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Evidence of Absence (v2.0) Software User Guide 

by Dan Dalthorp1, Manuela Huso1, and David Dail2 

Abstract 

Evidence of Absence software (EoA) is a user-friendly software application for estimating bird 
and bat fatalities at wind farms and for designing search protocols. The software is particularly useful in 
addressing whether the number of fatalities is below a given threshold and what search parameters are 
needed to give assurance that thresholds were not exceeded. The software also includes tools (1) for 
estimating carcass persistence distributions and searcher efficiency parameters (𝑝𝑝 and 𝑘𝑘) from field 
trials, (2) for projecting future mortality based on past monitoring data, and (3) for exploring the 
potential consequences of various choices in the design of long-term incidental take permits for 
protected species. The software was designed specifically for cases where tolerance for mortality is low 
and carcass counts are small or even 0, but the tools also may be used for mortality estimates when 
carcass counts are large.  

1.   Introduction 

1.1   General Terminology 
The software addresses the general problem of estimating numbers of fatalities over an extended 

period of time using systematic counts of carcasses and adjustments of the carcass counts to account for 
imperfect detection. Imperfect detection may be due to any of several possible detection biases, for 
example: (1) search teams fail to find carcasses that are present in the searched area at the time of the 
search, (2) scavengers remove carcasses before searches are conducted, (3) carcasses fall outside the 
searched area, or (4) fatalities occur outside the monitored period. The detection rate (𝑔𝑔) is estimated 
primarily from results of field trials in which carcasses are placed at known locations within the 
searched areas at the site and monitored for persistence times and for evaluating the efficiency of search 
teams in detecting carcasses that are not scavenged. Combining the number of carcasses (𝑋𝑋) found in 
the systematic carcass searches with information about the detection rate, Evidence of Absence software 
(EoA) estimates the total mortality (𝑀𝑀) and quantifies the uncertainty associated with the estimation. 

                                                 
1U.S. Geological Survey. 
2Oregon State University. 
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1.1.1   Overall Detection Probability 

The EoA software estimates the overall probability (𝑔𝑔) of detecting a carcass that arrives at a site 
(or group of sites) during the monitoring season(s) or longer period of inference. If 𝑔𝑔 is known exactly 
with no uncertainty, a good estimator for the total mortality would simply be: 

 𝑀𝑀� = 𝑋𝑋/𝑔𝑔  (1) 

where 𝑋𝑋is the number of carcasses observed, and 𝑔𝑔 is the overall detection probability. 

In practice, 𝑔𝑔 is never known exactly and must be estimated. To calculate an estimate (𝑔𝑔�) of the 
overall detection probability, EoA uses a generalized estimator, which takes into account scavenging 
rates, searcher efficiency, search schedule, and spatial and temporal search coverage. The model can 
accommodate a number of realistic scenarios that many commonly used estimators cannot, for example, 
a scavenging rate that varies with carcass age, a decrease in searcher efficiency for carcasses that have 
been missed in previous searches, and an irregular search schedule. Due to its generality, the model for 
estimating 𝑔𝑔 is fairly complicated. Details are presented in appendix A.  

1.1.2   Posterior Distributions 

Substituting the estimated detection probability, 𝑔𝑔�, for the actual (unknown) 𝑔𝑔 in equation (1) 
gives a rough point estimate of mortality (𝑀𝑀� = 𝑋𝑋/𝑔𝑔�) that can be used as a "reality check" for the 
estimates provided by EoA (or other model) but should not be considered a rigorous or particularly 
informative estimate. The estimator can be strongly biased when 𝑔𝑔 is small, does not give accurate 
confidence intervals when 𝑋𝑋 is small, and collapses entirely for 𝑋𝑋 = 0 (Huso and others, 2015). As an 
alternative, after accounting for uncertainty in both 𝑔𝑔 and 𝑀𝑀� |(𝑋𝑋, 𝑔𝑔) (that is, the estimated mortality (𝑀𝑀�) 
given the carcass count (𝑋𝑋) and detection probability (𝑔𝑔)), EoA calculates a posterior distribution (or 
simply posterior), which is a quantitative representation of what is known about the total number of 
fatalities M (technical details are provided in appendix B). The posterior distribution gives the 
probability that the number of fatalities equals any given non-negative integer, m. Point and interval 
estimates of 𝑀𝑀 can be extracted from the posterior in myriad ways. The most commonly used statistics 
are a point estimate, 𝑀𝑀∗, and credible intervals, which are the Bayesian analog to confidence intervals in 
classical statistics.  

Mortality is estimated as 𝑀𝑀∗, which is defined as the minimum number of fatalities such that 
𝑃𝑃(𝑀𝑀 ≤ 𝑀𝑀∗|𝑋𝑋 = 𝑥𝑥; 𝑔𝑔�) ≤ 1 − 𝛼𝛼 for the user’s choice of credibility level, 1 − 𝛼𝛼. 𝑀𝑀∗can be interpreted as 
a 100(1 − 𝛼𝛼)% credible upper bound on the number of fatalities or as a statement like: "Based on the 
search data, we can assert with 100(1 − 𝛼𝛼)% credibility that there were no more than 𝑀𝑀∗ fatalities 
during our period of interest." The value of 1 − 𝛼𝛼 governs how conservative 𝑀𝑀∗ is as an estimate of 𝑀𝑀. 
Larger values of 1 − 𝛼𝛼 yield larger 𝑀𝑀∗ and stronger assurance that the actual number of fatalities is less 
than 𝑀𝑀∗. With a value of 1 − 𝛼𝛼 = 0.5, 𝑀𝑀∗ is the median of the posterior and can be taken as a point 
estimate of 𝑀𝑀 with roughly equal probabilities that 𝑀𝑀 ≥ 𝑀𝑀∗ or 𝑀𝑀 < 𝑀𝑀∗.  

A 100(1 − 𝛼𝛼)% credible interval (CI) is constructed from the posterior with interpretation that 
the probability that 𝑀𝑀 is in the interval is (approximately) 1 − 𝛼𝛼. The algorithm that EoA uses for 
constructing a CI = [𝑀𝑀𝑙𝑙 , 𝑀𝑀𝑢𝑢] for 𝑀𝑀 is to define the lower bound, 𝑀𝑀𝑙𝑙, as the smallest integer such 
that 𝑃𝑃(𝑀𝑀 ≤ 𝑀𝑀𝑙𝑙) > 𝛼𝛼/2 and the upper bound as the smallest integer, 𝑀𝑀𝑢𝑢, such that 𝑃𝑃�𝑀𝑀 ∊ [𝑀𝑀𝑙𝑙,𝑀𝑀𝑢𝑢]� ≥
1 − 𝛼𝛼.  
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1.1.3   Software Modules 

The Evidence of Absence (v2.0) software includes five modules: 

1. Single Class—for estimating detection probability and mortality for a single year (or 
monitored period) and single search class with submodules for analyzing carcass persistence 
and searcher efficiency trials; 

2. Multiple Classes—for combining data from several search classes within a site or from 
several distinct sites into an estimate of total mortality; 

3. Multiple Years—three components for: 

 a. estimating cumulative take over several years,  

 b. projecting future take (based on past monitoring data and future monitoring and 
  operations plans), and  

c. hypothesis tests and CIs for the annual mortality rate (λ) over one or a few 
  years; 

4. Design Tradeoffs—for designing a monitoring protocol to optimize search resources, 
including search coverage, searcher efficiency, and search interval; and 

5. Scenario Explorer—for predicting future mortality and compliance with incidental take 
permits (ITPs). 

1.1.4   Changes since Evidence of Absence (EoA), v1.0 

EoA v2.0 is a substantial upgrade from v1.0 of the software (Dalthorp and others, 2014).  Major 
changes include: 

1. EoA, v2.0 is bundled as an R package and does not depend on an interface between R and 
Microsoft Excel® mediated by statconnDCOM and RExcel. The newer version is substantially 
easier to install and is compatible with Microsoft Windows®, Mac OS, and Unix-like operating 
systems and with both 32-bit and 64-bit R (section 1.2). 

2. The default prior distribution used for calculating the posterior distribution for 𝑀𝑀 has been 
changed from uniform to an integrated reference prior, which is often referred to as the objective 
prior (Berger and others, 2012). In most cases, the two priors give the same posteriors. When 
they differ, the objective prior is more accurate in the sense that when 𝑀𝑀∗ is calculated using the 
objective prior 𝑃𝑃(𝑀𝑀 > 𝑀𝑀∗) is closer to 𝛼𝛼 than it is when the uniform prior is used (appendix B). 
The difference is most noticeable when 𝑋𝑋 is small, when the objective prior frequently gives a 
smaller 𝑀𝑀∗ than does the uniform prior. In addition, in EoA v2.0, users are no longer offered the 
option of entering custom or informed prior except via the command line in R.  

3. A new submodule for analyzing carcass persistence field trial data simplifies the process for 
fitting persistence distributions and entering the parameter estimates into EoA (section 2.1.3). In 
addition, a new algorithm for simulating persistence times (appendix C) gives more accurate and 
reliable results than with EoA v1.0.  
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4. A new submodule for analyzing searcher efficiency data includes an option for simultaneous 
estimation of 𝑘𝑘 and 𝑝𝑝 parameters from field trial data (section 2.1.2), and new algorithm for 
simulating searcher efficiencies (appendix D) gives more accurate and reliable results than  EoA 
v1.0 gives.  

5. The multiple class module features streamlined data entry that is more convenient and flexible 
than with EoA v1.0, and the estimator for 𝑀𝑀 is more accurate when 𝑋𝑋 is small (appendix E). 

6. The multiple years module includes new tools for estimating the mean fatality rate 𝜆𝜆 by year 
(section 4.2.2); testing long-term, short-term, and reversion triggers (Dalthorp and Huso, 2015); 
and projecting of future mortality (section 4.2.1.3). Technical details are provided in appendix F.  

7. The new design tradeoffs module includes an option for designing monitoring protocol to attain 
a target 𝑔𝑔 and a new tool for viewing 𝑀𝑀∗ as a function of 𝑔𝑔, 𝑋𝑋, and 𝛼𝛼 (section 5). 

8. The long-term scenario explorer is an entirely new module with tools for investigating the 
consequences of decisions about regulatory framework parameters in the context of long-term 
ITPs (section 6). Technical details are provided in appendix G.  

1.2   Installation Instructions 

1.2.1   Requirements 

• R software, version 3.3.0 or higher 

• JAGS, version 4.2.0 (with Rtools33) or higher  

• R packages:  

actuar (Dutang and others, 2008) 

gsl (Hankin, 2006) 

matrixStats (Bengtsson, 2016) 

R6 (Chang, 2016) 

rjags (Plummer, 2016) 

tcltk2 (Grosjean, 2016) 

tensorA (Boogart, 2010) 

tkrplot (Tierney, 2011) 

VGAM  (Yee, 2017) 
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1.2.2   Installation 

There are several steps to installing the software. Do not skip any steps. 

R Software, Version 3.3.0 or Higher 
The new EoA requires version 3.3.0 (or higher) of the R statistical computing software (R Core 

Team, 2016), which is free and open source. To install, use your Internet browser to navigate to 
https://www.r-project.org/ and click following links: "CRAN mirror" (choose the nearest 
site) and "Download R for ...." If you are installing on a computer with Microsoft Windows®, click 
"base", and "Download R x.x.x for Windows". You may need to be logged in with administrative 
privileges to install. If installing on a computer with Mac® or a UNIX®-like operation system, follow the 
instructions provided at the website. 

If you are updating your copy of R from a previously installed version, the new version will be 
installed alongside the old version rather than on top of it, and both versions will be operational. Unless 
you know the old version will be needed for some specific purpose in future, uninstalling it is 
recommended. This can be done using the Control Panel in Windows®. Add-in R packages that the user 
downloaded and installed in an earlier version will not be available in the updated version unless they 
are either reinstalled or copied from the library file of the previous installation to the library file of the 
new installation and updated in the new version of R using update.packages(checkBuilt = TRUE, 
ask = FALSE).  

JAGS (Plummer, 2003), Version 4.2.0 (with Rtools33) or Higher 
JAGS is free and open source software that is independent from R but will run in the background 

when needed by R or EoA. Use your Internet browser to navigate to 
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/ to download and install the most 
recent version of JAGS with Rtools33. Installation may require administrative privileges on computer. 

Third-Party R Packages 
Several third-party R packages are required and are installed automatically when EoA is first 

used (section 1.3). Alternatively, the packages can be installed from within R by copy-and-paste of the 
following commands into the R command line: 
 

list.of.packages <- c("R6", "matrixStats", "rjags", "tensorA", "actuar","VGAM", 

"tcltk2", "tkrplot", "gsl") 

new.packages <- list.of.packages[!(list.of.packages %in% 

installed.packages()[,"Package"])] 

if(length(new.packages) > 0) install.packages(new.packages) 

Depending on the current status of your R installation, it could take anywhere from a fraction of 
a second to several minutes to install and/or check the required packages. If new packages need to be 
installed, a dialog box may ask you to select a CRAN mirror. Choose the nearest location. Next, you 
might be asked if you want to use a personal library instead (or something to that effect). Choose “Yes.” 
Once these packages have been installed, you will not need to go through the wait again.  
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®

EoA Package 
The EoA software is bundled as an R package. To complete the installation for Windows®, 

download the "eoa x.x.x.x.zip" file to a convenient location but do not unzip. Select “Install package(s) 
from local zip files...” from the “Packages” menu in R. Navigate to the eoa zip folder and double click 
or select and click “Open.” If installing to Mac® or UNIX®-like operating system, download the source 
package eoa_2.0.tar.gz and run install.packages (path_to_file, repos = NULL), 
where path_to_file is the path to the EoA folder. R may prompt Mac® users to install “Command 
Line Tools” for Xcode, which are necessary for installing packages from source. Mac® users may also 
need to install Xquartz from https://www.xquartz.org/ to enable communication between the Mac OS 
and the R graphics windows.  

1.3   Getting Started 
To run EoA once it has been installed, enter the following two commands onto the R command 

line: 
library(eoa) 

eoa()

The first time EoA is run, it checks whether all the required R packages have been previously 
installed. If some are missing, you might be asked to select a CRAN mirror. Choose the nearest 
location. Next, you might be asked if you want to use a personal library instead (or something to that 
effect). Choose "Yes." Once these packages have been installed, you will not need to go through the 
wait again. 

Upon starting EoA, the R console will shrink to a small box and the EoA control panel will 
appear (fig. 1). The R console may be safely ignored, or it may be expanded for doing custom 
calculations or checking for error messages. However, closing the R console window will end the EoA 
session.  

Figure 1. Screen captures of the EoA control panel and the miniaturized R console. 
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When a module is opened by clicking on one of the buttons in the control panel, the control 
panel will close and a new window will open with a set of parameter values automatically entered. The 
first time a module is opened, a set of default parameters values is loaded. These values represent data 
from a fictitious but plausible site. The values have no particular significance and should not be 
interpreted as recommendations or as meaningful in any way. They serve as a pre-loaded, workable 
example for learning the software and as a convenient starting point for discussions about interpretation 
of input, results, or software performance. Parameter sets may then be edited. Upon performing 
calculations, the active parameter set is saved for reloading the next time the module is opened. If 
desired, the default parameter set for an open module may be reloaded by selecting Restore defaults 
from the Edit menu. The default parameter sets for all modules may be reloaded by selecting Restore 
Default Data Sets from the Control Panel menu 

When a module is closed by clicking the "close" icon (red "X" in the upper right corner), 
clicking the Close button or entering <Alt + F4>, the EoA control panel will reopen. The next time the 
module is opened, the parameter set that was active the last time calculations were performed will be 
loaded.  

1.3.1   Entering Data  

Text Boxes 

Live error-checking is performed on data entered into textboxes in the modules. Errors are 
flagged by coloring the background of the textbox—yellow for invalid entries (for example, negative 
number of carcasses discovered) and blue for values that are incompatible with other data (for example, 
lower bound that exceeds upper bound).  

Tables 

In most cases, users can type values directly into cells in data entry tables and use the arrow keys 
for navigating among cells. In addition, pressing <Ctrl + a> adds a new row to a table and <Ctrl + d> 
deletes a row. Data can also be entered into most tables using <paste>. The upper left corner of the paste 
region will be the active cell (where the cursor is), and pasted data will overwrite data in the paste 
region. In some tables, new data can only be entered using a text or .csv file. 

Complete input parameter sets can be saved by selecting Save to file from the Edit menu for a 
module and later uploaded by selecting Read from file from the Edit menu.  
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1.3.2   Results 

Graphs 

EoA has a rich array of functions for creating graphical displays of results in R Graphics 
devices. The R graphing windows remain open until they are closed by the user or R is closed.  If a new 
graph is created when a graphing window is already open, the first graph is typically erased and 
overwritten by the new graph. Graphs can be saved in a number of different ways: 

i. on the File menu, click Save as..., then select a format and type a file name, 

ii. on the File menu, click Copy to clipboard  as a bitmap or as a metafile (Metafiles are 

efficient, clear, scalable, and can be pasted seamlessly into Microsoft Word® or Powerpoint® 

but may not be as easily compatible with other programs), or 

iii. right-click the graph and copy to clipboard or save to a file. 

Text 

Summary statistics and tables of results are also written to R data windows that can be saved as 
text files by clicking Save to File on the File menu in a results window or can be copied to the clipboard 
for pasting into other programs.  

 

2.   Single Class Module 

2.1   Data and Parameters 
Central to mortality estimation are a number of parameters that determine the overall probability 

of detecting a carcass (fig. 2). The parameters fall into three categories—search schedule and coverage, 
searcher efficiency, and persistence distribution.  
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Figure 2. Screen capture of Single Class Module (input). 

2.1.1   Search Schedule and Coverage 

Start of monitoring is the date that marks the beginning of the monitored period. The model 
assumes that all carcasses that are discovered during the monitoring season arrived after the start of 
monitoring. In practice, this typically means that either the monitoring begins before carcass arrivals 
would be expected to begin, or the monitoring season begins at time 𝑡𝑡 = 0 with a "cleanout search" in 
which carcasses arriving before the start of monitoring are removed from the search plots and not 
included in the carcass count for the monitored period because they did not arrive during the implied 
period of inference. If the intended period of inference extends beyond the monitored period (for 
example, the user is interested in total annual mortality but monitors only from April 1 through October 
31), the user’s assumption about what fraction of carcasses arrive within the monitored period can be 
entered as the 𝑣𝑣 parameter, which is described later in this section. Formula option for specifying the 
search schedule is used if searches are conducted at uniform intervals throughout the monitored period, 
in which case the Search interval (I) is specified along with Number of searches (not including the first 
search at the start of the monitored period, 𝑡𝑡0). Note that the search interval is the number of days 
between visits to a given turbine. For example, if search teams visit two sets of turbines on alternate 
days, searches are conducted every day but the search interval would be entered as 2 days because each 
turbine is visited every other day. 

Custom option for specifying the search schedule is used if search intervals were irregular. 
Search dates are read from a text or .csv file ("comma separated values") using the Read command from 
the Edit menu or pasted from the clipboard using the Paste command from the Edit menu. Dates that 
are read from a file must be entered in a single column with a column name in the first row and 0 as the 
first date.  
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Spatial coverage (a) is the fraction of the total carcasses expected to arrive in the searched area. 
For example, if there are 10 turbines and 3 are intensively searched to a wide enough radius to 
encompass all carcasses and there is no unsearched area within that search radius, then a = 0.3. Another 
example—if there is one turbine that is only partially searched, a is the fraction of carcasses that are 
expected to land in the searched area around the turbine. a must be in the interval (0, 1]. It must be 
emphasized that a is not the fraction of the area that is searched but the fraction of carcasses arriving in 
the searched area. The number of carcasses arriving at a given distance from a turbine tends to decrease 
with distance while the area increases so that an area nearer to a turbine generally accounts for more 
carcasses than does an area of equal size at a greater distance from a turbine. Thus, a should be a 
density-weighted proportion (dwp) of the area sampled (Huso and Dalthorp, 2014). When the number of 
carcasses of the target species is too small to model the relationship between distance and carcass 
density, a surrogate species is often used to estimate 𝑎𝑎. If no surrogate is available, then a mechanistic 
model or a model fit at a similar site is sometimes used. The 𝑎𝑎 parameter can have a strong influence on 
mortality estimates, and its assumed value should be chosen with care. This is true regardless of which 
estimator is used, whether it be EoA or any other estimator.  

Temporal coverage (v) is the fraction of the total carcasses expected to arrive during the 
monitored period. The parameter is used to extrapolate beyond the monitored period if desired. For 
example, if the carcass arrival rate is constant throughout a full year but the monitoring season is only 3 
months, the temporal coverage for the year would be 3/12 = 0.25. In some situations, though, carcass 
arrival may be zero during certain seasons. For example, there may be no mortality before April 1 or 
after October 31. In that case, if the monitoring season extended from April 1 to October 31, the 
temporal coverage for the year would be 𝑣𝑣 = 1 because no carcasses arrive outside the monitored 
season. The 𝑣𝑣 parameter can have a strong influence on mortality estimates extrapolated beyond the 
monitored period, and its assumed value should be chosen with care. If interest is solely in the number 
of fatalities occurring during the monitored period, use 𝑣𝑣 = 1.  

2.1.2   Searcher Efficiency 

Searcher efficiency is the probability of observing a carcass that is present in the searched area at 
the time of the search. Searcher efficiency values are typically determined by searcher efficiency (SE) 
trials conducted on an ongoing basis during routine searches throughout the season (Huso and others, 
2012). Searcher efficiency may depend on carcass age as older carcasses are harder to find as they 
accumulate dust or debris, fall deeper into vegetation, get blown against objects or into holes, decay, or 
get partially scavenged. In addition, carcasses missed in one search tend to be more likely to be missed 
in subsequent searches because the easy-to-find carcasses are preferentially removed in the first 
searches after carcass arrival, leaving mostly the harder-to-find carcasses available in subsequences 
searches. EoA accounts for a non-constant searcher efficiency using two parameters, p and k. 
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The searcher efficiency for carcasses on the first search after arrival is defined as p. The decrease 
in searcher efficiency for aging carcasses is modeled using the k parameter, which is defined as the 
decrease in searcher efficiency with each successive search. For example, the probability of detecting a 
carcass that is present in the first search after arrival is p. If the carcass is not found in the first search 
but is still present at the time of the second search, the probability of detection decreases from p to 𝑘𝑘𝑘𝑘. 
If it is missed again on the second search but persists until the third search, the probability of detection 
decreases by another factor of k to 𝑘𝑘2𝑝𝑝 and similarly decreases by a factor of k with each search. If 
searcher efficiency is the same no matter how long a carcass has been in the field or how many times it 
has been missed, then k = 1. If a carcass missed in the first search after arrival has no chance of being 
found in later searches (or is not included in the carcass counts), then k = 0.  

To estimate 𝑝𝑝, EoA requires the user to enter searcher efficiency trial data, including the number 
of carcasses available for discovery on the first search after carcass placement and the number of 
carcasses actually discovered. The user has the option of entering additional data for estimation of the 𝑘𝑘 
parameter (option: Carcasses available for several searches) or may enter an assumed value of 𝑘𝑘 
manually (option: Carcasses removed after one search).  

Option: Carcasses Available for Several Searches 

To estimate k, searcher efficiency trial carcasses that are not discovered on the first search after 
being placed should be left on the ground for discovery during later searches. The number of carcasses 
available for discovery and the number found on each search occasion in the field trial can be entered 
into the software by selecting the Carcasses available for several searches option in the Searcher 
efficiency section of the Single Class Module. Click the Edit box to open an editable table and enter the 
search trial data (fig. 3). Navigate the table using the arrow keys, the <Enter> key, or the mouse. 
Pressing <Ctrl + d> deletes the active row, and <Ctrl + a> inserts a blank row below the cursor. When 
the data have been entered, the user may click the View button to see a graphical display of the data and 
the fitted model (fig. 4). The graph shows the fraction of carcasses discovered on each search occasion, 
with the number of carcasses available proportional to the size of the graphing symbol. Red dotted lines 
mark 95% CIs for the searcher efficiency on each successive search after carcass arrival. Clicking OK 
fits the searcher efficiency model, loads the results into the parameter list, closes the searcher efficiency 
window, and returns control to the Single Class Module. Note that in the default data, the Carcasses 
Available on the second search is only 55 rather than the 60 that remained after the first search. This is 
likely due to scavenger removal of some of the remaining carcasses before a second search was 
completed. Also note in the example, there were adequate carcasses to track the searcher efficiency 
through 12 search occasions. This is desirable but not necessary as even 2 or 3 additional search 
occasions will generally provide useful estimates of k. 
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Figure 3. Screen capture of form for entering data from searcher efficiency trials. Data may be entered by using the 
number keys or by pasting from a spreadsheet or tab delimited text file. Rows may be added using <Ctrl + a> or 
deleted using <Ctrl + d>. 

 

Option: Carcasses Removed after One Search 

If carcasses in searcher efficiency trials are tracked for only one search so that k cannot be 
estimated from the trial data, EoA still requires the user to explicitly enter an assumed value of 𝑘𝑘 ∈
[0,1]. An assumed value of k that is too large—as with the Shoenfeld (2004) estimator, which implicitly 
assumes 𝑘𝑘 = 1—will overestimate overall detection probability (𝑔𝑔) and underestimate total mortality. 
An assumed value of k that is too small will underestimate 𝑔𝑔 and overestimate mortality. For example, 
the Huso estimator (Huso, 2011; Huso and others, 2012) assumes 𝑘𝑘 = 0, which could lead to 
overestimating the total mortality. In some cases, though, the condition 𝑘𝑘 = 0 can be artificially 
approximated by disregarding carcasses that arrived prior to the search preceding the search in which 
they were discovered, reducing and potentially eliminating the bias. 
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Figure 4. Graph generated by Evidence of Absence software showing searcher efficiency, search occasion,  
and estimation of 𝑝𝑝 and 𝑘𝑘. 
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2.1.3   Persistence Distribution 

The amount of time a carcass persists without being lost to scavenging or decay is modeled as a 
persistence distribution. EoA offers a choice of four persistence distributions—exponential, Weibull, 
log-logistic, or lognormal. The one-parameter exponential distribution makes a mathematically 
convenient assumption that the scavenging rate does not depend on age of carcass. In practice, the rate 
of carcass removal tends to change with time (Bispo and others, 2012; Warren-Hicks and others, 2013), 
and the exponential distribution usually does not accurately reflect the true persistence distribution. 
Frequently, it underestimates the scavenging rate for fresh carcasses and, as a consequence, 
underestimates the number of fatalities. The two-parameter Weibull distribution is a generalization of 
the exponential that offers more flexibility for modeling non-constant scavenging rates. When the 
scavenging rate is constant, Weibull and exponential are identical. In all other cases, the Weibull will be 
more accurate. Like the Weibull, the log-logistic and lognormal are two-parameter distributions that can 
accurately model a far wider array of persistence patterns than the exponential can. Typically, the 
Weibull, log-logistic, and lognormal models will produce persistence curves that are quite similar to 
each other, while the exponential curve will be notably different and substantially less accurate.  

Persistence models can be entered into EoA either by fitting models to field trial data, or, if field 
trial data are not available or the user wishes to explore alternative scenarios, persistence parameters 
may be entered manually.  

Parameterizations for the persistence distributions vary from author to author. EoA’s 
parameterization largely follows those used by the base package in R but with some minor adjustments. 
The distributions are characterized by shape (𝛼𝛼) and scale (𝛽𝛽) parameters. With the exponential 
distribution, the scale parameter is the mean carcass persistence time. The exponential is a single-
parameter distribution, so no shape parameter is given. In its place, the exponential rate (1/𝛽𝛽) 
representing the rate of carcass removal per unit time is given. Further details on the parameterizations 
can be found in appendix H. 
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The probability that a carcass persists until the first search after arrival is estimated as 𝑟𝑟. For 
example, a value of 𝑟𝑟 = 0.685 for 𝐼𝐼𝑟𝑟 = 7 implies that 68.5% of carcasses that arrive at a random time in 
an interval of 7 days will persist until the end of the interval. The value of 𝑟𝑟 is specific to an assumed 
search interval, 𝐼𝐼𝑟𝑟, with larger intervals associated with lower probability of persistence through the 
interval. The 𝑟𝑟 and 𝐼𝐼𝑟𝑟 parameters are not used in the estimation of total mortality or overall detection 
probability. They are provided strictly for user convenience as an aid in interpreting the fitted models. 
The value chosen for 𝐼𝐼𝑟𝑟 is the search interval (𝐼𝐼) if the search schedule has been entered by formula (that 
is, search interval and number of searches) or is the average length of the search intervals if a custom 
search schedule is used.  

Option: Use Field Trials to Estimate Parameters 

Clicking the View/Edit button opens the Carcass Persistence window, where the user may 
direct EoA to Get data from field trials. With carcass persistence trials, fresh carcasses are placed in 
the field periodically throughout the season, and each carcass location is checked on several occasions 
until it is no longer present or the study period ends. For example, carcasses may be checked 1, 2, 3, 4, 
5, 7, 10, 14, 21, and 28 days after being placed in the field. The latest time a carcass is known to be 
present is recorded as the minimum persistence time or CPmin. The earliest time a carcass is known to 
be missing is recorded as the maximum persistence time or CPmax. For carcasses that are still present at 
the end of the study, CPmin is the time of the last carcass check, and CPmax is entered as Inf (case-
sensitive). Field trial data are saved in a text file with comma-separated values (.csv). Format is two 
columns with case-sensitive headers (CPmin and CPmax) in the first row, and persistence times for 
carcasses are listed in the columns (table 1). Some researchers record persistence times in hours to 
increase the accuracy of the modeled persistence, especially for bats and small birds, which tend to have 
shorter persistence times than large birds, but persistence times should be converted to the same scale as 
the search schedule data before reading the data into EoA.  

Table 1. Example format of carcass persistence data.  
 
[CPmin represents the last time a carcass was observed. CPmax represents the time when a carcass was first noted as 
missing. Times are recorded in days elapsed since the carcass was placed in the field. For carcasses that are scavenged some 
time before the first carcass check, CPmin = 0 and CPmax = time of the first carcass check. For carcasses that are known to 
have been scavenged at an exact time (for example, a coyote is seen removing the carcass), CPmin = CPmax = time of the 
scavenging event. For carcasses that are still present at the end of the field study, CPmin = time of final carcass check and 
CPmax = Inf (which is case sensitive)] 

 
CPmin CPmax 
0.95  5.99  

4.93  6.85  

12.03  12.03  

0  3.11  

0  0.11  

22.1  Inf  

20.82  Inf  
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After reading the .csv files, EoA fits exponential, Weibull, lognormal, and log-logistic 
persistence models to the field trial data, displaying the results in a table and graph (fig. 5). The 
empirical data are plotted as a Kaplan-Meier step function with 95% CIs for persistence probabilities 
indicated by dotted lines (Kaplan and Meier, 1958). The fitted models are plotted as smooth curves, 
with colors corresponding to the distributions’ colors in the table. For each distribution, the estimated 
shape (𝛼𝛼) and scale (𝛽𝛽) parameters are given along with a 95% confidence interval for 𝛽𝛽.  

The Akaike information criterion with correction for finite samples (AICc) is used to compare 
the four models (Burnham and Anderson, 2004). By itself, AICc has little practical value, but 
differences between AICc values of different models give an indication of the relative adequacy of the 
models for the given data. EoA gives the differences in AICc compared to the model with the smallest 
AICc as ΔAIC and selects the model with the smallest AICc as the default but allows users to select a 
different model if desired. Models with ΔAIC < 2 are considered comparable. Models with ΔAIC > 4 
have weak evidence to support them, and ΔAIC > 10 can be interpreted as strong evidence that the 
model is not competitive with the best. 

 

 
Figure 5. Screen capture of carcass persistence models. 
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Option: Enter Parameter Estimates manually 

There are situations where a user may wish to enter persistence parameters manually rather than 
fitting models to persistence field trial data. One example would be if raw data from persistence trials 
are not available, but summary statistics from a previous analysis are. Another example would be if a 
user wished to explore scenarios with different persistence distributions. The user would choose the 
desired persistence distribution and then enter the shape (𝛼𝛼) and scale (𝛽𝛽) parameters manually, along 
with a 95% confidence interval for the scale.  

2.2   Fatality Estimation—𝑴𝑴 and  𝝀𝝀 
The total mortality (𝑀𝑀) is estimated from the number of carcasses observed (𝑋𝑋) and the overall 

detection probability, which EoA estimates from the search data (appendix A). Mortality is estimated as 
𝑀𝑀∗, which is tied to the user’s choice of credibility level (1 − 𝛼𝛼) and can be interpreted as a 100(1 −
𝛼𝛼)% upper bound on the number of fatalities or for statements like: "Based on the search data, we can 
assert with 100(1 − 𝛼𝛼)% credibility that there were no more than 𝑀𝑀∗ fatalities." The credibility level 
(1 − 𝛼𝛼) in Bayesian statistics is analogous to confidence level (1 − 𝛼𝛼) in classical statistics.  

The mortality rate parameter (𝜆𝜆) is the average fatality event rate. For example, suppose a 
random process generates fatalities at an average 2.62 per year, then 𝜆𝜆 = 2.62. In any given year, the 
actual number of fatalities will never be 2.62 but could readily be anything between 0 and 5 and would 
be very unlikely to exceed 8. For a given set of search data, there will always be a degree of uncertainty 
about 𝜆𝜆, even if detection probability is 100% and the number of fatalities in a year is known exactly. 
For example, if it is known that there were 3 fatalities in a year, those fatalities could have been 
generated from a process with mean of 𝜆𝜆 = 2.76 or 6.31 or some other number near 3, but it would be 
unlikely that the mean would be as large as 𝜆𝜆 = 9 and highly unlikely to exceed 𝜆𝜆 = 15. EoA expresses 
the uncertainty about 𝜆𝜆 as a posterior distribution of 𝜆𝜆 (appendix B), along with summary statistics, 
including mean, median, and 100(1 − 𝛼𝛼)% CI. 

2.3   Single Class Module—Results 
EoA calculates estimates of detection probability (𝑔𝑔), total mortality (𝑀𝑀), and the mortality rate 

parameter (𝜆𝜆) and provides graphical and text summaries of results.  

2.3.1   Estimate 𝑔𝑔 

Statistics for the estimated probability of detection are given in the Estimated detection 
probability (g) results window (table 2) after the user clicks the Estimate 𝒈𝒈 button. Statistics 
include a point estimate for 𝑔𝑔 along with a 95% confidence interval (CI). Two statistics (Ba and Bb) that 
are not as intuitive but are central to the mortality estimation also are given. Ba and Bb are parameter 
estimates of a beta distribution fit to parametric bootstrap values of 𝑔𝑔� derived from the estimator 
equation (appendix A).  

The probability of detecting a carcass that arrives in the monitored area during the monitored 
period is given as a restricted estimate of 𝑔𝑔. This estimate is then extrapolated to the full site but 
restricted to the monitored period. Finally, 𝑔𝑔 is estimated for the full site for the full year. 
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Table 2. Results table generated by Evidence of Absence software showing estimation of 𝑔𝑔 in the Single Class 
Module. 
 

Summary statistics for estimation of detection probability (g) 
================================================================================ 
Results: 
 
Full site for full year  
   Estimated g = 0.118, 95% CI = [0.0882, 0.153] 
   Fitted beta distribution parameters for estimated g: Ba = 45.5576, Bb = 338.9368 
 
 
Full site for monitored period, 15-Mar-2016 through 13-Sep-2016 
   Estimated g = 0.158, 95% CI = [0.117, 0.203] 
   Fitted beta distribution parameters for estimated g: Ba = 43.6683, Bb = 232.752 
   Temporal coverage (within year) = 0.75 
 
 
Searched area for monitored period 
   Estimated g = 0.393, 95% CI = [0.289, 0.502] 
   Fitted beta distribution parameters for estimated g: Ba = 31.2806, Bb = 48.2838 
 
================================================================================ 
Input: 
Search parameters 
   trial carcasses placed = 158, carcasses found = 98 
   estimated searcher efficiency: p = 0.62, 95% CI = [0.543, 0.693] 
   k = 0.674 
   Search schedule: Search interval (I) = 7, number of searches = 26, span = 182 
     spatial coverage: 0.4     temporal coverage: 0.75 
________________________________________________________________________________ 
Carcass behavior 
   Lognormal persistence distribution 
     shape = 4.083 and scale = 1.171 
     95% CI ß = [0.487, 1.854] 
     r = 0.531 for Ir = 7 with 95% CI = [0.409, 0.651] 
   Uniform arrivals 
________________________________________________________________________________ 

2.3.2   Estimate 𝑀𝑀 

When the user clicks the Estimate 𝑴𝑴 button, posterior distributions of 𝑀𝑀 and summary statistics 
for 𝑀𝑀 and for the detection probabilities are calculated and displayed both as a graph  
(fig. 6) and in tabular format (table 3). Finally, summary statistics for the search schedule and for the 
fitted searcher efficiency and carcass persistence models are given. If the option of a one-sided CI is 
selected, then the estimated mortality at a user-defined credibility level of 1 − 𝛼𝛼 is given as 𝑀𝑀∗, which 
can be interpreted as the 100(1 − 𝛼𝛼)% credible upper bound for fatality. For example, in the full year 
results for the default Single Class data set (fig. 6), 𝑀𝑀∗ = 39 for 1 − 𝛼𝛼 = 0.9 means that the probability 
that the true number of fatalities was less than or equal to 39 is at least 90% according to posterior 
distribution. For 1 − 𝛼𝛼 = 0.5, 𝑀𝑀∗ = 18 is a balanced point estimate of 𝑀𝑀 with the odds that 𝑀𝑀 > 𝑀𝑀∗ 
and odds that 𝑀𝑀 ≤ 𝑀𝑀∗ being about equal. Larger values of 1 − 𝛼𝛼 yield larger 𝑀𝑀∗’s with greater 
assurance that 𝑀𝑀 ≤ 𝑀𝑀∗. If the option of a two-sided CI is selected, then the estimated mortality is given 
as a 100(1 − 𝛼𝛼)% credible interval (CI) for 𝑀𝑀 along with the median of the posterior.  

The posterior distributions of 𝑀𝑀 are given in both graphical and tabular format for total mortality 
at the entire site for the full year and for the entire site during the monitored period. In addition, a table 
of the posterior distribution of 𝑀𝑀 for fatalities arriving only in the monitored area during the monitored 
period is given in the text summary of results.  



19 

 
Figure 6. Graphs generated by Evidence of Absence software showing estimation of 𝑀𝑀 in the Single Class Module 
(graphical results for 𝑀𝑀∗). 
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Table 3. Results table generated by Evidence of Absence software showing estimation of 𝑀𝑀 in the Single Class 
Module (tabular results for 𝑀𝑀∗). 
 

Summary statistics for fatality estimation (M) 
================================================================================ 
Results: 
 
Carcasses discovered: X = 2 
 
Full site for full year   
   M* = 39 for 1 - alpha = 0.9 
   Estimated g: 0.118, 95% CI = [0.0869, 0.152] 
   Fitted beta distribution parameters for estimated g: Ba = 43.4322, Bb = 325.4424 
   Temporal coverage (within year) = 0.75 
 
Full site for monitored period, 15-Mar-2016 through 13-Sep-2016 
   M* = 29 for 1 - alpha = 0.9 
   Estimated g: 0.157, 95% CI = [0.116, 0.203] 
   Fitted beta distribution parameters for estimated g: Ba = 41.5421, Bb = 223.076 
 
Searched area for monitored period, 15-Mar-2016 through 13-Sep-2016 
   M* = 11 for 1 - alpha = 0.9 
   Estimated g = 0.391, 95% CI = [0.285, 0.501] 
 
   Fitted beta distribution parameters for estimated g: Ba = 30.0902, Bb = 46.9346 
 
________________________________________________________________________________ 
   Posterior distribution of M 
          Full site for        Full site for        Searched area for  
            full year        monitored period       monitored period 
    m  p(M = m) p(M > m)     p(M = m) p(M > m)      p(M = m) p(M > m) 
    0   0.0000   1.0000       0.0000   1.0000       0.0000   1.0000 
    1   0.0000   1.0000       0.0000   1.0000       0.0000   1.0000 
    2   0.0046   0.9954       0.0096   0.9904       0.0946   0.9054 
    3   0.0103   0.9850       0.0202   0.9702       0.1420   0.7634 
    4   0.0160   0.9691       0.0299   0.9403       0.1499   0.6135 
    5   0.0211   0.9480       0.0377   0.9026       0.1364   0.4771 
    6   0.0256   0.9224       0.0436   0.8590       0.1146   0.3626 
    7   0.0293   0.8931       0.0477   0.8113       0.0916   0.2710 
    8   0.0323   0.8608       0.0501   0.7612       0.0709   0.2001 
    9   0.0345   0.8263       0.0512   0.7099       0.0537   0.1464 
     . 
     . 
     . 
================================================================================ 
 
Input: 
Search parameters 
   trial carcasses placed = 158, carcasses found = 98 
   estimated searcher efficiency: p = 0.62, 95% CI = [0.543, 0.693] 
   k = 0.674, spatial coverage: a = 0.4 
   Search schedule: Search interval (I) = 7, number of searches = 26, span = 182 
________________________________________________________________________________ 
Carcass persistence 
   Lognormal persistence distribution with shape = 4.083 and scale = 1.171 
     95% CI ß = [0.487, 1.854] 
     r = 0.531 for Ir = 7 with 95% CI = [0.409, 0.651] 
   Uniform arrivals 
________________________________________________________________________________ 
Other 
  Integrated reference prior for binomial detection probability 
    p(M = m) proportional to sqrt(m+1)-sqrt(m) 
Prior distribution truncated at m = 128 
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If the option of a one-sided CI is selected, graphs of the posterior distributions display the 
complementary cumulative distribution functions (1 – CDF or CCDF). That is, for a given number of 
fatalities 𝑚𝑚 on the 𝑥𝑥-axis, the height of the bar corresponds to the probability that the number of 
fatalities was at least 𝑚𝑚. For example, in the default data set 𝑋𝑋 = 2 carcasses were observed, so there is 
100% probability that the number of fatalities was at least two. Correspondingly, the bars at 𝑚𝑚 =
0, 1, and 2 extend to 1.0 on the 𝑦𝑦-axis (fig. 6). At the other extreme, given that only two carcasses were 
discovered and the detection probability for the full year was 𝑔𝑔� = 0.118, it is highly unlikely that there 
were more than 60 fatalities. This is reflected in the very short bar at 𝑚𝑚 = 60 (fig. 6, top graph). The 
colored region represents values of 𝑀𝑀 ≤ 𝑀𝑀∗, which is the one-sided 100(1 − 𝛼𝛼)% CI for 𝑀𝑀. In most 
cases, the probability that 𝑀𝑀 exceeds 𝑋𝑋/𝑔𝑔� is about 50%, as reflected in this example at values of 𝑚𝑚 near 
𝑋𝑋/𝑔𝑔�  = 2

0.118
= 16.9 with bar heights near 0.5 (that is, 𝑃𝑃(𝑀𝑀 ≥ 16.9) ≈ 0.5) in the top graph in figure 6. 

However, this is only a back-of-the-envelope approximation that does not account for uncertainty in 𝑔𝑔�, 
and 𝑋𝑋/𝑔𝑔� frequently underestimates the median, especially when 𝑔𝑔 and 𝑋𝑋 are small or when there is 
great uncertainty in the estimate of 𝑔𝑔.  Compared with the posterior restricted to the monitored period, 
the full-year posterior appears to be pushed farther to the right to account for the fatalities that could 
have occurred outside the monitored period (fig. 6).  

If the option of a two-sided CI is selected, graphs of the posterior distributions display the 
probability density functions (PDFs). That is, for a given number of fatalities 𝑚𝑚 on the 𝑥𝑥-axis, the height 
of the bar corresponds to the posterior probability that the number of fatalities was equal to 𝑚𝑚. For 
example, in the default data set 𝑋𝑋 = 2 carcasses were observed, so there is 0% probability that the 
number of fatalities was less than two and there are no bars at 𝑚𝑚 = 0 and 1 (fig. 7). The colored regions 
represent the nominal 100(1 − 𝛼𝛼)% CI for 𝑀𝑀. More precisely, the posterior probability that 𝑀𝑀 is in the 
CI is at least 1 − 𝛼𝛼, and the probability that 𝑀𝑀 lies to the left of the interval is no more than 𝛼𝛼/2. Note 
that the posteriors tend to be right-skewed (especially when 𝑔𝑔� is small or has large variance), so that the 
mean and 𝑋𝑋/𝑔𝑔� will typically be located somewhat to the right of the peak.  

The posterior distributions of 𝑀𝑀|(𝑋𝑋, 𝑔𝑔�) are reproduced as both PDFs and CCDFs in a table in the 
results window (table 3). In addition, for advanced users, R functions are provided for calculating 
posterior distributions of 𝑀𝑀 (PDF), 𝑀𝑀∗’s, and CIs given 𝑋𝑋 and 𝑔𝑔� (or 𝑔𝑔) (table 4). For example, the 
functions postM.ab(x, Ba, Bb) and postM(x, g) return the posterior distribution of 𝑀𝑀 conditioned 
on carcass count and detection probability (as characterized by beta distribution parameters 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 
when 𝑔𝑔 is estimated as 𝑔𝑔~beta(𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵) or simply as 𝑔𝑔 if 𝑔𝑔 is known with certainty). 
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Figure 7. Graphs generated by Evidence of Absence software showing estimation of 𝑀𝑀 in the Single Class Module 

(graphical results for two-sided credible interval).  
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Table 4. R command line functions for calculating key Single Class results manually. 
 
[Inputs include x = carcass count and the detection probability, which may be entered either as beta distribution parameters, 
Ba and Bb (when 𝑔𝑔 is estimated), or as g (when 𝑔𝑔 is assumed to be fixed and known). The posteriorL family of 
functions return functions rather than arrays. Additional functions and data accessible from the command line are provided in 
appendix I] 

Posterior distributions of 𝑀𝑀: 
postM.ab(x, Ba, Bb) 
postM(x, g) 
 
𝑀𝑀∗ values: 
postMstar.ab(x, Ba, Bb, conf.level = 0.95) 
postMstar(x, g, conf.level = 0.95) 
 
Credible intervals for 𝑀𝑀: 
postMCI.ab(x, Ba, Bb, conf.level = 0.95) 
postMCI(x, g, conf.level = 0.95) 
 
Posterior distribution functions for 𝜆𝜆: 
posteriorL.ab(x, Ba, Bb)     # CDF  
posteriorL(x, g)             # CDF 
posteriorLpdf.ab(x, Ba, Bb)  # PDF  
posteriorLpdf(x, g)          # PDF 

2.3.3   Estimate 𝜆𝜆 

The posterior distribution of the estimated mortality rate parameter (𝜆𝜆) given the carcass count 
(𝑋𝑋) and the estimated detection probability (𝑔𝑔�) is calculated and displayed in a graph as a CDF along 
with the mean, median, 5th and 95th percentiles, 100(1 − 𝛼𝛼)% CI for 𝜆𝜆, and summary statistics for 
detection probability (fig. 8).  

For advanced users, the posterior distributions (CDFs) of 𝜆𝜆|(𝑋𝑋, 𝑔𝑔�) and 𝜆𝜆|(𝑋𝑋, 𝑔𝑔) also are provided 
as R functions posteriorL.ab(x, Ba, Bb) and posteriorL(x, g), respectively (table 4).  For 
example, the posterior distribution of 𝜆𝜆|(𝑋𝑋 = 2, 𝑔𝑔 = 0.117) can be defined and used as follows: 

L<-seq(0, 75, length = 100) 

pL<-posteriorL(x = 2, g = 0.117) 

plot(L, pL(L)) 

The intermediate step of defining pL can be omitted. For example,  

plot(L, posteriorL(x = 2, g = 0.117)(L)) 

Similarly, the posterior PDFs are also provided as R functions posteriorLpdf.ab(x, Ba, Bb) 
and posteriorLpdf(x, g), with implementation like that of the CDFs.  

In addition, R functions are provided for calculating CIs for 𝜆𝜆|(𝑋𝑋, 𝑔𝑔�) and 𝜆𝜆|(𝑋𝑋, 𝑔𝑔) for user-
defined  1 − 𝛼𝛼 credibility level, namely postL.abCI(x, Ba, Bb, conf.lev = 0.95) and 
postL.CI(x, g, conf.lev = 0.95), respectively. More functions and data that are accessible from 
the command line are described in appendix I. 
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Figure 8. Graph generated by Evidence of Absence software showing posterior distribution of 𝜆𝜆 for entire site for 
full year, Single Class Module.  
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3.   Multiple Class Module 

When the searched area is divided into two or more classes or subunits, the Multiple Class 
Module can be used to combine data from independent classes to estimate the total mortality. For 
example, a given site may be subdivided into several classes depending on vegetative cover (for 
example, easy, moderate, and difficult visibility), ground texture or color (for example, roads and pads 
versus cleared ground), or season (for example, spring and fall). Also, different sites within a region 
may each be taken as separate classes and combined to estimate a regional total.  

3.1   Data and Parameters 
Data from each class are analyzed separately, and summary statistics are entered into the class 

table (fig. 9). The coverage (𝑎𝑎i) for class i is the fraction of the total carcasses arriving a given class 
(Huso and Dalthorp, 2014), and the values in the 𝑎𝑎 column must sum to 1.0. 𝑋𝑋 is the observed number 
of carcasses. 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 are the parameters of the beta distribution characterizing 𝑔𝑔�. The 𝑔𝑔� and 95% CI 
columns are point and interval estimates of the overall detection probabilities for each class. These are a 
function of 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 and cannot be edited directly by the user.  

 

 
Figure 9. Screen capture of Multiple Class Module (inputs). 

 

3.1.1   Overview of 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 Parameters 
The 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters characterize the estimated detection probability (𝑔𝑔�) along with its 

uncertainty, or, more precisely, 𝑔𝑔�~beta(𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵). From 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵, myriad statistics about the detection 
probability can be calculated. For example, the expected value of 𝑔𝑔� is E[𝑔𝑔�] = 𝐵𝐵𝐵𝐵

𝐵𝐵𝐵𝐵+𝐵𝐵𝐵𝐵
, which is a good 

point estimate of 𝑔𝑔; the variance of 𝑔𝑔� is V[𝑔𝑔�] = 𝐵𝐵𝐵𝐵⋅𝐵𝐵𝐵𝐵
(𝐵𝐵𝐵𝐵+𝐵𝐵𝐵𝐵)2(𝐵𝐵𝐵𝐵+𝐵𝐵𝐵𝐵+1) , which gives a good indication of 

the degree of uncertainty associated with the estimated 𝑔𝑔; and a 95% CI for 𝑔𝑔 would be 
[𝐹𝐹−1(0.025;  𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵), 𝐹𝐹−1(0.975; 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵)] where 𝐹𝐹(𝑥𝑥; 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵) is the CDF of the beta distribution with 
parameters 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵, and 𝐹𝐹−1 can be calculated in R as qbeta(x, shape1 = Ba, shape2 = Bb).  
  



26 

Crucial to the interpretation of the 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters and the estimated detection 
probabilities that they characterize is that they are specific to a particular period of inference, and the 
𝐵𝐵𝐵𝐵’s and 𝐵𝐵𝐵𝐵’s listed in the input table in the Multiple Class Module are assumed to apply to the same 
period of inference. For example, suppose carcasses arrive uniformly through the year at a site that is 
subdivided into two search classes. 

3.1.2   Calculating 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 Parameters 
There are several options for calculating the 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 values to enter into the table. One is to 

select the Calculate g parameters from monitoring data option and click the Add class button. This will 
open the Search Class window for entering search data as with the Single Class Module (fig. 2) but with 
two minor differences. First, it is assumed that there is 100% search coverage within the class, and thus 
the class coverage (𝑎𝑎i) is ignored in the calculation of 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵. Second, when the Estimate 𝒈𝒈 or 
Estimate 𝑴𝑴 button is clicked, the data entry form closes, and the resulting estimated 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 
parameters are entered into the class table in the Multiple Class Module. 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters for each 
class can be successively calculated in this way to fill in the class table. Care must be taken to ensure 
that the period of inference remains the same for all classes. For example, if the monitoring period 
varies among classes, then the temporal coverage, class names, and (𝑎𝑎i) parameters must be entered 
manually.  

Care must be taken to ensure that the period of inference is the same for all classes. For example, 
if the monitoring period is the same for all classes, the temporal coverage parameter (𝑣𝑣) in the Search 
Class window should be set to the same value for all classes, which would typically be: (1) 𝑣𝑣 = 1.0 in 
order to restrict inference to the monitored period or (2) 𝑣𝑣 equal to the fraction of annual fatalities that 
are expected to occur during the monitored period in order to define the period of inference as the full 
year. 

A second option is to select Enter g parameters manually and calculate 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 for each class 
using the Single Class Module with search coverage set to 𝑎𝑎 = 1. After calculating 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵, the 
values may be recorded separately and entered into the multiple class table manually.  

Finally, if original search data are not available but estimates of 𝑔𝑔� are, the estimated detection 
probabilities (with 95% CIs) can be converted to corresponding 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters3 using the 
Parameter Conversion Calculator which can be opened from the Help menu. For example, when 
𝑔𝑔� = 0.2 with 95% CI = [0.1, 0.3] are entered, the corresponding 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters are 
automatically updated (fig. 10). The values can then be recorded and entered manually into the multiple 
class table.  

 
3Normally, there is no beta distribution with 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters that give a mean of 𝑔𝑔� and the given 95% CI, 
so an approximation must be used. The parameter conversion calculator gives the 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters that 
define a beta distribution with mean = 𝑔𝑔� and standard deviation = 1/4 of width of the 95% CI. 
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Figure 10. Screen capture of parameter conversions calculator. For a given 𝑔𝑔� with 95% CI, the calculator gives 𝐵𝐵𝐵𝐵 
and 𝐵𝐵𝐵𝐵 parameters of a beta distribution with mean = 𝑔𝑔� and with 0.025 and 0.975 quantiles approximately equal to 
the given bounds on the CI for 𝑔𝑔�. Conversely, for given 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵, the calculator gives 𝑔𝑔� = mean and bounds on 
the 95% CI equal to the 0.025 and 0.975 quantiles of a beta distribution with parameters 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵.  

 

3.2   Multiple Class Module—Results 
After the data have been entered, the posterior distribution of 𝑀𝑀 and summary statistics are 

presented in both graphical and tabular format upon clicking the Calculate button. The results graphs 
are similar to the results graphs for the Single Class (section 2.3.2) with one key difference: the results 
for Single Class show posterior distributions of 𝑀𝑀 for two different periods of inference (monitored 
period and full year), whereas results graphs for Multiple Classes show posterior distributions of 𝑀𝑀 only 
for the common period of inference among the separate classes.  

Like the results table for Single Class (table 3), the results table for Multiple Classes gives 
summary statistics for 𝑔𝑔� and 𝑀𝑀∗ but restricted to the common period of inference among the classes 
(table 5). In addition, there is a likelihood ratio test of the plausibility of the assumed relative weights 
(as discussed in appendix F, section F.3). Misspecification of the relative weights in the multiple class 
model can introduce bias, especially when the detection probabilities vary considerably among classes. 
There is a tradeoff between bias and variance in mortality estimators. The EoA method of combining 
data from search classes introduces some potential for bias in exchange for a substantial reduction in 
variance. When counts are small, that tradeoff results in smaller errors on average for EoA than for the 
often-used Horvitz-Thompson estimator (appendix E).  
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Table 5. Results table generated by Evidence of Absence software showing Multiple Class estimates (posterior 
distribution of 𝑀𝑀 has been truncated to save space). 
 

Summary statistics for multiple class estimate 
================================================================================ 
Input: Detection probability, by search class 
  Search coverage = 0.7 
 
  Class           a      X    Ba     Bb   ghat    95% CI 
  unsearched     0.3     0   ---    ---    0   [    0,     0] 
  Easy          0.15     1   3.05   1.64 0.650 [0.225, 0.959] 
  Moderate      0.35     0    4.5    5.5 0.450 [0.173, 0.746] 
  Difficult      0.2     0    3.5   31.5 0.100 [0.025, 0.217] 
================================================================================ 
Results for full site 
________________________________________________________________________________ 
 
Detection probability 
  Estimated g = 0.275, 95% CI = [0.164, 0.403] 
  Fitted beta distribution parameters for estimated g: Ba = 14.3286, Bb = 37.7663 
 
Mortality 
  M* = 8 for credibility 1 - alpha = 0.8, i.e., P(M <= 8) >= 80% 
  Estimated annual fatality rate: lambda = 5.91, 95% CI = [ 0.398, 19.56] 
 
Test of assumed relative weights (rho) 
  Class          Assumed   Fitted (95% CI) 
  unsearched      0.300      NA 
  Easy            0.150    [0.008, 0.668] 
  Moderate        0.350    [0.000, 0.533] 
  Difficult       0.200    [0.006, 0.676] 
  p = 0.37138 for likelihood ratio test of H0: assumed rho = true rho 
 
Mortality rates (lambda) by class 
  Class          Median        IQR           95% CI 
  unsearched     ---          ---           ---  
  Easy             2.03    [ 1.00,  3.78]  [ 0.17, 12.12] 
  Moderate         0.57    [ 0.13,  1.71]  [ 0.00,  7.70] 
  Difficult        2.93    [ 0.63,  9.15]  [ 0.01, 48.66] 
 
Posterior distribution of M 
m     p(M = m) p(M > m) 
0      0.0000   1.0000 
1      0.1364   0.8636 
2      0.1489   0.7146 
3      0.1350   0.5797 
                     . 
                     . 
                     . 
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4. Multiple Years Module 

The Multiple Years Module (fig. 11) provides tools for tracking estimated fatalities and 
mortality rates in the past and for projecting future mortality (𝑀𝑀, 𝜆𝜆) and mortality estimates (𝑀𝑀∗, 𝜆̂𝜆, and 
their credible intervals). 

 

 
 

Figure 11. Screen capture of Multiple Years Module (inputs). 
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4.1   Past Monitoring and Operations Data 
In the Past monitoring and operations data table (fig. 11), for each year monitored, the user 

enters the year, the relative mortality rate (𝜌𝜌), the number of carcasses observed (𝑋𝑋), and the 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 
parameters for the detection probability.  

Data can be entered manually, by importing from a previously saved .rds file, or by copy-and-
paste from a text file or spreadsheet. New rows can be appended to the bottom of the table using the 
keyboard shortcut <Ctrl+a> or by pressing <Enter> when the cursor is in the last row of the table. 
Similarly, the active row can be deleted using <Ctrl+d>. Data in the “𝑔𝑔�” and “95% CI” columns are 
calculated from Ba and Bb and cannot be edited directly manually. Also, the table cannot be edited 
when the Projection of future mortality and estimates option is selected.  

4.1.1   Year 

The model regards the Year column as nothing more than a list of names for independent 
monitoring periods. In many cases, the Year column refers to a calendar year, but each line could be any 
period of time, for example a season or a phase of a project, and should be understood as such, although 
for convenience we refer to it as a year. The model does assume that the years are independent, that is, 
the estimated detection probabilities are based on separate carcass persistence and searcher efficiency 
trials each year. 

4.1.2   Relative Mortality Rate (𝜌𝜌) 

The assumed relative mortality rate is 𝜌𝜌. If there are no changes in operations and no reason to 
suspect mortality rates varied systematically from year to year, then 𝜌𝜌 = 1 each year. However, if 
operations or ecological conditions change, the 𝜌𝜌 parameter should be adjusted to reflect changes. For 
example, if a site is expanded by 20% in year 3, then 𝜌𝜌 = 1 for years 1 and 2 as a baseline and 𝜌𝜌 = 1.2 
in year 3 would be appropriate. Or if minimization measures that are expected to reduce fatalities by 
30% are implemented in year 3, then 𝜌𝜌 = 1 for years 1 and 2, and 𝜌𝜌 = 0.7 for year 3.  

4.1.3   Number of Observed Carcasses (𝑋𝑋) 

The number of carcasses that have been observed each year is expected to be small (𝑋𝑋𝑖𝑖 ≤ 5). If 
the number of carcasses is large (𝑋𝑋𝑖𝑖 ≥ 10), the model is still valid but may be more sensitive to 
potential bias if the relative weights (𝜌𝜌𝑖𝑖) are misspecified. 

4.1.4   Detection Probability Parameters (𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵) 

The detection probability parameters for each year are calculated using EoA’s Single Class 
Module with the monitoring data from the year in question, recorded, and then entered into the Past 
monitoring and operations data table. An overall detection probability for combined years is then 
calculated from the yearly 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters and the relative weights, 𝜌𝜌 (appendix F).  
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4.2   Options 
The user has the option of estimating the actual number of fatalities (𝑀𝑀) or the average fatality 

rate (𝜆𝜆), as described in section 2.2. 

4.2.1   Estimate 𝑀𝑀 

Mortality estimates are defined for a specific credibility level, 1 − 𝛼𝛼, which is entered by the 
user. The value of 1 − 𝛼𝛼 can be interpreted as approximately the probability that the true number of 
fatalities (𝑀𝑀) is less than or equal to the estimated number of fatalities (𝑀𝑀∗). An 𝑀𝑀∗ based on a 
credibility level of 1 − 𝛼𝛼 = 0.5 is the most accurate (in the sense that odds are about 50-50 that 
𝑀𝑀 ≤ 𝑀𝑀∗), while higher credibility levels yield larger 𝑀𝑀∗ and greater assurance that 𝑀𝑀 ≤ 𝑀𝑀∗. 

The option allows the user to estimate Total mortality in past years, Track past mortality (both 
annual and cumulative), or calculate a Projection of future mortality and estimates.  

4.2.1.1   Total Mortality 

Under the "total mortality" option, the posterior distribution of the total mortality over the period 
of time spanned by the search data is calculated. If the option of a one-sided CI is selected, then the 
estimated mortality at a user-defined credibility level of 1 − 𝛼𝛼 is given as 𝑀𝑀∗, which can be interpreted 
as the 100(1 − 𝛼𝛼)% credible upper bound for fatality. If the option of a two-sided CI is selected, then 
the estimated mortality is given as a 100(1 − 𝛼𝛼)% credible interval (CI) for 𝑀𝑀 along with the median of 
the posterior. 

Results are displayed in both graphical (fig. 12) and text format (table 6). The overall detection 
probability (𝑔𝑔) is the probability of finding a carcass that arrives at the site at any time during the 
monitored years. The baseline fatality rate (𝜆𝜆) is the fatality rate in a year with relative weight of 𝜌𝜌 = 1. 
In general, the fatality rate in year 𝑖𝑖 is 𝜌𝜌𝑖𝑖𝜆𝜆. Point and interval estimates of both 𝑔𝑔 and 𝜆𝜆 are given. For 
example, with the default multiple years data set, the total number of fatalities in the 5 years is estimated 
to be 𝑀𝑀∗ = 15 for 1 − 𝛼𝛼 = 0.5, which is a point estimate of the true number of fatalities. A precise 
interpretation would be that the probability that the true number of fatalities was less than or equal to 15 
is at least 50% according to the posterior distribution.  

To some degree, estimates of multi-year total mortality depend on the relative weights (𝜌𝜌𝑖𝑖) as 
defined by the user. However, in most cases the EoA model is robust with respect to assumptions about 
𝜌𝜌𝑖𝑖’s, and mortality estimates are often largely unaffected by misspecification of 𝜌𝜌𝑖𝑖’s. In some cases, 
though, misspecification of the 𝜌𝜌𝑖𝑖’s can significantly influence mortality estimates. EoA tests whether 
the monitoring data provide evidence that the 𝜌𝜌𝑖𝑖’s are significantly misspecified and the degree to which 
that misspecification may introduce bias into the mortality estimates.  
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Figure 12. Graph generated by Evidence of Absence software showing posterior distribution of 𝑀𝑀 (Multiple Years 
Module). 
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Table 6. Results table generated by Evidence of Absence software showing estimation of total mortality in Multiple 
Years Module.  
 
[The original posterior distribution of 𝑀𝑀 has been truncated in the table to save space] 

Summary statistics for total mortality through 5 years 
------------------------------------ 
Results 
M* = 15 for 1 - alpha = 0.5, i.e., P(M <= 15) >= 50% 
 
Estimated overall detection probability: g = 0.212, 95% CI = [0.195, 0.229] 
   Ba = 459.7, Bb = 1708.8 
 
Estimated baseline fatality rate: lambda = 3.31, 95% CI = [0.797, 7.59] 
 
 
Test of assumed relative weights (rho) and potential bias 
Assumed rho:  1.000 1.000 1.000 1.000 1.000 
Fitted rho:   2.057 0.215 1.118 0.805 0.805 
p = 0.566 for likelihood ratio test of H0: assumed rho = true rho 
Quick test of relative bias: 1.08  
 
Posterior distribution of M 
m     p(M = m) p(M > m) 
0      0.0000   1.0000 
1      0.0000   1.0000 
2      0.0000   1.0000 
3      0.0043   0.9957 
4      0.0119   0.9838 
5      0.0212   0.9625 
6      0.0307   0.9318 
7      0.0394   0.8924 
8      0.0466   0.8458 
9      0.0521   0.7937 
          . 
          . 
          . 
================================================================================ 
Input 
Year (or period) rel_wt  X    Ba     Bb   ghat    95% CI 
1942             1.000   2  100.5  234.5 0.300 [0.252, 0.350] 
1943             1.000   0  100.5  234.5 0.300 [0.252, 0.350] 
1944             1.000   1  100.5  234.5 0.300 [0.252, 0.350] 
1945             1.000   0  235.4   2708 0.080 [0.070, 0.090] 
1946             1.000   0  235.4   2708 0.080 [0.070, 0.090] 
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Results of statistical tests (appendix F, section F.3) of the plausibility of the assumed relative 
weights (𝜌𝜌) are included in the text output (table 6). The assumed values of 𝜌𝜌 for each year are the 
values entered by the user in the Past monitoring and operations data table in the Multiple Years 
Module window. The first test is a simple, side-by-side comparison of the assumed 𝜌𝜌 values versus the 
fitted 𝜌𝜌 values, which represent estimates of the true relative weights as calculated from the search data 
(section G.3.1). This simple test gives a qualitative indication of the degree to which the assumed 𝜌𝜌’s 
may be misspecified. However, typically there is a high degree of uncertainty in the fitted 𝜌𝜌’s, so a 
quantitative significance test also is performed. Taking into account the uncertainty in fitted 𝜌𝜌’s, a 𝑝𝑝-
value is calculated for a likelihood ratio (LRT) test of whether the assumed 𝜌𝜌’s are equal to the true 𝜌𝜌’s 
(section G.3.2). When detection probabilities do not vary from year to year, 𝜌𝜌 has no effect on mortality 
estimates, and no bias is introduced even if the assumed 𝜌𝜌’s are badly mistaken. However, if 𝑔𝑔� varies 
markedly from year to year and the 𝑋𝑋𝑖𝑖’s are not small, then mortality estimates may be sensitive to the 
assumed 𝜌𝜌 values, introducing bias into the mortality estimates. Thus, significant misspecification of 𝜌𝜌’s 
is a cause for concern, although it may not have a significant effect on fatality estimates. A quick test for 
bias (section G.3.3) helps inform interpretation of the LRT. The ratio of the 1 − 𝛼𝛼 quantile of the 
posterior distributions of 𝜆𝜆 calculated with the user-provided column of 𝜌𝜌 values and with the fitted 𝜌𝜌 
values is taken as a rough estimate of the relative bias.  

4.2.1.2   Track Past Mortality 

Under the "track past mortality" option, the estimated annual and cumulative mortality is 
estimated for each year of past search data (as entered in the Past monitoring and operations data table). 
The user enters the number of years in the project and a mortality threshold (Τ), which may be a long-
term take limit or some other significant mortality level. The number of years in the project and Τ are 
not used in the calculations to track past mortality but are used to define bounds on a graph of results. 
Results are shown both in graphical and text format.  

In the tracking graph (fig. 13), posterior distributions of the cumulative mortality (𝑀𝑀) through 
the monitored years are shown as color bars, and point and interval estimates of the overall detection 
probability for the entire period and of the baseline fatality rate.  
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Figure 13. Graph generated by Evidence of Absence software showing estimated cumulative mortality through the monitored years. 
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Posterior distributions of the annual fatality rates (𝜆𝜆) for every year monitored are given in a 
separate graph (fig. 14). The estimates of annual rates are based solely on the search data for the given 
year and do not take into consideration assumed relative rates, 𝜌𝜌.  

Results in text format (table 7) include summary statistics for the total mortality through the 
monitored years, including 𝑀𝑀∗ and point and interval estimates for overall detection rate (𝑔𝑔) and 
baseline fatality rate (𝜆𝜆). In addition, summary statistics for estimates of cumulative and annual 
mortality are given for each year. Finally, results of the tests for validity of the assumed weights (𝜌𝜌) and 
for potential bias are given because mortality estimates may not be accurate if 𝜌𝜌𝑖𝑖’s are significantly 
misspecified. These tests are described in more detail in section F.3.  

 

 
Figure 14. Box and whisker plots generated by Evidence of Absence software showing posterior distributions of 𝜆𝜆 
for each year that monitoring data were available.  
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Table 7. Results table generated by Evidence of Absence software showing cumulative and annual mortality 
estimate. 
 

Summary statistics for mortality estimates through 5 years 
------------------------------------ 
Results 
 
M* = 15 for a = 0.5, i.e., P(M <= 15) >= 50% 
Estimated overall detection probability: g = 0.212, 95% CI = [0.195, 0.229] 
   Ba = 459.7, Bb = 1708.8 
Estimated baseline fatality rate (for rho = 1): lambda = 3.31, 95% CI = [0.797, 7.59] 
 
Cumulative Mortality Estimates 
                                              mean 
Year          X    g     M*  median  95% CI  lambda       95% CI 
1942          2 0.300    7     7     [2, 17]   8.42   [1.385, 21.83] 
1943          2 0.300    7     7     [2, 17]  8.376   [1.385, 21.61] 
1944          3 0.300   10    10     [4, 23]  11.71   [2.814, 26.89] 
1945          3 0.245   13    13     [4, 27]  14.33   [3.447, 32.88] 
1946          3 0.212   15    15     [5, 33]  16.55   [3.983, 37.97] 
 
 
Annual Mortality Estimates 
                                              mean 
Year          X    g     M*  median  95% CI  lambda       95% CI 
1942          2 0.300    7     7     [2, 17] 8.4200   [1.3850, 21.8300] 
1943          0 0.300    0     0     [0, 5] 1.6840   [0.0017, 8.4910] 
1944          1 0.300    4     4     [1, 12] 5.0520   [0.3604, 15.8600] 
1945          0 0.080    2     2     [0, 23] 6.2870   [0.0062, 31.6500] 
1946          0 0.080    2     2     [0, 23] 6.2870   [0.0062, 31.6500] 
 
 
Test of assumed relative weights (rho) and potential bias 
Assumed rho:  1.000 1.000 1.000 1.000 1.000 
Fitted rho:   2.057 0.215 1.118 0.805 0.805 
p = 0.553 for test of H0: assumed rho = true rho 
Quick test of relative bias: 1.08 
 
================================================================================ 
Input 
Year (or period)  rho    X    Ba     Bb   ghat    95% CI 
1942             1.000   2  100.5  234.5 0.300 [0.252, 0.350] 
1943             1.000   0  100.5  234.5 0.300 [0.252, 0.350] 
1944             1.000   1  100.5  234.5 0.300 [0.252, 0.350] 
1945             1.000   0  235.4   2708 0.080 [0.070, 0.090] 
1946             1.000   0  235.4   2708 0.080 [0.070, 0.090] 
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4.2.1.3   Projection of Future Mortality and Estimates 

For the projection analysis, the user enters past search data in the Past monitoring and 
operations data table and anticipated future monitoring parameters and relative fatality rates. In turn, 
EoA simulates future mortality and search processes. Then, the EoA model is used to make projected 
fatality estimates from the simulated future search results. Output includes summary statistics for 
projected mortality (𝑀𝑀), projected mortality estimates (𝑀𝑀∗), and projected mortality threshold 
exceedance patterns. 

There are three options for entering future monitoring and operations parameters. Under option g 
and ρ unchanged from most recent year, parameters that were used in the most recent year of past 
monitoring are applied to all future years as well. Under option g and ρ constant, different from most 
recent year, the user enters parameter values for the first projection year, which remain constant for all 
projection years. Under option g and ρ vary among future years, the user may edit the parameters values 
in the Future monitoring and operations parameters table manually. Values may be typed into the 
table or pasted from the clipboard. To navigate within the table, use the arrow keys. To append or delete 
rows, edit the Total years in project. A parameter conversion calculator is available via the Help menu 
to convert from point and interval estimates of 𝑔𝑔 to approximately equivalent beta distribution 𝐵𝐵𝐵𝐵 and 
𝐵𝐵𝐵𝐵 parameters (and vice versa). The conversion from 𝑔𝑔� with 95% CI to 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 is not exact because 
there is no guarantee that a given combination of 𝑔𝑔� with 95% CI will have a beta distribution to match 
(appendix J).  

Based on the past data, the software estimates the baseline mortality rate (𝜆𝜆 for years with 𝜌𝜌 =
1) and then generates simulated fatalities for future years at a rate of 𝜆𝜆𝜌𝜌𝑖𝑖 for year each year 𝑖𝑖, where 𝜌𝜌𝑖𝑖 
is the user-defined anticipated relative weight for year 𝑖𝑖.   

For each future year, the mean, median, IQR, and 80% and 90% PI’s of the posterior predictive 
distributions of both the cumulative mortality and corresponding mortality estimates (appendix F, 
section F.2) are given in graphical and text format.  

Featured in the Cumulative mortality plot (fig. 15) for each year until the end of the project are 
(1) box-and-whisker plots of projected actual mortality, 𝑀𝑀, and (2) gray color bars showing the 
projected estimated mortality, 𝑀𝑀∗, with light gray lines indicating the median. The box and whisker 
plots show projected numbers of actual fatalities and are of interest to conservation. However, because 
the true number of fatalities will never be known with certainty, future management decisions will be 
based on estimated mortalities, and the gray bars give an indication of what the available mortality 
information will look like to managers in future years.  

With the default data set, in year 20 the median projected mortality (𝑀𝑀) is equal to the mortality 
threshold Τ, indicating that if the mortality rate does not change, there is a 50% chance that the 
cumulative mortality will exceed Τ in year 20 (fig. 15). However, the median projected estimate of 
mortality (𝑀𝑀∗) is clearly less than Τ in year 20 (light gray line) but greater than Τ in year 21, indicating 
that there is somewhat less than 50-50 odds that the mortality estimate in year 20 will exceed Τ and 
slightly greater than 50-50 odds that it will exceed Τ in year 21.  

Results also are given in tabular format. The output file has been split into two parts for 
discussion, with summary statistics for future projections shown in table 8 and summary statistics for 
past estimates shown in table 9.  
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Figure 15. Box and whisker plots generated by Evidence of Absence software showing estimates of past mortality and projections of future mortality 
and mortality estimates, 𝛼𝛼 = 0.5.  
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Table 8.  Results table generated by Evidence of Absence software showing summary statistics for future mortality 
projections, 1 − 𝛼𝛼 = 0.5 (part A).  
 

Summary statistics from posterior predictive distributions for 10000 simulated projects 
------------------------------------ 
Estimated annual baseline fatality rate (lambda for rho = 1): mean = 3.31, 95% CI = [0.797, 7.59] 
 
Projected fatalities and fatality estimates... 
p(M > Tau within 30 years) = 0.7922  [exceedance] 
p(M* > Tau within 30 years) = 0.7383  [triggering] 
M* based on credibility level 1 - alpha = 0.5 
 
Among projects with triggering (73.83%), mean(M) = 66.89 at time of triggering,  
   with median = 64 and IQR = [52, 79] 
Among projects with no triggering (26.17%), mean(M) = 59.25 at end of 30 years,  
   with median = 56 and IQR = [43, 72] 
 
Years of operations without triggering: 
 Mean = 22.03, with median =  21 and IQR = [18, 30] 
 
---------------------------------------- 
Summary statistics for projection years 
---------------------------------------------------------------------------------------------------- 
Yr   Mean         quantiles of M                         | quantiles of M*                          
      M    M*   0.05  0.10  0.25  0.50  0.75  0.90  0.95 |  0.05  0.10  0.25  0.50  0.75  0.90  0.95 
---------------------------------------------------------------------------------------------------- 
1   19.4 17.5      8    10    13    18    24    31    35 |    16    16    16    16    16    22    22 
2   22.7 21.1     10    12    16    21    28    35    40 |    18    18    18    18    24    29    29 
3   25.9 23.9     12    14    19    25    32    39    44 |    19    19    19    25    25    32    38 
4   29.2 27.0     14    16    21    28    36    44    50 |    20    20    20    27    33    40    40 
5   32.5 30.2     15    18    24    31    40    49    55 |    21    21    21    28    35    42    49 
6   35.7 33.7     16    20    26    34    44    54    61 |    22    22    22    30    37    51    51 
7   39.0 36.8     18    21    28    37    48    60    67 |    23    23    31    31    45    53    60 
8   42.2 40.1     19    23    30    40    52    65    73 |    24    24    32    39    47    55    70 
9   45.5 43.3     20    24    32    43    56    70    79 |    25    25    33    40    48    64    72 
10  48.8 46.3     22    26    34    46    60    75    86 |    25    25    33    41    58    66    82 
11  52.1 49.6     23    28    36    49    64    81    91 |    26    26    34    42    59    75    84 
12  55.4 52.8     24    29    39    52    69    86    98 |    26    26    35    52    60    77    94 
13  58.6 56.0     25    31    41    55    73    91   104 |    27    35    44    53    70    87    95 
14  61.9 59.1     27    32    43    58    77    97   111 |    27    36    45    53    71    88   106 
15  65.1 62.4     28    33    45    61    81   102   118 |    28    37    45    54    72    99   107 
16  68.4 65.6     29    35    47    64    85   108   124 |    28    37    46    64    82   100   118 
17  71.6 69.0     30    36    49    67    89   113   130 |    29    38    47    65    83   110   119 
18  74.9 71.9     32    38    51    70    94   118   137 |    38    38    47    66    84   112   130 
19  78.2 75.2     33    39    53    73    98   124   143 |    39    39    48    66    94   113   131 
20  81.4 78.4     34    41    55    76   102   130   150 |    39    39    58    76    95   123   142 
21  84.7 81.7     35    42    57    79   106   135   157 |    39    39    58    77    96   125   153 
22  88.0 84.8     36    43    59    82   110   140   163 |    40    40    59    78   107   135   155 
23  91.2 88.2     37    45    61    85   115   146   169 |    40    50    59    79   108   136   165 
24  94.5 91.3     38    46    63    88   119   152   176 |    40    50    60    89   108   147   167 
25  97.8 94.6     39    47    65    91   123   157   182 |    41    50    60    90   119   148   178 
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Table 9. Results table generated by Evidence of Absence software showing summary statistics for past mortality 
estimates, 1 − 𝛼𝛼 = 0.5 (part B).  
 

Governing parameters: Tau = 60, alpha = 0.5 
 
Data for 5 years of monitoring: 
            yr    x    g    glwr   gupr  rho  M* 
           1942   2 0.3000 0.2500 0.3500  1   7 
           1943   0 0.3000 0.2500 0.3500  1   7 
           1944   1 0.3000 0.2500 0.3500  1  10 
           1945   0 0.0800 0.0700 0.0900  1  13 
           1946   0 0.0800 0.0700 0.0900  1  15 
 
Parameters for future monitoring and operations: 
  Number of years:  25  
  g = 0.07998, with 95% CI  [0.06998, 0.08997] 
  Relative weight (rho): 1 
*************************************************************************************** 
Summary statistics for mortality estimates through 5 years 
------------------------------------ 
Results 
Totals through 5 years 
 
M* = 15 for 1 - alpha = 0.5, i.e., P(M <= 15) >= 50% 
Estimated overall detection probability: g = 0.212, with 95% CI = [0.195, 0.229] 
    Ba = 459.7, Bb = 1708.8 
Estimated baseline fatality rate (for rho = 1): lambda = 3.31, with 95% CI = [0.797, 7.59] 
 
Cumulative Mortality Estimates 
Year         M*   median   95% CI   mean(lambda) 95% CI 
1942          7     3      [2, 17]  8.4200   [ 1.385,  21.83] 
1943          7     3      [2, 17]  8.3760   [ 1.385,  21.61] 
1944          10    4      [4, 23]  11.7100   [ 2.814,  26.89] 
1945          13    5      [4, 27]  14.3300   [ 3.447,  32.88] 
1946          15    6      [5, 33]  16.5500   [ 3.983,  37.97] 
 
Annual Mortality Estimates 
Year         M*   median   95% CI   mean(lambda) 95% CI 
1942          7     7      [2, 17]  8.4200   [ 1.385,  21.83] 
1943          0     0      [0, 5]  1.6840   [0.00167,  8.491] 
1944          4     4      [1, 12]  5.0520   [0.3604,  15.86] 
1945          2     2      [0, 23]  6.2870   [0.006153,  31.65] 
1946          2     2      [0, 23]  6.2870   [0.006153,  31.65] 
 
 
Test of assumed relative weights (rho) and potential bias 
Assumed rho:  1.000 1.000 1.000 1.000 1.000 
Fitted rho:   2.057 0.215 1.118 0.805 0.805 
p = 0.563 for test of H0: assumed rho = true rho 
Quick test of relative bias: 1.08 
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Projections (table 8) are based on the estimated annual baseline fatality rate (𝜆𝜆), which is the 
expected number of fatalities in a year with relative weight 𝜌𝜌 = 1. In general, the expected fatality rate 
in a year with relative weight 𝜌𝜌 will be 𝜌𝜌𝜌𝜌. The baseline fatality rate is not known precisely and must be 
estimated from past monitoring data. The uncertainty is characterized in the posterior distribution of 𝜆𝜆, 
which is summarized in the results table with the mean and 95% CI, or mean(𝜆𝜆) = 3.31 and 95% CI = 
[0.797, 7.59] for the default data set. With the default parameter set, the actual number of fatalities 
exceeded the threshold in about 79% of the 10,000 simulated projects, 𝑃𝑃(𝑀𝑀 > Τ) = 0.7922. However, 
the estimated number of fatalities exceeded the threshold slightly less often, 𝑃𝑃(𝑀𝑀∗ > Τ) = 0.7383. The 
average number of fatalities at the time of triggering—that is, the time that the estimated number of 
fatalities first exceeded Τ—was 66.89, which is slightly greater than Τ and reflects the design of the 
trigger to signal when the threshold is exceeded. The mean number of fatalities in projects with no 
triggering—that is, 𝑀𝑀∗ ≤ Τ at the end of the permit term—was 59.35, which is slightly less than Τ.  

More extensive summary statistics for projection years also are provided (table 8), including the 
means and 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95 quantiles for both 𝑀𝑀 and 𝑀𝑀∗ for each projection 
year. Results for the default data set show that the mean 𝑀𝑀∗ tracked the mean 𝑀𝑀 fairly closely but was 
slightly smaller each year. A slight gap between average projected cumulative 𝑀𝑀∗ and 𝑀𝑀 is common 
because cumulative 𝑀𝑀 increases in regular steps from year to year while 𝑀𝑀∗ follows a more broken 
pattern with periods with almost constant 𝑀𝑀∗ followed by years when 𝑀𝑀∗ increases in great leaps, as can 
be seen (fig. 15) by comparing the median bars of 𝑀𝑀 (center lines in the box-and-whiskerplots) with the 
median bars of 𝑀𝑀∗ (light gray horizontal lines). A rough explanation is that while 𝑀𝑀 increases by 
(approximately) 𝜆𝜆 each year, 𝑀𝑀∗ remains relatively constant when no carcasses are found but increases 
by (approximately) 1/𝑔𝑔 whenever another carcass is found. After each leap, median 𝑀𝑀∗ is closely 
aligned with median 𝑀𝑀, and the medians gradually diverge until another leap in 𝑀𝑀∗ (by 1/𝑔𝑔) brings 
them back into alignment. By contrast, the mean of 𝑀𝑀∗ (red dots) increases in regular steps and 
generally lies close to the median 𝑀𝑀. 

Another noteworthy pattern in comparing the distributions of 𝑀𝑀 with the distributions of 𝑀𝑀∗ 
through time is that in the early projection years, 𝑀𝑀 is substantially more variable than 𝑀𝑀∗ but the 
difference becomes gradually less pronounced through time (table 8, fig. 15). For example, in the first 
projected year (or 6th year of the project), the 90% PI of 𝑀𝑀 is [8, 35], while the 90% PI of 𝑀𝑀∗ is [16, 
22]. The PI for 𝑀𝑀∗ is relatively narrow because it is derived from the cumulative carcass count, which 
will change very little with one additional year of monitoring. There is relatively little uncertainty about 
what the estimate of cumulative mortality will be after an additional year of monitoring. If no additional 
carcasses are found, 𝑀𝑀∗ for years 1–6 will be virtually unchanged from 𝑀𝑀∗ for years 1–5. If one carcass 
is found in year 6, 𝑀𝑀∗ for years 1–6 will increase by approximately 1/𝑔𝑔 compared to 𝑀𝑀∗ for years 1–5.  

The past data and future assumptions that the projections are derived from are reproduced in the 
results table (table 9), below the projections themselves and above the summary statistics for mortality 
estimates for past years. The summary statistics for past years mirror those in the tracking graph (fig. 
15) and table (table 9). 
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A final graph for the mortality projections tool shows the posterior predictive probabilities of 
exceedance (that is, actual mortality exceeding threshold, 𝑃𝑃(𝑀𝑀 > Τ)) and of triggering (that is, 
estimated mortality exceeding the threshold, 𝑃𝑃(𝑀𝑀∗ > Τ)). For example, with the default scenario (fig. 
16), in any given year the probability that cumulative mortality exceeded threshold (black line) was 
typically slightly greater than the probability that the estimated mortality exceeded the threshold (red 
line). 

Basing 𝑀𝑀∗on 𝛼𝛼 = 0.2 (fig. 17) instead of 0.5 (fig. 15) has no effect on projected mortality (𝑀𝑀), 
but projected mortality estimates (𝑀𝑀∗) are greater. Triggering occurs earlier and typically precedes 
actual exceedance (𝑀𝑀 > Τ) by several years. When 𝛼𝛼 = 0.2  with the default data set, mean 𝑀𝑀∗ first 
exceeds Τ in year 15 instead of year 20 as it did when 𝛼𝛼 = 0.5.  

 

 
 

Figure 16. Graph generated by Evidence of Absence software showing probabilities of exceedance and triggering 
for each year.  
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Figure 17. Box and whisker plots generated by Evidence of Absence software showing estimates of past mortality and projections of future mortality 
and mortality estimates, 1 − 𝛼𝛼 = 0.8.  
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Although the relative weight, 𝜌𝜌, usually has little effect on estimates of past mortality, it strongly 
affects fatality projections. The software’s default option for the projection years is to set 𝜌𝜌 at whatever 
it was in the final year of monitoring, with the interpretation that future mortality rates will not change 
from the most recent year monitored. However, the user may override the default to reflect anticipated 
changes in operations or to explore “what if...”scenarios. For example, setting 𝜌𝜌 equal to 3 in the default 
data set beginning with the 7th projection year (fig. 18) indicates that the annual mortality rate from the 
first 5 years of monitoring remains the same for the next 6 years but then triples in year 12. The effect 
can be seen as a clear trend break in year 12 (fig. 19) for both 𝑀𝑀 and 𝑀𝑀∗. Mean estimated mortality first 
exceeds Τ in year 14, and actual number of fatalities exceeds 200 by the end of the 30 years, in contrast 
to the mean of less than 100 when 𝜌𝜌 is held constant at 1.  
 

  
 

Figure 18. Screen capture of the Multiple Years Module, accounting for anticipated changes in operations in future 
years. In projection year 7, mortality rate triples due to expansion of the site.  
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Figure 19. Box and whisker plots generated by Evidence of Absence software showing projected mortality with anticipated tripling of fatality rate 
(𝜌𝜌 = 3) beginning in year 12 (or projection year 7). 
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4.2.2   Estimate Average Annual Fatality Rate (𝜆𝜆) 

Carcasses are generated by a random process at an average rate of 𝜆𝜆 per year. If in one particular 
year, we know with certainty that there were exactly 𝑀𝑀 fatalities, there is still uncertainty about 𝜆𝜆 
because the number killed would vary from year to year due to random variation. However, 𝑔𝑔� and 𝑋𝑋 
provide information about the average annual rate that is analyzed and summarized using the Average 
Rate tools (fig. 20) in the Multiple Years Module. Options include calculating a CI, performing a short-
term test on the rate (𝜆𝜆 > 𝜏𝜏), or performing a reversion test (𝜆𝜆 < 𝜏𝜏𝜏𝜏).  

In the option to calculate a CI, the user enters the desired credibility level, 1 − 𝛼𝛼. Output 
includes a 100(1 − 𝛼𝛼)% CI for the average annual mortality rate 𝜆𝜆 for the years monitored and a 95% 
CI for the overall detection probability for carcasses arriving in the years monitored. A rough 
interpretation of the CI for 𝜆𝜆 is that there is 100(1 − 𝛼𝛼)% probability that 𝜆𝜆 is in the interval. The 
bounds of the CI (𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙 and 𝜆𝜆𝑢𝑢𝑢𝑢𝑢𝑢) are defined to be the points where 𝑃𝑃(𝜆𝜆 < 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙) = 𝑃𝑃�𝜆𝜆 > 𝜆𝜆𝑢𝑢𝑢𝑢𝑢𝑢� = 𝛼𝛼/2 
according to the posterior distribution of 𝜆𝜆 derived from the pooled estimate of overall detection 
probability and pooled carcass counts ( section G.2).  

 

 
 

Figure 20. Screen capture of Multiple Years Module, estimating average fatality rate (𝜆𝜆) in past years. 
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The short-term test estimates the average annual fatality rate over the past few years. The short-
term test can be used to determine if past monitoring data signal a potentially unsustainable mortality 
rate that would lead to exceedance of the long-term limit before the end of the permit term. The user 
inputs the annual rate threshold (τ), the number of years over which to calculate the rate (Term), and the 
sensitivity of the test (𝛼𝛼). For example, in the default data set (fig. 11), 𝜏𝜏 is set equal to 2 to reflect a 
management or regulatory concern that an annual rate of 𝜆𝜆 > 2 would likely lead to exceedance of the 
long-term fatality limit of Τ = 60 over the permit term of 30 years. The rate is estimated from the most 
recent 𝑛𝑛 years, as specified by the user. To estimate the previous year’s rate, enter a value of 1 for the 
Term. The 95% CI for the rate is [0.00615, 31.6] (table 10), which appears to be a very wide range. The 
problem is that the overall detection probability was only 0.08, which implies that we would expect to 
miss 92% of the carcasses, so the data do not support a precise estimate of the rate. The test of whether 
there is sufficient evidence that the short-term rate exceeds 𝜏𝜏 is based on the probability that 𝜆𝜆 > 𝜏𝜏 
according to the posterior distribution of 𝜆𝜆. If 𝑃𝑃(𝜆𝜆 > 𝜏𝜏) > 1 − 𝛼𝛼, the inference is that 𝜆𝜆 is significantly 
greater than 𝜏𝜏. The user-defined value of 𝛼𝛼 is a statement of the strength of the evidence required before 
concluding 𝜆𝜆 > 𝜏𝜏. Smaller 𝛼𝛼’s mean more stringent demands for evidence. Typically, a small value of 𝛼𝛼 
(like 𝛼𝛼 = 0.01) is used for the short-term test. If the test is conducted year after after, larger values of 𝛼𝛼 
can result in frequent false alarms where the inferred "exceedance" is due simply to random chance 
rather than actual exceedance.  

The short-term test provides valuable information about whether a given rate has been exceeded 
and can serve as an early warning of potentially excessive take. However, some caveats about running 
the short-term rate test with a single-year term are: (1) the amount of information in a single year of 
monitoring tends to be scarce, so CIs tend to be wide, and (2) there may be some year-to-year 
fluctuation in 𝜆𝜆, so a single year’s data might not provide a reliable estimate of the annual rate over the 
long term. Increasing the term to 2 or 3 or more years can ameliorate both these potential problems. For 
example, increasing the term from 1 year to 2 years in the previous example (fig. 20) cuts the CI width 
in half, from [0.00615, 31.6] to [0.00307, 15.8] because the second consecutive year with X = 0   gives 
stronger evidence of a smaller rate.  

 

Table 10. Results generated by Evidence of Absence software showing short-term trigger test results. 
 

Short-term trigger: Test of average fatality rate (lambda) over 1 years 
Years: 1946 - 1946 
================================================================================ 
Results 
Estimated overall detection probability: g = 0.08, 95% CI = [0.0705, 0.09] 
   Ba = 235.4, Bb = 2708 
 
Estimated annual fatality rate over the past 1 years: lambda = 6.287, 95% CI = [0.00615, 31.6] 
   P(lambda > 2) = 0.5723 
   Compliance: Cannot infer lambda > 2 with 99% credibility 
________________________________________________________________________________ 
Input 
Threshold for short-term rate (tau) =  2  per year 
 
Period       rel_wt  X    Ba     Bb   ghat    95% CI 
1946         1.000   0  235.4   2708 0.080 [0.070, 0.090] 
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The reversion test is a specialized test to determine if the fatality rate in the monitored years is 
significantly lower than a given level that would cause concern or whether rates are low enough to 
warrant the relaxing of operational constraints imposed for species conservation. For example, suppose 
that a mortality rate of >𝜏𝜏 would raise legitimate conservation concerns, and a wind power facility is 
required to monitor intensively to give assurance that 𝜏𝜏 is not exceeded. The intensive monitoring 
showed that the mortality rate during those years was significantly smaller than 𝜏𝜏, and less stringent 
monitoring requirements were implemented as a result. For another example, suppose that a new wind 
power facility seeks to ensure that annual mortality rates are below 𝜏𝜏 and employs prophylactic 
minimization measures such as curtailment or deterrents to reduce mortality rates by a factor of 𝜌𝜌 
compared to what would otherwise be expected. If the fatality rate under the minimization regime is 𝜆𝜆, 
then it will be 𝜆𝜆/𝜌𝜌 if the minimization measures are discontinued. Thus, if 𝜆𝜆 is demonstratively less than 
𝜌𝜌𝜌𝜌, then the mortality rate after discontinuing the minimization measures would be expected to be less 
than 𝜏𝜏. For example, with the default data set (fig. 11), the reversion test determines whether 𝜆𝜆 < 𝜌𝜌𝜌𝜌 =
0.6 ⋅ 2 = 1.2. The results show that the average annual fatality rate was 3.31, which is not significantly 
smaller than 1.2, and the conclusion is “No reversion: Cannot infer 𝜆𝜆 < 𝜌𝜌𝜌𝜌 = 1.2 with 90% credibility” 
(table 11). Smaller values of 𝛼𝛼 mean stronger evidence is required before allowing reversion. 

 

Table 11. Reversion trigger test results. 
 

Test whether mortality rate (stochastic) over 5 years is lower than rho * tau = 0.6 * 2 = 1.2 
Years: 1942 - 1946 
================================================================================ 
Results 
Total number of carcasses recovered: 3 
Estimated overall detection probability: g = 0.212, 95% CI = [0.195, 0.229] 
   Ba = 459.7, Bb = 1708.8 
 
Estimated average annual fatality rate: lambda = 3.31, 95% CI = [0.797, 7.59] 
   p(lambda <= 1.2) = 0.0763 
   No reversion: Cannot infer lambda < rho * tau = 1.2 with 90% credibility 
________________________________________________________________________________ 
Input 
Threshold for short-term rate (tau)   = 2 per year 
 
Effect of AMA to reverse (rho) = 60% expected reduction in fatality rate 
 
Year (or period) rel_wt  X    Ba     Bb   ghat    95% CI 
1942             1.000   2  100.5  234.5 0.300 [0.252, 0.350] 
1943             1.000   0  100.5  234.5 0.300 [0.252, 0.350] 
1944             1.000   1  100.5  234.5 0.300 [0.252, 0.350] 
1945             1.000   0  235.4   2708 0.080 [0.070, 0.090] 
1946             1.000   0  235.4   2708 0.080 [0.070, 0.090] 
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5.   Design Tradeoffs 

The Design Tradeoffs module (fig. 21) provides tools for optimizing study design to achieve a 
stated design objective, which may be to determine what management parameter values are required to 
attain a target detection probability (𝑔𝑔) or a target credibility level (1−𝛼𝛼) for ruling out the possibility 
that mortality exceeds a given threshold for a hypothetical number of carcasses found. The user inputs 
ranges of values for proposed searcher efficiency, search coverage, and search schedule, and software 
displays graphs of the resulting detection probabilities or credibility levels for the given combinations of 
monitoring parameters.  

Data may be entered manually or by importing a .rds file with parameter sets previously saved 
by selecting Save to file (.rds) from the Edit menu. Upon performing calculations, the active parameter 
set is saved for reloading the next time the module is opened. If desired, the default parameter set may 
be reloaded by selecting Restore defaults from the Edit menu.  

 

 
 

Figure 21. Screen capture of Design Tradeoffs Module (inputs). 
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5.1   Design Objectives 
The user selects one of two objectives: to optimize the study design to achieve a target overall 

Detection Probability (𝒈𝒈) or to achieve a target Credibility Level (𝟏𝟏 − 𝜶𝜶) in providing assurance that 
a specified threshold has not been exceeded when a hypothetical number of carcasses has been found. A 
tool is provided for exploring the relationship between 𝑀𝑀∗ and 𝑔𝑔 (fig. 22) to help the user determine a 
desired target detection probability level.  

Alternatively, the user can input parameters to design a monitoring program to provide 100(1 −
𝛼𝛼)% credibility that a specified Threshold (τ) has not been exceed, given a hypothetical Carcass count 
(X). 
 

 
 

Figure 22. Screen capture of 𝑀𝑀∗ vs 𝒈𝒈 option. Sliders control the limits of the x-axis, allowing the user to zoom in 
on a desired range of 𝑔𝑔. 
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5.2   Monitoring Parameters 
Four factors generally determine the overall detection probability: searcher efficiency, search 

coverage, search schedule, and persistence pattern. The first three, listed under Monitoring 
Parameters, are factors over which we have most control. For example, searcher efficiency can be 
improved by clearing vegetation within the searched area or using well-trained dogs (Arnett, 2006; 
Paula and others , 2011; Mathew and others, 2013) to search in thick vegetation; spatial coverage can be 
improved by searching a higher proportion of turbines at a site, increasing the search radius, or 
searching areas with highest density of carcasses; and reducing the search interval leaves less time for 
carcasses to be removed between searches, thereby increasing overall detection rates.  

The user has the option to enter fixed values or ranges for searcher efficiency (𝑝𝑝), spatial 
coverage (𝑎𝑎), and search interval (𝐼𝐼). In addition, the user enters the date of the first search, the span of 
the monitored period (that is, the number of days between the first and last searches), the factor by 
which searcher efficiency changes with each search (𝑘𝑘, section 2.1.2), and the temporal coverage (𝑣𝑣, 
section 2.1.1).  

5.3   Background Parameters 
The Persistence Distribution often strongly influences the detection probability and is listed 

under Background Parameters. Generally, the persistence patterns are determined by the scavenging 
population at a site and are harder to change than the monitoring parameters are. However, there may be 
some opportunity to increase persistence times by removing or deterring scavengers or by constructing 
exclusion cages around searched areas. User selects the appropriate persistence distribution and enters 
the governing parameters of the distribution (section 2.1.3). The View button produces a graph 
representing the persistence pattern of the input distribution (fig. 23). 

 
Figure 23. Graph generated by Evidence of Absence software showing user-selected persistence distribution. 
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5.4   Calculate 
The Calculate button graphs the detection probabilities or credibility levels as functions of the 

input parameters. It also saves the active parameter set for reloading the next time the module is opened. 

5.4.1   Design for Detection Probability 

With the default parameters for the Design Tradeoffs Module (fig. 21), Calculate will produce a 
graph showing design tradeoffs for search interval and search coverage for the given persistence 
distribution and search interval (fig. 24). The critical combinations of search interval and coverage that 
can be expected to achieve a 𝑔𝑔 of 0.25 are indicated by the bold white line in the graph. 

Figure 24. Graph generated by Evidence of Absence software showing tradeoffs between search coverage and 
searcher efficiency for 𝑔𝑔. 
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The white line represents the combinations of search coverage and searcher efficiency that 
would be expected to result in an overall 𝑔𝑔 equal to the target. Any combination below the white line 
would result in a 𝑔𝑔 less than the target, and any combination above the white line would result in a 𝑔𝑔 
greater than the target. For example, looking at the upper left portion of the graph, we see that with 
100% search coverage, the target overall probability of detection of 0.25 can only be achieved if 
searcher efficiency is >0.2. The lower right portion of the graph shows that if searcher efficiency is 
100%, the target 𝑔𝑔 can only be achieved with search coverage ≥0.3. A “goldilocks” solution might lie in 
having searcher efficiency of ~0.4 combined with a search coverage of about ~0.55.  

This solution applies to the fixed interval of 3 days. The user may wish to explore other 
solutions in combination with search interval. By changing 𝐼𝐼 from Fixed to Variable, with a range from 
3 to 28 days (both of which evenly divide the span of 168 days), a series of graphs similar to the 
previous one is produced (fig. 25), each representing the tradeoffs between searcher efficiency and 
search coverage for a different search interval. 

As the search interval increases, the proportion of carcasses persisting decreases, requiring either 
higher searcher efficiency or higher search coverage to achieve the target overall detection probability. 
Nonetheless, the upper middle graph indicates that increasing the search coverage from 0.55 to 0.75 
while keeping searcher efficiency at 0.4 will still allow the target detection probability to be achieved 
but with searches conducted only half as often (𝐼𝐼 = 6 instead of 3). The economic cost of increasing the 
searched area that comprises 75% of all carcasses can be balanced against the economic advantage of 
searching half as often. 



55 

 
 

Figure 25. Graphs generated by Evidence of Absence software showing tradeoffs between search coverage and searcher efficiency for 𝑔𝑔, with 𝐼𝐼 
varying. 
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5.4.1   Design for Credibility Level 
In some cases, there is a need to provide assurance at a set level of credibility (1 − 𝛼𝛼) that no 

more than τ individuals of a species have been killed, even if 0 (or 1 or 2 or…) are discovered in the 
monitoring process. User inputs the threshold (𝜏𝜏), the target credibility level (1 − 𝛼𝛼), and the critical 
carcass count (𝑋𝑋) for which the assurance is desired. For example, with the default data set (fig. 21), 
Calculate produces a graph showing design tradeoffs for search interval and search coverage for the 
given persistence time and search interval (fig. 26). The critical combination of search interval and 
coverage that can be expected to achieve a credible level of 1 − 𝛼𝛼 is indicated by the bold line in the 
graph. 

The bold line represents combinations of search coverage and searcher efficiency that would 
result in 100(1 − 𝛼𝛼)% credibility level for asserting that 𝑀𝑀 ≤ 𝜏𝜏 given that 𝑋𝑋 = 0 carcasses are 
observed. Any combination below or to the left of the white line would result in lower credibility levels 
for asserting 𝑀𝑀 ≤ 𝜏𝜏, and combinations above or to the right of the white line would result in higher 
credibility levels for asserting 𝑀𝑀 ≤ 𝜏𝜏.  

Again, the user may wish to explore other solutions in combination with search interval. By 
changing 𝐼𝐼 from Fixed to Variable, with a range from 3 to 28 days, a series of graphs similar to the 
previous one is produced (fig. 27), each representing the tradeoffs between searcher efficiency and 
search coverage for a different search interval. 

As the search interval increases, more carcasses are scavenged before searchers can find them, 
and either higher searcher efficiency or higher search coverage is required to achieve the same level of 
credibility. For example, the upper left graph (fig. 27) indicates the target credibility level could be 
achieved with a search interval of 3 days with searcher efficiency of 0.4 and coverage area ~0.45. 
Alternatively, the upper right graph (fig. 27) indicates that target credibility level could be achieved with 
a search interval of 10 days if both searcher efficiency coverage area are ≥ 0.6. The economic cost of 
increasing the searched area to comprise 60% of all carcasses and increasing the searcher efficiency 
within that area to 0.6 can be balanced against the economic advantage of searching one third as often. 
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Figure 26. Graph generated by Evidence of Absence software showing tradeoffs between search coverage and 
searcher efficiency for 1 − 𝛼𝛼. 



58 

Figure 27. Graphs generated by Evidence of Absence software showing tradeoffs between search coverage and searcher efficiency for 1 − 𝛼𝛼, with 
variable 𝐼𝐼 values. 
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6.   Scenario Explorer 

6.1   Overview 
The scenario explorer provides tools for investigating the projected consequences of user-

defined adaptive management regimes. The general framework is monitoring and adaptive management 
decision-making in the context of a long-term take permit (Dalthorp and Huso, 2015). The user defines 
the duration of the permit and the total permitted take. In addition, the user defines an assumed annual 
fatality rate and monitoring regime. Finally, the user defines parameters for a decision protocol for 
determining what adaptive management actions to take and the assumed effects of those actions in 
changing the fatality rates and carcass detection probabilities. EoA then simulates the projected number 
of fatalities and projected future constraints on wind farm operations induced by adaptive management. 

6.1.1   Long-Term Trigger 

[Reproduced with modification from Dalthorp and Huso, 2015] 

 

Total take accumulates from year to year. Progress toward a long-term take limit of Τ is tracked 
using the Multiple Years module in the EoA software. Because actual cumulative take (𝑀𝑀) is not 
known, estimated cumulative total (𝑀𝑀∗) must be used instead. Exceedance of the long-term limit 
(𝑀𝑀∗ > Τ) triggers AMA to avoid further take. The value of 𝑀𝑀∗ is strongly tied to choice of required 
significance level 𝛼𝛼, which must be agreed on before monitoring begins. Small values of 𝛼𝛼 (for 
example, 0.1 or 0.2) give relatively strong assurance that take does not exceed the permitted limit at any 
given project, but triggering will tend to occur well before 𝑀𝑀 > Τ. A value of 𝛼𝛼 = 0.5 results in more 
accurate tracking of actual fatality rates with triggering tending to occur after 𝑀𝑀 > Τ, because the trigger 
is not designed to prevent exceedance but to signal when exceedance has occurred. 

As an example, suppose the long-term authorized take is Τ = 60 for a 30-year permit. Ideally, if 
we knew exactly the number of fatalities each year, we could track the cumulative number of fatalities 
through the years and implement full-avoidance AMA when the cumulative total exceeded Τ. But in 
practice, the number of fatalities is estimated from carcass counts, after accounting for estimated 
detection probability, with varying degrees of certainty (fig. 28). A conservative approach using a small 
value of 𝛼𝛼, for example, 𝛼𝛼 = 0.1, would (1) give greater assurance that fatality rates do not exceed 
permitted levels, (2) provide a buffer against potential underestimation of fatality resulting from 
inadvertent mischaracterization of detection probability, and (3) provide a margin of safety against a 
full-avoidance AMA that is less than 100% effective. But it would also result in a higher likelihood of 
triggering well before the limit of 60 has been reached. If the factors that contribute to imperfect 
detection—most notably coverage (that is, the fraction of total carcasses that arrive in the search area 
during the monitoring period), carcass persistence, searcher efficiency, and change in searcher 
efficiency with carcass age—are properly accounted for and 𝑔𝑔 accurately reflects overall detection 
probability for the species of concern, then 0.5 will generally be the most accurate choice for 𝛼𝛼. 
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Figure 28. Graph generated by Evidence of Absence software showing operation of the long-term trigger. 
Simulated yearly fatalities were generated from a Poisson distribution with an annual rate of 𝜆𝜆 = 2. Carcass counts 
were generated from the fatalities as binomial random variables with probability of success equal to the detection 
probability 𝑔𝑔, which was taken as 0.3 in the first 3 years and 0.08 in years 4–30. Credible intervals were calculated 
using the Multiple Years module in the Evidence of Absence software. See table 1 for explanation of terms used 
here. (Reproduced from Dalthorp and Huso, 2015.) 

 

In the scenario portrayed in figure 28, the actual number of fatalities first exceeds Τ in year 25, 
whereas he estimated number of fatalities 𝑀𝑀∗ with 𝛼𝛼 = 0.5 first exceeds Τ to fire the long-term trigger in 
year 26. A value of 𝛼𝛼 = 0.2 would result in triggering in year 14 when the actual cumulative mortality  
was 39—well below the limit of 60, providing some assurance that Τ had not been exceeded and some 
assurance that Τ will not be greatly exceeded if fatalities continue to accumulate after the AMA is 
implemented. An even more conservative approach would be to base 𝑀𝑀∗ on 𝛼𝛼 = 0.1, which, in this 
example, would induce triggering in year 10 when the number of fatalities was 30 (fig. 28). 

The long-term trigger (appendix G, section G.1) with 𝛼𝛼 = 0.5 is designed to signal when take 
exceeds permitted limits, but it is not designed to prevent exceedance. Indeed, the long-term trigger does 
not guard against the possibility that the take permitted for the entire life of the project occurs within 
just a few years or give any indication when annual take rates are well above 𝜏𝜏. The conservation effect 
of a total take of Τ may be more severe if it occurs in a short period rather than being spread out over 
the course of the project. 

In addition, the long-term trigger does not provide a mechanism for detecting changes in fatality 
rates over time. Finally, the AMAs associated with the long-term trigger may be costly. Advance 
warning of impending long-term triggers coupled with less onerous AMAs to prevent exceedance may 
be desirable. To remedy these limitations of relying strictly on a long-term trigger, a short-term trigger 
can work in concert with the long-term trigger to give advance warning of possible exceedance, to 
detect changes in fatality rates, and to provide a framework for incremental AMAs to prevent eventual 
exceedance. 
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6.1.2   Short-Term Trigger 

[Reproduced with modification from Dalthorp and Huso, 2015] 

 

The short-term trigger (appendix G, section G.2) is designed to signal when the annual fatality 
rate (𝜆𝜆) exceeds a given level (𝜏𝜏) over the course or one or a few years. The short-term trigger acts as a 
precaution against unexpectedly high fatality rates, as a warning signal that the long-term authorized 
take is likely to be exceeded unless additional measures are taken to reduce take rate, and as a 
mechanism to signal significant changes in fatality rates. In response to short-term trigger firing, 
incremental AMAs may be implemented to improve the precision of estimates by more intensive 
monitoring, to reduce take rates to bring them more in line with expectations, or to adjust permitted take 
levels to align with actual take and offset the increase in permitted take with additional mitigation.  

Even though the average permitted annual take at a site, 𝜏𝜏, might be “correct” and reflect the true 
annual take rate, the actual number of fatalities that occur will not be exactly the same every year, due 
simply to natural variation and random chance. The short-term trigger is designed to allow for some 
annual variation in actual take and to guard against “hair-trigger” decision points. The trigger fires when 
the observed data (carcass counts combined with detection probabilities) are incompatible with the 
permitted rate. In other words, if it is too unlikely (≤𝛼𝛼) that the number of carcasses counted would be 
as high as observed if the true fatality rate really were in line with the permitted rate, then the short-term 
trigger would fire. The test is conducted each year on a running average basis (with the user defining the 
term or width of the window for the running average). If the total number of carcasses observed in any 
moving window is not compatible with what would be expected if the rate were equal to permitted level, 
the trigger fires. 

The value of 𝛼𝛼 is approximately the probability of the trigger firing when 𝜆𝜆 = 𝜏𝜏. Thus, smaller 
values of 𝛼𝛼 result in a more sensitive trigger because they require stronger evidence to conclude 𝜆𝜆 > 𝜏𝜏. A 
small value of 𝛼𝛼 (for example, 𝛼𝛼 = 0.01) may be necessary to protect against the trigger firing 
unnecessarily when 𝜆𝜆 ≤ 𝜏𝜏. 

6.1.3   Reversion Trigger 
[Reproduced with modification from Dalthorp and Huso, 2015] 

If a facility is operating under constraints that are expected to reduce fatality rates by a factor of 
𝜌𝜌, (0 < 𝜌𝜌 ≤ 1) compared with rates expected under operations free from the constraints (that is, the 
fatality rate would be 𝜆𝜆 for operations without the constraints and 𝜆𝜆𝜆𝜆 with the constraints), then the 
reversion trigger (section J.3) is designed to signal when fatality rates are low enough so that removal of 
the operational constraints would not be likely to result in annual fatality rates that exceed 𝜏𝜏. One 
possible use of the reversion trigger would be to relax an initial prophylactic constraint if fatality rates 
are well below expected rates. For example, if, from the beginning of a project, turbines are required to 
be curtailed at wind speeds <5.0 m/s to minimize bat fatalities, the reversion trigger could be used to 
determine if fatality rates are low enough to allow unconstrained operations and still remain below the 
permitted rate. 
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In particular, a previous operational constraint or restrictive AMA implemented to reduce 
fatalities by a factor of 𝜌𝜌 can be reversed when take rate is demonstrated to be lower than 𝜏𝜏𝜏𝜏 at a 
credibility level of 1 − 𝛼𝛼 according to a test on average rate over the years since the AMA was 
implemented. The rationale is that reversing an AMA with effect of 𝜌𝜌 would have the effect of 
increasing the fatality rate to 𝜆𝜆/𝜌𝜌, so an initial fatality rate of 𝜆𝜆 ≤ 𝜏𝜏ρ would result in a rate 𝜆𝜆/𝜌𝜌 ≤ 𝜏𝜏 after 
reversion. 

6.2   Parameters 
The scenario explorer provides a collection of tools for analyzing the potential effects of long 

term take permits for conservation and facility operations. The tool is useful for guiding choices of 
regulatory parameters (years in permit, total permitted take, and compliance criteria) in the drafting of 
multi-year ITPs. Parameters are entered manually using the scenario explorer form (fig. 29). 

 

 
 

Figure 29. Screen capture of Scenario Explorer parameter input form with default data set. The default data set is 
a starting point for discussion and creating examples and should not interpreted in any way as “recommended” or 
“typical.” 
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6.2.1   General Framework 

For the general framework of the simulations, the user inputs the total number of years in the 
permit, the total permitted take over the full term of the permit, and the number of simulation draws.  

Simulation results are highly unstable when the number of simulation draws (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) is small and 
should not be considered reliable for 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 < 1000. However, simulations that involve incremental 
AMAs, a reversion trigger, or post-trigger intensive monitoring (fig. 30) run slowly. It may take a 
number of attempts and a period of trial and error to find a parameter set that properly defines the 
desired scenario. In these cases, it may be desirable to start with 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 10 until you are satisfied with 
the parameter set, and then boost the number of simulation draws to produce more accurate figures. 
Simulations that do not involve incremental AMAs, a reversion trigger, or post-trigger intensive 
monitoring run hundreds of times faster, and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 can be set at 1,000 or 10,000 for these scenarios 
without concern about long wait times.   

 

 
 

Figure 30. Screen capture of Scenario Explorer parameter options with potentially slow simulation speeds.   
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6.2.2   Field Parameters 

The baseline mortality rate (𝜆𝜆) is the expected number of fatalities generated each year at the 
start of the permit term. The mortality rate is held constant in subsequent years unless altered by 
adaptive management actions (AMAs), which would change the mortality rate by a factor of 𝜌𝜌 (defined 
by the user). 

In some regulatory scenarios, after the permitted take is exceeded, an AMA to avoid future take 
must be implemented. This avoidance AMA is assumed to change mortality by a factor of 𝜌𝜌∞. For 
example, 𝜌𝜌∞ = 0 would imply that the AMA would reduce the mortality rate to 𝜆𝜆𝜌𝜌∞ = 0. An avoidance 
AMA that is not entirely effective may only reduce the mortality rate by 90%, and 𝜌𝜌∞ would be set to 
0.1. 

The monitoring regime is defined in terms of the overall detection probability, 𝑔𝑔, which may be 
set for more intensive monitoring in the initial years of the permit followed by less intensive monitoring 
in subsequent years. Alternatively, the monitoring regime can be held constant by setting the Initial 
years of intensive monitoring equal to the total years in the permit. The user has the option of whether to 
continue monitoring after the long-term trigger is fired and to set the post-trigger monitoring intensity.  

6.2.3   Governing Parameters 

The governing parameters define long-term, short-term, and reversion triggers, which are the 
criteria for determining, respectively, exceedance of the permitted total take, excessively high average 
mortality rates that signal a change in mortality rates or eventual exceedance of permitted take, and low 
rates that would allow safe removal of previous operational constraints implemented to reduce mortality 
rates.  

The long-term trigger is designed to signal when the permitted take (Τ) has been exceeded. The 
sensitivity of the trigger can be adjusted via the 𝛼𝛼 parameter, with smaller values of 𝛼𝛼 defining a more 
sensitive trigger. More specifically, the long-term trigger signals when 𝑀𝑀∗ > Τ or, equivalently, 
𝑃𝑃(𝑀𝑀 > Τ) > 𝛼𝛼 according to the posterior distribution of 𝑀𝑀|(𝑋𝑋, 𝑔𝑔�). A value of 𝛼𝛼 = 0.5 yields the most 
accurate estimate of 𝑀𝑀 and triggering that, on average, occurs when 𝑀𝑀 first exceeds Τ. Smaller values 
of 𝛼𝛼 in the long-term trigger result in greater 𝑀𝑀∗ and, in most cases, triggering before 𝑀𝑀 > Τ. Likewise, 
larger values of 𝛼𝛼 yield smaller 𝑀𝑀∗’s with triggering typically occurring several years after 𝑀𝑀 > Τ. 
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The short-term trigger tests whether the average annual mortality rate (𝜆𝜆) has exceeded some 
value of concern (𝜏𝜏) over a term of the past 𝑦𝑦 years. Setting 𝜏𝜏 = Τ/𝑛𝑛 tests whether the annual rate is 
consistent with a long-term rate of Τ, and triggering would provide an early warning that the long-term 
rate is likely to be exceeded before the end of the permit term unless actions are taken to reduce the take 
rate or increase the take limit. Users also have the option of setting 𝜏𝜏 to values other than Τ/𝑛𝑛 if desired. 
The value of 𝛼𝛼 governs the sensitivity of the trigger. For example, triggering when 𝛼𝛼 = 0.01 indicates 
that there is approximately a 1% chance that we would have observed the sequence of counts we did, if 
𝜆𝜆 = 𝜏𝜏. Larger values of 𝛼𝛼 in the short-term trigger correspond to greater sensitivity and less certainty 
that 𝜆𝜆 > 𝜏𝜏 at triggering. Because the short-term rate is tested year after year, even if 𝜆𝜆 ≤ 𝜏𝜏 the 
probability of erroneously triggering (type I error) at least once over the course of an entire project may 
be substantially greater than triggering in any particular term of 𝑦𝑦 years. Thus, there is an elevated risk 
of type I errors with the short-term trigger, and that risk can be managed by choosing a small value for 𝛼𝛼 
(like 𝛼𝛼 = 0.01) and using an incremental approach to adaptive management to define a schedule of 
increasingly restrictive constraints designed to reduce mortality rates and/or increase monitoring 
requirements each time the short-term trigger is fired.  

Users may select the option to include incremental AMAs. For example, a 3-step schedule of 
incremental AMAs might require action to reduce the mortality rate by 20% to 0.8𝜆𝜆 and to add 2 years 
of intensive monitoring after the first time the short-term trigger fires, to reduce the mortality rate to 
0.7𝜆𝜆 with another 2 years of intensive monitoring after the second triggering, and avoidance AMA after 
the third firing. Steps may be added or removed from the schedule by pressing <Ctrl + a> or <Ctrl + d> 
when the cursor is in the AMA table. If the option to include incremental AMA is not selected, the 
simulations tally the number of times the short-term trigger fires but do not alter the mortality rate or 
monitoring intensity in response to triggering. 

The reversion trigger tests whether the mortality rate is low enough so that a current operational 
constraint to reduce mortality can be removed while keeping the resulting rate below 𝜏𝜏 = Τ/𝑛𝑛. For 
example, suppose curtailment of turbines at wind speeds less than 5 m/s reduces the mortality rate to 
𝜌𝜌0 = 60% of the uncurtailed rate and that at the start of the permit term, turbines are curtailed as a 
prophylactic measure to minimize mortality. If the observed mortality rate after some years of 
monitoring is significantly smaller than 𝜏𝜏𝜌𝜌0, then after removing the constraint and increasing the 
mortality rate by a factor of 1/𝜌𝜌0, the resulting mortality rate would still be less than 𝜏𝜏. The reversion 
trigger tests whether a constraint with effect 𝜌𝜌0 can be reversed with the subsequent mortality rate 
significantly less than 𝜏𝜏 (with significance level of 𝛼𝛼).  
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6.3   Simulations 
The scenario explorer tracks fatalities, mortality estimates, and adaptive management actions for 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 simulated projects year by year through the entire term of the permit under the conditions defined 
by the parameters entered by the user. Two options for simulation are to View one example or 
Calculate, which summarizes results from 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 simulated projects (fig. 31).  

 

 
 

Figure 31. Screen capture of Scenario Explorer with default parameters but with “Reversion Trigger” and “Include 
incremental AMA” options selected. 
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6.3.1   View One Example 

The tool to View one example tracks the number of fatalities, the mortality estimates, and 
management conditions for one simulated project through the 𝑛𝑛 years of the project term. The actions of 
the long-term, short-term, and reversion triggers are illustrated for three simulated projects using the 
tool (figs. 32–34). The three projects represent different random outcomes of the scenario described by 
the parameter set shown in figure 31. The total permitted take is Τ = 60 over the course of a 30-year 
permit. The baseline fatality rate is 𝜆𝜆 = 2 per year, so the expected take would be 30 ∙ 2 = 60. 
However, the number of fatalities is a random variable, and the total will rarely be exactly 60 but will 
usually be somewhat more or less than 60.  

In the first simulated project (fig. 32), the cumulative number of fatalities (𝑀𝑀) reaches 61 in year 
25. The estimated cumulative totals (𝑀𝑀∗) closely track the actual totals, and 𝑀𝑀∗ crosses the Τ = 60 
threshold in year 26. At that point, the long-term trigger fires (that is, estimated mortality 𝑀𝑀∗ > Τ for 
𝛼𝛼 = 0.5), avoidance AMA is implemented, and the mortality rate is reduced to 𝜌𝜌∞𝜆𝜆 = 0 in future years. 
Accumulation of fatalities ceases, and the total remains constant at 66 until the end of the permit term. 
To explore the consequences of avoidance AMA not reaching 100% effectiveness, 𝜌𝜌∞ can be set to 
some non-zero value like 0.10 or 0.05 to reflect 90% or 95% effectiveness. Fatalities would still 
accumulate after the long-term trigger fires but at a greatly reduced rate.  

The "cumulative 𝑔𝑔" is the probability of observing a carcass that arrived in the current year or a 
previous year. For example, in year 4 non-intensive monitoring yielded 𝑔𝑔 = 0.08, so there is only an 
8% chance of observing a carcass that arrives in that year. However, the probability of observing a 
carcass that arrives at any point in the first 4 years would be 0.245, which is the average probability of 
detecting a carcass in years 1–4. In this scenario, the overall cumulative detection probability gradually 
declines as more and more carcasses accumulate in years with low detection probabilities. When no new 
carcasses are observed, the estimated cumulative total number of carcasses (𝑀𝑀∗) increases as cumulative 
𝑔𝑔 decreases, but the increase is much more gradual than the increase in actual fatalities (𝑀𝑀). When new 
carcasses are found (years 1, 2, 5, 9, 19, and 26), 𝑀𝑀∗ leaps by approximately the number of carcasses 
found in that year divided by the cumulative 𝑔𝑔.  

In the second simulated project (fig. 33), fatalities accumulated rapidly in the initial years 
(reaching 29 in year 9)an average of 3.2 per year, which is substantially greater than expected 𝜆𝜆 = 2. 
The short-term trigger fired (𝑃𝑃(𝜆𝜆 > 𝜏𝜏) > 0.99, which is 1 minus the short-term 𝛼𝛼) as the 3 carcasses 
discovered in the previous 3 years gave strong indication that actual fatality rate over the previous 3 
years exceeded the permitted rate of 2. In response, the first step in incremental AMA was triggered, 
reducing the mortality rate to 𝜌𝜌𝜌𝜌 = 1.6 and requiring monitoring at 𝑔𝑔 = 0.3 for the next two years. No 
carcasses were found during those two years, and the estimated cumulative fatalities actually decreased 
as the cumulative overall detection probability increased. The actual total number of fatalities did not 
decrease; however, the quality of information available about the cumulative total improved, and the 
new information suggests that the cumulative total was less than previously thought. Mortality 
continued at a reduced rate until year 27, when the cumulative number of fatalities reached 54 but the 
long-term trigger fired as the estimated total exceeded 60. 
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Figure 32. Screen capture of Scenario Explorer, one example (long-term trigger). Cumulative mortality (𝑀𝑀) first 
exceeds the threshold of Τ = 60 in year 25 (red font in the column for cumulative 𝑀𝑀). The following year the long-
term trigger signals exceedance as 𝑀𝑀∗ exceeds Τ  (red cell in the 𝑀𝑀∗ column). 
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Figure 33. Screen capture of Scenario Explorer, one example (short-term trigger). The 3-year running total carcass 
count was 3 in year 9 (X in the “Short-term” area of the table), which, when combined with a low detection rate over 
these 3 years, was high enough to fire the short-term trigger (red cell in the right-hand column) because 𝑃𝑃(𝜆𝜆 >
𝜏𝜏) = 0.995 > 1 − 𝛼𝛼. After trigger, AMA reduces future mortality rate by a factor of 𝜌𝜌 = 0.8, as governed by 
step 1 in the schedule of incremental AMAs. In addition, 2 years of intensive monitoring are required after triggering 
(annual 𝑔𝑔 increases to 0.3 for years 10 and 11).  

 

In the third simulated project (fig. 34), there were only 6 fatalities in the first 6 years—many 
fewer than the expected 6𝜆𝜆 = 12. No carcasses were found in the searches, and the reversion trigger 
fired. The resulting AMA increased the mortality rate to 3.33, and fatalities accumulated rapidly for 
several years. In year 13, the short-term trigger detected the high mortality rate, and AMAs returned the 
mortality rate to its initial level, 𝜆𝜆 = 2. By year 25, 𝑀𝑀∗ reached 61, and the long-term trigger correctly 
signaled that the permitted take rate had been exceeded. 
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The examples discussed in figures 32–34 were specially selected for illustration. Repeated use of 
the Generate Another button will show that a wide variety of patterns are possible and that the 
reversion and short-term triggers do not fire often for this scenario. The long-term trigger fires more 
frequently, but usually the triggering is near the end of the permit term. More precise summary statistics 
on triggering and total fatalities can be obtained via simulating many such projects and cataloging the 
results. This can be done automatically via the Calculate button in the Scenario Explorer window (after 
closing the Single Example window).  

 

 
 

Figure 34. Screen capture of Scenario Explorer, one example (reversion trigger).  No carcasses were found in the 
first 6 years of monitoring (X = 0), and evidence was strong enough to conclude that 𝜆𝜆 < 𝜏𝜏𝜏𝜏 at 90% credibility 
(green cells), so the 𝜌𝜌0 constraint was lifted. 
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6.3.2   Calculate 

The Calculate button gives a graphical summary of the triggering and mortality statistics for 
simulated projects.  

6.3.2.1   Example: Default parameters but with reversion trigger and incremental AMAs implemented 

Results for the scenario described in the previous section (fig. 31) but with 1000 simulation 
draws are given in figure 35. Fatalities are generated at a rate of 𝜆𝜆 = 2 per year on average, so the 
average total number of fatalities in 30 years at sites without AMA would be 60, with 𝑀𝑀 ≤ 60 at about 
half the sites and 𝑀𝑀 > 60 at about half the sites (fig. 29). However, the short- and long-term triggers 
initiate AMAs to reduce mortality rates when carcasses accumulate too rapidly, so in this scenario, 
fewer than 60 animals are killed on average. In the box-and-whisker plots, the horizontal central bars 
represent medians, and the bottoms and tops of the boxes show the 25th and 75th percentiles of the 
distribution.  

The middle graph shows summary distributions of the number of years of operation before 
avoidance (that is, until the avoidance AMA is first implemented, either when the long-term trigger is 
fired or the incremental AMAs associated with the short-term trigger have advanced to the final step) or 
reversion. In the box-and-whisker plots, the horizontal central bars represent medians, and the bottoms 
and tops of the boxes show the 25th and 75th percentiles of the distribution. The median number of 
years before avoidance cannot be seen on the graph, which indicates that less than 50% of the projects 
were in avoidance by the end of the permit term. The bottom of the box is at 24, indicating that 25% of 
projects reached avoidance AMA in the 24th year or earlier. The bottom of the box for reversion is not 
visible because fewer than 25% were ever in reversion during the permit term. The bottom of the solid 
whisker indicates that about 10% of projects the reversion trigger fired within 6 years. 

The graph on the right shows the frequency of short-term trigger firings. The green bar shows 
that in nearly 80% of projects, the short-term trigger did not fire at all. At first glance, it may seem 
surprising that the short-term trigger fired so frequently. In a scenario with 𝜆𝜆 = 𝜏𝜏 (like in the example), 
𝛼𝛼 = 0.01 means that there is approximately a 99% chance the trigger would not fire in a single test. 
However, the short-term trigger is tested every year, and the probability that the trigger fires in at least 
one of the 30 years is 26%—much greater than the 1% probability that it fires in a given single year. In 
addition, the reversion trigger occasionally fires in the example, which increases the mortality rate in 
future years and thus increases the probability of the short-term trigger firing. The yellow bar indicates 
that in about 15% of projects the short-term trigger fired 1 time, and top of the red shows that in over 
99% of projects, the short-term trigger fired fewer than 3 times. 

6.3.2.2   Example: Action of Long-Term Trigger and Frequency of Short-Term Triggering When 𝜆𝜆 > Τ/𝑛𝑛 

The long-term trigger is designed to signal when the number of fatalities has exceeded the 
permitted total or threshold, Τ. If avoidance AMA reduces future mortality rate to 0 after the long-term 
trigger has fired, then the action of the long-term trigger will not prevent the number of fatalities from 
exceeding Τ. However, typically the degree of exceedance will be minor, even when the baseline 
fatality rate far exceeds Τ/𝑛𝑛. In addition, in those cases, the short-term trigger gives early warning that 
the mortality rate may be higher than expected, which gives opportunity to make changes in operations 
or in permit terms to ensure that the number of fatalities remains in an acceptable range.  
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Figure 35. Box and whisker plots generated by Evidence of Absence software showing Scenario Explorer results 
for default parameters but with active reversion trigger, incremental AMA, and 1000 simulation draws. 
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The actions of the short- and long-term triggers in a scenario where the baseline fatality rate is 3 
times the permitted annual rate of Τ/𝑛𝑛 are explored using the Scenario Explorer module. To begin, 
select “Restore defaults” from the Edit menu to load the default parameter set. Set the baseline fatality 
rate to 6 and the number of simulation draws to 10000 (fig. 36). If the fatality rate is 6/yr, on average 
there will be 180 fatalities over the course of 30 years, which is 3 times the permitted rate of Τ = 60 in 
this example. Also, since the scenario does not include the reversion trigger, incremental AMAs, or 
intensive monitoring following the long-term trigger, the calculations are relatively fast and 10,000 
simulation draws can be calculated quickly. The short-term trigger is activated, but it is not associated 
with incremental AMAs. In this case, the simulation tallies the number of times the short-term trigger 
fires in each project, but the triggering does not induce AMAs or affect fatality rates or monitoring 
protocols. 

 

 
 
Figure 36. Screen capture of parameters for exploring the action of short- and long-term triggers in a scenario with 
𝜆𝜆 = 3Τ/𝑛𝑛. 

The results show that the avoidance AMA implemented after the long-term trigger fired kept the 
number of fatalities far below the 180 that would be expected under unconstrained conditions (fig. 37, 
left panel). The average number of fatalities (𝑀𝑀) was slightly higher than the permitted 60 because the 
long-term trigger is designed to fire when 𝑀𝑀 > 60 and not before. In particular, the average number of 
fatalities was approximately Τ + 𝜆𝜆, which is a result of fatalities accumulating at a rate of 𝜆𝜆/yr until the 
total exceeds Τ. The estimated number of fatalities (𝑀𝑀∗) at the time of triggering is much less variable 
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than the actual number of fatalities (𝑀𝑀). That is because 𝑀𝑀∗ cannot be less than Τ at triggering (by 
definition) and cannot be substantially greater than Τ in this scenario (𝜌𝜌∞ = 0) because fatalities stop 
accumulating after 𝑀𝑀∗ > Τ. The median number of years before avoidance (that is, before the long-term 
trigger fired) was 10 (fig. 37, middle panel), which is how long it would take for the expected number of 
fatalities to reach 60 when the average annual rate is 𝜆𝜆 = 6. The short-term trigger fired in about 84% of 
the projects (fig. 37, right panel) and fired 3 or more times in about half the projects.  

 

 
 
Figure 37. Box and whisker plots generated by Evidence of Absence software showing Scenario Explorer. Action 
of long-term trigger and frequency of short-term triggering when 𝜆𝜆 = 3Τ/𝑛𝑛. 
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6.3.2.3   Example: Action of Long-Term Trigger and Frequency of Short-Term Triggering When 𝜆𝜆 < Τ/𝑛𝑛 

When 𝜆𝜆 < Τ/𝑛𝑛 the long-term trigger does not often fire because the total number of fatalities 
will usually be less than Τ. If 𝜆𝜆 is changed from 6 to 1 in the scenario described in the previous example 
(fig. 36), then the expected total number of fatalities over the course of the project would be 30, which is 
substantially smaller than the permitted 60. In 10,000 simulated projects under this scenario, the long-
term trigger never fired. The short-term trigger fired in about 3% of the projects, but almost never fired 
more than once (fig. 38). 

 

 
 
Figure 38. Box and whisker plots generated by Evidence of Absence software showing Scenario Explorer. Action 
of long-term trigger and frequency of short-term triggering when 𝜆𝜆 = 0.5 Τ/𝑛𝑛.  
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Appendix A. Estimator of Overall Detection Probability (𝒈𝒈)—Single Year, Single 
Class 

For a single search class within a single year, the EoA model estimates the overall detection 

probability for carcasses arriving in the searched area during the monitoring season. The season is 

partitioned into 𝑛𝑛 search intervals, 𝐼𝐼𝑖𝑖 for 𝑖𝑖 = 1, … , 𝑛𝑛 with 𝑛𝑛 + 1 searches conducted at times 𝑡𝑡 =

0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛. The monitoring season is assumed to begin at time 𝑡𝑡 = 0, and all carcasses found in 

searches at 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛 are assumed to have arrived after time 𝑡𝑡 = 0. This condition is commonly met in 

practice by either beginning the monitoring before fresh carcasses begin to arrive in the spring, or by 

conducting a thorough “clean-out” search at time 𝑡𝑡 = 0 and not including the found carcasses in the 

final total. The basic estimator equation for detection of carcasses that arrived in the search area during 

the monitored period is: 

𝑔𝑔� = ∑ ∑ 𝑘𝑘𝑗𝑗−𝑖𝑖𝑝𝑝�∏ �1 − 𝐼𝐼{𝑠𝑠≥0}𝑘𝑘𝑠𝑠𝑝𝑝�𝑗𝑗−𝑖𝑖−1
𝑠𝑠0 � ∫ 𝑆𝑆�𝑡𝑡𝑗𝑗 − 𝑡𝑡�𝜈𝜈(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖−1

𝑛𝑛
𝑗𝑗=𝑖𝑖

𝑛𝑛
𝑖𝑖=1  , (1) 

where: 

𝑔𝑔� detection probability for carcasses arriving in searched area during monitored period; 

𝑝𝑝 = searcher efficiency on the first search after carcass arrival; 

𝑘𝑘 = the fractional change in searcher efficiency with each successive search 

𝐼𝐼{𝑠𝑠≥0} = �1   if 𝑠𝑠 ≥ 0     
0   otherwise ; 

𝑆𝑆 = persistence distribution; 

𝜈𝜈 = arrival function; 

𝑖𝑖, 𝑗𝑗 = search interval for carcass arrival and search, respectively; and 

𝑠𝑠 = number of times a carcass has been missed in previous searches. 

 

This generalized model can accommodate a number of realistic scenarios that many commonly 

used estimators cannot, for example, a scavenging rate that varies with carcass age, a decrease in 

searcher efficiency for carcasses that have been missed in previous searches, and an irregular search 

schedule (appendix K). 
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The persistence distribution, 𝑆𝑆(𝑡𝑡), gives the proportion of carcasses persisting 𝑡𝑡 units (usually 

days) after arrival. In the software, the user can choose among exponential, lognormal, log-logistic, and 

Weibull distributions. The arrival function, 𝑣𝑣(𝑡𝑡), gives the relative arrival rate for carcasses through the 

monitoring period, and 𝜈𝜈 defines a PDF of arrival times so that ∫ 𝜈𝜈(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑛𝑛
0 = 1. In the software, a 

constant arrival function is assumed, but advanced users may use EoA’s R command line tools to enter a 

custom arrival function in some situations (appendix I). 

To derive the estimator equation, let 𝐶𝐶 be the event of observing a carcass that arrives in the 

monitored area during the monitoring period. Let 𝑔𝑔 be the probability of 𝐶𝐶, or 𝑔𝑔 = 𝑃𝑃(𝐶𝐶), which is 

calculated by conditioning on time of carcass arrival. Let 𝐴𝐴𝑖𝑖 be the event that the carcass arrives in 

interval 𝑖𝑖, so that 𝑃𝑃(𝐶𝐶) = ∑ 𝑃𝑃(𝐶𝐶|𝐴𝐴𝑖𝑖)𝑃𝑃(𝐴𝐴𝑖𝑖). The components, 𝑃𝑃(𝐶𝐶|𝐴𝐴𝑖𝑖), are calculated via partitioning 

the subsequent carcass searches. Define 𝐶𝐶𝑗𝑗 as the event that the carcass is observed in search 𝑗𝑗. Since 

carcasses are removed after being discovered, 𝐶𝐶𝑗𝑗 and 𝐶𝐶ℎ are mutually exclusive if 𝑗𝑗 ≠ ℎ. Also, 

𝑃𝑃�𝐶𝐶𝑗𝑗�𝐴𝐴𝑖𝑖� = 0 if 𝑗𝑗 < 𝑖𝑖 because carcasses must arrive before they can be observed. Thus, 𝑃𝑃(𝐶𝐶|𝐴𝐴𝑖𝑖) =

∑ 𝑃𝑃(𝐶𝐶𝑗𝑗|𝐴𝐴𝑖𝑖)𝑛𝑛
𝑗𝑗=𝑖𝑖 . Each term in the sum can be calculated as the product of: 

1) 𝑟𝑟𝑖𝑖𝑖𝑖 = the probability that a carcass that arrives in interval 𝑖𝑖 persists until search 𝑗𝑗, and  

2) 𝑝𝑝𝑖𝑖𝑖𝑖 = the probability that the carcass is not detected in searches 𝑖𝑖, 𝑖𝑖 + 1, … , 𝑗𝑗 − 1and is 

detected in search 𝑗𝑗.  

The first probability is 𝑟𝑟𝑖𝑖𝑖𝑖 = ∫ 𝑃𝑃(persist until 𝑡𝑡𝑗𝑗 |arrive at 𝑡𝑡)𝑃𝑃(arrive at 𝑡𝑡), where the integral is 

calculated over the arrival interval. Thus:  

𝑟𝑟𝑖𝑖𝑖𝑖 = ∫ 𝑆𝑆�𝑡𝑡𝑗𝑗 − 𝑡𝑡� 𝜈𝜈(𝑡𝑡)

∫ 𝜈𝜈(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖−1

𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖−1

. 

The second probability is 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑃𝑃�observe at 𝑡𝑡𝑗𝑗  but not observe at 𝑡𝑡𝑠𝑠 < 𝑡𝑡𝑗𝑗� = (1 − 𝑝𝑝)(1 −

𝑘𝑘𝑘𝑘) … �1 − 𝑘𝑘𝑗𝑗−𝑖𝑖−1𝑝𝑝�𝑘𝑘𝑗𝑗−𝑖𝑖𝑝𝑝, so: 

 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑗𝑗−𝑖𝑖𝑝𝑝 ∏ �1 − 𝐼𝐼{𝑠𝑠≥0}𝑘𝑘𝑠𝑠𝑝𝑝�𝑗𝑗−𝑖𝑖−1
𝑠𝑠=0  for 𝑗𝑗 > 𝑖𝑖, 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝 for 𝑗𝑗 = 𝑖𝑖, and 𝑝𝑝𝑖𝑖𝑖𝑖 = 0 for 𝑗𝑗 < 𝑖𝑖. 

Therefore, the probability of observing in search 𝑗𝑗 a carcass that arrived in interval 𝑖𝑖 is:  

𝑃𝑃�𝐶𝐶𝑗𝑗�𝐴𝐴𝑖𝑖� = 𝑘𝑘𝑗𝑗−𝑖𝑖𝑝𝑝�∏ �1 − 𝐼𝐼{𝑠𝑠≥0}𝑘𝑘𝑠𝑠𝑝𝑝�𝑗𝑗−𝑖𝑖−1
𝑠𝑠=0 � ∙ ∫ 𝑆𝑆�𝑡𝑡𝑗𝑗 − 𝑡𝑡� 𝜈𝜈(𝑡𝑡)

∫ 𝜈𝜈(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖−1

𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖−1

. 
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Summing over all arrival times and search intervals, we get: 

𝑃𝑃(𝐶𝐶) = � 𝑃𝑃(𝐶𝐶|𝐴𝐴𝑖𝑖)𝑃𝑃(𝐴𝐴𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= � � 𝑃𝑃�𝐶𝐶𝑗𝑗�𝐴𝐴𝑖𝑖�𝑃𝑃(𝐴𝐴𝑖𝑖)
𝑛𝑛

𝑗𝑗=𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

= ∑ ∑ 𝑘𝑘𝑗𝑗−𝑖𝑖𝑝𝑝�∏ �1 − 𝐼𝐼{𝑠𝑠≥0}𝑘𝑘𝑠𝑠𝑝𝑝�𝑗𝑗−𝑖𝑖−1
𝑠𝑠=0 � ∫ 𝑆𝑆�𝑡𝑡𝑗𝑗 − 𝑡𝑡� 𝜈𝜈(𝑡𝑡)

∫ 𝜈𝜈(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖−1

𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖−1𝑗𝑗𝑖𝑖 ∫ 𝜈𝜈(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖−1
 

= ∑ ∑ 𝑘𝑘𝑗𝑗−𝑖𝑖𝑝𝑝�∏ �1 − 𝐼𝐼{𝑠𝑠≥0}𝑘𝑘𝑠𝑠𝑝𝑝�𝑗𝑗−𝑖𝑖−1
𝑠𝑠=0 � ∫ 𝑆𝑆�𝑡𝑡𝑗𝑗 − 𝑡𝑡�𝜈𝜈(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖−1

𝑛𝑛
𝑗𝑗=𝑖𝑖

𝑛𝑛
𝑖𝑖=1 . 

 

If the fraction of carcasses arriving in the searched area is 𝑎𝑎, then the detection probability for 

carcasses arriving at the site during the monitored period would be 𝑎𝑎 ⋅ 𝑔𝑔�. Finally, if 𝑣𝑣 is the fraction of 

carcasses arriving during the monitored period, then the overall detection probability extrapolated to the 

entire site for the period of inference would be 𝑣𝑣𝑣𝑣𝑔𝑔�. 

Uncertainty in 𝑔𝑔� is accounted for by parametric bootstrapping of the persistence (appendix C) 

and searcher efficiency (appendix D) models to simulate 𝑔𝑔� and using fitdistr from R package MASS 

(Venables and Ripley, 2002) to find the maximum likelihood estimates of the 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters of 

a beta distribution fitting the simulated 𝑔𝑔�’s. The number of simulation draws (𝑛𝑛) is a function of the 

estimated variance of 𝑔𝑔�, with more draws required when the uncertainty in 𝑔𝑔� is greater. More precisely, 

𝑛𝑛 = min �� 𝑠̂𝑠
0.003𝑔𝑔0

�
2

,   20,000�, where 𝑠̂𝑠 is the estimated standard deviation of 𝑔𝑔� based on a preliminary 

simulation of 1000 draws and 𝑔𝑔0 is the overall detection probability for the maximum likelihood 

estimates of the input parameters. A 100(1 − 𝛼𝛼)% CI for 𝑔𝑔 is defined as [𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑔𝑔𝑢𝑢𝑢𝑢𝑢𝑢] where 𝑃𝑃(𝑔𝑔� ≤

𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙) = 𝑃𝑃�𝑔𝑔� ≥ 𝑔𝑔𝑢𝑢𝑢𝑢𝑢𝑢� = 𝛼𝛼/2. 
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Appendix B. Calculation of the Posterior Distributions of 𝑴𝑴|(𝑿𝑿, 𝒈𝒈�) and 𝝀𝝀|(𝑿𝑿, 𝒈𝒈�) 

A posterior distribution of the total mortality (𝑀𝑀) given the carcass count (𝑋𝑋) and estimated 

detection probability (𝑔𝑔�) is estimated as 𝑃𝑃(𝑀𝑀|𝑋𝑋, 𝑔𝑔�) = 𝑃𝑃(𝑋𝑋|𝑀𝑀,𝑔𝑔�)𝑃𝑃(𝑀𝑀=𝑚𝑚)
∑ 𝑃𝑃(𝑋𝑋|𝑀𝑀=𝑚𝑚,𝑔𝑔�)𝑃𝑃(𝑀𝑀=𝑚𝑚)𝑚𝑚

, where 

𝑋𝑋~betabinomial(𝑀𝑀, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵), 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 are the estimated beta parameters characterizing the 

distribution of 𝑔𝑔�, and the prior distribution of 𝑀𝑀 is 𝑃𝑃(𝑀𝑀 = 𝑚𝑚) ∝ √𝑚𝑚 + 1 − √𝑚𝑚, which is the integrated 

reference prior for a binomial index (Berger and others, 2012). The prior is truncated at the smallest 

value 𝑚𝑚 such that 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥|𝑀𝑀 = 𝑚𝑚) < 0.0001, where 𝑥𝑥 is the observed carcass count and 

𝑋𝑋~betabinomial(𝑚𝑚, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵). In other words, the prior is set to zero for values of 𝑚𝑚 that are large 

enough to be practically incompatible with the search data. 

Important summary statistics from the posterior distribution of 𝑀𝑀 include: 

• 𝑀𝑀∗, the upper bound of a one-sided 100(1 − 𝛼𝛼)% CI for 𝑀𝑀, or, 𝑀𝑀∗ = min{𝑚𝑚 ∈ ℤ: 𝑃𝑃(𝑀𝑀 ≤

𝑚𝑚) ≥ 1 − 𝛼𝛼} 

• a two-sided 100(1 − 𝛼𝛼)% CI for 𝑀𝑀, defined as [𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢], where 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙 is the greatest 

integer such that 𝑃𝑃(𝑀𝑀 < 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙) ≤ 𝛼𝛼/2 and 𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢 is the smallest integer such that 𝑃𝑃�𝑀𝑀 ≥ 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙 ∩ 𝑀𝑀 ≤

𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢� ≥ 1 − 𝛼𝛼.  

• the median of the posterior of 𝑀𝑀, which can be used as a point estimate of 𝑀𝑀 

A posterior distribution of the fatality rate (𝜆𝜆) given the carcass count (𝑋𝑋) and estimated 

detection probability (𝑔𝑔�) is estimated as 𝑃𝑃(𝜆𝜆|𝑋𝑋, 𝑔𝑔�) = 𝑃𝑃(𝑋𝑋|𝜆𝜆,𝑔𝑔�)𝑃𝑃(𝜆𝜆)
∫ 𝑃𝑃(𝑋𝑋|𝜆𝜆,𝑔𝑔�)𝑃𝑃(𝜆𝜆)𝑑𝑑𝑑𝑑

, where 𝑋𝑋~binomial(𝑀𝑀, 𝑔𝑔�), 

𝑀𝑀|(𝜆𝜆)~Poisson(𝜆𝜆), 𝑔𝑔�~beta(𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵), 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 are the parameters characterizing the distribution of 𝑔𝑔� 

(as described in appendix A), and 𝑃𝑃(𝜆𝜆) ∝ 1/√𝜆𝜆  is the non-informative Jeffreys prior (Jeffreys, 1946) 

for the rate parameter of a Poisson distribution. 
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Appendix C. Estimation of Carcass Persistence Parameters: 𝜶𝜶 and 𝜷𝜷 

The four carcass persistence models (exponential, Weibull, log-logistic, and lognormal) are fit 

using the R package survival (Therneau and Grambsch, 2000; Therneau, 2015). In the simulation of 𝑔𝑔�, 

random parameter values for the persistence distribution are drawn from the fitted persistence model, 

which gives the estimated marginal means and variance-covariance matrix of the joint distribution of the 

persistence parameters. Let 𝛽𝛽0 and 𝛽𝛽1 be the intercept and scale parameters from the persistence model 

as parameterized in the survival package. Then, in the case of Weibull, log-logistic, or lognormal 

persistence models, simulated values of (𝛽𝛽0, 𝛽𝛽1) are drawn from a multivariate normal distribution with 

mean of 𝛍𝛍 = �𝛽̂𝛽0, 𝛽̂𝛽1� and variance 𝚺𝚺 = Σ��𝛽̂𝛽0, 𝛽̂𝛽1� as given in the results of the survival fitted model. 

In the case of an exponential persistence model, only one parameter (𝛽𝛽0) is estimated, and simulated 

values are drawn from a normal distribution with mean 𝜇𝜇 = 𝛽̂𝛽0 and 𝜎𝜎 = �𝜎𝜎�𝛽𝛽�0
2 . EoA’s parameterizations 

differ from those used by the survival package, and the simulated 𝛽𝛽0 and 𝛽𝛽1 values are converted to 

EoA’s 𝛼𝛼 and 𝛽𝛽 before plugging them into the estimator equation for simulation of 𝑔𝑔�. 

 

Table C1. Converting parameters from survival package to EoA persistence parameters. 
 
[The 𝛽𝛽0 and 𝛽𝛽1 parameters referred to in the table correspond the intercept and scale parameters in the survival package] 

 
Distribution 𝜶𝜶 𝜷𝜷 

Exponential — 𝑒𝑒𝛽𝛽0  

Weibull 1/𝛽𝛽1 𝑒𝑒𝛽𝛽0  

Log-logistic 1/𝛽𝛽1 𝑒𝑒𝛽𝛽0  

Lognormal 𝛽𝛽1
2 𝛽𝛽0 
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Appendix D. Estimation of Searcher Efficiency Parameters: 𝒑𝒑 and 𝒌𝒌 

Let 𝑝𝑝 be the initial searcher efficiency for fresh carcasses, or, more precisely, the conditional 

probability of detecting a carcass on the first search after carcass arrived, given that the carcass is 

present at the time of the search. Let 𝑘𝑘 be the fractional change in searcher efficiency with each 

successive search. Then, if searcher efficiency trial carcasses that are missed in one search are left in the 

field for possible discovery on later searches, 𝑝𝑝 and 𝑘𝑘 can estimated simultaneously using EoA. The 

mathematical description of 𝑘𝑘 is that the searcher efficiency for carcasses on the 𝑖𝑖th search after arrival 

is 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑘𝑘𝑖𝑖−1, and the number of carcasses observed on the 𝑖𝑖th search after arrival is a binomial random 

variable 𝑋𝑋𝑖𝑖~binomial(𝑁𝑁𝑖𝑖, 𝑝𝑝𝑘𝑘𝑖𝑖−1), where 𝑁𝑁𝑖𝑖 is the number of carcasses available for discovery on the 𝑖𝑖th 

search after arrival. The model is fit via Markov chain Monte Carlo using JAGS (Plummer, 2003) and 

the R package rjags (Plummer, 2016). 𝑘𝑘 is restricted to the interval [0, 1]. A Jeffreys prior for is used 

for 𝑝𝑝 (that is, prior 𝑝𝑝~beta(0.5, 0.5)) and a uniform prior is used for 𝑘𝑘. A burn-in period of 1,000 

iterations is used. The modeled joint posterior distribution of 𝑝𝑝 and 𝑘𝑘 is sampled as a component of the 

simulation of 𝑔𝑔� with 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 iterations, where 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 depends on the degree of uncertainty in the estimate 

(appendix A). 

  



86 

Appendix E. Multiple Classes 

Most fatality estimators use the classical Horvitz-Thompson (H-T) approach (Horvitz and 

Thompson, 1952) to combine search data from multiple search classes into estimates of the total. In 

particular, suppose there are 𝑛𝑛 search classes, with carcass counts 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛 and estimated detection 

probabilities 𝑔𝑔�1, … , 𝑔𝑔�𝑛𝑛. Then, the H-T estimator of total mortality would be 𝑀𝑀�𝐻𝐻𝐻𝐻 = ∑𝑋𝑋𝑖𝑖/𝑔𝑔�𝑖𝑖, which 

estimates the total as the sum of estimates for each class. If the 𝑔𝑔�𝑖𝑖’s and ∑𝑋𝑋𝑖𝑖 are not small and the 𝑔𝑔�𝑖𝑖’s 

are unbiased, 𝑀𝑀�𝐻𝐻𝐻𝐻 is approximately  unbiased and tends to have a relatively small variance in relation to 

the expected value. However, if ∑𝑋𝑋𝑖𝑖 is small, the variance of 𝑀𝑀�𝐻𝐻𝐻𝐻 can be quite large in relation to the 

mean, and the problem is compounded when 𝑔𝑔�𝑖𝑖’s are small.  

As an alternative, EoA pools the counts as 𝑋𝑋 = ∑𝑋𝑋𝑖𝑖 and the detection probabilities as the 

weighted average of detection probabilities among the classes, 𝑔𝑔� = ∑𝑎𝑎𝑖𝑖𝑔𝑔�𝑖𝑖, where 𝑎𝑎𝑖𝑖 is the assumed 

fraction of carcasses landing in class 𝑖𝑖. The estimate of total mortality across all classes is then 𝑀𝑀�𝐸𝐸𝐸𝐸𝐸𝐸 =

∑𝑋𝑋𝑖𝑖/∑𝑎𝑎𝑖𝑖𝑔𝑔�𝑖𝑖. Typically, the weights (𝑎𝑎𝑖𝑖) are not known, and there is insufficient (or no) data to estimate 

them. Instead, they are inferred from external information, such as density-weighted proportions 

estimated for surrogate species (Huso and Dalthorp, 2014); expected effectiveness of fatality reduction 

measures such as curtailment (Arnett and others, 2011; Marten Law, 2015; Behr and others, 2016; 

Bulling and Köppel, 2016) or deterrents (Arnett and others, 2013; Sinclair and DeGeorge, 2016); or 

assumed differences in fatality rates at different sites based on species activity, risk, or fatality rates of 

surrogate species.   

The EoA estimator of overall detection probability across classes is 𝑔𝑔� = ∑𝑎𝑎𝑖𝑖𝑔𝑔�𝑖𝑖, which has mean 

𝑔𝑔 = 𝐸𝐸(𝑔𝑔�) = ∑𝑎𝑎𝑖𝑖𝐸𝐸(𝑔𝑔�𝑖𝑖) and variance 𝜎𝜎2 = 𝑉𝑉(𝑔𝑔�) = ∑𝑎𝑎𝑖𝑖
2𝑉𝑉(𝑔𝑔�𝑖𝑖). The distribution of 𝑔𝑔� is not known 

precisely, but it is assumed that 𝑔𝑔�~beta(𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵), where 𝐵𝐵𝐵𝐵 = 𝑔𝑔2

𝜎𝜎2 (1 − 𝑔𝑔) − 𝑔𝑔 and 𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵(1/𝑔𝑔 − 1), 

which are the unique parameter values for the beta distribution with mean of 𝑔𝑔 and variance 𝜎𝜎2.  
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EoA’s pooled estimator, 𝑀𝑀�𝐸𝐸𝐸𝐸𝐸𝐸, has substantially smaller variance than that of 𝑀𝑀�𝐻𝐻𝐻𝐻, but 

uncertainty about the weights, 𝑎𝑎𝑖𝑖, introduces potential bias. The two estimators can be compared using 

the root mean square error (rMSE) as a measure of how close an estimator is to the target on average, 

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �(bias2 + variance). The pooling method of combining classes (𝑀𝑀�𝐸𝐸𝐸𝐸𝐸𝐸) has the 

greatest potential for bias when differences among detection probabilities among classes are most 

pronounced, so we compare the estimators in an especially challenging scenario for EoA: two search 

classes, 𝐸𝐸 and 𝐻𝐻, with detection probabilities 𝑔𝑔𝐸𝐸 = 0.9 and 𝑔𝑔𝐻𝐻 = 0.1, and associated weights 𝑎𝑎𝐸𝐸 and 𝑎𝑎𝐻𝐻 

with 𝑎𝑎𝐸𝐸 + 𝑎𝑎𝐻𝐻 = 1. 

The degree of bias in 𝑀𝑀�𝐸𝐸𝐸𝐸𝐸𝐸 is a function of how badly the relative weights between the classes 

are misspecified, and the relative variance is a function of the total number of fatalities, 𝑀𝑀. The rMSE's 

for the two estimators were compared for a wide range of misspecifications of 𝑎𝑎𝐸𝐸 for 𝑀𝑀 =

1, 10, 100, and 1000. When 𝑀𝑀 was small, 𝑀𝑀�𝐸𝐸𝐸𝐸𝐸𝐸 outperformed 𝑀𝑀�𝐻𝐻𝐻𝐻 unless 𝑎𝑎𝐸𝐸 was badly misspecified 

(fig. E1 a, b). When 𝑀𝑀 was large, 𝑀𝑀�𝐻𝐻𝐻𝐻 outperformed 𝑀𝑀�𝐸𝐸𝐸𝐸𝐸𝐸 unless the assumed 𝑎𝑎𝐸𝐸 was close to the 

actual (fig. E1 c, d).  
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Figure E1. Comparison of EoA’s pooling method of combining classes with the classical Horvitz-Thompson 
approach. Fatality estimation is made for a site with two search classes, 𝐸𝐸 and 𝐻𝐻, with overall detection 

probabilities of 𝑔𝑔𝐸𝐸 = 0.9 and 𝑔𝑔𝐻𝐻 = 0.1 with relative arrival rates between classes of 𝑎𝑎𝐸𝐸 and 1 − 𝑎𝑎𝐸𝐸. Each graph 

represents the relative root mean square error �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑀𝑀�𝐸𝐸𝐸𝐸𝐸𝐸)/𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑀𝑀�𝐻𝐻𝐻𝐻)� as a function of the true and 

assumed class weights, 𝑎𝑎𝐸𝐸. Heavy white contour line is drawn at 1.0, indicating equal rMSE values for the two 

estimators. Other contours are drawn at 0.5, 0.8, 1.2, and 2.0. Blue indicates regions where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑀𝑀�𝐸𝐸𝐸𝐸𝐸𝐸� <

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑀𝑀�𝐻𝐻𝐻𝐻), favoring 𝑀𝑀�𝐸𝐸𝐸𝐸𝐸𝐸, and yellow indicates regions where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑀𝑀�𝐸𝐸𝐸𝐸𝐸𝐸� > 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑀𝑀�𝐻𝐻𝐻𝐻), favoring 

𝑀𝑀�𝐻𝐻𝐻𝐻.  
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Appendix F. Multiple Years 

F.1   Estimation of past years 
The estimator of total mortality over 𝑛𝑛 years, 𝑀𝑀� , is identical to the estimator for total mortality 

across multiple classes: 𝑀𝑀� = ∑𝑋𝑋𝑖𝑖/∑𝜌𝜌𝑖𝑖𝑔𝑔�𝑖𝑖, where 𝑖𝑖 is an index for the year, 𝑋𝑋𝑖𝑖 is the number of carcasses 

observed, 𝑔𝑔�𝑖𝑖 is the estimated detection probability, and 𝜌𝜌𝑖𝑖 is the (assumed) relative mortality rate.  

The estimator of the year-specific mortality rate, 𝜆𝜆𝑖𝑖, for year 𝑖𝑖  (in the past) is identical to the 

estimator for 𝜆𝜆 in the single class module (appendix B). In particular, 𝜆𝜆𝑖𝑖 for years 𝑖𝑖 = 1, … , 𝑛𝑛 are 

estimated independently from each year’s search data, (𝑋𝑋𝑖𝑖, 𝑔𝑔�𝑖𝑖). The posterior distribution of the annual 

fatality rate in year 𝑖𝑖 is 𝑃𝑃(𝜆𝜆𝑖𝑖|𝑋𝑋𝑖𝑖, 𝑔𝑔�𝑖𝑖) = 𝑃𝑃(𝑋𝑋𝑖𝑖|𝜆𝜆𝑖𝑖, 𝑔𝑔�𝑖𝑖)𝑃𝑃(𝜆𝜆𝑖𝑖)/ ∫ 𝑃𝑃(𝑋𝑋𝑖𝑖|𝜆𝜆𝑖𝑖, 𝑔𝑔�𝑖𝑖)𝑃𝑃(𝜆𝜆𝑖𝑖)𝑑𝑑𝜆𝜆𝑖𝑖, where 

𝑋𝑋𝑖𝑖|𝜆𝜆𝑖𝑖, 𝑔𝑔�𝑖𝑖~binomial(𝑀𝑀𝑖𝑖, 𝑔𝑔�𝑖𝑖), 𝑀𝑀𝑖𝑖~Poisson(𝜆𝜆𝑖𝑖), and 𝑔𝑔�𝑖𝑖~beta(𝐵𝐵𝑎𝑎𝑖𝑖, 𝐵𝐵𝑏𝑏𝑖𝑖); and 𝑃𝑃(𝜆𝜆𝑖𝑖) ∝ 1/�𝜆𝜆𝑖𝑖 is the 

Jeffreys prior for 𝜆𝜆𝑖𝑖.  

F.2   Projection of future years 
Projection of future mortality begins with  estimation of the baseline annual fatality rate, 𝜆𝜆, 

which would occur in years with 𝜌𝜌 = 1. The posterior distribution of the combined fatality rate through 

the𝑛𝑛 years of monitoring is 𝜆𝜆′|(𝑋𝑋, 𝑔𝑔�). The distribution is calculated for 𝑋𝑋 = the total number of 

carcasses observed in 𝑛𝑛 years of monitoring and 𝑔𝑔� is the estimated overall detection probability for 

carcass arrivals in years 1 through 𝑛𝑛: 𝑃𝑃(𝜆𝜆′|𝑋𝑋, 𝑔𝑔�) = 𝑃𝑃(𝑋𝑋|𝜆𝜆′, 𝑔𝑔�)𝑃𝑃(𝜆𝜆′)/ ∫ 𝑃𝑃(𝑋𝑋|𝜆𝜆′, 𝑔𝑔�)𝑃𝑃(𝜆𝜆)𝑑𝑑𝑑𝑑′, where 

𝑋𝑋|(𝜆𝜆′, 𝑔𝑔�)~binomial(𝑀𝑀, 𝑔𝑔�), 𝑀𝑀~Poisson(𝜆𝜆′), 𝑔𝑔�~beta(𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵) (appendix E), and 𝑃𝑃(𝜆𝜆′) ∝ 1/√𝜆𝜆′ is the 

Jeffreys prior for the Poisson rate parameter, 𝜆𝜆′. The estimated baseline fatality rate, 𝜆𝜆, is then defined to 

be the posterior distribution of 𝜆𝜆′|(𝑋𝑋, 𝑔𝑔�), rescaled so that 𝜆𝜆 is the posterior distribution of the fatality rate 

when 𝜌𝜌 = 1. That is, 𝑃𝑃(𝜆𝜆 ≤ 𝜆𝜆∗) = 𝑃𝑃[𝜆𝜆′|(𝑋𝑋, 𝑔𝑔�) ≤ ∑𝜌𝜌𝑖𝑖𝜆𝜆∗]. Simulation is used to project the total 

cumulative number of fatalities through year 𝑛𝑛 + 𝑚𝑚, where 𝑛𝑛 is the number of past years of search data 

and 𝑚𝑚 is the number of years of fatality projections. First, the cumulative total, 𝑀𝑀𝑛𝑛, of past fatalities 

through year 𝑛𝑛 are drawn from the posterior distribution of 𝑀𝑀|(𝑋𝑋, 𝑔𝑔�). Next, a baseline fatality rate is 

drawn from the posterior of 𝜆𝜆|(𝑋𝑋, 𝑔𝑔�). Finally, projected annual fatalities, 𝑀𝑀�𝑗𝑗 , for the next 𝑚𝑚 years 

𝑗𝑗 = 1, … , 𝑚𝑚 are generated as random draws from a Poisson(𝜌𝜌𝑗𝑗𝜆𝜆) distribution. The total projected 

fatality through each year 𝑛𝑛 + 𝑗𝑗 for 𝑗𝑗 = 1, … , 𝑚𝑚 is then 𝑀𝑀𝑛𝑛,𝑗𝑗 = 𝑀𝑀𝑛𝑛 + ∑ 𝑀𝑀�𝑦𝑦
𝑗𝑗
𝑦𝑦=1 .   
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The projected estimates of cumulative mortality through year 𝑛𝑛 + 𝑗𝑗 ∈ [1, … , 𝑚𝑚] are 𝑀𝑀�∗ values 

derived from the total observed carcass count through year 𝑛𝑛 added to the simulated projected carcass 

counts, 𝑋𝑋𝑗𝑗~betabinomial(𝑀𝑀�𝑗𝑗, 𝐵𝐵𝑎𝑎𝑗𝑗, 𝐵𝐵𝑏𝑏𝑗𝑗), for 𝑗𝑗 = 𝑛𝑛 + 1, … , 𝑛𝑛 + 𝑦𝑦, where 𝑀𝑀�𝑗𝑗 is the projected fatality in 

year 𝑗𝑗, and 𝐵𝐵𝑎𝑎𝑗𝑗 and 𝐵𝐵𝑏𝑏𝑗𝑗 are the parameters for the beta distribution characterizing 𝑔𝑔�𝑗𝑗 (as provided by the 

user). The cumulative total projected mortality in year 𝑛𝑛 + 𝑗𝑗, 𝑀𝑀�𝑛𝑛,𝑗𝑗
∗  is defined as the minimum number of 

fatalities such that 𝑃𝑃�𝑀𝑀� ≤ 𝑀𝑀�𝑛𝑛,𝑗𝑗
∗ �𝑋𝑋 = ∑ 𝑋𝑋𝑖𝑖

𝑛𝑛
𝑖𝑖=1 + ∑ 𝑋𝑋𝑦𝑦

𝑗𝑗
𝑦𝑦=1 ; 𝑔𝑔�� ≤ 1 − 𝛼𝛼 for the user’s choice of credibility 

level, 1 − 𝛼𝛼. 

F.3   Tests on assumed weights, 𝝆𝝆 
There are 3 separate tests on the assumed weights used in the Multiple Years module, including 

a qualitative comparison of the assumed weights versus the fitted weights, a likelihood ratio test on the 

plausibility of the assumed weights, and a quick test of the potential degree of bias introduced by 

possible misspecification of the weights. The tests are also applicable to Multiple Class estimates after 

substituting “class” for “year” and “classwise” for “annual” in the discussion in G.3.1 and G.3.2. 

F.3.1   Qualitative comparison of assumed weights and fitted weights 

The assumed weights for each year (as entered by the user) are listed alongside 95% CIs for 

fitted weights. The fitted weights are determined by simulation with 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1,000 random draws from 

each posterior distribution of fatality rates, 𝜆𝜆𝑖𝑖|(𝑋𝑋𝑖𝑖, 𝐵𝐵𝑎𝑎𝑖𝑖, 𝐵𝐵𝑏𝑏𝑖𝑖) (appendix B), for years 𝑖𝑖 = 1, … , 𝑛𝑛 to 

construct an 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑛𝑛 array of simulated fatality rates, 𝚲𝚲. The simulated fatality rates are normalized to 

give relative weights and scaled to match the scale of the 𝜌𝜌𝑖𝑖’s entered by the user. Specifically, for each 

simulated year, the fitted 𝜌𝜌’s are given as 𝜌𝜌�𝑖𝑖 = 𝜆𝜆𝑖𝑖
∑ 𝜆𝜆𝑖𝑖

∑ 𝜌𝜌𝑖𝑖, where 𝜌𝜌𝑖𝑖 is the assumed weight for year 𝑖𝑖. The 

95% CI for fitted weight for year 𝑖𝑖 is defined as the 0.025 and 0.975 quantiles of the simulated fitted 

weight 𝜌𝜌�𝑖𝑖. 
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F.3.2   Test of plausibility of assumed weights 

The null model assumes that the weights are specified correctly and that the fatality rate is 𝜆𝜆0𝜌𝜌𝑖𝑖 

for years 𝑖𝑖 = 1, … , 𝑛𝑛. 𝜆𝜆0 is estimated by maximum likelihood. More precisely, 𝜆̂𝜆0 is the value that 

maximizes 𝐿𝐿�𝜆̂𝜆0� = ∏ 𝑃𝑃(𝑥𝑥𝑖𝑖|𝜆̂𝜆0, 𝐵𝐵𝑎𝑎𝑖𝑖, 𝐵𝐵𝑏𝑏𝑖𝑖)𝑖𝑖 , where 𝑋𝑋𝑖𝑖|(𝜆̂𝜆0, 𝐵𝐵𝑎𝑎𝑖𝑖, 𝐵𝐵𝑏𝑏𝑖𝑖)~betabinomial(𝑀𝑀𝑖𝑖, 𝐵𝐵𝑎𝑎𝑖𝑖 , 𝐵𝐵𝑏𝑏𝑖𝑖) and 

𝑀𝑀𝑖𝑖~Poisson(𝜆̂𝜆0𝜌𝜌𝑖𝑖). The alternative model calculates the maximum likelihood estimate 𝜆̂𝜆𝑖𝑖 of fatality 

rate for each year 𝑖𝑖 = 1, … , 𝑛𝑛 as the 𝜆̂𝜆𝑖𝑖 that maximizes 𝐿𝐿�𝜆̂𝜆𝑖𝑖� = 𝑃𝑃�𝑥𝑥𝑖𝑖�𝜆̂𝜆𝑖𝑖 , 𝐵𝐵𝑎𝑎𝑖𝑖, 𝐵𝐵𝑏𝑏𝑖𝑖�, where 

𝑋𝑋𝑖𝑖~betabinomial(𝑀𝑀𝑖𝑖, 𝐵𝐵𝑎𝑎𝑖𝑖, 𝐵𝐵𝑏𝑏𝑖𝑖) and 𝑀𝑀𝑖𝑖~Poisson(𝜆̂𝜆𝑖𝑖). The test statistic 𝐷𝐷 = 2 ⋅ �log �Π𝑖𝑖𝐿𝐿�𝜆̂𝜆𝑖𝑖�� −

log �𝐿𝐿(𝜆̂𝜆0)�� is assumed to be distributed as 𝐷𝐷~𝜒𝜒2(𝑛𝑛 − 1) and the 𝑝𝑝-value is given as 𝑃𝑃(Χ𝑛𝑛−1
2 > 𝐷𝐷). A 

small 𝑝𝑝-value is   indicative of misspecification of 𝜌𝜌𝑖𝑖’s, but that misspecification may or may not 

introduce bias into the estimates of total fatality 𝑀𝑀 or cumulative fatality rate 𝜆𝜆 (section G.3.3). 

F.3.3   Quick test of relative bias 

In many cases, estimates of 𝜆𝜆 and 𝑀𝑀 are extremely robust to assumptions about the 𝜌𝜌𝑖𝑖’s. In 

particular, if the detection probabilities vary little from year to year and the fatality rates are low, the 

estimates of 𝜆𝜆 and 𝑀𝑀 will be largely unaffected by choices about 𝜌𝜌𝑖𝑖. A quick test of the potential for 

bias due to misspecification of 𝜌𝜌𝑖𝑖’s is given. The test compares the 1 − 𝛼𝛼 quantile of the posterior 

distribution of 𝜆𝜆 under the assumption that the 𝜌𝜌𝑖𝑖’s are correctly specified (𝜆𝜆𝜌𝜌
∗ ) with the 1 − 𝛼𝛼 quantile 

of the posterior distribution of 𝜆𝜆 assuming the fitted 𝜌𝜌𝑖𝑖’s are correct (𝜆𝜆𝜌𝜌�
∗ ) and shows 𝜆𝜆𝜌𝜌

∗ /𝜆𝜆𝜌𝜌�
∗  in the results 

table.  
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Appendix G. Triggers—Technical Details 
G.1   Long-term trigger 

The long-term trigger fires in year 𝑌𝑌 if the estimated cumulative mortality (𝑀𝑀∗ based on the 

user-specified 𝛼𝛼) through year 𝑦𝑦 exceeds the long-term take limit (Τ). The calculation of 𝑀𝑀∗ (appendix 

B) is based on the pooled carcass counts (𝑋𝑋 = ∑ 𝑋𝑋𝑖𝑖
𝑌𝑌
𝑖𝑖=1 , where 𝑋𝑋𝑖𝑖 is the carcass count in year 𝑖𝑖) and the 

estimated pooled overall detection probability for carcasses that arrive some time in years 1 through 𝑌𝑌 

(appendix F, section F.1). 

G.2   Short-term trigger 
The short-term trigger defined for significance level 𝛼𝛼, threshold 𝜏𝜏, and a term of 𝑤𝑤 years fires 

in year 𝑌𝑌 if the estimated annual fatality rate (𝜆𝜆) over the term exceeds 𝜏𝜏 with probability ≥ (1 − 𝛼𝛼) 

according to the posterior distribution of 𝜆𝜆. The posterior is derived from the pooled carcass count 𝑋𝑋 

over the term (that is, 𝑋𝑋 = ∑ 𝑋𝑋𝑖𝑖
𝑌𝑌
𝑖𝑖=𝑌𝑌−𝑤𝑤+1 , where 𝑋𝑋𝑖𝑖 is the carcass count in year 𝑖𝑖, assuming 𝑋𝑋𝑖𝑖 = 0 if 

𝑖𝑖 ≤ 0) and the estimated pooled detection probability over the term as characterized by 𝐵𝐵𝐵𝐵 and 

𝐵𝐵𝐵𝐵 parameters (section G.1). Specifically: 

𝑃𝑃(𝜆𝜆|𝑋𝑋, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵) =
𝑃𝑃(𝑋𝑋|𝜆𝜆, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵)𝑃𝑃(𝜆𝜆)

∫ 𝑃𝑃(𝑋𝑋|𝜆𝜆, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵)𝑃𝑃(𝜆𝜆)𝑑𝑑𝑑𝑑
 

where 𝑋𝑋~binomial(𝑀𝑀, 𝑔𝑔�), 𝑀𝑀~Poisson(𝜆𝜆𝜆𝜆), 𝑔𝑔�~beta(𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵), and 𝑃𝑃(𝜆𝜆) ∝ 1/√𝜆𝜆 is the Jeffreys prior 

for Poisson rate. The trigger fires when 𝑃𝑃(𝜆𝜆 > 𝜏𝜏|𝑋𝑋, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵) > 1 − 𝛼𝛼, which gives strong evidence that 

the actual fatality rate 𝜆𝜆 exceeded the threshold 𝜏𝜏 when a small value of 𝛼𝛼 is used.  
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G.3   Reversion trigger 
The reversion trigger defined for significance level 𝛼𝛼, threshold 𝜏𝜏, and constraint effect 𝜌𝜌 fires in 

year 𝑌𝑌 if the estimated annual fatality rate (𝜆𝜆) over years 1 through 𝑌𝑌 is less than 𝜏𝜏𝜏𝜏 with probability 

≥ (1 − 𝛼𝛼) according to the posterior distribution of 𝜆𝜆.To conduct the test, define the required 

significance level 𝛼𝛼 and calculate a posterior distribution of the actual take rate 𝜆𝜆 using the (non-

informative) Jeffreys prior. Let 𝑋𝑋 be the cumulative total carcass count for year 1 through year 𝑌𝑌. The 

posterior of 𝜆𝜆 is conditioned on the pooled carcass count and the estimated detection probability as 

characterized by 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters (section F.1). Specifically: 

𝑃𝑃(𝜆𝜆|𝑋𝑋, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵) =
𝑃𝑃(𝑋𝑋|𝜆𝜆, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵)𝑃𝑃(𝜆𝜆)

∫ 𝑃𝑃(𝑋𝑋|𝜆𝜆, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵)𝑃𝑃(𝜆𝜆)𝑑𝑑𝑑𝑑
 

where 𝑋𝑋~binomial(𝑀𝑀, 𝑔𝑔�), 𝑀𝑀~Poisson(𝜆𝜆𝜆𝜆), 𝑔𝑔�~beta(𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵), and 𝑃𝑃(𝜆𝜆) ∝ 1/√𝜆𝜆 is the Jeffreys prior 

for Poisson rate. The trigger fires when 𝑃𝑃(𝜆𝜆 < 𝜏𝜏𝜏𝜏|𝑋𝑋, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵) > 1 − 𝛼𝛼, which gives strong evidence that 

the actual fatality rate 𝜆𝜆 was less than 𝜏𝜏𝜏𝜏 when a small 𝛼𝛼 is used. 
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Appendix H. Parameterizations of Distributions Used in the Software 

Weibull Distribution.—The parameterization used for the Weibull(α, β) distribution in the 

Evidence of Absence software is identical to that used in the base package in R with α = shape and β = 

scale. The probability density function (pdf) and cumulative distribution function (cdf) are given by 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼
𝛽𝛽

∙ �𝑥𝑥
𝛽𝛽

�
𝛼𝛼−1

𝑒𝑒−�𝑥𝑥
𝛽𝛽�

𝛼𝛼

and 𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−�𝑥𝑥
𝛽𝛽�

𝛼𝛼

, respectively, while the mean and variance are 

𝜇𝜇 = E𝑋𝑋 = 𝛽𝛽Γ �1 + 1
𝛼𝛼

� and 𝜎𝜎2= V𝑋𝑋 = 𝛽𝛽2[Γ(1 + 2/𝛽𝛽) − Γ2(1 + 1/𝛼𝛼)]. 

 

Lognormal Distribution.—The parameterization used for the Lognormal(α, β) is identical to that 

used in the base package in R after substituting  meanlog = β and sdlog = √𝛼𝛼.  The pdf is given by 

β α

πα

− −

=
2(log ) /(2 )

( )
2

xef x
x

, and the mean and variance are µαβ == + 2/E eX and α β α σ+= − =2 2V ( 1)X e e . 

 

Log-Logistic Distribution.—The parameterization used for the loglogistic(α, β) is identical to 

that used by the R statistical package actuar after substituting shape = α and scale = β. The pdf is 

[ ]2
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)/(1
)/)(/()(

α

α

β

ββα
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xxf
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, the cdf is 
α

α αβ
=

+
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, and the mean and variance are given by 

)/sin(
/E

απ
αβπ

=X  (if α > 1; otherwise, undefined) and π α π αβ
π α π α

   = −     

2
2 2 / /V

sin(2 / ) sin( / )
X  (if α > 2; 

otherwise, undefined).  

 

Beta Distribution.—The parameterization used for the beta(α, β) is identical to that used in the 

base package in R, with shape1 = α and shape2 = β. The probability density function is given by 

𝑓𝑓(𝑥𝑥) = Γ(𝛼𝛼+𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽) 𝑥𝑥𝛼𝛼−1(1 − 𝑥𝑥)𝛽𝛽−1 for 0 ≤ x ≤ 1 and 0 otherwise. The mean and variance are given as 

𝜇𝜇 = 𝛼𝛼
𝛼𝛼+𝛽𝛽

 and 𝜎𝜎2 = 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)2(𝛼𝛼+𝛽𝛽+1), respectively. 
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Appendix I. Functions and Data Available from R Command Line 
For the convenience of advanced users, several useful functions in the EoA software package are 

readily available directly from the R command line. Some of these functions provide options that are not 
available in the GUI. For example, user may specify prior distributions for 𝑀𝑀 and 𝜆𝜆 in the calculation of 
posteriors of 𝑀𝑀|(𝑋𝑋, 𝑔𝑔), 𝑀𝑀|(𝑋𝑋, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵), 𝜆𝜆|(𝑋𝑋, 𝑔𝑔), and 𝜆𝜆|(𝑋𝑋, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵) and may specify a custom arrival 
function in the calculation of 𝑔𝑔 when searcher efficiency and carcass persistence distribution are known. 

I.1   Searcher efficiency model 

Description 
Fitting of the searcher efficiency model (appendix D) using rjags implementation of Markov 

chain Monte Carlo for given searcher efficiency trial data. 

 

Usage 
pkfit(pkdat, burn = 2000, n.iter = 2000) 

Arguments 
pkdat list containing n = number of searches in field trials, M = number of carcasses 

available for discovery in each search (vector of length n), and X = number of 
carcasses discovered in each search (vector of length n) 

burn number of burn-in iterations to establish the stationary distribution of (𝑝𝑝, 𝑘𝑘) 

n.iter number of total iterations in the Gibbs sample 

Details 
User is given flexibility to explore the fitting of the model of searcher efficiency as a function of the 
number of times a carcass has been missed in previous searches. Further fine tuning of parameters for 
fitting the model can be attained by invoking JAGS functions directly using EoA’s model for (𝑝𝑝, 𝑘𝑘), 
which is stored in eoa::pkmod. 

Value 
The function returns an n.iter x 2 array of simulated (𝑝𝑝, 𝑘𝑘) representing the joint distribution of the 
estimated searcher efficiency parameters. The array is a subset of a mcmc object returned from 
rjags::coda.samples and contains a brief description of the data.  
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I.2   Carcass persistence model 

Description 
Functions to fit persistence models to data from carcass persistence field trials (section 2.1.3), to 
simulate persistence parameters and/or persistence times from fitted persistence models (appendix C), 
and to calculate probability of carcass persistence from arrival at a random time during one interval until 
a search at a specified later time. 

Usage 
cpfit(cpdat, persistence_distn) 

cpsim(cpmod, nsim, option = "parms") 

ppersist(persistence_distn, t_arrive0, t_arrive1, t_search, pdb, pda = 1) 

Arguments 
cpdat an 𝑛𝑛 × 2 array, where 𝑛𝑛 is the number of trial carcasses. First column gives the 

last time the carcass was observed, and second column gives the first time the 
carcass was noted missing. If right censored, enter Inf in the second column. 

persistence_distn name of the persistence distribution to be fit 

cpmod a fitted persistence model  

nsim desired number of random draws from the persistence distribution 

option indicator to simulate parameter values ("parms") or persistence times ("times") 

t_arrive0 beginning of time interval for carcass arrival 

t_arrive1 end of time interval for carcass arrival 

t_search time that search is conducted (t_arrive1 ≤ t_search) 

pda, pdb shape and scale parameters for persistence distribution (appendix H) 

Details 
Persistence models are fit with cpfit using the tools provided in the survival package (Therneau, 
2015). persistence_distn must be specified as "Exponential", "Weibull", "Log-Logistic", or 
"Lognormal".  

 

The cpsim function with option = "parms" can be used to account for uncertainty in the estimates of 
persistence distribution by simulating nsim random draws from the fitted model, cpmod, which is an 
object of class survreg (as returned by the cpfit function in EoA or the survreg function in the 
survival package (Therneau, 2015)).  
 

Similarly, cpsim function with option = "times" can be used to generate random carcass persistence 
times after accounting for uncertainty in the persistence distribution parameters and for uncertainty in 
persistence times for given parameter values.   
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The probability of a carcass persisting until a search at time t_search after arriving at a random time in 
the interval [t_arrive0, t_arrive1] and assuming persistence times follow a persistence_distn 
persistence distribution with shape and scale parameters = pda and pdb, respectively, or simply pdb = 
mean persistence time if persistence_distn = "Exponential". The calculation is performed as 𝑟𝑟𝑖𝑖𝑖𝑖 
as discussed in appendix A, where 𝑖𝑖 is the arrival interval and 𝑗𝑗 is the search time and arrival 
distribution is assumed uniform within the arrival interval. The function is vectorized for both the times 
and persistence parameters and assumes that t_arrive0, t_arrive1, and t_search are vectors of 
length 𝑁𝑁𝑡𝑡 ≥ 1 and  pda and pdb are vectors of length 𝑁𝑁𝑝𝑝 ≥ 1.  

Value 
cpfit returns a fitted persistence model of class survreg (Therneau, 2015), which can be used as the 
cpmod argument in function cpsim.  

 

cpsim returns an nsim × 2 array of simulated persistence shape and scale parameters or an  nsim-vector 
of simulated persistence times, depending on whether option = "parms" or "times". 

 

ppersist returns an 𝑁𝑁𝑡𝑡 × 𝑁𝑁𝑝𝑝 array of probabilities of a carcass persisting from its arrival at a random 
time in intervals [t_arrive0, t_arrive1] until a search at time t_search, where 𝑁𝑁𝑡𝑡 is the length of the 
t_arrive0, t_arrive1, and t_search vectors and 𝑁𝑁𝑝𝑝 is the length of the pda and pdb vectors that 
define the assumed persistence distribution(s).  

I.3   Arrival Function Builder 

Description 
Tools for constructing a carcass arrival distribution (appendix A) comprised of three components, 
including a uniform distribution and two beta distributions. The compound arrival distribution is highly 
flexible and can accommodate a wide variety of patterns of seasonal variation in mortality rates. For 
example, a constant, small underlying risk of mortality throughout the year with peaks in risk associated 
with spring and fall migration could be modeled as: (1) a uniform distribution to represent the persistent 
underlying risk, plus (2) beta distributions to represent the increased risk in spring and fall. Arrival 
functions that are produced using the arrival function builder can be used in the R command line 
function to calculate the overall detection probability, 𝑔𝑔 (section I.4). 
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Usage 
The data and functions used in the arrival function builder are organized in an R6 class called 
arrivalModel. An arrivalModel object is created in R by invoking the new method for the class:  

 
arrmod<-arrivalModel$new(parms = NULL, duration = NULL) 

 

Existing arrivalModel objects can be edited via the buildModel method: 
 
arrmod$buildModel() 

 

Arguments 
parms initial arrival function parameters. If parms is missing or NULL, arrival function 
builder window opens with a generic arrival function, which provides a convenient starting point for 
building a custom arrival function. The generic arrival function is arbitrary and should in no way be 
considered typical or recommended. Alternatively, initial arrival parameters may be explicitly specified 
in the parms argment. Format is either an existing arrivalModel object or a list containing parameter 
values to define a compound arrival function, which include arrcomponents (logical 3-vector 
indicating whether the model includes uniform, beta1, and beta2 components, respectively); lwr.u and 
upr.u (lower and upper bounds of the uniform component); lwr.p1, upr.p1, lwr.p2, and  upr.p2 
(lower and upper bounds of the beta1 and beta2 components); a.p1, b.p1, a.p2, and b.p2 (𝛼𝛼 and 𝛽𝛽 
parameters of the beta1 and beta2 components); and wt.u, wt.p1, and wt.p2 (relative contributions of 
each component to the compound arrival function). 

 

duration upper bound on the 𝑥𝑥-axis of the of the arrival function builder graph 

Details 
When a new arrivalModel is created, the arrival function builder window opens, allowing the user to 
define the components and parameters (bounds, weights, symmetries, aspects) of a compound arrival 
function (fig. I1). The components (uniform, beta1, beta2) are selected via the radio buttons in the upper 
left region of the window, and the parameters governing the shapes of the components (bounds, weights, 
symmetries, and aspects) are controlled by the sliders. Parameter values are displayed in the table in the 
upper left corner of the window. Component options, parameter values, and the resulting arrival 
function are saved to the arrivalModel object (arrmod in this example) and the window closed when 
Save is clicked. The newly constructed arrival function can be accessed directly and used in the same 
ways as other R functions. Some examples are given below. 

 

Example 1: graph the arrival function 
xx<-0:365 

plot(xx, arrmod$arrfun(xx)) # graph of the arrival function 
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Figure I1. Arrival function builder. The relative arrival rate of carcasses through period of possible times of arrival is 
modeled as a sum of a uniform component and two beta distribution components. User may select which 
components to include in the model and adjust characteristics of each component using the sliders located outside 
the margins of the graph. The compound arrival function is represented by a heavy black curve, and the 
contributions of each component are represented by colored lines.  

 

Example 2: calculate the fraction of carcasses arriving in the first 150 days 
integrate(arrmod$arrfun, lower=0, upper=150)$value 

In addition, the arrivalModel object (arrmod in this example) can be used as the arrdat argument in 
the calcg.fixed(gdat, arrdat = NULL, arrSimplify = T) function (appendix I.4). 

A monitoring period can be superimposed on the arrival graphs (fig. I2) within the arrival function 
builder by activating the "monitoring" option in the upper left region of the window. Sliders can be used 
to adjust the bounds of the monitoring period, with the fraction of carcasses that arrive before, during, 
and after the monitored period displayed near the top of the graph.  
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Figure I2. Arrival function builder with the monitoring option selected. The monitoring period is highlighted in the 
figure. Bounds of the monitoring period can be adjusted using the sliders above the graph. Bounds are given on the 
𝑥𝑥-axis below the graph, and the fractions of carcasses arriving in each period are shown near the the top of the 
graph. The monitoring period depicted in the figure begins 67 days after the beginning of the arrival period and 
extends through 284 days after arrivals begin. The fraction of carcasses arriving within the monitored period is 
𝒗𝒗 =0.71, while 0.087 arrive before the first search and 0.203 arrive after the last search.  
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Value 
Upon closing, the arrival function builder window returns a compound arrival function with the 
specified parameters wrapped in an R6 object. The function is stored as the arrfun member and 
component parameters are stored in a list with names matching those of the parms argument. For 
example, if arrmod is the R6 object, the arrival function arrmod$arrfun(t) is the PDF of arrivals as a 
function of days since the beginning of the arrival period, and the uniform component would extend 
from arrmod$lwr.u to arrmod$upr.u (assuming arrmod$arrcomponents[1] = TRUE). 

I.4   Estimation of 𝒈𝒈 

Description 
Calculate the overall detection probability, 𝑔𝑔, for a given, fixed set of arrival, persistence, and search 
parameters.  

Usage 
calcg.fixed(gdat, arrdat = NULL) 

Arguments 
gdat list of carcass persistence and search parameters required to calculate 𝑔𝑔, 

including: 

a spatial coverage (section 2.1.1) 

v temporal coverage (section 2.1.1) 

p, k searcher efficiency parameters (section 2.1.2) 

samtype "Formula" or "Custom" 

Isam, nsearch search interval, number of searches (if samtype="Formula") 

days vector of search days, starting at 0 (if samtype="Custom") 

persistence_distn name of persistence distribution: "Exponential", "Weibull", "Log-Logistic", or 
"Lognnormal" 

pda, pdb 𝛼𝛼 and 𝛽𝛽 parameters of persistence distribution (appendix H) 
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arrdat list that defines (optional) arrival function characteristics.With arrdat = NULL, 
arrivals are assumed to be uniform within the monitored period. Alternatively, 
arrdat may be a vector of relative arrival rates within each search interval 
(length(arrdat) = nsearch or length(days) - 1). arrdat may also be an 
arrivalModel object (appendix I.3) or a list that includes arrfun = either a 
vector of relative arrival rates within each search interval, "Uniform", or an 
arrival function. If arrfun is a vector, the fractions of carcasses arriving before 
and after the monitored period must be provided as arrmiss0 and arrmissf, 
respectively. If arrfun is a function (or "Uniform"),  the arrdat must include s0 
= start of monitoring period (in number of days after the beginning of arrivals), 
duration = length of monitoring season, and arrSimplify = TRUE or FALSE. 
arrSimplify indicates whether or not to make the simplifying assumption that 
arrivals are uniform within each search interval. The default is to set 
arrSimplify = TRUE if no value is specified. 

Details 
The overall detection probability is calculated (appendix A) for the given parameter set. 
calcg.fixed(gdat, arrdat = NULL) can accommodate non-uniform arrival functions, such as those 
included in arrivalModel or custom user-defined arrival functions.  

Value 
Function returns a list of detection probabilities for "Full site, full year", "Full site, 
monitored period", and "Searched area, monitored period" (section 2.3.1). 

I.5   Calculation of posterior distribution of 𝑴𝑴 

Description 
Calculation of the posterior distribution of total mortality (𝑀𝑀) given the carcass count, overall detection 
probability, and prior distribtion. Calculation of summary statistics from the posterior distribution of 𝑀𝑀. 

Usage 
postM(x, g, prior = 'IbinRef', mmax = NA) 

postM.ab(x, Ba, Bb, prior = 'IbinRef', mmax = NA) 

calcMstar(pMgX, alpha) 

MCI(pMgX, crlev = 0.95) 
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Arguments 
x carcass count 

g overall carcass detection probability  

Ba, Bb parameters for beta distribution characterizing the posterior distribution of 𝑔𝑔 

prior prior distribution of 𝑀𝑀 

pMgX posterior distribution of 𝑀𝑀 

crlev, alpha credibility level (1 − 𝛼𝛼) and its complement (𝛼𝛼) 

Details 
The functions postM and postM.ab return the posterior distributions of 𝑀𝑀|(𝑋𝑋, 𝑔𝑔) and 𝑀𝑀|(𝑋𝑋, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵), 
respectively, with options to specify prior distribution for 𝑀𝑀 and limit for truncating the prior to 
disregard implausibly large values of 𝑀𝑀 and make the calculations tractable. Use postM when 𝑔𝑔 is fixed 
and known; otherwise, use postM.ab when uncertainty in 𝑔𝑔 is characterized in a beta distribution with 
parameters 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 (section 2.3.1). The non-informative, integrated reference prior for binomial 
random variables (appendix B) is the default (prior = "IbinRef"). Other options include "binRef", 
"IbetabinRef", and "betabinRef", which are the non-integrated and integrated forms of the binomial 
and betabinomial reference priors (Berger and others, 2012). For values of 𝑋𝑋 greater than 2, the 
integrated and non-integrated reference priors give virtually identical posteriors. However, the non-
integrated priors assign infinite weight to 𝑚𝑚 = 0 and return a posterior of 𝑃𝑃(𝑀𝑀 = 0|𝑋𝑋 = 0, 𝑔𝑔�) = 1 
when 𝑋𝑋 = 0, implying absolute certainty that the total number of fatalities was 0 if no carcasses were 
observed. In addition, a uniform prior may be specified by prior = "uniform". Alternatively, a 
custom prior may be given as a 2-dimensional array with columns for 𝑚𝑚 and 𝑃𝑃(𝑀𝑀 = 𝑚𝑚), respectively. 
The first column (𝑚𝑚) must be sequential integers starting at 𝑚𝑚 = 0. The second column gives the 
probabilities associated with 𝑚𝑚, which must be non-negative and sum to 1.  

The named priors ("IbinRef", "binRef", "IbetabinRef", and "betabinRef") are functions of 𝑚𝑚 and 
defined on 𝑚𝑚 = 0, 1, 2, … without upper bound. However, the posteriors can only be calculated for a 
finite number of 𝑚𝑚’s up to a maximum of mmax, which is to set by default to the smallest value of 𝑚𝑚 
such that 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥|𝑚𝑚, 𝑔𝑔�) < 0.0001, where 𝑥𝑥 is the observed carcass count or may be specified by the 
user.  

Value 
The functions postM and postM.ab return the posterior distributions of 𝑀𝑀|(𝑋𝑋, 𝑔𝑔) and 𝑀𝑀|(𝑋𝑋, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵), 
respectively. The functions calcMstar and MCI return 𝑀𝑀∗value (section 1.1.2) and credibility interval 
for the given posterior distribution, pMgX (which may be the return value of postM or postM.ab) and 𝛼𝛼 
value or credibility level.  
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I.6   Calculation of posterior distribution of 𝝀𝝀 

Description 
Calculation of the posterior distribution of mortality rate (𝜆𝜆) given the carcass count, overall detection 
probability, and prior distribtion.  

Usage 
posteriorL(x, g, pL = "jeffreys") 

posteriorL.ab(x, Ba, Bb, pL = "jeffreys") 

posteriorLpdf(x, g, pL = "jeffreys") 

posteriorLpdf.ab(x, Ba, Bb, pL = "jeffreys") 

Arguments 
x carcass count 

g overall carcass detection probability  

Ba, Bb parameters for beta distribution characterizing the posterior distribution of 𝑔𝑔 

pL prior distribution of 𝑀𝑀 

Details 
The functions posteriorL and posteriorL.ab return the posterior CDFs of 𝜆𝜆|(𝑋𝑋, 𝑔𝑔) and 
𝜆𝜆|(𝑋𝑋, 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵), respectively, and posteriorLpdf and posteriorLpdf.ab return the posterior PDFs. 
User is given the option to specify a prior distribution for 𝜆𝜆, which may be pL = "jeffreys" for the 
Jeffreys prior (appendix B), pL = "uniform" for a uniform prior,or pL = a custom prior distribution 
entered as a function of L (for example  pL = function(L)). Custom priors must be non-negative and 
vectorized.   
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Value 
The functions return the posterior distribution of 𝜆𝜆 as a vectorized function. For example, to compare 
graphs of the posterior PDFs derived from Jeffreys prior, uniform prior, and the Jaynes prior [𝑃𝑃(𝜆𝜆) ∝
1/𝜆𝜆] for detection probability g = 0.20 and x = 4 carcasses, enter the following commands into R: 
 
x <- 5 

g <- 0.20 

xx<-seq(0, 100, length = 1000) 

plot(xx, posteriorLpdf(x, g, function(L) 1/L)(xx), col = 3, type='l', 

 ylab = paste0("p(\u03bb | x = ", x, ", g = , ", g, ")")) 

lines(xx, posteriorLpdf(x, g, "jeffreys")(xx), col = 1) 

lines(xx, posteriorLpdf(x, g, "uniform")(xx), col = 2) 

legend("topright", legend=c( 

 "Jaynes:   p\u03bb \u221d 1/\u03bb",  

 "Jeffreys: p\u03bb \u221d 1/sqrt(\u03bb)",  

 "Uniform:  p\u03bb \u221d 1"),  

 lty = 1, col = c(3, 1, 2), title = "Prior") 

I.7   Default data sets 
A number of generic data sets are provided as templates for inputs and as starting points for exploration 
and discussion of software features and capabilities. None of the generic data sets should be considered 
as typical or in any way recommended.  

 

pkdatDefault searcher efficiency field trial data for pkfit (section I.1) 

CPdataDefault carcass persistence field trial data for cpfit (section I.2) 

parmsDefault compound arrival function parameters for arrivalModel (section I.3) 

gdatDefault required parameters for estimate of 𝑔𝑔 using calcg.fixed (section I.4) 
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Appendix J. Conversion Calculator 

To convert from beta distribution 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters to 𝑔𝑔� with 95% CI, the conversion 

calculator sets 𝑔𝑔� = 𝐵𝐵𝐵𝐵/(𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵), which is the mean of the beta distribution, and gives the 0.025 and 

0.975 quantiles of the beta distribution with parameters 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 as the bounds of the 95% CI for 𝑔𝑔. 

In R, the 95% CI is qbeta(p = c(0.025, 0.975), shape1 = Ba, shape2 = Bb). 

Conversion from 𝑔𝑔� with 95% CI to beta distribution with 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters is not exact 

because there is no guarantee that there exists a beta distribution with mean of 𝑔𝑔� and the given 95% CI. 

The conversion calculator finds the 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 parameters for a beta distribution with a mean of 𝑔𝑔� and 

standard deviation equal to 𝑔𝑔𝑢𝑢𝑢𝑢𝑢𝑢−𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙

4
, where 𝑔𝑔𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙 are the user-defined bounds on the 95% CI 

for 𝑔𝑔. The explicit solution is 𝐵𝐵𝐵𝐵 = 16 � 𝑔𝑔�
𝑔𝑔𝑢𝑢𝑢𝑢𝑢𝑢−𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙

�
2

(1 − 𝑔𝑔�) − 𝑔𝑔� and 𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 �1−𝑔𝑔�
𝑔𝑔�

�. 
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Appendix K. Comparison with Other Estimators of Detection Probability 

When restricted to a single search class, the EoA estimator of 𝑔𝑔 is generalized in that it allows 

for non-constant searcher efficiency, scavenging, and arrival rates. It is closely akin to Wolpert’s 

estimator (Wolpert, 2012, 2015; Wolpert and Coleman, 2015) and includes the Shoenfeld (2004), Huso 

(2011), and Korner-Nievergelt and others (2011) estimators as special cases.  

When there is more than one search class, the EoA model estimates 𝑔𝑔 for combined classes as 

described in appendix E. The other models do not estimate a combined 𝑔𝑔 but rather estimate total 

mortality 𝑀𝑀 as the sum of the estimated mortalities for each class or site (Horvitz and Thompson, 1952). 

For small counts, the EoA approach to combining classes tends to have smaller errors than the Horvitz-

Thompson approach, but with larger counts the Horvitz-Thompson approach to combining classes tends 

to be more reliable.  

K.1   Wolpert: more comprehensive model for searcher efficiency, Weibull persistence  
Wolpert (2012) provides explicit formulas to accommodate exponential, Weibull, lognormal, 

and log-logistic carcass persistence distributions and to accommodate decreases in searcher efficiency 

both as carcasses age and as they are missed in prior searches. The acmeR (Wolpert and Coleman, 

2015) package for R is a software implementation of the model that assumes uniform arrivals, a Weibull 

persistence distribution, and a 3-parameter model of the changes in searcher efficiency following 

carcass arrival. EoA offers a wider variety of options for persistence and employs a simpler model for 

searcher efficiency. However, when restricted to a single search class, the differences between the 

models are slight. 
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K.2   Shoenfeld: 𝒌𝒌 = 𝟏𝟏, exponential persistence, uniform arrivals, infinite number of equal-length 
search intervals 

If 𝑘𝑘 is assumed to be 1, persistence distribution is assumed to be exponential, arrivals are 

assumed to be uniform, and search intervals are of constant length 𝐼𝐼, the estimator (appendix A, eqn. 1) 

simplifies considerably. To start, define: 

𝑟𝑟0 = probability carcass persists from arrival until first search after arrival 

𝑟𝑟 = probability carcass persists through an entire search interval 

𝐶𝐶 = the event that the carcass is observed 

𝐴𝐴ℎ = the event that the carcass arrives when there are ℎ searches remaining 

 

To calculate 𝑃𝑃(𝐶𝐶) = the probability of observing a carcass that arrives in the searched area 

during the monitored period, note that the probability of detection depends on arrival time because 

carcasses that arrive earlier in the season will be available for detection in more searches than carcasses 

that arrive later in the season. Thus, we calculate 𝑃𝑃(𝐶𝐶) by conditioning on the number of searches 

remaining until the end of the monitored period: 𝑃𝑃(𝐶𝐶) = ∑ 𝑃𝑃(𝐶𝐶|𝐴𝐴ℎ)𝑃𝑃(𝐴𝐴ℎ). To calculate each term 

𝑃𝑃(𝐶𝐶|𝐴𝐴ℎ), we partition by search occasion: 𝐶𝐶𝑗𝑗 = the event that the carcass is observed during the 𝑗𝑗th 

search after arrival. Then, the probability of observing the carcass on the first search after arrival would 

be 𝑃𝑃(𝐶𝐶1) = 𝑟𝑟0𝑝𝑝. Because persistence is assumed to be exponential and search intervals are of constant 

length, the probability of persisting through any full search interval is identically 𝑟𝑟, regardless of how 

many intervals a carcass has already persisted through. Therefore, the probability of persisting until 

search 𝑗𝑗 after arrival is 𝑟𝑟0𝑟𝑟𝑗𝑗−1 because the carcass must persist until the first search after arrival (with 

probability 𝑟𝑟0) and then persist through 𝑗𝑗 − 1 additional full intervals (with probability 𝑟𝑟𝑗𝑗−1). To be 

detected on the 𝑗𝑗th search, an unscavenged carcass is not detected in any of the first 𝑗𝑗 − 1 searches (with 

probability (1 − 𝑝𝑝)𝑗𝑗−1) and is detected on the 𝑗𝑗th search (with probability 𝑝𝑝). Thus, the probability that 

a carcass is observed during the 𝑗𝑗th search after arrival is 𝑃𝑃�𝐶𝐶𝑗𝑗� = 𝑟𝑟0𝑝𝑝[(1 − 𝑝𝑝)𝑟𝑟]𝑗𝑗−1. With this, the 

probability of observing a carcass that arrives with ℎ searches remaining in the monitored period is: 

𝑃𝑃(𝐶𝐶|𝐴𝐴ℎ) = ∑ 𝑃𝑃(𝐶𝐶𝑗𝑗|𝐴𝐴ℎ)ℎ
𝑗𝑗=1 = 𝑟𝑟0𝑝𝑝 ∑ [(1 − 𝑝𝑝)𝑟𝑟]𝑗𝑗ℎ−1

𝑗𝑗=0 . This yields 𝑃𝑃(𝐶𝐶|𝐴𝐴ℎ) = 𝑟𝑟0𝑝𝑝 1−[(1−𝑝𝑝)𝑟𝑟]ℎ

1−(1−𝑝𝑝)𝑟𝑟
  after 

simplifying the geometric series.  
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If, in addition to assumptions that 𝑘𝑘 = 1, persistence is exponential, search interval length is 

constant, and arrivals rate is constant, it is further assumed that there are an infinite number of searches, 

then the detection probability does not depend on how many searches remain in the monitored period 

and the probability of observing a carcass does not depend on which interval it arrives in, so 𝑔𝑔 =

𝑃𝑃(𝐶𝐶) = lim𝑖𝑖→∞ 𝑃𝑃(𝐶𝐶|𝐴𝐴𝑖𝑖) = lim𝑖𝑖→∞ 𝑟𝑟0𝑝𝑝 1−[(1−𝑝𝑝)𝑟𝑟]𝑖𝑖

1−(1−𝑝𝑝)𝑟𝑟
= 𝑟𝑟0𝑝𝑝 1

1−(1−𝑝𝑝)𝑟𝑟
 . Now, 𝑟𝑟0 and 𝑟𝑟 can be calculated in 

terms of the exponential persistence rate parameter, 𝜆𝜆. Substituting  𝑟𝑟0 = ∫ 𝑆𝑆(𝑡𝑡 − 𝐼𝐼)𝜈𝜈(𝑡𝑡)𝑑𝑑𝑑𝑑 =𝐼𝐼
0

∫ 𝑒𝑒−𝜆𝜆(𝑡𝑡−𝐼𝐼)𝑑𝑑𝑑𝑑/𝐼𝐼𝐼𝐼
0 = 1−𝑒𝑒−𝐼𝐼𝐼𝐼

𝐼𝐼𝐼𝐼
 and 𝑟𝑟 = 𝑒𝑒−𝐼𝐼𝐼𝐼 into the equation and simplifying, we get Shoenfeld’s (2004) 

estimator:  𝑔𝑔� = 𝑝𝑝
𝐼𝐼𝐼𝐼

∙ 1−𝑒𝑒−𝐼𝐼𝐼𝐼

1−𝑒𝑒−𝐼𝐼𝐼𝐼+𝑝𝑝𝑒𝑒−𝐼𝐼𝐼𝐼 = 𝑝𝑝
𝐼𝐼𝐼𝐼

∙ 𝑒𝑒−𝐼𝐼𝜆𝜆−1
𝑒𝑒−𝐼𝐼𝐼𝐼−1+𝑝𝑝

.  

K.3   Huso: 𝒌𝒌 = 𝟎𝟎 
The assumption that 𝑘𝑘 = 0 implies that all carcasses that are observed during search 𝑗𝑗 arrived in 

interval 𝑗𝑗, which occurs if carcasses that are missed in one search have zero probability of being found 

in later searches or if found carcasses that arrived before the search prior to the search in which they 

were found are disregarded and estimation is performed using the fresh carcasses only. If it is further 

assumed that carcass arrival rate and search interval length (𝐼𝐼) are constant, then 

𝑔𝑔� = ∑ ∑ �∏ (1 − 𝑘𝑘𝑠𝑠𝑝𝑝)𝑘𝑘𝑗𝑗−𝑖𝑖𝑝𝑝𝑗𝑗−𝑖𝑖−1
𝑠𝑠=0 � ∫ 𝑆𝑆�𝑡𝑡𝑗𝑗 − 𝑡𝑡�𝜈𝜈(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖−1

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑗𝑗=𝑖𝑖 = 𝑝𝑝(1 − ∫ 𝑆𝑆(𝑡𝑡)𝑑𝑑𝑑𝑑𝐼𝐼

0
𝐼𝐼

), which is the Huso 

(2011) estimator of 𝑔𝑔� (without the correction factor for long search intervals).  

In practice, the Huso (2011) estimator is normally used when the number of carcasses observed 

is not small. A separate 𝑔𝑔�𝑖𝑖 is calculated for each observed carcass, and the total number of carcasses is 

estimated as 𝑀𝑀� = ∑ 1/𝑔𝑔�𝑖𝑖
𝑋𝑋
𝑖𝑖=1 , where 𝑋𝑋 is the total carcass count. In this case, the assumption of constant 

search interval is not needed and the assumption of uniform arrivals can be relaxed to uniform arrivals 

within search intervals.  

K.4   Korner-Nievergelt and others: exponential persistence and pulsed or uniform arrivals 
The Korner-Nievergelt and others (2011) estimator for 𝑔𝑔� is identical to EoA’s estimator with 

exponential persistence and carcasses arriving in pulses at the beginnings of search intervals. However, 

in the R package carcass (Korner-Nievergelt and others, 2015) the model is updated to be able to 

accommodate uniform arrivals and the Cox proportional hazard persistence distribution. 
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