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Bedrock-Surface Elevation and Overburden Thickness 
Maps of the Five Boroughs, New York City, New York

By Laura M. DeMott, Frederick Stumm, and Jason Finkelstein

Abstract
Digital maps of bedrock elevation and overburden 

thickness (depth to bedrock) were constructed for the five 
boroughs of New York City by the U.S. Geological Survey, 
in cooperation with the New York City Department of Design 
and Construction, from a compilation of historical and newly 
acquired data. Raster surfaces were interpolated from a point 
database containing data from more than 14,000 locations 
collected from a variety of sources. These data were collected 
between 1905 and 2021. These maps were constructed to 
supplement existing tools for the evaluation of potential con-
struction of geothermal heat pump technology for buildings in 
New York City.

The bedrock underlying the study area ranges from easily 
weathered to very resistant to weathering. This differential sus-
ceptibility to erosion, along with numerous north-northwest-
trending faults, is believed to control the shape of the bedrock 
surface. Glacial scouring of the bedrock during the Pleistocene 
Epoch is the most recent control on the topography of bedrock 
surfaces. Overburden thickness is an important consideration 
for evaluation and construction of geothermal systems.

Bedrock-surface elevation ranges from about 360 feet 
above sea level (in central Staten Island and northern Bronx) 
to 1,200 feet below sea level (in southern Queens) (North 
American Vertical Datum of 1988). The overburden thick-
ness ranges from 0 foot thick at surface outcrops on Staten 
Island, Manhattan, and the Bronx, to 1,280 feet thick in 
southeastern Queens.

Introduction
A point database of land-surface elevation and depth to 

bedrock spanning New York City and Long Island, New York, 
was used to interpolate bedrock-surface elevation and overbur-
den thickness for the five boroughs of New York City, which 
includes Manhattan (New York County), the Bronx (Bronx 
County), Brooklyn (Kings County), Queens (Queens County), 
and Staten Island (Richmond County). The interpolated 
surfaces were used to create digital geospatial data and maps 

in cooperation with the New York City Department of Design 
and Construction (NYCDDC) in support of city construction 
projects, notably those involving construction of geothermal 
heat pump systems, which require knowledge of bedrock and 
groundwater depths to determine feasibility (Paino and oth-
ers, 2012). These bedrock elevation and overburden thickness 
maps also have application to U.S. Geological Survey (USGS) 
groundwater studies across the New York metropolitan area as 
part of a larger investigation on the groundwater sustainability 
of the Long Island aquifer system (Breault and others, 2021).

Maps presented here supersede previous USGS 
interpretations of bedrock surface elevation and overbur-
den thickness for Manhattan, Bronx, and parts of Queens 
(Baskerville, 1994), Staten Island (Soren, 1988), and parts 
of Long Island (Stumm, 2001; Stumm and others, 2002). 
Improvements in these maps result from the inclusion of 
thousands of additional data points, including newly acquired 
geophysical data, and updated GIS-based interpolation tools 
and techniques. For the purposes of this study, bedrock is 
defined as consolidated rock that crops out at the surface or 
lies beneath soil, artificial fill, postglacial and glacial sedi-
ments, and (or) weathered bedrock (saprolite). These uncon-
solidated deposits that overlie bedrock are collectively referred 
to as overburden.

Purpose and Scope

This report presents maps of bedrock elevation and 
overburden thickness in the five boroughs of New York City; 
describes the sources of data and methods of interpolation 
used to create the maps; summarizes bedrock elevation and 
overburden thickness in each of the boroughs, as shown in the 
maps; and discusses limitations of the study. Three USGS data 
releases are associated with this report: (1) a point database 
of bedrock elevation and overburden thickness and associated 
interpolation products (DeMott and others, 2023b), (2) a data-
base of horizontal-to-vertical spectral ratio (HVSR) soundings 
that were used in estimating overburden thickness (DeMott 
and others, 2023a), and (3) marine seismic reflection data from 
the East River (DeMott and others, 2023c). These HVSR and 
marine seismic data points are included in the point database 
used for interpolation.
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Relevance to Geothermal Resources in 
New York City

The primary purpose for the collaboration between the 
USGS and the NYCDDC is to supplement and update exist-
ing bedrock elevation and overburden thickness information 
throughout New York City’s five boroughs. Overburden thick-
ness maps are integral to evaluating the potential feasibility 
of installing geothermal heat pump technology for the heating 
and cooling of New York City buildings. Geothermal energy 
systems rely on constant groundwater temperatures for heat 
exchange. Overburden thickness is an important parameter 
for determining the type and scope of geothermal heat pump 
systems that can be constructed (open loop, standing column, 
or closed loop systems). In 2013, the NYCDDC published the 
first manual exploring citywide application of this technol-
ogy, underscoring an increasing need for detailed mapping of 
the relevant geologic parameters of each borough (Paino and 
others, 2012). Since 2013, New York City has passed two laws 
mandating the development of a screening tool to better evalu-
ate such sites. The maps produced in this report are part of this 
evaluative dataset for geothermal resources.

Geologic Background

The study area includes a varied topography of exposed 
bedrock highlands in northern Manhattan, central Staten 
Island, and parts of the Bronx. On Long Island, bedrock 
crops out in a few isolated areas in northwestern Queens 
County. Bedrock in most of the study area is covered by 
overburden with a thickness ranging from a few feet to over a 
thousand feet.

Schöpf (1787) was the first to identify the rocks 
in Manhattan Island (the main island of the Borough of 
Manhattan), describing them as mica schist. Mather (1843) 
and Cozzens (1843) described the bedrock of New York City 
in greater detail and included descriptions of metamorphic 
and igneous bedrock, including gneiss, mica slate, talcose 
slate, serpentinite metamorphic limestone, and granite, among 
others. A topographic and hydrographic map of Manhattan 
Island by Viele (1865) allows for interpretation of the surface 
topography as influenced by bedrock geology and geomorphic 
processes prior to urban development. This map includes the 
natural stream drainage system, low-lying wetland areas, and 
topographic features, all overlain with the present street grid 
in use today in reprinted 1950s-era editions. Kemp (1887) 
produced the first detailed geological map and sections of 
Manhattan. Merrill (1890) attempted to determine correla-
tions and a stratigraphic sequence to the rocks in Manhattan, 
naming the major rock types on the island as the Fordham 
Gneiss, Manhattan Schist, and Inwood Marble. Hobbs (1905) 
collated over 1,000 borehole and well logs and produced the 
first bedrock contour maps of Manhattan. Berkey (1909) used 
tunnel excavations and test boreholes to describe the geology 
and structural features of the bedrock in southern Manhattan. 

Fluhr (1937a, b, c, d, and e) compiled hundreds of test boring 
logs and well logs into a series of maps and geologic logs for 
the five boroughs of New York City. Murphy and Fluhr (1944) 
updated the previous work by Hobbs (1905) and produced 
geologic, soil, and bedrock elevation contour maps. Perlmutter 
and Arnow (1953) completed a reconnaissance groundwater 
study of the New York City area and an updated bedrock 
elevation contour map of Manhattan.

More recent studies have mapped the bedrock of 
Manhattan using outcrops, subsurface drill core, and water-
tunnel excavations (Baskerville, 1982; Merguerian and 
Baskerville, 1987; Taterka 1987). Baskerville (1994) mapped 
the geologic and engineering properties of Manhattan and col-
lated over 80 years of subsurface excavation information into 
a map of bedrock-surface elevation. Stumm (2005), Stumm 
and Chowdhury (2003), and Stumm and others (2004) studied 
the fractured-rock structure and groundwater flow system 
using borehole geophysical methods in water-tunnel test bore-
holes in southern Manhattan.

The bedrock underlying the study area has been mapped 
as a structurally complex assemblage of high-grade metamor-
phic rocks, which includes gneiss, schist, amphibolite, marble, 
granite, and serpentinite (Merguerian, 1983; Merguerian and 
Baskerville, 1987; Taterka, 1987; Baskerville and Mose, 1989; 
Merguerian and Sanders, 1993; Baskerville, 1994; Brock 
and Brock, 2001). These rocks include the Fordham Gneiss, 
Manhattan Schist, Hartland Formation, Ravenswood 
Granodiorite, Inwood Marble, and the Walloomsac Formation 
(Merguerian, 2008a, b). Regionally, the bedrock geology con-
sists of numerous fault-bounded accreted terranes that formed 
during construction of the Pangea supercontinent (Jaret and 
others, 2021).

The Hartland Formation is commonly migmatitic and 
consists of schist, gneiss, granofels, and amphibolite. It 
underlies most of the central and southern parts of Manhattan 
and the eastern part of the Bronx and is of Cambrian (?) to 
Ordovician age (Baskerville, 1982, 1994; Merguerian and 
Baskerville, 1987; Taterka, 1987). The Manhattan Formation 
is the major rock unit exposed in the highlands of northern 
Manhattan and consists of schist, gneiss, and migmatite. The 
Walloomsac Formation of Middle Ordovician age is present 
with the Inwood Marble in southern and northern Manhattan 
and the Bronx (Merguerian and Moss, 2006, 2007).

Manhattan bedrock is overlain by Holocene sediments 
and Pleistocene glacial deposits, except in a few areas in the 
northern part and Central Park where bedrock outcrops are 
dominant. Deep, glacially eroded valleys are present in south-
ern Manhattan and in the vicinity of 125th Street in northern 
Manhattan. In the Bronx, the majority of overburden is thin 
except in isolated bedrock valleys. These sediments consist 
of gravel, sand, silt, and clay (Perlmutter and Arnow, 1953; 
Stumm, 2005).

The Inwood Marble crops out in northern Manhattan 
and the Bronx, underlies parts of the Harlem River, weathers 
easily, and is of Cambrian and Ordovician age (Merguerian 
and Baskerville, 1987). The Fordham Gneiss is the oldest rock 
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formation in New York City and is an assemblage of gran-
itoid and metasedimentary rocks of middle Proterozoic age 
that is exposed in the Bronx and present in the subsurface in 
southeastern Manhattan, the East River, and western Queens 
and Brooklyn (Brock and others, 2001). A middle Proterozoic 
orthogneiss facies of the Fordham Gneiss informally referred 
to as the Queens tunnel complex is exposed in the water tunnel 
that underlies central Queens (Brock and others, 2001).

Rock units on Staten Island consist of younger Triassic-
Jurassic sedimentary conglomerates and arkoses, siltstone, and 
shale (Newark Supergroup) surrounding the Palisades diabase 
of Jurassic age in the western part of the island (Miller, 1970; 
Soren, 1988; Rosenberg, 2013). The Staten Island Serpentinite 
dominates the central part of the island and was first described 
by Mather (1843) and more recently studied by Behm (1954), 
Miller (1970), Okulewicz (1979, 1990), and Soren (1988). 
Several other smaller serpentinite bodies have been mapped 
throughout the study area and are interpreted as ophiolitic and 
found in ductile faults in contact with enclosing Hartland rocks 
or near the Manhattan-Hartland contact (Merguerian, 1979). 
Hartland Formation bedrock underlies the eastern part of the 
island (Miller, 1970). Pleistocene- and Cretaceous-age sedi-
ments locally overlie the bedrock on Staten Island, mainly in 
the southern part of the island (Soren, 1988; Rosenberg, 2013).

On Long Island within Kings and Queens Counties, 
the Ravenswood Granodiorite and Fordham Gneiss, present 
in the westernmost parts of the area, are in contact with the 
Hartland Formation, which underlies most of this area. The 
Ravenswood Granodiorite and Fordham Gneiss crops out in 
northwestern Queens County (Baskerville and Mose, 1989). 
The top of bedrock dips gently to the southeast under Long 
Island and is overlain by unconsolidated coastal-plain sedi-
ments of Pleistocene and Cretaceous age that include impor-
tant aquifer units (Stumm and others, 2002).

Several major faults trending from northwest to 
southeast have been mapped on Manhattan (Berkey, 1909; 
Baskerville, 1994). Several northwest-trending brittle 
faults in Manhattan, including the 125th Street fault, are 
believed to control the shape and extent of buried valleys 
(Merguerian 2002, 2015). Analysis of faults detected in 53 test 
boreholes in southern Manhattan by Stumm (2005) indicated 
most had north-northwest strikes roughly parallel to the larger 
faults mapped on Manhattan (Berkey, 1909; Baskerville, 1994; 
Stumm, 2005).

The bedrock underlying the study area ranges from eas-
ily weathered (Inwood Marble) to very resistant (Manhattan 
Schist, Fordham Gneiss). This differential weathering suscep-
tibility, along with the numerous north-northwest-trending 
faults, is thought to control the shape of the bedrock surface 
underlying the study area. Multiple glacial advances and sub-
sequent scouring of the bedrock during the Pleistocene is the 
most recent control on the topography of the bedrock surface 
(Sanders and Merguerian, 1994, 1995).

Database and Methods
The bedrock elevation database consists of over 14,000 

points across Bronx, Kings, New York, Queens, Richmond, 
Suffolk, and Nassau Counties (DeMott and others, 2023b). 
Bedrock elevation at each point was adjusted to the North 
American Vertical Datum of 1988 (NAVD 88), and depth to 
bedrock was obtained by subtracting the bedrock elevation 
from the surface elevation at each point. Raster surfaces for 
bedrock elevation and depth to bedrock were then generated 
from these data and from additional interpretive sources by 
using the Spatial Analyst tools available as an ArcGIS Pro 
(Esri) extension.

Sources of Data

Bedrock elevation was obtained from test boreholes for 
construction of bridges, tunnels, and buildings; water and 
monitoring wells; surface outcrops; marine seismic-reflection 
profiles; and HVSR soundings. Data were compiled from 
numerous sources, both published and previously unpub-
lished; these sources and specific references are provided in 
an accompanying USGS data release (DeMott and others, 
2023b). For some data points, sources providing the informa-
tion requested that, for security purposes, the originator of the 
data be kept confidential; the source for these data points is 
listed in the data release as “NYC DDC” with an accompany-
ing reference of “Proprietary data.” All data were converted 
from the reported original elevation datum of the borough 
to NAVD 88 where necessary. For marine seismic-reflection 
profiles collected primarily in the East River, the top of 
bedrock was interpreted based on seismic reflection charac-
teristics in two-way travel time, and individual points from 
this bedrock horizon were extracted from the seismic profiles. 
Depth to bedrock was then obtained by converting two-way 
travel time (an average of 5,000 feet per second for glacial 
sediments [Stumm and others, 2002] was used and verified 
at several control points) to depth below sea level, and the 
resulting depth was then subtracted from the surface eleva-
tion to obtain bedrock elevation. Overburden thickness was 
estimated from the HVSR soundings by using an empirical 
relation established between measured resonance frequencies 
and depths to bedrock at nearby wells in Queens, Suffolk, and 
Nassau Counties (DeMott and others, 2023a). Measurements 
for 15 wells with known depths to bedrock (fig. 1) were used 
to develop a power-law regression equation (R2 = 0.8373) 
that relates the resonance frequency (fr) to the depth of bed-
rock (Z), in feet, as follows:

	 Z = 358.73*fr
−1.192.� (1)

For each site, resonance frequencies from 1 to 3 HVSR 
measurements were averaged, then subtracted from the surface 
elevation to obtain bedrock elevation. Borehole, well, and 
outcrop data were all provided as bedrock elevation data.
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Figure 1.  Regression of peak-resonance frequencies from horizontal-to-vertical spectral ratio measurements with reported depths to 
bedrock at 15 wells in Queens, Suffolk, and Nassau Counties in New York. Blue dots indicate reported depth to bedrock from each well 
used in the regression (two measurements taken at each well site) (DeMott and others, 2023a).

Surface elevation for the area was obtained by mosaick-
ing three topobathymetric models: the 2016 USGS Coastal 
National Elevation Database (CoNED) topobathymetric 
model: New England; the 2015 USGS CoNED topobathy-
metric model: New Jersey and Delaware; and the 2017 New 
York City topobathy light detection and ranging (lidar) digital 
elevation model (DEM): New York. All three DEMs have an 
original cell size of 1 meter (m), with vertical accuracy rang-
ing from 3.8 centimeters (cm) (approximately [~] 1.5 inch) 
to 50 cm (~1.64 foot [ft]). The final DEM was resampled to a 
cell size of 100 ft (30.48 m) to correspond with the cell size 
of the bedrock elevation raster. Overburden thickness was 
determined for each point in the database by extracting the 
surface elevation from the DEM, then subtracting the bedrock 
elevation from the surface elevation. An overburden thickness 
raster was then calculated by subtracting the bedrock-surface 
elevation raster from the lidar elevation.

Interpolation of Data

The bedrock data were interpolated by using an iterative 
finite difference interpolation technique developed for eleva-
tion surfaces in ArcGIS Pro (Topo to Raster toolbox). Topo 
to Raster has been demonstrated to represent input data more 
accurately than other interpolation methods (for example, 
Salekin and others, 2018; Chetty and Tesfamichael, 2021). 
The interpolation tool allows for the use of both point and 

contour elevation data as inputs and allows additional geologi-
cal constraints to customize sinks and drainages to create a 
hydrologically correct digital elevation model, as opposed to 
other interpolation methods that are less easily customizable. 
This method was chosen after comparing outputs from Topo 
to Raster, Natural Neighbor, and geostatistical kriging tools 
(simple, ordinary, universal, and empirical Bayesian) avail-
able in ArcGIS pro using a Python Jupyter Notebook. The 
notebook runs each interpolation model, then uses a percent-
age of the original data points (90 percent, for this model) to 
create a “training” surface, then compares that surface to the 
remaining “testing” data to examine error with respect to the 
original point elevation dataset. The Topo to Raster toolbox 
produced the lowest mean and median training error of all 
tested interpolation methods and also produced a more realis-
tic looking surface.

To create a geologically realistic elevation surface, point 
elevation data were combined with published bedrock eleva-
tion contours (Stanford, 1993, 1995, 2002a, b), interpretive 
stream features to define drainages along valleys and faults, 
and interpretive contours in areas of sparse point data cover-
age. Where the output interpolation produced values higher 
than that of surface elevation in areas of sparse point data 
and shallow depths to bedrock (primarily on the north-central 
region of Staten Island, the northeastern areas of the Bronx, 
and areas of Manhattan near the Hudson and East Rivers), the 
interpolated raster was adjusted to equal surface elevation. The 
output rasters were interpolated to a cell size of 100 ft x 100 ft 
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based on spatial resolution of the point elevation dataset, 
where the areas of densest point elevations (Bronx and 
Manhattan Counties) have an average nearest neighbor 
distance of ~100 ft. Additional consideration was given to 
raster development along the eastern limit of the study area 
to produce a seamless transition with ongoing USGS efforts 
to refine the bedrock surface elevation for the rest of Long 
Island (h​ttps://www​.usgs.gov/​centers/​new-​york-​water-​science-​
center/​science/​groundwater-​sustainability-​long-​island-​aquifer-​
system). Rasters were generated for the full spatial domain of 
the data, then clipped to each individual borough. Contours 
at 100-ft intervals were generated from the output rasters and 
smoothed to match the raster cell size (100 ft) and eliminate 
square edges along raster pixels by using the Smooth Line 
tool (ArcGIS Pro) for the final geospatial and map products 
(figs. 2–13, in back of report, and DeMott and others, 2023b).

Bedrock-Surface Elevation and 
Overburden Thickness

Bedrock elevation and overburden thickness rasters can 
be used to examine the nature of the bedrock surface across 
New York City (figs. 2, 8). Broadly, bedrock elevation tends 
to be higher, and overburden thinner, in Manhattan and the 
Bronx. The bedrock elevation surface dips to the southeast, 
with lower elevation and thicker overburden across Brooklyn 
and Queens.

Bedrock elevation is highest in north-central Staten 
Island (maximum of about 360 ft above sea level), in northern 
Manhattan (265 ft above sea level in Bennett Park), and in the 
northwestern region of the Bronx, corresponding to the areas 
where bedrock is also at or near the surface (fig. 2). Bedrock 
is also relatively shallow (50 ft deep or less) throughout most 
of the Bronx, Manhattan, and Staten Island, including areas 
along the East River, where high currents can scour down 
to bedrock (fig. 8).There is a general spatial trend of lower 
bedrock elevation and thicker overburden to the southeast and 
of higher elevation and thinner overburden to the northwest; 
the lowest bedrock elevation in the five boroughs is on the 
Rockaway Peninsula in southern Queens (about 1,200 ft below 
sea level). These spatial trends in elevation mirror trends in the 
surface elevation.

In the northern boroughs of New York City, bedrock 
elevation is generally high and overburden thickness is low. In 
Bronx County, bedrock elevation ranges from ~330 ft below 
sea level in the Hudson River channel to ~230 ft above sea 
level in the northwestern region of the county (fig. 3), where 
an elevational high runs parallel to the Hudson channel. 
The overburden thickness ranges from 300 ft in the Hudson 
River to 0 ft in numerous areas where bedrock crops out at 
the surface, including in the East River, parts of Long Island 
Sound, and other areas scattered throughout the county (fig. 9). 
Outside of the deep Hudson River channel fill, overburden is 
generally thin, with an average thickness of 26 ft. A similar 

range of elevation and overburden thickness is observed in 
New York County (Manhattan), where elevation ranges from 
~335 ft below sea level in the Hudson River channel to ~260 ft 
above sea level in the northern arm of the island (fig. 4), where 
a topographic high runs parallel to the river, extending from 
Bronx County. Linear, topographic lows are observed along 
the 125th Street and Dyckman Street faults. Overburden thick-
ness ranges from ~310 ft in the Hudson River channel to 0 ft 
at bedrock outcrops in the northern arm of the island, particu-
larly along the coasts, and along parts of the East River where 
rapid currents have scoured the channel down to bedrock. 
Average overburden thickness is ~64 ft (fig. 10).

On Long Island, bedrock elevation is higher to the north-
west, near the East River, and dips lower toward the southeast. 
In Queens County, bedrock elevation ranges from a high point 
of ~10 ft above sea level to the northwest and reaches the 
lowest elevation in the study area at ~1,340 ft below sea level 
to the southeast and offshore (fig. 5), although the southern 
offshore area is not well constrained by data. Bedrock outcrops 
are limited to a few small areas along the northern shoreline 
and in Long Island Sound and the East River. Overburden 
thickness increases to the south and eventually reaches a maxi-
mum of ~1,280 ft to the south on the Rockaway Peninsula, 
with an average thickness of ~680 ft across Queens County 
(fig. 11). Kings County exhibits similar trends, but bedrock 
elevation is overall lower than in Queens County, with a maxi-
mum of ~3 ft below sea level along the northeastern county 
border and a minimum of ~940 ft below sea level to the south-
east in Jamaica Bay (fig. 6). Northwest-southeast-oriented 
topographic valleys, likely caused by glacial scouring, are 
visible in the higher elevation region to the northeast (referred 
to as “Glacial valleys” in fig. 6). Overburden thickness also 
follows the same trend as for Queens County, with the excep-
tion that there are no surface outcrops of bedrock in Kings 
County. Overburden is thinnest along the northern shoreline 
and reaches a maximum thickness of ~930 ft to the southeast 
at Jamaica Bay (fig. 12). Average overburden thickness in 
Kings County is ~450 ft.

Staten Island (Richmond County) has the highest bedrock 
elevation in the five boroughs. Bedrock elevation reaches a 
maximum of ~362 ft above sea level near Todt Hill, in the 
north-central region of the island (fig. 7). Bedrock elevation is 
lowest to the southeast, with a minimum elevation of ~680 ft 
below sea level offshore, in Raritan Bay, although this value is 
not well constrained by data. Overburden thickness on Staten 
Island ranges from ~650 ft to 0 ft; overburden is thinnest 
where serpentinite bedrock crops out in the Todt Hill area and 
surrounding park lands, as well as in the William T. Davis 
Wildlife Refuge, along the Palisades Sill, in the west-central 
part of the island (fig. 13). Overburden becomes thicker in 
the southern and eastern parts of the island, with the highest 
values offshore in Raritan Bay.

A comparison of the interpolated surfaces to the original 
elevation point data inputs was made to assess the accuracy 
of the surface with respect to the point elevation input. Values 
for each point were extracted from the bedrock elevation and 

https://www.usgs.gov/centers/new-york-water-science-center/science/groundwater-sustainability-long-island-aquifer-system
https://www.usgs.gov/centers/new-york-water-science-center/science/groundwater-sustainability-long-island-aquifer-system
https://www.usgs.gov/centers/new-york-water-science-center/science/groundwater-sustainability-long-island-aquifer-system
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overburden thickness maps (Extract Multi Values to Points 
tool in the Spatial Analyst extension, ArcGIS Pro). The origi-
nal values were then subtracted from the interpolated values to 
represent the error, and the mean, median, and standard devia-
tion for the interpolation surfaces were calculated. For the 
bedrock elevation surface, the mean error is −0.97 ft (median 
error = −0.31 ft, standard deviation = 12.08 ft). For the over-
burden thickness surface, the mean error is 0.57 ft (median 
error = 0.10 ft, standard deviation = 13.82 ft).

Limitations
A subset (n=146) of the data points used in the bedrock 

surface interpolation, originally compiled from Smolensky 
and others (1990), were used as a proxy for assessment of the 
uncertainty of the interpolation input data. The subset data 
were checked against the National Water Information System 
(NWIS) well database (USGS, 2021), and bedrock eleva-
tions were adjusted if necessary and verified based on the 
original well logs. Differences between the values reported 
in Smolensky and others (1990) and the verified values are 
primarily due to the well driller's interpretation of “bedrock.” 
Some wells have thick layers of saprolite (weathered, non-
cohesive bedrock) above solid unweathered bedrock; these 
layers are sometimes referred to as bedrock in drilling reports 
but do not meet the definition of bedrock used in this study. 
The median difference between the verified well elevation and 
the original value was 3 ft (mean difference = 9.7 ft). Of the 
146 verified wells, 119 wells had elevations within 10 ft of the 
value in Smolensky and others (1990).

Although all the points in the dataset could not be inde-
pendently verified as described above, some data points were 
adjusted for specific criteria. In some instances, data points 
obtained from outcrops had bedrock elevations higher than 
that of the land surface; these data points were adjusted to 

match the surface elevation from the DEM after examination 
of the location on satellite imagery to confirm the presence of 
exposed bedrock. Elevations of other points from borehole or 
seismic sources that were similarly inconsistent with DEM 
surface elevations were evaluated independently and either 
were adjusted to a new elevation or location on the basis 
of available information (n=311) or were deleted from the 
database (n=152); duplicate points were also deleted. These 
differences in elevation are likely due to initial inaccuracies 
in measurement of the land surface, higher accuracy of the 
modern DEM than elevation measurements at the time of data 
collection, and changing land-surface elevation over time due 
to construction and (or) erosion.

Additional checking and postprocessing of the interpo-
lated bedrock elevation surface was done because of spatial 
data limitations. In areas where bedrock is probably near the 
surface (less than 5 ft below land surface) and data points 
are sparse or absent, interpolated results indicated that the 
bedrock surface was at a higher elevation than the DEM land 
surface. These data gaps limit the control on the interpolation 
performed by the Topo to Raster tool. Although it is possible 
to set minimum and maximum constraints in the tool, it is not 
possible to limit the interpolation output so it should always be 
at or lower than land-surface elevation. Locations where these 
discrepancies were observed were adjusted through use of the 
Raster Calculator tool. Pixels with values higher than surface 
elevation were identified by using Raster Functions (Analysis 
menu, ArcGIS Pro), first by subtracting the bedrock elevation 
raster from the surface elevation raster (Minus function). Cells 
with negative values, indicating bedrock surface higher than 
land surface, were identified by using the Less Than func-
tion. These cells were then set to null (Set Null function), then 
recalculated to be equal to the surface elevation by mosaicking 
the surface elevation raster to the bedrock surface (Mosaic to 
New Raster tool in the Data Management toolbox, ArcGIS 
Pro), since bedrock is likely to be less than 25 ft below the 
surface in these areas, but true bedrock elevation is unknown.
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Summary
Bedrock elevation and overburden thickness maps 

presented in this report were created by the U.S. Geological 
Survey, in cooperation with the New York City Department 
of Design and Construction, from an extensive database of 
historical construction test borings, recent exploration drilling 
boreholes, U.S. Geological Survey observation wells, out-
crops, and seismic measurements, combined with published 
contour data and interpretive features. These map products can 
assist with future evaluations of hydrogeologic conditions in 
the city, particularly in evaluating prospective geothermal heat 
pump installations.

The study area includes a varied topography of exposed 
bedrock highlands in northern Manhattan, central Staten 
Island, and parts of the Bronx. On Long Island, bedrock crops 
out in a few isolated areas in northwestern Queens County. 
Most of the study area’s bedrock is covered in unconsolidated 
sedimentary overburden of Pleistocene and (or) Cretaceous 
age with a thickness ranging from a few feet to over a 
thousand feet.

The bedrock underlying the study area was previously 
mapped as a structurally complex assemblage of high-grade 
metamorphic rocks, which includes gneiss, schist, amphibo-
lite, marble, granite, and serpentinite. These rocks include 
the Fordham Gneiss and correlative Queens tunnel complex, 
Manhattan Schist, Hartland Formation, Inwood Marble, 
Ravenswood Granodiorite, and the Walloomsac Formation.

The bedrock underlying the study area ranges from easily 
weathered (Inwood Marble) to very resistant to weathering 
(Manhattan Schist, Fordham Gneiss). This differential suscep-
tibility to erosion along with the numerous north-northwest-
trending faults is thought to control the shape of the bedrock 
surface underlying the study area. Glacial scouring of the 
bedrock during the Pleistocene is the most recent control on 
the bedrock surfaces mapped.

The bedrock elevation database consists of over 14,000 
points across Bronx, Kings, New York, Queens, Richmond, 
Suffolk, and Nassau Counties. Bedrock elevation at each point 

was adjusted to the North American Vertical Datum of 1988, 
and depth to bedrock was obtained by subtracting the bedrock 
elevation from the surface elevation at each point. Rasters for 
bedrock elevation and depth to bedrock were then generated 
from these data and additional interpretive sources by using 
ArcGIS Pro spatial analysis tools.

Bedrock elevation was obtained from test boreholes for 
construction of bridges, tunnels, and buildings; water and 
monitoring wells; surface outcrops; marine seismic reflection 
profiles; and horizontal-to-vertical spectral ratio soundings.

The bedrock elevation data were interpolated by using 
an iterative finite difference interpolation technique developed 
for elevation surfaces in ArcGIS Pro. The interpolation tool 
allows for multiple types of input data and additional geologi-
cal constraints to customize sinks and drainages to create a 
hydrologically correct digital elevation model.

Surface elevation for the area was obtained by merging 
three topobathymetric models. Depth to bedrock was acquired 
for each point in the database by extracting the surface eleva-
tion from the digital elevation model, then subtracting the 
bedrock elevation from the surface elevation. The overbur-
den thickness raster was then calculated by subtracting the 
bedrock-surface elevation raster from the land-surface lidar 
elevation. The output rasters were interpolated to a cell size 
of 100 feet, based on spatial resolution of the dataset. Rasters 
were generated for the full dataset, then clipped to each indi-
vidual borough. Contours at 100-foot intervals were generated 
from the output rasters and smoothed for the final geospatial 
and map products.

Bedrock elevation is highest in north-central Staten 
Island (maximum of about 360 feet above sea level), northern 
Manhattan, and the northwestern region of the Bronx. There 
is a general spatial trend of lower bedrock elevation to the 
southeast and higher elevation to the northwest, with the low-
est bedrock elevation in the five boroughs in the Rockaway 
Peninsula in southern Queens (about 1,200 feet below 
sea level).
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Figure 6.  Bedrock elevation of Brooklyn (Kings County), New York.
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