells and others, 2000) and the sequence was mapped 
as the Roseburg Formation (fig. 12) by Baldwin (1974).

In the type locality, in the central part of the Oregon 
Coast Range, the Siletz River Volcanics contains marine 
tholeiitic basalt flows, pillow basalt, flow breccia, and vol-
caniclastic rocks (Snavely and Baldwin, 1948; Beaulieu, 
1971) of early and middle Eocene age (Snavely and Wagner, 
1963; Duncan, 1982). Minor tuffaceous siltstone interbeds 
are locally present. The Kings Valley Siltstone Member of 
the Siletz River Volcanics (fig. 8) is about 3,000 ft thick and 
overlies the main volcanic unit (Vokes and others, 1955); the 
member consists of thinly bedded tuffaceous siltstone and 
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water-laid tuff, and likely represents a late pyroclastic phase in 
Siletz River volcanism.

Umpqua and Tyee Basins, Oregon Coast Range

Two superimposed basins with different regional trends 
are recognized in the southern Oregon Coast Range (figs. 8, 
9, and 13) (Ryu and others, 1992; Ryu, 1995; Ryu and Niem, 
1999; Ryu, 2008). The Paleocene to early Eocene Umpqua 
Basin is northeast-trending, and is filled with strongly 
deformed turbidite rocks of the Umpqua Group (fig. 12). 
Superimposed on the Umpqua Basin is the Tyee forearc basin 
(figs. 9 and 13) (Snavely and others, 1964; Chan, 1985; Heller 
and Ryberg; 1983, Ryu and others, 1992; Ryu and Niem, 
1999; Wells and others, 2000; Ryu, 2008). The Tyee Basin is 
less deformed and filled with the lower to middle Eocene Tyee 
Formation and middle to upper Eocene Elkton, Bateman, and 

Spencer Formations (fig. 13). The lower part of this Ceno-
zoic forearc sequence is interbedded with pillow basalt of the 
Siletz River Volcanics and intruded by Eocene volcanic rocks. 
Paleogene forearc-basin strata onlap the diverse pre-Tertiary 
basement rocks of the Klamath Mountains and the Paleocene 
to Eocene volcanic basement (fig. 13). The overall thickness 
of sedimentary rocks in the Umpqua-Tyee Basins is about 
23,000 ft in the southern part of the Oregon Coast Range 
(Ryu and Niem, 1999; Ryu, 2008). Deposition occurred in a 
range of settings, including fluvial, fan-delta, delta, shallow-
marine, continental-slope, and submarine-fan environments 
(fig. 14); these strata overlap the Siletz terrane in the Oregon 
Coast Range and unconformably overlie rocks in the Klamath 
Mountains.

The Umpqua Basin strata represent a partially subducted 
accretionary wedge deposited either on a rifting continental 
margin (Wells and others, 1984) or in a trench (Heller and 
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Figure 10.  Outcrop of massive pillow basalt in the Paleocene to lower Eocene Siletz River Volcanics 
west of Roseburg, Oregon (see fig. 9). Note 12-in. hammer for scale.

Figure 11.  Turbidite beds in the Siletz River Volcanics northwest of Roseburg, Oregon (see fig. 9).
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Ryberg, 1983).The stratigraphic nomenclature has undergone 
many changes from the late 1890s (fig. 12), with both the 
Umpqua Formation and the Umpqua Group names being used; 
this paper adopts the stratigraphic nomenclature of Wells and 
others (2000) as shown in the left-hand column of figure 12. 
The Umpqua Group is at least 10,000 ft thick (Molenaar, 
1985). Syntectonic fan-delta and marginal-marine lithic sedi-
ments were deposited along the southernmost margin of the 
Oregon Coast Range as the Bushnell Rock Formation of the 
Umpqua Group (Wells and others, 2001) and the Slater Creek 
Sandstone Member of the Bushnell Rock Formation (figs. 12 
and 15). The Bushnell Rock Formation consists mostly of 
conglomerate (fig. 15), consisting of boulder to pebble clasts 
derived from the Klamath Mountains. Depositional envi-
ronments include fanglomerate, fan delta, and deep marine 
turbidite channels that interfinger upsection with thick-bedded, 
fine-grained sandstone of the Slater Creek Sandstone Member. 
Overlying the Bushnell Formation and Slater Creek Member 
is the Tenmile Formation (fig. 12), which has been interpreted 
as trench-fill turbidites deposited on the Siletz River Volcanics. 
The transgressive Tenmile Formation consists of deep-marine 
inner, middle, and outer submarine-fan turbidite sandstones 
(fig. 16) and basinal mudstones in a marginal basin or trench 
setting (Heller and Ryberg, 1983; Niem and Niem, 1990; Ryu 
and Niem, 1999; Wells and others, 2000). Subduction ceased 
along the trench after the deposition of the Tenmile Forma-
tion resulting in development of seamounts. The fluvial to 
deltaic lithic strata of the overlying White Tail Ridge Forma-
tion (fig. 17) filled irregular lows between the seamounts and 
thinned over submarine highs (Ryu and Niem, 1999). The 
White Tail Ridge locally contains carbonaceous mudstones 
and coal. The uppermost formation of the Umpqua Group is 
the Camas Valley Formation (fig. 12), which consists of thick, 

concretionary, foraminifer-bearing dark-gray mudstone that 
was deposited in a slope environment.

West of the Roseburg area and east and south of the 
Coos Bay Basin in the Oregon Coast Range (figs. 6 and 13), 
the Umpqua Group cannot be differentiated into individual 
formations (Molenaar, 1985). South of Coos Bay Basin, the 
sequence consists of thick mudstone and turbidites, and west 
and north of Coos Bay, it is absent due to depositional thinning 
across structural highs or seamounts within the Siletz terrane.

The Eocene Tyee forearc basin extends north–south about 
200 mi and is overlapped on the east by Tertiary volcanic 
rocks of the Cascade Range and bounded on the south by 
the Mesozoic Klamath Mountains (figs. 6 and 13). The basin 
contains about 23,000 ft of strata deposited in the active 
North American convergent margin (Ryu, 2003) and records 
a change from the Umpqua Group in deformation style and 
provenance. During the late early Eocene, a new subduction 
zone developed west of the present continental margin form-
ing a magmatic arc in central Oregon west of the Blue Moun-
tains where the volcanic rocks of the Clarno Formation were 
deposited (see index map, fig. 14). Arkosic and volcaniclasic 
sediments from the Idaho batholith and Clarno volcanic arc 
were deposited in the Tyee forearc basin (Heller and Ryberg, 
1983).

In the southern part of the Tyee Basin, the lower to mid-
dle Eocene Tyee Formation (fig. 12) is about 10,000 ft thick 
and is subdivided into three members in the southern Oregon 
Coast Range: the Tyee Mountain, Hubbard Creek and Baugh-
man Members (Ryu and others, 1996; Wells and others, 2000). 
The Tyee Mountain Member (fig. 18) ranges in thickness from 
about 3,000 to 6,560 ft and consists of thick, fine-grained, 
micaceous, rhythmically bedded sandstone; lithic arkosic 
sandstone; and mudstones deposited as turbidites in a forearc 
basin (Heller and Ryberg, 1983). The Hubbard Creek Mem-

ber, 600 to 1,600 ft thick, consists of thin-bedded, 
micaceous, gray siltstone and turbidite channel sand-
stones that have been interpreted as slope deposits 
(Ryu and others, 1992). The deltaic to fluvial Baugh-
man Member (fig. 19) is a thick-bedded, micaceous, 
crossbedded arkosic sandstone and gray mudstone 
ranging in thickness from 2,000 to 2,500 ft (Baldwin, 
1974; Ryu and others, 1996) and contains three to 
four thickening-upward cycles in the deltaic facies 
(Wells and others, 2000). The Baughman Member 
contains minor carbonaceous mudstone and coal.

In the central, northern, and western parts of 
the Tyee Basin, the Tyee Mountain and Baughman 
Members cannot be differentiated where the inter-
vening Hubbard Creek Member is missing; in those 
areas, the Tyee Formation is recognized only as a 
single unit (fig 12). The Tyee turbidites northeast of 
Newport, Oreg., are observed in outcrop as either 
thick-bedded, graded, medium- to fine-grained lithic 
arkosic turbidite sandstones (fig. 20) or as more 
distal rhythmically bedded turbidites consisting of 
sandstone and mudstone units (fig. 21).

Figure 15.  Outcrop of conglomerate in the Bushnell Rock Formation of the 
Umpqua Group (see fig. 12) near Lookingglass, Oregon, west of Roseburg, 
Oregon (see fig. 9). Note 3.25-in. knife for scale.
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Figure 16.  Outcrop images of the Tenmile Formation of the Umpqua Group (see fig. 12), southern 
Oregon Coast Range. A, Outcrop of strongly folded turbidite beds in the Tenmile Formation northwest 
of Roseburg, Oregon (see fig. 9). B, Strongly folded turbidite beds in the Tenmile Formation along the 
Umpqua River northwest of Roseburg, Oregon (see fig. 9).

A

B



Figure 17.  Outcrop of the White Tail Ridge Formation of the Umpqua Group (see fig. 12) 
along Oregon Route 42 west of Roseburg, Oregon (see figure 9).

Figure 18.  Tyee Mountain in the southern part of the Oregon Coast Range, northwest 
of Roseburg, Oregon (see figs. 6 and 9). Massive cliff-forming sandstone units are 
turbidites in the Tyee Mountain Member of the Tyee Formation (see fig. 12).

Geologic Setting of Western Oregon and Washington Province    17
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Overlying the Tyee Formation is the middle Eocene 
Elkton Formation (fig. 12), consisting of up to 1,600 ft of 
mudstone that was deposited in a slope environment (Ryu and 
Niem, 1999; Ryu, 2003). The Elkton Formation interfingers 
with the underlying Baughman Member of the Tyee Formation 
in the Roseburg area (Wells and others, 2000), and is overlain 
by the middle and upper Eocene wave- to tide-dominated 
deltaic Bateman Formation (fig. 8). The Bateman Formation 
contains delta-front, distributary mouth bar, and distributary 
channel units. The delta-front facies ranges from 100 to 200 ft 
thick and consists of micaceous feldspathic sandstone with 
interbeds of burrowed siltstone and carbonaceous mudstone 
and coal (Ryu and others, 1992; Ryu, 2008).

Yamhill Formation

The middle to upper Eocene Yamhill Formation uncon-
formably overlies the Siletz River Volcanics in the north-
central Oregon Coast Range (fig. 8); it is interbedded with 
the upper middle Eocene Tillamook Volcanics (Wells and 
others, 1994) and overlies and might be interbedded with Tyee 
Formation. Baldwin and others (1955) reported a thickness as 
much as 6,500 ft at the type locality along Mill Creek in the 
Sheridan, Oregon, 1:62,500-scale quadrangle (Baldwin and 
others, 1955). The Yamhill Formation (fig. 22) ranges from 
3,000 to about 5,000 ft thick west of Salem, Oreg. (fig. 6), in 
the Sheridan and Grand Ronde 1:24,000-scale quadrangles, 
where it consists of massive to thin-bedded concretionary 
marine siltstone and thin interbeds of arkosic, glauconitic, and 
basaltic sandstone and, locally, contains interbedded basalt 
lava flows and lapilli tuff (Brownfield, 1982a,b). In the north-
ern part of the Coast Range, thicknesses range from 1,000 to 

2,000 ft. The basal part of the Yamhill Formation in the Dallas 
quadrangle, west of Salem, Oreg. (fig. 6), consists locally of 
impure shallow-water limestone beds, 40 to 100 ft thick (Bald-
win, 1964; Boggs and others, 1973), which form a unit named 
the Rickreall Limestone Member of the Yamhill Formation by 
Baldwin (1964). In the northwestern part of the Oregon Coast 
Range, the upper part of the Yamhill Formation is basaltic and 
interfingers with basalt breccia and sandstone of the Tillamook 
Volcanics (fig. 5) (Wells and others, 1994). Foraminiferal 
assemblages in siltstone are representative of the Ulatisian 
and lower part of the Narizian Stages of the middle Eocene 
(Snavely and others, 1969; McNeal, 1980).

Cowlitz Formation

The Cowlitz Formation, of middle to late Eocene age, 
unconformably overlies the Yamhill Formation and the Til-
lamook Volcanics in the northern part of the Oregon Coast 
Range (fig. 5) (Armentrout and Suek, 1985). The type locality 
for the Cowlitz Formation, first described by Weaver (1912), 
is located in southwestern Washington where it consists of 
about 4,200 ft of marine, brackish-water, and nonmarine rocks 
with minor coal (Weaver, 1937). In northwestern Oregon, the 
Cowlitz Formation consists of as much as 1,000 ft of cross-
bedded, micaceous, carbonaceous, fine- to medium-grained 
arkose and lithic arkose (fig. 23) with minor conglomerate, 
mudstone, and siltstone and is locally concretionary. Lami-
nated thin-bedded mudstone and siltstone are interbedded in 
the upper part with minor volcanic flows, breccia, and tuffs . 
The Cowlitz Formation was deposited along a broad coastal 
plain and shelf margin that extended from Coos Bay in the 
south to Bellingham in the north (Dott, 1966; Buckovic, 1979; 

Figure 19.  Exposure of cliff-forming, 
thick-bedded, lithic arkosic sandstone 
in the Baughman Member of the Tyee 
Formation (see fig. 12), southern Oregon 
Coast Range in road cut along Oregon 
Route 42 west of Roseburg, Oregon (see 
figs. 6 and 9).
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Figure 20.  Exposure of graded medium- 
to fine-grained arkosic sandstone 
turbidites with siltstone interbeds in the 
Tyee Formation in road cut along U. S. 
Route 20 east of Newport, Oregon (see fig. 
6). Sandstone beds are 2 to 5 ft thick and 
the siltstone beds are 0.5 to 2 ft thick.

Figure 21.  Outcrop of 
rhythmically bedded sandstone 
and siltstone turbidites of the 
Tyee Formation in road cut along 
U. S. Route 20 east of Newport, 
Oregon (see fig. 6)



20    Total Petroleum Systems and Geologic Assessment of the Western Oregon and Washington Province

Johnson, 1984a; Armentrout and Suek, 1985). The arkosic 
sands were transported from the east by river systems from 
the Idaho batholith of eastern Oregon and Washington. Local 
volcanic islands contributed the volcanic rock fragments to the 
sandstones. The interbedded volcanics are referred to as the 
Goble Volcanics (fig. 5) (Wilkinson and others, 1946; Alger, 
1985); the upper part of the Tillamook Volcanics was added 
to this unit by Baldwin and others (1955). At the Mist field, 
Oregon’s only producing gas field, the producing zones are in 
the shallow marine sandstone of the Cowlitz Formation. New-
ton and Van Atta (1976) reported that the Cowlitz foraminif-
eral assemblages are assigned to the upper part of the Narizian 
Stage of Mallory (1959).

Spencer Formation

The middle to upper Eocene Spencer Formation (figs. 
6 and 8) crops out along the west side of the Oregon Coast 
Range from about 20 mi southwest of Portland to the Rose-
burg area where it unconformably overlies the Umpqua Group 
and is overlain by Cascade Range volcanic rocks (fig. 13) 
(Wells and others, 2000). In the central part of the Oregon 
Coast Range, the Spencer Formation unconformably overlies 
the Yamhill Formation (fig. 8) and in places is unconformably 
on the Tyee Formation (Beaulieu, 1971). The Spencer Forma-
tion consists of micaceous arkosic sandstone, carbonaceous 
siltstone and mudstone, and lignite and subbituminous coal. 

Figure 22.  Outcrops of the middle 
to upper Eocene Yamhill Formation. 
A, Exposure of Yamhill overlain by 
volcanic rocks of the upper Eocene 
Nestucca Formation west of Salem, 
Oregon (see fig. 6). Photograph 
courtesy of Alan S. Niem. B, Exposure 
of Yamhill overlain by the upper 
Eocene Nestucca Formation (above 
12-in. hammer) west of Salem, Oregon 
(see fig. 6).
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B
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Van Atta (1986) divided the Spencer Formation into two infor-
mal members, a lower member consisting of 800 to 1,000 ft 
of arkosic lithic sandstone and an upper member of siltstone 
and mudstone ranging in thickness from 1,000 to 1,300 ft; 
deposition occurred in neritic, nearshore, and nonmarine envi-
ronments (Van Atta, 1986; Van Atta and Thoms, 1993). The 
Spencer Formation is 980 ft thick in the Roseburg area (Wells 
and others, 2000) and thickens to about 4,500 ft northwest of 
Eugene (Beaulieu, 1971) (figs. 6 and 8). In the northwestern 
part of the Willamette Valley, the sandy part of the Spencer is 
about 200 ft thick and is interbedded with mudstone and minor 
carbonaceous shale and coal (Schlicker, 1962); it then wedges 
out southwest of Portland (Beaulieu, 1971). The sandstones 
contain about 55 percent feldspar and about 45 percent quartz. 
The Spencer Formation is assumed to be widespread under the 
younger rocks of the Willamette Valley and to be equivalent to 
the upper part of the Cowlitz Formation, or slightly younger 
than the Bateman and Coaledo Formations.

Coos Bay Basin

The Coos Bay Basin is located in the southwestern part 
of the Oregon Coast Range (figs. 24 and 25). The basin is a 
roughly elliptical structural basin measuring approximately 35 
mi north–south and about 11 mi east–west (fig. 24). More than 

12,000 ft of sedimentary rocks were deposited in the basin 
beginning in the early Eocene and ending in the Pleistocene 
(fig. 26).

The oldest rocks exposed in the coastal part of the Coos 
Bay Basin are in the middle Eocene Elkton Formation (figs. 8, 
12, and 27), which crops out in the sea cliffs at Cape Arago 
(fig. 24). Overlying the Elkton Formation is more than 6,000 ft 
of coal-bearing rocks of the middle Eocene Coaledo Forma-
tion. The Coaledo Formation, which is present only in the 
complex structural Coos Bay Basin (fig. 25), was divided into 
three informal members by Allen and Baldwin (1944). The 
lower member of the Coaledo Formation (figs. 26, 28, and 
29) consists of tuffaceous sandstone with minor conglomer-
ate, pebbly sandstone, siltstone, carbonaceous mudstone, and 
coal deposited in a deltaic environment; thickness ranges from 
1,700 to at least 1,900 ft (Allen and Baldwin, 1944; Baldwin 
and others, 1973; Armentrout, 1980). Excellent exposures of 
cross bedding, large load structures (flame structures), and 
sole markings can be seen at Sunset Bay (figs. 30 and 31). The 
middle member of the Coaledo Formation (figs. 26 and 32) is 
mostly thin-bedded siltstone with minor thin beds of sandstone 
and tuff deposited during a maximum transgression event 
and is at least 2,940 ft thick (Armentrout, 1980). The upper 
member of the Coaledo Formation (fig. 26) is characterized by 
regression and the return to a deltaic environment from deeper 

Figure 23.  Exposure of the middle to upper Eocene Cowlitz Formation sandstone beds in road cut 
along U.S. Route 26 west of Portland, Oregon. The Mist gas field produces gas from Cowlitz Formation 
reservoirs (see fig. 1).
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Figure 27.  Outcrop of the middle 
Eocene Elkton Formation in the north 
cove of Cape Arago State Park, Oregon 
(see fig. 24).
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Figure 28.  Outcrop of the 
steeply dipping lower and 
middle members of the 
middle Eocene Coaledo 
Formation; view is north 
across Sunset Bay (see fig. 
24). Middle member of the 
Coaledo is only exposed in 
the cliff on the far right of the 
photograph. The strata dip 
eastward toward the trough 
of the South Slough syncline 
in the Coos Bay coal field.

Figure 29.  Outcrop of 
the steeply dipping lower 
member of the middle 
Eocene Coaledo Formation 
(see fig. 24), Shore Acres 
State Park, Oregon, north of 
Cape Arago (see fig. 24).
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Figure 30.  Outcrop of 
part of the middle Eocene 
lower member of the 
Coaledo Formation at 
Sunset Bay, near Coos 
Bay, Oregon (see fig. 24). 
Large load structures 
(flame structures) can be 
seen in the center of the 
photograph.

Figure 31.  Outcrop of 
part of the middle Eocene 
lower member of the 
Coaledo Formation at 
Sunset Bay, near Coos 
Bay, Oregon (see fig. 24). 
Hummocky and swaley(?) 
cross-stratification can be 
seen in the center of the 
photograph.
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marine environments and consists of tuffaceous sandstone 
with minor beds of siltstone, carbonaceous mudstone, and coal 
with thicknesses ranging from 2,300 to 2,900 ft (Baldwin and 
others, 1973; Armentrout, 1980).

Astoria Formation

Rocks assigned to the lower to middle Miocene Astoria 
Formation (figs. 5, 6, and 8) crop out in the northernmost 
part of the Oregon Coast Range along the lower Columbia 
River (figs. 1 and 2) and along the northern Oregon coast in 
a series of embayments from Newport to Astoria (fig. 6). The 
stratigraphic definition of the Astoria Formation varies in the 
different mapped areas in northwestern Oregon because the 
correlation with the type area has been on a faunal basis and 
not on the basis of lithology or continuous mapping into the 
type area.

The Astoria Formation was first described by Dana 
(1849) for exposures in Astoria, Oreg. Howe (1926) infor-
mally divided the Astoria into three members: (1) a lower 
unit, about 150 ft thick, consisting of yellow to gray, massive 
to cross-bedded, medium- to fine-grained, arkosic sandstone 
interbedded with mudstone; (2) a middle unit consisting of at 

Figure 32.  Outcrop of the middle member of the middle Eocene Coaledo Formation, Sunset Bay, 
Oregon (see fig. 24).

least 1,000 ft of mudstone and interbedded thin glauconitic 
sandstone; and (3) an upper unit characterized by several 
massive to cross-bedded arkosic sandstone beds ranging in 
thickness from 10 to 100 ft. Most of the original exposures 
described by Howe (1926) are now obscured by man-made 
structures or by sand dredged from the Columbia River.

In the Newport area, about 100 mi south of Astoria 
(fig. 6), the stratigraphic relations of the Astoria Formation are 
more clearly defined (Vokes and others, 1949; Snavely and 
others, 1969). About 2,000 ft of Astoria Formation crops out in 
the Newport embayment, where it unconformably overlies the 
lower Miocene Nye Mudstone (fig. 33) and the upper Oligo-
cene Yaquina Formation and is unconformably overlain by 
the middle Miocene basalt of Depoe Bay. The Astoria Forma-
tion consists mostly of shallow marine arkosic and micaceous 
sandstone (fig. 34) and carbonaceous siltstone.

The Astoria Formation in the northern part of the Oregon 
Coast Range has been divided into four informal members by 
Niem and Niem (1985): the deltaic to marginal marine Angora 
Peak, the shallow marine Wickiup Mountain, the submarine 
channel and fan Youngs Bay, and the turbidite Cannon Beach. 
The Angora Peak member (figs. 35–37), ranging in thickness 
from about 200 ft to more than 800 ft, consists of thick bedded 
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Figure 33.  Outcrop of the lower Miocene Nye Mudstone (base of photograph) and the overlying 
unconformable middle Miocene Astoria Formation at Nye Beach, Newport, Oregon (see fig. 6).

Figure 34.  Outcrop of thick well-bedded arkosic sandstone of the middle Miocene Astoria 
Formation at Nye Beach, Newport, Oregon (see fig. 6)
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Figure 35.  Outcrop of the inclined strata of the informal Angora Peak member of the Astoria 
Formation overlain by a Quaternary terrace. Outcrop north of Otter Crest State Park, north of 
Newport, Oregon (see fig. 6).

Figure 36.  Outcrop of the informal Angora Peak member of the Astoria Formation showing 
cross-stratification in conglomerate and sandstone beds along beach at Hug Point State Park 
north of Tillamook, Oregon (see fig. 6).
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Figure 37.  Close-up images of cross-stratification in the informal Angora Peak member of the 
Astoria Formation, northern Oregon Coast Range. A, Outcrop of the Angora Peak member showing 
planar and trough cross-stratification in conglomerate and sandstone beds along beach at Hug 
Point State Park north of Tillamook, Oregon (see fig. 6). B, Outcrop of the Angora Peak member 
showing detail of the cross-stratification in conglomerate and sandstone beds along beach at Hug 
Point State Park north of Tillamook, Oregon (see fig. 6). Note 3-in. knife for scale.
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B
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and laminated arkosic sandstone and lithic sandstone with 
minor conglomerate, mudstone, and thin coals. The Wickiup 
Mountain member is characterized by as much as 1,300 ft of 
structureless to laminated shallow-water arkosic sandstone and 
minor mudstone capped by glauconitic sandstone. The Youngs 
Bay member is mostly deep-marine mudstone as much as 
2,200 ft thick, interbedded with two lenticular, medium- to 
coarse-grained arkosic sandstone units, 200 and 1,000 ft thick, 
respectively. The Cannon Beach member ranges in thickness 
from about 2,000 ft in the Tillamook area (Wells and others, 
1994) to several thousand feet near Astoria (fig. 6) (Niem 
and Niem, 1985), and consists of well-bedded siltstone and 
mudstone with minor amounts of rhythmically bedded, graded 
arkosic sandstone.

Western Washington

The western Washington part of the Western Oregon 
and Washington Province (figs. 3 and 4) occupies a complex 
geologic setting along the northwestern continental margin 
of North America and is bounded on the north by the Interna-
tional Boundary in the Straits of Juan de Fuca and San Juan 
Islands (fig. 3). It extends offshore to the 3-mi limit of State 
waters on the west and on the east by the approximate crest of 
the Cascade Range. The region overlies a major north-trending 
crustal boundary between basement rocks of the pre-Tertiary 
Northern Cascade Range and Cascade arc to the east and the 
Eocene Coast Range to the west (figs. 2, 4, and 38). The Puget 
fault, also known as the Coast Range boundary fault (Johnson 
and others, 1996), is mostly buried by Quaternary deposits in 
the Puget Lowland (fig. 38; also see fig. 41).

Pre-Tertiary

Pre-Tertiary basement rocks of the Northern Cascades 
include diverse metamorphic, igneous, and sedimentary rocks 
that form several distinct crustal terranes with allochthonous 
and (or) exotic origins (figs. 4, 7, and 38). The final stages 
of accretion of these crustal terranes were completed by the 
Late Cretaceous, after which these rocks formed the stable 
platform of the Washington continental margin. During the 
early to early middle Eocene, the eastern pre-Tertiary base-
ment underwent significant dextral strike-slip faulting and 
transtensional deformation. This deformation was manifested 
by the formation of rapidly subsiding sedimentary basins with 
common intrabasinal volcanic centers and uplift and (or) igne-
ous intrusion of the crystalline rocks (Johnson, 1985). Eocene 
sedimentary rocks within these basins are as thick as 20,000 ft 
and constitute some of the thickest nonmarine successions in 
North America (Johnson, 1985).

Crescent Formation

The basement rocks of the Washington Coast Range 
consist of lower and lower middle Eocene marine basalts and 

volcaniclastic rocks of the Crescent Formation, which was 
named for Port Crescent on the south shore of Strait of Juan 
de Fuca, west of Port Angeles, Wash. (figs. 4, 5, 7, and 38). 
The Crescent Formation (fig. 39) consists of massive pillow 
and diabasic basalt flows, flow- and tuff-breccia, and tuff with 
interbedded basaltic conglomerate and sandstone, and well-
indurated, massive tuffaceous siltstone, argillite, and minor 
limestone (Brown and others, 1960; Cady and others, 1972; 
Wolfe and McKee, 1968, 1972; Whetten and others, 1988). In 
the Tofino-Fuca Basin (fig. 5), the Crescent Formation under-
lies and interfingers with the Aldwell Formation (see fig. 47). 
The Crescent Formation is in part equivalent to the Siletz 
River Volcanics of Oregon and may be as much as 25,000 ft 
thick (Rau, 1964). These rocks are now widely believed to 
have formed in a continental-margin rift setting (Wells and 
others, 1984; Snavely, 1987; Babcock and others, 1992).

Post-rift subsidence of the Washington Coast Range is 
thought to be of thermal origin (Johnson and Yount, 1992). 
Johnson (1984c, 1985) and Johnson and others (1994, 1996) 
suggested that the eastern margin of this rifted terrain is 
coincident with the dextral strike-slip Puget fault (fig. 38). 
Northward motion of the Coast Range block along the Puget 
fault was accommodated to the north by south-directed thrust-
ing on southern Vancouver Island (Clowes and others, 1987), 
and folding and faulting within the Coast Range block in the 
Straits of Juan de Fuca and on the northern Olympic Peninsula 
(Snavely, 1987). Johnson (1984c, 1985) suggested that most 
strike-slip motion on the crustal boundary occurred prior to 
the late Eocene, after which strike-slip motion diminished 
and was distributed on several fault zones in the southeastern 
Puget Lowland (Johnson and others, 1994). The Puget fault is 
covered by upper Eocene and higher strata and is located and 
delineated mainly with geophysical data.

Bellingham Basin

The Eocene Chuckanut Formation (Johnson, 1982; John-
son, 1984a) of the Bellingham Basin area of northwest Wash-
ington consists of alluvial strata as much as 19,690 ft thick, 
one of the thickest nonmarine sequences in North America 
(figs. 5, 38, and 40). The Chuckanut is present in several 
structurally low outcrop belts, located west of Mount Baker in 
the Northern Cascades. These outcrop belts are remnants of a 
much larger Eocene fluvial system in western Washington. The 
Eocene of western Washington overlies a complex pre-Tertiary 
basement that is cut by thrust faults of mid-Cretaceous age 
and strike-slip faults of Late Cretaceous to early Eocene age 
(Whetten and others, 1988). The Chuckanut Formation uncon-
formably overlies the pre-Tertiary rocks along the northern 
and southern contacts and is bounded by high-angle faults to 
the east (Misch, 1977; Tabor and others, 2003). The Chucka-
nut Formation was subdivided into seven members by Johnson 
(1984a), which are, in ascending order, the Bellingham Bay, 
Governors Point, Padden, Slide, Maple Falls, Warnick, and 
Bald Mountain Members. These units range in age from early 
to late Eocene. South of the main Chuckanut outcrop belt, the 
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Figure 39.  Outcrops of the lower to middle Eocene Crescent Formation. A, Exposure of 
basalt pillows and volcaniclastic rocks in road cut along Hurricane Ridge Road, Olympic 
National Park, Washington. B, Exposure of basalt pillows of the Crescent Formation in Salt 
Creek Park, Washington Route 112, Olympic Peninsula, Washington.

A

B
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rocks are assigned to the undivided Chuckanut at Coal Moun-
tain, Mount Higgins, and in localities southeast of the town of 
Mount Vernon (figs. 38, 40).

Early Tertiary time in the Bellingham Basin was domi-
nated by rapid uplift of pre-Tertiary rocks to the east, active 
strike-slip faulting, volcanic activity, and alluvial sedimenta-
tion in rapidly subsiding basins. The Bellingham Bay Member 
represents early Eocene deposition of the Chuckanut Forma-
tion and was interpreted by Johnson (1984a,b) as representing 
meandering-river and adjacent flood-plain deposits in a rapidly 
subsiding basin, with a distant source area to the east. Early 
reports by Woodruff (1914), Jenkins (1923, 1924), and Moen 
(1969) discussed the geology and coal deposits in this region. 
More recent investigations concerning the coal deposits have 
been published by Beikman and others (1961), Vonheeder 
(1975, 1977), and Brownfield and others (1995).

The Bellingham Bay Member of the Chuckanut Forma-
tion consists of nonmarine sandstone, mudstone, carbonaceous 
shale, and coal grouped into alternating coarse-grained and 
fine-grained sequences that represent fining-upward cycles 
(Johnson, 1984a); coals are near the base of the member. The 
Bellingham Bay Member is 8,860 ft thick in the western part 
of the outcrop belt and 10,830 ft thick in the eastern part of the 
outcrop belt, south of Glacier, Wash. (fig. 38).

Puget Lowland

The northern part of the Puget Lowland (or Seattle 
Basin), located southwest of the Northern Cascades (figs. 2 
and 38), is generally underlain by the basalts and volcani-
clastic marine rocks of the lower to middle Eocene Crescent 
Formation (figs. 5, 7, and 39). In the late Paleogene, tecto-
nism partitioned western Washington into smaller basins and 
uplifts (Wells and Coe, 1985), and sediments were deposited 
in fluvial, deltaic, and marginal marine environments over the 
basement volcanic rocks.

The lower(?) to middle Eocene Raging River Formation 
(fig. 5), named by Vine (1962), is the oldest sedimentary unit 
that outcrops in the eastern part of the central Puget Lowland 
in the Tiger Mountain area (figs. 38 and 41). Its base is not 
exposed in the area, but the exposed part ranges in thick-
ness from about 2,000 ft to more than 3,000 ft (Vine, 1962; 
Vine, 1969; Johnson and O’Connor, 1994). The Raging River 
Formation consists of fine-grained sandstone, siltstone, and 
claystone. Johnson and O’Connor (1994) divided the Raging 
River into three informal units in the Tiger Mountain area. The 
lower unit is about 755 ft thick and consists of interbedded 
sandstone, mudstone, and conglomerate; the lower part of the 
lower unit is nonmarine, and the upper part is shallow marine 
in origin. The middle unit, about 610 ft thick, is mainly non-
marine interbedded conglomerate, sandstone, and mudstone. 
The upper unit consists of about 980 ft of gray, silty, organic-
rich mudstone and minor sandstone that was deposited along 
the marine shelf and bathyal slope and may also be present at 
depth to the west beneath Puget Sound.

The middle Eocene Tiger Mountain Formation of the 
Puget Group (fig. 5) overlies the Raging River Formation in 
the Tiger Mountain area (Vine, 1962; Vine, 1969; Johnson 
and O’Connor, 1994). The Tiger Mountain Formation is about 
2,000 ft thick and consists mainly of arkosic sandstone, silt-
stone, carbonaceous shale, and minor coal; the upper part of 
the unit interfingers with the middle to upper Eocene Tukwila 
Formation of the Puget Group (fig. 5). The Tukwila Formation 
consists mostly of volcanic and volcaniclastic rocks (Vine, 
1962; Vine, 1969; Johnson and O’Connor, 1994), ranges in 
thickness from 2,460 ft to as much as 6,800 ft in the Tiger 
Mountain area (figs. 38 and 41), and possibly interfingers 
with the overlying middle to upper Eocene Renton Formation 
also of the Puget Group. The Renton Formation, 2,250 ft to 
more that 3,400 ft thick (Vine, 1962; Vine, 1969; Johnson and 
O’Connor, 1994), consists mainly of fine- to medium-grained 
arkosic sandstone with lesser amounts of siltstone; it also con-
sists of carbonaceous shale as well as minor coal.

Upper middle Eocene and upper Eocene coal-bearing 
strata in the central and northern parts of the Puget Lowland 
(Beikman and others, 1961) are assigned to the undivided 
Puget Group (fig. 5) (Vine, 1969). Vine (1969) compiled a 
composite 5,250-ft-thick stratigraphic section based on surface 
and shallow subsurface data in the Green River district south-
east of Seattle (fig. 2). The Green River district is structurally 
complex with numerous faults and tight folds with bedding-
plane attitudes ranging from gentle to overturned. At the John 
Henry No. 1 mine, coal was mined along the flanks of a tightly 
folded anticline that illustrates this structural style (fig. 42) 
(Brownfield and others, 1994; Brownfield and others, 2005).

Sedimentological analysis of the undivided Puget Group 
in the Green River district is limited due to the distribution 
and poor quality of the exposures. The following prelimi-
nary interpretation is based mainly on the 6,300-ft measured 
section by Vine (1969) exposed in the canyon of the Green 
River and at the John Henry No. 1 mine near Black Diamond, 
Wash. (fig. 42) (Brownfield and others, 1994; Brownfield and 
others, 2005). Rocks in the Green River section of the Puget 
Group dip gently to steeply exposing most of the coal-bearing 
stratigraphic interval; however, there is virtually no control 
on the lateral distribution of facies, because of the extensive 
forest cover. The Puget Group section consists of alternating 
sequences of coarse-grained sandstone and fine-grained depos-
its of mudstone, very fine to fine-grained sandstone, and coal 
having characteristics of both deltaic and fluvial environments 
(Brownfield and others, 1994). The delta was fluvial-domi-
nated, but influenced by tides and to a lesser extent by waves. 
The fluvial deposits include both channel and interchannel 
strata.

Puget Group strata of fluvial origin within the Green 
River canyon and in the vicinity of, and within, the John 
Henry mine form sandstone bodies ranging in thickness from 
about 20 to 158 ft (Brownfield and others, 1994; Brownfield 
and others, 2005). These bodies consist mainly of fine- and 
medium-grained sandstone; coarse-grained sandstone is 
uncommon, and conglomerate is rare. Channels typically 
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Figure 42.  Outcrops of the Puget Group at the Pacific Coast Coal Company’s John Henry 
No. 1 mine near Black Diamond, Washington (see fig. 41). The strata dip steeply over a 
doubly plunging anticline on the left side of the photograph.

Figure 43.  Outcrop of the Franklin No. 10A coal bed in John Henry No. 1 mine near Black 
Diamond, Washington (see fig. 41). Rocks above coal consist of fine-grained overbank 
deposits, cut into by a thick channel sandstone, which is overlain by a fine-grained 
floodbasin facies.
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have sharp, erosional lower contacts (fig. 43), and many 
sandstone bodies include internal low-angle, trough-shaped 
scour surfaces that can be traced laterally for as much as 50 ft. 
Both basal and internal scour surfaces are commonly overlain 
by lags of wood fragments (with rare Teredo borings) and 
rip-up clasts. The sandstone is trough crossbedded, planar to 
low-angle bedded, and ripple laminated. Thick (13–33 ft) sets 
of low-angle (10°–20°) dipping strata, interpreted as lateral 
accretion surfaces on point bars, are present in several sand-
stone bodies. Fine-grained mudstone drapes, in many cases 
burrowed, are present on bedding planes within point-bar 
deposits. A fluvial channel origin for these sandstone bodies is 
inferred based on texture and internal sedimentary structures, 
as outlined above. Location of these channels on a delta plain 
is supported by the presence of burrowed mudstone drapes 
on point-bar deposits (Thomas and others, 1987; Shanley and 
others, 1992), Teredo-bored wood, and the sedimentology of 
bounding fine-grained strata.

Puget Group strata that are interpreted as interchannel 
deposits (including levee, flood-plain, shallow-lake, crevasse-
channel, crevasse-splay, and peat-swamp environments) con-
sist of mudstone and fine-grained sandstone, and less common 
carbonaceous shale and coal (Brownfield and others, 1994; 
Brownfield and others, 2005). These fine-grained units are 3 
to more than 65 ft thick. Parallel and (or) ripple lamination is 
common; however, in many cases primary sedimentary struc-
tures have been partly or wholly destroyed by burrows, root 
traces, and pedogenesis. Fossil plant material is common in 
these beds (Wolfe, 1968; Burnham, 1990). Within the thicker 
fine-grained intervals, two types of deposits are recognized: 
(1) lenticular beds of ripple-laminated, horizontal-bedded, and 
trough-crossbedded, very fine to fine-grained sandstone gener-
ally less than 3 ft thick interpreted as crevasse-channel depos-
its; and (2) sheet-like beds of ripple-laminated and horizontal-
bedded, very fine to fine-grained sandstone generally less than 
1.5 ft thick inferred to be crevasse-splay deposits.

Beds of coal, carbonaceous shale, and minor mudstone 
representing peat-swamp deposition are also present in the 
Puget Group, ranging in thickness from a few inches to as 
much as 40 ft. Altered tuff beds or tonstein partings are com-
mon in the stratigraphically lower coal, indicating moderate 
Paleogene volcanism during the time of peat accumulation. 
Tonsteins are rare to absent in stratigraphically higher coal 
beds. The clastic section above the Franklin No. 10A coal bed 
in the John Henry No. 1 mine consists of fine-grained over-
bank deposits that are cut into by a large channel sandstone, 
which is overlain in turn by more fine-grained floodbasin 
facies (fig. 43). Vertical tree trunks and petrified wood are 
present in several coal beds. Burnham (1990) suggested that 
coals of the Puget Group formed in raised mires; however, the 
abundance of mudstone partings and tonsteins in many coals 
suggests that peat swamps also occupied low-lying parts of the 
delta plain.

Strata of inferred brackish to shallow-marine origin 
consist of stratified to massive sandstone and mudstone. 
Stratification includes parallel and ripple lamination, wavy, 

flaser, and lenticular bedding, and relatively small-scale 
trough crossbedding (set thickness <1 ft). Crossbed sets are 
bidirectional (dipping up and down the regional paleoslope) 
and contain common mudstone drapes. Mudstone drapes 
and thin (<0.2 in.) carbonaceous laminations are common. 
This suite of sedimentary structures indicates fluctuating 
depositional energy and probable tidal influence (Shanley 
and others, 1992). Hummocky crossbedding and wave-ripple 
lamination are rare but indicate minor wave influence. Pri-
mary stratification has been partly to completely destroyed in 
many sandstone and mudstone beds of inferred brackish to 
shallow-marine origin by intensive bioturbation. Burrowing 
animals led to differential cementation in many beds, result-
ing commonly in an irregular and knotty weathering profile. 
Plant fragments, including Teredo-bored wood, are common 
in massive sandstone beds; shell fragments (pelecypod and 
gastropod) are present in a few beds. Evidence for both tidal, 
and to a lesser degree, wave influence, indicates deposition in 
a variety of delta-plain and delta-front environments, including 
bays, estuaries, mouth bars, and shorefaces.

Coal-bearing rocks in the Wilkeson-Carbonado area 
(figs. 2 and 41) are in the middle Eocene Carbonado Forma-
tion of the Puget Group (fig. 5) and consist of interbedded 
sandstone, siltstone, mudstone, carbonaceous shale, and coal 
more than 5,000 ft thick (Gard, 1968). The basal contact of 
the Carbonado Formation is not exposed and in places is 
overlain by the Northcraft Formation of Puget Group. Where 
the Northcraft Formation is absent, the Carbonado is indistin-
guishable from Spiketon Formation of Puget Group (fig. 5).

North of Morton, Wash. (fig. 41), the Carbonado For-
mation (fig. 5) is about 3,900 ft thick (Johnson and Stanley, 
1995) and consists of nonmarine and shallow- to marginal-
marine rocks deposited in fluvial and tidally influenced delta 
environments. The marine rocks are shoreface sandstone 
and laminated sandstone and mudstone, and the nonmarine 
rocks include sandstone, mudstone, coal, and carbonaceous 
mudstone.

Southern Puget Lowland

The oldest rocks exposed in the southern Puget Lowland 
area (figs. 5 and 44) are the lower Eocene Crescent Forma-
tion, which is unconformably overlain by the middle to upper 
Eocene McIntosh Formation (fig. 5). The McIntosh Forma-
tion consists of dark-gray marine siltstone and mudstone and 
interbedded arkosic and basaltic sandstone ranging in thick-
ness from 4,000 to 4,500 ft (Snavely and others, 1951, 1958). 
Overlying the McIntosh is the coal- and carbonaceous-shale-
bearing Skookumchuck and Cowlitz Formations (fig. 5).

The upper middle to upper Eocene Skookumchuck 
Formation (fig. 5) crops out in the Centralia-Chehalis district 
(fig. 2), where the stratigraphy and coal geology was described 
in detail by Snavely and others (1958). The Skookumchuck 
is about 3,825 ft thick in the district and consists of marginal-
marine and shallow-marine rocks. Although present only in 
the Centralia-Chehalis district, the formation can be correlated 
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to other coal-bearing time-stratigraphic units to the north and 
south (fig. 3). The Skookumchuck Formation overlies and 
interfingers with the Northcraft Formation and is overlain by 
the Oligocene Lincoln Creek Formation (fig. 5). 

Sedimentological evidence of detrital rocks in the 
Skookumchuck Formation in the Centralia mine (figs. 44 and 
45) indicates that these deposits formed in a tidal-influenced 
coastal plain (Stevenson and Emery, 1958; Evans, 1965; 
Reineck and Singh, 1980). Within this setting, fine-grained 
rocks were deposited in tidal flats and coarser grained rocks 
(for example, sandstones) were deposited in tidal channels and 
bars. Lenticular, wavy, and flaser bedding; bidirectional ripple 
lamination; and mudstone drapes indicate fluctuating depo-
sitional energy and reversals of current direction. Abundant 

or topogenous. Clastic material would be unable to flow into 
raised mires, and volcanic ash would have been washed and 
dispersed into the peat by rainfall (Rupert and others, 1993; 
Rupert and Moore, 1993).

The middle to upper Eocene Cowlitz Formation, which 
crops out southwest of Centralia and northwest of Longview 
in the Willapa Hills (fig. 44), was deposited in marine, brack-
ish-water, and nonmarine environments. At the type locality 
along the Cowlitz River, north of Longview, Wash. (fig. 44), 
the Cowlitz Formation is about 4,200 ft thick and is pre-
dominantly siltstone with massive arkosic sandstone, locally 
well developed, and sandy siltstone with minor amounts of 
coal and carbonaceous shale (Weaver, 1937; Roberts, 1958). 
The sandstone beds are mostly arkosic and are as much as 
90 ft thick. Regionally, the Cowlitz Formation is as much as 
9,500 ft thick and equivalent to the Skookumchuck Formation 
and in part to the McIntosh Formation (fig. 5) (Armentrout and 
others, 1980).

The Oligocene Lincoln Creek Formation (fig. 5) crops 
out west and east of Centralia, Wash. (fig. 44) (Snavely and 
others, 1958); it underlies much of the area east of Grays 
Harbor and Willapa Bay (fig. 7) and conformably overlies the 
Skookumchuck Formation. The Lincoln Creek Formation, 
where it crops out east of Centralia, consists of nearshore and 
continental units. These units grade laterally into marine tuffa-
ceous siltstone and fine-grained sandstone that are about 1,500 
ft thick near Centralia (fig. 44). The Lincoln Creek Forma-
tion thickens westward to as much as 9,000 ft thick southeast 
of Grays Harbor (fig. 7, also see fig. 54), where the Lincoln 
Creek Formation is predominantly marine tuffaceous siltstone 
and fine-grained tuffaceous sandstone (Armentrout and others, 
1980).

The lower to middle Miocene Astoria Formation uncon-
formably overlies the Lincoln Creek Formation in the southern 
Puget Lowland, where late Oligocene structural highs had 
developed. Because of these unconformable relations, the 
thickness of the Astoria Formation is variable, measuring only 
about 700 ft in the southern Puget Lowland area but increases 
to nearly 3,500 ft just east of Grays Harbor (fig. 8; also see 
fig. 54) (Rau, 1967). In the Centralia, Wash., area (fig. 44), the 
Astoria Formation consists generally of dark, medium-grained 
and carbonaceous fine-grained sandstone and locally glauco-
nitic sandstone beds at its base (Armentrout and others, 1980). 
East of Centralia, the Astoria Formation contains basaltic 
conglomerate (Snavely and others, 1958).

Olympic Peninsula Area

The Tofino-Juan de Fuca Basin is located on the northern 
Olympic Peninsula of Washington (fig. 46) and occupies the 
Strait of Juan de Fuca (fig. 46). The Canadian term for this 
basin is the Tofino Basin (Shouldice, 1971), and Snavely and 
others (1980) referred to the basin as the Tofino-Fuca Basin. 
The Tofino-Juan de Fuca Basin is bounded on the north by 
Vancouver Island and to the south by the Olympic Mountains. 
Subsidence began in the middle Eocene resulting from thermal 

Figure 45.  Outcrop showing the Big Dirty coal bed of the 
Skookumchuck Formation, in the Hanaford pit, at the Centralia 
mine, west of Centralia, Washington (see fig. 44). The coal bed is 
as much as 40 ft thick. White band is a volcanic ash parting.

fossils, fossil fragments, and trace fossils indicate widespread 
biologic activity. Zones of root structures in these inferred 
intertidal deposits indicate periodic exposure in supratidal 
environments.

Tidal-channel deposits are observed in a variety of scales. 
Larger channels are represented by units of scour-based, 
trough-crossbedded sandstone and include Teredo-bored wood 
fragments. A large channel deposit traverses the Big Dirty 
coal bed in the North Hanaford pit of the Centralia mine, 
east of Centralia, Wash. (fig. 44), indicating channel incision 
into a supratidal mire (Brownfield and others, 1994). Depos-
its of smaller tidal channels include relatively thin sets of 
tabular-crossbedded, silty to fine-grained sandstone units with 
reactivation surfaces that are interpreted as tidal bar deposits 
(Boersma and Terwindt, 1981).

The coal beds represent peat accumulation in supratidal 
mires that formed above mean high-tide level. The presence of 
abundant mudstone and of both airfall and water-laid volcanic-
ash partings (fig. 45) suggests that these mires were low lying 
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cooling of the Crescent Formation basement rocks (Johnson 
and others, 1997). In the southern part of the basin, there are 
more than 28,000 ft of northward-dipping rocks of middle 
Eocene to early Miocene age (figs. 47 and 48) (Brown and 
others, 1960; Gower, 1960; Snavely and others, 1980; Sna-
vely, 1983; Snavely and others, 1993b; Schasse, 2003), includ-
ing lithic arkosic to lithic turbidite sandstone and deep-marine 
mudstone and minor amounts of conglomerate and sedimen-
tary breccia. The middle to upper Eocene Aldwell Formation 
(fig. 47), which unconformably overlies the oceanic basalt of 
lower Eocene Crescent Formation oceanic basalt, is predomi-
nantly marine mudstone and siltstone with minor amounts of 
sandstone, conglomerate, and lenses of pillow basalt, volcanic 
breccia, and tuff; average thickness is 2,000 ft (Brown and 
others, 1960). The Aldwell Formation is overlain unconform-
ably by the upper Eocene Lyre Formation, at least 2,200 ft 
thick, consisting of massive, medium- to coarse-grained con-
glomerate and interstratified gray to grayish-brown, coarse-
grained, massive sandstone with pebbly conglomerate beds 

and minor thin-bedded siltstone and shale. Snavely and others 
(1978) divided the overlying Twin River Group (fig. 47) into 
the Hoko River, Makah, and Pysht Formations, with combined 
thicknesses as much as 17,500 ft. The Hoko River Formation 
conformably overlies, or intertongues with, the Lyre Forma-
tion and ranges in thickness from 5,250 to 7,550 ft; it contains 
fossiliferous siltstone with interbedded phyllitic and basaltic 
sandstone, pebbly sandstone, and conglomerate (Snavely and 
others, 1978, 1980; Prothero and others, 2009). The Hoko 
River Formation is gradationally or locally unconformably 
overlain by 7,550 to 9,200 ft of the Makah Formation, which 
consists of turbidite sandstone and siltstone. The Makah For-
mation is gradationally or unconformably overlain by 3,610 to 
4,590 ft of the Pysht Formation and contains gray to olive-
gray massive mudstone, sandy siltstone with minor interbeds 
of sandstone, and conglomerate channels. The Pysht Forma-
tion is overlain by the lower Miocene Clallam Formation, 
which forms the upper part of the sedimentary sequence that 
filled the deep-marine Juan de Fuca Basin (fig. 47) (Niem and 

48° 

124° 

CANADA
UNIT

ED
 S

TA
TE

S

Tofino-Juan de Fuca Basin

Pa
ci

fic
 O

ce
an

Vancouver
Island

Olympic Peninsula

Port
Angeles

Victoria

Cape
Flattery

DISCOVERY

BAY FAULT

Metchosin
Volcanics

Strait of Juan de Fuca

Pre-Tertiary rocks

Syncline

Anticline

FaultTertiary Ozette terrane
  and melange or broken
  formation

Sedimentary rocks interbedded
  with the Crescent Formation

Eocene Crescent Formation
  and the Metchosin Volcanics
  on Vancouver Island

Quaternary deposits and
  Tertiary sedimentary rocks

EXPLANATION

15 MILES0

0 15 KILOMETERS

Thrust fault, teeth on
  upper plate

A

A'

Figure 46.  Generalized geologic map of the northern part of the Olympic Peninsula, Vancouver Island, Canada, 
and the Tofino-Juan de Fuca Basin. Cross section A–A’ shown in figure 48. Modified after Tabor and Cady 
(1978a), Niem and Snavely (1991), and Johnson and others (1997).



42    Total Petroleum Systems and Geologic Assessment of the Western Oregon and Washington Province

Clallam Formation

Pysht Formation

Makah Formation

Hoko River
Formation

Aldwell Formation

Crescent Formation

Ozette and adjacent
terranes

Lo
w

er
  M

io
ce

ne
Ol

ig
oc

en
e

Up
pe

r  
  E

oc
en

e
M

id
dl

e
Eo

ce
ne

Lo
w

er
Eo

ce
ne

M
id

dl
e 

 a
nd

  u
pp

er
  E

oc
en

e
(w

ith
 so

m
e 

pr
e-

Te
rti

ar
y b

lo
ck

s)

Siltstone of Brownes Creek

Lyre
Formation

Tw
in

  R
iv

er
  G

ro
up

Jansen Creek
Member

Third Beach
Member
Klachopis Point
Member

Dtokoah Point Mbr.
Baada Point
Mbr.

Figure 47.  Stratigraphic column 
showing rocks of the Tofino-Juan de 
Fuca Basin, northwest Washington, and 
Vancouver Island, Canada. Modified 
after Snavely and others (1978), Niem 
and Snavely (1991), and Snavely and 
others (1993). Not to scale.

Snavely, 1991). The Clallam Formation ranges in thickness 
from 1,970 to 2,625 ft (Addicott, 1976) and contains predomi-
nantly marine sandstone, sandy siltstone, and conglomerate, 
with thin coal beds and carbonaceous mudstone and siltstone 
in the upper part of the formation. The Crescent Formation and 
the middle to upper Eocene Ozette terrane (figs. 47 and 48) 
along the southern part of the basin, have been underthrusted 
by the melange and broken formation terranes of the Olympic 
Peninsula (Tabor and Cady, 1978a; Schasse, 2003).

Sedimentary rocks in the Tofino-Juan de Fuca Basin rep-
resent several depositional environments (Niem and Snavely, 
1991). The bathyal slope, outer fan, and basin-plain environ-
ments are indicated by thick mudstone units with minor distal 
turbidites represented by the middle and upper Eocene Aldwell 
and the Oligocene and lower Miocene Pysht Formations 
(Snavely and others, 1978; Snavely, 1983). The submarine-fan 
and gravel-slope wedges include the Lyre Formation (fig. 47) 
and informal upper Eocene Cape Flattery breccia (Brown and 
others, 1956; Ansfield, 1972). Slope and basin turbidite flows 
and middle to outer fan conglomerate channels are identified 
in the upper Eocene Hoko River Formation (Ansfield, 1972; 
De Chant, 1989), with turbidite fans in an outer- to mid-fan 
environment identified in the upper Eocene to lower Miocene 
strata of the Makah and Pysht Formations (Brown and Gower, 
1958; Rau, 1964; Snavely and others, 1980). The marine 
units in the basin were mostly derived from (1) Paleozoic 
and Mesozoic low-grade metamorphic, granitic, and volca-
nic rocks, and eroded sedimentary-sourced terranes on the 
southern part of Vancouver Island (Snavely and others, 1980; 
Niem and Snavely, 1991); and (2) local lower Eocene Crescent 
Formation and Metchosin Volcanics (figs. 4 and 46) (Brown 
and others, 1960; Snavely, 1983). The Clallam Formation was 
deposited mostly as a marine unit with the upper part depos-
ited in a coal-bearing deltaic environment.

The central and western part of the Olympic Peninsula 
is characterized as accretionary terrane (fig. 3) that formed 
during convergence between the Pacific and North American 
plates during late Eocene and middle Miocene time, produc-
ing two melange terranes. The absence of blueschist-facies 
rocks and ultramafic rocks is further evidence that the Olym-
pic core rocks were accreted and subducted and mixed with 
mantle material (Tabor and Cady, 1978b). The only onshore 
exposures of the terranes are within the western part of the 
Olympic Peninsula, where they were transported eastward to 
form the core of the Olympic Mountains west of the Hurricane 
Ridge fault (figs. 38, 49, and 50). Surrounding this core area 
is a rim-shaped area of peripheral rocks consisting of lower 
to middle Eocene oceanic basalt and volcaniclastic rocks of 
the Crescent Formation (figs. 7 and 51) overlain by sedimen-
tary rocks of Eocene to Miocene age. The two terranes in the 
western part of the Olympic core are known as the Ozette ter-
rane that formed during the late Eocene convergence and the 
Hoh rock assemblage that formed during the late Oligocene 
to middle Miocene convergence (fig. 51) (Rau 1975, 1979; 
Tabor and Cady, 1978b; Snavely and Kvenvolden, 1989). The 
two terranes, both of which contain organic-rich rocks, have 
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been differentiated on the basis of biostratigraphic data. The 
Ozette melange (fig. 51), of unknown thickness, includes lithic 
sandstone and siltstone turbidite beds and minor conglomerate, 
coal, and carbonaceous sandstone and siltstone. The Hoh rock 
assemblage (fig. 51) includes at least 8,200 ft of lithic feld-
spathic sandstone and siltstone turbidite beds (figs. 52 and 53) 
and minor amounts of conglomerate, coal, and carbonaceous 
sandstone and siltstone (Snavely and Kvenvolden, 1989).

Southwestern Washington Area

The oldest rocks exposed in southwestern Washington 
are Paleogene in age and include the Crescent Formation, the 
lower part of the Hoh rock assemblage, and the McIntosh, 
Cowlitz, and Lincoln Creek Formations (figs. 5 and 54) all 
of which are described in previous sections for other areas in 
which they are present. The post-Crescent Formation Tertiary 
rocks are about 15,000 ft thick in the Grays Harbor and Wil-
lapa Bay areas and to the east (Rau, 1967, 1968).

The upper Eocene to Oligocene Lincoln Creek Formation 
(fig. 8) consists mostly of marine tuffaceous mudstone, silt-
stones, and fine-grained sandstones ranging in thickness from 
2,000 to more than 9,000 ft in southwest Washington (Rau, 

1966, 1967; Beikman and others, 1967). The siltstone and 
silty sandstone beds are thick, displaying little bedding except 
where tuff or concretionary layers are present. Some altered 
tuff beds have been identified in the Lincoln Creek Formation 
ranging in thickness from a few inches to a few feet (Rau, 
1967).

Shallow marine and deltaic rocks, of the lower to middle 
Miocene Astoria Formation and the middle to upper Miocene 
Montesano Formation, crop out in southwest Washington 
(fig. 54). The Astoria Formation unconformably overlies the 
Lincoln Creek Formation in areas to the east where structural 
highs are present, but the two are conformable elsewhere. 
The Astoria Formation is estimated to be about 3,500 ft thick 
northeast of Grays Harbor and consists of marine organic-
rich mudstones, siltstones, and fine- to coarse-grained lithic-
feldspathic and arkosic sandstones with minor conglomerates 
(fig. 44) (Rau, 1967; Walsh and others, 1987). The rocks of the 
Astoria Formation are commonly massive but include locally 
sourced conglomerate and concretionary beds. The Astoria 
Formation can be differentiated from the underlying Lincoln 
Creek Formation by the increase in carbonaceous material, 
the lack of tuffaceous material, and generally having better 
bedding.
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Figure 52.  Outcrop of 
the upper Oligocene 
to middle Miocene 
Hoh rock assemblage 
turbidites along Beach 
4, Washington coastline. 
The top surfaces of the 
beds face to the left, 
indicating that the beds 
are overturned.

Figure 53.  Close-up 
view of the upper 
Oligocene to middle 
Miocene Hoh rock 
assemblage turbidites 
along Beach 4, 
Washington coastline. 
Parallel laminated 
sandstones below 
and right of knife. 
Top surfaces of the 
beds face to the left, 
indicating that the beds 
are overturned.



48  


Total Petroleum
 System

s and G
eologic A

ssessm
ent of the W

estern O
regon and W

ashington Province

Hoquiam

COLUMBIA RIVER

?

?

?

?

?

BIG CREEK
THRUST FAULT

124°

47°

46°
0

0 10 20 KILOMETERS

10 20 MILES

OREGON

WASHINGTON

PACIFIC

OCEAN

GRAYS

HARBOR

W
ILLAPA BAY

Astoria

Aberdeen

Hoh rock
assemblage
(Rau, 1986)

Humptulips
Formation
(Rau, 1986)

Paleogene rocks, undivided, includes,
  in part, lower part of the Hoh rock
  assemblage, McIntosh, Cowlitz,
  Humptulips, and Lincoln Creek
  Formations 

Crescent Formation, mostly basalt
  and volcaniclasitic rocks

Neogene rocks, undivided, includes,
  in part, upper part of the Hoh rock
  assemblage, Astoria and Montesano
  Formations

Quaternary deposits

Thrust fault, dashed where inferred,
  sawteeth on upper plate

City

Tertiary intrusive
  rocks

Columbia River Basalt
  Group

Quaternary to Tertiary
  volcanic rocks, undivided

Water

EXPLANATION

Ocean City

Strike-slip fault, dashed where
  inferred

WISHKAH
THRUST FAULTS

Figure 54.  Geologic map of southwestern Washington showing selected geologic units. Modified after Rau (1986), Walsh and others (1987), Snavely 
(1987), and Palmer and Lanley (1989).



Geologic Setting of Western Oregon and Washington Province    49

The Miocene Montesano Formation unconformably over-
lies the Astoria Formation, is as much as 2,500 ft thick (Rau, 
1967), and occurs over a large area surrounding Aberdeen, 
Wash. (fig. 54). The lower part of the Montesano Formation 
consists of about 1,500 ft of fine-grained sandstone (fig. 55) 
with minor amounts of conglomerate and mudstone; the upper 
part consists of about 1,000 ft of tuffaceous mudstone and 
sandy siltstone (Fowler, 1965, 1966). East of Grays Harbor, 
the Montesano Formation averages 1,800 ft thick and is com-
posed mostly of fine- to medium-grained sandstone, pebbly 
sandstone, and conglomerate, indicating a probable sediment 
source area to the east.

Several periods of deformation occurred in southwestern 
Washington since the middle Eocene, resulting from con-
vergence of the Pacific and North American plates. These 
included the tectonic processes of crustal shortening, thrust 
and strike-slip faulting, and block rotation (Wells and Coe, 
1985; Rau, 1986). The first period of deformation resulted 
in the late middle to early late Eocene underthrusting of the 
organic-rich Hoh rock assemblage, and possibly also the 
Ozette melange, beneath the Crescent Formation along the Big 
Creek thrust fault (fig. 54) (Rau, 1986; Snavely and Kven-
volden, 1989; Snavely and others, 1993b). Contemporary with 
this thrusting event, east–west strike-slip faulting offset both 
rock assemblages and the Crescent Formation. The Big Creek 
thrust fault (fig. 54) was interpreted as a middle Tertiary plate 
boundary by Johnson and others (1997, their fig. 10); they 

placed the boundary along the eastern edge of Grays Harbor. 
Snavely and Wagner (1982) and Snavely (1987), however, 
placed this plate boundary just offshore (westernmost thrust 
fault in fig. 54); west of the plate boundary (fig. 56, fault A), 
the Miocene shallow-marine rocks of the Montesano Forma-
tion were deposited on the lower plate, which consists of the 
Hoh rock assemblage (Rau, 1973) and possibly the rocks 
of the Ozette terrane (Snavely and Wagner, 1982); Snavely, 
1987; Snavely and others, 1993b). To the east of the plate 
boundary of Snavely and Wagner (1982, 1987), the Astoria 
and Montesano Formations were deposited over the Crescent 
Formation on the upper plate (fig. 56). The southern extension 
of the Big Creek thrust fault may be fault B of Snavely and 
Wagner (1982) and Snavely (1987) (fig. 56), and the Hoh rock 
assemblage could be present below the Crescent Formation at 
depth, but the lack of onshore seismic reflection profiles limit 
the deeper projection of geologic formations (fig. 56).

The second major period of deformation occurred in the 
middle Miocene and resulted in faulting along the Wishkah 
thrust faults and folding within the Humptulips and Astoria 
Formations, but did not affect the upper Miocene Montesano 
Formation (figs. 54 and 55) (Rau, 1986). Strike-slip faults 
offset the Crescent and Humptulips Formations during the 
same deformation period. The third period of deformation fol-
lowed the deposition of the Miocene Montesano and resulted 
in gentle folding and minor faulting. Figure 56 shows the 

Figure 55.  Exposure of arkosic sandstone and siltstone in the middle to upper Miocene 
Montesano Formation in road cut along U. S. Highway 12, east of Aberdeen, Washington 
(see fig. 54).
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complex thin-skinned structure associated with these periods 
of deformation in southwestern Washington.

Eocene Coal-Bearing Depositional 
Systems of Western Oregon and 
Washington

Eocene coal-bearing rocks of western Oregon and Wash-
ington are included in a variety of stratigraphic units that bear 
different names in different parts of the Western Oregon and 
Washington Province. This abundance of stratigraphic names 
is a reflection of the many different but largely uncoordinated 
geologic investigations that have taken place in the various 
areas, as well as a consequence of the intertonguing relations 
in different areas between sedimentary rocks and intrabasinal 
volcanic rocks in the province. Despite the different names, 
it is important to recognize that all these stratigraphic units 
were deposited in a single regional coal-depositional system 
that extended north–south along depositional strike from the 
Bellingham area in northwestern Washington south to the 
Coos Bay area in southwestern Oregon (fig. 57) (Dott, 1966). 
At times, this regional depositional system was segmented by 
faults and local volcanic centers. Additionally, the intrabasinal 
Tukwila and Northcraft volcanic centers (Tukwila and North-
craft Formations, respectively, fig. 5) had important effects on 
the Washington part of the Eocene coal-bearing architecture 
and facies patterns (Buckovic, 1979). Paleobotanic stud-
ies (Wolfe, 1968, 1978, 1981, 1994, 1995; Burnham, 1994; 
Retallack and others, 2004) indicate that during the Eocene, 
the province coastal climate was warm, humid to mesic, and 
subtropical.

Eocene coal-bearing rocks of western Washington are 
included in a variety of stratigraphic units including the 
Carbonado, Chuckanut, Cowlitz, Renton, Skookumchuck, 
Spiketon, and Tiger Mountain Formations, and the undivided 
Puget Group (fig. 5) (Brownfield and others, 1994). In Oregon, 
coal-bearing units are the Bateman, Coaledo, Cowlitz, Spen-
cer, and Tyee Formations and the Umpqua Group (fig. 8). 

Paleocurrent data indicate that sediment transport was 
from east to west across western Washington (Buckovic, 1979; 
Brownfield and others, 1994, 2005). Middle to upper Eocene 
sandstones are generally arkosic (Buckovic, 1979; Frizzell, 
1978; Johnson, 1985; Heller and Ryberg, 1983; Wells and 
others, 2000; Ryu, 2003), the source being crystalline rocks to 
the east; the proportion of volcanic detritus generally increases 
upward in the section, but also varies locally as a function of 
proximity to volcanic centers.

Coal-bearing formations in western Oregon and Wash-
ington were deposited in a variety of fluvial, deltaic, brack-
ish, and shallow-marine environments (for example, Allen 
and Baldwin, 1944; Baldwin and others, 1973; Buckovic, 
1979; Armentrout, 1980; Burnham, 1990; Brownfield and 
others, 1994, 2005; Flores and Johnson, 1995). Fluvial and 
distributary channel deposits typically form thick crossbedded 

sandstone bodies. Interchannel deposits comprise a variety of 
sandstone, mudstone, and coaly facies deposited in crevasse 
channels and splays, floodbasins, shallow lakes, and mires. 
Shallow-marine and brackish-water deposits consist mainly 
of stratified to massive (from bioturbation) sandstone and 
mudstone deposited in tide- and wave-influenced shoreface, 
mouthbar, and shallow-shelf environments. Coals are brack-
eted by both nonmarine and brackish or shallow-marine facies 
and developed in both upper and lower delta and coastal-plain 
settings.

Following sedimentological models of Ryer (1984) for 
Cretaceous rocks in the Rocky Mountains, the general upward 
thinning of the coal beds exposed in the coal-bearing areas in 
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Portland
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Mist gas
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Figure 57.  Paleogeographic map showing the peat-bearing 
coastal plain of western Oregon and Washington during middle 
to late Eocene time. Feldspathic-quartzose sands, derived 
from eastern granitic terranes, were transported westward 
in several river systems to a broad coastal plain bordering a 
shelf-margin sea. Coal swamps developed from Bellingham 
to Coos Bay. Volcanism within the sediment source terrain, 
along the coastal margin, and on nearshore islands provided 
volcaniclastic sediments. Modified after Dott (1966) and 
Armentrout and Suek (1985).
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the province is consistent with their deposition during a major 
transgressive pulse along the Eocene coastline of southwest 
Washington.

Tectonic Evolution of the Pacific 
Northwest

Paleomagnetic studies of lower Eocene to Miocene 
volcanic and sedimentary rocks in the Oregon and Washing-
ton Coast Range (fig. 58) demonstrate that this crustal block 
rotated from 75° to 80° clockwise with respect to the North 
American plate since the early Eocene (Simpson and Cox, 
1977; Heller and Ryberg, 1983; Wells and Coe, 1985; Wells 
and Heller, 1988; England and Wells, 1981; Wells and others, 
2000). This rotation of the Coast Range may still be occur-
ring, with the extension of the northern part of the Basin 
and Range region (Wells and Heller, 1988; Wells and others, 
1998). The lower to middle Eocene Tyee Formation (fig. 12) 
is rotated about 67° clockwise (Simpson and Cox, 1977), and 
its onlap onto the Klamath terrane indicates that the rotation 
postdates the accretion of the Siletz terrane to the continent 
(Heller and Ryberg, 1983; Wells and others, 2000). Wells and 
others (2000) reported that the Paleogene Umpqua Group fold 
axis formed prior to the deposition of the Tyee Formation, 
therefore the 67° of rotation measured in the Tyee rocks must 
have occurred after the deformation of the Umpqua Group. 
The Eocene Tillamook Volcanics in the north-central Oregon 
Coast Range have been rotated clockwise about 46° (Magill 
and others, 1981), but volcanic rocks in the northern part of 
the Washington Coast Range were rotated much less. Samples 
from the lower Eocene Crescent Formation collected in the 
Black Hills west of Olympia, Wash., have measured clockwise 
rotations of about 27° (Globerman and others, 1982), and 
the Eocene volcanic rocks at Bremerton west of Seattle have 
measured clockwise rotations of about 7° (Beck and Engebret-
son, 1982). The middle Miocene flood basalts of the Columbia 
River Basalt Group are the youngest rocks with measured 
rotations; these show a clockwise rotation of 15° to 25° when 
compared to similar flows on the Columbia Plateau (Wells and 
Heller, 1988).

Several tectonic models have been proposed to explain 
the large Tertiary clockwise rotations of crustal blocks in the 
Pacific Northwest. The proposed models consist of three major 
rotation concepts or the combination of two or more of the 
concepts: (1) microplate rotation during accretion of alloch-
thonous Coast Range marginal terranes (Simpson and Cox, 
1977; Duncan, 1982), (2) rotation induced by dextral shear 
between the continent and oceanic plates to the west (fig. 59) 
(Beck, 1976, 1980; Wells and Coe, 1985; Wells and Heller, 
1988), and (3) rotation of terranes in front of differential 
continental extension in the Basin-and-Range Province region 
(Simpson and Cox, 1977; Hammond, 1979). Wells and Heller 
(1988) proposed a two-fold model that incorporates both dex-
tral shear and continental extension in the Basin-and-Range 

region with little or no clockwise rotation related to the accre-
tion of the early Eocene oceanic plates. The majority of the 
eastward rotation postdates the accretion and deformation of 
the lower Eocene Siletz terrane against the North American 
plate. Paleogeographic reconstructions based on the Wells and 
Heller (1988) model are shown in figure 59.

The late middle to late Eocene was a transitional period 
representing the last phases of the episode of rifting and 
strike-slip faulting prior to initiation of Cascade-arc volca-
nism. During this time, basin subsidence slowed significantly 
and coal-bearing sedimentary units (fig. 57) were deposited 
in fluvial, deltaic, and shallow-marine environments over the 
western basement terranes.

Cretaceous-Tertiary Composite Total 
Petroleum System (500401)

A total petroleum system (TPS)—the Cretaceous-Tertiary 
Composite TPS—is defined within the Western Oregon and 
Washington Province (fig. 1) and was first defined during an 
assessment of gas resources in the Eastern Oregon and Wash-
ington Province by Brownfield (2008). The TPS boundary is 
defined on the basis of where potential reservoir and source 
rocks are known to exist or inferred to exist, and where hydro-
carbon source-rock thermal maturities have reached a vitrinite 
reflectance (R

O
) of 0.5 percent or greater. Gas generated from 

potential source rocks is interpreted to have migrated into 
Paleocene to Miocene reservoir rocks.

As defined, the TPS most likely underlies much of 
the Eastern Oregon and Washington Province and extends 
westward under the Cascade Range (fig. 1) obscuring and 
(or) separating many of the stratigraphically equivalent basins 
containing potential Paleogene hydrocarbon source rocks in 
both Oregon and Washington. That part of the TPS, described 
and assessed by Brownfield (2008), includes thick successions 
of Cretaceous to Oligocene fluvial to deltaic arkosic sandstone 
and interbedded mudstone, carbonaceous shale, and coal. 
These strata are in (1) the Eocene Swauk, Manastash, Tean-
away, Chumstick, and Roslyn Formations and the Oligocene 
Wenatchee and Ohanapecosh Formations in Washington; and 
(2) the Cretaceous Hudspeth and Gable Creek Formations, the 
Paleocene to Eocene “Herren formation” of Shorey (1976), 
and the Eocene to lower Oligocene Clarno Formation in 
Oregon.

The western part of the Cretaceous-Tertiary Compos-
ite TPS includes thick Paleogene fluvial to deltaic arkosic 
sandstone and interbedded mudstone, carbonaceous shale, and 
coal as much 20,000 ft thick (Johnson, 1985). These strata, 
although widespread, are primarily restricted to disconnected 
basins throughout the TPS area (Frizzell, 1978, 1979; Johnson, 
1982; Johnson, 1984a,b; Johnson, 1985; Johnson and Tenny-
son, 1995; Brownfield, 2008).

The Chuckanut Formation (fig. 5) in the Bellingham 
Basin and coal field (figs. 2 and 40) may be stratigraphically 
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Figure 58.  Geologic provinces and paleomagnetic-rotation data of the Pacific Northwest. A, Geologic provinces 
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fault, Straight Creek fault, Brothers fault zone, and Wasatch fault, respectively. B, Tectonic rotations of rock units, 
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volcanic rocks at Bremerton-Port Ludlow (Beck and Engebretson, 1982); BH, Eocene Crescent Formation, Black 
Hills (Globerman and others, 1982); WH, Eocene Crescent Formation, Willapa Hills (Wells and Coe, 1985); GV, 
upper Eocene Goble Volcanics (Beck and Burr, 1979; Wells and Coe, 1985); PO, Miocene Pomona Member, Saddle 
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and others (1981); SG, Miocene Snoqualmie and Grotto batholiths (Beske and others, 1973); SP, Eocene Sanpoil 
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Eocene intrusions (Beck and Plumley, 1980); OI, Oligocene intrusions (Beck and Plumley, 1980); SV, Eocene Siletz 
River Volcanics (Simpson and Cox, 1977); TF, Eocene Tyee Formation (Simpson and Cox, 1977); RB, Paleocene 
basalt at Roseburg (Wells and others, 1985); YB, upper Eocene Yachats Basalt (Simpson and Cox, 1977); WC2, WC3, 
Oligocene and Miocene volcanic rocks of the western Cascade Range (Magill and Cox, 1980; Beck and others, 
1986); CF, Eocene and Oligocene Clarno Formation (Grommé and others, 1986); CB, Miocene Columbia River Basalt 
Group; and SB, Miocene Steens Basalt (Mankinen and others, 1987); California locations: HF, Lower and Upper 
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equivalent to the Swauk, Roslyn, and Chumstick Formations 
in eastern Washington (Johnson, 1985). Johnson (1984b) 
inferred a rapidly uplifted crystalline source area to the east, 
but the arkosic sandstone petrography of the Chuckanut 
Formation is similar to the Swauk, Roslyn, and Chumstick 
Formations (Frizzell, 1978; Johnson, 1984a; Johnson, 1985) 
indicating a probable connection between the basins. Frizzell 
(1978) also suggested that the Chuckanut and Swauk Forma-
tions (current outcrop areas) might have been joined, then 
later separated by the Straight Creek fault zone (fig. 38). Other 
equivalent or partly equivalent rocks to the Chuckanut Forma-
tion extend southward in western Washington and include the 
Puget Group (fig. 5) in the Green River coal field (fig. 2), the 
Carbonado Formation in the Wilkeson-Carbonado coal field, 
and the Cowlitz and Skookumchuck Formations (Vine, 1969; 
Johnson and others, 1997) in the Centralia-Chehalis coal 
field (fig. 2). The coal-bearing strata accumulated in intertidal 
and deltaic environments along a tidal-influenced delta plain 
(Brownfield and others, 1994, 2005; Flores and Johnson, 
1995).

The marginal marine Spencer Formation and the mar-
ginal marine and deltaic Coaledo Formation (fig. 8) (Beau-
lieu, 1971) may be equivalent, in part, to the middle Eocene 
to Oligocene Clarno Formation (Brownfield, 2008) and the 
“Herren formation” of Shorey (1976). The upper Eocene 
Spencer contains lignite, coal, and carbonaceous shale in the 
upper parts of the unit (Beaulieu, 1971). The middle to upper 
Eocene Coaledo Formation in the Coos Bay coal field (fig. 2) 
contains numerous coal beds (Brownfield, 1981). The upper 
middle Eocene Tyee Formation (fig. 5) in the southern part of 
Coos County, Oreg. (fig. 1), southeast of the Coos Bay coal 
field, contains coal beds in the Eden Ridge coal field (fig. 2) 
(Brownfield, 1981) and may be equivalent, in part, to the 
Clarno Formation (Beaulieu, 1971).

An events chart (fig. 60) for the Cretaceous-Tertiary 
Composite TPS graphically portrays the ages of source, seal, 
and reservoir rocks, as well as the timing of trap development 
and generation, migration, accumulation, and preservation of 
hydrocarbons.
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about Euler pole, P (Frei and others, 1984). Resultant block rotations are shown, along with amounts of northern Basin-and-
Range extension required to produce them. Component of Farallon plate motion parallel to continental margin shown in circle in 
kilometers per million years (Engebretson and others, 1985). Modified after Wells and Heller (1988).
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Hydrocarbon source rocks include lacustrine shales in 
the Eocene Swauk and Chumstick Formations and coals in the 
Eocene Manastash, Naches, and Roslyn Formations within the 
eastern Washington part of the TPS (Brownfield, 2008). In the 
western Washington part of the TPS, the source rocks include 
the coal- and carbonaceous-shale-bearing Eocene Chuckanut, 
Huntingdon, Renton, Tiger Mountain, Spiketon, Carbonado, 
Skookumchuck, and Cowlitz Formations and the undivided 
Eocene Puget Group (fig. 5).

In the Bellingham Basin, the coal zone in Chuckanut and 
Huntingdon Formations was penetrated at depths ranging from 
1,700 to 3,700 ft in several exploration wells (fig. 38). In the 
Birch Bay No. 1 well (fig. 61), coals and shales above 6,000 
ft contain both Type-III and Type-IIB kerogens (Hurst, 1991; 
Lingley and von der Dick, 1991; Johnson and others, 1997) 
and several zones contain more than 6 percent total organic 
carbon (TOC). Rocks below 6,000 ft have Type-III kerogens 
and lower TOC values. Vitrinite reflectance (R

O
) values rang-

ing from 0.5 to 0.6 percent have been reported from depths 
of 1,700 to 7,600 ft in the Bellingham Basin, and in outcrops 
of the Chuckanut Formation on the southern part of the basin 
R

O
 is 0.74 percent (fig. 61). Porosity values in the Chuckanut 

Formation arkosic sandstones in the Birch Bay No. 1 well 
decreases from 26 percent at a depth of 1,000 ft to less than 10 
percent at a depth of 6,000 ft (Hurst, 1991), and measured per-
meabilities range from less that 1 millidarcy (mD) to 58 mD 
(Johnson and others, 1997). Good reservoir rocks are present 
in the well to a depth of 4,500 ft. The decrease in reservoir 
quality with depth is the result of diagenetic alteration of feld-
spars and lithic rock fragments.

The undifferentiated middle to upper Eocene Puget 
Group and the Tiger Mountain, Renton, Spiketon, and Carbo-
nado Formations of the Puget contain coal and carbonaceous 
mudstone source rocks with R

O
 values ranging from about 

0.35 to 2.0 percent (Walsh and Lingley, 1991). The underly-
ing Raging River Formation (fig. 5) contains possible marine 
mudstone (Vine, 1969; Johnson and O’Connor, 1994) with 
total organic carbon (TOC) contents ranging from 0.8 to 
1.1 weight percent and R

O
 values ranging from 1.18 to 4.01 

percent (fig. 62). These rocks crop out only at Tiger Mountain 
(figs. 41 and 62) and are inferred to underlie a major portion 
of the Puget Lowland (Stanley and others, 1992; Johnson 
and Stanley, 1995; Johnson and Tennyson, 1995; Johnson 
and others, 1997). Johnson and O’Connor (1994) reported 
that, although in the Tiger Mountain area these rocks are 
overmature, they may exist at depth to the west and gener-
ated hydrocarbons in the past. Enhanced maturation may have 
occurred adjacent to Eocene and younger intrusive centers that 
lie within or on the margins of the Puget Lowland (Esposito 
and Whitney, 1995).

Reservoir rocks include fluvial and distributary-channel 
sandstones in the middle to upper Eocene Tiger Mountain, 
Renton, Carbonado, and Spiketon Formations and undif-
ferentiated Puget Group (Buckovic, 1979). Individual sand-
stone beds range in thickness from 10 ft to more than 200 ft 
and are bounded by flood-plain deposits including coal and 
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Figure 60.  Events chart for the Cretaceous-Tertiary 
Composite Total Petroleum System in the Western 
Oregon and Washington Province. The petroleum 
system was first defined during the assessment 
of the Eastern Oregon and Washington Province 
(Brownfield, 2008). Light blue indicates rock units 
present; wavy line, unconformity. Age ranges of 
source, seal, reservoir, and overburden rocks and 
the time of trap formation and generation, migration, 
accumulation, and preservation of hydrocarbons 
shown in green and yellow. Queries indicate 
uncertainty. Modified after Brownfield (2008) to 
include the possible source rocks in the Upper 
Jurassic to Lower Cretaceous Myrtle Group and 
the Upper Jurassic to Lower Cretaceous Dothan 
Formation of southern Oregon. Geologic time scale in 
millions of years (m.y.). Plio, Pliocene; Mio, Miocene; 
Olig, Oligocene; Eoc, Eocene; Pal, Paleocene, L, Late; 
M, Middle; E, Early.
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carbonaceous mudstone (Vine, 1969; Johnson and Stanley, 
1995). Sandstone reservoirs might be present at depths of as 
much as 10,000 ft (Johnson and O’Connor, 1994; Johnson and 
others, 1997). The reservoir sandstones are generally arkosic 
but contain lithic rock fragments that contribute to the loss of 
porosity due to alteration and compaction at depth.

North of Morton, Wash. (fig. 62), the middle Eocene 
Carbonado Formation (fig. 5) is about 3,900 ft thick and con-
sists of nonmarine and shallow-marine rocks deposited within 

a tide-influenced delta. Potential gas-prone source rocks are 
shallow-marine mudstones, coals, and carbonaceous shales. 
Samples analyzed from a coal exploration borehole (fig. 62; 
Amoco WC-83-5) north of Morton, Wash., show R

O
 values 

ranging from 0.96 to 1.69 percent (Johnson and Stanley, 
1995). Potential reservoir rocks in the Carbonado Formation 
consist of fine- to coarse-grained sandstone beds of fluvial ori-
gin and generally range in thickness from 15 to 65 ft but can 
be as much as 230 ft thick. No porosity and permeability data 

6 MILES

Pre-Tertiary rocks

Chuckanut Formation

Quaternary deposits

Wells with total
depth > 1,500 ft 

Fold axis

Fault

Gas seep

EXPLANATION

International boundary

6,042'

5,576'

10,892'

5,202'
7,977'
RO = 0.53, 7,600' 7,858'

7,365'
RO = 0.55,
4,000'

AHEL
Birch Bay No. 1
9,126'
RO ~0.55, 4,200'

6,229'
RO = 0.45, 5,275'

6,008'

5,458'

6,180'

UNITED STATES

Strait of Georgia

49° 

Bellingham
Basin

Bellingham

14,789' CANADA

UNITED STATES
CANADA

Sumas
Mountain

123° 

San Juan Islands

San Juan Islands

RO = 0.55, 1,709'

RO = 0.74,
outcrop

Birch Point
Blaine

King Mountain area

0

6 KILOMETERS0

Figure 61.  Map showing geology and locations of exploration wells for the Bellingham Basin area, northwestern Washington. 
Petroleum wells in the United States are listed in McFarland (1983) or in addendum to McFarland available through the 
Washington Division of Geology and Earth Resources. Petroleum wells in Canada are listed in Mustard and Rouse (1994). 
Thermal maturity data (RO, mean vitrinite reflectance) are from Hurst (1991) and Walsh and Lingley (1991); values are from 
surface samples unless footage from adjacent well is listed. Modified after Johnson and others (1997).



Cretaceous-Tertiary Composite Total Petroleum System (500401)    57

8,648'

6,693'

Everett
Basin

7,270'

47°

5,069
RO = 0.64,
4,890'

48°

123°

Puget
Sound

Tacoma

Wilkeson

Quaternary
deposits

Tertiary sedimentary
rocks, mainly Eocene

Tertiary volcanic
rocks

Basin center
boundary

Coal exploration
borehole

Wells with total
depth greater than
3,000 ft

EXPLANATION

Pre-Tertiary
rocks

RO = 0.24 to 0.61
200 to 3,100'

RO = 0.40 to 0.60
1,600 to 4,100'

RO = 0.40 to 1.69
0 to 1,800'

11,002

5,959'

7,417'

5,408'

Straits of
Juan de Fuca

Whidbey
Island

9,675'
RO = 0.60, 9,600'

7,353'
RO = 0.45,
7,250'

TM

Seattle
Basin

Ca
sc

ad
e 

   
   

 R
an

ge

RO = 1.18 to 4.01
0 to 1,600'

AMOCO
WC-83-14

Tacoma
Basin

8,271

5,721'

CR
RO = 0.70 to 1.20

7,562
RO = 0.81, 7,170'

12,920'
RO = 1.24, 12,900'

n=7, oil shows
TD=6,023
P <37%

6,800'
RO = 0.60, 6,800

9,291
RO = 0.59, 1,240'
         0.76, 9,220'

RO = 0.66,
3,980' 

Seattle

Everett

Morton

Black
Diamond

Mount
Rainier

0

0 15 KILOMETERS

15 MILES

AMOCO
WC-83-5

Figure 62.  Map showing geology and locations of exploration wells for 
the Puget Lowland, northwestern Washington. Petroleum wells are listed 
in McFarland (1983) or in addendum to McFarland available through the 
Washington Division of Geology and Earth Resources. Thermal maturity 
data (RO, mean vitrinite reflectance) are from Walsh and Lingley (1991), 
Johnson and O’Connor (1994), Johnson and Stanley (1995), and Johnson 
and others (1997); values are from surface samples unless footage 
from adjacent well is listed. CR, Carbon River area; TM, Tiger Mountain. 
Modified after Walsh and others (1987) and Johnson and others (1997).
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are available, but outcrop samples are typically well cemented 
(Johnson and Stanley, 1995).

The middle to upper Eocene marine mudstone of the 
McIntosh Formation and shallow-marine to deltaic mudstone 
and coal and carbonaceous shale of the Skookumchuck and 
Cowlitz Formations are potential source rocks in the Chehalis 
Basin and the eastern part of the Grays Harbor Basin (fig. 63). 
These source rocks include marine shale, coals, and carbona-
ceous mudstones (Snavely and others, 1958; Armentrout and 
Suek, 1985; Moothart, 1992; Niem and others, 1994; Brown-
field and others, 1994; Flores and Johnson, 1995). The organic 
matter is Type III and is gas prone. Marine mudstones west 
of Centralia, Wash. (fig. 63), have total organic carbon (TOC) 
values ranging from 0.5 to 1.25 percent and vitrinite reflec-
tance (R

O
) values  ranging from 0.4 to 0.5 percent (Moothart, 

1992). Armentrout and Suek (1985) reported that Skookum-
chuck Formation siltstone samples have TOC values ranging 
from 1.35 to 7.22 percent and coal samples have TOC values 
from 39.23 to 55.19 percent. Coals in the Skookumchuck and 
Cowlitz Formations were sampled from the surface to a depth 
of 10,000 ft; they range from lignite to subbituminous rank 
with R

O
 values ranging from about 0.35 to 0.6 percent but can 

be slightly higher (fig. 63). Walsh and Lingley (1991) reported 
R

O
 values ranging from 0.4 to 0.87 percent from samples col-

lected from two wells (depth 4,080 and 9,540 ft, respectively) 
in the Chehalis Basin. Thermal maturity generally increases 
to the east and in close proximity to intrusives (Esposito and 
Whitney, 1995). Reservoir rocks include middle to upper 
Eocene fluvial- and distributary-channel arkosic sandstones of 
the Cowlitz and Skookumchuck Formations, and marine sand-
stones of the McIntosh Formation. The sandstone reservoirs 
are as thick as 170 ft and generally arkosic (Henricksen, 1956; 
Snavely and others, 1958; Wurden and Ford, 1976; Brownfield 
and others, 1994; Flores and Johnson, 1995). Wurden and Ford 
(1976) reported than Skookumchuck Formation sandstones in 
the Jackson Prairie gas storage wells (fig. 63) have porosities 
ranging from 28 to 40 percent at depths of 1,500 to 3,000 ft 
and permeabilities as high as 8,500 mD. The Skookumchuck 
sandstones are comparable to those reported from the Mist 
field of northwestern Oregon where gas is produced from 
Cowlitz Formation sandstones.

Interpretation of seismic data indicate the presence of 
possible marine strata at depths of 6,500–16,400 ft below the 
Chehalis Basin and north of Morton, Wash. (figs. 62 and 63), 
providing another possible source rock (Stanley and others, 
1994; Stanley and others, 1996; Krehbiel, 1993; Johnson 
and Stanley, 1995). Enhanced maturation of source rocks has 
occurred adjacent to intrusive centers within or on the margins 
of the AU area.

In the western Oregon part of the Cretaceous-Tertiary 
Composite TPS, potential source rocks are organic-rich mud-
stones and coal facies of the Eocene Umpqua Group and Tyee, 
Coaledo, Yamhill, Cowlitz, and Spencer Formations (fig. 8). 
Mudstone in the underlying pre-Tertiary melange terrane in 
the Klamath Mountains may be source rocks (Law and others, 

1984; Ryu and others, 1996; Ryu, 2008), with total organic 
carbon values greater than 1 percent (Ryu and others, 1996).

In the southern part of the Oregon Coast Range, poten-
tial source rocks in the Umpqua Group include carbonaceous 
mudstone or coal in the White Tail Ridge Formation and pos-
sibly mudstones in the Tenmile Formation (Niem and Niem, 
1990; Ryu and others, 1996; Ryu, 2008), although mudstones 
in the Tenmile Formation contain TOC values less than 1 
percent.

Source rocks in the Tyee Formation include coals and 
carbonaceous mudstones in the Baughman Member, with TOC 
values as much as 43 percent (Law and others, 1984). Niem 
and Niem (1990) reported that Tyee Formation coals and car-
bonaceous shales in the Eden Ridge coal field (fig. 2) contain 
TOC values of more than 50 percent and sufficient volatile 
organic matter (28 to 58 percent) to generate gas. The Tyee 
Mountain and Baughman Members of the Tyee Formation 
contain organic-rich mudstones ranging from less than 1 per-
cent to about 2.5 percent TOC (Ryu and others, 1996). Organic 
matter is dominantly gas-prone Type III. The Eocene sequence 
is generally marginally mature for oil and immature for gas, as 
measured in surface samples, in which R

O
 values are generally 

in the range of 0.5 to 0.8 percent (Law and others, 1984; Niem 
and Niem, 1990; Ryu and others, 1996; Ryu, 2008). Subsur-
face samples from five wells in the southern Oregon Coast 
Range have typical R

O
 values of 0.45–0.66 percent (Niem and 

Niem, 1990; Ryu and others, 1996).
Modeling of burial history, thermal maturity, and tim-

ing of hydrocarbons was reconstructed for the Tyee forarc 
basin (fig. 13) using 45 measured sections and 11 oil and gas 
exploration wells (Ryu and others, 1996). Table 1 lists the 13 
oil and gas wells in the Roseburg quadrangle with depths up 
to 13,177 ft; see figure 9 for the locations of the wells (Wells 
and others, 2000). The model indicates that rapid deposition 
and burial of sediment probably began in the early Eocene 
with a short period of uplift in the latest Eocene (fig. 64). This 
uplift was followed by renewed subsidence during deposition 
of the Coos Bay Basin strata. During the middle Miocene, the 
southern Oregon Coast Range began a rapid uplift that slowed 
during the Pliocene and Pleistocene but continues today (Niem 
and others, 1992). The maturity model by Ryu and others 
(1996) indicates that (1) the lower part of the Umpqua Group 
could have entered the hydrocarbon generation window during 
the middle Eocene; and (2) the Tenmile Formation entered the 
generation window in the late Eocene, and at present the lower 
Umpqua and Tenmile have reached moderate levels of matu-
rity (>0.07 R

O
 percent). Also, at the present time, the White 

Tail Ridge and Camas Valley Formations of the Umpqua 
Group are within the generation window at depths ranging 
from 8,500 to 14,500 ft. However, source rocks in the over-
lying Tyee, Elkton, and Bateman Formations have not been 
buried deep enough to generate hydrocarbons.

Gas seeps (mainly biogenic) and two oil seeps (Niem 
and Niem, 1990) indicate the likely presence of mature source 
rocks within the Western Oregon and Washington Prov-
ince; the oil seeps may be derived from sources in Mesozoic 
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Figure 63.  Map showing the geology and locations of exploration wells for the southern part of the Puget 
Lowland and the Centralia and Grays Harbor Basins, southwestern Washington. Geology (including selectively 
displayed faults and folds) is based on Wells (1981), Walsh and others (1987), and Walker and MacLeod (1991). 
Petroleum wells in Washington are listed in McFarland (1983) or in addendum to McFarland available through 
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Modified after Johnson and others (1997).
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Table 1.  Oil and gas exploration wells in the Roseburg 30 x 60 quadrangle, Douglas and Coos Counties, Oregon. See figure 9 
for location of wells.

[Well number from Niem and Niem (1990); well depth in feet]

Well 
number

Well 
name

Well 
depth

Latitude Longitude

4 Amoco Weyerhaeuser F-1 4,428 43.406 123.837
5 Amoco Weyerhaeuser B-1 11,330 43.386 123.714
6 Sheldon C. Clark “Oakland well” 2,235 43.405 123.311
7 Mobil Oil Corp. Sutherlin Unit 1 13,177 43.434 123.238
8 Union Oil Co. Liles 1 7,002 43.362 123.506
9 Hutchins & Marrs Glory Hole 1 2,987 43.238 123.521
10 Community Oil & Gas Co. Scott 1 3,693 43.242 123.440
11 Diamond Drill Contracting Co. Hamilton Ranch Well 3 545 43.246 123.511
12 Diamond Drill Contracting Co. Hamilton Ranch Well 1 628 43.182 123.553
13 Diamond Drill Contracting Co. Hamilton Ranch Well 2 1,109 43.221 123.515
14 W. F. Kernin Well 1 3,900 43.217 123.417
14 F. W. Dillard unnamed 700 43.176 123.474
16 Uranium Oil & Gas Co. Ziedrich 1 4,368 43.051 123.657
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mudstones in the Klamath melange terranes, including the 
Myrtle Group and Dothan Formation. These units probably are 
below the Umpqua Group and Tyee Formation in the south-
ernmost part of the Roseburg quadrangle (fig. 9). Biogenic gas 
seeps in deltaic facies of the White Tail Ridge Formation of 
the Umpqua Group west of Roseburg, Oreg. (fig. 9), appear to 
be sourced by interbedded coal and carbonaceous mudstones 
(Ryu and others, 1996). 

Potential source rocks in the Coaledo Formation (fig. 8) 
include coal and mudstone interbedded with potential reser-
voir sandstones. Total organic carbon (TOC) in the Coaledo 
Formation mudstone is about 1.45 percent, according to Law 
and others (1984). The Umpqua Group and Tyee and Elkton 
Formations contain TOC values ranging from 0.4 percent to 
1.35 percent with one Tyee coal containing 36.61 percent TOC 
(Law and others, 1984). These units are all thermally imma-
ture for gas as indicated by outcrop samples, for which analy-
ses show R

O
 values between 0.32 percent and 0.61 percent 

(Newton, 1980; Law and others, 1984). Numerous gas and 
oil shows in exploration and water wells in the Coos Bay area 
indicate that an unidentified mature source is probably present; 
gas from the Pacific Petroleum Morrison No. 1 well contains 
0.15 percent “heavy fraction” (Olmstead, 1989) suggesting a 
thermogenic origin for some of the gas.

In west-central and northwestern Oregon, source rocks 
are mudstone or coal facies of the Tyee, Yamhill, Cowlitz, and 
Spencer Formations (figs. 6 and 8). Potential lean gas-prone 
mudstone source rocks may locally be in the Tyee Formation 
in the central Oregon Coast Range, but no data were avail-
able for this assessment. Locally thin, kerogen-rich, immature 
(R

O
 of 0.3 percent) laminated “oil shales” are interbedded 

in the middle to upper part of the Yamhill Formation in the 
Tillamook Highlands near Tillamook, Oreg. (fig. 6) (Snavely 
and others, 1993a); the Yamhill Formation ranges in thickness 
from 490 to 820 ft. Eight beds, as much as 4 in. thick, were 
mapped and one analyzed sample contained 2.14 percent total 
organic carbon. The main kerogen-bearing section consists 
of feldspathic basaltic sandstone, siltstone, and lapilli tuff in 
the upper part of the section. These kerogen-rich beds may 
represent a condensed section deposited in a restricted marine-
shelf basin in structural lows interbedded with upper middle 
Eocene volcanics. Similar kerogen-rich beds crop out north 
of the Columbia River in southwestern Washington (Wolfe 
and McKee, 1968) and north of Grays Harbor (fig. 54) (Rau, 
1986).

Marine shale and thin coals and carbonaceous shale of 
the middle to upper Eocene Cowlitz Formation are the inferred 
source rocks (Armentrout and Suek, 1985; Niem and others, 
1994) for undiscovered accumulations in the northwestern part 
of Oregon. Organic matter in these rocks is Type-III kero-
gen and is gas prone. Coals are of lignite to subbituminous 
rank; R

O
 is generally between 0.35 and 0.6 but can be slightly 

higher. R
O
 of marine mudstone at the surface and shallow 

(<5,000 ft) subsurface is generally 0.4 to 0.5, with typical 
TOC values of 0.5 to 1.25 weight percent.

In the Mist gas field area (fig. 1), analyzed surface 
samples of mudstone from the Cowlitz Formation yield total 
organic carbon (TOC) values ranging from 0.39 to 1.07 weight 
percent (Armentrout and Suek, 1985) and average 0.68 per-
cent, whereas subsurface samples of potential source rocks in 
the Mist gas field are lean with vitrinite reflectance (R

O
) values 

averaging 0.21 percent. The data indicate that the gas probably 
was not generated in place and must have migrated from zones 
of higher maturity. The arkosic sandstones of the Cowlitz 
Formation have porosities ranging from 14 to 41 percent, 
averaging 25 percent, and permeabilities ranging from 46 to 
1,500 millidarcies (mD) with an average of 200 mD (Armen-
trout and Suek, 1985). These sandstones are less susceptible to 
diagenetic alteration than the more lithic-bearing sandstones. 
Samples of the upper Eocene and Oligocene Keasey Forma-
tion (fig. 8) above the Cowlitz contain 0.18 to 0.91 percent 
TOC and R

O
 values ranging from 0.16 to 0.31 percent (Law 

and others, 1984; Armentrout and Suek, 1985).
The upper Eocene Spencer Formation (fig. 8) contains 

potential source rocks consisting of coals and carbonaceous 
mudstone that correlate to the productive zones of the Cowlitz 
Formation in the Mist gas field (Van Atta and Thoms, 1993). 
Law and others (1984) reported that the Spencer Formation 
in the southern part of the Willamette Valley contains 4.48 
weight percent TOC and an R

O
 value of 0.48 percent. Poten-

tial reservoir rocks in the Spencer Formation include arkosic 
sandstone beds ranging in thickness from 2 to 30 ft and have 
a cumulative thickness of about 200 ft (Schlicker, 1962). 
Analyzed samples contain porosity values ranging from 32.2 
to 41.5 percent and permeability values ranging from 184 
to 4,510 mD. Van Atta and Thoms (1993) reported a clean 
arkosic sandstone about 980 ft thick in the Humble Oil Miller 
No. 1 well about 70 mi south of Portland, Oreg., near Albany, 
Oreg. There was one gas discovery in the Spencer Formation 
in 1981 at the American Quasar Hickey 9-12 well in Linn 
County southwest of Portland, Oreg. (fig. 1) (Olmstead, 1989). 
Production continued for about five months and was then 
abandoned because the volume of gas became subcommercial.

Before 1979, the only conventional oil and gas produc-
tion in the Western Oregon and Washington Province was in 
Washington: (1) in Whatcom County, near Bellingham, Wash. 
(fig. 61), where small amounts of gas were produced from the 
Chuckanut Formation below Quaternary gravels; and (2) west 
of Aberdeen, Wash. (fig. 54), where about 12,000 barrels of oil 
and associated gas were produced from 1957 to 1961. Cur-
rently, the only hydrocarbon production is from the Mist gas 
field in northwestern Oregon (fig. 1), which was discovered in 
May 1979 (Bruer, 1980). Through 2008, the field has produced 
about 65 BCFG from sandstone reservoirs in the Cowlitz 
Formation.

The abandoned Rattlesnake Hills gas field (Hammer, 
1934), southwest of Yakima, Wash., is in the eastern part of the 
Cretaceous-Tertiary Composite TPS (figs. 1 and 2). This field 
was discovered in 1913 and produced about 1.3 BCFG before 
it was abandoned in 1941 (McFarland, 1979). Production 
was from two vesicular basalt zones sealed by sedimentary 
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interbeds less than 2,000 ft deep within the Columbia River 
Basalt Group. The gas probably was generated from the under-
lying Eocene coals (Johnson and others, 1993) and was mostly 
methane with about 10 percent nitrogen (Wagner, 1966). 
Johnson and others (1993) reported that the gas in the basalt 
aquifers was thermogenic.

Tertiary Marine Total Petroleum 
System (500402)

A second total petroleum system (TPS)—the Tertiary 
Marine TPS—is defined within the northwestern part of the 
Western Oregon and Washington Province (fig. 1). The TPS 
boundary is defined on the basis of where potential Tertiary 
marine and marginal-marine reservoirs and gas-prone source 
rocks are known to exist or inferred to exist. The TPS bound-
ary includes the Tofino-Fuca Basin Gas, Western Washington 
Melange, Southwest Washington Miocene Sandstone, and the 
Astoria plays of Johnson and Tennyson (1995) and Johnson 
and others (1997).

In the northern part of the Tertiary Marine TPS, more 
than 28,000 ft of north-dipping Eocene to lower Miocene 
strata contain gas-prone source rocks (Niem and Snavely, 
1991). These source rocks are deeply buried Eocene marine 
mudstones in the offshore part of the Tofino-Juan de Fuca 
Basin (fig. 65) that contain Type-III kerogen and 0.3 to 1.2 
percent TOC (Snavely and others, 1980; Niem and Snavely, 
1991). A second potential source rock is marine mudstones in 
Eocene to Oligocene Ozette terrane and other melange units 
(fig. 5) (Snavely and Kvenvolden, 1989) containing Type-
III kerogen and 0.4 to 0.9 weight percent TOC. The Eocene 
melange units, which crop out in the Olympic Peninsula 
(figs. 46 and 65), lie beneath the Crescent thrust fault (Niem 
and Snavely, 1991) with the Eocene Crescent Formation and 
other Eocene strata in the overriding block (figs. 48 and 65). 
Vitrinite reflectance values range from 0.4 to 0.5 percent from 
surface and well samples (Snavely and others, 1980; Niem and 
Snavely, 1991). Higher thermal maturity is expected where 
these rocks are buried as deep as 25,000 ft to the north in the 
deeper parts of the Tofino-Juan de Fuca Basin. The upper 
Eocene to lower Miocene turbidite sandstones of the Twin 
River Group (fig. 5) are potential reservoir rocks (Snavely and 
others, 1980; Niem and Snavely, 1991), the best of which have 
porosities ranging from 20.4 to 24.6 percent and permeabilities 
ranging from 2 to 657 mD (Niem and Snavely, 1991).

Eocene to Oligocene Ozette terrane and Oligocene to 
middle Miocene Hoh rock assemblage (fig. 5) mudstones are 
possible source rocks and are inferred to exist through much of 
the western part of the TPS (figs. 50, 51, and 66). The Ozette 
and Hoh rocks contain 0.5 to 1.0 weight percent TOC and con-
tain Type-III kerogen (Snavely and Kvenvolden, 1989). In the 
Grays Harbor area (fig. 67), the vitrinite reflectance (R

O
) val-

ues are about 0.5 percent at a depth of 5,100 ft; however, about 
15 miles to the north, R

O
 values in outcrop samples range from 

0.87 to 1.98 percent (fig. 64). Snavely and Kvenvolden (1989) 
reported vitrinite reflectance values of about 0.6 percent for 
rocks at depths of 6,000 ft in the Ocean City area (fig. 67). 
The distribution of Ozette and Hoh source rocks has not been 
determined, but the Paleogene melange should extend down 
to the top of the subducting Juan de Fuca plate (at least 50,000 
ft). Marine-turbidite channel sandstones located in coher-
ent structural blocks of the Ozette terrane and the Hoh rock 
assemblage are potential reservoir rocks. Palmer and Lingley 
(1989) reported that sandstone units in the Grays Harbor area 
(fig. 1) range from 10 to 100 ft in thickness and composite 
sandstone units are as thick as 140 ft (Lingley, 1995). Porosi-
ties are generally less than 25 percent and permeabilities are 
less than 100 mD (Palmer and Lingley, 1989).

The Oligocene Smuggler Cove formation, informally 
named by Niem and Niem (1985), and the lower and middle 
Miocene Astoria Formation (fig. 5) also contain potential 
source rocks with Type-III kerogen and 0.65 to 2.0 weight per-
cent TOC. The source rocks are mostly thermally immature to 
marginally mature, but locally they might be thermally mature 
where subjected to heating from Miocene basaltic intrusions 
of the Columbia River Group. Law and others (1984) reported 
that one Astoria Formation sample yielded an R

O
 value of 

0.65 percent and a mudstone of the informal Smuggler Cove 
formation yielded an R

O
 value of 1.78 to 1.85 percent, mak-

ing it thermally mature to overmature. Potential reservoirs 
include the marginal marine and deltaic sandstone of the 
Miocene Astoria and Montesano Formations (fig. 5). Palmer 
and Lingley (1989) reported that a 600-ft-thick Montesano 
Formation sandstone in the Grays Harbor area (fig. 67) aver-
aged 28 percent porosity and 1 darcy (D) permeability. Several 
sandstone beds as much as 100 ft thick were encountered in 
drill holes penetrating the Astoria and Montesano Formations 
east of Aberdeen (fig. 54) indicating that potential reservoirs 
may exist at depth.

An oil-prone source rock yet to be determined must be 
present in the TPS because of the numerous oil seeps and the 
approximately 12,000 barrels of oil produced from the Hoh 
rock assemblage in one well near Ocean City, Wash., from 
1957 to 1961 (fig. 66) (McFarland, 1983; Palmer and Lingley, 
1989).

An events chart (fig. 68) for the Tertiary-Marine TPS 
graphically portrays the ages of source, seal, and reser-
voir rocks, as well as the timing of trap development and 
generation, migration, accumulation, and preservation of 
hydrocarbons.

Tertiary Coalbed Gas Total Petroleum 
System (500403)

A third total petroleum system (TPS)—the Tertiary 
Coalbed Gas TPS—is defined within the Western Oregon and 
Washington Province (fig. 1). The TPS boundary is defined 
on the basis of where Paleogene coal-bearing units are known 



Tertiary Coalbed Gas Total Petroleum System (500403)    63

to exist or inferred to exist, and where the coals and carbona-
ceous shales are less than 6,000 ft below the surface. The coals 
serve as both source and reservoir rock. Coals and carbona-
ceous shales at depths greater than 6,000 ft were not assessed 
due to the potential decrease in permeability that could affect 
coalbed-gas recovery. Gas resource potential within the coals 
can be enhanced by the entrapment of migrated gas from other 
source rocks such as interbedded carbonaceous shale.

The Tertiary Coalbed Gas TPS likely underlies much of 
the central part of the Western Oregon and Washington Prov-
ince (fig. 1) and extends southward from the Canadian border 
to the Klamath Mountains of Oregon; it contains about 11.1 
million acres. The TPS includes all the Eocene coal-bearing 
rocks that were deposited in a regional coal-depositional 

system that extended north–south along depositional strike 
from the Bellingham area south to the Coos Bay area in south-
western Oregon (fig. 57) (Dott, 1966).

An events chart (fig. 69) for the Tertiary Coalbed Gas 
TPS graphically portrays the ages of source, seal, and res-
ervoir rocks, as well as the timing of trap development and 
generation, migration, accumulation, and preservation of 
hydrocarbons.

In the Bellingham Basin (fig. 61), the Chuckanut Forma-
tion contains at least 15 coal beds ranging from 2 to about 
25 ft thick with the majority of the coals in the 2- to 4-ft 
range; at least seven beds range from 6 to about 25 ft thick 
(Jenkins, 1923, 1924; Beikman and others, 1961). Two main 
coal zones are in Whatcom and Skagit Counties, Wash.—the 
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vitrinite reflectance) and locations of seeps are from Snavely and Kvenvolden (1989) and Palmer and Lingley (1989); RO 
values are from surface samples unless footage from adjacent well is listed. Modified after Johnson and others (1997).
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Figure 67.  Map showing generalized geology and oil and gas data for southwestern Washington and the Grays 
Harbor area. Petroleum wells are listed in McFarland (1983) or in addendum to McFarland available through the 
Washington Division of Geology and Earth Resources. Geology (including selectively displayed faults and folds) is 
based on Snavely (1987) and Walsh and others (1987). Thermal maturity data (RO, mean vitrinite reflectance) are 
from Snavely and Kvenvolden (1989) and Palmer and Lingley (1989); RO values are from surface samples unless 
footage from adjacent petroleum well is listed. Modified after Johnson and others (1997).
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Figure 68.  Events chart for the Tertiary-Marine Total 
Petroleum System in the Western Oregon and Washington 
Province. Light blue indicates rock units present; wavy 
line, unconformity. Age ranges of source, seal, reservoir, 
and overburden rocks and the time of trap formation and 
generation, migration, accumulation, and preservation of 
hydrocarbons shown in green and yellow. Queries indicate 
uncertainty. Geologic time scale in millions of years (m.y.). 
Plio, Pliocene; Mio, Miocene; Olig, Oligocene; Eoc, Eocene; 
Pal, Paleocene, L, Late; M, Middle; E, Early.
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Figure 69.  Events chart for the Tertiary Coalbed Gas Total 
Petroleum System in the Western Oregon and Washington 
Province. Light blue indicates rock units present; wavy 
line, unconformity. Age ranges of source, seal, reservoir, 
and overburden rocks and the time of trap formation and 
generation, migration, accumulation, and preservation of 
hydrocarbons shown in green and yellow. Queries indicate 
uncertainty. Geologic time scale in millions of years (m.y.). 
Plio, Pliocene; Mio, Miocene; Olig, Oligocene; Eoc, Eocene; 
Pal, Paleocene, L, Late; M, Middle; E, Early.



Blue canyon coal zone at the base of the Chuckanut Formation 
and the Bellingham coal zone of the Chuckanut Formation 
(also known as the King Mountain coal zone). The Bell-
ingham Basin coal beds, which crop out along the western 
flank of the Cascade Range, from Bellingham to the town 
of Glacier (fig. 3), are lenticular and range in apparent rank 
from subbituminous to anthracite; however, most of the coals 
are high-volatile C to B bituminous in apparent rank. Jordan 
Exploration Company (2002) reported individual coal beds 
ranging from 1 to 16 ft thick with at least seven beds from 6 
to 16 ft thick and a potential aggregate coal thickness of more 
than 90 ft. Historical mining reports stated that the coals were 
gassy. An increase in apparent rank to as high as anthracite can 
be observed from west to east with increasing proximity to the 
areas of higher heat flow associated with the Cascade Range 
volcanism (Walsh and Lingley, 1991).

The King Mountain coal zone identified in the subsurface 
north of Bellingham most likely correlates to the Bellingham 
Bay Member of the Chuckanut Formation (Johnson and oth-
ers, 1997). This coal zone contains as many as eight coal beds 
averaging 5 ft thick, with no beds greater than 10 ft thick. 
The coal zone was penetrated at depths ranging from 1,700 
to 3,700 ft in several exploration wells. In the Birch Bay No. 
1 well (fig. 61), shales, carbonaceous shales, and coals above 
6,000 ft contain both Type-III and Type-IIB kerogens (Hurst, 
1991; Lingley and von der Dick, 1991; Johnson and others, 
1997), and several zones contain more than 6 percent total 
organic carbon (TOC). Rocks below 6,000 ft have Type-III 
kerogens and low TOC values.

Coal-bearing rocks in the subsurface in the northern part 
of the Bellingham Basin, north of Bellingham, have histori-
cally been correlated with the Chuckanut and Huntingdon 
Formations (figs. 5). These rocks may be present throughout 
the Bellingham Basin subsurface and into Canada (fig. 61).

Discontinuous and lenticular deposits of subbituminous 
to low-volatile bituminous coal are in Tertiary nonmarine units 
overlying pre-Tertiary rocks similar to those in the Glacier 
area south of Bellingham (fig. 38). These rocks have been 
correlated to the Chuckanut Formation in the Bellingham area. 
The coal beds, which range from less than 1 ft to as much as 
10 ft thick, crop out near the base of the Tertiary strata in the 
Coal Mountain area (figs. 38 and 40).

Upper middle Eocene and upper Eocene coal-bearing 
strata in the central and northern part of the Puget Lowland 
(figs. 38 and 62) (Beikman and others, 1961) belong to the 
undivided Puget Group (fig. 5) (Vine, 1969). Vine (1969) 
described coal distribution and reserves in the area, and com-
piled a 6,230-ft-thick stratigraphic section based on surface 
and shallow subsurface data. Fifty continuous and discontinu-
ous beds of coal and carbonaceous shale are present in Vine’s 
(1969) section. Borehole data indicate that coal-bearing strata 
extend down section for at least several hundred meters below 
Vine’s (1969) section. In the Green River district (fig. 2), 
the Puget Group contains at least 16 major coal beds with 
a minimum cumulative thickness ranging from 73 to 90 ft; 
the coal-bearing strata is more than 6,300 ft thick. Coal rank 

ranges from subbituminous B to high-volatile A bituminous 
with most coals being high-volatile bituminous.

The Renton Formation (fig. 5) contains at least 10 coal 
beds with an aggregate mined thickness of at least 36 ft in a 
2,180-ft-thick coal-bearing interval. Impure or bone coal and 
carbonaceous shale partings add another 80 ft to the coal-
bearing interval.

The middle Eocene Carbonado and the upper Eocene 
Spiketon Formations of the Puget Group (fig. 5) contain coal 
and carbonaceous shale in the Wilkeson and Carbonado coal 
fields (fig. 2). The Carbonado Formation contains at least nine 
coal beds ranging in thickness from 2 to 8 ft. The coals are 
high-volatile A bituminous to low-volatile bituminous and are 
the most important coking coal deposits in Washington (Beik-
man and others, 1961).

The middle Eocene Skookumchuck Formation contains 
at least 13 coal beds with an aggregate thickness of about 88 
ft in a coal-bearing interval that is about 2,600 ft thick. Coals 
range from lignite to subbituminous B (Beikman and oth-
ers, 1961). Mean vitrinite reflectance of surface coals in the 
Skookumchuck range from 0.35 to 0.40, and subsurface values 
range from 0.40 to 0.70.

There are differences in the sedimentology of correla-
tive coal-bearing strata in western Washington. For example 
Skookumchuck Formation in the Centralia mine has a greater 
proportion of brackish and shallow-marine rocks; whereas, the 
undivided Puget Group in the Black Diamond area contains 
a greater proportion of fluvial and (or) distributary channel 
and overbank deposits (Brownfield and others, 1994). This 
contrast reflects the more outboard (southwest) location of 
the Centralia area (fig. 41). In addition, positive relief caused 
during the deposition of the Eocene Northcraft Formation 
(volcanic center), which lies due east of Centralia (fig. 44), 
may have deflected fluvial channels to more southern and 
northern routes and isolated the Centralia area from fluvial 
influence. Although depositional environments as interpreted 
from the Centralia area show some fluctuation, nonmarine 
rocks become more dominant upward within each Eocene sec-
tion and the overall regional trend is progradational.

The middle to upper Eocene Cowlitz Formation (fig. 5) 
of southwestern Washington contains coal and carbonaceous 
shale in the upper part of the formation (Roberts, 1958); it 
contains an aggregate thickness of about 70 ft of coal in at 
least seven beds in a 500-ft-thick section in the southern part 
of the area. Coals range from lignite to subbituminous B, but 
generally the coals are subbituminous C and have mean vitrin-
ite reflectance values of about 0.40.

Gas has been collected and analyzed from 12 wells in the 
Jackson Prairie Gas Storage area (fig. 63) from three Skoo-
kumchuck and one Lincoln Creek sandstone reservoirs and 
is biogenic (Wurden and Ford, 1976). Torrent Energy (2008) 
reported preliminary testing of coal gas content to range from 
about 15–86 standard cubic feet (scf) per ton, averaging more 
than 50 scf per ton. Based on coal thickness, extent, rank, and 
gas content, the coalbed methane potential was estimated to 
more than 400 billion cubic feet of gas (Torrent Energy, 2008)
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The middle Eocene Coaledo Formation in the Coos Bay 
Basin of Oregon contains numerous coals and carbonaceous 
shale beds. At least seven major coal beds are known in the 
lower member of the Coaledo Formation that contain numer-
ous shale and bone coal partings. At least seven more coal 
beds are also in the upper member, with the informal Beaver 
Hill bed (5 to 6 ft thick) containing the greatest potential 
resources (Baldwin and others, 1973; Mason and Hughes, 
1975). Many of the upper member coal beds contain shale and 
bone coal partings. Some of the historical producing mines 
were reported to contain gassy coals. The coals are subbitu-
minous in rank and have heating values ranging from 9,260 
to 10,080 Btu per pound on an as-received basis (Allen and 
Baldwin, 1944); they are characterized by an average moisture 
content of 17 percent, average ash content of 8 percent, and 
less than 1 percent sulfur (Baldwin and others, 1973).

The Spencer Formation contains thin coal beds associated 
with sandstone and carbonaceous shale. Thin coals and carbo-
naceous shale are common in the lower and upper parts of the 
formation just southeast of Portland, Oreg. (Al-Azzaby, 1980; 
Van Atta and Thoms, 1993). Several thin subbituminous coal 
beds have been reported in the southern part of the Oregon 
Coast Range (Wells and others, 2000). Spencer Formation 
coals are subbituminous to lignite along the eastern part of the 
central and northern Oregon Coast Range. 

Assessment Units of Western Oregon 
and Washington Province

Three assessment units were defined within the Western 
Oregon and Washington Province in three total petroleum 
systems: (1) the Western Oregon and Washington Conven-
tional Gas AU in the Cretaceous-Tertiary TPS, (2) the Ter-
tiary Marine Gas AU in the Tertiary Marine TPS, and (3) the 
Eocene Coalbed Gas AU in the Tertiary Coalbed Gas TPS. 
Undiscovered gas resources were quantitatively estimated in 
each AU, and undiscovered oil resources were also quantita-
tively estimated in the Tertiary Marine Gas AU.

Hydrocarbon accumulations in the Western Oregon and 
Washington Conventional Gas AU and Tertiary Marine Gas 
AU are of the conventional type and were defined using the 
criteria established by Schmoker and Klett (1999). The gas 
accumulation in the Eocene Coalbed Gas AU is of the con-
tinuous type (unconventional) and was defined using criteria 
established by Schmoker (1999).

Based on a play concept (rather than an assessment unit 
concept), Johnson and Tennyson (1995) assessed the undis-
covered hydrocarbons in seven conventional plays and three 
continuous (coalbed gas) plays within the Western Oregon and 
Washington Province. For the seven conventional petroleum 
plays (Johnson and Tennyson, 1995), a mean undiscovered 
hydrocarbon resource of 115.9 BCF (billion cubic feet) of 
gas and 19.3 MMB (millions of barrels) of oil was estimated. 

Mean estimated undiscovered gas resources from the three 
hypothetical coalbed-gas plays was 697.3 BCF (Johnson and 
Rice, 1995).

Western Oregon and Washington Conventional 
Gas Assessment Unit (50040101)

The Western Oregon and Washington Conventional Gas 
AU within the Cretaceous-Tertiary Composite TPS (fig. 70) 
is defined to include the area in which potential reservoir and 
source rocks are known to exist or inferred to exist and where 
hydrocarbon source rock thermal maturities have reached 
a vitrinite reflectance (RO) of 0.5 percent or greater. Gas 
generated from potential source rocks is interpreted to have 
migrated into lower to upper Eocene reservoir rocks. This AU 
is classified as frontier on the basis of the existence of at least 
one producing field in the AU (the Mist gas field).

The Western Oregon and Washington Conventional Gas 
AU likely underlies much of the central part of the Western 
Oregon and Washington Province (fig. 70) and extends south-
ward from the Canadian border to the Klamath Mountains of 
Oregon; it contains about 11.1 million acres. The gas accu-
mulations in this AU are of the conventional type and were 
defined using the criteria established by Schmoker and Klett 
(1999). 

An events chart (fig. 71) for the Western Oregon and 
Washington Conventional Gas AU graphically portrays the 
ages of source, seal, and reservoir rocks, and timing of trap 
development, generation, accumulation, migration, and preser-
vation of hydrocarbons.

The Bellingham Basin (fig. 61) is the northernmost basin 
in the AU and extends into Canada. Only the United States 
part of the basin is assessed as part of this AU. The northwest-
ern boundary extends into the Strait of Georgia and the Strait 
of Juan de Fuca to the Canadian border. The northeastern 
boundary is the uplifted pre-Tertiary basement rock complex, 
the eastern boundary is the western foothills of the Cascade 
Range, and the southern boundary is the Klamath Mountains 
of Oregon and extends offshore to the 3-mile limit of State 
waters in southwestern Oregon. From southwestern Oregon 
north to Puget Sound, the western AU boundary generally 
follows the eastern part of the Oregon and Washington Coast 
Ranges.

Northwest of Bellingham, Wash. (fig. 61), thermogenic 
gas has been sampled from old well casings and contains high 
levels of methane and nitrogen (McFarland, 1983; Hurst, 
1991). One abandoned well vented about 10,000 ft3 of gas per 
day (McFarland, 1983). Between 1988 and 1991 three wells 
were drilled in Bellingham Basin with depths ranging from 
4,422 to 9,126 ft and gas shows were reported from several 
sandstone and coal beds (Johnson and others, 1997).

Modeling of burial history, thermal maturity, and tim-
ing of hydrocarbons in the central part of the Western Oregon 
and Washington Conventional Gas AU by Armentrout and 



Suek (1985) indicated that maturation of Cowlitz Forma-
tion source rocks may have begun in the middle Oligocene 
(fig. 72). Modeling of burial history for the pre-Tertiary 
rocks, the Bushnell Rock Formation, and the lower part of 
the Tenmile Formation of the lower Eocene Umpqua Group 
in the southern Oregon Coast Range indicates that maturation 
of source rocks occurred as early as middle Eocene (fig. 73) 
(Ryu and others, 1996). In the central part of the Oregon Coast 
Range, modeling of the burial history of strata penetrated 
in the General Petroleum Long Bell No. 1 well (total depth, 
9,004 ft) indicates that Umpqua Group source rocks entered 
the hydrocarbon maturation window in the middle Eocene and 
that thermogenic gas generation began in the Oligocene when 
depth of burial exceeded 14,000 ft (fig. 74) (Ryu and others, 
1996).

In the northern part of the AU, the reservoirs are the 
lower to middle Eocene Chuckanut Formation and possibly 
the upper Eocene to Oligocene Huntingdon Formation fluvial 
and distributary channel arkosic sandstones that are as much 
as 200 ft thick (Johnson, 1982, 1984a,b). Porosity and perme-
ability are marginal and probably decrease with depth because 
of the alteration of feldspar and lithic rock fragments (Johnson 
and others, 1997). Fluvial deposition that produced the thick 
Chuckanut Formation must have also produced thick deltaic 
and continental shelf facies, as yet not identified possibly 
because of being transported northward by strike-slip fault-
ing to form an exotic terrane in the Gulf of Alaska. Johnson 
(1984c) postulated that transcurrent faulting that truncated the 
Chuckanut Formation corresponds to west- and northwest-
trending faults on Vancouver Island. Traps are likely large 
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anticlines—for example Hurst (1991) calculated 5,000 acres 
of closure on an anticline penetrated by the AHEL Birch Bay 
No. 1 well (fig. 61)—and structural traps related to high-angle 
faults in the Bellingham Basin area (Johnson, 1982; Mustard 
and Rouse, 1994). Seals are fine-grained fluvial rocks but are 
generally lenticular, which could permit potential leakage 
from the reservoirs. Maximum burial and hydrocarbon genera-
tion was during the late middle to early late Eocene before the 
late Eocene folding and uplift (Johnson and others, 1997).

Within the central and southeastern parts of the Puget 
Lowland (fig. 62), reservoirs are (1) marine lithic-rich sand-
stones of the lower and middle Eocene Raging River Forma-
tion of the Puget Group and deeply buried equivalent units 
in the Seattle Basin; and (2) fluvial- and distributary-channel 
sandstones in the middle to upper Eocene Carbonado, Rag-
ing River, Renton, Spiketon, and Tiger Mountain Formations 
and the undifferentiated Puget Group. The fluvial sandstone 
units are generally arkosic with thicknesses ranging from 
10 to more than 200 feet. Petrographic data indicate that the 
sandstones are “tight” in the eastern part of the Puget Low-
land (Johnson and others, 1997) due to alteration of feldspar 
and lithic rock fragments. Sandstone units analyzed from two 
cores near Black Diamond, Wash. (fig. 62), revealed porosi-
ties from 6 to 37 percent and permeability ranging from 1 
millidarcy to 2 darcies. Traps are most likely anticlines and 
fault blocks, like the large Kingston arch within the northern 
Seattle Basin (Johnson and others, 1994), and smaller complex 
structures such as those in the Black Diamond and Morton 
areas of the of the western Cascade Range (fig. 62). Similar 
structures may be present in the Everett and Tacoma Basins. 
Seals are fine-grained marine and nonmarine Eocene rocks and 
possibly Oligocene volcanic rocks. Maximum burial and the 
onset of hydrocarbon generation occurred in the late Eocene 
and Oligocene before Oligocene to Neogene folding and uplift 
(Johnson and others, 1997). Regional heat flow was elevated 
during the formation of the Cascade Range in the early Oligo-
cene and Miocene, possibly accelerating hydrocarbon genera-
tion. Because of the ongoing tectonism in the Pacific North-
west, structural traps within the AUs have most likely formed 
before, during, and after hydrocarbon generation.

The southernmost part of the Puget Lowland and the 
Chehalis Basin (fig. 63) contain potential reservoir rocks in 
the middle to upper Eocene Cowlitz, Skookumchuck, and 
McIntosh Formations (fig. 5). The Cowlitz and Skookum-
chuck Formations contain fluvial, deltaic, and shallow-marine 
arkosic sandstones as much as 170 ft thick; sandstone reser-
voirs within the Jackson Prairie gas storage well (fig. 63) have 
porosities of 30 to 40 percent and permeabilities as high as 8.5 
darcies (Wurden and Ford, 1976). The Skookumchuck sand-
stones are comparable to those reported from the Mist gas field 
of northwestern Oregon (figs. 2 and 63), where hydrocarbons 
are produced from Cowlitz Formation sandstones. Turbidite 
sandstone reservoirs in the McIntosh Formation are as thick 
as 100 ft and have porosities of 10 to 20 percent and perme-
abilities less than 6.2 mD (Moothart, 1992). Porosity in these 
McIntosh reservoir rocks is degraded by the presence of clays, 
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Figure 71.  Events chart for the Western Oregon and 
Washington Conventional Gas Assessment Unit in the 
Western Oregon and Washington Province. Light blue 
indicates rock units present; wavy line, unconformity. Age 
ranges of source, seal, reservoir, and overburden rocks 
and the time of trap formation and generation, migration, 
accumulation, and preservation of hydrocarbons shown in 
green and yellow. Queries indicate uncertainty. Geologic 
time scale in millions of years (m.y.). Plio, Pliocene; Mio, 
Miocene; Olig, Oligocene; Eoc, Eocene; Pal, Paleocene, L, 
Late; M, Middle; E, Early.
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Maturity was derived from Lawrence Livermore National Laboratories Easy Percent RO. 
Time interval for calculation of maturity and expulsion is five. Expulsion is based on vitrinite 
reflectance (RO). K, Cretaceous; Pa, Paleocene; E, Eocene; O, Oligocene; M, Miocene; P, 
Pliocene. Ma, millions of years before present.
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zeolites, and calcite. Traps are most likely fault blocks similar 
to the Mist field (fig. 75), that is, small folds with shallow 
dipping limbs, and stratigraphic traps formed by nearshore or 
deltaic sandstone units enclosed by mudstone (Armentrout and 
Suek, 1985; Niem and others, 1994). As with the central and 
southeastern parts of the Puget Lowland, ongoing tectonism 
in the Pacific Northwest likely formed structural traps within 
this area of the Western Oregon and Washington Conventional 
Gas AU before, during, and after hydrocarbon generation. 
Seals are overlying fine-grained mudstones and siltstones of 
the Lincoln Creek Formation (fig. 5) and interbedded marine 
mudstones and siltstones associated with the McIntosh turbi-
dites. Maximum burial and the onset of hydrocarbon genera-
tion occurred in the Miocene (Johnson and Tennyson, 1995). 
Regional heat flow was possibly elevated during the middle 
Miocene by local heating from the Miocene Columbia River 
Basalt Group (Esposito and Whitney, 1995).

The Cowlitz Formation reservoir in the Mist gas field 
(figs. 2 and 63) is the informal Clark and Wilson sandstone 
sequence (fig. 75) of the Cowlitz Formation (Armentrout and 
Suek, 1985), which has reported porosities ranging from 25 to 
36 percent and permeabilities of 20 millidarcies to about 7 dar-
cies (Alger, 1985; Armentrout and Seek, 1985; Niem and oth-
ers, 1994). The Clark and Wilson sandstone sequence is about 
600 ft thick in the field area and consists of fine- to medium-
grained arkosic shallow-marine sandstone and interbedded 
mudstone. Traps are complex and at least 13 compartmented 
gas pools are known (Armentrout and Suek, 1985). Traps 
consist of faulted anticlines, and seals are transgressive shales 
in the upper parts of the Cowlitz and Keasey Formations (fig. 
75). The Keasey Formation shales are tuffaceous, and the 
volcaniclastic material has been altered to montmorillonite, an 
expandable clay. Stratigraphic traps are present in the Cowlitz 
Formation and consist of thin sandstone encased in shale 

(Armentrout and Suek, 1985). The Clark and Wilson sand-
stone sequence is equivalent to a thick sandstone unit in the 
Spencer Formation south of the Mist gas field where Schlicker 
(1962) reported sandstone porosities ranging from 32 to 41 
percent and permeabilities from 184 mD to about 4.5 dar-
cies. Thermal modeling indicates that maturation and onset of 
hydrocarbon generation of the Cowlitz Formation source rocks 
probably occurred in the Oligocene (fig. 72) (Armentrout and 
Suek, 1985). Regional heat flow was possibly elevated dur-
ing the middle Miocene by local heating from the Miocene 
Columbia River Basalt Group.

Probable reservoir rocks in the central and southern part 
of the Western Oregon and Washington Conventional Gas AU 
are (1) fan-delta and shelf- or slope-channel sandstone of the 
Bushnell Rock Formation and fluvial and deltaic sandstones 
of White Tail Ridge Formation of the lower Eocene Umpqua 
Group (fig. 13) (Niem and others, 1992; Wells and others, 
2000), (2) shelf and slope arkosic sandstones of the upper 
and middle Eocene Tyee Formation, and (3) nonmarine and 
marine sandstones in the middle Eocene Coaledo Formation 
(fig. 8). Reservoir facies vary greatly in thickness and quality. 
The White Tail Ridge Formation sandstones have the highest 
reservoir potential (Ryu and others, 1996) and consist of delta-
front sandstone units with porosities up to 17.0 percent and 
permeabilities as much as 154 millidarcies (Niem and Niem, 
1990; Ryu and others, 1996) and thicknesses ranging from 
a few feet to 30 ft. Traps are most likely early Tertiary folds 
and faults with possible stratigraphic traps associated with 
the shelf- and-slope channel sandstones. Seals are marine and 
nonmarine interbedded mudstones and siltstones. Some Tyee 
Basin sandstones in the Umpqua Group and Tyee Mountain 
Member of the Tyee Formation could be potential tight gas 
reservoirs because they have low porosity and permeability 
(Law and Spencer, 1993; Ryu and others, 1996). The General 
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Figure 74.  Burial history model for 
strata in the General Petroleum Long 
Bell No. 1 well (total depth, 9,004 ft) 
located in the central part of the Tyee 
Basin (see fig. 13); modified after Ryu 
and others (1992). Red dashed line 
represents time-temperature index 
curve. Formation thicknesses are from 
Ryu and others (1992). Thermal history is 
calculated using a steady state heat flow 
of 1.27°F per 100 ft). Maturity was derived 
from Lawrence Livermore National 
Laboratories Easy Percent RO. Time 
interval for calculation of maturity and 
expulsion is five. Expulsion is based on 
vitrinite reflectance (RO). K, Cretaceous; 
Pa, Paleocene; E, Eocene; O, Oligocene; 
M, Miocene; P, Pliocene. Ma, millions of 
years before present.



Petroleum Long Bell No. 1 well appears to be overpressured 
at a depth of 6,970 ft (Ryu and others, 1996). These potential 
tight-gas sandstone accumulations were not assessed.

Modeling of burial history, thermal maturity, and tim-
ing of hydrocarbon generation within the Tyee forarc basin 
(figs. 73 and 74) indicates that the lower part of the Umpqua 
Group could have entered the oil generation window during 
the middle Eocene, and the Tenmile Formation entered the 
oil generation window in the late Eocene, and both have now 
reached moderate levels of maturity (>0.7 RO percent). Today, 
the White Tail Ridge and Camas Valley Formations are within 
the oil window at depths ranging from 8,500 to 14,500 ft.

Gas seeps (mainly biogenic) and two oil seeps (Niem 
and Niem, 1990) indicate the presence of mature source rocks 
within the province; the oil seeps may be derived from sources 
in Mesozoic mudstones in Klamath melange terranes includ-
ing the Myrtle Group and Dothan Formation. Biogenic gas 

seeps in deltaic facies of the White Tail Ridge Formation of 
the Umpqua Group west of Roseburg, Oreg. (fig. 9), appear 
to be related to interbedded coal and carbonaceous mudstones 
(Ryu and others, 1996).

The Western Oregon and Washington Conventional Gas 
AU currently has only one producing gas field, the Mist field. 
The AU is given a geologic probability of 1.0 because there 
is sufficient evidence that there are adequate reservoirs, traps, 
and seals (appendix A). The estimated minimum, mode, and 
maximum numbers of undiscovered gas accumulations are 1, 
8, and 70, respectively, and the estimated minimum, median, 
and maximum sizes of undiscovered gas accumulations are 3, 
10, and 300 BCFG, respectively.

The assessed mean undiscovered volumes in the Western 
Oregon and Washington Conventional Gas AU are 454 BCF 
of estimated conventional gas (table 2) and 1.0 million barrels 
of natural gas liquids (MMBNGL). The estimated mean size 
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Figure 75.  Northeast–southwest cross section through Reichold Energy Corporation Columbia County Nos. 
6 and 3 wells in the Mist gas field, west of Portland, Oregon, showing the trapping of hydrocarbons in the 
informal Clark and Wilson sandstone that resulted from faulting against the shales of the Cowlitz Formation, as 
well as from the unconformable relations with the overlying Keasey Formation. Modified after Bruer (1980) and 
Armentrout and Suek (1985). R/D, Redrill of Reichold Columbia Co. No. 3 (No. 1) and Reichold Columbia Co. No. 6 
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of the largest expected gas field is 85 BCFG, and the estimated 
gas volume (454 BCF) is about 20 percent of the total esti-
mated mean of 2,214 BCF of gas in the Western Oregon and 
Washington Province.

Tertiary Marine Gas Assessment Unit (50040201)

The Tertiary Marine Gas AU within the Tertiary-Marine 
TPS lies in the westernmost part of the Western Oregon and 
Washington Province (fig. 76). Currently, there is no petro-
leum production within the AU, so it is categorized as being 
‘hypothetical.” However, as discussed below, there is suf-
ficient evidence in the form of numerous gas and oil seeps as 
well as the past production of some 12,000 barrels of oil near 
Ocean City, Wash., to indicate the presence of mature source 
rocks, adequate reservoir and source rocks, and potential traps.

The hypothetical Tertiary Marine Gas AU includes thick 
successions of Paleogene marine sandstone and shale and 
fluvial to deltaic arkosic sandstone and interbedded mudstone, 
carbonaceous shale, and coal. The AU boundary is defined to 
include the areas in which potential Tertiary marine- and mar-
ginal-marine reservoirs and gas-prone source rocks are known 
to exist or inferred to exist and where hydrocarbon source 
rock thermal maturities have reached a vitrinite reflectance 

(R
O
) of 0.5 percent or greater. The hydrocarbon accumula-

tions in this AU are of the conventional type and were defined 
using the criteria established by Schmoker and Klett (1999). 
Normal pressured gas generated from potential source rocks is 
interpreted to have migrated into Eocene to Miocene reser-
voir rocks. The TPS boundary includes the Tofino-Fuca Basin 
Gas, Western Washington Melange, Southwest Washington 
Miocene Sandstone, and the Astoria plays of Johnson and Ten-
nyson (1995) and Johnson and others (1997).

The AU extends southward from the Canadian border 
in the Strait of Juan de Fuca, likely underlies the Olympic 
Peninsula in the northwestern part of Washington, and extends 
southward along the Washington coastal area to the northwest-
ern part of the Oregon coastal area in the Western Oregon and 
Washington Province (fig. 76); it contains about 3.6 million 
acres.

An events chart (fig. 77) for the Tertiary Marine Gas AU 
graphically portrays the ages of source, seal, and reservoir 
rocks, and the timing of trap development, generation, accu-
mulation, migration, and preservation of hydrocarbons.

In the northern part of the AU, more than 28,000 ft of 
north-dipping Eocene to lower Miocene strata contain gas-
prone source rocks (fig. 65) (Niem and Snavely, 1991). These 
rocks are most likely deeply buried Eocene marine mudstones 

Total Petroleum System (TPS)  
and Assessment Unit (AU)

Field 
Type

Total  Undiscovered Resources

Oil (MMBO) Gas (BCFG) NGL (MMBNGL)

F95 F50 F5 Mean F95 F50 F5 Mean F95 F50 F5 Mean

Cretaceous-Tertiary Composite TPS

Western Oregon and Washington
Conventional Gas AU

Oil 0 0 0 0 0 0 0 0 0 0 0 0

Gas 79 403 1,000 454 0 1 2 1

Tertiary Marine TPS

Tertiary Marine Gas AU
Oil 2 9 45 15 3 14 70 22 0 1 4 1

Gas 34 195 646 249 1 5 17 6

Total Conventional Resources 2 9 45 15 116 612 1,716 725 1 7 23 8

Tertiary Coalbed Gas TPS

Eocene Coalbed Gas AU CBG 0 0 0 0 565 1,307 3,024 1,489 0 0 0 0

Total Continuous Resources 0 7020 0 0 565 1,307 3,024 1,489 0 0 0 0

Total Undiscovered 
Oil and Gas Resources 2 9 45 15 681 1,919 4,740 2,214 1 7 23 8
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Table 2.  Western Oregon and Washington Province assessment results.

[MMBO, million barrels of oil; BCFG, billion cubic feet of gas; MMBNGL, million barrels of natural gas liquids. Results shown are fully risked
estimates.  For gas accumulations, all liquids are included as the NGL (natural gas liquids).  Undiscovered gas resources are the sum of
non-associated and associated gas.  F95 represents a 95 percent chance of at least the amount tabulated; other fractiles are defined similarly. 
TPS, total petroleum system; AU, assessment unit; CBG, coalbed gas. Gray shading indicates not applicable]

Table 2. Western Oregon and Washington Province assessment results.
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located in the offshore part of the Tofino-Juan de Fuca Basin 
(figs. 48 and 65) and contain Type-III kerogen and 0.3- to 
1.2-percent total organic carbon (Snavely and others, 1980; 
Niem and Snavely, 1991). Potential reservoir rocks are upper 
Eocene to Oligocene turbidite sandstones of the Twin River 
Group (figs. 5 and 47) (Snavely and others, 1980; Niem and 
Snavely, 1991), in which the best reservoirs have porosities 
ranging from 20.4 to 24.6 percent and permeabilities rang-
ing from 2 to 657 mD (Niem and Snavely, 1991). Turbidite 
sandstone beds can be as thick as 40 ft, with composite 
sandstone units having thicknesses as much as 400 ft. Pos-
sible stratigraphic traps include buried turbidite channels and 
sandstone beds; small fault-related structural traps may also be 
present. Seals consist of marine mudstones interbedded with 

the turbidite sandstone bodies. Thermogenic gas seeps have 
been identified in the northern part of the AU, indicating that 
the source rocks have reached maturity and generated hydro-
carbons (fig. 65) (Snavely and Kvenvolden, 1989). Lingley 
(1986) reported that one gas seep flowed at the rate of 20 
thousand cubic feet of gas per day. Maturation and migration 
probably occurred in the Miocene, during maximum burial 
of the Juan de Fuca Basin strata, and the Ozette melange and 
other middle and upper Eocene units occur below the thrust 
fault (fig. 48). Migration was probably along faults and updip 
within the Twin River Group turbidite reservoirs.

Eocene to Oligocene Ozette terrane and Oligocene 
to middle Miocene Hoh rock assemblage (fig. 5) (Snavely 
and Kvenvolden, 1989) contain marine-turbidite channel 
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sandstones in coherent structural blocks that are possible 
reservoir rocks and are inferred to exist through much of the 
northwestern part of the Tertiary-Marine AU (figs. 50, 51, 
and 66). Palmer and Lingley (1989) reported that sandstone 
units in the Grays Harbor area (fig. 1) range from 10 to 100 
ft in thickness, and composite sandstone units are as thick as 
140 ft (Lingley, 1995). Porosities are generally less than 25 
percent and permeabilities are less than 100 mD (Palmer and 
Lingley, 1989). Potential traps in the Ozette terrane and Hoh 
rock assemblage include fault blocks and anticlines, as well as 
stratigraphic and fault-related traps within the underthrusted 
turbidites in the Olympic accretionary wedge (figs. 50 and 
56). Seal rocks are fine-grained rocks within the Ozette and 
Hoh sequences. Numerous oil and gas shows are reported in 
exploration wells, and several oil and gas seeps are along the 
northwestern Washington coast (figs. 65 and 66). Migration 
and generation of hydrocarbons within this part of the Tertiary 
Marine Gas AU most likely occurred from the Oligocene to 
the present, as the Ozette terrane and Hoh rock assemblage 
were continually being underthrusted beneath the continen-
tal margin. Migration of the hydrocarbons from the mature 
source rocks is upward and westward along faults (Snavely 
and Kvenvolden, 1989; Palmer and Lingley, 1989). The lower 
and middle Miocene Angora Peak, Youngs Bay, and Wickiup 
Mountain members of the Astoria Formation (fig. 5), infor-
mally named by Niem and Niem (1985), contain potential 
reservoir rocks. The deltaic Angora Peak member is as much 
as 1,000 ft thick and contains crossbedded, fine-grained 
arkosic sandstone and conglomerate. The Youngs Bay member 
is about 1,100 ft thick and contains thick beds of medium- to 
fine-grained sandstone beds. The Wickiup Mountain member 
is about 1,300 ft thick and contains friable fine-grained sand-
stone beds. The potential Astoria Formation reservoir rocks 
have porosities ranging from 26 to 35 percent and permeabili-
ties of 92 to 270 mD (Niem and Niem, 1985). Potential res-
ervoirs also include marginal marine and deltaic sandstone of 
the Montesano Formation (fig. 5). Palmer and Lingley (1989) 
reported that a 600-ft-thick sandstone in the Montesano in the 
Grays Harbor area (fig. 67) averaged 28 percent porosity and 
1 darcy permeability. Several sandstone beds as much as 100 
ft thick were encountered in drill holes penetrating the Astoria 
and Montesano Formations east of Aberdeen (fig. 54), indicat-
ing that potential reservoirs may exist at depth. Traps are most 
likely fault traps adjacent to normal or oblique-slip faults of 
post-Miocene age (Johnson and Tennyson, 1995). Other poten-
tial traps within the Miocene units include small anticlines 
associated with thrusting and possible stratigraphic pinchouts 
of submarine channels within the Astoria and Montesano For-
mations. Seals are fine-grained rocks within these formations. 
Migration and generation of hydrocarbons most likely began 
in the latest Miocene after potential Miocene reservoirs were 
deposited. Regional heat flow was possibly elevated during the 
middle Miocene by local heating from the Miocene Columbia 
River Group.
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Figure 77.  Events chart for the Tertiary Marine Gas 
Assessment Unit in the Tertiary-Marine Total Petroleum 
System in the Western Oregon and Washington Province. 
Light blue indicates rock units present; wavy line, 
unconformity. Age ranges of source, seal, reservoir, and 
overburden rocks and the time of trap formation and 
generation, migration, accumulation, and preservation of 
hydrocarbons shown in green and yellow. Queries indicate 
uncertainty. Geologic time scale in millions of years (m.y.). 
Plio, Pliocene; Mio, Miocene; Olig, Oligocene; Eoc, Eocene; 
Pal, Paleocene, L, Late; M, Middle; E, Early.



The presence of an unknown, oil-
prone source rock in the TPS is evidenced 
by numerous oil seeps and approximately 
12,000 barrels of oil produced from the Hoh 
rock assemblage in one well near Ocean 
City, Wash., from 1957 to 1961 (fig. 66) 
(McFarland, 1983; Palmer and Lingley, 
1989).

The AU is given a geologic probability 
of 1.0 because there is sufficient evidence 
that the AU has adequate reservoirs, traps, 
and seals (appendix B). The estimated 
minimum, mode, and maximum numbers 
of undiscovered gas accumulations are 1, 
5, and 30, respectively, and the estimated 
minimum, median, and maximum sizes of 
undiscovered gas accumulations are 3, 8, 
and 800 BCFG, respectively. The estimated 
minimum, mode, and maximum numbers 
of undiscovered oil accumulations are 
1, 2, and 10, respectively; the estimated 
minimum, median, and maximum sizes of 
undiscovered oil accumulations are 0.5, 1.3, 
and 130 MMBO. 

The USGS assessed mean undiscov-
ered volumes in the Tertiary Marine Gas 
AU are 249 BCF of estimated conven-
tional gas (table 2) and 6 MMBNGL. The 
estimated mean size of the largest expected 
gas field is 101 BCFG, and the estimated 
gas volume (249 BCF) is about 11 percent 
of the total estimated mean of 2,214 BCF of 
gas in the Western Oregon and Washington 
Province. The assessed mean undiscovered 
volume of oil is 15 MMBO with an esti-
mated mean of 22 BCF associated gas and 
1 MMBNGL. The mean size of the largest 
expected oil field is 9 MMBO.

Eocene Coalbed Gas Assessment 
Unit (50040381)

The Eocene Coalbed Gas AU within 
the Tertiary Coalbed Gas TPS of the Western 
Oregon and Washington Province (fig. 78) is 
also classified as hypothetical because there are no currently 
producing fields. The coincident TPS and boundary is defined 
on the basis of where Paleogene coal-bearing units are known 
to exist or inferred to exist and where the coals and carbona-
ceous shales are less than 6,000 ft below the surface. The coals 
serve as both source and reservoir rocks. Coals and carbona-
ceous shales greater than 6,000 ft were not assessed due to the 
potential decrease in permeability that could affect coalbed-
gas recovery. Gas resource potential within the coals can be 

enhanced by the entrapment of migrated gas from other source 
rocks such as interbedded carbonaceous shale.

The hypothetical Eocene Coalbed Gas AU likely under-
lies much of the central part of the Western Oregon and 
Washington Province (fig. 78), extending southward from the 
Canadian border to the Klamath Mountains of Oregon; it con-
tains about 11.1 million acres. The gas accumulations expected 
to be in this AU are of the continuous type (unconventional) 

WASHINGTON

OREGON

NEVADA

MT

IDAHO

CALIFORNIA

CANADA

Yakima

Spokane

Richland

Portland

Eugene

Pacific
  Ocean

Potholes 
  Reservoir

Banks 
Lake

Coeur 
d'Alene 
Lake

Lake 
Pend 
Oreille

Malheur 
Lake

Crater 
  Lake

Mist
gas field

Columbia  River

§̈¦5

§̈¦84

§̈¦84

§̈¦82

§̈¦90
§̈¦90

P a c i f i c  
O c e a n

WA

OR

NV

MT

ID

CA

CANADA

Location map

125° 123° 121° 119° 117° 115°

42°

44°

46°

48°

50°

Coos 
Bay

Coos 
Bay
coal
field

Seattle

Bellingham

Olympic
Peninsula

AberdeenGrays
Harbor

§̈¦5

0 60 KILOMETERS

0 60 MILES

Figure 78.  Eocene Coalbed Gas Assessment Unit in western Oregon and 
Washington; boundary shown in blue. Boundary of Western Oregon and 
Washington Province is shown in red. Locations of the Coos Bay coal field 
shown as a solid brown oval and the Mist gas field shown as a solid red 
circle.
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Figure 79.  Events chart for the Eocene Coalbed Gas 
Assessment Unit in the Tertiary Marine Total Petroleum 
System in the Western Oregon and Washington Province. 
Light blue indicates rock units present; wavy line, 
unconformity. Age ranges of source, seal, reservoir, and 
overburden rocks and the time of trap formation and 
generation, migration, accumulation, and preservation of 
hydrocarbons shown in green and yellow. Queries indicate 
uncertainty. Geologic time scale in millions of years (m.y.). 
Plio, Pliocene; Mio, Miocene; Olig, Oligocene; Eoc, Eocene; 
Pal, Paleocene, L, Late; M, Middle; E, Early.

and were defined using the criteria established by Schmoker 
(1999).

An events chart (fig. 79) for the Eocene Coalbed Gas AU 
graphically portrays the ages of source, seal, and reservoir 
rocks, as well as the timing of trap development, generation, 
accumulation, migration, and preservation of hydrocarbons.

Within the Bellingham Basin (fig. 61) the Chuckanut 
Formation contains at least 15 coal beds ranging in thickness 
from 2 to about 25 ft (Jenkins, 1923, 1924; Beikman and oth-
ers, 1961). Two main coal zones are in Whatcom and Skagit 
Counties, Wash.—the Blue Canyon coal zone at the base of 
the Chuckanut Formation and the Bellingham coal zone also 
in the Chuckanut Formation. Jordan Exploration Company 
(2002) reported individual coal beds ranging from 1 to 16 ft 
thick with at least seven beds with thicknesses ranging from 
6 to 16 ft and a potential aggregate coal thickness of more 
than 90 ft. In the Bellingham Basin-Whatcom County coal 
area (fig. 2), historical mining reports state that the coals were 
gassy. Over 95 old gas wells have been drilled in the Belling-
ham Basin (figs. 2 and 61) and most produced minor gas from 
Quaternary deposits-Chuckanut or Huntingdon Formation 
contact zone (Jordan Exploration Company, 2002). Only one 
desorbtion test has been reported for coals in the Bellingham 
Basin; it yielded 100 scf per ton (Johnson and others, 1997). 
Pappajohn (1991) reported four factors that are encouraging 
for the exploration of coalbed methane in the Bellingham 
area: (1) the presence of strata known to contain high-volatile 
bituminous coal at suitable depths with coalbed methane, (2) 
reports of methane in coal mining records, (3) the many gas 
shows from oil and gas wells penetrating the Eocene coal-
bearing strata, and (4) gas produced from shallow water wells 
trapped below the glacial deposits in the Ferndale gas field 
northwest of Bellingham.

The coalbed-gas sources in the Puget Lowland (fig. 44) 
and foothills of the western Washington Cascade Mountains 
are coals within the Puget Group and its Renton, Carbonado, 
and Spiketon Formations (fig. 5). The net coal thickness in the 
Puget Group is 90 ft in about 6,300 ft of section, and the coal 
rank ranges from subbituminous B to high-volatile A bitumi-
nous with most being high-volatile B bituminous (Vine 1969). 
The Renton Formation contains at least 10 coal beds in the 
Tiger Mountain area (fig. 62) with a net thickness of at least 
36 ft in a 2,180-ft-thick coal-bearing interval. The Carbonado 
Formation contains at least 16 coal beds, of which nine beds 
range from 2 to 8 ft thick, and the coals range in rank from 
high-volatile A bituminous to medium-volatile bituminous.

Fifteen exploration wells drilled since 1986 could be 
interpreted as coalbed-gas wells; a few wells were subjected 
to production testing (Pappajohn and Mitchell, 1991). Good 
gas shows were encountered in several wells, but there is 
presently no coalbed-gas production. Pappajohn and Mitchell 
(1991) reported desorbtion values ranging from 218 to 564 
scf per ton and averaging 423 scf per ton for five coalbeds 
penetrated by drilling in the Wilkeson area (fig. 62). Analyzed 
gas samples contained slightly less than 99 percent methane 
and minor amounts of nitrogen and carbon dioxide. Historical 
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mining records accounts of underground mine accidents in the 
region related to methane and the presence of biogenic gas 
(δ13C = –71.11) bubbling to the surface through ponds in the 
John Henry No. 1 mine near Black Diamond, Wash. (fig. 62), 
reported by Brownfield and others (1994, 2005) are further 
indicators of gassy coals (Brownfield and others, 1994). 
Pappajohn and Mitchell (1991) reported analytical data that 
indicated that water produced from coal seams in the Wil-
keson area meets State and Federal requirements for surface 
discharge.

In the Chehalis Basin area near Centralia, Wash. (fig. 63), 
the Skookumchuck Formation (fig. 5) contains gas-bearing 
coals as much as 40 ft thick. Duncan Oil Company, Inc. (2002) 
reported that desorbtion tests on coals recovered from the 
Duncan NWCH 42–9A well measured as high as 86 scf per 
ton in the 40-ft-thick Blue coal bed. Biogenic gas was col-
lected and analyzed from 12 wells in the Jackson Prairie gas 
storage area from three sandstone reservoirs in the Skookum-
chuck Formation and one sandstone reservoir in the Lincoln 
Creek Formation (fig. 63). Torrent Energy (2008) also reported 
preliminary testing of coal-gas contents ranging from about 
15–86 scf per ton and averaging more than 50 scf per ton. 
Based on coal thickness, extent, rank, and gas content, the 
coalbed methane potential was estimated at more than 400 
BCFG for the Chehalis Basin (Torrent Energy, 2008).

In the Coos Bay coal basin (figs. 2 and 24), the lower and 
upper parts of the Coaledo Formation contain a net thickness 
of subbituminous to high-volatile bituminous coal of more 
than 100 ft. Torrent Energy (2008) reported that desorbtion 
tests of these coals yielded gas contents ranging from 60 to 
230 scf of gas per ton, averaging about 148 scf gas per ton. 
The gas has a methane content of about 99 percent. The coal 
beds have yielded permeabilities ranging from 4 to 15 mD and 
averaged about 8 mD (Smith, 2008). Eleven coalbed methane 
wells were drilled between 2005 and 2007, with five wells 
hydraulically fractured (fraced) and currently being production 
tested. The estimated total in-place coalbed gas is 1.2 trillion 
cubic feet (TCF) with a potential 400 BCF recoverable (Tor-
rent Energy, 2008).

The Eocene Coalbed Gas AU currently has no producing 
gas fields. Because of the lack of well production data in this 
AU, the Fort Union Coalbed Methane AU (50330183) in the 
Wind River Basin, Wyoming (Johnson and others, 2007), was 
used as an analog to estimate total recovery for untested cells 
having potential for additions to reserves over the next 30 yr. 
The Eocene Coalbed Gas AU is producing gas from coalbeds.

The AU is given a geologic probability of 1.0 because 
there is sufficient evidence that the AU has adequate charge, 
reservoirs, traps, seals, and favorable geologic timing for an 
untested cell to contain the selected minimum of 0.02 BCFG 
(appendix C). The minimum, mode, and maximum number of 
acres with the potential for adding to reserves within the AU 
are 9,905,000, 11,095,000, and 12,205,000 acres, respectively 
(appendix C). The minimum, median, and maximum areas 
of the AU that are untested are all estimated at 100 percent 
(appendix C).

There are Eocene coals throughout the Eocene Coalbed 
Gas AU, with four geologic “sweet spot” areas: the Belling-
ham Basin (fig. 61), the southeastern Puget Lowland and foot-
hills (fig. 62), the southernmost Puget Lowland and Centralia 
Basin area (fig. 63), and the Coos Bay Basin (fig. 24). The 
Bellingham Basin contains at least 15 coal beds ranging in 
thickness from 1 to 15 ft. Coalbed methane has been detected 
in several old exploration wells, and one coal sample was 
desorbed resulting in a yield of 100 scf per ton (Johnson and 
others, 1997).

The coalbed-gas sources in the southeastern Puget Low-
land and foothills of the western Washington Cascade Range 
(fig. 62) are coals within the Puget Group, and the Renton, 
Carbonado, and Spiketon Formations (fig. 5). Net coal thick-
ness in the Puget Group has a mean thickness of 90 ft (Vine, 
1969). The Renton Formation contains at least 10 coal beds 
in the Tiger Mountain area (fig. 62), with a net thickness of at 
least 36 ft. The Carbonado Formation contains at least 16 coal 
beds, of which nine beds range from 2 to 8 ft thick. Explora-
tion wells, some of which were subjected to extended produc-
tion testing, contained coalbed gas (Pappajohn and Mitchell, 
1991). Pappajohn and Mitchell (1991) reported desorbtion 
values ranging from 218 to 564 scf per ton, averaging 423 scf 
per ton (fig. 62).

In the southernmost Puget Lowland and Centralia Basin 
area of the Eocene Coalbed Gas AU, the Cowlitz, Skookum-
chuck, and Spencer Formations contain thick gas-bearing 
coals as much as 40 ft thick. Duncan Oil Company, Inc. 
(2002), reported that desorbtion tests on coals recovered from 
the Duncan NWCH 42–9A well as high as 86 scf per ton in the 
40-ft-thick Blue coal bed. Torrent Energy (2008) also reported 
preliminary testing of coal gas contents averaging more than 
50 scf per ton. Based on coal thickness, extent, rank, and gas 
content, the coalbed methane potential was estimated at more 
than 400 BCFG for the Chehalis Basin area (Torrent Energy, 
2008).

In the Coos Bay Basin (fig. 24), the lower and upper 
parts of the Coaledo Formation contain a net thickness of coal 
of more than 100 ft (fig. 26). Torrent Energy (2008) reported 
desorbtion test results for these coals that yielded gas con-
tents averaging about 148 scf gas per ton. The estimated total 
in-place coalbed gas is 1.2 TCF with a potential 400 BCF 
recoverable (Torrent Energy, 2008).

The four “sweet spots” within the Eocene Coalbed Gas 
AU account for about 2,500,000 acres (22.5 percent) of the 
total 11,095,000 acres of the AU, and this percentage of acres 
was used to estimate the maximum area that remains for 
untested cells in the AU (second page of appendix C).

The estimated minimum, mode, maximum, and calcu-
lated mean percentages of untested area within the AU that 
has potential for additions to reserves in the next 30 years is 1, 
3.1, 22, and 8.7 percent, respectively (appendix C). A neces-
sary condition to meet these estimates is that the total recovery 
per cell is equal to or greater than the minimum recovery per 
cell of 0.02 BCFG; it is likely that this amount of gas can be 
recovered from a majority of the untested cells in the AU. 
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As previously discussed, the AU contains a thick section of 
coal-bearing strata with a continuous gas resource that were 
deposited in depositional settings similar to the analog Fort 
Union Coalbed Methane AU in the Wind River Basin, Wyo-
ming (Johnson and others, 2007).

The minimum, median, and maximum total recovery for 
untested cells having potential for additions to reserves in the 
next 30 yr are 0.02, 0.1, and 2 BCFG, respectively (appendix 
C). These values were modified from similar values used in 
the analog AU; for example, the median value of 0.1 BCFG 
was about the same median value of 0.08 for the analog AU 
(Johnson and others, 2007), based on the presence of wells 
with shows of coalbed methane. These estimates for the total 
recovery for untested cells within the Eocene Coalbed Gas 
AU, however, assume that future production would be signifi-
cantly greater in the next 30 yr.

The assessed mean undiscovered volume in the Eocene 
Coalbed Gas AU is 1,489 BCF of unconventional (continuous) 
gas (table 2), which is 67 percent of the estimated mean total 
of 2,214 BCF of gas within the Western Oregon and Washing-
ton Province that is presumed to be trapped in Tertiary coals of 
western Oregon and Washington.

Summary

The USGS assessed undiscovered, technically recover-
able, conventional oil and gas and continuous (unconven-
tional) coalbed gas in the Western Oregon and Washington 
Province, which includes about 40,000 mi2 of western Oregon 
and Washington (table 2), resulting in an estimated mean total 
of 2,214 BCFG and a mean of 15 MMBO. More than 67 per-
cent of the total mean gas (1,489 BCFG) is contained within 
the hypothetical Eocene Coalbed Gas AU, which encompasses 
an area of more than 11 million acres. In this continuous AU, 
the Eocene coals, such as the coal-bearing Eocene Coaledo 
Formation, serve as both the source and reservoir rocks. The 
mean estimated volume of gas for the Western Oregon and 
Washington Conventional Gas AU is 454 BCFG, with an esti-
mated mean size of the expected largest gas field of 85 BCFG. 
For the Tertiary Marine AU, the estimated mean volume of 
gas is 249 BCF, with an estimated mean size of the expected 
largest gas field of 101 BCFG. The assessed mean undis-
covered volume of oil in the Tertiary Marine Gas AU is 15 
MMBO with estimated means of 22 BCF associated gas and 1 
MMBNGL. The mean size of the expected largest oil field is 
estimated at 9 MMBO.
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Appendix A.  Input parameters for the Western 
Oregon and Washington Conventional Gas 
Assessment Unit (50040101), Cretaceous-Tertiary 
Composite Total Petroleum System, Western Oregon 
and Washington Province 
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SEVENTH APPROXIMATION
DATA FORM FOR CONVENTIONAL ASSESSMENT UNITS (Version 6, 9 April 2003)

Assessment Geologist: Michael E. Brownfield Date: 2/24/2009
Region: North America Number: 5
Province: Western Oregon-Washington Number: 5004
Total Petroleum System: Cretaceous-Tertiary Composite TPS Number: 500401
Assessment Unit: Western Oregon and Washington Conventional Gas Number: 50040101
Based on Data as of:
Notes from Assessor: This frontier gas assessment unit is defined over a large area where 

potential reservoir and source rocks are known or inferred to coexist,
Mist gas field cumulative production - 65 BCF through 2008.

CHARACTERISTICS OF ASSESSMENT UNIT

Oil (<20,000 cfg/bo overall) or Gas (>20,000 cfg/bo overall): Gas

What is the minimum accumulation size? 0.5 mmboe grown (3.0 bcfg)
(the smallest accumulation that has potential to be added to reserves)

No. of discovered accumulations exceeding minimum size: Oil: Gas: 1
Established (>13 accums.) Frontier (1-13 accums.) 1 Hypothetical (no accums.)

Median size (grown) of discovered oil accumulations (mmbo):
1st 3rd 2nd 3rd 3rd 3rd

Median size (grown) of discovered gas accumulations (bcfg):
1st 3rd 2nd 3rd 3rd 3rd

Assessment-Unit Probabilities:
     Attribute Probability of occurrence (0-1.0)
1. CHARGE: Adequate petroleum charge for an undiscovered accum. > minimum size: 1.0
2. ROCKS: Adequate reservoirs, traps, and seals for an undiscovered accum. > minimum size: 1.0
3. TIMING OF GEOLOGIC EVENTS:  Favorable timing for an undiscovered accum. > minimum 1.0

Assessment-Unit GEOLOGIC Probability (Product of 1, 2, and 3): 1.0

UNDISCOVERED ACCUMULATIONS
No. of Undiscovered Accumulations: How many undiscovered accums. exist that are > min. size?:

         (uncertainty of fixed but unknown values)

Oil Accumulations: minimum (>0) NA mode NA maximum NA
Gas Accumulations: minimum (>0) 1 mode 8 maximum 70

Sizes of Undiscovered Accumulations: What are the sizes (grown) of the above accums?:
       (variations in the sizes of undiscovered accumulations)

Oil in Oil Accumulations (m minimum NA median NA maximum NA
Gas in Gas Accumulations minimum 3 median 10 maximum 300

IDENTIFICATION INFORMATION
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AVERAGE RATIOS FOR UNDISCOVERED ACCUMS., TO ASSESS COPRODUCTS 
(uncertainty of fixed but unknown values) 

Oil Accumulations: minimum mode maximum
Gas/oil ratio (cfg/bo) NA NA NA
NGL/gas ratio (bngl/mmcfg) NA NA NA

Gas Accumulations: minimum mode maximum
Liquids/gas ratio (bliq/mmcfg) 0 2 4
Oil/gas ratio (bo/mmcfg) NA NA NA

SELECTED ANCILLARY DATA FOR UNDISCOVERED ACCUMULATIONS 
(variations in the properties of undiscovered accumulations) 

Oil Accumulations: minimum mode maximum
API gravity (degrees) NA NA NA
Sulfur content of oil (%) NA NA NA
Depth (m) of water (if applicable) NA NA NA

minimum F75 mode F25 maximum
Drilling Depth (m) NA NA NA NA NA

Gas Accumulations: minimum mode maximum
Inert gas content (%) 0.1 3.8 6
CO2 content (%) 0 0.002 0.02
Hydrogen-sulfide content (%) 0 0 0
Depth (m) of water (if applicable) 0 50 200

minimum F75 mode F25 maximum
Drilling Dep (m) 305 1,220 5,490

(ft) 1,000 4,000 18,000
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Appendix B.  Input Parameters for the Tertiary 
Marine Gas Assessment Unit (50040201), Tertiary 
Marine Total Petroleum System, Western Oregon and 
Washington Province
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SEVENTH APPROXIMATION
DATA FORM FOR CONVENTIONAL ASSESSMENT UNITS (Version 6, 9 April 2003)

Assessment Geologist: Michael E. Brownfield Date: 2/24/2009
Region: North America Number: 5
Province: Western Oregon-Washington Number: 5004
Total Petroleum System: Tertiary Marine Number: 500402
Assessment Unit: Tertiary Marine Gas Number: 50040201
Based on Data as of:
Notes from Assessor: This hypothetical gas assessment unit is defined over a large area where 

potential reservoir and marine source rocks are known or inferred to coexist,
uncertainty in existence of adequate source and reservoir rocks and timing 
for hyrocarbon accumulation

CHARACTERISTICS OF ASSESSMENT UNIT

Oil (<20,000 cfg/bo overall) or Gas (>20,000 cfg/bo overall) Gas

What is the minimum accumulation size? 0.5 mmboe grown (3 bcfg)
(the smallest accumulation that has potential to be added to reserves)

No. of discovered accumulations exceeding minimum size: Oil: 0 Gas: 0
Established (>13 accums.) Frontier (1-13 accums.) Hypothetical (no accums X

Median size (grown) of discovered oil accumulations (mmbo):
1st 3rd 2nd 3rd 3rd 3rd

Median size (grown) of discovered gas accumulations (bcfg):
1st 3rd 2nd 3rd 3rd 3rd

Assessment-Unit Probabilities:
     Attribute Probability of occurrence (0-1.0)
1. CHARGE: Adequate petroleum charge for an undiscovered accum. > minimum size: 1.0
2. ROCKS: Adequate reservoirs, traps, and seals for an undiscovered accum. > minimum size 1.0
3. TIMING OF GEOLOGIC EVENTS:  Favorable timing for an undiscovered accum. > minimum 1.0

Assessment-Unit GEOLOGIC Probability (Product of 1, 2, and 3): 1.0

UNDISCOVERED ACCUMULATIONS
No. of Undiscovered Accumulations: How many undiscovered accums. exist that are > min. size?:

         (uncertainty of fixed but unknown values)

Oil Accumulations: minimum (>0) 1 mode 2 maximum 10
Gas Accumulations: minimum (>0) 1 mode 5 maximum 30

Sizes of Undiscovered Accumulations: What are the sizes (grown) of the above accums?:
       (variations in the sizes of undiscovered accumulations)

Oil in Oil Accumulations (m minimum 0.5 median 1.3 maximum 130
Gas in Gas Accumulations minimum 3 median 8 maximum 800

IDENTIFICATION INFORMATION
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AVERAGE RATIOS FOR UNDISCOVERED ACCUMS., TO ASSESS COPRODUCTS
(uncertainty of fixed but unknown values)

Oil Accumulations: minimum mode maximum
Gas/oil ratio (cfg/bo) 750 1,500 2,250
NGL/gas ratio (bngl/mmcfg) 25 50 75

Gas Accumulations: minimum mode maximum
Liquids/gas ratio (bliq/mmcfg) 12 25 38
Oil/gas ratio (bo/mmcfg) NA NA NA

SELECTED ANCILLARY DATA FOR UNDISCOVERED ACCUMULATIONS
(variations in the properties of undiscovered accumulations)

Oil Accumulations: minimum mode maximum
API gravity (degrees) 25 38 50
Sulfur content of oil (%) 0 0.3 1.5
Depth (m) of water (if applicable) 0 50 200

minimum F75 mode F25 maximum
Drilling Dep  (m) 305 1,220 3,100

(ft) 1,000 4,000 10,000

Gas Accumulations: minimum mode maximum
Inert gas content (%) 0 2 10
CO2 content (%) 0 1.5 10
Hydrogen-sulfide content (%) 0 0.5 3.5
Depth (m) of water (if applicable) 0 50 200

minimum F75 mode F25 maximum
Drilling Dep  (m) 305 2,600 6,100

(ft) 1,000 8,500 20,000
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Appendix C.  Input Parameters for the Eocene 
Coalbed Gas Assessment Unit (50040381), Tertiary 
Coalbed Gas Total Petroleum System, Western Oregon 
and Washington Province
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Assessment Geologist: Michael E. Brownfield Date: 2/24/2009
Region: North America Number: 5
Province: Western Oregon-Washington Number: 5004
Total Petroleum System: Tertiary Coalbed Gas Number: 500403
Assessment Unit: Eocene Coalbed Gas Number: 50040381
Based on Data as of:

Notes from Assessor: This hypothetical gas assessment unit is defined over a large area where 
thick coal-bearing intervals are known to exist at depths less than 6,000 ft.
Coalbed methane has been observed in 4 areas within the AU.
Analog: Fort Union Coalbed Methane (Wind River Basin).

Assessment-unit type:  Oil (<20,000 cfg/bo) or Gas (>20,000 cfg/bo), incl. disc. & pot. additions Gas
What is the minimum total recovery per cell? 0.02 (mmbo for oil A.U.; bcfg for gas A.U.)
Number of tested cells: 30 11 wells have been drilled with 5 wells being tested in Coos Bay, OR
Number of tested cells with total recovery per cell > minimum: 0
Established (discovered cells): Hypothetical (no cells): X
Median total recovery per cell (for cells > min.): (mmbo for oil A.U.; bcfg for gas A.U.)

   1st 3rd 2nd 3rd 3rd 3rd

Assessment-Unit Probabilities:
     Attribute            Probability of occurrence (0-1.0)
1. CHARGE: Adequate petroleum charge for an untested cell with total recovery > minimum. 1.0
2. ROCKS: Adequate reservoirs, traps, seals for an untested cell with total recovery > minimum. 1.0
3. TIMING: Favorable geologic timing for an untested cell with total recovery > minimum. 1.0

Assessment-Unit GEOLOGIC Probability  (Product of 1, 2, and 3): 1.0

1. Total assessment-unit area (acres):  (uncertainty of a fixed value) 

calculated mean 11,095,000 minimum 9,905,000 mode 11,095,000 maximum 12,205,000

2. Area per cell of untested cells having potential for additions to reserves (acres):  (values are inherently variable)

calculated mean 100 minimum 40 mode 80 maximum 180

uncertainty of mean: minimum 60 maximum 140

3. Percentage of total assessment-unit area that is untested (%):  (uncertainty of a fixed value)

calculated mean 100 minimum 100 mode 100 maximum 100

NO. OF UNTESTED CELLS WITH POTENTIAL FOR ADDITIONS TO RESERVES

FORSPAN  ASSESSMENT MODEL FOR CONTINUOUS
ACCUMULATIONS--BASIC INPUT DATA FORM (NOGA, Version 9, 2-10-03)

IDENTIFICATION INFORMATION

CHARACTERISTICS OF ASSESSMENT UNIT
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4. Percentage of untested assessment-unit area that has potential for additions to reserves (%):
( a necessary criterion is that total recovery per cell > minimum; uncertainty of a fixed value)

calculated mean 8.7 minimum 1 mode 3.1 maximum 22

Geologic evidence for estimates:

There are Eocene age coals throughout this AU with 4 areas (Bellingham, Southeastern Puget
Lowlands, Cowlitz–Spencer, and Coos Bay) that account for about 22.5 percent of the total
 assessment unit. These areas contain thick coals and coalbed methane is known to be 
present in all areas. Torrent Energy estimates that the Coos Bay area contains 1.2 TCF coal gas 
 with about 580 BCF of gas at a depth less than 4,000 ft.

Total recovery per cell for untested cells having potential for additions to reserves:
(values are inherently variable; mmbo for oil A.U.; bcfg for gas A.U.)

calculated mean 0.15 minimum 0.02 median 0.1 maximum 2

but unknown values)
Oil assessment unit: minimum mode maximum
   Gas/oil ratio (cfg/bo) NA NA NA
   NGL/gas ratio (bngl/mmcfg) NA NA NA

Gas assessment unit:
   Liquids/gas ratio (bliq/mmcfg) 0 0 0

TOTAL RECOVERY PER CELL

AVERAGE COPRODUCT RATIOS FOR UNTESTED CELLS, TO ASSESS COPRODUCTS

Assessment Unit (name, no.)
Eocene-Coalbed Gas (50040381)

 (Continued)
NO. OF UNTESTED CELLS WITH POTENTIAL FOR ADDITIONS TO RESERVES
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Oil assessment unit: minimum mode maximum
   API gravity of oil (degrees) NA NA NA
   Sulfur content of oil (%) NA NA NA
   Depth (m) of water (if applicable) NA NA NA

   Drilling depth (m)

minimum F75 mode F25 maximum

Gas assessment unit: minimum mode maximum
   Inert-gas content (%) 0.01 0.30 2.00
   CO2 content (%) 0.01 1.80 8.00
   Hydrogen sulfide content (%) 0.00 0.00 0.00
   Heating value (BTU) 850 950 1050
   Depth (m) of water (if applicable)

   Drilling depth (m)
minimum F75 mode F25 maximum

152 305 1,829
   Drilling depth (ft)

minimum F75 mode F25 maximum
500 1,000 6,000

Success ratios: calculated mean minimum mode maximum
Future success ratio (%) 28 10 25 50

Historic success ratio, tested cells (%) About 1/2 of Steve Roberts Fort Union Analogs
used in the North Slope Assessment

Completion practices:
1. Typical well-completion practices (conventional, open hole, open cavity, other)
2. Fraction of wells drilled that are typically stimulated
3. Predominant type of stimulation (none, frac, acid, other)
4. Fraction of wells drilled that are horizontal

Assessment Unit (name, no.)
Eocene-Coalbed Gas (50040381)

SELECTED ANCILLARY DATA FOR UNTESTED CELLS
(values are inherently variable)

Click here to return to
Volume Title Page
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