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Multiply By To obtain
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acre 0.4047 square hectometer (hm2)
acre 0.004047 square kilometer (km2)

International System of Units to U.S. customary units

Multiply By To obtain

Length

meter (m) 3.281 foot (ft)
kilometer (km) 0.6214 mile (mi)
meter (m) 1.094 yard (yd)
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square meter (m2) 10.76 square foot (ft2)
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Abstract
Oceanographic, coastal engineering, ecologic, and 

geospatial data and tools were combined to evaluate the 
increased risks of storm-induced coastal flooding in the 
populated Hawaiian, Mariana, and American Samoan 
Islands as a result of climate change and sea-level rise. We 
followed a hybrid (dynamical and statistical) downscaling 
approach to map flooding due to waves and storm surge at 
10-square meter resolution along all 1,870 kilometers of these 
islands’ coastlines for annual (1-year), 20-year, and 100-year 
return-interval storm events and +0.00 meter (m), +0.25 m, 
+0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level 
rise scenarios. We quantified the coastal flood depths and 
extents using the latest climate forcing from Intergovernmental 
Panel for Climate Change’s Sixth Assessment Report 
Coupled Model Intercomparison Project. The data generated 
using these methods provide stakeholders and decision 
makers with a spatially explicit, rigorous valuation of how, 
where, and when climate change and sea-level rise increase 
coastal storm-induced flooding to help identify areas where 
management and (or) restoration could potentially help 
reduce the risk to, and increase the resiliency of, the coastal 
communities in the populated Hawaiian, Mariana, and 
American Samoan Islands.

Introduction
Coastal flooding and erosion from extreme weather 

events affect thousands of vulnerable coastal communities 
along the world’s tropical oceans’ coastlines. The impacts of 
coastal flooding are predicted to worsen during this century 
because of population growth and climate change, per 
Hallegatte and others (2013) and Hinkel and others (2014). 
There is an urgent need to develop better risk reduction and 

1U.S. Geological Survey.

2University of California, Santa Cruz.

3Deltares USA.

adaptation strategies to reduce coastal flooding and associated 
hazards (Hinkel and others, 2014; U.S. National Research 
Council, 2014). For example, the U.S. spends, on average, 
$500 million per year mitigating such coastal hazards (U.S. 
Global Change Research Program, 2023).

Observations (Vermeer and Rahmstorf, 2009) and 
projections (Kopp and others, 2014) of sea level show that 
global sea-level rise by the end of the 21st century could be 
meters above year 2000 levels. Although the precise rates 
of sea-level rise are uncertain, the existing models suggest 
that eustatic sea level will be substantially higher by the end 
of the century. Sea-level rise will have a profound impact 
on low-lying coastal areas. Projections indicate that sea 
level will be higher in the tropics than the global average 
(Slangen and others, 2014). Even small projected changes in 
sea level are projected to make coastal flooding much more 
frequent, especially in the tropics (Vitousek and others, 2017). 
Furthermore, research indicates that wave energy is increasing 
globally from climate change (Reguero and others, 2019, 
Morim and others, 2019).

Islands are further at risk because they have limited space 
for adapting to the impacts of coastal flooding. To date, most 
studies that describe future sea-level rise threats generally 
have used passive bathtub models to simulate sea-level rise 
flooding of tropical islands (Berkowitz and others, 2012); 
however, these models do not incorporate the nonlinear 
interaction between sea-level rise and waves (Quataert and 
others, 2015; Storlazzi and others, 2018). Additionally, while 
global climate models (GCMs) have advanced in recent years, 
their coarse resolutions and inability to represent mesoscale 
conditions have so far limited their use for identifying 
future coastal hazards at the local scale (O’Neill and others, 
2018). This limitation can be overcome, however, using a 
global-to-local downscaling approach like the one described 
here, which allows us to leverage projected future sea-level 
rise, tides, surge, and waves.

To better understand the role that climate change 
and sea-level rise may play in increasing the risk to, and 
decreasing the resilience of, coastal communities in the 
populated Hawaiian, Mariana, and American Samoan 
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Islands, the U.S. Geological Survey (USGS), the University 
of California at Santa Cruz, and Deltares used GCM output 
to force a series of oceanographic and coastal engineering 
models. The objective of this report is to present the 
global-to-local downscaling methodology of these models to 
define coastal flood hazards due to forecasted climate change 
and sea-level rise. This includes presentation and discussion 
of (1) the modeling framework, (2) the required model system 
inputs, and (3) the resultant generation of local-scale coastal 
flooding hazards. The resulting coastal flood model water 
depths and spatial extents are available from Alkins and 
others (2024).

Methodology
Oceanographic, coastal engineering, ecologic, and 

geospatial data and tools were combined to provide a 
quantitative valuation of the coastal flooding hazards caused 
by climate change and sea-level rise to the Hawaiian, Mariana, 
and American Samoan Islands. The goal of this effort was 
to identify how, where, and when climate and sea-level 
rise increase the risk of storm-induced coastal flooding. 
This study represents the first unique and comprehensive 
effort to rigorously quantify the increase in coastal hazard 
risk caused by climate change and sea-level rise across the 
populated tropical Pacific Ocean islands of the United States, 
based on high-resolution flooding modeling. The methods 
follow a sequence of steps derived from Storlazzi and others 
(2019, 2021) and Reguero and others (2021) that integrate 
physics-based oceanographic and coastal engineering 
modeling, along with ecologic and geospatial data and tools, 
to quantify the role of climate change and sea-level rise in 
increasing coastal flooding hazards.

Deep-water Waves and Storm Surges
Hindcasted and forecasted deep-water wave data from 

WaveWatchIII (Tolman 1997, 1999, 2009) simulations forced 
from four Intergovernmental Panel on Climate Change 
(IPCC; https://www.ipcc.ch/ ) Sixth Assessment Report (AR6) 
Coupled Model Intercomparison Project, Phase 6 (CMIP6; 
https://wcrp- cmip.org/ cmip- phase- 6- cmip6/ ) GCMs were 
produced for 31 years (2020–2050) by Erikson and others 
(2022) for the Hawaiian, Mariana, and American Samoan 
Islands. Similarly, hindcasted and forecasted tide and storm 
surge data from the Global Tide and Surge Model (GTSM; 
Verlaan and others, 2015; Muis and others, 2016, 2020) 
simulations were forced using the same four GCMs for the 
same 31 years (2020–2050) by Muis and others (2022) for 
the Hawaiian, Mariana, and American Samoan Islands. The 
CMIP6 models are from the HighResMIP project (Haarsma 
and others, 2016) and are used for both the WaveWatchIII and 
GTSM simulations: GFDL-CM4C192-highresSST (Guo and 
others, 2018), CMCC-CM2-VHR4 (Scoccimarro and others, 
2017), HadGEM3-GC-31-HM_highres-future (Roberts, 
2019a), and HadGEM3-GC-31-HM_highresSST-future 
(Roberts, 2019b). The future simulations (2020–2050) used 

IPCC-AR6 Shared Socioeconomic Pathway 8.5 (Lee and 
others, 2021), which results in a year 2100 radiative forcing 
level similar to the IPCC 5th Assessment Report’s Relative 
Concentration Pathway 8.5 climate scenario.

Shallow-water Waves
Following the methodology of Camus and others (2011), 

more than 270,000 hourly data on wave climate parameters 
were propagated to the nearshore using a hybrid downscaling 
approach. The offshore wave climate data were synthesized 
into 999 combinations of sea states (wave height, wave 
periods, and wave directions) that best represented the range 
of conditions from the Erikson and others (2022) database. 
These selected sea states were then propagated to the coast 
using the physics-based Simulating Waves Nearshore (SWAN) 
spectral wave model (Booij and others, 1999; Ris and others, 
1999; SWAN, 2016), which simulates wave transformations 
nearshore by solving the spectral action balance equation. 
Wave propagation around reef-lined islands has been 
accurately simulated using SWAN (Hoeke and others, 2011; 
Taebi and Pattiaratchi, 2014; Storlazzi and others, 2015). 
Standard SWAN settings were used (for example, Hoeke 
and others, 2011; Storlazzi and others, 2015), except that the 
directional spectrum was refined to 5-degree bins (72 total) to 
better simulate refraction and diffraction in and amongst the 
islands (appendix 1).

To accurately model from the scale of the island 
groups or large sections of coastline (on the order of tens of 
kilometers) down to local scales (on the order of hundreds of 
meters), a series of dynamically downscaled nested, rectilinear 
grids were used. The coarse (5-kilometer [km] or 1-km 
resolution) SWAN grids provided spatially varying boundary 
conditions for finer-scale (1-km or 200-meter [m] resolution) 
SWAN grids, with the finest resolution (200-m) grids used for 
the rest of the modeling infrastructure (fig. 1, appendix 2). The 
bathymetry for the SWAN grids were generated by grid-cell 
averaging various topobathymetric digital elevation models 
(appendix 3). The shallow-water wave conditions from 999 
sea-state combination simulations in the finest SWAN grids 
were extracted at 100-m intervals along the coastline, at a 
water depth of 30 m, and then reconstructed into hourly time 
series using multidimensional interpolation techniques (Camus 
and others, 2011).

Benthic habitat maps defining coral reef spatial extent 
and percent coral cover (appendix 6) were used to delineate 
the location of nearshore coral reefs and their relative 
coral abundance along the reef-lined shorelines (fig. 2). 
Cross-shore transects were created every 100 m alongshore 
(appendix 4) using the Digital Shoreline Analysis System 
software version 4.3 in ArcGIS version 10.3 (Thieler and 
others, 2009). Transects were cast in both landward and 
seaward directions using the Smoothed Baseline Cast (SBC) 
method with a 500-m smoothing distance, perpendicular to 
a baseline generated from coastlines digitized from USGS 
1:24,000 quadrangle maps and smoothed in ArcGIS using 
the Polynomial Approximation with Exponential Kernal 

https://www.ipcc.ch/
https://wcrp-cmip.org/cmip-phase-6-cmip6/
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Figure 1. Color maps showing output examples of the Simulating 
Waves Nearshore (SWAN) model and how 1 of the 999 wave 
conditions was dynamically downscaled to the 200-meter (m) 
grid scale offshore West Maui, Hawaiʻi. A, The 5-kilometer (km) 
resolution Hawaiian Chain model. B, The 1-km resolution Maui 
Nui model embedded in the Hawaiian Chain model. C, The 200-m 
resolution West Maui model embedded in the Maui Nui model. 
Colors indicate significant wave height, in meters.

algorithm and a 5,000- m smoothing tolerance. Transects 
had a cross-shore resolution of 1 m and varied in absolute 
length to ensure each intersected the −30 m and +20 m 
elevation contours relative to mean sea level. The bathymetric 
(appendix 3) and coral cover (appendix 6) data were extracted 
along these shore-normal transects and assigned to the closest 
transect grid cells.

The nearshore wave time series (hourly data from 2020 
to 2050) at the 30-m isobath were fit to a general extreme 
value distribution (Méndez and others, 2006; Menéndez and 
Woodworth, 2010) to obtain the significant wave heights 
associated with the annual (1-year), 20-year, and 100-year 
storm return periods in the SWAN grid cells at the end (or 
nearest the end) of each transect. The corresponding annual 
(1-year), 20-year, and 100-year storm return period tide and 
storm surge water levels for the location were taken from the 
nearest GTSM output point nearest to the offshore end of the 
each transect.

The return value significant wave heights and associated 
mean peak periods from SWAN were then propagated over 
the coral reefs with corresponding (static) return value 
water levels from GTSM along 100-m spaced shore-normal 
transects (appendix 4) using the numerical model XBeach 
(Roelvink and others, 2009; XBeach, 2016), as demonstrated 
in figure 2. XBeach generated forcing wave time series for 
each modeled storm return period, which were reused as 
inputs for modeling different sea level rise scenarios under 
the same return period. XBeach solves for water level 
variations up to the scale of long (infragravity) waves using 
the depth-averaged, nonlinear shallow water equations. The 
forcing is provided by a coupled wave action balance, in 
which the spatial and temporal variations of wave energy 
owing to the incident-period wave groups are solved. The 
radiation stress gradients derived from these variations result 
in a wave force that is included in the nonlinear shallow water 
equations and generates long waves and water level setup 
within the model. Although XBeach was originally derived 
for gently sloping sandy beaches, with some additional 
formulations, it has been applied in reef environments 
(Pomeroy and others, 2012; van Dongeren and others, 2013; 
Quataert and others, 2015; Storlazzi and others, 2018) and 
proved to accurately predict the key reef hydrodynamics.

XBeach was run for 9,000 seconds (s) in 
one-dimensional hydrostatic mode along the cross-shore 
transects, at a varying resolution between 10 m seawards and 
1 m landwards (resolution varies depending on water depth); 
the runs generally stabilized after 1,500 s (spin-up time) 
and thus generate good statistics on waves and wave-driven 
water levels for more than 2.5 hours (appendix 5). The 
application of a one-dimensional model neglects some of 
the dynamics that occur on natural reefs and shorelines, such 
as lateral flow. Thus, the flooding is likely underrepresented 
around promontories where wave-energy convergence would 
cause increased wave-driven flooding that is not captured 
with one-dimensional models. However, it does represent 
a conservative estimate for infragravity generation and 
wave runup, as the forcing is shore normal (for example, 
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Figure 2. Map showing the coral extent and coverage offshore Lahaina, Maui, Hawaiʻi (Anderson, 
2007). Colors indicate percentage of coral coverage; gray lines show cross-shore transects at 100-meter 
(m) intervals.
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van Dongeren and others, 2013; Quataert and others, 2015). 
Moreover, to reduce the overprediction of infragravity wave 
energy, the short-wave group variance at the boundary was 
reduced by 45 percent (wbcEvarreduce = 0.55), per de Goede 
and others (2020). The choice of a one-dimensional model 
is warranted in this case because the offshore waves (that 
is, wave propagation modeled with SWAN) were generally 
near-normal at the offshore end of the XBeach transects.

The additional formulations that incorporate the effect 
of higher bottom roughness on incident wave decay through 
the incident wave friction coefficient (fw) and the current 
and infragravity wave friction coefficient (cf), as outlined by 
van Dongeren and others (2013), were applied. The friction 
induced by corals was parameterized based on the spatially 
varying coral coverage data and results from a metaanalysis 
of wave-breaking studies over various reef configurations 
and friction coefficients for the different coral coverages (for 
example, van Dongeren and others, 2013; Quataert and others, 
2015). Coral coverage classes, as established by the benthic 
habitat maps, were assigned fw and cf (table 1) over the 

spatial extent of the reef along the profile as defined from the 
benthic habitat maps (appendix 6). The future wave and storm 
surge conditions for each storm return interval were then 
propagated using the XBeach models over the same 100-m 
spaced shore-normal transects but modified to account for the 
different sea-level rise scenarios (fig. 3).

Table 1. Wave and current friction coefficients for different 
percentages of coral cover as determined from benthic habitat 
maps following Storlazzi and others (2019, 2021).

Coral coverage, 
in percent

Wave friction 
coefficient (fw)

Current and infragravity 
wave friction coefficient (cf)

None (sand) 0.10 0.01
0–<10 0.15 0.07
10–<50 0.30 0.10
50–<90 0.45 0.13
90–100 0.60 0.15

EXPLANATION
+0.00 meters
+0.25 meters

+0.50 meters
+1.00 meters

+1.50 meters
+2.00 meters

+3.00 meters
Bed level

A

B

0 200 400 600 800 1,000 1,200
−30

−20

−10

0

10

20

W
at

er
 le

ve
l, 

in
 m

et
er

s

1,050 1,055 1,060 1,065 1,070 1,075 1,080 1,085 1,090 1,095 1,100
Cross-shore distance, in meters

0

2

4

6

8

10

W
at

er
 le

ve
l, 

in
 m

et
er

s

Cross-shore distance, in meters

Figure 3. Plots of an example topographic-bathymetric cross section and XBeach model 
wave-driven total water levels, in meters (m), for the 20-year storm for the seven different sea-level 
rise scenarios along O’ahu, Hawaiʻi. A, Cross-shore profile 6967 with a continuous fringing reef 
offshore. B, Zoomed-in view of profile 6967. The black line denotes the seafloor and land, and the 
colored lines denote the total water level (sea-level rise plus setup plus runup) for the different 
sea-level rise scenarios.
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Coastal Flooding

The Deltares 2-dimensional Super-Fast Inundation of 
CoastS coastal flooding model (SFINCS) is a super-fast 
flooding model that dynamically calculates two-dimensional 
compound flooding maps in coastal areas (Leijnse and others, 
2021), which is a vast improvement from interpolating 
between adjacent XBeach transects per Storlazzi and others 
(2019). The model uses simplified mass and momentum 
equations to compute flooding based on water levels and 
boundary conditions, such as waves, precipitation, and river 
discharges. Usually, SFINCS ignores the advection term, 
except for conditions of supercritical flow or when including 
waves as boundary conditions. In this case, SFINCS was 
forced with water level and infragravity wave time series; 
thus, the advection term is included (appendix 7).

The SFINCS boundary conditions were determined 
from XBeach still water level (tides and surge). The XBeach 
time series outputs were extracted at the intersection between 
the transect and the 0.5-m bathymetric contour (below mean 
sea level), which was below the still water levels during 
the simulations owing to tides and storm surge; these time 
series form the basis to force the constant 10-square-meter 
resolution SFINCS grids (appendix 8), which extended from 
the 0.5-m bathymetric contour to the 10-m contour. The 
water level time series boundary conditions were built with 
a slow ramp-up to avoid initial bathtub-type flooding. The 

ramp-up goes from mean sea level to the average incoming 
water level calculated from XBeach. The wave time series 
were computed as a random signal with a random phase, 
which were generated from the spectrum calculated from the 
XBeach incoming water levels (Roelvink and others, 2009; 
van Dongeren and others, 2013). Both boundary conditions 
were smoothed in an alongshore direction between adjacent 
output points to represent a two-dimensional environment. 
SFINCS was run for 3 hours after the water level ramp-up. A 
Manning coefficient, which represents friction applied to the 
flow by the seafloor roughness, of 0.035 was used to account 
for infragravity wave friction. SFINCS was run for the 3 
storm return intervals (fig. 4) and 7 sea-level rise scenarios 
(fig. 5). SFINCS output flood depth raster data were exported 
to a geographic information system; the depth rasters were 
then exported as geotiffs and the flood extent polygons were 
exported in shapefile format.

Uncertainties, Limitations, and Assumptions
Numerical flood modeling errors were estimated to 

be ±0.5 m. This value is greater than the root-mean-square 
and absolute errors computed between model results and 
measurements (van Dongeren and others, 2013; Quataert 
and others, 2015) but was used to compensate for the limited 
number of storms tested and the large geographic scope 
compared to regions where validation measurements are 
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Figure 4. Maps of projected flood depths from the Super-Fast Inundation of CoastS (SFINCS) coastal flooding model at 10-meter 
resolution for various storm recurrence intervals on south Maui, Hawaiʻi: A, annual (1-year) storm; B, 20-year storm; C, 100-year 
storm. Colors indicate flood-water depth, in meters. The flood plains for the higher return-period storm scenarios extend farther 
inland from the shoreline and have greater depths than those for the lower return-period storm scenarios.
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Figure 5. Maps of the projected 20-year storm flood plain extents from the Super-Fast Inundation of CoastS (SFINCS) coastal flooding 
model at 10-meter (m) resolution for four sea level scenarios at War-in-the-Pacific National Historical Park on west-central Guam: A, 
current sea level; B, +0.25 m of sea-level rise; C, +0.50 m of sea-level rise; D, +1.00 m of sea-level rise. The flood plains for the higher 
sea-level rise scenarios extend farther inland from the shoreline than those for the lower sea-level rise scenarios.

available. Uncertainties associated with the baseline digital 
elevation model varied based on input data; see references 
listed in appendix 3. Other limitations and assumptions 
pertaining to flood extents include the following:

• The extreme value analysis for selecting storm return 
periods was stationary and did not include nonstation-
ary effects, such as interannual patterns like El Niño, 
in the selection of values. The fit of each time series 
had to be limited to several thresholds and could not be 
adapted iteratively. These thresholds were also different 
for each region, depending on the local characteristics of 
extremes in each time series (with a limit of at least 30 
extreme values to fit the extreme value distribution).

• Because the coral coverage data are defined in five 
classes, the associated hydrodynamic roughness data are 
also classified in five classes. This results in a stepwise 
change in hydrodynamic roughness that can occur over 
a relatively small distance defining two different coral 

coverage class polygons that could result from a small 
change (2 percent; for example, between 9 and 11 per-
cent per table 1) in coral cover.

• The model scheme used to define the extreme flood 
levels were a combination of the wave and surge condi-
tions for certain storm probabilities and did not consider 
dependencies between both variables or the joint distri-
bution of wave heights, wave periods, and surge levels. 
However, it is likely that large surges and waves occur 
simultaneously for large return periods.

• We did not separately consider varying tidal levels 
beyond those registered in the extreme values in the 
GTSM data that were used to define the extreme sea 
level for each location.

• The modeling structure of one-dimensional nearshore 
XBeach transects assumes shore-normal wave and wave-
driven water level processes.
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• The same extraction and boundary condition locations 
were used for all the modeled scenarios. No changes 
were made for different storms and sea levels.

• A constant terrestrial Manning friction value was 
assumed for the SFINCS models owing to a lack of data 
for some islands; thus, no differences as a result of land 
use were considered.

• The approach for assessing flood extents associated 
with each probability assumes that the probability of the 
extreme flooding conditions on the fore reef defines the 
probability of the flood zones (thus, the 1-in-100-year 
total water level represents the 1-in-100-year flood zone).

Conclusions
Here we applied a new methodology to combine 

oceanographic, coastal engineering, ecologic, and geospatial 
tools and data to model the impacts of sea-level rise 
inundation and storm-driven coastal flooding for three storm 
and seven sea-level rise scenarios. The resulting data make 
it possible to identify how, when, and where storm-induced 
flooding hazards will impact the coastal communities in 
the populated Hawaiian, Mariana, and American Samoan 
Islands. The goal is to provide sound, scientific guidance 
for U.S. Federal, State, territorial, commonwealth, and local 
governments’ efforts on hazard risk reduction and coastal 
management by providing rigorous, spatially explicit, 
high-resolution assessments of coastal flooding hazards and, 
ultimately, to save lives and protect property.
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Appendix 1. SWAN Model Settings
General
 OnlyInputVerify  = false
 SimMode  = stationary
 DirConvention  = nautical
 WindSpeed  = 0.0000000e+000
 WindDir   = 0.0000000e+000
Processes
 GenModePhys  = 3
 Breaking  = true
 BreakAlpha  = 1.0000000e+000
 BreakGamma  = 7.3000002e-001
 Triads   = false
 TriadsAlpha  = 1.0000000e-001
 TriadsBeta  = 2.2000000e+000
 WaveSetup  = false
 BedFriction  = jonswap
 BedFricCoef  = 6.7000002e-002
 Diffraction  = true
 DiffracCoef  = 2.0000000e-001
 DiffracSteps  = 5
 DiffracProp  = true
 WindGrowth  = false
 WhiteCapping  = Komen
 Quadruplets  = false
 Refraction  = true
 FreqShift  = true
 WaveForces  = dissipation 3d
Numerics
 DirSpaceCDD  = 5.0000000e−001
 FreqSpaceCSS  = 5.0000000e−001
 RChHsTm01  = 2.0000000e−002
 RChMeanHs  = 2.0000000e−002
 RChMeanTm01  = 2.0000000e−002
 PercWet   = 9.8000000e+001
 MaxIter   = 100
Output
 TestOutputLevel  = 0
 TraceCalls  = false
 UseHotFile  = false
 WriteCOM  = false
Domain
 DirSpace  = circle
 NDir   = 72
 StartDir   = 0.0000000e+000
 EndDir   = 0.0000000e+000
 FreqMin   = 5.0000001e−002
 FreqMax   = 1.0000000e+000
 NFreq   = 24
 Output   = true

Boundary
 Definition  = orientation
 SpectrumSpec  = parametric
 SpShapeType  = jonswap
 PeriodType  = peak
 DirSpreadType  = power
 PeakEnhanceFac  = 3.3000000e+000
 GaussSpread  = 9.9999998e−003
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Appendix 2. SWAN Model Grid Information

Table 2.1. SWAN model grid sizes, dimensions, and data sources.

[km, kilometer; m, meter; NGDC, National Geophysical Data Center; PacIOOS, Pacific Islands Ocean Observing System; —, not applicable]

Location
5-km 

grid cells
1-km 

grid cells
200-m grid cells

Grid dimensions 
(E-W × N-S)

Data source

American Samoa — AmSam — 164 × 28 Lim and others, 2010
American Samoa — — Tutuila 235 × 100 Carignan and others, 2013
American Samoa — — Ofu-Olosega & Tau 155 × 79 Lim and others, 2010
Northern Mariana Islands — — Saipan 151 × 136 PacIOOS, 2016
Guam — — Guam 221 × 285 Chamberlin, 2008
Hawai’i HiChain — — 295 × 192 NGDC, 2005
Hawai’i — Hawaii — 142 × 159 NGDC, 2005
Hawai’i — — Hawaii_North 400 × 190 NGDC, 2005
Hawai’i — — Hawaii_East 235 × 300 NGDC, 2005
Hawai’i — — Hawaii_Southeast 310 × 160 NGDC, 2005
Hawai’i — — Hawaii_South 350 × 205 NGDC, 2005
Hawai’i — — Hawaii_West 185 × 400 NGDC, 2005
Hawai’i — MauiNui — 146 × 86 NGDC, 2005
Hawai’i — — Molokai 146 × 86 NGDC, 2005
Hawai’i — — Maui_East 265 × 220 NGDC, 2005
Hawai’i — — Maui_West 195 × 230 NGDC, 2005
Hawai’i — — Oahu 420 × 290 NGDC, 2005
Hawai’i — — Kauai 293 × 242 NGDC, 2005
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Appendix 3. Bathymetric Datasets

Table 3.1. Bathymetric data sources.

[NGDC, National Geophysical Data Center; NOAA, National Oceanic and Atmospheric Administration; PacIOOS, Pacific Islands Ocean Observing System; 
PIBHMC, Pacific Islands Benthic Habitat Mapping Center]

Location Sublocation Data source

American Samoa Tutuila Carignan and others, 2013
American Samoa Ofu, Olosega, and Taʻū Lim and others, 2010
Northern Mariana Islands Saipan Island PIBHMC, 2007a; Amante and Eakins, 2009; PacIOOS, 2016a
Northern Mariana Islands Tinian Island PIBHMC, 2007b; Amante and Eakins, 2009; PacIOOS, 2016b
Guam Guam Chamberlin, 2008
Hawai’i Island of Hawaiʻi NGDC, 2005
Hawai’i Hilo Love and others, 2011a
Hawai’i Kawaihae Carignan and others, 2011a
Hawai’i Keauhou Carignan and others, 2011b
Hawai’i Maui Nui NGDC, 2005
Hawai’i Maui Taylor and others, 2008; NOAA, 2016
Hawai’i Lānaʻi NGDC, 2005
Hawai’i Molokaʻi NGDC, 2005
Hawai’i Kahoʻolawe NGDC, 2005
Hawai’i Kauaʻi Friday and others, 2012
Hawai’i Niʻihau Friday and others, 2012
Hawai’i Oʻahu Love and others, 2011b
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Appendix 4. Cross-shore XBeach Transects

Table 4.1. Number of transects for each island. 

Location Sublocation
Number of cross-shore 

transects

American Samoa Tutuila Island 1,004
American Samoa Ofu and Olosega 196
American Samoa Taʻū 275
Northern Mariana Islands Saipan Island 585
Guam Guam 1,295
Hawai’i Island of Hawaiʻi 4,582
Hawai’i Maui 2,087
Hawai’i Molokaʻi 2,886
Hawai’i Kauaʻi 1,455
Hawai’i Oʻahu 1,997
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Appendix 5. XBeach Model Settings
Flow boundary condition parameters
 front  = abs_1d
 left  = wall
 right  = wall
 back  = wall
Flow
 bedfriction = cf
 bedfricfile = bedfricfile.txt
General
 fwfile  = fwfile.txt
 rotate  = 0
 wavemodel = surfbeat
 wbcEvarreduce = 0.550000
Grid parameters
 thetamin  = 0
 thetamax = 360
 dtheta  = 360
Model time
 tstop  = 9000
Tide boundary conditions
 tideloc  = 1
Wave boundary condition parameters
 instat  = jons
 dir0  = 270
Output variables
 outputformat = netcdf
 tintm  = 7500
 tintp  = 1
 tintg  = 7500
 tstart  = 1500
Output options
 nglobalvar = 1
  H
 nmeanvar = 7
  H
  zs
  zb
  u
  E
  Sxx
  taubx
 npointvar = 5
  H
  zb
  u
  zs
  E
 npoints  = 6
 nrugauge = 1
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Appendix 6. Benthic Habitat and Shoreline Datasets

Table 6.1. Benthic habitat and shoreline dataset sources and minimum mapping units.

[NOAA, National Oceanic and Atmospheric Administration]

Location Sublocation
Benthic habitat data

Shoreline data source
Minimum mapping unit Data source

American Samoa Tutuila Island 1 acre Anderson, 2004a NOAA, 2002d
American Samoa Ofu and Olosega 1 acre Anderson, 2004a NOAA, 2002a
American Samoa Taʻū 1 acre Anderson, 2004a NOAA, 2002a
Northern Mariana Islands Saipan Island 1 acre Anderson, 2004c NOAA, 2002b
Northern Mariana Islands Tinian Island 1 acre Anderson, 2004c NOAA, 2002c
Guam Guam 1 acre Anderson, 2004b NOAA, 2003
Hawai’i Island of Hawaiʻi 1 acre Anderson, 2007 State of Hawaiʻi, 1997
Hawai’i Maui 1 acre Anderson, 2007 State of Hawaiʻi, 1997
Hawai’i Lānaʻi 1 acre Anderson, 2007 State of Hawaiʻi, 1997
Hawai’i Molokaʻi 1 acre Anderson, 2007 State of Hawaiʻi, 1997
Hawai’i Kahoʻolawe 1 acre Anderson, 2007 State of Hawaiʻi, 1997
Hawai’i Kauaʻi 1 acre Anderson, 2007 State of Hawaiʻi, 1997
Hawai’i Niʻihau 1 acre Anderson, 2007 State of Hawaiʻi, 1997
Hawai’i Oʻahu 1 acre Anderson, 2007 State of Hawaiʻi, 1997
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Appendix 7. SFINCS Model Settings
dx  = 10
dy  = 10
rotation  = 0
latitude  = 0
tspinup  = 60
dtmapout = 600
dthisout  = 1
dtmaxout = 1800
dtwnd  = 1800
alpha  = 0.5
theta  = 0.8
huthresh  = 0.005
manning  = 0.035
zsini  = 0
qinf  = 0
rhoa  = 1.25
rhow  = 1024
dtmax  = 999
maxlev  = 999
bndtype  = 1
advection = 2
baro  = 0
pavbnd  = 0
gapres  = 101200
advlim  = 1
stopdepth = 100
inputformat = bin
outputformat = bin
cdnrb  = 3
cdwnd  = 0 28 50
cdval  = 0.001  0.0025  0.0015
dtout  = 1800
min_lev_hmax = −10
bzifile  = dummy
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Appendix 8. SFINCS Model Grid Information

Table 8.1. SFINCS model grid information.

[m, meter]

Location 10-m grid cells
Grid dimensions 

(E-W × N-S)

American Samoa Ofu 966 × 516
American Samoa Taʻū 1,180 × 775
American Samoa Tutuila 3,315 × 1,588
Northern Mariana Islands Saipan 1,773 × 2,490
Guam Guam 4,465 × 5,175
Hawaiʻi Island of Hawaiʻi (A) 4,035 × 7,919
Hawaiʻi Island of Hawaiʻi (B) 2,427 × 6,634
Hawaiʻi Island of Hawaiʻi (C) 5,923 × 3,813
Hawaiʻi Island of Hawaiʻi (D) 6,916 × 2,228
Hawaiʻi Island of Hawaiʻi (E) 3,300 × 5,486
Hawaiʻi Island of Hawaiʻi (F) 7,973 × 2,906
Hawaiʻi Maui 7,646 × 5,090
Hawaiʻi Kauaʻi 5,460 × 4,382
Hawaiʻi Molokaʻi 6,707 × 2,402
Hawaiʻi Oʻahu 7,136 × 5,395
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