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Conversion Factors

U.S. customary units to International System of Units

Multiply By To obtain
Area
acre 4,047 square meter (m?)
acre 0.4047 hectare (ha)
acre 0.4047 square hectometer (hm?)
acre 0.004047  square kilometer (km?)

International System of Units to U.S. customary units

Multiply By To obtain
Length
meter (m) 3.281 foot (ft)
kilometer (km) 0.6214 mile (mi)
meter (m) 1.094 yard (yd)
Area
square meter (m?) 0.0002471  acre
square meter (m?) 10.76 square foot (ft?)
Abbreviations
ARG Sixth Assessment Report

CMIP6 Coupled Model Intercomparison Project, Phase 6

GCM global climate model

GTSM Deltares 2-dimensional Global Tide and Surge Model

IPCC Intergovernmental Panel on Climate Change

NOAA National Oceanic and Atmospheric Administration

SFINCS  Deltares 2-dimensional Super-Fast Inundation of CoastS coastal flooding model
SWAN Deltares 2-dimensional Simulating WAves in the Nearshore short-wave model
USACE U.S. Army Corps of Engineers

USGS U.S. Geological Survey

XBeach  Deltares 2-dimensional short- and long-wave and coastal flow model

Variables

cf friction coefficient for currents and infragravity wave friction

fw friction coefficient for incident waves
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Abstract

Oceanographic, coastal engineering, ecologic, and
geospatial data and tools were combined to evaluate the
increased risks of storm-induced coastal flooding in the
populated Hawaiian, Mariana, and American Samoan
Islands as a result of climate change and sea-level rise. We
followed a hybrid (dynamical and statistical) downscaling
approach to map flooding due to waves and storm surge at
10-square meter resolution along all 1,870 kilometers of these
islands’ coastlines for annual (1-year), 20-year, and 100-year
return-interval storm events and +0.00 meter (m), +0.25 m,
+0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level
rise scenarios. We quantified the coastal flood depths and
extents using the latest climate forcing from Intergovernmental
Panel for Climate Change’s Sixth Assessment Report
Coupled Model Intercomparison Project. The data generated
using these methods provide stakeholders and decision
makers with a spatially explicit, rigorous valuation of how,
where, and when climate change and sea-level rise increase
coastal storm-induced flooding to help identify areas where
management and (or) restoration could potentially help
reduce the risk to, and increase the resiliency of, the coastal
communities in the populated Hawaiian, Mariana, and
American Samoan Islands.

Introduction

Coastal flooding and erosion from extreme weather
events affect thousands of vulnerable coastal communities
along the world’s tropical oceans’ coastlines. The impacts of
coastal flooding are predicted to worsen during this century
because of population growth and climate change, per
Hallegatte and others (2013) and Hinkel and others (2014).
There is an urgent need to develop better risk reduction and

U.S. Geological Survey.
2University of California, Santa Cruz.

3Deltares USA.

adaptation strategies to reduce coastal flooding and associated
hazards (Hinkel and others, 2014; U.S. National Research
Council, 2014). For example, the U.S. spends, on average,
$500 million per year mitigating such coastal hazards (U.S.
Global Change Research Program, 2023).

Observations (Vermeer and Rahmstorf, 2009) and
projections (Kopp and others, 2014) of sea level show that
global sea-level rise by the end of the 21st century could be
meters above year 2000 levels. Although the precise rates
of sea-level rise are uncertain, the existing models suggest
that eustatic sea level will be substantially higher by the end
of the century. Sea-level rise will have a profound impact
on low-lying coastal areas. Projections indicate that sea
level will be higher in the tropics than the global average
(Slangen and others, 2014). Even small projected changes in
sea level are projected to make coastal flooding much more
frequent, especially in the tropics (Vitousek and others, 2017).
Furthermore, research indicates that wave energy is increasing
globally from climate change (Reguero and others, 2019,
Morim and others, 2019).

Islands are further at risk because they have limited space
for adapting to the impacts of coastal flooding. To date, most
studies that describe future sea-level rise threats generally
have used passive bathtub models to simulate sea-level rise
flooding of tropical islands (Berkowitz and others, 2012);
however, these models do not incorporate the nonlinear
interaction between sea-level rise and waves (Quataert and
others, 2015; Storlazzi and others, 2018). Additionally, while
global climate models (GCMs) have advanced in recent years,
their coarse resolutions and inability to represent mesoscale
conditions have so far limited their use for identifying
future coastal hazards at the local scale (O’Neill and others,
2018). This limitation can be overcome, however, using a
global-to-local downscaling approach like the one described
here, which allows us to leverage projected future sea-level
rise, tides, surge, and waves.

To better understand the role that climate change
and sea-level rise may play in increasing the risk to, and
decreasing the resilience of, coastal communities in the
populated Hawaiian, Mariana, and American Samoan
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Islands, the U.S. Geological Survey (USGS), the University
of California at Santa Cruz, and Deltares used GCM output
to force a series of oceanographic and coastal engineering
models. The objective of this report is to present the
global-to-local downscaling methodology of these models to
define coastal flood hazards due to forecasted climate change
and sea-level rise. This includes presentation and discussion
of (1) the modeling framework, (2) the required model system
inputs, and (3) the resultant generation of local-scale coastal
flooding hazards. The resulting coastal flood model water
depths and spatial extents are available from Alkins and
others (2024).

Methodology

Oceanographic, coastal engineering, ecologic, and
geospatial data and tools were combined to provide a
quantitative valuation of the coastal flooding hazards caused
by climate change and sea-level rise to the Hawaiian, Mariana,
and American Samoan Islands. The goal of this effort was
to identify how, where, and when climate and sea-level
rise increase the risk of storm-induced coastal flooding.

This study represents the first unique and comprehensive
effort to rigorously quantify the increase in coastal hazard
risk caused by climate change and sea-level rise across the
populated tropical Pacific Ocean islands of the United States,
based on high-resolution flooding modeling. The methods
follow a sequence of steps derived from Storlazzi and others
(2019, 2021) and Reguero and others (2021) that integrate
physics-based oceanographic and coastal engineering
modeling, along with ecologic and geospatial data and tools,
to quantify the role of climate change and sea-level rise in
increasing coastal flooding hazards.

Deep-water Waves and Storm Surges

Hindcasted and forecasted deep-water wave data from
WaveWatchlII (Tolman 1997, 1999, 2009) simulations forced
from four Intergovernmental Panel on Climate Change
(IPCC,; https://www.ipcc.ch/) Sixth Assessment Report (AR6)
Coupled Model Intercomparison Project, Phase 6 (CMIP6;
https://werp-cmip.org/cmip-phase-6-cmip6/) GCMs were
produced for 31 years (2020-2050) by Erikson and others
(2022) for the Hawaiian, Mariana, and American Samoan
Islands. Similarly, hindcasted and forecasted tide and storm
surge data from the Global Tide and Surge Model (GTSM;
Verlaan and others, 2015; Muis and others, 2016, 2020)
simulations were forced using the same four GCMs for the
same 31 years (2020-2050) by Muis and others (2022) for
the Hawaiian, Mariana, and American Samoan Islands. The
CMIP6 models are from the HighResMIP project (Haarsma
and others, 2016) and are used for both the WaveWatchlII and
GTSM simulations: GFDL-CM4C192-highresSST (Guo and
others, 2018), CMCC-CM2-VHR4 (Scoccimarro and others,
2017), HadGEM3-GC-31-HM_highres-future (Roberts,
2019a), and HadGEM3-GC-31-HM _highresSST-future
(Roberts, 2019b). The future simulations (2020-2050) used

IPCC-ARG6 Shared Socioeconomic Pathway 8.5 (Lee and
others, 2021), which results in a year 2100 radiative forcing
level similar to the IPCC 5th Assessment Report’s Relative
Concentration Pathway 8.5 climate scenario.

Shallow-water Waves

Following the methodology of Camus and others (2011),
more than 270,000 hourly data on wave climate parameters
were propagated to the nearshore using a hybrid downscaling
approach. The offshore wave climate data were synthesized
into 999 combinations of sea states (wave height, wave
periods, and wave directions) that best represented the range
of conditions from the Erikson and others (2022) database.
These selected sea states were then propagated to the coast
using the physics-based Simulating Waves Nearshore (SWAN)
spectral wave model (Booij and others, 1999; Ris and others,
1999; SWAN, 2016), which simulates wave transformations
nearshore by solving the spectral action balance equation.
Wave propagation around reef-lined islands has been
accurately simulated using SWAN (Hoeke and others, 2011;
Taebi and Pattiaratchi, 2014; Storlazzi and others, 2015).
Standard SWAN settings were used (for example, Hoeke
and others, 2011; Storlazzi and others, 2015), except that the
directional spectrum was refined to 5-degree bins (72 total) to
better simulate refraction and diffraction in and amongst the
islands (appendix 1).

To accurately model from the scale of the island
groups or large sections of coastline (on the order of tens of
kilometers) down to local scales (on the order of hundreds of
meters), a series of dynamically downscaled nested, rectilinear
grids were used. The coarse (5-kilometer [km] or 1-km
resolution) SWAN grids provided spatially varying boundary
conditions for finer-scale (1-km or 200-meter [m] resolution)
SWAN grids, with the finest resolution (200-m) grids used for
the rest of the modeling infrastructure (fig. 1, appendix 2). The
bathymetry for the SWAN grids were generated by grid-cell
averaging various topobathymetric digital elevation models
(appendix 3). The shallow-water wave conditions from 999
sea-state combination simulations in the finest SWAN grids
were extracted at 100-m intervals along the coastline, at a
water depth of 30 m, and then reconstructed into hourly time
series using multidimensional interpolation techniques (Camus
and others, 2011).

Benthic habitat maps defining coral reef spatial extent
and percent coral cover (appendix 6) were used to delineate
the location of nearshore coral reefs and their relative
coral abundance along the reef-lined shorelines (fig. 2).
Cross-shore transects were created every 100 m alongshore
(appendix 4) using the Digital Shoreline Analysis System
software version 4.3 in ArcGIS version 10.3 (Thieler and
others, 2009). Transects were cast in both landward and
seaward directions using the Smoothed Baseline Cast (SBC)
method with a 500-m smoothing distance, perpendicular to
a baseline generated from coastlines digitized from USGS
1:24,000 quadrangle maps and smoothed in ArcGIS using
the Polynomial Approximation with Exponential Kernal
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Figure 1. Color maps showing output examples of the Simulating
Waves Nearshore (SWAN) model and how 1 of the 999 wave
conditions was dynamically downscaled to the 200-meter (m)
grid scale offshore West Maui, Hawai'i. A, The 5-kilometer (km)
resolution Hawaiian Chain model. B, The 1-km resolution Maui
Nui model embedded in the Hawaiian Chain model. C, The 200-m
resolution West Maui model embedded in the Maui Nui model.
Colors indicate significant wave height, in meters.

Methodology 3

algorithm and a 5,000- m smoothing tolerance. Transects

had a cross-shore resolution of 1 m and varied in absolute
length to ensure each intersected the =30 m and +20 m
elevation contours relative to mean sea level. The bathymetric
(appendix 3) and coral cover (appendix 6) data were extracted
along these shore-normal transects and assigned to the closest
transect grid cells.

The nearshore wave time series (hourly data from 2020
to 2050) at the 30-m isobath were fit to a general extreme
value distribution (Méndez and others, 2006; Menéndez and
Woodworth, 2010) to obtain the significant wave heights
associated with the annual (1-year), 20-year, and 100-year
storm return periods in the SWAN grid cells at the end (or
nearest the end) of each transect. The corresponding annual
(1-year), 20-year, and 100-year storm return period tide and
storm surge water levels for the location were taken from the
nearest GTSM output point nearest to the offshore end of the
each transect.

The return value significant wave heights and associated
mean peak periods from SWAN were then propagated over
the coral reefs with corresponding (static) return value
water levels from GTSM along 100-m spaced shore-normal
transects (appendix 4) using the numerical model XBeach
(Roelvink and others, 2009; XBeach, 2016), as demonstrated
in figure 2. XBeach generated forcing wave time series for
each modeled storm return period, which were reused as
inputs for modeling different sea level rise scenarios under
the same return period. XBeach solves for water level
variations up to the scale of long (infragravity) waves using
the depth-averaged, nonlinear shallow water equations. The
forcing is provided by a coupled wave action balance, in
which the spatial and temporal variations of wave energy
owing to the incident-period wave groups are solved. The
radiation stress gradients derived from these variations result
in a wave force that is included in the nonlinear shallow water
equations and generates long waves and water level setup
within the model. Although XBeach was originally derived
for gently sloping sandy beaches, with some additional
formulations, it has been applied in reef environments
(Pomeroy and others, 2012; van Dongeren and others, 2013;
Quataert and others, 2015; Storlazzi and others, 2018) and
proved to accurately predict the key reef hydrodynamics.

XBeach was run for 9,000 seconds (s) in
one-dimensional hydrostatic mode along the cross-shore
transects, at a varying resolution between 10 m seawards and
1 m landwards (resolution varies depending on water depth);
the runs generally stabilized after 1,500 s (spin-up time)
and thus generate good statistics on waves and wave-driven
water levels for more than 2.5 hours (appendix 5). The
application of a one-dimensional model neglects some of
the dynamics that occur on natural reefs and shorelines, such
as lateral flow. Thus, the flooding is likely underrepresented
around promontories where wave-energy convergence would
cause increased wave-driven flooding that is not captured
with one-dimensional models. However, it does represent
a conservative estimate for infragravity generation and
wave runup, as the forcing is shore normal (for example,
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Figure 2. Map showing the coral extent and coverage offshore Lahaina, Maui, Hawai‘i (Anderson,
2007). Colors indicate percentage of coral coverage; gray lines show cross-shore transects at 100-meter
(m) intervals.



van Dongeren and others, 2013; Quataert and others, 2015).
Moreover, to reduce the overprediction of infragravity wave
energy, the short-wave group variance at the boundary was
reduced by 45 percent (wbcEvarreduce = 0.55), per de Goede
and others (2020). The choice of a one-dimensional model
is warranted in this case because the offshore waves (that
is, wave propagation modeled with SWAN) were generally
near-normal at the offshore end of the XBeach transects.
The additional formulations that incorporate the effect
of higher bottom roughness on incident wave decay through
the incident wave friction coefficient (fw) and the current
and infragravity wave friction coefficient (cf), as outlined by
van Dongeren and others (2013), were applied. The friction
induced by corals was parameterized based on the spatially

Methodology 5

spatial extent of the reef along the profile as defined from the
benthic habitat maps (appendix 6). The future wave and storm
surge conditions for each storm return interval were then
propagated using the XBeach models over the same 100-m
spaced shore-normal transects but modified to account for the
different sea-level rise scenarios (fig. 3).

Table 1. Wave and current friction coefficients for different
percentages of coral cover as determined from benthic habitat
maps following Storlazzi and others (2019, 2021).

Coral coverage,  Wave friction Current and infragravity

in percent coefficient (fw)  wave friction coefficient (cf)
varying coral coverage data and results from a metaanalysis None (sand) 010 001
of wave-breaking studies over various reef configurations T e o6
and friction coefficients for the different coral coverages (for - : :
example, van Dongeren and others, 2013; Quataert and others, 10-<50 0.30 0.10
2015). Coral coverage classes, as established by the benthic 50-<90 0.45 0.13
habitat maps, were assigned fw and cf (table 1) over the 90-100 0.60 0.15
A
20
2
g 10— —
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Figure 3. Plots of an example topographic-bathymetric cross section and XBeach model

wave-driven total water levels, in meters (m), for the 20-year storm for the seven different sea-level
rise scenarios along 0'ahu, Hawai'i. A, Cross-shore profile 6967 with a continuous fringing reef
offshore. B, Zoomed-in view of profile 6967. The black line denotes the seafloor and land, and the
colored lines denote the total water level (sea-level rise plus setup plus runup) for the different

sea-level rise scenarios.
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Coastal Flooding

The Deltares 2-dimensional Super-Fast Inundation of
CoastS coastal flooding model (SFINCS) is a super-fast
flooding model that dynamically calculates two-dimensional
compound flooding maps in coastal areas (Leijnse and others,
2021), which is a vast improvement from interpolating
between adjacent XBeach transects per Storlazzi and others
(2019). The model uses simplified mass and momentum
equations to compute flooding based on water levels and
boundary conditions, such as waves, precipitation, and river
discharges. Usually, SFINCS ignores the advection term,
except for conditions of supercritical flow or when including
waves as boundary conditions. In this case, SFINCS was
forced with water level and infragravity wave time series;
thus, the advection term is included (appendix 7).

The SFINCS boundary conditions were determined
from XBeach still water level (tides and surge). The XBeach
time series outputs were extracted at the intersection between
the transect and the 0.5-m bathymetric contour (below mean
sea level), which was below the still water levels during
the simulations owing to tides and storm surge; these time
series form the basis to force the constant 10-square-meter
resolution SFINCS grids (appendix 8), which extended from
the 0.5-m bathymetric contour to the 10-m contour. The
water level time series boundary conditions were built with
a slow ramp-up to avoid initial bathtub-type flooding. The
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ramp-up goes from mean sea level to the average incoming
water level calculated from XBeach. The wave time series
were computed as a random signal with a random phase,
which were generated from the spectrum calculated from the
XBeach incoming water levels (Roelvink and others, 2009;
van Dongeren and others, 2013). Both boundary conditions
were smoothed in an alongshore direction between adjacent
output points to represent a two-dimensional environment.
SFINCS was run for 3 hours after the water level ramp-up. A
Manning coefficient, which represents friction applied to the
flow by the seafloor roughness, of 0.035 was used to account
for infragravity wave friction. SFINCS was run for the 3
storm return intervals (fig. 4) and 7 sea-level rise scenarios
(fig. 5). SFINCS output flood depth raster data were exported
to a geographic information system; the depth rasters were
then exported as geotiffs and the flood extent polygons were
exported in shapefile format.

Uncertainties, Limitations, and Assumptions

Numerical flood modeling errors were estimated to
be £0.5 m. This value is greater than the root-mean-square
and absolute errors computed between model results and
measurements (van Dongeren and others, 2013; Quataert
and others, 2015) but was used to compensate for the limited
number of storms tested and the large geographic scope
compared to regions where validation measurements are

156°28" W

156°29' W

156°28' W

EXPLANATION

Depth, in meters

Figure 4. Maps of projected flood depths from the Super-Fast Inundation of CoastS (SFINCS) coastal flooding model at 10-meter
resolution for various storm recurrence intervals on south Maui, Hawai‘i: A, annual (1-year) storm; B, 20-year storm; C, 100-year
storm. Colors indicate flood-water depth, in meters. The flood plains for the higher return-period storm scenarios extend farther
inland from the shoreline and have greater depths than those for the lower return-period storm scenarios.
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Figure 5. Maps of the projected 20-year storm flood plain extents from the Super-Fast Inundation of CoastS (SFINCS) coastal flooding
model at 10-meter (m) resolution for four sea level scenarios at War-in-the-Pacific National Historical Park on west-central Guam: A,
current sea level; B, +0.25 m of sea-level rise; C, +0.50 m of sea-level rise; D, +1.00 m of sea-level rise. The flood plains for the higher
sea-level rise scenarios extend farther inland from the shoreline than those for the lower sea-level rise scenarios.

available. Uncertainties associated with the baseline digital
elevation model varied based on input data; see references
listed in appendix 3. Other limitations and assumptions
pertaining to flood extents include the following:

* The extreme value analysis for selecting storm return
periods was stationary and did not include nonstation-
ary effects, such as interannual patterns like El Nifio,
in the selection of values. The fit of each time series
had to be limited to several thresholds and could not be
adapted iteratively. These thresholds were also different
for each region, depending on the local characteristics of
extremes in each time series (with a limit of at least 30
extreme values to fit the extreme value distribution).

» Because the coral coverage data are defined in five
classes, the associated hydrodynamic roughness data are
also classified in five classes. This results in a stepwise
change in hydrodynamic roughness that can occur over
a relatively small distance defining two different coral

coverage class polygons that could result from a small
change (2 percent; for example, between 9 and 11 per-
cent per table 1) in coral cover.

The model scheme used to define the extreme flood
levels were a combination of the wave and surge condi-
tions for certain storm probabilities and did not consider
dependencies between both variables or the joint distri-
bution of wave heights, wave periods, and surge levels.
However, it is likely that large surges and waves occur
simultaneously for large return periods.

We did not separately consider varying tidal levels
beyond those registered in the extreme values in the
GTSM data that were used to define the extreme sea
level for each location.

The modeling structure of one-dimensional nearshore
XBeach transects assumes shore-normal wave and wave-
driven water level processes.
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* The same extraction and boundary condition locations
were used for all the modeled scenarios. No changes
were made for different storms and sea levels.

* A constant terrestrial Manning friction value was
assumed for the SFINCS models owing to a lack of data
for some islands; thus, no differences as a result of land
use were considered.

» The approach for assessing flood extents associated
with each probability assumes that the probability of the
extreme flooding conditions on the fore reef defines the
probability of the flood zones (thus, the 1-in-100-year
total water level represents the 1-in-100-year flood zone).

Conclusions

Here we applied a new methodology to combine
oceanographic, coastal engineering, ecologic, and geospatial
tools and data to model the impacts of sea-level rise
inundation and storm-driven coastal flooding for three storm
and seven sea-level rise scenarios. The resulting data make
it possible to identify how, when, and where storm-induced
flooding hazards will impact the coastal communities in
the populated Hawaiian, Mariana, and American Samoan
Islands. The goal is to provide sound, scientific guidance
for U.S. Federal, State, territorial, commonwealth, and local
governments’ efforts on hazard risk reduction and coastal
management by providing rigorous, spatially explicit,
high-resolution assessments of coastal flooding hazards and,
ultimately, to save lives and protect property.
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Appendix1. SWAN Model Settings

General
OnlyInputVerify
SimMode
DirConvention
WindSpeed
WindDir
Processes
GenModePhys
Breaking
BreakAlpha
BreakGamma
Triads
TriadsAlpha
TriadsBeta
WaveSetup
BedFriction
BedFricCoef
Diffraction
DiffracCoef
DiffracSteps
DiffracProp
WindGrowth
WhiteCapping
Quadruplets
Refraction
FreqShift
WaveForces
Numerics
DirSpaceCDD
FreqSpaceCSS
RChHsTmO1
RChMeanHs
RChMeanTm01
PercWet
Maxlter
Output

TestOutputLevel

TraceCalls
UseHotFile
WriteCOM
Domain
DirSpace
NDir
StartDir
EndDir
FregMin
FreqMax
NFreq
Output

= false

= stationary

= nautical
=0.0000000e+000
=0.0000000e+000

=3

=true
=1.0000000e+000
=7.3000002¢-001
= false
=1.0000000e-001
=2.2000000e+000
= false

= jonswap
=6.7000002e-002
=true
=2.0000000e-001
=h

=true

= false

= Komen

= false

=true

=true

= dissipation 3d

=5.0000000e-001
=5.0000000e-001
=2.0000000e-002
=2.0000000e-002
=2.0000000e-002
=9.8000000e+001
=100

=0

= false
= false
= false

= circle

=72
=0.0000000e+000
=0.0000000e+000
=5.0000001e-002
=1.0000000e+000
=24

=true

Boundary

Definition = grientation
SpectrumSpec = parametric
SpShapeType = jonswap
PeriodType = peak
DirSpreadType = power
PeakEnhanceFac =3.3000000e+000
GaussSpread =9.9999998e-003
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Appendix2. SWAN Model Grid Information

Table 2.1. SWAN model grid sizes, dimensions, and data sources.

[km, kilometer; m, meter; NGDC, National Geophysical Data Center; PaclOOS, Pacific Islands Ocean Observing System; —, not applicable]

Location gri5d- I:::"s gri1d-I::I:IIs 200-m grid cells Gr(lg_(‘ilbnle;\l:lso)ns Data source
American Samoa — AmSam — 164 x 28 Lim and others, 2010
American Samoa — — Tutuila 235 x 100 Carignan and others, 2013
American Samoa — — Ofu-Olosega & Tau 155 %79 Lim and others, 2010
Northern Mariana Islands — — Saipan 151 x 136 PaclOO0S, 2016
Guam — — Guam 221 x 285 Chamberlin, 2008
Hawai’i HiChain — — 295 x 192 NGDC, 2005
Hawai’i — Hawaii — 142 x 159 NGDC, 2005
Hawai’i — — Hawaii_North 400 x 190 NGDC, 2005
Hawai’i — — Hawaii_East 235 x 300 NGDC, 2005
Hawai’i — — Hawaii_Southeast 310 x 160 NGDC, 2005
Hawai’i — — Hawaii_South 350 x 205 NGDC, 2005
Hawai’i — — Hawaii_West 185 x 400 NGDC, 2005
Hawai’i — MauiNui — 146 x 86 NGDC, 2005
Hawai’i — — Molokai 146 x 86 NGDC, 2005
Hawai’i — — Maui_East 265 x 220 NGDC, 2005
Hawai’i — — Maui_West 195 x 230 NGDC, 2005
Hawai’i — — Oahu 420 x 290 NGDC, 2005
Hawai’i — — Kauai 293 x 242 NGDC, 2005

Refe rences CIted Lim, E., Taylor, L.A., Eakins, B.W., Carignan, K.S., Grothe,
P.R., Caldwell, R.J., and Friday, D.Z., 2010, Pago Pago,
American Samoa 3 arc-second MHW coastal digital
elevation model: National Oceanic and Atmospheric

Administration Technical Memorandum NESDIS

Carignan, K.S., Eakins, B.W., Love, M.R., Sutherland,
M.G., and McLean, S.J., 2013, Tutuila, American Samoa
1/3 arc-second MHW coastal digital elevation model:

National Oceanic and Atmospheric Administration,
accessed December 19, 2016, at https://www.ngdc
.noaa.gov/dem/squareCellGrid/download/4610. [Data
moved by time of publication; accessed March 1, 2019,
at https://data.noaa.gov//metaview/page?xml=NOAA/
NESDIS/NGDC/MGG/DEM/iso/xml/4610.xml&view=
getDataView&header=none.]

Chamberlin, C., 2008, Guam 1/3 arc-second MHW coastal
digital elevation model: National Oceanic and Atmospheric
Administration, accessed December 19, 2016, at https:
/Iwww.ngdc.noaa.gov/dem/squareCellGrid/download/586.
[Data moved by time of publication; accessed March 1,
2019, at https://data.noaa.gov//metaview/page?xml=NOAA/
NESDIS/NGDC/MGG/DEM/iso/xml/586.xml&view=
getDataView&header=none.]

NGDC-36, accessed December 19, 2016, at https:
/Iwww.ngdc.noaa.gov/dem/squareCellGrid/download/647.
[Data moved by time of publication; accessed March 1,
2019, at https://data.noaa.gov//metaview/page?xmI=NOAA/
NESDIS/NGDC/MGG/DEM/iso/xml/647.xml&view=
getDataView&header=none.]

National Geophysical Data Center [NGDC], 2005, U.S.

Coastal Relief Model vol. 10—Hawaii: National Oceanic
and Atmospheric Administration National Geophysical Data
Center, accessed December 18, 2016, at https://doi.org/
10.7289/V5RF5RZZ.

Pacific Islands Ocean Observing System [PaclOOS], 2016,

USGS 10-m digital elevation model, Commonwealth of the
Northern Mariana Islands—Saipan: University of Hawai‘i
at Manoa, accessed December 19, 2016, at http://00s.soest.
hawaii.edu/erddap/griddap/usgs dem 10m_saipan.html.


https://www.ngdc.noaa.gov/dem/squareCellGrid/download/4610
https://www.ngdc.noaa.gov/dem/squareCellGrid/download/4610
https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/4610.xml&view=getDataView&header=none
https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/4610.xml&view=getDataView&header=none
https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/4610.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/dem/squareCellGrid/download/586
https://www.ngdc.noaa.gov/dem/squareCellGrid/download/586
https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/586.xml&view=getDataView&header=none
https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/586.xml&view=getDataView&header=none
https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/586.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/dem/squareCellGrid/download/647
https://www.ngdc.noaa.gov/dem/squareCellGrid/download/647
https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/647.xml&view=getDataView&header=none
https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/647.xml&view=getDataView&header=none
https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/647.xml&view=getDataView&header=none
https://doi.org/10.7289/V5RF5RZZ
https://doi.org/10.7289/V5RF5RZZ
http://oos.soest.hawaii.edu/erddap/griddap/usgs_dem_10m_saipan.html
http://oos.soest.hawaii.edu/erddap/griddap/usgs_dem_10m_saipan.html
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Appendix 3. Bathymetric Datasets

Table 3.1. Bathymetric data sources.

[NGDC, National Geophysical Data Center; NOAA, National Oceanic and Atmospheric Administration; PaclOOS, Pacific Islands Ocean Observing System;
PIBHMC, Pacific Islands Benthic Habitat Mapping Center]

Location Sublocation Data source
American Samoa Tutuila Carignan and others, 2013
American Samoa Ofu, Olosega, and Ta‘a Lim and others, 2010
Northern Mariana Islands Saipan Island PIBHMC, 2007a; Amante and Eakins, 2009; PacIOOS, 2016a

Northern Mariana Islands Tinian Island PIBHMC, 2007b; Amante and Eakins, 2009; PacIOOS, 2016b

Guam Guam Chamberlin, 2008

Hawai’i Island of Hawai‘i NGDC, 2005

Hawai’i Hilo Love and others, 2011a
Hawai’i Kawaihae Carignan and others, 2011a
Hawai’i Keauhou Carignan and others, 2011b
Hawai’i Maui Nui NGDC, 2005

Hawai’i Maui Taylor and others, 2008; NOAA, 2016
Hawai’i Lana‘i NGDC, 2005

Hawai’i Moloka‘i NGDC, 2005

Hawai’i Kaho‘olawe NGDC, 2005

Hawai’i Kaua‘i Friday and others, 2012
Hawai’i Ni‘ihau Friday and others, 2012
Hawai’i O‘ahu Love and others, 2011b

Carignan, K.S., Taylor, L.A., Eakins, B.W., Friday, D.Z.,
Grothe, P.R., Lim, E., and Love, M.R., 2011b, Keauhou,
Hawaii 1/3 arc-second MHW coastal digital elevation
model: National Oceanic and Atmospheric Administration,
accessed December 19, 2016, at https://www.ngdc
.noaa.gov/dem/squareCellGrid/download/1941. [Data
moved by time of publication; accessed March 1, 2019,
at https://data.noaa.gov//metaview/page?xmI=NOAA/
NESDIS/NGDC/MGG/DEM/iso/xml/1941.xml&vvie=
getDataView&header=none.]

Carignan, K.S., Eakins, B.W., Love, M.R., Sutherland,
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Appendix 4. Cross-shore XBeach Transects

Table 41. Number of transects for each island.

Number of cross-shore

Location Sublocation transects
American Samoa Tutuila Island 1,004
American Samoa Ofu and Olosega 196
American Samoa Ta‘d 275
Northern Mariana Islands Saipan Island 585
Guam Guam 1,295
Hawai’i Island of Hawai‘i 4,582
Hawai’i Maui 2,087
Hawai’i Moloka‘i 2,886
Hawai’i Kaua‘i 1,455

Hawai’i O‘ahu 1,997




Appendix 5. XBeach Model Settings

Flow boundary condition parameters

front =abs_1d
left =wall
right =wall
back =wall
Flow
bedfriction = cf
bedfricfile = bedfricfile.txt
General
fwfile = fwfile.txt
rotate =0
wavemodel = surfbeat
wbcEvarreduce =0.550000
Grid parameters
thetamin =0
thetamax =360
dtheta =360
Model time
tstop =9000
Tide boundary conditions
tideloc =1
Wave boundary condition parameters
instat =jons
dir0 =270
Output variables
outputformat = netcdf
tintm =7500
tintp =1
tintg =7500
tstart = 1500
Output options
nglobalvar =1
H
nmeanvar =7
H
zs
zb
u
E
Sxx
taubx
npointvar =5
H
zb
zs
E
npoints =6
nrugauge =1

Appendix 5. XBeach Model Settings
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Appendix 6. Benthic Habitat and Shoreline Datasets

Table 6.1.

[NOAA, National Oceanic and Atmospheric Administration]

Benthic habitat and shoreline dataset sources and minimum mapping units.

Benthic habitat data

Location Sublocation — - - Shoreline data source
Minimum mapping unit Data source

American Samoa Tutuila Island 1 acre Anderson, 2004a NOAA, 2002d
American Samoa Ofu and Olosega 1 acre Anderson, 2004a NOAA, 2002a
American Samoa Ta‘a 1 acre Anderson, 2004a NOAA, 2002a
Northern Mariana Islands Saipan Island 1 acre Anderson, 2004¢ NOAA, 2002b
Northern Mariana Islands Tinian Island 1 acre Anderson, 2004¢ NOAA, 2002¢

Guam Guam 1 acre Anderson, 2004b NOAA, 2003

Hawai’i Island of Hawai‘i 1 acre Anderson, 2007 State of Hawai‘i, 1997
Hawai’i Maui 1 acre Anderson, 2007 State of Hawai‘i, 1997
Hawai’i Lana‘i 1 acre Anderson, 2007 State of Hawai‘i, 1997
Hawai’i Moloka‘i 1 acre Anderson, 2007 State of Hawai‘i, 1997
Hawai’i Kaho‘olawe 1 acre Anderson, 2007 State of Hawai‘i, 1997
Hawai’i Kaua‘i 1 acre Anderson, 2007 State of Hawai‘i, 1997
Hawai’i Ni‘ihau 1 acre Anderson, 2007 State of Hawai‘i, 1997
Hawai’i O‘ahu 1 acre Anderson, 2007 State of Hawai‘i, 1997
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Appendix 7. SFINCS Model Settings

dx =10
dy =10
rotation =
latitude =
tspinup =60
dtmapout =600
dthisout =
dtmaxout = 1800
dtwnd =1800
alpha =05
theta =08
huthresh =0.005
manning =0.035
zsini =

qinf =0
rhoa =125
rhow =1024
dtmax =999
maxlev =999
bndtype =1
advection =2
baro =0
pavbnd =0
gapres =101200
advlim =1
stopdepth =100
inputformat = bin
outputformat = hin
cdnrb =3
cdwnd =02850
cdval =0.001 0.0025 0.0015
dtout =1800
min_lev_hmax =-10

bzifile = dummy



Appendix 8. SFINCS Model Grid Information

Appendix 8. SFINCS Model Grid Information

Table 8.1. SFINCS model grid information.

[m, meter]
Location 10-m grid cells Gr('g_(‘i,:’"le;f's‘;ns

American Samoa Ofu 966 x 516
American Samoa Ta‘a 1,180 x 775
American Samoa Tutuila 3,315 x 1,588
Northern Mariana Islands Saipan 1,773 % 2,490
Guam Guam 4,465 x 5,175
Hawai‘i Island of Hawai‘i (A) 4,035 x 7,919
Hawai‘i Island of Hawai‘i (B) 2,427 x 6,634
Hawai‘i Island of Hawai‘i (C) 5,923 x 3,813
Hawai‘i Island of Hawai‘i (D) 6,916 x 2,228
Hawai‘i Island of Hawai‘i (E) 3,300 x 5,486
Hawai‘i Island of Hawai‘i (F) 7,973 x 2,906
Hawai‘i Maui 7,646 x 5,090
Hawai‘i Kaua‘i 5,460 x 4,382
Hawai‘i Moloka‘i 6,707 x 2,402
Hawai‘i O‘ahu 7,136 x 5,395
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