

Prepared in cooperation with the Massachusetts Department of Environmental Protection

Development of Simulated Groundwater-Contributing Areas to Selected Streams, Ponds, Coastal Water Bodies, and Production Wells in the Plymouth-Carver Region and Cape Cod, Massachusetts

Data Series 1074

U.S. Department of the Interior U.S. Geological Survey

Cover. Simulated groundwater-contributing areas for the Plymouth-Carver region and Cape Cod in southeastern Massachusetts.

Development of Simulated Groundwater-Contributing Areas to Selected Streams, Ponds, Coastal Water Bodies, and Production Wells in the Plymouth-Carver Region and Cape Cod, Massachusetts

By Carl S. Carlson, John P. Masterson, Donald A. Walter, and Jeffrey R. Barbaro

Prepared in cooperation with the Massachusetts Department of Environmental Protection

Data Series 1074

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

RYAN K. ZINKE, Secretary

U.S. Geological Survey

William H. Werkheiser, Deputy Director exercising the authority of the Director

U.S. Geological Survey, Reston, Virginia: 2017

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Carlson, C.S., Masterson, J.P., Walter, D.A., and Barbaro, J.R., 2017, Development of simulated groundwater-contributing areas to selected streams, ponds, coastal water bodies, and production wells in the Plymouth-Carver region and Cape Cod, Massachusetts: U.S. Geological Survey Data Series 1074, 17 p., https://doi.org/10.3133/ds1074.

ISSN 2327-638X (online)

Contents

Introduction	1
Background	1
Groundwater-Flow Models	
Development Of Groundwater-Contributing Areas	3
Groundwater-Contributing Area Output	
Limitations	7
References Cited	7
Appendix 1. Conversion Process from Original Electronic Format Files to Shapefiles	

Figures

1.	Simulated groundwater-contributing areas for the Plymouth-Carver region and Cape Cod in southeastern Massachusetts	2
2.	Groundwater-contributing area to a production well in a simplified hypothetical groundwater system	3
3.	Groundwater-contributing areas to production wells, ponds, and coastal water bodies within the Popponesset Bay watershed	4

Table

1.	Directory structure for simulated groundwater-contributing areas in Carlson and
	others (2017), Plymouth-Carver Region and Cape Cod, Massachusetts6

Datum

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Abbreviations

GIS	geographic information system
MassDEP	Massachusetts Department of Environmental Protection
MEP	Massachusetts Estuaries Project
SMAST	Massachusetts School for Marine Science and Technology
USGS	U.S. Geological Survey

Development of Simulated Groundwater-Contributing Areas to Selected Streams, Ponds, Coastal Water Bodies, and Production Wells in the Plymouth-Carver Region and Cape Cod, Massachusetts

By Carl S. Carlson, John P. Masterson, Donald A. Walter, and Jeffrey R. Barbaro

Introduction

The U.S. Geological Survey (USGS), in support of the Massachusetts Estuaries Project (MEP), delineated groundwater-contributing areas to various hydrologic receptors including ponds, streams, and coastal water bodies throughout southeastern Massachusetts, including portions of the Plymouth-Carver aquifer system and all of Cape Cod. These contributing areas were delineated over a 6-year period from 2003 through 2008 by using previously published regional USGS groundwater-flow models for the Plymouth-Carver region (Masterson and others, 2009), the Sagamore (western) and Monomoy (eastern) flow lenses of Cape Cod (Walter and Whealan, 2005), and lower Cape Cod (Masterson, 2004). The original USGS groundwater-contributing areas were subsequently revised in some locations by the MEP to remove modeling artifacts or to make the contributing areas more consistent with site-specific hydrologic conditions without further USGS review. This report describes the process used to create the USGS groundwater-contributing areas and provides these model results in their original format in a single, publicly accessible publication.

Background

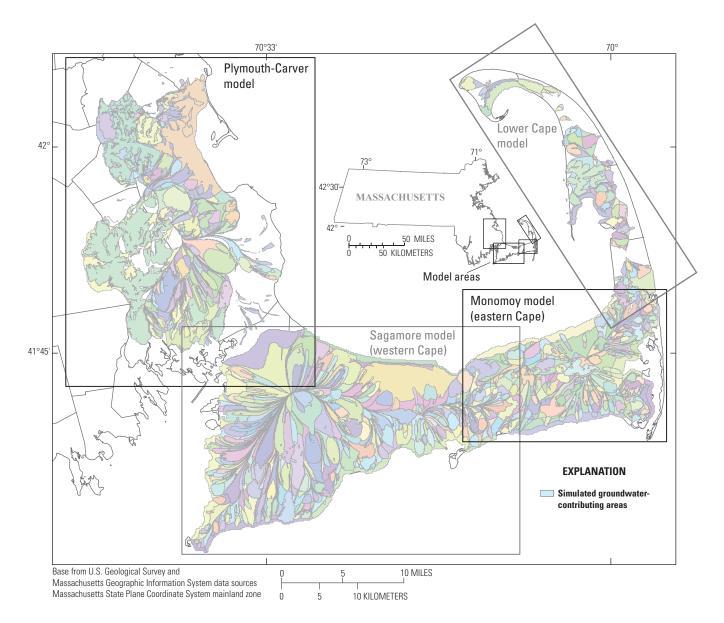
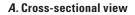
The coastal waters of southeastern Massachusetts have been degraded by excess nitrogen inputs associated with residential and commercial development in the groundwater-contributing areas that discharge to these waters. The excess nitrogen, originating mainly from anthropogenic sources such as wastewater and fertilizer, causes eutrophication, which results in fish kills, diminished shellfisheries, excessive algal growth, and loss of other marine habitat. Because coastal waters are important economic and recreational resources, protection and restoration of coastal waters are important environmental and economic goals for the region. In response to concerns over degraded coastal water quality, the Massachusetts Department of Environmental Protection (MassDEP), in collaboration with the School for Marine Science and Technology (SMAST) at the University of Massachusetts-Dartmouth, established the MEP in 2001. The MEP collected data to evaluate water-quality conditions in coastal water bodies and developed models that link nitrogen loading in a watershed to coastal water quality. The MassDEP used the results of these studies to develop total maximum daily loads for a large number of estuaries and embayments and inform wastewater management and nutrient reduction efforts in southeastern Massachusetts.

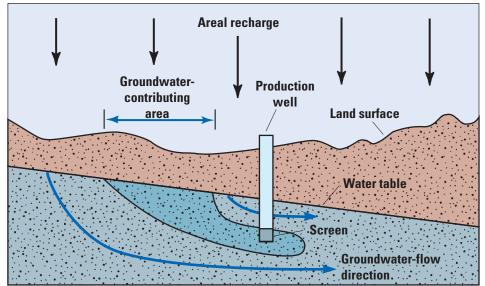
Between 2003 and 2008, the USGS assisted MassDEP with the MEP investigations by delineating groundwatercontributing areas (also referred to by local stakeholders as groundwater watersheds) to ponds, streams, coastal water bodies, and production wells in the Plymouth-Carver region and on Cape Cod in southeastern Massachusetts (fig. 1).

The USGS provided simulated groundwater-contributing areas to the MEP during a 6-year period (2003–8) that were produced from four groundwater models that were documented in three separate reports. The Cape Cod groundwater-contributing areas were provided to the MEP from 2003 to 2004. The three Cape Cod models are documented in Walter and Whealan (2005) and Masterson (2004). The Plymouth-Carver region groundwater-contributing areas were provided to MEP in 2008; the model used for these delineations is documented in Masterson and others (2009).

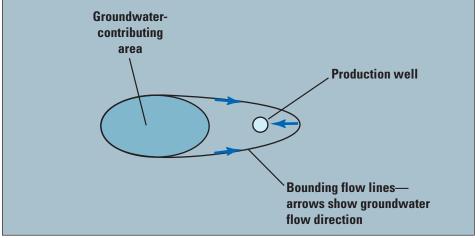
The groundwater-contributing areas that were delineated as part of these investigations are integral to the ongoing watershed-based permitting program being implemented by the MassDEP throughout southeastern Massachusetts. Groundwater-contributing areas were delineated for various hydrologic receptors that included coastal water bodies, ponds and streams upgradient of coastal water bodies, and production wells.

The original USGS groundwater-contributing areas were delineated with existing groundwater-flow models and subsequently revised in some locations by the MEP to remove


Figure 1. Simulated groundwater-contributing areas for the Plymouth-Carver region and Cape Cod in southeastern Massachusetts.

modeling artifacts—such as portions of the elongated tail of a contributing area upgradient and separate from its main body, which may or may not contribute recharge to that particular receiving water body—or to make the watersheds more consistent with site-specific hydrologic features or streamflow data collected by SMAST. Because the original, unmodified groundwater-contributing areas were not previously published by USGS, individual geographic information system (GIS) shapefiles of the simulated groundwater-contributing areas and an ArcMap project to view the shapefiles are included in the companion data release (Carlson and others, 2017) to this report. Publication of these groundwater-contributing areas, and the methodology used to delineate them, will benefit stakeholders involved in ongoing wastewater management activities in southeastern Massachusetts.

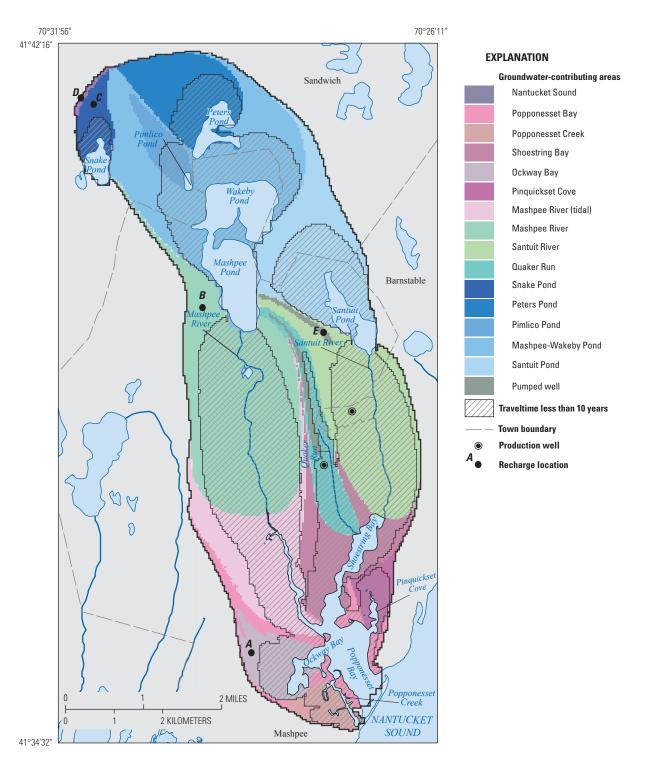

Groundwater-Flow Models

The three-dimensional numerical models used to delineate groundwater-contributing areas to ponds, streams, coastal water bodies, and production wells (fig. 1) for the Plymouth-Carver region, the Sagamore (western) and Monomoy (eastern) flow lenses of Cape Cod, and lower Cape Cod are fully documented in Masterson and others (2009), Walter and Whealan (2005), and Masterson (2004), respectively. These models are based on the USGS finite-difference numerical code MODFLOW (Harbaugh and others, 2000; Harbaugh, 2005). The USGS particle-tracking program MODPATH (Pollock, 1994) was used in conjunction with groundwater heads and flows calculated by MODFLOW to determine the initial locations of water particles that discharge to ponds, streams,

B. Map View

NOT TO SCALE

coastal water bodies, and production wells for simulated steady-state conditions.


The original documentation of each of the models provides detailed descriptions of the spatial discretization and layering of the models; hydrologic boundaries; hydraulic properties of the aquifers; hydrologic stresses; simulation of streams, ponds, and water use (withdrawals and wastewater return flows); calibration procedures; and model results and limitations.

Development of Groundwater-Contributing Areas

The concept of a contributing area, within which water enters the groundwater system at the water table as recharge, flows to a production well, and is removed from the aquifer as discharge (fig. 2), is well documented (Reilly and Pollock, **Figure 2.** Groundwater-contributing area to a production well in a simplified hypothetical groundwater system showing *A*, cross-sectional view and *B*, map view (modified from Reilly and Pollock, 1993). These areas can appear to be disconnected from the well site in map view; their location and appearance depend on the production (pumping) rate, slope of the water table, and depth of the screen below the water table.

1993). The same concept can be applied to any surface-water body, such as a pond, stream, or coastal water body that is connected hydraulically to the groundwater-flow system and receives groundwater discharge (fig. 3).

In a steady-state system, the amount of water that enters an aquifer through contributing areas at the water table equals the amount of groundwater that discharges from the aquifer to hydrologic receptors, such as production wells, gaining reaches of streams, coastal areas, or ponds. The contributing areas to these receptors typically are elongated in the direction of flow, and the area is proportional to the rate of groundwater discharge to the receptor. The size and shape of the contributing areas to a given receptor can vary on the basis of the position of the receptor relative to the groundwater divide (that is, the boundary between two groundwater-contributing areas represented by a high point in the water table). For receptors on Cape Cod, many of the divides are at the tops

Figure 3. Groundwater-contributing areas to production wells, ponds, and coastal water bodies within the Popponesset Bay watershed (modified from Walter and others, 2004). The coastal water bodies receive most of their freshwater from surface-water inflows. Groundwater recharged near the coast (point A, for example) flows through shallow parts of the aquifer and discharges directly to coastal water bodies. Water recharged in the central part of the watershed (point B) discharges into streams that flow to coastal water bodies. In the upper part of the watershed, recharged water flows through one or more ponds before discharging to streams (point C). Some water recharging the aquifer near the northern edge of the watershed (point D) underflows the ponds and streams and discharges directly to the coast. Production wells remove some water from the watershed (point E).

4 Simulated Groundwater-Contributing Areas in the Plymouth-Carver Region and Cape Cod, Massachusetts

of groundwater mounds where groundwater flows radially outward toward the coast (for example, fig. 7 in Walter and Whealan, 2005). Because there is a strong downward component of flow near divides, water that recharges near the center of a groundwater mound travels deeper through the aquifer system than water that recharges near the coast. Therefore, for a given receptor, the closer the contributing area at the water table is to the top of a groundwater divide, the greater the vertical flow captured by the receptor because of the threedimensional nature of the flow system.

The recharge areas for ponds can be delineated in a manner similar to that for streams and coastal areas because the upgradient side of a pond acts as a groundwater discharge zone. Unlike the discharge into streams and coastal areas, however, water that discharges to a pond is not removed from the flow system but, instead, mixes within the pond and either passes through the downgradient side of the pond and reenters the aquifer or moves directly into outflowing streams. The water that reenters the aquifer is then available to move toward and discharge at production wells, streams, or coastal areas downgradient from the ponds.

Because water flows through ponds and reenters the aquifer, any production wells located downgradient from these ponds would receive some part of their total discharge from water that previously moved through ponds. For the purposes of this analysis, the contributing areas for wells are only the areas at the water table that directly contribute water to the wells; however, the influence of ponds on the source of water to production wells also should be considered (see Masterson and others [1998] for a detailed discussion of this concept).

The procedure used in this analysis to delineate groundwater-contributing areas was based on the methodology first documented in Barlow (1997) for delineating contributing areas for production wells on Cape Cod, which was subsequently used by Masterson and others (1998), Masterson and Walter (2000), and Walter and others (2004) for similar analyses. The analyses of Masterson and Walter (2000) and Walter and others (2004) also included the delineation of groundwater-contributing areas to other discharge locations, such as ponds, streams, and coastal water bodies.

The MODPATH particle-tracking model developed by Pollock (1994), which uses the heads and intercell flow rates (the flow rate at the face of each cell in the model) calculated by the MODFLOW model, was used to determine water particle pathlines and groundwater velocities. Starting locations of particles must be specified to initiate a particle-tracking analysis. Particles may be tracked either forward (from the water table to a discharge location) or backward (from a discharge location to the water table), but forward tracking has proven to be more reliable for delineating groundwater-contributing areas (Barlow, 1997). Detailed information on the use of particle tracking for the delineation of groundwater-contributing areas to discharge locations is provided in Masterson and others (1998), Masterson and Walter (2000), and Walter and others (2004). The steady-state groundwater models for the Plymouth-Carver region, the Sagamore (western) and Monomoy (eastern) flow lenses of Cape Cod, and lower Cape Cod were used to track particles forward in the direction of groundwater flow from the water table to discharge locations. In the MODPATH simulations, a single instantaneous release was specified of a two-dimensional four-by-four array of particles that were placed at the top face in each grid cell (each model grid cell was 400 feet on each side) in the model, and endpoints were recorded for the particles that terminated in a specific zone. "Zone" is a term used by MODPATH that refers to a hydrologic receptor for which a groundwater-contributing area will be delineated. In this analysis, the receptors of interest include streams, ponds, coastal water bodies, and production wells.

Groundwater-Contributing Area Output

The process of delineating groundwater-contributing areas produced a total of 1,155 individual shapefiles for the Plymouth-Carver region and Cape Cod model areas (table 1), which are included in Carlson and others (2017). The three main hydrologic receptors for which groundwater-contributing areas were delineated were ponds, streams, and coastal water bodies (estuaries). Additionally, groundwater-contributing areas for production wells were delineated for 88 wells in the Sagamore (western) flow lens model. In this model, each well was assigned a unique zone identification number, which resulted in 88 separate groundwater-contributing area shapefiles, one for each well. However, in the Plymouth-Carver region and Monomoy (eastern) Cape Cod models, all of the wells in the respective model area were assigned the same zone identification number. This resulted in one shapefile containing the groundwater-contributing areas for all of the wells in the model area. For most of the receptors, the groundwatercontributing areas were subdivided into two separate traveltime zones that represented areas where the traveltime from the water table to a given receptor was less than or equal to 10 years (lt10) and where traveltime was greater than 10 years (gt10). This division produced two separate contributing area zones for each receptor that, when combined, represent the entire groundwater-contributing area to that receptor.

Groundwater-contributing areas for the Plymouth-Carver region were grouped into three separate subfolders, one each for the Agawam-Wareham River, Duxbury-Kingston Bay, and Ellisville Harbor watersheds, containing 125, 137, and 9 separate groundwater-contributing areas, respectively (table 1). These groundwater-contributing areas were classified into two receptor types, "estuaries" and "ponds," both with "lt10" and "gt10" divisions, where "lt10" refers to areas where traveltime from the water table to the receptor was less than or equal to 10 years and "gt10" refers to areas where traveltime from the water table to the receptor exceeded 10 years. The "estuaries" type included stream, river, and estuary receptors.

Table 1. Directory structure for simulated groundwater-contributing areas in Carlson and others (2017), Plymouth-Carver Region and Cape Cod, Massachusetts.

[--, indicates no subfolder]

Source groundwater model	Model directory folder ¹	Model directory subfolder ¹	Subfolder of shapefiles by receptor type ¹	Original format ²	Number of shapefiles
Plymouth-Carver model	PlyCar	PlyCar_Agawam_Wareham_River_watershed	estuaries_gt10	e00	18
			estuaries_lt10	e00	18
			ponds_gt10	e00	44
			ponds_lt10	e00	45
		PlyCar_Duxbury_Kingston_Bay_watershed	estuaries_gt10	e00	13
			estuaries_lt10	e00	13
			ponds_gt10	e00	55
			ponds_lt10	e00	56
		PlyCar_Ellisville_Harbor_watershed	estuaries_gt10	e00	2
			estuaries_lt10	e00	3
			ponds_gt10	e00	2
			ponds_lt10	e00	2
		wells ³	_	coverage	1
Sagamore model	Sagamore	—	estuaries_gt10	coverage	124
			estuaries_lt10	coverage	124
			ponds	coverage	83
			streams_gt10	coverage	24
			streams_lt10	coverage	24
			wells	coverage	88
Monomoy model	Monomoy	_	estuaries_gt10	coverage	76
			estuaries_lt10	coverage	76
			ponds_gt10	coverage	67
			ponds_lt10	coverage	67
			streams_gt10	coverage	15
			streams_lt10	coverage	15
			wells ³	coverage	1
Lower Cape model	LowerCape	—	estuaries_gt10	coverage	35
			estuaries_lt10	coverage	36
			ponds	coverage	28
Total					1,155

¹Refers to associated directory structure for resulting shapefiles published in Carlson and others (2017). Subfolder of shapefiles by receptor type contains: estuaries, ponds, and streams; if present, "gt10" refers to areas where traveltime from the water table to the receptor exceeded 10 years; if present, "lt10" refers to areas where traveltime from the water table to 10 years; gt10 and lt10 areas when combined represent the entire groundwater-contributing area to the receptor.

²e00, ArcInfo interchange file; coverage, ArcInfo coverage.

³All combined.

Groundwater-contributing areas for the Cape Cod model areas were not grouped into subfolders by watershed (table 1). There are a total of 379 contributing areas in the Sagamore model area, 316 in the Monomoy model area, and 99 in the lower Cape Cod model area. The Sagamore model had both lt10 and gt10 divisions for groundwater-contributing areas for estuaries and streams, whereas ponds within the Sagamore model were not subdivided into two separate traveltime portions. The Monomoy model had both lt10 and gt10 divisions for estuaries, streams, and ponds. Also, groundwater-contributing areas in the lower Cape Cod model were only delineated for estuaries and ponds, with lt10 and gt10 divisions applied only to the estuaries.

In the Plymouth-Carver region and Cape Cod model areas, 25 receptors have no associated groundwater-contributing areas and appear as shapefiles with empty attribute tables. These receptors as represented in the models receive little or no simulated groundwater discharge and, therefore, receive no discharging particles. Particles entering the water table adjacent to these receptors instead discharge into nearby larger receptors and are part of those simulated groundwatercontributing areas.

Appendix 1 provides an overview of the conversion process from the original electronic format files to the shapefiles in Carlson and others (2017).

Limitations

Numerical models are useful tools for delineating groundwater-contributing areas in complex, three-dimensional flow systems such as in southeastern Massachusetts and Cape Cod. The groundwater-contributing areas described in this report, which were delineated by using the groundwater models for the Plymouth-Carver region (Masterson and others, 2009), the Sagamore (western) and Monomoy (eastern) flow lenses of Cape Cod (Walter and Whealan, 2005), and lower Cape Cod (Masterson, 2004), are valid only for the specific water use and recharge conditions used in those analyses. If water use and recharge conditions change in the future, the groundwatercontributing areas to ponds, streams, coastal water bodies, and production wells in the Plymouth-Carver region and Cape Cod would need to be reevaluated. Groundwater-contributing areas also are subject to the limitations of simulating groundwater flow at the regional scales as detailed in the original modeldocumentation reports.

References Cited

- Barlow, P.M., 1997, Particle-tracking analysis of contributing areas of public-supply wells in simple and complex flow systems, Cape Cod, Massachusetts: U.S. Geological Survey Water-Supply Paper 2434, 66 p. [Also available at https://pubs.er.usgs.gov/publication/ofr93159.]
- Carlson, C.S., Masterson, J.P., Walter, D.A., and Barbaro, J.R., 2017, Simulated groundwater-contributing areas to selected streams, ponds, coastal water bodies, and production wells, Plymouth-Carver region and Cape Cod, Massachusetts:
 U.S. Geological Survey data release, accessed December 2017 at https://doi.org/10.5066/F7V69H2Z.
- Harbaugh, A.W., 2005, MODFLOW–2005, the U.S. Geological Survey modular ground-water model—The groundwater flow process: U.S. Geological Survey Techniques and Methods, book 6, chap. A16, [variously paged]. [Also available at https://pubs.er.usgs.gov/publication/tm6A16.]
- Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW–2000, the U.S. Geological Survey modular groundwater model—User guide to modularization concepts and the groundwater flow process: U.S. Geological Survey Open-File Report 2000–92, 121 p. [Also available at https://pubs.er.usgs.gov/publication/ofr200092.]
- Masterson, J.P., 2004, Simulated interaction between freshwater and saltwater and effects of ground-water pumping and sea-level change, Lower Cape Cod aquifer system, Massachusetts: U.S. Geological Survey Scientific Investigations Report 2004–5014, 78 p. [Also available at https://pubs.er.usgs.gov/publication/sir20045014.]
- Masterson, J.P., Carlson, C.S., and Walter, D.A., 2009, Hydrogeology and simulation of groundwater flow in the Plymouth-Carver-Kingston-Duxbury aquifer system, southeastern Massachusetts: U.S. Geological Survey Scientific Investigations Report 2009–5063, 110 p. [Also available at https://pubs.er.usgs.gov/publication/sir20095063.]
- Masterson, J.P., and Walter, D.A., 2000, Delineation of ground-water recharge areas, western Cape Cod, Massachusetts: U.S. Geological Survey Water-Resources Investigation Report 2000–4000, 1 sheet. [Also available at https://pubs.er.usgs.gov/publication/wri004000.]

Masterson, J.P., Walter, D.A., and LeBlanc, D.R., 1998,
Delineation of contributing areas to selected public-supply wells, western Cape Cod, Massachusetts: U.S. Geological Survey Water-Resources Investigations Report 98–4237,
45 p. [Also available at https://pubs.er.usgs.gov/publication/wri984237.]

Pollock, D.W., 1994, User's guide for MODPATH/MOD-PATH–PLOT, version 3; a particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finitedifference groundwater flow model: U.S. Geological Survey Open-File Report 94–464, 234 p. [Also available at https://pubs.er.usgs.gov/publication/ofr94464.]

Reilly, T.E., and Pollock, D.W., 1993, Factors affecting areas contributing recharge to wells in shallow aquifers: U.S. Geological Survey Water-Supply Paper 2412, 21 p. [Also available at https://pubs.er.usgs.gov/publication/ wsp2412.] Walter, D.A., Masterson, J.P., and Hess, K.M., 2004, Groundwater recharge areas and traveltimes to pumped wells, ponds, streams, and coastal water bodies, Cape Cod, Massachusetts: U.S. Geological Survey Scientific Investigations Map I–2857, 1 sheet. [Also available at https://pubs.er.usgs.gov/publication/sim2857.]

Walter, D.A., and Whealan, A.T., 2005, Simulated water sources and effects of pumping on surface and ground water, Sagamore and Monomoy flow lenses, Cape Cod, Massachusetts: U.S. Geological Survey Scientific Investigations Report 2004–5181, 85 p. [Also available at https://pubs.er.usgs.gov/publication/sir20045181.]

Appendix 1. Conversion Process from Original Electronic Format Files to Shapefiles

The original, simulated groundwater-contributing areas were in the form of ArcInfo interchange files (.e00) for the Plymouth-Carver region model and ArcInfo coverages for the Cape Cod models. The original electronic format files were converted to current-format shapefiles and organized by model area as outlined in table 1.

Files in their original format were converted to shapefiles by using ArcPy (Price, 2017) in a Jupyter Notebook (Pérez and Granger, 2007) with the programming language Python (https://www.python.org/). Conversion of the groundwater-contributing areas for the Plymouth-Carver region model needed an extra step to first import from the .e00 format to a coverage format through use of the "ImportFromE00_conversion" feature. Once in coverage format, files from all model areas were converted to shapefiles by using the "FeatureClassToFeatureClass_conversion" feature. Additional unnecessary fields were automatically added during the conversion from .e00, and these were removed. In addition to the existing "AREA" and "PERIMETER" fields in the data table, one new field called "Name" that contained the name of each groundwater-contributing area was added to the data table for each shapefile.

To make the filename for each shapefile as useful as possible, additional information was included, such as the original .e00 or coverage name (for comparison to the files previously supplied), the name of model area, the receptor type and whether or not it was a divided zone for lt10 or gt10, and the name of the groundwater-contributing area (same as that added to the new field "Name"). The original .e00 and coverage name included a code, and the code and receptor name appeared in a lookup table. These original codes and corresponding groundwater-contributing area names are listed in table 1–1. An ArcMap project (USGS_original_contributing_areas_PlyCar_CapeCod_shapefiles.mxd) that contains all of the groundwater-contributing area shapefiles for the Plymouth-Carver region and Cape Cod model areas is included in Carlson and others (2017).

References Cited

- Pérez, Fernando, and Granger, B.E., 2007, IPython—A system for interactive scientific computing: Computing in Science and Engineering, v. 9, no. 3, p. 21–29. [Also available at https://doi.org/10.1109/MCSE.2007.53.]
- Price, C.V., 2017, Using Anaconda modules from the ESRI python environment: U.S. Geological Survey web page, accessed March 6, 2017, at https://my.usgs.gov/confluence/display/ EGIS/Using+Anaconda+modules+from+the+ESRI+python+environment.

Table 1–1. Original codes and corresponding names of the groundwater-contributing areas for the groundwater models of thePlymouth-Carver region and Cape Cod, Massachusetts.

[Codes are distinguished by model area and receptor type, followed by a decoded example of an original filename for that model and receptor type]

Code	Description	Code	Description
Plymou	th-Carver region, Agawam-Wareham River watershed	Plymou	uth-Carver region, Agawam-Wareham River watershed
	Estuaries ¹		Continued
33	Rose_Brook_above_confluence_with_Wareham	-	Ponds ² —Continued
34	Wankinco_upstream_Tihonet_Pond	220	Glen_Charlie_Pond_Wareham
35	Agawam_River_confluence_with_Wareham	223	Unnamed_southeast_of_Little_Long_Pond_Wareham
36	Agawam_River_confluence_with_Wareham	224	Unnamed_near_Hammond_Street_Carver_Wareham
37	Agawam_River_confluence_with_Wareham	225	Tihonet_Pond_Wareham
38	Agawam_River_confluence_with_Wareham	229	Unnamed_near_Charge_Pond_Road_Wareham
39	Agawam_upstream_Glen_Charlie	232	Bartlett_Pond_Wareham
40	model_area_west	233	Unnamed_near_Charge_Pond_Road_Wareham
41	Gibbs_Brook_lower	234	Unnamed_near_Charge_Pond_Road_Wareham
77	Harlow_Brook	235	Unnamed_near_Charge_Pond_Road_Wareham
78	Maple_Spring_Brook_upstream_Mill_Pond	236	Mosquito_Pond_Wareham
79	Frog_Foot_Brook	237	Unnamed_near_Charge_Pond_Road_Wareham
80	Wankinco_upstream_Harlow_Brook	239	Unnamed_west_of_Glen_Charlie_Pond_Wareham
81	Wankinco_downstream_Park_Mill_Pond	241	Unnamed_near_Rose_Brook_Wareham
82	Agawam_River_outflow_Mill_Pond	242	Unnamed_near_Maple_Swamp_Wareham
83	Agawam_River_confluence_with_Wareham	243	Unnamed_near_Maple_Swamp_Wareham
84	Wankinco_upstream_Park_Mills	245	Mill_and_Spectacle_Ponds_Wareham
85	Agawam_Halfway_Pond_outlet	246	Unnamed_near_Harlow_Brook_Wareham
	Ponds ²	249	Unnamed_near_Harlow_Brook_Wareham
142	College_Pond_Plymouth	251	Parker_Mills_Pond_Wareham
148	Torrey_Pond_Plymouth	Plymo	outh-Carver region, Duxbury-Kingston Bay watershed
150	Three_Cornered_Pond_Plymouth		Estuaries ³
153	Halfway_Pond_Plymouth	13	Duxbury_Kingston_Bay_Proper
161	New_Long_Pond_Plymouth	48	Eel_River_Lower
164	Bumps_Pond_Plymouth	49	unnamed_stream
167	East_Head_Pond_Carver_Plymouth	51	unnamed_stream
169	Barrett_Pond_Carver	52	unnamed_stream
173	Reservoir_Pond_Plymouth	53	Jones_River_North
176	Fearing_Pond_Plymouth	54	Jones_River_Main
181	Fawn_Pond_Plymouth	56	Island_Pond_Brook
182	New_Grassy_Pond_Plymouth	57	unnamed_stream
189	Deer_Pond_Plymouth	58	West_Brook
190	Golden_Field_Pond_Carver	73	Eel_River_West
191	White_Island_Pond_Plymouth_Wareham	74	Eel_River_East
192	Abner_Pond_Plymouth	75	Town_Brook
193	Raccoon_Pond_Carver		Ponds ⁴
198	Charge_Pond_Plymouth	005	Unnamed_north_of_Bourne_Wharf_River_Marshfield
201	Unnamed_near_Agawam_River_Plymouth	010	Unnamed_west_Duxbury_Duxbury
202	Unnamed_near_Wareham_Street_Carver	012	North_Hill_Marsh_Duxbury
204	Unnamed_near_Frogfoot_Brook_Plymouth	013	Unnamed_west_Duxbury_Duxbury
205	Fivemile_Pond_Plymouth	016	Upper_Chandler_Pond_Duxbury_Pembroke
206	Unnamed_near_Wareham_Street_Carver	017	Unnamed_near_Town_Forest_Pembroke
214	Unnamed_near_Wareham_Street_Carver	019	Lower_Chandler_Pond_Duxbury_Pembroke
215	Little_Long_Pond_Plymouth_Wareham	021	Island_Creek_Duxbury
218	Unnamed near Hammond Street Carver	022	Silver_Lake_Pembroke_Plympton_Kingston

Table 1–1.Original codes and corresponding names of the groundwater-contributing areas for the groundwater models of thePlymouth-Carver region and Cape Cod, Massachusetts.—Continued

Code	Description	Code	Description
Plymo	outh-Carver region, Duxbury-Kingston Bay watershed	Plym	outh-Carver region, Duxbury-Kingston Bay watershedd
	—Continued		Continued
	Ponds ⁴ —Continued		Ponds ⁴ —Continued
023	Near_Halls_Brook_Duxbury	119	Widgeon_Pond_Plymouth
)24	Mill_Pond_Duxbury	F	Plymouth-Carver region, Ellisville Harbor watershed
026	Reeds_Mill_Pond_Kingston		Estuaries⁵
028	Bracketts_Pond_Kingston	98	Ellisville_Harbor_Bay_Proper
)29	Unnamed_near_Winthrop_Street_Kingston	44	Savery_Pd_Stream
032	Blackwater_Pond_Kingston	45	Cran_Bog_Stream
)33	Unnamed_near_Jones_River_Brook_Plympton		Ponds ⁶
)35	Crossman_Pond_Kingston	156	Bloody_Pond_Plymouth
)36	Foundry_Pond_Kingston	166	Savery_Pond_Plymouth
)37	Soules_Pond_Kingston		Sagamore and Monomoy
)39	Russell_Pond_Kingston		Estuaries ⁷
)40	Unnamed_near_Jones_River_Brook_Kingston	002	Upper_Rock_Harbor_Creek_Orleans
)42	Dennetts_Pond_Plympton	003	Namskaket_Creek_Marsh_Orleans
)43	Smelt_Pond_Kingston	004	The_Narrows_The_Horseshoe_Chatham
)44	Goose_Pond_Kingston	005	Crows Pond Chatham
)45	Pratt_Pond_Kingston	006	Chatham Port Ryder Cove Frost Fish Creek
)46	Indian_Pond_Kingston_Plympton	007	Bassing_Harbor_Chatham
)48	Little_Smelt_Pond_Kingston	008	Stage Harbor Chatham
)49	Unnamed_near_Upland_Road_Plympton	009	Unnamed_Toms_Neck_Chatham
)50	Muddy_Pond_Kingston	010	Mill Pond Mitchell River Chatham
)52	Triangle_Pond_Plymouth	011	Oyster Pond River Chatham
)54	Little_Muddy_Pond_Plymouth	012	Stony Brook Marsh Brewster
)55	Little Pond Plymouth	013	Upper Herring River Marsh Harwich
)59	Billington_Sea_Plymouth	014	Doanes Creek Allens Harbor Harwich
061	Lout Pond Plymouth	015	Wychmere_Harbor_Harwich
)69	Briggs Reservoir Plymouth	016	Saquatucket Harbor Harwich
)74	Howland_Pond_Plymouth	017	Mill Creek Chatham
076	Unnamed on Eel River Plymouth	018	Cockle Cove Creek Chatham
)77	Cooks Pond Plymouth	019	Muddy Creek Chatham Harwich
080	Little Big and Grassy West Ponds Plymouth	020	NE of Barley Neck Orleans
082	Micajah Pond Plymouth	021	Round Cove Chatham
)84	Forge Pond Plymouth	022	Black_Flats_Chase_Garden_Creek_Dennis
)85	Russell Mill Pond Plymouth	023	Sesuit Creek Sesuit Harbor Dennis
087	Great South Pond Plymouth	024	Quivett Creek Dennis
)88	Little_Micajah_Pond_Plymouth	025	North of Davis Beach Dennis
)90	Unnamed southwest of Forge Pond Plymouth	026	Unnamed Cove Dennis
)92	South Triangle Pond Plymouth	027	Grand Cove Dennis
)93	Spring_Pond_Plymouth	028	Swan Pond Yarmouth
)96	Ellis_Pond_Plymouth	029	Woods_Cove_Orleans
)98	Unnamed near Sandwich Road Plymouth	030	Rachel Cove Orleans
103	Unnamed_near_Valley_Road_Plymouth	031	Whites Brook Dennis Yarmouth
106	Island Pond Plymouth	033	Weir Creek Dennis Yarmouth
107	Powderhorn_Pond_Plymouth	034	Mill Pond Dennis Yarmouth
112	Hoyts Pond Plymouth	035	Muddy_Creek_Yarmouth
115	Little Widgeon Pond Plymouth	036	Swamp Cove Follins Pond Dennis Yarmouth
117	Negro Pond Plymouth	037	Dinahs Pond Dennis

Table 1–1.Original codes and corresponding names of the groundwater-contributing areas for the groundwater models of thePlymouth-Carver region and Cape Cod, Massachusetts.—Continued

Code	Description	Code	Description
	Sagamore and Monomoy— <i>Continued</i>		Sagamore and Monomoy— <i>Continued</i>
	Estuaries ⁷ —Continued		Estuaries ⁷ —Continued
038	Lone_Tree_Bass_Clays_Creeks_Yarmouth	087	Quanset Pond Orleans
039	Parkers River Lewis Pond Dennis	088	Paw Wah Pond Orleans
040	Seine Pond Dennis	089	The River Orleans
041	Ockway_Bay_Anns_Cove_Mashpee	090	Namequoit River Orleans
042	Eel Pond Bourne Pocasset	091	Areys Pond Orleans
043	Rands_Harbor_Barnstable	092	Mill_Pond_Orleans
044	Fiddlers Creek Barnstable	093	Kescayo Gansett Pond Orleans
045	Wild Harbor River Barnstable	094	Upper_Pocasset_River_Mill_Pond_Onset
046	Wild Harbor Barnstable	095	Hen_Cove_Bourne
047	Herring Brook Falmouth	096	Red Brook Harbor Bourne
048	West Falmouth Snug Harbors Woods Hole	097	Squeteague Harbor Bourne Onset
050	Little_Sippewisset_Marsh_Falmouth	098	Upper_Back_River_Bourne_Onset_Pocasset
050	Outer Quisset Harbor Falmouth	098	Seapit River Falmouth
051	Eel Pond Falmouth	100	Mill_Creek_Dock_Creek_Sandwich
052	Little Harbor Falmouth	100	Unnamed Embayment North Sandwich
053	Oyster Pond Falmouth Quissett	101	Old Harbor Springhill Creeks Sandwich
055	Salt Pond Falmouth	102	Scorton Creek Sandwich
056	Falmouth_Inner_Harbor_Falmouth	104	Great_Marshes_Barnstable_Harbor
057	Little_Pond_Falmouth	105	Maraspin_Creek_Barnstable
058	Great_Pond_Falmouth	106	Mill_Short_Wharf_Barnstable
059	Perch_Pond_Falmouth	107	Miss_Thachers_Pond_Yarmouth_Dennis
060	Green_Pond_Falmouth	108	Fill_in_default
061	Bournes_Pond_Falmouth	109	Bass_River_Dennis_Yarmouth
062	Isreals_Cove_Falmouth	110	Kelleys_Bay_Dennis
063	Eel_Pond_South_East_Falmouth	111	Taylors_Pond_Chatham
064	Quashnet_River_Falmouth	112	Bucks_Creek_Chatham
065	Childs_River_Falmouth	113	Siders_Pond_Falmouth
066	Sage_Lot_Pond_Mashpee	115	Flume_Pond_Falmouth
067	Hamblin_Pond_Mashpee	116	Oyster_Pond_Onset_Pocasset
068	Great_River_Mashpee	117	Quissett_Beach_Falmouth
069	East_Bay_Barnstable	119	Dam_Pond_Barnstable
070	Centerville_River_Long_Beach_Barnstable	120	Stewarts_Creek_Barnstable
071	Scudder_Bay_Bumps_Barnstable	121	Crowell_Pond_Yarmouth
072	Sqaw_Island_Halls_Creek_Barnstable	122	Red_River_Chatham
073	Hyannis_Inner_Harbor_Barnstable	123	Weir_Creek_West_Dennis
074	Mill_Creek_Barnstable	124	Dennis_model_boundary_drains
075	Snows_Creek_Barnstable	125	Boat_Meadow_Creek_Orleans
076	Jehus_Pond_Mashpee	126	Nauset_Beach_Orleans
078	Flat_Pond_Mashpee	127	West_Bay_Cotuit
079	Mashpee_River_Mashpee	128	Cotuit_Bay_Cotuit_Barnstable
080	Shoestring_Bay_Bryants_Cove_Mashpee	129	Poppanosset_Creek_Barnstable
081	Pinquickset_Fullers_Marsh_Barnstable	130	Waquoit_Bay_Falmouth
082	Rushy_Marsh_Pond_Barnstable	131	Middle_Bass_River_model_boundary
083	Popponesset_Bay_Barnstable	132	Little_Namskaket_Creek_Orleans
084	Marstons_Mills_River_Barnstable	133	Oyster_Pond_Chatham
085	North_Cotuit_Bay_Barnstable	134	Lower_Mitchell_River_Stage_Harbor
086	Eel River Barnstable	135	Little Mill Pond Chatham

Table 1–1.Original codes and corresponding names of the groundwater-contributing areas for the groundwater models of thePlymouth-Carver region and Cape Cod, Massachusetts.—Continued

Code	Description	Code	Description
	Sagamore and Monomoy—Continued		Sagamore and Monomoy— <i>Continued</i>
	Estuaries ⁷ —Continued		Estuaries ⁷ —Continued
136	Upper Frost Fish Creek Chatham	184	East Section Scorton Creek Ext
137	Upper Muddy Creek Chatham Harwich	185	West Section Scorton Creek Ext
138	Sulfur Springs Chatham	186	South Bass River Model Boundary
139	Inner Coast Town Cove Orleans	187	West_Kelleys_Bay_Den_Yar_model_boundary
140	Coast Nauset Bay Orleans	188	Upper Parkers River Yarmouth
141	Nauset Beach Pleasant Bay Harbor	189	Lower Parkers River Yarmouth
142	Little River Falmouth	190	Bound Marsh S of Matthews Pond Yarmouth
143	Upper Seapit River Falmouth	191	Allens Harbor Arm Harwich
144	Red_Brook_Falmouth	192	Upper_Snows_Creek_Hyannis
145	Coast Woods Hole Passage	333	Coast Buzzards Bay
146	Coast_Cape_Cod_Canal	444	Atlantic_Ocean
147	Prince_Cove_Barnstable_Marstons_Mills	555	Coast_Cape_Cod_Bay
149	Great Sippewisset Creek and Marsh	666	Coast Nantucket Sound
150	Upper_Bumps_River	777	Coast_Vineyard_Sound
150	Lewis_Bay_Proper	888	Coast Pleasant Bay
151	Pine Island Creek Yarmouth	900	Bass River
152	Lower Rock Creek Orleans	435	Unnamed_near_Sandwich
155	COAST Outer Town Cove Orleans	436	Unnamed near Sandwich
155	COAST Little Pleasant Bay	430	Unnamed_near_Great_Marsh_Barnstable
155	Inlet_to_Kescayo_Gansett_Pond_Orleans	438	Unnamed near Great Marsh Barnstable
150	Meetinghouse Pond Orleans	439	Unnamed near Great Marsh Barnstable
157	Frostfish_Cove_The_River_Orleans	999	Grouped 435 439 Sandwich Barnstable
158	COAST Pleasant Bay Orleans	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sagamore
160	N Tar Kill Rd Orleans		Ponds ⁸
161	Upper_Namskaket_Ck_Orleans	03	Shawme Lake
161	Upper Doanes Creek Harwich	03	Upper_Shawme_Lake
162	Upper Sesuit Creek Dennis	04	Hoxie Pond
164	Lower_Swan_Pond_River_Dennis	05	Nye Pond
165	Upper Swan Pond River Dennis	07	Mill Pond
166	Lower Herring River Harwich	07	Clay_Pond
167	Inner Quisset Harbor Falmouth	10	unnamed pond
167	Harbor Head Falmouth	10	Hinckley_Pond
169	Inner_Snug_Harbor_Falmouth	12	Spectacle_Pond
170	SW Falmouth Harbor Falmouth	12	
170	Outer Snug Harbor Falmouth	13	Lawrence_Pond Dennis Pond
172	Upper_Back_River_Bourne_Onset_Pocasset	14	Greenough Pond
172	Lower Pocasset River Bourne Onset	10	Elishas_Pond
175	COAST Pocasset Harbor Bourne Onset	18	
174	COAST_Pocasset_Harbor_Bourne	18	Triangle_Pond Garretts Pond
175	COAST_N_Outer_Red_Brook_Harbor_Bourne	20	Peters Pond
170	COAST_S_Outer_Red_Block_Harbor_Bourne COAST_Megansett_Onset_Falmouth	20	Flax_Pond
177	Lower_Quashnet_River_Falmouth	21 23	Hathaway Ponds
178 179	Lower Great River Falmouth	23 24	Snake_Pond
179	Lower Eel Pond Falmouth		
180	Lower_Hei_Pond_Faimouth Lower_Marstons_Mills_River_Cotuit	26 27	Israel_Pond Mustia Middle Hamblin Bonds
		27 28	Mystic_Middle_Hamblin_Ponds
182 183	Osterville_Grand_Island_Inlet_Cotuit Osterville_GI_NW_West_Bay_Cotuit	28 29	Lamson_Pond Hathaway_Ponds

Table 1–1.Original codes and corresponding names of the groundwater-contributing areas for the groundwater models of thePlymouth-Carver region and Cape Cod, Massachusetts.—Continued

Code	Description	Code	Description
	Sagamore— <i>Continued</i>		Sagamore— <i>Continued</i>
	Ponds ⁸ —Continued		Ponds ⁸ —Continued
30	Wequaquet_Lake	81	unnamed pond
31	Pimlico Pond	82	Deer_Pond
32	Weeks_Pond	84	Flax_Pond
33	Shallow Pond	85	Mares Pond
34	Mashpee Wakeby Pond	86	Spectacle_Pond
35	Mary_Dunn_Pond	87	Bourne_Pond
36	Red_Brook_Pond	88	Long_Pond
37	Long Pond	89	Dean Pond
38	Plashes_Pond	90	Grews Pond
39	Long Pond	91	James Pond
40	Shubael_Pond	92	Morse_Pond
41	Bassetts_Pond	93	Shivericks Pond
42	Long_Pond		Streams ⁹
43	Horse_Pond	02	Phlashes_Brook
44	 Muddy_Pond	03	unnamed stream
45	Little Sandy Pond	04	Coonamessett River
46	Big_Sandy_Pond	05	unnamed_stream
47	Jabinettes Pond	06	Childs River
49	Santuit Pond	07	Quashnet River
50	Long_Pond	08	Red Brook
51	Osborne_Pond	09	Mashpee_River
52	Fawcetts_Pond	10	Quaker Run
53	North_Pond	11	Santuit_River
54	Lovell_Pond	12	Little_River
55	West_Pond	13	Marstons_Mills_River
56	Cedar_Lake	14	outflow_Wequaquet_Lake
57	Washburn_Pond	15	Hawes_Run
58	Simmons_Pond	16	unnamed_stream
59	Moody_Pond	17	outflow_Upper_Shawme_Lake
60	Micah_Pond	18	outflow_Shawme_Lake
61	Bog_Pond	19	unnamed_stream
62	Joshua_Pond	20	unnamed_stream
63	Ashumet_Pond	21	outflow_Hoxie_Pond
64	Eagle_Pond	22	outflow_Nye_Pond
65	Johns_Pond	23	Herring_Brook
67	Wings_Pond	24	unnamed_stream
68	Deep_Pond	25	Shawme_Lake_outflow
69	Coonamessett_Pond	26	Upper_Shawme_Lake_outflow
70	Grassy_Pond		Monomoy
72	Martha_Pond		Ponds ¹⁰
73	Round_Pond	02	Cedar_Pond
74	Crooked_Pond	03	Uncle_Harvey_Pond
76	Crocker_Pond	04	Crystal_Lake
77	Shallow_Pond	05	Baker_Pond
78	Round_Pond	06	Flax_Pond
79	Jenkins_Pond	07	Pilgrim_Lake
80	Fresh_Pond	08	Blueberry_Pond

Table 1–1.Original codes and corresponding names of the groundwater-contributing areas for the groundwater models of thePlymouth-Carver region and Cape Cod, Massachusetts.—Continued

Code	Description	Code	Description
	Monomoy— <i>Continued</i>		Monomoy— <i>Continued</i>
	Ponds ¹⁰ —Continued		Ponds ¹⁰ — <i>Continued</i>
09	Cobbs_Pond	56	Eagle_Pond
10	Cliff Pond	57	Goose Pond
11	Higgins Pond	58	Schoolhouse Pond
12	Coles Pond	59	Emery Pond
13	Schoolhouse Pond	60	Flax Pond
14	 Ruth_Pond	61	White_Pond
15	Smith_Pond	62	Perch Pond
16	Rafe_Pond	63	Sand Pond
17	Sheep_Pond	64	Reservoir
18	Sarahs Pond	65	Paddocks_Pond
19	Twinnings_Pond	66	Grass_Pond
20	Griffiths Pond	67	Fresh Pond
21	Lower_Millpond	68	Skinequit_Pond
22	Scargo_Lake		Streams ¹¹
23	Shoal_Pond	02	Stony_Brook
24	Uncle_Seths_Pond	03	inflow_Swan_Pond
25	Canoe_Pond	04	unnamed_stream
26	Upper_Millpond	05	Red_River
27	Long_Pond	06	Herring_River
28	Cedar_Pond	07	outflow_Robbins_Pond
29	Seymour_Pond	08	lower_Herring_River
30	Aunt_Pattys_Pond	09	outflow_Upper_Millpond
31	Walkers_Pond	10	outflow_Long_Pond
32	Slough_Pond	11	outflow_Seymour_Pond
33	Simmons_Pond	12	Long_Pond_outflow
34	Pine_Pond	13	Hinckleys_Pond_outflow
35	Bakers_Pond	14	Seymour_Pond_outflow
36	Hinckleys_Pond	15	Upper_Millpond_outflow
37	Hawksnest_Pond	16	Lower_Millpond_outflow
38	Grassy_Pond		Lower Cape Cod
39	Flax_Pond		Estuaries ¹²
40	Walkers_Pond	101	Stream_into_Nauset_Bay_Eastham
41	Elbow_Pond	201	Nauset_Bay_Eastham
42	Matthews_Pond	202	Salt_Pond_Eastham
43	Aunt_Edies_Pond	203	Salt_Pond_Bay_Nauset_Marsh_Eastham
44	unnamed_pond	204	Town_Cove_Eastham
45	Cornelius_Pond	104	Marsh_adjacent_to_Town_Cove_Eastham
46	Robbins_Pond	205	Boast_Meadow_Eastham
47	Stillwater_Pond	206	Herring_River_Eastham
48	Josephs_Pond	207	Herring_Brook_Eastham
49	White_Pond	208	Sunken_Meadow_Eastham
50	Lovers_Lake	209	Hatches_Creek_Eastham
51	Bucks_Pond	210	Silver_Spring_Wellfleet
52	unnamed_pond	211	Fresh_Brook_Wellfleet
53	unnamed_pond	212	Lieutenant_Island_Marsh_South_Wellfleet
54	unnamed_pond	213	Loagy_Bay_Wellfleet
55	Mill_Pond	214	Blackfish_Creek_Wellfleet

Table 1–1.Original codes and corresponding names of the groundwater-contributing areas for the groundwater models of thePlymouth-Carver region and Cape Cod, Massachusetts.—Continued

Code	Description	Code Description
	Lower Cape Cod <i>—Continued</i>	Lower Cape Cod—Continued
	Estuaries ¹² — <i>Continued</i>	Ponds ¹³ —Continued
215	Drummer Cove Wellfleet	274 Shank Painter Pond 2 Provincetown
216	Wellfleet Harbor Wellfleet	275 Unnamed Pond near Picnic Area Provincetown
217	The Cove Wellfleet	¹ Example original filename: es83gt10_33; where "es," estuary; "83,"
218	Pilgrim_Spring_1_Wellfleet	projection NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001;
219	Pilgrim Spring 2 Wellfleet	"gt10_," area where traveltime from the water table to the receptor exceeded
220	Duck_Creek_Wellfleet	10 years; "33," code for receptor name.
221	Wellfleet Creek Wellfleet	
222	Herring River Wellfleet	² Example original filename: 83gt10_142; "83," projection NAD_1983_
223	Mouth_of_Herring_River_Wellfleet	StatePlane_Massachusetts_Mainland_FIPS_2001; "gt10_," area where
224	Pamet Harbor Truro	traveltime from the water table to the receptor exceeded 10 years; "142," code for receptor name.
225	Mill Creek Truro	for receptor name.
226	Lower Pamet River Truro	
227	Upper Pamet River Truro	³ Example original filename: es83gt10_13; where "es," estuary; "83,"
228	Little Pamet River Truro	projection NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001; "gt10_," area where traveltime from the water table to the receptor exceeded
229	Great Swamp Truro	10 years; "13," code for receptor name.
230	Village Pond Truro	
231	Pilgrim Lake Truro	⁴ Example original filename: 83gt10_5; "83," projection NAD_1983_
232	Provincetown_Harbor_Provincetown	StatePlane_Massachusetts_Mainland_FIPS_2001; "gt10_," area where
233	Great Marsh Provincetown	traveltime from the water table to the receptor exceeded 10 years; "5," code
234	Hatches_Harbor_Provincetown	for receptor name, with zero(s) added as placeholder to left of code digit.
	Ponds ¹³	
235	Herring_Pond_Eastham	⁵ Example original filename: es83gt10_44; where "es," estuary; "83,"
237	Mill_Pond_Eastham	projection NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001;
238	Jemina_Pond_Eastham	"gt10_," area where traveltime from the water table to the receptor exceeded
239	Depot_Pond_Eastham	10 years; "44," code for receptor name.
241	Great_Pond_Eastham	
243	Widow_Harding_Eastham	⁶ Example original filename: 83gt10_156; "83," projection NAD_1983_
244	Minister_Pond_Eastham	StatePlane_Massachusetts_Mainland_FIPS_2001; "gt10_," area where traveltime from the water table to the receptor exceeded 10 years; "156," code
245	Duck_Pond_Wellfleet	for receptor name.
247	Great_Pond_Wellfleet	1
249	Dyer_Pond_Wellfleet	⁷ Example original filename: em02283gt10e; where "em," estuary; "022,"
251	Long_Pond_Wellfleet	code for receptor name, with zero(s) added as place holder to left of code
253	Gull_Pond_Wellfleet	digit; "83," projection NAD_1983_StatePlane_Massachusetts_Mainland_
256	Higgins_Pond_Wellfleet	FIPS_2001; "gt10e," area where traveltime from the water table to the recep-
258	Herring_Pond_Wellfleet	tor exceeded 10 years.
259	Willam_Pond_Wellfleet	
260	Slough_Pond_Wellfleet	⁸ Example original filename: pd0883e; where "pd," pond; "08," code for
262	Horseleech_Pond_Wellfleet	receptor name, with zero added as place holder to left of code digit; "83e,"
264	Round_Pond_Wellfleet	projection NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001.
265	Great_Pond_Truro	
267	Snow_Pond_Truro	⁹ Example original filename: st0283gt10e; where "st," stream; "02," code
268	Ryder_Pond_Truro	for receptor name, with zero added as place holder to left of code digit; "83,"
269	Great_Pond_Provincetown	projection NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001; "gt10e," area where traveltime from the water table to the receptor exceeded
270	Bennett_Pond_Provincetown	10 years.
271	Duck_Pond_Provincetown	
272	Clapps_Pond_Provincetown	
273	Shank_Painter_Pond_1_Provincetown	

¹⁰Example original filename: pd0283gt10e; where "pd," pond; "02," code for receptor name, with zero added as place holder to left of code digit; "83," projection NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001; "gt10e," area where traveltime from the water table to the receptor exceeded 10 years.

¹¹Example original filename: st0283gt10e; where "st," stream; "02," code for receptor name, with zero added as place holder to left of code digit; "83," projection NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001; "gt10e," area where traveltime from the water table to the receptor exceeded 10 years.

¹²Example original filename: em10483gt10e; where "em," estuary; "104," code for receptor name; "83," projection NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001; "gt10e," area where traveltime from the water table to the receptor exceeded 10 years.

¹³Example original filename: em24183p2; where "em," estuary contributing area; "241," code for receptor name; "83," projection NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001; "p2," pond.

For more information about this report, contact: Director, New England Water Science Center U.S. Geological Survey 10 Bearfoot Road Northborough, MA 01532 dc_nweng@usgs.gov or visit our website at https://newengland.water.usgs.gov

Publishing support provided by the Pembroke Publishing Service Center

ISSN 2327-638X (online) https://doi.org/10.3133/ds1074