Bibliography of Literature Pertaining to Long Valley Caldera and Associated Volcanic Fields

by John W. Ewert and Christopher J. Harpel

Open File Report 00-221

2000

This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editorial standards. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U. S. Government.

Department of the Interior
U. S. Geological Survey

1USGS Cascades Volcano Observatory
5400 MacArthur Blvd.
Vancouver WA 98661
This report is only available in digital form on the World Wide Web.
URL: http://wrgis.wr.usgs.gov/open-file/of00-221
Introduction

On May 25-27, 1980, the Long Valley caldera was rocked by four M = 6 earthquakes. This seismicity heralded the onset of a wave of activity within the caldera that has continued through the present time. Unrest has taken the form of seismic swarms, uplift of the resurgent dome, and areas of vegetation killed by increased CO$_2$ emissions, all interpreted as resulting from magma injected to different levels beneath the caldera. Continuing economic development in the Mammoth Lakes area has swelled the local population, increasing the risk to people and property if an eruption were to occur. The U.S. Geological Survey has been monitoring geophysical activity in the Long Valley area since the mid-1970s and continues to monitor the unrest in real time with a sophisticated network of geophysical sensors in order to track developments in the unrest and provide hazards information to local, state and federal officials and the public.

The Long Valley caldera area was also scientifically important before the onset of the current unrest. Lying at the eastern foot of the Sierra Nevada, the deposits from this active volcanic system have provided fertile ground for research into Neogene tectonics, Quaternary geology and geomorphology, regional stratigraphy, and volcanology. In the early 1970's intensive studies of the area began through the USGS Geothermal Investigations Program owing to the presence of a large young silicic volcanic system (Muffler and Williams, 1976). The paroxysmal eruption of Long Valley caldera, ca. 760 ka, produced the Bishop Tuff and associated Bishop ash (Gilbert, 1938; Bailey and others, 1976; Hildreth, 1979). The Bishop Tuff is a well preserved ignimbrite deposit that has continued to provide new and developing insights into the dynamics of ignimbrite forming eruptions (e.g. Wilson and Hildreth, 1997). Another extremely important aspect of the Bishop Tuff is that it is the oldest known normally magnetized
unit of the Brunhes Chron. Thus, the age of the Bishop Tuff is used to define the beginning of
the Brunhes Chron and helps constrain the Brunhes-Matuyama boundary (Izett and Obradovich,
1994). The Bishop ash was dispersed as far east as Nebraska, Kansas, and Texas, and provides
an important tephrostratigraphic marker throughout the western United States (Ward et al., 1993;
Izett, 1982).

The obsidian domes of both the Mono and Inyo Craters, which were produced by
rhyolitic eruptions in the last 40,000 years have been well studied, including extensive scientific
drilling through the domes (Eichelberger, 1989). Exploratory drilling has also occurred on the
resurgent dome of the caldera (Hill and others, 1998) and within the Casa Diablo geothermal
field (Smith and others, 1977). Aside from scientific drilling, the Casa Diablo geothermal field
has been developed and is currently producing electricity (Duffield and others, 1994).

Studies in all of the above mentioned fields have contributed to the extensive scientific
literature published on the Long Valley caldera region. Although the majority of scientific
literature on Long Valley has been produced since 1970, a significant amount of historical
literature extends back to the late 1800's. The purpose of this bibliography is to compile
references pertaining to the Long Valley region from all time periods and all earth science fields
into one single listing, thus providing an easily accessible guide to published literature for current
and future researchers.

Methods

We include references in this bibliography if they are directly applicable to the Long
Valley caldera and its recent geophysical unrest, as well at to Mono Craters, Inyo Craters, Mono
Lake Volcanic Field, and the deposits from these volcanoes, or if they contained regional
geological information that would be important to a researcher investigating aspects of the
geoLOGY and geophysics of the area. Because of the relatively small number of references prior to
1940, we took a broader view of relevance within the older literature. Whereas, we took a more
restrictive view of relevancy for the post-1940 references.

EndNote® Reference Database

This bibliography is maintained using the EndNote® program. Within this program the
bibliography is searchable by author, title, year, journal, or discipline keyword. A total of 20
discipline keywords are used to indicate the content of the references (Table 1). More than one
keyword may be applied to a single reference. For example, references on tomography of the
Long Valley area are listed under both the “seismology” and “geophysics” keywords as the
subject pertains to both disciplines. Similarly, references on the Bishop ash are listed under both
the “stratigraphy” and “Bishop Tuff” keywords. The keywords are relatively self explanatory
with the exception of “descriptive”. The “descriptive” keyword applies to field guides,
descriptions of eruption mechanisms, and general references that do not specifically fit into any
other category. Very specific searches of the title field can be made by employing a single word
or phrase and may be the most useful search strategy. For example, a search for titles that
include the word “Holocene” returns 19 references with Holocene in the title. For those people
that do not have EndNote®, a free viewer is available at http://www.endnote.com.

Formatted Bibliography

The Long Valley bibliography is also available as a standard alphabetical listing of
publications in Adobe Portable Document Format (PDF). The entire bibliography may printed
from the Adobe Acrobat viewer and Acrobat’s simple search utility can be used to find specific
words or phrases.

Statistics

This bibliography contains a total of 1612 references, which we classify into five categories: books and book sections, abstracts, theses, journal articles, and governmental reports (Fig. 1). 685 abstracts comprise 43% of the total. Meeting abstracts of both the American Geophysical Union and Geological Society of America are included in this category. This convention is different than that used in some other bibliographic data bases, such as the Hawaiian bibliography produced by Wright and Takahashi (1998).

The second largest group of references is journal articles with 550 total references, or 34% of the bibliography. Thus, the overwhelming majority of the references are journal articles and abstracts. This is not surprising as the same trend has been found with literature pertaining to the Hawaiian Islands (Wright and Takahashi, 1998).

Book and book sections comprise 12% of the bibliography with 188 references. This category includes portions of Geological Society of America Special Papers as well as chapters published in books about hazard management and techniques for volcano monitoring (e.g., Sheridan, 1968; Andrews, 1968). Proceedings from meetings are also included in this category (e.g., Liddicoat and Bailey, 1989), and generally are distinguished from abstracts by being over one page in length.

Government reports are fourth in number with 120 references or 7% of the total. This category includes all State and Federal documents such as U.S. Geological Survey Professional Papers and Open-File Reports. Exceptions to this apply when a governmental agency has
published meeting abstracts, such as the International Association of Volcanology and Chemistry of the Earth’s Interior (1989), Continental Magmatism Abstracts, published as New Mexico Bureau of Mines and Mineral Resources Bulletin 131. In this case the references are included in the abstract category. One other exception is the field guide to the Long Valley area by Bailey and others (1989) published in New Mexico Bureau of Mines and Mineral Resources Memoir 47 that is included in the book and book section category.

The final and smallest category is theses, making up 4% of the bibliography. A total of 66 theses including 29 Master’s and 37 Ph.D. theses have been written on Long Valley. Subject matter for the theses varies from geological mapping (e.g., Dunn, 1951), to volcanic geology and petrology (e.g., Bailey, 1978), to the seismic structure of the area (e.g., Mayeda, 1991).

The number of references for each discipline keyword varies from seismology with 451 references to atmosphere with eight references. The other disciplines are linearly distributed between these two end members.

Discussion

The graph of number of references published per decade (Fig. 2) shows that the bulk of the literature on the Long Valley area has been published since 1970. However, several interesting patterns are apparent in the early literature on the area. The first geological exploration of the region occurred in the 1860's (Whitney, 1865). The region’s volcanic nature has been recognized since at least the 1870's, and many of the early references published from 1870 through 1900 are related to volcanic features such as the obsidian domes (e.g., Le Conte, 1879). From 1900 until 1920, however, the water resources of the region took the forefront of
the published research (e.g., Lee, 1912). Volcanic and Pleistocene geology returned to prominance through the 1920's to 1940's (e.g., Gilbert, 1938; Kesseli, 1948). In the 1950's general geology was emphasized and geologic maps for both the Casa Diablo and Bishop 15-minute quadrangles were published (Bateman, 1957; Rinehart and Ross, 1957). Also, results from the first geophysical survey of the region were reported in the 1950's by Pakiser and others (1958).

The rising trend in the number and variety of publications began in the 1960's, principally due to an increasing interest in the Casa Diablo geothermal area. Initial exploratory geothermal drilling was carried out during the 1960's, followed by more intensive drilling and study in the 1970's. In 1976 a Journal of Geophysical Research volume was dedicated to geothermal research in Long Valley, and multiple U.S. Geological Survey Open-File Reports were published on the geothermal exploration (Muffler and Williams, 1976, and refs. within).

The number of published references jumped significantly in the 1980's. This abrupt increase is related to the onset of unrest within the caldera and implementation of the USGS effort to monitor the unrest both as a basis for understanding the nature of the unrest and its implications for providing advance warning of an impending eruption. The papers cover a wide range of topics such as ground deformation (e.g., Castle and others, 1984), seismicity (e.g., Ryall and Ryall, 1983), and the consequences of a large scale eruption (e.g., Miller and others, 1982). They include two special issues in the Journal of Geophysical Research devoted to Long Valley caldera (Hill and others, 1985; Goldstein and Stein, 1988). Also during the early 1980's, the Casa Diablo geothermal field was developed and in 1985 was put into production (Duffield and others, 1994).
The publication rate during the 1990's dropped off slightly from the 1980's level, although the rate remained high compared to pre-1980 levels. The elevated number of publications reflects the continuing unrest within the caldera, the continuous stream of real-time geophysical data, and the emergence of a new volcanic phenomenon during the 1990's. Recognition of “tree-kill” areas caused by magmatic CO₂ effusing from the ground in the vicinity of Mammoth Mountain, for example, spurred a sequence of publications (e.g., Farrar and others, 1995). Also, new forms of monitoring, such as the use of the Global Positioning System, began to be utilized within the caldera during this decade adding to the literature (e.g., Marshall and others, 1997).

Persons wishing to develop an understanding of the geological history and ongoing unrest of the Long Valley caldera and associated volcanic fields, and who are new to the subject, may find the sheer volume of literature on the area to be daunting. An overview of the subject matter can be gained by reading the following papers: Bailey and others, 1976; Bailey, 1989; Bailey and Hill, 1990; Hill and others, 1985; Rundle and Hill, 1988; Ryall and Ryall, 1981; Hermance, 1983; Langbein and others, 1993; and Sorey and others, 1991.

Conclusions

This bibliography comprises a total of 1612 references on Long Valley caldera and vicinity. We have tried to be as complete as possible in our coverage of the geological and geophysical literature pertaining to the volcanic system. As time and resources permit, this database will be up-dated with references that may have been omitted and kept up to date with newly published literature.
References

Farrar, C.D., Sorey, M.L., Evans, W.C., Howle, J.F., Kerr, B.D., Kennedy, B.M., King, C.-Y.,

Le Conte, J., 1879, On the extinct volcanoes about Lake Mono and their relation to the glacial drift: American Journal of Science, v. 18, p. 35-44.

Table 1—List of discipline keywords and the total number of references covered by the keyword.

<table>
<thead>
<tr>
<th>Discipline Keyword</th>
<th>Total Number of References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismology</td>
<td>451</td>
</tr>
<tr>
<td>Geochemistry</td>
<td>313</td>
</tr>
<tr>
<td>Geophysics</td>
<td>303</td>
</tr>
<tr>
<td>Petrology</td>
<td>248</td>
</tr>
<tr>
<td>Geothermal</td>
<td>211</td>
</tr>
<tr>
<td>Descriptive</td>
<td>202</td>
</tr>
<tr>
<td>Bishop Tuff</td>
<td>173</td>
</tr>
<tr>
<td>Deformation</td>
<td>163</td>
</tr>
<tr>
<td>Hydrology</td>
<td>150</td>
</tr>
<tr>
<td>Stratigraphy</td>
<td>132</td>
</tr>
<tr>
<td>Geology</td>
<td>122</td>
</tr>
<tr>
<td>Geomorphology</td>
<td>103</td>
</tr>
<tr>
<td>Geochronology</td>
<td>84</td>
</tr>
<tr>
<td>Drilling</td>
<td>78</td>
</tr>
<tr>
<td>Tectonics</td>
<td>64</td>
</tr>
<tr>
<td>Hazards</td>
<td>40</td>
</tr>
<tr>
<td>Monitoring</td>
<td>36</td>
</tr>
<tr>
<td>Remote Sensing</td>
<td>35</td>
</tr>
<tr>
<td>Modeling</td>
<td>20</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>8</td>
</tr>
</tbody>
</table>
Figure 1—Graph showing the distribution of references by type.
Figure 2—Graph of the distribution of references published per decade from 1880 through 1999 showing the increase in published literature since the 1960's.
Bibliography

Aki, K., 1984, Source mechanism of Mammoth Lake earthquakes; further support for magma intrusion [abs]: Eos, Transactions, American Geophysical Union, v. 65, no. 16, p. 242.

Alfors, J.T., 1980, Regional geology of the Mammoth Lakes region, California, in Sherburne, R.W., ed., Mammoth Lakes, California earthquakes of May 1980: California Division of

Andrews, D.J., 1982, Shear-wave and coda spectra and coda attenuation of two aftershocks at Mammoth Lakes, California [abs]: Eos, Transactions, American Geophysical Union, v. 63, no. 45, p. 1029.

Andrews, D.J., 1983, Distribution of dynamic stress drop [abs]: Eos, Transactions, American Geophysical Union, v. 64, no. 18, p. 263.

Anonymous, 1975, A field guide to Cenozoic deformation along the Sierra Nevada Province and Basin and Range Province boundary: California Geology, v. 28, no. 5, p. 99-119.

Archuleta, R.J., 1985, Strong ground motion recorded downhole [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 46, p. 976.

Bailey, R.A., Miller, C.D., and Sieh, K., 1989, Volcanism and plutonism of Western North America; Volume 1, Quaternary volcanism of Long Valley Caldera and Mono-Inyo Craters, eastern California, 28th International Geological Congress Field Trip Guidebook T313:, p. 36.

Ballew, G.I., 1968, Quantitative geologic analysis of multiband photography from the Mono Craters area, California: Stanford University, Master's thesis.

Bartel, L.C., 1984, Results of a limited CSAMT survey across the Inyo chain dike near Glass Creek [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 18, p. 384.

Battaglia, M., Roberts, C.W., and Segall, P., 1998, Constraining the source of historical unrest at
large Quaternary silicic calderas using deformation and gravity data [abs]: Eos, Transactions, American Geophysical Union, v. 79, no. 45, p. 963.

Behr, J., Bilham, R., and Beavan, J., 1992, Monitoring of magma chamber inflation using a biaxial Michelson tiltmeter in Long Valley Caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 347-348.

Bennett, H.F., 1988, Crustal shear wave birefringence in the Mammoth Lakes, California, area [abs]: Eos, Transactions, American Geophysical Union, v. 69, no. 44, p. 1330.

Bennett, M.J., 1982, Subsurface geology at liquefaction sites in Mono County, California [abs]: Geological Society of America, Abstracts with Programs, v. 14, no. 4, p. 149.

Benoit, W.R., and Butler, R.W., 1983, A review of high temperature geothermal developments in the northern Basin and Range Province: The role of heat in the development of energy and mineral resources in the northern Basin and Range Province: Geothermal Resources

Berry, M.E., 1992, Fault scarp morphology and amount of surface offset on late Quaternary surficial deposits, eastern escarpment of the central Sierra Nevada, CA [abs]: Geological Society of America, Abstracts with Programs, v. 24, no. 7, p. 102.

Bilham, R., 1984, Radar visibility of subsurface paleoseismic features [abs]: Eos, Transactions, American Geophysical Union, v. 65, no. 45, p. 1015.

Birkeland, P.W., and Burke, R.M., 1979, Soils and subsurface rock weathering features of Sherwin and pre-Sherwin glacial deposits, eastern Sierra Nevada, California, in Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: "Pacific Cell", Friends of the Pleistocene, p. 63-78.

Birkeland, P.W., Walker, A.L., and Burke, R.M., 1979, Preliminary remarks on chemical data for soils formed on Sherwin and pre-Sherwin glacial deposits, eastern Sierra Nevada, California, in Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern...
Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: "Pacific Cell", Friends of the Pleistocene, p. 79-88.

Bosworth, W., Burke, K., and Strecker, M., 1999, Can stress field orientation be estimated from the ellipticity of collapse calderas? [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 982.

Boyce, J.W., Grove, M., and Reid, M.R., 1998, Diffusivity of Ar in quartz, and the geometry, density, and distribution of radiogenic Ar-bearing glass inclusions in quartz phenocrysts from Bishop Tuff, California, USA [abs]: Eos, Transactions, American Geophysical Union, v. 79, no. 45, p. 964.

Boyce, J.W., Grove, M., and Reid, M.R., 1999, Experimental evidence for the non-retentive behavior of Ar from melt inclusions in quartz phenocrysts [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 1130.

Broecker, W.S., and Stine, S., 1988, Mono Lake's radiocarbon budget; an unsolved enigma [abs]: Eos, Transactions, American Geophysical Union, v. 69, no. 23, p. 633.

Bryant, W.A., 1984, Evaluation of active faults of the Sierra Nevada frontal fault zone (SNFFZ), Inyo and Mono counties, California [abs]: Geological Society of America, Abstracts with Programs, v. 16, no. 6, p. 458.

Bryce, J.G., Furman, T., and Reid, J.B., Jr., 1993, Transport of pumice during an extreme hydrologic event; a case study from the Owens River, eastern California [abs]: Geological Society of America, Abstracts with Programs, v. 25, no. 4, p. 5.

Burke, R.M., 1979, Roadlog from Mono Lake to Green Creek, in Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: "Pacific Cell", Friends of the Pleistocene, p. 58-62.

Burke, R.M., and Birkeland, P.W., 1976, Re-evaluation of the late Pleistocene glacial sequence along the eastern escarpment of the Sierra Nevada, California [abs]: The Geological Society of America, Abstracts with Programs, v. 8, no. 6, p. 796.
Burke, R.M., and Birkeland, P.W., 1979, Reevaluation of multiparameter relative dating techniques and their application to the glacial sequence along the eastern escarpment of the Sierra Nevada, California: Quaternary Research, v. 11, no. 1, p. 21-51.

Burke, R.M., and Birkeland, P.W., 1979, Relative dating and reevaluation of the glacial deposits along Mammoth Creek, California, in Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: "Pacific Cell", Friends of the Pleistocene, p. 8-22.

Burke, R.M., and Birkeland, P.W., 1979, Relative dating technique and reevaluation of the glacial deposits along Sawmill Canyon (N)-Bloody Canyon, in Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: "Pacific Cell", Friends of the Pleistocene, p. 29-53.

Burke, R.M., and Birkeland, P.W., 1979, Road log from Mammoth Creek to Sawmill Canyon (N)-Bloody Canyon, in Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: "Pacific Cell", Friends of the Pleistocene, p. 23-28.

Burke, R.M., and Birkeland, P.W., 1979, Summary of the relative dating philosophy and the glacial stratigraphy along the eastern escarpment of the Sierra Nevada, in Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: "Pacific Cell", Friends of the Pleistocene, p. 101-110.

Bursik, M.I., 1992, How to predict an eruption at Long Valley Caldera [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 343.

Bursik, M.I., and Reid, J.B., 1999, Reconnaissance of lahar deposits, Glass Creek and Owens River, California [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 1187.

Buseck, P.R., and Varekamp, J.C., 1982, Changing Hg soil patterns in the Long Valley Caldera;
a response to new magma influxes? [abs]: Eos, Transactions, American Geophysical Union, v. 63, no. 45, p. 1132.

Cameron, B.I., Fink, J.H., DeGroat, P.J., and Holloway, J.R., 1999, Magmatic H$_2$O contents in glassy lavas and obsidian clasts revealed by step-heating hydrogen isotope analyses [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 1109.

Cameron, K.L., 1983, The Bishop Tuff revisited; isotope dilution REE data consistent with crystal fractionation [abs]: Eos, Transactions, American Geophysical Union, v. 64, no. 45, p. 883.

Christensen, J.N., and DePaolo, D.J., 1993, Time scales of large volume silicic magma systems; Sr isotopic systematics of phenocrysts and glass from the Bishop Tuff, Long Valley, California: Contributions to Mineralogy and Petrology, v. 113, no. 1, p. 100-114.

Connolly, N.T., Jessup, M.J., Pack, S.M., Polissar, P.J., Reynolds, J.L., Reid, J.B., Jr., and Hainsworth, L.J., 1996, A pumice filled oxbow in the floodplain of the Owens River, Long Valley Caldera, California; clues to the events around the 600 yr BP Inyo Crater eruptions [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 802.

Cousens, B.L., 1992, Geochemistry and isotopic composition of post-caldera basaltic lavas from Long Valley, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 14, p. 337.

Cousens, B.L., 1995, Mantle sources and mantle vs. crustal contributions to Quaternary basaltic
volcanism at Long Valley Caldera and Devils Postpile National Monument [abs]: Eos, Transactions, American Geophysical Union, v. 76, p. 687.

Cousens, B.L., 1995, Sources of Quaternary basaltic magmas of the western Great Basin, USA; Long Valley Caldera and Devils Postpile, California [abs]: Geological Association of Canada, Program with Abstracts, v. 20, p. 20.

Dalrymple, G.B., 1980, K-Ar ages of the Friant Pumice Member of the Turlock Lake Formation, the Bishop Tuff, and the tuff of Reds Meadow, central California: Isochron/West, v. 28, p. 3-5.

Delaplain, T.W., and Peppin, W.A., 1987, Laterally variable crustal models for pre-S observations at Station SLK, NW of Long Valley Caldera, California [abs]: Seismological Research Letters, v. 58, no. 1, p. 34.

Denham, C.R., 1971, Eastward drift of the geomagnetic field 25,000 years ago [abs]: Eos, Transactions, American Geophysical Union, v. 52, no. 11, p. 822.

45

Eichelberger, J.C., 1986, Behavior of silicic magma during ascent and emplacement; results from drilling at Inyo Domes, California [abs]: Jahrestagung der Deutschen Geophysikalischen Gesellschaft, Joint Symposium of the ILP/SFB 108 on the Continental Lithosphere; Structure, Composition and Processes, v. 46, p. 179.

Eichelberger, J.C., 1986, Research hole to intersect Inyo Dike [abs]: Eos, Transactions, American Geophysical Union, v. 67, no. 40, p. 768.

Eichelberger, J.C., 1988, Volcanic equivalents of mafic inclusions in granites [abs]: Eos, Transactions, American Geophysical Union, v. 69, no. 44, p. 1495-1496.

Eichelberger, J.C., Lysne, P.C., Miller, C.D., and Younker, L.W., 1984, 1984 drilling results at Inyo Domes, California [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 18, p. 384.

Eichelberger, J.C., Lysne, P.C., and Younker, L.W., 1984, Continental scientific drilling at Inyo Domes, Long Valley Caldera, CA [abs]: Eos, Transactions, American Geophysical Union, v. 65, no. 45, p. 1096.

Eichelberger, J.C., and Younker, L.W., 1988, Inyo drilling; a summary [abs]: Eos, Transactions, American Geophysical Union, v. 69, no. 44, p. 1472.

Ekstroem, G., and Dziewonski, A.M., 1983, Moment tensor solutions of Mammoth Lake earthquakes [abs]: Eos, Transactions, American Geophysical Union, v. 64, no. 18, p. 262.

Emerson, D., and Eichelberger, J.C., 1980, Geology of the Long Valley Caldera, California, in Goff, F., and Waters, A.C., eds., Continental Scientific Drilling Program thermal regimes; comparative site assessment geology of five magma-hydrothermal systems: Los Alamos

Farrar, C.D., 1985, Electronic instrumentation for monitoring the hydrologic system of Long Valley, California [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 46, p. 911.

Findley, D.P., 1984, Late Cenozoic tectonic deformation along the northern White Mountains, Mono and Inyo counties, California: University of Nevada, Reno, Master's thesis, 93 p.

Fink, J.H., and Kieffer, S.W., 1992, Pyroclastic flows generated by explosive decompression during lava dome collapse [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 628.

Fitchen, J.G., James, D., and Leeman, W.P., 1991, Basic magmatism associated with Late Cenozoic extension in the western United States: Compositional variations in space and

Foster, J.G., and Reid, J.B., Jr., 1993, Crustal deformation in eastern Long Valley Caldera, California during the last 600,000 yrs [abs]: Geological Society of America, Abstracts with Programs, v. 25, no. 6, p. 72.

Fox, A.N., and Bloom, A.L., 1989, Change in surface roughness through time on moraines in Mono Basin, California; a comparison of field profiler and aircraft radar data [abs]: Geological Society of America, Abstracts with Programs, v. 21, no. 6, p. 270.

Friedman, J.D., 1968, Thermal anomalies and geologic features of the Mono Lake area, California, as revealed by infrared imagery: Geological Society of America Special Paper 115, p. 73-74.

Fuis, G., Cockerham, R.S., and Halbert, W., 1979, Preliminary report on the Bishop earthquake, $M_L = 5.8$, October 4, 1978; aftershocks and ground breakage [abs]: The Geological Society of America, Abstracts with Programs, v. 11, no. 3, p. 79.

Fumal, T.E., Warrick, R.E., Etheredge, E.C., and Archuleta, R.J., 1985, Downhole geology, seismic velocity structure and instrumentation at the McGee Creek, California recording site [abs]: Seismological Society of America, Earthquake Notes, v. 55, no. 1, p. 5.

Gardner, J.E., Tait, S., Jaupart, C., and Thomas, R., 1996, Fragmentation of magma during explosive volcanic eruptions; the pumice record [abs]: Eos, Transactions, American

Glen, J.M., Coe, R.S., and Boughn, S., 1992, Preliminary estimate of the age of the Matuyama/Brumnes reversal based on a sedimentary record from Owens Lake, CA. [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 632.

Goldstein, N.E., 1988, Magma under Long Valley Caldera: Reply: Eos, Transactions, American Geophysical Union, v. 69, no. 11, p. 154.

Goldstein, N.E., 1988, Pre-drilling data review and synthesis for the Long Valley Caldera, California: Eos, Transactions, American Geophysical Union, v. 69, no. 3, p. 43-45.

Halliday, A.N., and Mahood, G., 1988, Highly evolved liquids in the early history of the Long Valley (California) high silica rhyolite magma system [abs]: Eos, Transactions, American Geophysical Union, v. 69, no. 44, p. 1494.

Hardee, H.C., and Luth, W.C., 1980, Continental scientific drilling; comparative assessment of five potential sites for hydrothermal magma systems [abs]: Eos, Transactions, American Geophysical Union, v. 61, no. 46, p. 1148-1149.

Harris, S.L., 1988, Fire mountains of the West; the Cascade and Mono Lake volcanoes: Missoula, Mountain Press, 379 p.

Hauksson, E., 1985, Tomographic studies of the Casa Diablo magma chamber using rays from local earthquakes, Long Valley, eastern California [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 18, p. 302.

Hermance, J.F., 1982, Where is all the magma beneath the major silicic centers? [abs]: Eos, Transactions, American Geophysical Union, v. 63, no. 45, p. 1133.

Higbee, P., Bergmann, R., Owen, S., and Dreger, D., 1999, Why the Sierras are so stressed-out: The effect of Long Valley Caldera inflation on faulting in the eastern Sierra Nevada [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 981.

Higgins, M.D., 1985, Boron in the Inyo Domes rhyolites; mobile but not volatile [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 18, p. 387-388.

Hildreth, E.W., 1976, The Bishop Tuff; compositional zonation in a silicic magma chamber without crystal settling [abs]: Geological Society of America, Abstracts with Programs, v. 8, no. 6, p. 918.

Hildreth, E.W., 1977, A zoned pluton at the eruptive stage; the Long Valley magma chamber (California) as evidenced by eruption of the Bishop Tuff, in Yamada, N., ed., Plutonism
in relation to volcanism and metamorphism, papers presented at the 7th CPPP meeting: Toyama, Japan, Circum-Pacific Plutonism Project, p. 38-48.

Hill, D.P., and Bailey, R.A., 1990, The evolving image of a complex magmatic system beneath Long Valley Caldera and the Mono Inyo volcanic chain, eastern California [abs]: Eos,

Hill, D.P., and Cockerham, R.S., 1985, Seismicity in Long Valley Caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 46, p. 959.

Hill, D.P., and Pitt, A.M., 1992, Long period earthquakes at mid-crustal depths beneath the western margin of Long Valley Caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 343.

Eruptions for 1985: Tokyo, Volcanological Society of Japan, p. 63-64.

Holt, E.W., and Taylor, H.P., Jr., 1997, 18O/16O mapping and hydrogeology of a short-lived (<25 yr) fumarolic (>500 degrees C) meteoric-hydrothermal event in the upper, partially-welded, 0.76 Ma Bishop Tuff [abs]: Geological Society of America, Abstracts with Programs, v. 29, no. 6, p. 449.

Honjas, W., Peppin, W.A., and Delaplain, T.W., 1986, Further results on the postulated magma body near the south end of Hilton Creek Fault, Mammoth Lakes, California [abs]: Eos, Transactions, American Geophysical Union, v. 67, no. 44, p. 1108.

18, no. 1, p. 49-55.

Hu, Q., Smith, P.E., Evensen, N.M., and York, D., 1993, Extending the $^{40}\text{Ar}^{39}\text{Ar}$ laser probe method into the carbon-14 age range; single-crystal dating of sanidines from Mono Crater, California [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 16, p. 339.

Hurford, A.J., and Hammerschmidt, K., 1985, $^{40}\text{Ar}/^{39}\text{Ar}$ and K/Ar dating of the Bishop and Fish Canyon tuffs; calibration ages for fission-track-dating standards: Chemical Geology, v. 58, no. 1-2, p. 23-32.

Iyer, H.M., and Dawson, P.B., 1992, Interpreting magma chamber models derived using teleseismic tomography; application to Long Valley, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 25, p. 60.

Jehl, J.R., 1983, Tufa formation at Mono Lake, California, Mono County: California Geology, v. 36, no. 1, p. 3.

Johnson, S., 1980, At Mono Lake: Terra, v. 18, no. 4, p. 8-16.

Johnston, M.J.S., Mueller, R.J., and Langbein, J.O., 1992, Ongoing volcanomagnetic, geodetic and seismicity anomalies observed from mid 1989 in Long Valley Caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 60.

Chalfant Valley earthquake, Mono and Inyo counties, California: California Geology, v. 39, no. 11, p. 243-245.

Kaufmann, R.S., 1988, Chlorine stable isotope compositions of waters derived from crystalline rocks, volcanic waters and geothermal waters [abs]: V. M. Goldschmidt Conference; Program and Abstracts, p. 51.

Kelleher, P.C., Cameron, K.L., and Nimz, G.J., 1985, Evidence for several magma batches at Mono Craters (MC)-Mono Lake Islands (MLI), Calif. [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 46, p. 1112.

Kesseli, J.E., 1941, Studies in the Pleistocene glaciation of the Sierra Nevada, California; 1, Topographic map of the Pleistocene glacial deposits in the Mammoth Embayment, Mono County; 2, Changes in the courses of some Pleistocene glaciers and their relation to interglaciation: University of California Publications in Geography, v. 6, no. 8, p. 315-361.

Keys, W.S., 1976, Borehole geophysics in geothermal wells; problems and progress, in Kruger, P., and Ramey, H.J., Jr., eds., Second workshop on geothermal reservoir engineering;
summarized: Stanford University, p. 66-74.

Kissling, E., Cockerham, R.S., and Ellsworth William, L., 1983, Structure of the Long Valley Caldera region as interpreted from seismic data [abs]: Eos, Transactions, American Geophysical Union, v. 64, no. 45, p. 890.

Kistler, R.W., 1960, The geology of the Mono Craters Quadrangle, California: University of

Knesel, K.M., 1999, Isotopic and petrologic constraints on the longevity of silicic magma bodies [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 1178.

Koch, K., 1987, Moment tensor inversion for local earthquake data; applied to eight aftershocks

Lajoie, K.R., Liddicoat, J.C., and Robinson, S.W., 1980, Refinement of the chronology and paleomagnetic record at Mono Lake, California [abs]: Eos, Transactions, American Geophysical Union, v. 61, no. 17, p. 215.

inflation of the resurgent dome in Long Valley Caldera, California, from mid-1989 to mid-1990 [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1466.

Lange, R.A., and Carmichael, I.S.E., 1994, Quaternary volcanism NE of Mono Basin, California: Basaltic-andesite magmatism unrelated by fractional crystallization [abs]: Geological

Le Conte, J., 1879, On the extinct volcanoes about Lake Mono and their relation to the glacial drift: American Journal of Science, v. 18, p. 35-44.

Leivas, E., and Bacon, C.F., 1982, Reconnaissance geothermal resource assessment of another 40 sites in California: California Division of Mines and Geology Open File Report 83-12,

study institute on geomagnetism and paleomagnetism: NATO Advanced Study Institutes Series; Mathematical and Physical Sciences, p. 137-153.

Liddicoat, J.C., and Coe, R.A., 1975, Mono Lake 24,000 year B.P. geomagnetic excursion; additional data [abs]: Eos, Transactions, American Geophysical Union, v. 56, no. 12, p. 978.

Liddicoat, J.C., and Lund, S.P., 1983, A high resolution record of secular variation from Quaternary sediments from Mono Lake, California [abs]: Eos, Transactions, American Geophysical Union, v. 64, no. 45, p. 685.

Lindley, G.T., and Archuleta, R.J., 1990, Modeling the Fourier amplitude spectrum of local earthquakes from the Coalinga and Mammoth Lakes areas of California [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1635-1636.

Linker, M.F., Langbein, J.O., and Estrem, J.E., 1984, Horizontal deformation in the southwest moat of Long Valley Caldera, eastern California, for the period 1983.5-1984.6 [abs]: Eos, Transactions, American Geophysical Union, v. 65, no. 45, p. 1117.

Linker, M.F., Langbein, J.O., and McGarr, A., 1983, Two color geodimeter measurements of crustal deformation at Long Valley, California; initial results [abs]: Eos, Transactions, American Geophysical Union, v. 64, no. 45, p. 841.

Maggs, W.W., 1988, Was Mono Lake a 14C dump? [abs]: Eos, Transactions, American Geophysical Union, v. 69, no. 28, p. 714.

Mankinen, E.A., 1994, Preliminary geomagnetic paleointensities from Long Valley Caldera,

Valley Caldera, California, Basin and Range strain, and possible Mono Craters' dike opening from 1990 to 1994 GPS surveys: Geophysical Research Letters, v. 24, no. 9, p. 1003-1006.

Martini, M., Capaccioni, B., Giannini, L., and de la Cruz, S., 1987, Experiences on volcano monitoring and eruption forecasting during the last decade; Vulcano and Phlegrean fields (Italy), Long Valley (USA), Nevado del Ruiz (Colombia) and Tacana (Mexico) [abs]: International Union of Geodesy and Geophysics, General Assembly Abstracts, v. 19, no. 2, p. 428.

Mastin, L.G., 1988, Stress, surface deformation, and phreatic eruptions above a shallow dike,

Matlick, J.S., III, and Buseck, P.R., 1978, Exploration for geothermal areas using mercury; a new geochemical technique: Geothermal Energy, v. 6, no. 9, p. 15-23.

May, R.J., 1976, Thermoluminescence dating of young silicic volcanic rocks [abs]: Eos, Transactions, American Geophysical Union, v. 57, no. 12, p. 1014.

1.5 and 15.0 Hz [abs]: Eos, Transactions, American Geophysical Union, v. 72, no. 17, p. 198.

Mayeda, K.M., 1991, High frequency scattered S waves in the lithosphere; application of the coda method to the study of source, site and path effects: University of Southern California, Ph.D. thesis.

Mayeda, K.M., Koyanagi, S., and Aki, K., 1990, Temporal correlation between coda Q^{-1} and extension rate in the Long Valley Caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1466.

Mayo, E.B., 1930, Preliminary report on the geology of southwestern Mono County, California: Mining in California, v. 26, no. 4, p. 475-482.

McConnell, V.S., 1993, Post-emplacement alteration beneath the resurgent dome of the Long Valley Caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 43, p. 670.

McConnell, V.S., 1994, Applying Sr isotope geochemistry to interpreting the history of the Long Valley Caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 75, no. 44, p. 733.

McKenzie, W.F., and Truesdell, A.H., 1975, Geothermal reservoir temperatures estimated from the oxygen isotope composition of dissolved sulfate and water from hot springs, Second United Nations symposium on the development and use of geothermal resources: Lawrence Berkeley Laboratory, University of California, Berkeley.

McLaren, J.P., Savage, W.U., and Barker, J.S., 1985, Local constraints on magma location in

Merriam, R., and Bischoff, J.L., 1975, Bishop ash; a widespread volcanic ash extended to southern California: Journal of Sedimentary Petrology, v. 45, no. 1, p. 207-211.

Michael, P.J., 1983, Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallization processes: Geology, v. 11, no. 1, p. 31-34.

Miller, C.D., 1983, Chronology of Holocene eruptions at the Inyo volcanic chain, California [abs]: Eos, Transactions, American Geophysical Union, v. 64, no. 45, p. 900.

Miller, C.D., Crandell, D.R., Mullineaux, D.R., Hoblitt, R.P., and Bailey, R.A., 1982,

Miller, C.D., Eichelberger, J.C., Lysne, P.C., and Younker, L.W., 1985, Scientific drilling at Inyo Domes, California: geologic background and scientific objectives [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 18, p. 384.

Moos, D., and Zoback, M.D., 1992, Stresses in the Long Valley Caldera, California, from analysis of wellbore breakouts in geothermal exploratory wells [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 559.

Mueller, C.S., Spudich, P., Cranswick, E., and Archuleta, R., 1981, Preliminary analysis of...

Naney, M.T., and Swanson, S.E., 1984, Fe³ - Fe² variations in rhyolite lava at Inyo Domes, California [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 18, p. 385.

Newman, S., Stolper, E., and Epstein, S., 1985, Variations in hydrogen isotopic ratios of
obsidians erupted 1400 A.D. at Mono Craters, California [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 18, p. 391.

Nixon, L.D., and Sanders, C.O., 1992, S-wave attenuation structure of Long Valley Caldera, using three component S/P amplitude ratio data [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 347.

O'Doherty, K.B., Bean, C.J., and McCloskey, J., 1996, Coda wave tomographic imaging through
spatial stacking [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 468.

Oremland, R.S., 1979, CH₄ content of geothermal gases before and after an earthquake [abs]: Eos, Transactions, American Geophysical Union, v. 60, no. 46, p. 883.

Oremland, R.S., 1983, Methane in association with seismic activity [abs]: Eos, Transactions, American Geophysical Union, v. 64, no. 24, p. 410.

Owen, S.E., Mills, S., Higbee, P., and Burgmann, R., 1999, Seismicity and strain in the Sierra Nevada south of Long Valley Caldera [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 960.

Pakiser, L.C., Jr., Press, F., Warrick, R.E., and Kane, M.F., 1958, Geophysical investigation of

Palacz, Z.A., 1994, $^{238}\text{U}-^{230}\text{Th}-^{226}\text{Ra}$- constraints on the origin of the Mono Craters rhyolites, eastern California [abs]: Eos, Transactions, American Geophysical Union, v. 75, no. 44, p. 740.

Pearson, G.S., and Huckabay, P.S., 1990, Ground water management in California Department of

Peppin, W.A., 1984, Seismic moments of Mammoth Lakes earthquakes; data from close in displacement seismograms [abs]: Eos, Transactions, American Geophysical Union, v. 65, p. 45.

Peppin, W.A., 1985, New evidence for magma bodies south of Long Valley Caldera, Mammoth Lakes, California [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 46, p. 959.

Peppin, W.A., Delaplain, T.W., and Lewis, J.S., 1989, Pre-S observations at station SLK, NW of Long Valley Caldera, California, and their relation to possible magma bodies: Bulletin of

Peterson, J.E., Jr., and Majer, E.L., 1982, A short term seismicity study at Mammoth Lakes using in field automated seismic processing [abs]: Eos, Transactions, American Geophysical Union, v. 63, no. 45, p. 1029.

Pietraszek, J., Deming, J., Valley, P., and Bursik, M.I., 1999, Preliminary study of uplift and eruption of Paoha Island, Mono Lake, CA [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 981.

Pinter, N., 1995, Faulting on the volcanic tableland, Owens Valley, California: Journal of Geology, v. 103, no. 1, p. 73-83.

Ponko, S.C., and Sanders, C.O., 1992, Inversion for P and S wave differential attenuation structure using the spectral ratio technique, Long Valley, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 347.

Poreda, R.J., Ku, T.C.W., and Cerling, T.E., 1995, Cosmogenic 3He exposure ages of June Lake basalts; application to Sierra Nevadan glacial geochronology [abs]: Eos, Transactions, American Geophysical Union, v. 76, no. 46, p. 685.

Proctor, R.J., 1996, Greatest diversity of geologic features in a tunnel: The Professional
Prothero, W.A., Jr., and Steck, L., 1988, Seismic calibration using the simplex algorithm [abs]: Eos, Transactions, American Geophysical Union, v. 69, no. 44, p. 1320.

$^{238}\text{U}-^{230}\text{Th}$ dating of zircon; long magma residence times for the youngest rhyolites associated with Long Valley Caldera [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 794.

Riley, F.S., Massey, B.L., Boling, J.K., Denlinger, R.P., and Carpenter, M.C., 1982, Horizontal strain within the Long Valley, California, caldera between 1975 and 1982 [abs]: Eos,
Transactions, American Geophysical Union, v. 63, no. 45, p. 1132.

Roberts, C.W., and Jachens, R.C., 1984, Gravity evidence for prior igneous intrusion beneath the south moat of Long Valley Caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 65, no. 45, p. 1117.

Ryall, A.S., Jr., 1982, Seismicity and magma injection near Mammoth Lakes, California, in the context of regional tectonics [abs]: Eos, Transactions, American Geophysical Union, v. 63, no. 45, p. 1132.

Ryerson, F.J., Harrison, T.M., and Heizler, M.T., 1985, Thermal constraints on the emplacement of the rhyolite conduit at Inyo Domes, Long Valley Caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 46, p. 1125.

Salyards, S.L., 1986, Thermal and depositional constraints on a block and ash flow deposit from Panum Crater, Mono Co., Calif., from paleomagnetic analysis [abs]: Geological Society

Sampson, D.E., and Cameron, K.L., 1984, Geochemistry of the most recent eruptive event in the Inyo volcanic chain, eastern California; the intersection of two magmatic systems [abs]: Geological Society of America, Abstracts with Programs, v. 16, no. 6, p. 643.

Sanders, C.O., 1983, Location and configuration of magma bodies beneath Long Valley, California, determined from anomalous earthquake signals [abs]: Eos, Transactions, American Geophysical Union, v. 64, no. 45, p. 890.

Scotti, O., Grasso, J.R., Bossu, R., and Cotton, F., 1996, Tectonic strain rate as the control parameter for earthquake interactions [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 516.

Segall, P., 1999, What we don't know about volcano deformation [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 1193.

Sherburne, R.W., ed., 1980, Mammoth Lakes, California earthquakes of May 1980, California

Sieh, K.E., and Bursik, M., 1986, Most recent eruption of the Mono Craters, eastern central California [abs]: Eos, Transactions, American Geophysical Union, v. 67, no. 16, p. 398.

Simila, G.W., and Roquemore, G.R., 1987, Earthquake history of the Owens Valley region, in

Skirius, C.M., Peterson, J.W., and Anderson, A.T., Jr., 1989, Pre-eruptive volatile content of Bishop Tuff ash flow magma; results of glass inclusion homogenization experiments [abs]: Geological Society of America, Abstracts with Programs, v. 21, no. 6, p. 270.

Smith, A.T., 1983, Microseismicity near Mammoth Lakes, California [abs]: Eos, Transactions, American Geophysical Union, v. 64, no. 5, p. 44.

Smith, B.M., 1990, Comparisons of oxygen isotope systematics of fossil and active calderas; Bonanza, CO and Long Valley, CA [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1677.

Sorey, M.L., 1999, Constraints on deep fluid circulation in Long Valley Caldera [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 1162.

Sorey, M.L., and Clark, M.D., 1981, Changes in the discharge characteristics of thermal springs

Sorey, M.L., Kennedy, B.M., Evans, W.C., and Farrar, C.D., 1990, Increases in 3He/4He in fumarolic gas associated with the 1989 earthquake swarm beneath Mammoth Mountain, CA [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1674-1675.

times: Bulletin of the Seismological Society of America, v. 81, no. 4, p. 1332-1339.

Steeples, D.W., 1975, Heat anomaly estimation from teleseismic P-delays [abs]: Eos, Transactions, American Geophysical Union, v. 56, no. 12, p. 1020.

Stine, S.W., 1990, Late Holocene fluctuations of Mono Lake, eastern California: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 78, no. 3-4, p. 333-381.

Stoeckhert, B., Kuester, M., Fischer, M., and Roeller, K., 1999, Episodic phase separation (H₂O - CO₂) in the hydrothermal system at Long Valley exploratory well, recorded by quartz microstructures and fluid inclusions [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 1161.

Stormer, J.C., Jr., 1983, Determination of the depth of origin of large volume silicic magmas; two-feldspar + Fe-Ti oxide method [abs]: Eos, Transactions, American Geophysical Union, v. 64, no. 18, p. 336.

Stroujkova, A., Shalev, E., Malin, P., and Got, J.L., 1997, The 1997 Mammoth Wave Propagation Experiment; high-resolution relative microearthquake locations in the Casa Diablo area [abs]: Eos, Transactions, American Geophysical Union, v. 78, no. 46, p. 444.

Surono, S., 1992, Etude des phenomenes physiques observes lors d'une intrusion magmatique; cas du volcan Kelut (1990) et de la Caldeira de Long Valley (1990) [Study of physical phenomena observed during a magmatic intrusion; case of the Kelut Volcano (1990) and...

Swanson, S.E., Naney, M.T., and Westrich, H.R., 1984, Crystallization of rhyolite of Inyo Obsidian Dome [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 18, p. 384-385.

Swanson, S.E., Naney, M.T., and Westrich, H.R., 1985, Origin of microlites in rhyolite; an example from Inyo Domes, California [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 46, p. 1112.

Tanzer, M.O., and MacDougall, J.D., 1984, 230Th-238U disequilibrium systematics from Long Valley and Mono domes, California; evidence for magma replenishment since 0.1 m.y. ago [abs]: Eos, Transactions, American Geophysical Union, v. 65, no. 45, p. 1128.

Techmer, K.S., Echer, C., and Wenk, H.R., 1996, SEM and TEM/AEM studies of crystallization processes in some natural glasses (pseudotachylites of the Ivrea-Verbano Zone, northern Italy and quenched volcanic rocks from Mono Lake, California) [abs]: Chemie der Erde, v. 56, no. 4, p. 373-378.

Thatcher, W., 1982, Seismic triggering and earthquake prediction [abs]: Eos, Transactions, American Geophysical Union, v. 63, no. 18, p. 436.

Thatcher, W., 1999, What active magmatic processes are imaged by satellite radar interferometry (InSAR)? [abs]: Eos, Transactions, American Geophysical Union, v. 80, no. 46, p. 1193.

Thompson, G.A., Parsons, T., and Smith, R., 1990, Examples of magma overpressure suppressing normal faulting and inhibiting seismicity; Snake River plain, Idaho, Yucca Mountain, Nevada, and Mono Craters, California [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1622.

Tiampo, K.F., Hofton, M., Rundle, J.B., and Minster, J.B., 1996, Inversion for the volcanic source at Long Valley, California, using a genetic algorithm technique [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 146.

Tryggvason, A., 1998, Seismic tomography; inversion for P- and S-wave velocities: Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, v. 369, p. 31.

Urban, T.C., and Diment, W.H., 1988, Precision temperature log in the hottest well in the Long Valley Caldera, California; implications as to hydrothermal conditions and fluid exchange along the well [abs]: Geological Society of America, Abstracts with Programs, v. 20, no. 7, p. 92.

Urban, T.C., Diment, W.H., and Moses, T.H., 1988, Heat transport mechanisms in the west moat of the Long Valley Caldera, California, as revealed by precision temperature logs in PLV-1 repeated over a 3 yr interval [abs]: Eos, Transactions, American Geophysical Union, v. 69, no. 44, p. 1187.

van den Bogaard, P., and Schirnick, C., 1995, 40Ar/39Ar laser probe ages of Bishop Tuff quartz phenocrysts substantiate long-lived silicic magma chamber at Long Valley, United States: Geology, v. 23, no. 8, p. 759-762.

Varekamp, J.C., and Buseck, P.R., 1984, Changing mercury anomalies in Long Valley, California; indication for magma movement or seismic activity: Geology, v. 12, no. 5, p. 283-286.

Verosub, K.L., and Summa, L.L., 1992, Effect of diagenesis on magnetic minerals as determined from unaltered and altered tephra layers [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 14, p. 94.

Vogel, T.A., Schuraytz, B.C., and Younker, L.W., 1984, Preliminary geothermometry of the conduit to Obsidian Dome based on coexisting ilmenite-magnetite and augite-orthopyroxene [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 18, p. 384.

Vogel, T.A., Younker, L.W., and Schuraytz, B.C., 1987, Constraints on magma ascent, emplacement, and eruption; geochemical and mineralogical data from drill-core samples at Obsidian Dome, Inyo chain, California: Geology, v. 15, no. 5, p. 405-408.

Waring, C.A., 1917, Geological map of Inyo County, California: California State Mining Bureau, 1:250,000.

Welhan, J.A., Poreda, R.J., Rison, W., and Craig, H., 1988, Helium isotopes in geothermal and
volcanic gases of the Western United States; 2, Long Valley Caldera: Journal of Volcanology and Geothermal Research, v. 34, no. 3-4, p. 201-209.

Westrich, H.R., and Eichelberger, J.C., 1988, Obsidian lava; evidence for a degassed magma [abs]: Eos, Transactions, American Geophysical Union, v. 69, no. 44, p. 1469-1470.

Whitcomb, J.H., and Rundle, J.B., 1984, Gravity variation before and after the January 1983 Mammoth Lakes, California, earthquake swarm [abs]: Seismological Society of America,

Wieczorek, G.F., 1981, Rock falls in Yosemite Valley from the Mammoth Lakes, California,

Willey, L.M., Rapp, J.B., and Barnes, I., 1973, Geochemistry of thermal waters in Long Valley, California [abs]: Eos, Transactions, American Geophysical Union, v. 54, no. 11, p. 1212.

Williams, C.A., Rundle, J.B., and Wawersik, W., 1993, Finite element modeling of stresses and deformation in Long Valley, California [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 43, p. 609.

Williams, S.N., and Hudnut, K.W., 1984, Soil gas radon and mercury at an active silicic caldera; Long Valley, California [abs]: Geological Society of America, Abstracts with Programs, v. 16, no. 6, p. 695.

Wood, S.H., and Brooks, R., 1979, Panum Crater tephra dates 640 + or - 40 radiocarbon yrs. B.P., Mono Craters, California [abs]: Geological Society of America, Abstracts with

Wu, M., and Wang, H.F., 1986, Effect of magma chamber shape on ground deformations; application to uplift at Long Valley, California [abs]: Eos, Transactions, American Geophysical Union, v. 67, no. 16, p. 402.

Wu, M., and Wang, H.F., 1988, Stress modeling at Long Valley, California; borehole stability near a magma chamber [abs]: Eos, Transactions, American Geophysical Union, v. 69, no. 44, p. 1410.

Younker, L.W., Eichelberger, J.C., Lysne, P.C., and Miller, C.D., 1985, Scientific drilling at Inyo Domes, California; summary and the future [abs]: Eos, Transactions, American Geophysical Union, v. 66, no. 18, p. 388.

Zhang, Y., Stolper, E.M., and Ihinger, P.D., 1995, Kinetics of the reaction $\text{H}_2\text{O} + \text{O} = 2\text{OH}$ in rhyolitic and albitic glasses; preliminary results: American Mineralogist, v. 80, no. 5-6, p. 593-612.

