

## Prepared in cooperation with the Missouri Department of Natural Resources

# **Quality of Surface Water in Missouri, Water Year 2019**



U.S. Department of the Interior U.S. Geological Survey

**Cover Photo**: Hydrologic technicians collecting a surface-water quality sample on the Big River in Missouri.

# **Quality of Surface Water in Missouri,** Water Year 2019

By Robert T. Kay

Prepared in cooperation with the Missouri Department of Natural Resources

Data Series 1132

U.S. Department of the Interior U.S. Geological Survey

## **U.S. Department of the Interior**

DAVID BERNHARDT, Secretary

### **U.S. Geological Survey**

James F. Reilly II, Director

U.S. Geological Survey, Reston, Virginia: 2021

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

#### Suggested citation:

Kay, R.T., 2021, Quality of surface water in Missouri, water year 2019: U.S. Geological Survey Data Series 1132, 26 p., https://doi.org/10.3133/ds1132.

Associated data for this publication:

U.S. Geological Survey, 2019, USGS water data for the Nation: U.S. Geological Survey National Water Information System database, https://doi.org/10.5066/F7P55KJN.

ISSN 2327-638X (online)

# Contents

| Abstract                                                                                                                       | 1  |
|--------------------------------------------------------------------------------------------------------------------------------|----|
| Introduction                                                                                                                   | 1  |
| The Ambient Water-Quality Monitoring Network                                                                                   | 2  |
| Laboratory Reporting Conventions                                                                                               | 3  |
| Surface-Water Quality Data Analysis Methods                                                                                    |    |
| Station Classification for Data Analysis                                                                                       | 6  |
| Hydrologic Conditions                                                                                                          | 10 |
| Distribution, Concentration, and Detection Frequency of Selected Constituents                                                  | 13 |
| Physical Properties, Suspended-Solids Concentration, Suspended-Sediment<br>Concentration, and Fecal Indicator Bacteria Density | 13 |
| Dissolved Nitrate plus Nitrite and Total Phosphorus Concentrations                                                             | 18 |
| Dissolved and Total Recoverable Lead and Zinc Concentrations                                                                   | 19 |
| Selected Pesticide Concentrations and Detection Frequencies                                                                    | 19 |
| Summary                                                                                                                        | 24 |
| References Cited                                                                                                               | 24 |
|                                                                                                                                |    |

# Figures

| 1. | Map showing physiographic regions of Missouri as well as location and class of selected surface-water quality monitoring stations, water year 2019                                                | 7  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Map showing land use in Missouri                                                                                                                                                                  | 8  |
| 3. | Map showing location of selected streamflow-gaging stations used to provide a summary of hydrologic conditions within Missouri, water year 2019                                                   | 10 |
| 4. | Graphs showing monthly mean streamflow for water year 2019 and long-term monthly mean streamflow at six representative streamflow-gaging stations in Missouri                                     | 11 |
| 5. | Boxplots showing distribution of physical properties, suspended-solids concentrations, and suspended-sediment concentrations from surface-water quality stations in Missouri, water year 2019     | 15 |
| 6. | Boxplots showing distribution of fecal indicator bacteria density in samples from surface-water quality stations in Missouri, water year 2019                                                     | 17 |
| 7. | Boxplots showing distribution of dissolved nitrate plus nitrite as nitrogen<br>and total phosphorus concentrations in samples from surface-water quality<br>stations in Missouri, water year 2019 | 18 |
| 8. | Boxplots showing distribution of dissolved and total recoverable lead and zinc concentrations from surface-water quality stations in Missouri, water year 2019.                                   | 20 |

### Tables

| 1. | U.S. Geological Survey station number, name, contributing drainage area,<br>sampling frequency, station class, and station type for selected surface-water<br>quality monitoring stations in Missouri, water year 2019                      | 4  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Station classes and number of stations in each class and type for Missouri, water year 2019                                                                                                                                                 | 9  |
| 3. | Peak streamflow for water year 2019 and periods of record for selected streamflow-gaging stations in Missouri                                                                                                                               | 12 |
| 4. | Seven-day low flow for water year 2019, period of record 7-day low flow,<br>minimum daily mean streamflow for water year 2019, and period of record<br>minimum daily mean streamflow for selected streamflow-gaging stations in<br>Missouri | 12 |
| 5. | Selected water-quality criteria                                                                                                                                                                                                             |    |
| 6. | Summary of detections of selected pesticides for water year 2019 in Missouri                                                                                                                                                                |    |

# **Conversion Factors**

U.S. customary units to the International System of Units

| Multiply                       | Ву        | To obtain                                  |
|--------------------------------|-----------|--------------------------------------------|
|                                | Length    |                                            |
| inch (in.)                     | 2.54      | centimeter (cm)                            |
| mile (mi)                      | 1.609     | kilometer (km)                             |
|                                | Area      |                                            |
| square mile (mi <sup>2</sup> ) | 2.590     | square kilometer (km <sup>2</sup> )        |
|                                | Flow rate |                                            |
| cubic foot per second (ft3/s)  | 0.02832   | cubic meter per second (m <sup>3</sup> /s) |

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8×°C)+32

# Datum

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

## **Supplemental Information**

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius ( $\mu$ S/cm at 25 °C).

Density population of bacteria is given in colonies per 100 milliliters (col/100 mL) of water.

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or micrograms per liter ( $\mu$ g/L).

A water year in U.S. Geological Survey reports is the 12-month period October 1 through September 30 and is designated by the calendar year in which it ends; thus, the year ending September 30, 2019, is called "water year 2019."

## **Abbreviations**

| ag      | agriculture                                 |
|---------|---------------------------------------------|
| AWOMN   | Ambient Water-Quality Monitoring Network    |
| DTPL    | Dissected Till Plains                       |
| E. coli | Escherichia coli                            |
| EPA     | U.S. Environmental Protection Agency        |
| fo      | forest                                      |
| HAL     | Health Advisory Level                       |
| LRL     | laboratory reporting level                  |
| LT-MDL  | long-term method detection level            |
| MDL     | method detection level                      |
| MDNR    | Missouri Department of Natural Resources    |
| MIAPL   | Mississippi Alluvial Plain                  |
| MRL     | minimum reporting level                     |
| NWIS    | National Water Information System           |
| NWQMP   | National Water Quality Monitoring Program   |
| NWQL    | National Water Quality Laboratory           |
| OSPL    | Osage Plains                                |
| OZPLSA  | Ozark Plateau Province, Salem Plateau       |
| OZPLSP  | Ozark Plateau Province, Springfield Plateau |
| pr      | prairie                                     |
| TMDL    | total maximum daily load                    |
| USGS    | U.S. Geological Survey                      |
| wi      | watershed indicator                         |

# **Quality of Surface Water in Missouri, Water Year 2019**

By Robert T. Kay

### Abstract

The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a network of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network (AWQMN). During water year 2019 (October 1, 2018, through September 30, 2019), water-quality data were collected at 73 stations: 71 AWQMN and alternate AWQMN stations, and 2 U.S. Geological Survey National Water Quality Monitoring Program stations. Among the stations in this report, four stations have data presented from additional sampling performed in cooperation with the U.S. Army Corps of Engineers. Summaries of the concentrations of dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticides are presented. Most of the stations have been classified based on the physiographic province or primary land use in the watershed monitored by the station. Some stations have been classified based on the unique hydrologic characteristics of the waterbodies (springs, large rivers) they monitor. A summary of hydrologic conditions including peak streamflows, monthly mean streamflows, and 7-day low flows also are presented for representative streamflow-gaging stations in the State.

## Introduction

The Missouri Department of Natural Resources (MDNR) is responsible for the implementation of the Federal Clean Water Act (33 U.S.C. §1251 et seq.) in Missouri. Section 305(b) of the Clean Water Act requires that each State develop a water-quality monitoring program and periodically generate a report providing a description of the water quality of all navigable waters in the State (U.S. Environmental Protection Agency, 1997). Water-quality status is described in terms of

the suitability of these navigable waters for various uses, such as drinking, fishing, swimming, and supporting aquatic life. These uses formally were defined as "designated uses" in State and Federal regulations. Section 303(d) of the Clean Water Act requires States to identify impaired waters and determine the total maximum daily loads (TMDLs) of pollutants that can be present in these waters and still meet applicable water-quality standards for their designated uses (U.S. Environmental Protection Agency, 2019). A TMDL addresses a single pollutant for each waterbody.

Missouri has an area of about 69,000 square miles and an estimated population of about 6.13 million people (U.S. Census Bureau, 2019). Within Missouri, 115,772 miles (mi) of classified streams support a variety of uses including wildlife, recreation, agriculture, industry, transportation, and public utilities. Of the classified stream miles, 10,535 mi (about 9.1 percent) were considered monitored, whereas about 90.9 percent of classified stream miles were evaluated in the State's most recent water-quality report (Missouri Department of Natural Resources, 2020). Of these assessed stream miles, an estimated 4,898 mi (about 4.2 percent) fully support the designated uses, and an estimated 5,090 mi (about 4.4 percent) are impaired by various physical changes or chemical contaminants to the point that criteria for at least one of the designated uses no longer can be met (Missouri Department of Natural Resources, 2020).

The purpose of this report is to summarize surface-water quality data collected for the MDNR–U.S. Geological Survey (USGS) cooperative AWQMN for water year 2019 (October 1, 2018, through September 30, 2019). The annual summary of data for selected constituents provides the MDNR with current information to assess the quality of surface water within the State. This report is one in a series of annual summaries (Otero-Benitez and Davis, 2009a, 2009b; Barr, 2010, 2011, 2013, 2014, 2015; Barr and Schneider, 2014; Barr and Heimann, 2016; Barr and Bartels, 2018, 2019; Kay, 2019). Data on the physical characteristics and water-quality constituents in samples collected during the 2019 water year are presented in figures and tables for 73 surface-water stations located throughout the State.

## The Ambient Water-Quality Monitoring Network

The USGS, in cooperation with the MDNR, collects surface-water quality data pertaining to water resources in Missouri each water year as part of the Missouri AWQMN. The MDNR and the USGS established the fixed-station AWQMN in 1964 with 18 stations, 5 of which were still being sampled during water year 2019. The number and location of stations that constitute the AWQMN at any particular time since 1964 have varied because of changes in the State's needs.

Data collected for the AWQMN are stored and maintained in the USGS National Water Information System (NWIS) database (U.S. Geological Survey, 2019). These data are a permanent source of accessible, accurate, impartial, and timely information.

The AWQMN data provide an understanding of the State's current water resources, as well as spatial and temporal trends in the water resources. Historical surface-water quality data were published annually in the Water-Data Report series from water years 1964 through 2005. An example of the data published during this period is available from Hauck and Harris (2006). Published data for water years 2006 through 2010 can be accessed at https://wdr.water.usgs.gov/ (U.S. Geological Survey, 2006b–2010). Beginning in water year 2011, discrete water-quality data were no longer published annually but can be accessed in the NWIS database (U.S. Geological Survey, 2019).

The objectives of the AWQMN are to (1) obtain sufficient data to provide an accurate representation of the quality and quantity of surface water throughout the State; (2) provide a database of water-quality data that can be accessed by the public, as well as private and government entities; and (3) provide for consistent methodology in data collection, laboratory analysis, and data reporting that allows for accurate comparison of data between sites and through time. Constituent concentration data from the AWQMN have been used to determine the statewide water-quality status, to identify long-term trends in water quality (Barr and Davis, 2010), and to identify anthropogenic effects (mining, agriculture, urban) on water resources (Missouri Department of Natural Resources, 2019). These data are critical to meeting information needs of the public as well as Federal, State, and local agencies involved in water-quality

planning and management. The data provide support for the design, implementation, and evaluation of preventive and remediation programs.

Samples were collected from 70 primary AWQMN stations and 1 alternate sampling station during water year 2019. The alternate sampling station is located at a streamflow-gaging station near the primary AWQMN station and was sampled when the primary station was dry. Alternate sampling station Mussel Fork near Musselfork, Missouri (06906000), was sampled in October 2018 in place of the primary station at Mussel Fork near Mystic, Mo. (06905725). Sampling frequency at each station is determined by several factors, including drainage basin size, potential effects from anthropogenic activities (such as agriculture, mining, and urban), stability or volatility of chemical conditions through time, need for annual data, and cost. Each of the streams in the AWQMN is classified for one or more designated uses. For specific information on the designated uses applicable to the streams sampled in the AWQMN, refer to Missouri Department of Natural Resources (2019, 2020).

Constituents collected within the AWQMN have been established by the MDNR based on their data needs at each station. Samples were collected by USGS personnel; collection methods and techniques followed USGS protocol (U.S. Geological Survey, 2006a). Onsite measurements of dissolved oxygen, specific conductance, and water temperature were collected at each station according to procedures described in Wilde (variously dated). Water samples were collected and processed for fecal indicator bacteria (Escherichia coli [E. coli] and fecal coliform) densities using the membrane filtration procedure described in Myers and others (2014). Methods used by the USGS for collecting and processing representative samples for nutrients, primary chemical constituents, trace elements, suspended solids, suspended sediment, and pesticide analyses are presented in detail in U.S. Geological Survey (2006a), Guy (1969), Wilde and others (2004), and Sandstrom and Wilde (2014). All laboratory analyses were done by the USGS National Water Quality Laboratory (NWQL) in Lakewood, Colorado, according to procedures described in Garbarino and others (2006), Fishman (1993), Patton and Kryskalla (2011), Patton and Truitt (1992), Sandstrom and others (2001, 2015), and Zaugg and others (1995). Suspended-sediment concentrations were analyzed at the Central Midwest Water Science Center Sediment Laboratory in Rolla, Mo., and processed according to procedures described in Guy (1969).

In addition to the surface-water quality data collected from the stations that form the AWQMN, selected data collected as part of other cooperative efforts are included in this report to improve the summary of water-quality conditions across the State. Additional data-collection efforts include water samples collected by the USGS at two National Water Quality Monitoring Program (NWQMP; a national water-quality sampling network operated by the USGS) stations and suspended-sediment samples collected at four USGS streamflow-gaging stations on the Mississippi and Missouri Rivers. The suspended-sediment samples are collected as part of a larger monitoring effort in cooperation with the U.S. Army Corps of Engineers. The suspended-sediment concentration data in this report are provided for comparison to the State's total suspended solids criteria. The suspended-sediment data used in this report consist of composited cross-sectional concentrations and average cross-sectional concentrations computed from five depth-integrated samples within the cross section (Edwards and Glysson, 1999).

The unique eight-digit number used by the USGS to identify each surface-water station is assigned when a station is first established. The complete eight-digit number for each station includes a two-digit prefix that designates the primary river system (05 is the upper Mississippi River, 06 is the Missouri River, and 07 is the lower Mississippi River) plus a six-digit downstream-order number; for example, the station number 05587455 indicates the station is in the upper Mississippi River system (05), and the remaining six digits (587455) locate the station in downstream order. In this system, the station numbers increase downstream along the main stem. A station on a tributary that enters between two main stem stations is assigned a station number between the numbers on the main stem.

## **Laboratory Reporting Conventions**

The USGS NWQL uses method reporting conventions (Childress and others, 1999) to establish the minimum concentration for which more than one qualitative measurement can be made. These reporting conventions are the minimum reporting level (MRL), the method detection level (MDL), and the laboratory reporting level (LRL). The MRL is defined by the NWQL as the smallest measured concentration of a substance that can be measured reliably using a given analytical method. The MDL is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the concentration is greater than zero. A long-term method detection level (LT–MDL) is a detection level obtained by determining the standard deviation of 24 or more MDL spiked-sample measurements for an extended period. The LRL is computed as twice the LT–MDL.

# Surface-Water Quality Data Analysis Methods

The distribution of data for selected constituents is displayed graphically using side-by-side boxplots (box and whiskers distributions). The plots show the center of the data (median, the center line of the boxplot), the variation (interquartile range [25th to 75th percentiles] or the height of the box), the skewness (quartile skew, which is the relative size of the box halves), the spread (upper and lower adjacent values are the vertical lines or whiskers and represent 1.5 times the interquartile range above the 75th and below the 25th percentiles), and the presence or absence of unusual values or outliers (denoted by open circles). If the median equals the 25th and 75th percentiles, the boxplot is represented by a single horizontal line. Boxplots with censored data (suspended solids, dissolved nitrate plus nitrite as nitrogen, total phosphorus, and dissolved and total recoverable lead and zinc) were modified by making the lower limit of the box equal to the MRL or MDL, as appropriate. All data collected from the stations during water year 2019 was obtained from the NWIS database (U.S. Geological Survey, 2019). These data can be compiled by the public from NWIS using search criteria such as USGS station identifiers (table 1) and the desired date range (October 1, 2018, through September 30, 2019).

Pesticide concentrations in some samples were detected at concentrations less than the LRL. The concentration of pesticides detected at less than the LRL are reported as estimated because of the uncertainty in quantifying the concentration at such low levels by the analytical method used. The reported value of the estimated concentration was used when these data were subjected to statistical analysis for consistency with previous reports. As a result, some pesticides had minimum or median concentrations that were less than the LRL.

#### 4 Quality of Surface Water in Missouri, Water Year 2019

**Table 1**.
 U.S. Geological Survey station number, name, contributing drainage area, sampling frequency, station class, and station type for selected surface-water quality monitoring stations in Missouri, water year 2019.

[Water year 2019 is defined as October 1, 2018, through September 30, 2019. USGS, U.S. Geological Survey; mi<sup>2</sup>, square mile; DTPL, Dissected Till Plains; ag, agriculture; BRMIG, Big River—Mississippi River below Grafton, Illinois; wi, watershed indicator; BRMOSJ, Big River— Missouri River at St. Joseph, Missouri; BRMOS, Big River—Missouri River at Sibley, Missouri; MINING, mining; OSPL, Osage Plains; pr, prairie; OZPLSP, Ozark Province Plateau—Springfield Plateau; fo, forest; OZPLSA, Ozark Province Plateau—Salem Plateau; --, not applicable; SPRING, spring; BRMOH, Big River—Missouri River at Hermann, Missouri; URBAN, urban; BRMIT, Big River—Mississippi River at Thebes, Illinois; MIALPL, Mississippi Alluvial Plain; OTHER, station does not fit into any category]

| 06818000eMissouri River at St. Joseph, Missouri426,50012BRMOSJ06821190Platte River at Sharps Station, Missouri2,3806DTPL wi ag06894100Missouri River at Sibley, Missouri426,50012BRMOS06896187Middle Fork Grand River near Grant City, Missouri82.46DTPL ag06898100Thompson River at Mount Moriah, Missouri8916DTPL ag06898800Weldon River near Princeton, Missouri4526DTPL ag0689950Medicine Creek near Harris, Missouri19212DTPL ag06900100Little Medicine Creek near Harris, Missouri66.512DTPL ag06900000Locust Creek near Unionville, Missouri77.512DTPL ag06902000Grand River near Sumner, Missouri1,8706DTPL wi ag06905500Chariton River near Prairie Hill, Missouri2411DTPL ag06906004Mussel Fork near Mystic, Missouri2671DTPL ag06907300bLamine River near Plot Grove, Missouri240MINING06907300bLamine River near Plot Grove, Missouri3.384OSPL pr06917630East Fork Little Chariton River near Kinssouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06921070Pomme de Terre River near Polk, Missouri11912OZPLSA for06917630East Fork Little Chariton River, Missouri5,4106                                                                                                                                              | USGS station<br>number<br>(figs. 1 and 3) | Station name <sup>a</sup>                                 | Contributing<br>drainage area<br>(mi²) | Water year<br>2019 sampling<br>frequency | Station class<br>and type<br>(fig. 1; table 2) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------------|
| 05497150North Fabius River near Ewing, Missouri4716DTPL ag05500000South Fabius River near Taylor, Missouri62012DTPL ag05514500bCuivre River near Troy, Missouri9036OTHER055874555Mississispip River below Grafton, Illinois171,30012BRMIG06817700Nodaway River near Graham, Missouri1,5206DTPL wi ag06818000cMissouri River at St. Joseph, Missouri2,3806DTPL wi ag06821190Platte River at Sharps Station, Missouri2,3806DTPL ag06894100Missouri River at Sibley, Missouri426,50012BRMOS06894100Missouri River at Sibley, Missouri82.46DTPL ag06898100Thompson River at Mount Moriah, Missouri8916DTPL ag06899500Weldon River near Princeton, Missouri3412DTPL ag06899501Leittle Medicine Creek near Harris, Missouri19212DTPL ag06900000Locust Creek near Harris, Missouri6,88012DTPL ag06900500Grand River near Sumner, Missouri6,88012DTPL ag06905000Grand River near MuseIfork, Missouri2411DTPL ag06905000Grand River near MuseIfork, Missouri2671DTPL ag06905000Grand River near MuseIfork, Missouri206MINNG06905000Grand River near Ploit Grove, Missouri21DTPL ag069060004Mussel Fork near                                                                                                                                                                | 05495000                                  | Fox River at Wayland, Missouri                            | 400                                    | 6                                        | DTPL ag                                        |
| 05500000South Fabius River near Taylor, Missouri62012DTPL ag05514500bCuivre River near Troy, Missouri9036OTHER05587455*Mississippi River below Grafton, Illinois171,30012BRMIG06817700Nodaway River near Graham, Missouri1,5206DTPL vi ag06818000*Missouri River at St. Joseph, Missouri426,50012BRMOSJ06821190Platte River at Sharps Station, Missouri2,3806DTPL via g06896187Middle Fork Grand River near Grant City, Missouri82.46DTPL ag06896180Thompson River at Mount Moriah, Missouri8916DTPL ag06898800Weldon River near Princeton, Missouri4526DTPL ag06899580No Creek near Harris, Missouri19212DTPL ag06900100Little Medicine Creek near Harris, Missouri19212DTPL ag06902000Grand River near Prairei Hill, Missouri1,8706DTPL via ag06905505Mussel Fork near Mystic, Missouri1,8706DTPL via ag06905000Last Fork Little Chariton River near Huntsville, Missouri2671DTPL ag06905000Grand River near Prairei Hill, Missouri2671DTPL ag06905000East Fork Little Chariton River near Huntsville, Missouri206MINING06905000East Fork Little Chariton River near Huntsville, Missouri1,8706DTPL via ag069060004Mussel Fork near Mystic, M                                                                                                                   | 05496000                                  | Wyaconda River above Canton, Missouri                     | 393                                    | 6                                        | DTPL ag                                        |
| 05514500bCuivre River near Troy, Missouri9036OTHER05587455cMississippi River below Grafton, Illinois171,30012BRMIG06817700Nodaway River near Graham, Missouri1,5206DTPL wi ag06818000cMissouri River at St. Joseph, Missouri426,50012BRMOSJ06821190Platte River at Sharps Station, Missouri2,3806DTPL wi ag06894100Missouri River at Sibley, Missouri426,50012BRMOSJ06896187Middle Fork Grand River near Grant City, Missouri82.46DTPL ag06898100Thompson River at Mount Moriah, Missouri8916DTPL ag06898100Weldon River near Princeton, Missouri4526DTPL ag06899500Medicine Creek near Harris, Missouri19212DTPL ag06909001Little Medicine Creek near Harris, Missouri68.512DTPL ag06900200Grand River near Sumner, Missouri6,88012DTPL wi ag0690500Chariton River near Missouri1,8706DTPL wi ag06906004Mussel Fork near Misse, Missouri2671DTPL ag06906004Mussel Fork near Misse, Missouri2671DTPL ag06907300bLamine River near Pilot Grove, Missouri24411DTPL ag06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06917630East Drywood Creek at Prairie State Park, Missouri2769OZPLSA fo <td>05497150</td> <td>North Fabius River near Ewing, Missouri</td> <td>471</td> <td>6</td> <td>DTPL ag</td>                                      | 05497150                                  | North Fabius River near Ewing, Missouri                   | 471                                    | 6                                        | DTPL ag                                        |
| 05587455*Mississippi River below Grafton, Illinois171,30012BRMIG06817700Nodaway River near Graham, Missouri1,5206DTPL wi ag06818000*Missouri River at St. Joseph, Missouri426,50012BRMOSJ06821190Platte River at Sharps Station, Missouri2,3806DTPL wi ag06894100Missouri River at Sibley, Missouri426,50012BRMOS06896187Middle Fork Grand River near Grant City, Missouri82.46DTPL ag06898100Thompson River at Mount Moriah, Missouri8916DTPL ag06898100No Creek near Princeton, Missouri4526DTPL ag0689950Medicine Creek near Harris, Missouri19212DTPL ag06909000Locust Creek near Harris, Missouri66.512DTPL ag06900900Locust Creek near Unionville, Missouri77.512DTPL ag06905000Grand River near Sumner, Missouri6,88012DTPL ag06905000Grand River near Prairie Hill, Missouri2671DTPL ag069060004Mussel Fork near Musselfork, Missouri2671DTPL ag069060004East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06916300East Drywood Creek at Prairie State Park, Missouri1912OZPLSA fo06917630East Drywood Creek at Prairie State Park, Missouri11912OZPLSA fo06918070Osage River adve Schell City, Missouri179 <t< td=""><td>05500000</td><td>South Fabius River near Taylor, Missouri</td><td>620</td><td>12</td><td>DTPL ag</td></t<>          | 05500000                                  | South Fabius River near Taylor, Missouri                  | 620                                    | 12                                       | DTPL ag                                        |
| Nordaway River near Graham, Missouri1,5206DTPL wi ag06817700Nodaway River at St. Joseph, Missouri426,50012BRMOSJ06818000cMissouri River at St. Joseph, Missouri2,3806DTPL wi ag06821190Platte River at Sharps Station, Missouri2,3806DTPL wi ag06894100Missouri River at Sibley, Missouri426,50012BRMOS06896187Middle Fork Grand River near Grant City, Missouri82.46DTPL ag06898100Thompson River at Mount Moriah, Missouri8916DTPL ag06899800Weldon River near Princeton, Missouri4526DTPL ag06899500No Creek near Dunlap, Missouri3412DTPL ag06909010Little Medicine Creek near Harris, Missouri66.512DTPL ag06900900Locust Creek near Harris, Missouri77.512DTPL ag06900500Grand River near Sumner, Missouri1,8706DTPL wi ag06905000Grand River near Prairie Hill, Missouri2671DTPL ag069060004Mussel Fork near Musselfork, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri3.384OSPL pr06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918000Little Sac River near Walnut Grove, Missouri11912OZPLSA for06918000Little Sac River near Polk, Missouri2769OZPLSA for <t< td=""><td>05514500<sup>b</sup></td><td>Cuivre River near Troy, Missouri</td><td>903</td><td>6</td><td>OTHER</td></t<>                       | 05514500 <sup>b</sup>                     | Cuivre River near Troy, Missouri                          | 903                                    | 6                                        | OTHER                                          |
| 06818000Missouri River at St. Joseph, Missouri426,50012BRMOSJ06821190Platte River at Sharps Station, Missouri2,3806DTPL wi ag06894100Missouri River at Sibley, Missouri426,50012BRMOS06896187Middle Fork Grand River near Grant City, Missouri82.46DTPL ag06898100Thompson River at Mount Moriah, Missouri8916DTPL ag06898800Weldon River near Princeton, Missouri4526DTPL ag06899580No Creek near Dunlap, Missouri3412DTPL ag06899590Medicine Creek near Harris, Missouri19212DTPL ag06900100Little Medicine Creek near Harris, Missouri66.512DTPL ag069002000Grand River near Sumner, Missouri6,88012DTPL wi ag06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wi ag069060004Mussel Fork near Mystic, Missouri2411DTPL ag069060004Mussel Fork near Mystic, Missouri2671DTPL ag06907300bLamine River near Pilot Grove, Missouri9499OTHER06917630East Fork Little Chariton River near Huntsville, Missouri3.384OSPL pr06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06917600Lamine River near Walnut Grove, Missouri5,4106OSPL sp ag06917610Osage River above Schell City, Missouri2769<                                                                                                                                     | )5587455°                                 | Mississippi River below Grafton, Illinois                 | 171,300                                | 12                                       | BRMIG                                          |
| 06821190Platte River at Sharps Station, Missouri2,3806DTPL wi ag06894100Missouri River at Sibley, Missouri426,50012BRMOS06896187Middle Fork Grand River near Grant City, Missouri82.46DTPL ag06898100Thompson River at Mount Moriah, Missouri8916DTPL ag06898100Thompson River near Princeton, Missouri4526DTPL ag06899580Weldon River near Princeton, Missouri3412DTPL ag06899590Medicine Creek near Harris, Missouri19212DTPL ag06900100Little Medicine Creek near Harris, Missouri66.512DTPL ag06902000Grand River near Sumner, Missouri6,88012DTPL wi ag06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wi ag06906004Mussel Fork near Mystic, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Piot Grove, Missouri3.384OSPL pr06916300East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918000Little Sac River near Walnut Grove, Missouri11912OZPLSA for06918000Little Sac River near Walnut Grove, Missouri11912OZPLSA for06918000Little Sac River near Polk, Missouri3567OSPL ag06918000Little Sac River near Polk, Missouri <td< td=""><td>06817700</td><td>Nodaway River near Graham, Missouri</td><td>1,520</td><td>6</td><td>DTPL wi ag</td></td<> | 06817700                                  | Nodaway River near Graham, Missouri                       | 1,520                                  | 6                                        | DTPL wi ag                                     |
| 06894100Missouri River at Sibley, Missouri426,50012BRMOS06896187Middle Fork Grand River near Grant City, Missouri82.46DTPL ag06898100Thompson River at Mount Moriah, Missouri8916DTPL ag06898100Weldon River near Princeton, Missouri4526DTPL ag06899580No Creek near Dunlap, Missouri3412DTPL ag06899590Medicine Creek near Harris, Missouri19212DTPL ag06900100Little Medicine Creek near Harris, Missouri66.512DTPL ag06900900Locust Creek near Harris, Missouri6,88012DTPL ag06902000Grand River near Sumner, Missouri1,8706DTPL wi ag06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wi ag06906004Mussel Fork near Musselfork, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri206MINING06907300bLamine River near Pilot Grove, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06918000Little Sac River near Walnut Grove, Missouri11912OZPLSA for06917050South Grand River at Archie, Missouri3567OSPL ag06918000Little Sac River near Polk, Missouri2769OZPLSA for06918000Little Sac River near Polk, Missouri3567OSPL a                                                                                                                                              | 06818000c                                 | Missouri River at St. Joseph, Missouri                    | 426,500                                | 12                                       | BRMOSJ                                         |
| 06896187Middle Fork Grand River near Grant City, Missouri82.46DTPL ag06898100Thompson River at Mount Moriah, Missouri8916DTPL ag06898800Weldon River near Princeton, Missouri4526DTPL ag0689950Medicine Creek near Dunlap, Missouri3412DTPL ag0689950Medicine Creek near Harris, Missouri19212DTPL ag06900100Little Medicine Creek near Harris, Missouri66.512DTPL ag06900900Locust Creek near Unionville, Missouri77.512DTPL wig06902000Grand River near Sumner, Missouri6,88012DTPL wig06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wig069060004Mussel Fork near Mystic, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wig06918000Little Sac River near Walnut Grove, Missouri11912OZPLSA for0691750South Grand River at Archie, Missouri3567OSPL ag06918000Little Sac River near Polk, Missouri3567OSPL ag06917630South Grand River at Archie, Missouri3567OSPL ag06918000Little Sac River near Polk, Missouri3567 <td< td=""><td>06821190</td><td>Platte River at Sharps Station, Missouri</td><td>2,380</td><td>6</td><td>DTPL wi ag</td></td<>              | 06821190                                  | Platte River at Sharps Station, Missouri                  | 2,380                                  | 6                                        | DTPL wi ag                                     |
| 06898100Thompson River at Mount Moriah, Missouri8916DTPL ag06899800Weldon River near Princeton, Missouri4526DTPL ag06899580No Creek near Dunlap, Missouri3412DTPL ag06899500Medicine Creek near Harris, Missouri19212DTPL ag06900100Little Medicine Creek near Harris, Missouri66.512DTPL ag06900900Locust Creek near Unionville, Missouri77.512DTPL ag06902000Grand River near Sumner, Missouri6,88012DTPL wi ag06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wi ag06906000dMussel Fork near Mystic, Missouri2411DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06918600Little Sac River near Walnut Grove, Missouri11912OZPLSA for06918000Little Sac River near Polk, Missouri3567OSPL ag06921590South Grand River at Archie, Missouri3567OSPL ag06921590No Grand River at Archie, Missouri4415OZPLSA for06921500Niangua River at Bennett Spring, Missouri14,5806OZPLSA for                                                                                                                                                                                                        | 06894100                                  | Missouri River at Sibley, Missouri                        | 426,500                                | 12                                       | BRMOS                                          |
| 06898800Weldon River near Princeton, Missouri4526DTPL ag06899580No Creek near Dunlap, Missouri3412DTPL ag0689950Medicine Creek near Harris, Missouri19212DTPL ag06900100Little Medicine Creek near Harris, Missouri66.512DTPL ag06900900Locust Creek near Unionville, Missouri77.512DTPL ag06902000Grand River near Sumner, Missouri6,88012DTPL wi ag06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wi ag06905500Chariton River near Mystic, Missouri2411DTPL ag0690600dMussel Fork near Mystic, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri3.384OSPL pr06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri11912OZPLSP ag/06921070Pomme de Terre River near Polk, Missouri2769OZPLSA for06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for0692510Osage River below St. Thomas, Missouri14,5806OZPLSA wit                                                                                                                                                                                                  | 06896187                                  | Middle Fork Grand River near Grant City, Missouri         | 82.4                                   | 6                                        | DTPL ag                                        |
| 06899580No Creek near Dunlap, Missouri3412DTPL ag06899950Medicine Creek near Harris, Missouri19212DTPL ag06900100Little Medicine Creek near Harris, Missouri66.512DTPL ag06900900Locust Creek near Unionville, Missouri77.512DTPL ag06902000Grand River near Sumner, Missouri6,88012DTPL wi ag06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wi ag06905725Mussel Fork near Mystic, Missouri2411DTPL ag06906000dMussel Fork near Musselfork, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06918000Little Sac River near Walnut Grove, Missouri2769OZPLSA for06921070Pomme de Terre River near Polk, Missouri3567OSPL ag06923700Niangua River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for0692510Osage River below St. Thomas, Missouri14,5806OZPLSA wi                                                                                                                                                                                                                                                                  | 06898100                                  | Thompson River at Mount Moriah, Missouri                  | 891                                    | 6                                        | DTPL ag                                        |
| 06899950Medicine Creek near Harris, Missouri19212DTPL ag06900100Little Medicine Creek near Harris, Missouri66.512DTPL ag06900900Locust Creek near Unionville, Missouri77.512DTPL ag06902000Grand River near Sumner, Missouri6,88012DTPL wi ag06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wi ag06905725Mussel Fork near Mystic, Missouri2411DTPL ag069060004Mussel Fork near Musselfork, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06921070Pomme de Terre River near Polk, Missouri2769OZPLSP ag06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06923700Niangua River below St. Thomas, Missouri14,5806OZPLSA wi                                                                                                                                                                                                                                                                                                                                                                            | 06898800                                  | Weldon River near Princeton, Missouri                     | 452                                    | 6                                        | DTPL ag                                        |
| 06900100Little Medicine Creek near Harris, Missouri66.512DTPL ag06900900Locust Creek near Unionville, Missouri77.512DTPL ag06902000Grand River near Sumner, Missouri6,88012DTPL wi ag06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wi ag06905725Mussel Fork near Mystic, Missouri2411DTPL ag06906000dMussel Fork near Musselfork, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri9499OTHER06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06921070Pomme de Terre River near Polk, Missouri2769OZPLSA for06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for0692510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                 | 06899580                                  | No Creek near Dunlap, Missouri                            | 34                                     | 12                                       | DTPL ag                                        |
| 06900900Locust Creek near Unionville, Missouri77.512DTPL ag06902000Grand River near Sumner, Missouri6,88012DTPL wi ag06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wi ag06905725Mussel Fork near Mystic, Missouri2411DTPL ag06906000dMussel Fork near Musselfork, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri9499OTHER06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06921070Pomme de Terre River near Polk, Missouri2769OZPLSA for06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06926510Osage River below St. Thomas, Missouri14,5806OZPLSA wit                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06899950                                  | Medicine Creek near Harris, Missouri                      | 192                                    | 12                                       | DTPL ag                                        |
| 06902000Grand River near Sumner, Missouri6,88012DTPL wi ag06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wi ag06905725Mussel Fork near Mystic, Missouri2411DTPL ag06906000dMussel Fork near Musselfork, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri9499OTHER06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06921070Pomme de Terre River near Polk, Missouri2769OZPLSA fod06923700Niangua River at Bennett Spring, Missouri3567OSPL ag06923700Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06900100                                  | Little Medicine Creek near Harris, Missouri               | 66.5                                   | 12                                       | DTPL ag                                        |
| 06905500Chariton River near Prairie Hill, Missouri1,8706DTPL wi ag06905725Mussel Fork near Mystic, Missouri2411DTPL ag06906000dMussel Fork near Musselfork, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri9499OTHER06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06921070Pomme de Terre River near Polk, Missouri2769OZPLSP ag06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06926510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06900900                                  | Locust Creek near Unionville, Missouri                    | 77.5                                   | 12                                       | DTPL ag                                        |
| 06905725Mussel Fork near Mystic, Missouri2411DTPL ag06906000dMussel Fork near Musselfork, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri9499OTHER06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06918600Little Sac River near Walnut Grove, Missouri11912OZPLSP ag/06921070Pomme de Terre River near Polk, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06926510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06902000                                  | Grand River near Sumner, Missouri                         | 6,880                                  | 12                                       | DTPL wi ag                                     |
| 06906000dMussel Fork near Musselfork, Missouri2671DTPL ag06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri9499OTHER06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06918600Little Sac River near Walnut Grove, Missouri11912OZPLSP ag/06921070Pomme de Terre River near Polk, Missouri2769OZPLSA for06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06926510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 06905500                                  | Chariton River near Prairie Hill, Missouri                | 1,870                                  | 6                                        | DTPL wi ag                                     |
| 06906300East Fork Little Chariton River near Huntsville, Missouri2206MINING06907300bLamine River near Pilot Grove, Missouri9499OTHER06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06918600Little Sac River near Walnut Grove, Missouri11912OZPLSP ag06921070Pomme de Terre River near Polk, Missouri2769OZPLSA for06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06926510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 06905725                                  | Mussel Fork near Mystic, Missouri                         | 24                                     | 11                                       | DTPL ag                                        |
| 06907300bLamine River near Pilot Grove, Missouri9499OTHER06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06918600Little Sac River near Walnut Grove, Missouri11912OZPLSP ag/06921070Pomme de Terre River near Polk, Missouri2769OZPLSA for06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06926510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 06906000d                                 | Mussel Fork near Musselfork, Missouri                     | 267                                    | 1                                        | DTPL ag                                        |
| 06917630East Drywood Creek at Prairie State Park, Missouri3.384OSPL pr06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06918600Little Sac River near Walnut Grove, Missouri11912OZPLSP ag06921070Pomme de Terre River near Polk, Missouri2769OZPLSA for06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06926510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06906300                                  | East Fork Little Chariton River near Huntsville, Missouri | 220                                    | 6                                        | MINING                                         |
| 06918070Osage River above Schell City, Missouri5,4106OSPL wi ag06918600Little Sac River near Walnut Grove, Missouri11912OZPLSP ag/06921070Pomme de Terre River near Polk, Missouri2769OZPLSA fo/06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA fo/06926510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06907300 <sup>b</sup>                     | Lamine River near Pilot Grove, Missouri                   | 949                                    | 9                                        | OTHER                                          |
| 06918600Little Sac River near Walnut Grove, Missouri11912OZPLSP ag/06921070Pomme de Terre River near Polk, Missouri2769OZPLSA for06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06926510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06917630                                  | East Drywood Creek at Prairie State Park, Missouri        | 3.38                                   | 4                                        | OSPL pr                                        |
| 06921070Pomme de Terre River near Polk, Missouri2769OZPLSA for06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06926510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06918070                                  | Osage River above Schell City, Missouri                   | 5,410                                  | 6                                        | OSPL wi ag                                     |
| 06921590South Grand River at Archie, Missouri3567OSPL ag06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06926510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06918600                                  | Little Sac River near Walnut Grove, Missouri              | 119                                    | 12                                       | OZPLSP ag/fo                                   |
| 06923700Niangua River at Bennett Spring, Missouri4415OZPLSA for06926510Osage River below St. Thomas, Missouri14,5806OZPLSA with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06921070                                  | Pomme de Terre River near Polk, Missouri                  | 276                                    | 9                                        | OZPLSA fo/ag                                   |
| 06926510 Osage River below St. Thomas, Missouri 14,580 6 OZPLSA wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06921590                                  | South Grand River at Archie, Missouri                     | 356                                    | 7                                        | OSPL ag                                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06923700                                  | Niangua River at Bennett Spring, Missouri                 | 441                                    | 5                                        | OZPLSA fo/ag                                   |
| 06927850 Osage Fork of the Gasconade River near Lebanon Missouri 43.6 5 OZPLSA for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06926510                                  | Osage River below St. Thomas, Missouri                    | 14,580                                 | 6                                        | OZPLSA wi fo/ag                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06927850                                  | Osage Fork of the Gasconade River near Lebanon, Missouri  | 43.6                                   | 5                                        | OZPLSA fo/ag                                   |
| 06928440 Roubidoux Spring at Waynesville, Missouri 5 SPRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 06928440                                  | Roubidoux Spring at Waynesville, Missouri                 |                                        | 5                                        |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06930450                                  |                                                           | 746                                    | 7                                        | OZPLSA fo/ag                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06930800                                  |                                                           | 2,570                                  | 11                                       | OZPLSA wi fo/ag                                |
| 06934500 <sup>c,e</sup> Missouri River at Hermann, Missouri 522,500 14 BRMOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                                           |                                        |                                          | -                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 07014000                                  |                                                           |                                        |                                          | OZPLSA fo/ag                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                           | 173                                    | 6                                        | OZPLSA fo/ag                                   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | •                                                         |                                        | 12                                       | OZPLSA wi fo/ag                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                           |                                        |                                          | OZPLSA fo/ag                                   |
| 07018100 Big River near Richwoods, Missouri 735 9 MINING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                                                           |                                        | 9                                        | -                                              |

 Table 1.
 U.S. Geological Survey station number, name, contributing drainage area, sampling frequency, station class, and station type for selected surface-water quality monitoring stations in Missouri, water year 2019.—Continued

[Water year 2019 is defined as October 1, 2018, through September 30, 2019. USGS, U.S. Geological Survey; mi<sup>2</sup>, square mile; DTPL, Dissected Till Plains; ag, agriculture; BRMIG, Big River—Mississippi River below Grafton, Illinois; wi, watershed indicator; BRMOSJ, Big River— Missouri River at St. Joseph, Missouri; BRMOS, Big River—Missouri River at Sibley, Missouri; MINING, mining; OSPL, Osage Plains; pr, prairie; OZPLSP, Ozark Province Plateau—Springfield Plateau; fo, forest; OZPLSA, Ozark Province Plateau—Salem Plateau; --, not applicable; SPRING, spring; BRMOH, Big River—Missouri River at Hermann, Missouri; URBAN, urban; BRMIT, Big River—Mississippi River at Thebes, Illinois; MIALPL, Mississippi Alluvial Plain; OTHER, station does not fit into any category]

| USGS station<br>number<br>(figs. 1 and 3) | Station name <sup>a</sup>                         | Contributing<br>drainage area<br>(mi²) | Water year<br>2019 sampling<br>frequency | Station class<br>and type<br>(fig. 1; table 2) |
|-------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------------|
| 07019280                                  | Meramec River at Paulina Hills, Missouri          | 3,920                                  | 12                                       | URBAN wi                                       |
| 07020550                                  | South Fork Saline Creek near Perryville, Missouri | 55.3                                   | 6                                        | OZPLSA fo/ag                                   |
| 07021020                                  | Castor River at Greenbriar, Missouri              | 423                                    | 6                                        | OZPLSA fo/ag                                   |
| 07022000 <sup>c,e</sup>                   | Mississippi River at Thebes, Illinois             | 713,200                                | 14                                       | BRMIT                                          |
| 07036100                                  | St. Francis River near Saco, Missouri             | 664                                    | 9                                        | OZPLSA fo/ag                                   |
| 07037300                                  | Big Creek at Sam A. Baker State Park, Missouri    | 189                                    | 6                                        | OZPLSA fo/ag                                   |
| 07042450                                  | St. Johns Ditch at Henderson Mound, Missouri      | 313                                    | 5                                        | MIALPL                                         |
| 07046250                                  | Little River Ditches near Rives, Missouri         | 1,620                                  | 12                                       | MIALPL                                         |
| 07050150                                  | Roaring River Spring at Cassville, Missouri       |                                        | 6                                        | OZPLSP ag/fo                                   |
| 07052152                                  | Wilson Creek near Brookline, Missouri             | 51                                     | 12                                       | URBAN                                          |
| 07052160                                  | Wilson Creek near Battlefield, Missouri           | 58                                     | 12                                       | URBAN                                          |
| 07052250                                  | James River near Boaz, Missouri                   | 462                                    | 6                                        | URBAN                                          |
| 07052345                                  | Finley Creek below Riverdale, Missouri            | 261                                    | 12                                       | OZPLSP ag/fo                                   |
| 07052500                                  | James River at Galena, Missouri                   | 987                                    | 12                                       | URBAN                                          |
| 07052820                                  | Flat Creek below Jenkins, Missouri                | 274                                    | 12                                       | OZPLSP ag/fo                                   |
| 07053700ь                                 | Lake Taneycomo at Branson, Missouri               |                                        | 6                                        | OTHER                                          |
| 07053900                                  | Swan Creek near Swan, Missouri                    | 148                                    | 6                                        | OZPLSA fo/ag                                   |
| 07057500                                  | North Fork River near Tecumseh, Missouri          | 561                                    | 7                                        | OZPLSA fo/ag                                   |
| 07057750                                  | Bryant Creek below Evans, Missouri                | 214                                    | 5                                        | OZPLSA fo/ag                                   |
| 07061600                                  | Black River below Annapolis, Missouri             | 493                                    | 5                                        | OZPLSA fo/ag                                   |
| 07066110                                  | Jacks Fork above Two River, Missouri              | 425                                    | 12                                       | OZPLSA fo/ag                                   |
| 07067500                                  | Big Spring near Van Buren, Missouri               |                                        | 4                                        | SPRING                                         |
| 07068000                                  | Current River at Doniphan, Missouri               | 2,040                                  | 12                                       | OZPLSA wi fo/ag                                |
| 07068510                                  | Little Black River below Fairdealing, Missouri    | 194                                    | 6                                        | OZPLSA fo/ag                                   |
| 07071000                                  | Greer Spring at Greer, Missouri                   |                                        | 4                                        | SPRING                                         |
| 07071500                                  | Eleven Point River near Bardley, Missouri         | 793                                    | 6                                        | OZPLSA fo/ag                                   |
| 07185764                                  | Spring River above Carthage, Missouri             | 425                                    | 12                                       | OZPLSP ag/fo                                   |
| 07186480                                  | Center Creek near Smithfield, Missouri            | 303                                    | 9                                        | MINING                                         |
| 07186600                                  | Turkey Creek near Joplin, Missouri                | 41.8                                   | 7                                        | URBAN                                          |
| 07187000                                  | Shoal Creek above Joplin, Missouri                | 427                                    | 12                                       | OZPLSP ag/fo                                   |
| 07188838                                  | Little Sugar Creek near Pineville, Missouri       | 195                                    | 12                                       | OZPLSP ag/fo                                   |
| 07189000                                  | Elk River near Tiff City, Missouri                | 872                                    | 12                                       | OZPLSP ag/fo                                   |
| 07189100                                  | Buffalo Creek at Tiff City, Missouri              | 60.8                                   | 12                                       | OZPLSP ag/fo                                   |

<sup>a</sup>Station names were obtained from the U.S. Geological Survey National Water Information System database:

https://nwis.waterdata.usgs.gov/mo/nwis/qwdata.

bStation data are not included in this report because this station does not fit within the classification system used for this report.

cAdditional water temperature and suspended-sediment samples were collected at this station in cooperation with the U.S. Army Corps of Engineers.

<sup>d</sup>This station was sampled as an alternate station when Mussel Fork near Mystic, Missouri (06905725) was dry.

eStations 06934500 and 07022000 are not part of the Ambient Water-Quality Monitoring Network but were used in this report. Stations 06934500 and 07022000 are funded by the U.S. Geological Survey National Stream Quality Assessment Network.

## **Station Classification for Data Analysis**

The stations used in this report are located throughout the State (fig. 1) and monitor watersheds with a variety of geologic settings, land uses (fig. 2), and unique hydrologic systems. Most of the stations were grouped into first-order classifications according to the physiographic region (Fenneman, 1938; fig. 1) or the primary land use in the watershed monitored by the station (fig. 2). The remaining stations were grouped into first-order classifications according to the unique hydrologic characteristics of the waterbody they monitor (fig. 1).

The physiography-based stations monitor watersheds located in the Dissected Till Plains (DTPL) in the north, the Osage Plains (OSPL) in the west-central, the Mississippi Alluvial Plain (MIALPL) in the southeast, the Ozark Plateau Province, Salem Plateau (OZPLSA) in the middle of the State, and the Ozark Plateau Province, Springfield Plateau (OZPLSP) in the southwest (fig. 1). Water quality at the stations classified by physiography is expected to be substantially affected by natural chemical processes, including interactions with the geologic and biologic media.

Stations classified by the primary land use monitor watersheds with substantial amounts of mining (MINING) or urban (URBAN) land use. These stations are grouped separately from the physiography-based stations to assess the effects of mining and urban land use on water quality.

Stations classified based on the unique hydrologic characteristics of the waterbodies they monitor refer to springs (SPRING) and the stations on the Mississippi River (BRMIG and BRMIT) and the Missouri River (BRMOSJ, BRMOS, and BRMOH). Stations on the Mississippi and Missouri Rivers are referred to as the "Big River stations" (fig. 1) in this report. Water chemistry at the SPRING stations is expected to differ from the other stations because the SPRING stations reflect the chemistry of the groundwater source. Water chemistry of the Big River stations is expected to differ from other stations partly because of the large size of the watersheds they monitor.

Each station that was classified by physiographic province was further subdivided into second-order classifications (referred to as "station type" in table 1). Second-order classifications were based on contributing drainage area or land use within the watershed monitored by the station (figs. 1, 2; table 2). The second-order classifications include watershed indicator (wi) stations and land-use indicators. Stations with the wi classification are the most downstream stations in a watershed having a drainage area greater than 1,000 square miles. Water-quality data obtained from wi stations can be interpreted as being representative of the general condition of the watershed. Land-use indicator stations include stations where forest (fo), agriculture (ag), or prairie (pr) is the predominate land use in the watershed upstream from the station. Water quality at land-use indicator stations is likely to be affected by a specific land use. When stations were in watersheds where multiple land uses were present, the convention was to mention them in predominant order. The agriculture and forest (ag/fo) land-use indicator, for example, implies that the primary land use of the watershed is agriculture, although a substantial part of the land use is forest (fig. 2).

Three stations from the AWQMN did not fit in the station classifications used in this report (classified as "other" in table 2) and sampling results from these sites are not included. The three excluded stations were Cuivre River near Troy, Mo. (05514500), and Lamine River near Pilot Grove, Mo. (06907300), located in areas of transitional physiography and possible backwater flow from nearby major rivers; and Lake Taneycomo at Branson, Mo. (07053700), a station on a semiriverine system downstream from a major impoundment.





Ambient Water-Quality Monitoring Network (AWQMN) class and type (table 2) and station number (05500000)

- Big River (BRMIG, BRMIT, BRMOSJ, BRMOS, and BRMOH)
- Mississippi Alluvial Plain (MIALPL)
- Ozark Plateaus Salem Plateau forest and agriculture (OZPLSA fo/ag)
- Ozark Plateaus Salem Plateau watershed indicator, forest and agriculture (OZPLSA wi fo/ag)
- Ozark Plateaus Springfield Plateau agriculture and forest (OZPLSP ag/fo)
- Dissected Till Plains agriculture (DTPL ag)
- Dissected Till Plains watershed indicator, agriculture (DTPL wi ag)

- Osage Plains agriculture (OSPL ag)
- Osage Plains watershed indicator, agriculture (OSPL wi ag)
- Osage Plains prairie (OSPL pr)
- Springs (SPRING)
- Mining (MINING)
- Urban (URBAN)
- Urban watershed indicator (URBAN wi)
- Other

Figure 1. Physiographic regions of Missouri as well as location and class of selected surface-water quality monitoring stations, water year 2019.

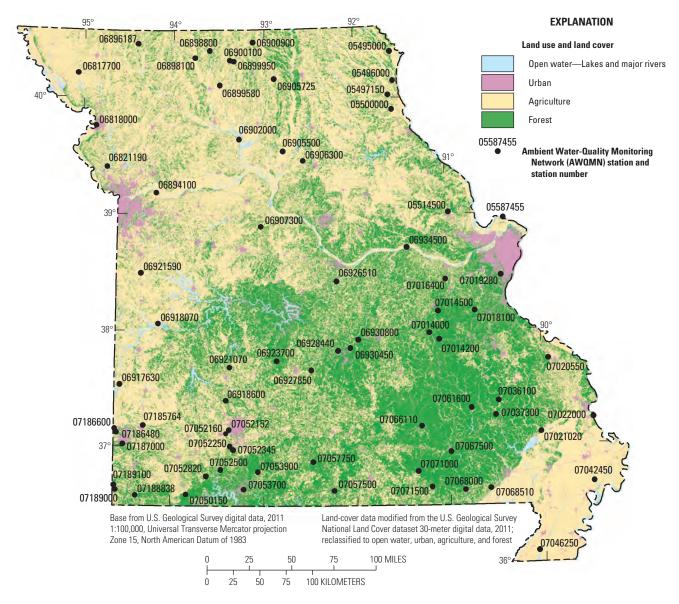



Figure 2. Land use in Missouri.

#### Table 2. Station classes and number of stations in each class and type for Missouri, water year 2019.

[Classification system is based on physiography of the State, primary and secondary land use and coverage, unique station type, and drainage area, as well as a station's representativeness to the general condition of the watershed. See the "Station Classification for Data Analysis" section of this report for the full explanation of station classes and types]

|                           | Station class and type (fig. 1)                                          |    |  |  |  |
|---------------------------|--------------------------------------------------------------------------|----|--|--|--|
| Abbreviation              | Definition                                                               |    |  |  |  |
| BRMIG                     | Big River—Mississippi River below Grafton, Illinois                      | 1  |  |  |  |
| <b>BRMIT</b> <sup>b</sup> | Big River—Mississippi River at Thebes, Illinois                          | 1  |  |  |  |
| BRMOSJ                    | Big River-Missouri River at St. Joseph, Missouri                         | 1  |  |  |  |
| BRMOS                     | Big River—Missouri River at Sibley, Missouri                             | 1  |  |  |  |
| BRMOH <sup>b</sup>        | Big River-Missouri River at Hermann, Missouri                            | 1  |  |  |  |
| MIALPL                    | Mississippi Alluvial Plain                                               | 2° |  |  |  |
| OZPLSA fo/ag              | Ozark Plateaus-Salem Plateau forest and agriculture                      | 18 |  |  |  |
| OZPLSA wi fo/ag           | Ozark Plateaus-Salem Plateau watershed indicator, forest and agriculture | 4  |  |  |  |
| OZPLSP ag/fo              | Ozark Plateaus—Springfield Plateau agriculture and forest                | 9  |  |  |  |
| DTPL ag                   | Dissected Till Plains agriculture                                        | 12 |  |  |  |
| DTPL wi ag                | Dissected Till Plains watershed indicator, agriculture                   | 4  |  |  |  |
| OSPL ag                   | Osage Plains agriculture                                                 | 1  |  |  |  |
| OSPL wi ag                | Osage Plains watershed indicator, agriculture                            | 1  |  |  |  |
| OSPL pr                   | Osage Plains prairie                                                     | 1  |  |  |  |
| SPRING                    | Springs                                                                  | 3  |  |  |  |
| MINING                    | Mining                                                                   | 3  |  |  |  |
| OTHER                     | Stations not classified owing to unique conditions; data not analyzed    | 3  |  |  |  |
| URBAN                     | Urban                                                                    | 5  |  |  |  |
| URBAN wi                  | Urban watershed indicator                                                | 1  |  |  |  |

aOnly primary sampling stations listed in table 1 are included in this analysis. Alternate stations are omitted.

<sup>b</sup>Stations BRMIT and BRMOH are not part of the Ambient Water-Quality Monitoring Network but were used in this report. Stations BRMIT and BRMOH are funded by the U.S. Geological Survey National Water Quality Monitoring Program.

<sup>c</sup>One station in this class, Little River Ditches near Rives, Missouri (07046250), has a drainage area greater than 1,000 square miles but is not considered a watershed indicator station because the manmade canals and ditches within its drainage area are not connected hydrologically.

## **Hydrologic Conditions**

Streamflow varies seasonally in Missouri and tends to reflect precipitation patterns as well as land uses (Slater and Villarini, 2017). During water year 2019, the average annual precipitation of the conterminous United States was 6.52 inches (in.) greater than the 20th century average of 29.93 in. (National Oceanic and Atmospheric Administration, 2019a). Total precipitation across Missouri during water year 2019 was 55.32 in., which is 14.82 in. greater than the 20th century precipitation average of 40.50 in. for the State (National Oceanic and Atmospheric Administration, 2019b).

The streamflow-gaging stations whose data were used to identify the variation in hydrologic conditions described in this report, were selected based on their geographical distribution across the State (fig. 3) and long period of available streamflow information. Each streamflow-gaging station has a period of record of at least 47 years. This summary of statewide hydrologic condition data for the current (2019) water year in comparison to historical conditions is a legacy of information, including the streamflow-gaging stations used, that was previously provided in the annual Water-Data Reports.

Data from six streamflow-gaging stations distributed throughout the State (Fox River at Wayland, Mo. [05495000]; Grand River near Gallatin, Mo. [06897500]; South Grand River at Archie, Mo. [06921590]; Gasconade River at Jerome, Mo. [06933500]; James River at Galena, Mo. [07052500]; and Current River at Van Buren, Mo. [07067000]) were used to compare monthly mean streamflow during water year 2019 to the long-term monthly mean streamflow (fig. 4) and to demonstrate how streamflow can vary across the State. Monthly mean streamflow is the arithmetic mean of daily streamflow for a given month. For comparison to water year 2019, a long-term mean was attained from all monthly mean streamflows for the available period of record. Of these six streamflow-gaging stations, three (05495000, 06921590, and 07052500) are part of the AWQMN and three (06897500, 06933500, and 07067000) are not part of the AWQMN (table 1; figs. 3, 4). Monthly mean streamflows during water year 2019 typically were near the long-term mean for all six streamflow-gaging stations for most of the fall and summer, but typically exceeded the long-term mean for most of the winter and spring, with especially high streamflow during May 2019 (fig. 4).

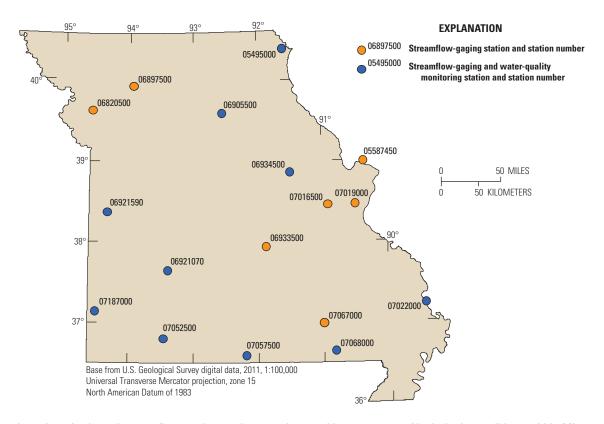
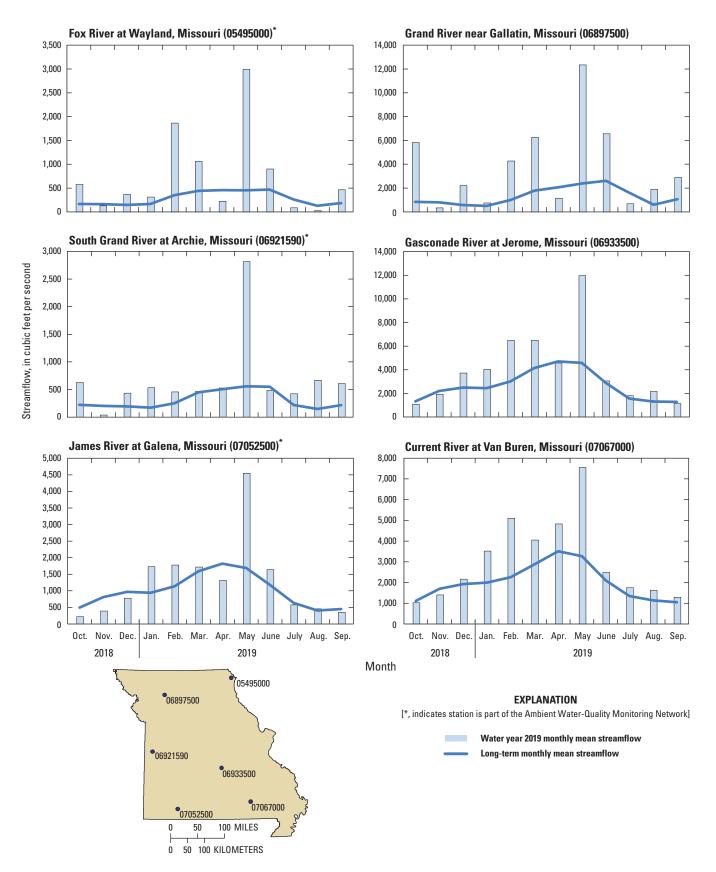




Figure 3. Location of selected streamflow-gaging stations used to provide a summary of hydrologic conditions within Missouri, water year 2019.



**Figure 4.** Monthly mean streamflow for water year 2019 and long-term monthly mean streamflow at six representative streamflow-gaging stations in Missouri.

#### 12 Quality of Surface Water in Missouri, Water Year 2019

Peak streamflow and 7-day low flow values (the smallest values of mean streamflow computed during any 7 consecutive days during the analysis period) for selected streamflow-gaging stations are presented in tables 3 and 4 for the 2019 water year. These tables include information on historic hydrologic conditions at the stations to provide context for the 2019 data. Peak streamflow during water

year 2019 was less than the long-term period of record peak streamflow at every streamflow-gaging station except for the Chariton River near Prairie Hill, where it equaled the long-term period of record (table 3). The 7-day low flow and minimum daily mean streamflows recorded during water year 2019 were greater than the historical records for every station (table 4).

#### Table 3. Peak streamflow for water year 2019 and periods of record for selected streamflow-gaging stations in Missouri.

[Water year 2019 is defined as October 1, 2018, through September 30, 2019. USGS, U.S. Geological Survey; ft3/s, cubic foot per second]

|                                            |                                                          | Water year 2019                            |                | Long-term period of record                 |                 |
|--------------------------------------------|----------------------------------------------------------|--------------------------------------------|----------------|--------------------------------------------|-----------------|
| USGS station<br>numbera<br>(figs. 1 and 3) | Station name <sup>b</sup><br>(period of record in years) | Peak<br>streamflow<br>(ft <sup>3</sup> /s) | Date           | Peak<br>streamflow<br>(ft <sup>3</sup> /s) | Date            |
| 05495000                                   | Fox River at Wayland, Missouri (1922–2019)               | 14,300                                     | May 30, 2019   | 26,400                                     | April 22, 1973  |
| 05587450                                   | Mississippi River at Grafton, Illinois (1933–2019)       | 522,000                                    | June 7, 2019   | 598,000                                    | August 1, 1993  |
| 06905500                                   | Chariton River near Prairie Hill, Missouri (1929–2019)   | 43,300                                     | May 31, 2019   | 43,300                                     | May 31, 2019    |
| 06933500                                   | Gasconade River at Jerome, Missouri (1903-2019)          | 36,900                                     | May 3, 2019    | 183,000                                    | May 1, 2018     |
| 06934500                                   | Missouri River at Hermann, Missouri (1928–2019)          | 400,000                                    | June 6-8, 2019 | 750,000                                    | July 31, 1993   |
| 07019000                                   | Meramec River near Eureka, Missouri (1903–2019)          | 40,000                                     | May 4, 2019    | 175,000                                    | August 22, 1915 |
| 07022000                                   | Mississippi River at Thebes, Illinois (1933–2019)        | 939,000                                    | June 10, 2019  | 1,050,000                                  | January 2, 2016 |
| 07057500                                   | North Fork River near Tecumseh, Missouri (1944-2019)     | 9,000                                      | May 1, 2019    | 141,000                                    | April 30, 2017  |
| 07068000                                   | Current River at Doniphan, Missouri (1921–2019)          | 33,400                                     | May 3, 2019    | 171,000                                    | May 1, 2017     |

<sup>a</sup>Stations 05587450, 06933500, and 07019000 are streamflow-gaging stations only and are not part of the Ambient Water-Quality Monitoring Network. <sup>b</sup>Station names were obtained from the U.S. Geological Survey National Water Information System database (U.S. Geological Survey, 2019).

 Table 4.
 Seven-day low flow for water year 2019, period of record 7-day low flow, minimum daily mean streamflow for water year 2019, and period of record minimum daily mean streamflow for selected streamflow-gaging stations in Missouri.

[Water year 2019 defined as October 1, 2018, through September 30, 2019; USGS, U.S. Geological Survey; ft3/s, cubic foot per second]

| USGS sta-<br>tion numberª | Station name <sup>b</sup>                            | 7-day low flow<br>(ft³/s) |                     | Minimum daily mean streamflow<br>(ft³/s) |                     |                    |  |
|---------------------------|------------------------------------------------------|---------------------------|---------------------|------------------------------------------|---------------------|--------------------|--|
| (figs. 1 and<br>3)        | (period of record in years)                          | Water year<br>2019        | Period of<br>record | Water year<br>2019                       | Period of<br>record | Date               |  |
| 05495000                  | Fox River at Wayland, Missouri (1922–2019)           | 12.2                      | 0.00                | 7.01                                     | 0.00                | September 10, 1930 |  |
| 06820500                  | Platte River near Agency, Missouri (1925-2019)       | 118                       | 0.00                | 96.7                                     | 0.00                | July 19, 1934      |  |
| 06921070                  | Pomme de Terre River near Polk, Missouri (1968–2019) | 11.0                      | 0.210               | 9.14                                     | 0.170               | August 13, 2012    |  |
| 07016500                  | Bourbeuse River near Union, Missouri (1921-2019)     | 53.7                      | 13.0                | 50.2                                     | 12.0                | October 10, 1956   |  |
| 07067000                  | Current River at Van Buren, Missouri (1921–2019)     | 907                       | 479                 | 898                                      | 476                 | October 8, 1956    |  |
| 07187000                  | Shoal Creek above Joplin, Missouri (1941-2019)       | 127                       | 15.9                | 99.8                                     | 15.0                | September 7, 1954  |  |

<sup>a</sup>Stations 06820500, 07016500, and 07067000 are streamflow-gaging stations only and are not part of the Ambient Water-Quality Monitoring Network (AWQMN).

<sup>b</sup>Station names were obtained from the U.S. Geological Survey National Water Information System database (U.S. Geological Survey, 2019).

## Distribution, Concentration, and Detection Frequency of Selected Constituents

This report presents results for dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, *E. coli* bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen (hereafter referred to as "dissolved nitrate plus nitrite"), total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticides. Boxplots of these constituents are presented for the surface-water stations according to their classification (figs. 5–8). Pesticide data are presented from seven stations from six classes (table 5).

There are a number of standards used to determine if water quality is acceptable for various uses (table 5). Water used for drinking must meet the U.S. Environmental Protection Agency (EPA) maximum contaminant level drinking-water standard (U.S. Environmental Protection Agency, 2012). The maximum contaminant level is the enforceable, health-based, maximum concentration of a constituent allowed in drinking water. The EPA secondary maximum contaminant level is the suggested maximum concentration of a constituent in drinking water based on aesthetic considerations (odor, taste, appearance). The secondary maximum contaminant level is not an enforceable standard. The health advisory level (HAL) is the concentration of a constituent in drinking water above which noncancer health effects are anticipated to occur for specific exposure scenarios; the HAL exposure scenario is lifetime exposure for an adult drinking 2 liters per day of water. HALs serve as informal technical guidance and are not legally enforceable. Applicable criteria from the Missouri Department of Natural Resources (2019) also are presented.

In addition to criteria developed for drinking water, a variety of ecological screening levels have been developed for water. The ecologically based water-quality standards used are the EPA national recommended water-quality criteria (table 5). The ecological criterion presented in table 5 is the maximum concentration of a constituent in freshwater that will not adversely affect aquatic life (U.S. Environmental Protection Agency, 2015). The standard for many of these constituents is dependent on the values of other constituents in the water and must be calculated.

#### Physical Properties, Suspended-Solids Concentration, Suspended-Sediment Concentration, and Fecal Indicator Bacteria Density

The physical properties analyzed for this report were dissolved oxygen, specific conductance, and water temperature. The median dissolved oxygen, in percent saturation, ranged from 76 to 107 percent (fig. 5). Samples from the OSPL wi ag station had the smallest median dissolved oxygen percent saturation values, whereas samples from URBAN stations had the largest median dissolved oxygen. Median specific conductance values varied substantially among the station classes, ranging from 121 microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25 °C) at the OSPL pr station to 755 µS/cm at 25 °C at the BRMOSJ station. Median water temperature ranged from 10.3 to 22.0 degrees Celsius. The smallest median temperature was measured at the OSPL pr station, and the largest was measured at the BRMOSJ station. The interquartile range in water temperature at the SPRING stations was much smaller than for other station classes and types.

Suspended solids and suspended sediment are measures of the solid material suspended in the water column. These two measures are not considered directly comparable because of differences in collection and analytical techniques. Suspended-solids concentrations were determined for all station classes and types except BRMIT and BRMOH. Median suspended-solids concentrations ranged from the MRL (15) to 220 milligrams per liter (mg/L; fig. 5). Samples collected at the OZPL (SA fo/ag, SA wi fo/ag, and SP ag/fo), OSPL pr, SPRING, and URBAN stations had median concentrations at the MRL (15 mg/L). Because suspended-solids concentrations in most of the samples from these stations were below the MRL, the actual median concentration at these stations is less than 15 mg/L. The DTPL wi ag stations had the largest median suspended-solids concentration. Suspended-sediment concentrations were determined at four Big River stations (BRMIG, BRMIT, BRMOSJ, BRMOH; fig. 5). Median suspended-sediment concentrations ranged from 89 mg/L at BRMIG to 587 mg/L at BRMOH (fig. 5).

Median *E. coli* and fecal coliform bacteria densities varied considerably among all station classes and types (fig. 6). Median *E. coli* bacteria densities ranged from 11 to 1,000 colonies per 100 milliliters of water. Median fecal coliform bacteria densities ranged from 19 to 1,450 colonies per 100 milliliters of water. The smallest median *E. coli* and fecal coliform densities were in samples collected at SPRING stations. The largest median *E. coli* and fecal coliform densities were in samples collected at the BRMOS station (fig. 6).

#### Table 5. Selected water-quality criteria.

[Criteria are from U.S. Environmental Protection Agency (2012, 2015, 2019, 2020) and Missouri Department of Natural Resources (2019). EPA, U.S. Environmental Protection Agency; mg/L, milligram per liter; *E. coli*, *Escherichia coli*; col/100 mL, colony per 100 milliliters; MCL, maximum contaminant level; µg/L, microgram per liter; SMCL, secondary maximum contaminant level; HHBP, human health benchmark for pesticides; CIAT, 2-chloro-4-isopropylamino-6-amino-s-triazine; HAL, health advisory level]

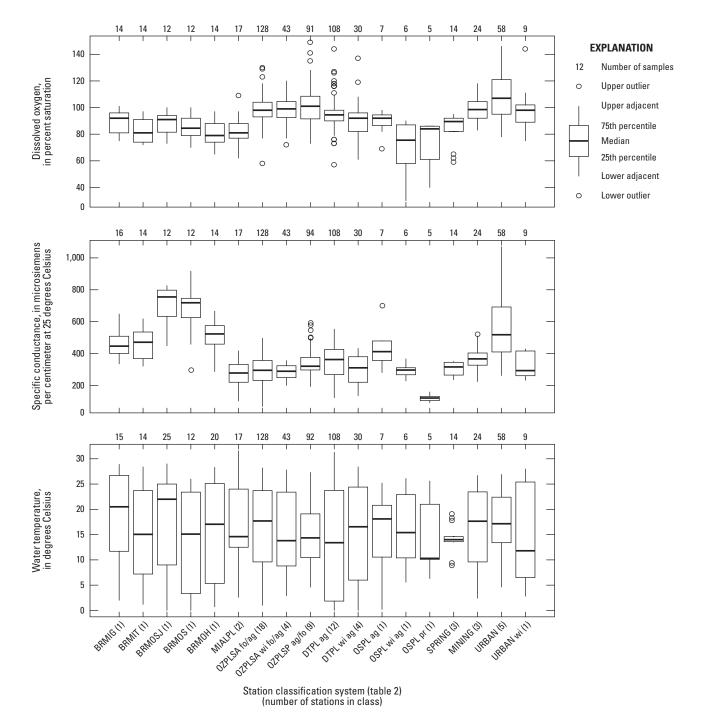
| Constituent and units                  | EPA Human<br>Health Standard | Missouri         | EPA aquatic<br>life acute<br>threshold | EPA aquatic<br>life chronic<br>threshold |
|----------------------------------------|------------------------------|------------------|----------------------------------------|------------------------------------------|
| Ammonia as nitrogen (mg/L)             | None                         | 4.1ª             | 17 <sup>b</sup>                        | 1.9 <sup>b</sup>                         |
| Dissolved oxygen (mg/L)                | None                         | 5°               | 3.0                                    | None                                     |
| <i>E. coli</i> (col/100 mL)            | None                         | 126 <sup>d</sup> | None                                   | None                                     |
| Fecal coliform (col/100 mL)            | 0 (MCL goal)                 | 200 <sup>d</sup> | None                                   | None                                     |
| Lead (µg/L)                            | 0 (MCL goal)                 | 15e              | 3.2                                    | 82                                       |
| Nitrate and nitrite as nitrogen (mg/L) | 10 (MCL)                     | 10e              | None                                   | None                                     |
| Total phosphorus (µg/L)                | None                         | None             | $10 - 128^{f}$                         | None                                     |
| Suspended solids (mg/L)                | None                         | 30               | Calculated                             | Calculated                               |
| Zinc (µg/L)                            | 5,000 (SMCL)                 | 5,000e           | 120                                    | 120                                      |
| Acetochlor (µg/L)                      | 100 (HHPB)                   | None             | 1.43g                                  | None                                     |
| Atrazine (µg/L)                        | 3 (MCL)                      | 3e               | <1g                                    | None                                     |
| CIAT (µg/L)                            | 1 (HAL)                      | None             | None                                   | None                                     |
| <i>cis</i> -propiconazole (µg/L)       | None                         | None             | None                                   | None                                     |
| 3,4-dichloroaniline (µg/L)             | None                         | None             | None                                   | None                                     |
| Dicrotophos (µg/L)                     | 0.2 (HHBP)                   | None             | 6.3 <sup>h</sup>                       | 1.7 <sup>h</sup>                         |
| Metalaxyl (µg/L)                       | None                         | None             | 14,000 <sup>h</sup>                    | 1,200 <sup>h</sup>                       |
| Metolachlor (µg/L)                     | 700 (HAL)                    | 70e(HAL)         | 550 <sup>h</sup>                       | 1g                                       |
| Metribuzin (µg/L)                      | None                         | 100e(HAL)        | 130 <sup>h</sup>                       | None                                     |
| Prometon (µg/L)                        | None                         | None             | 98g                                    | None                                     |
| Prometryn (µg/L)                       | 300 (HHBP)                   | None             | 1.04g                                  | None                                     |
| Propanil (µg/L)                        | 60 (HHBP)                    | None             | 1150 <sup>i</sup>                      | 9.1 <sup>i</sup>                         |
| Simazine (µg/L)                        | 4 (MCL)                      | 4e               | 500 <sup>h</sup>                       | 40 <sup>h</sup>                          |
| Tebuthiuron (µg/L)                     | None                         | 500e(HAL)        | 130g                                   | None                                     |
| Terbuthylazine (µg/L)                  | None                         | None             | 1800 <sup>i</sup>                      | None                                     |

<sup>a</sup>Cool and warm water fishery, assumed pH=7.0.

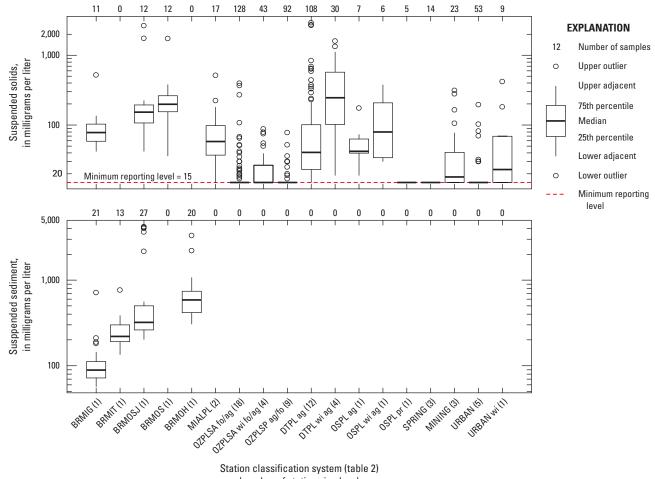
<sup>b</sup>Assumed pH=7.0 and temperature=20 degrees Celsius.

°Cool and warm water fishery.

dWhole body contact.

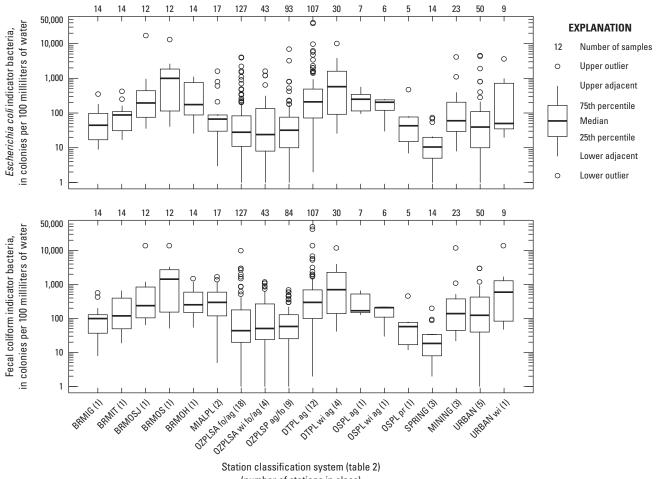

<sup>e</sup>Drinking water standard.

<sup>f</sup>Ecoregion VI, IX, X, and XI standards for rivers and streams.


gVascular plants.

hInvertebrates.

<sup>i</sup>Fish.




**Figure 5.** Distribution of physical properties, suspended-solids concentrations, and suspended-sediment concentrations from surface-water quality stations in Missouri, water year 2019.



(number of stations in class)





(number of stations in class)



#### Dissolved Nitrate plus Nitrite and Total Phosphorus Concentrations

Samples were collected at all stations for the analysis of nutrients, including dissolved nitrate plus nitrite and total phosphorus. Median dissolved nitrate plus nitrite and total phosphorus concentrations varied considerably among all station classes and types (fig. 7), ranging from the LT–MDL (0.04) to 3.45 mg/L for dissolved nitrate plus nitrite and from the LT–MDL (0.02) to 0.48 mg/L for total phosphorus. The smallest median dissolved nitrate plus nitrite concentrations (at the LT–MDL) were computed at the OSPL pr station.

Dissolved nitrate plus nitrite concentrations in all of the samples from this station were below the LT–MDL, indicating the true median concentration is less than 0.04 mg/L. The largest median concentration was measured at the URBAN station (fig. 7). The smallest median total phosphorus concentrations were computed at the OZPLSA fo/ag and SPRING stations, which had median values calculated to be equal to the LT–MDL (0.02 mg/L). Most of the samples from these stations had total phosphorous concentrations below the LT–MDL, indicating that the true median concentration at these stations is less than 0.02 mg/L. The largest median concentration was detected at the BRMOH station (fig. 7).

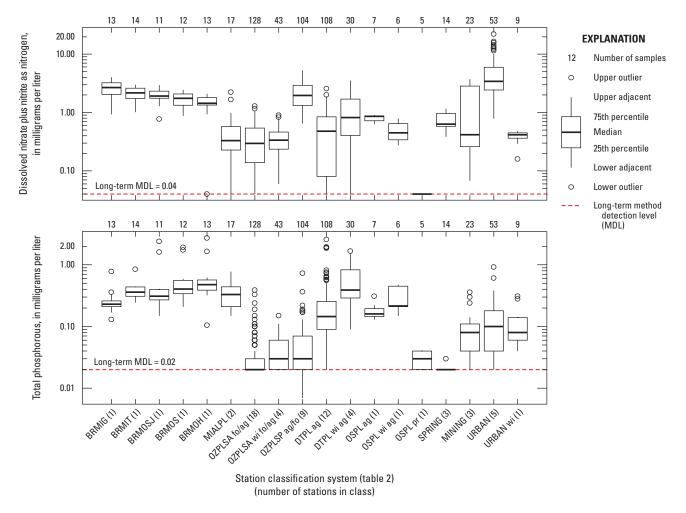



Figure 7. Distribution of dissolved nitrate plus nitrite as nitrogen and total phosphorus concentrations in samples from surface-water quality stations in Missouri, water year 2019.

# Dissolved and Total Recoverable Lead and Zinc Concentrations

No dissolved or total recoverable lead or zinc samples were collected at the BRMIT and BRMOH stations. Where samples were collected, median concentrations ranged from the LT–MDL of 0.020 to 0.40 microgram per liter ( $\mu$ g/L) for dissolved lead, 0.09 to 9.5  $\mu$ g/L for total recoverable lead, the LT–MDL of 2.0 to 9.9  $\mu$ g/L for dissolved zinc, and the LT–MDL of 2.0 to 25  $\mu$ g/L for total recoverable zinc (fig. 8).

The smallest calculated median concentrations of dissolved lead were at the LT–MDL (0.02  $\mu$ g/L) in samples collected at the MIALPL, OZPLSA (fo/ag and wi fo/ag), OZPLSP ag/fo, OSPL wi/ag, and SPRING stations. Most of the samples collected from these stations had dissolved lead concentrations below the LT–MDL, so the actual median concentration of dissolved lead at these locations is less than 0.02  $\mu$ g/L. Samples from the MINING stations had the largest median concentration of dissolved lead (fig. 8).

The smallest median concentrations of total recoverable lead were at the SPRING stations. The largest median total recoverable lead concentration was at the MINING stations.

Median dissolved zinc concentrations were calculated to be at the LT–MDL (2.0  $\mu$ g/L) for all stations, except the OSPL pr, MINING, and URBAN stations. URBAN stations had the largest median concentration of dissolved zinc.

The smallest median concentrations of total recoverable zinc were at the LT–MDL of 2.0  $\mu$ g/L at the OZPLSA (fo/ag and wi fo/ag), OZPLSP ag/fo, and SPRING stations. Most of the samples collected from these stations had total recoverable zinc concentrations below the LT–MDL, so the actual median concentration of total recoverable zinc at these locations is less than 2.0  $\mu$ g/L. The largest median concentration of total recoverable zinc was at the MINING stations (25  $\mu$ g/L).

#### Selected Pesticide Concentrations and Detection Frequencies

Samples collected for the analysis of dissolved pesticides during the 2019 water year are presented in this report for seven stations. The AWQMN and the NWQMP sampling efforts use different pesticide analytical methods and the detection limits are somewhat different. Samples from four stations were analyzed for a suite of 85 pesticides (both stations in the MIALPL, one OSPL wi ag station, and one URBAN station). An expanded list of 228 pesticides were analyzed in samples from three Big River stations (BRMIG, BRMIT, and BRMOH) as part of the NWQMP. For the sake of consistency with previous reports, this report will only discuss the results of sampling for the 85 pesticides tested for as part of the AWQMN. The NWQMP pesticides that overlap with the AWQMN pesticides tested as part of the sampling also are discussed. Note that analysis of pesticide data provided in table 6 includes analysis of detections at concentrations below the LRL if at least one sample had a detection above the LRL for that pesticide.

Fifteen pesticides were detected above their LRL in at least one sample during the 2019 water year. The 15 pesticides are acetochlor, atrazine, 2-chloro-4-isopropylamino-6amino-s-triazine (more commonly referred to as CIAT, a degradation product of atrazine), cis-propiconazole, 3,4-dichloroaniline, dicrotophos, metalaxyl, metolachlor, metribuzin, prometon, prometryn, propanil, simazine, tebuthiuron, and terbuthylazine (table 6). Eight pesticides were detected in more than half of the samples analyzed. These pesticides were metolachlor (95-percent detection), atrazine (90-percent detection), CIAT (84-percent detection), acetochlor (79-percent detection), tebuthiuron (63-percent detection), prometon (62-percent detection), metalaxyl (54-percent detection), and metribuzin (52-percent detection). The median concentrations for all pesticides shown in table 6 were less than 1.00 µg/L. Every station had a detection of at least 1 pesticide greater than the LRL. OSPL wi ag, and URBAN stations had the least amount of detections greater than the LRL among the 15 pesticides.

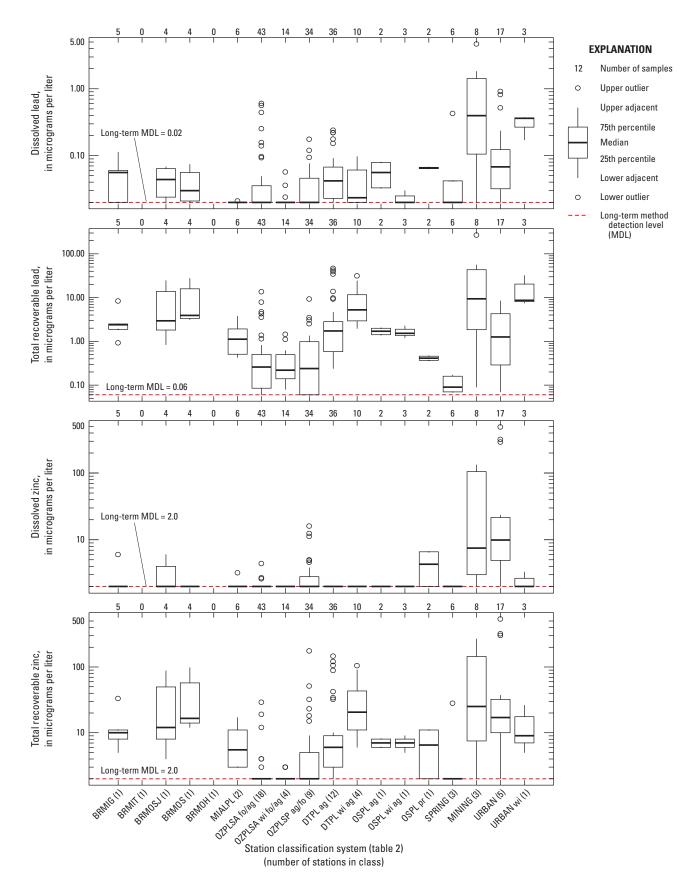



Figure 8. Distribution of dissolved and total recoverable lead and zinc concentrations from surface-water quality stations in Missouri, water year 2019.

#### Table 6. Summary of detections of selected pesticides for water year 2019 in Missouri.

[Water year 2019 defined as October 1, 2018, through September 30, 2019. µg/L, microgram per liter; MIALPL, Mississippi Alluvial Plain; <, less than; CIAT, 2-chloro-4-isopropylamino-6-amino-s-triazine; OSPL wi ag, Osage Plains watershed indicator, agriculture; URBAN, urban; BRMIT, Big River—Mississippi River at Thebes, Illinois; NA, not analyzed; BRMIG, Big River—Mississippi River below Grafton, Illinois; BRMOH, Big River—Missouri River at Hermann, Missouri]

| Analyte                                                               | Number<br>of<br>samples | Number<br>of<br>detections | Laboratory<br>reporting level<br>(µg/L) | Percent<br>detections | Minimum<br>concentration<br>(µg/L) | Maximum<br>concentration<br>(µg/L) | Median<br>concentration<br>(µg/L) |  |  |
|-----------------------------------------------------------------------|-------------------------|----------------------------|-----------------------------------------|-----------------------|------------------------------------|------------------------------------|-----------------------------------|--|--|
| Station classification MIALPL (station numbers 07042450 and 07046250) |                         |                            |                                         |                       |                                    |                                    |                                   |  |  |
| Acetochlor                                                            | 8                       | 6                          | 0.010-0.012                             | 75                    | < 0.010                            | 2.6                                | 0.076                             |  |  |
| Atrazine                                                              | 8                       | 6                          | 0.011-0.023                             | 75                    | < 0.011                            | 15.5                               | 0.068                             |  |  |
| CIAT                                                                  | 8                       | 5                          | 0.014                                   | 63                    | 0.011                              | 0.274                              | 0.024                             |  |  |
| cis-propiconazole                                                     | 8                       | 1                          | 0.008-0.040                             | 13                    | < 0.008                            | 0.006                              | < 0.008                           |  |  |
| 3,4-dichloroaniline                                                   | 8                       | 2                          | 0.008                                   | 25                    | < 0.008                            | 0.371                              | < 0.008                           |  |  |
| Dicrotophos                                                           | 8                       | 2                          | 0.004-0.014                             | 25                    | < 0.004                            | 0.015                              | < 0.014                           |  |  |
| Metalaxyl                                                             | 3                       | 1                          | 0.014-1.42                              | 25                    | < 0.014                            | 1.57                               | <1.42                             |  |  |
| Metolachlor                                                           | 8                       | 8                          | 0.012                                   | 100                   | 0.049                              | 8.28                               | 0.409                             |  |  |
| Metribuzin                                                            | 8                       | 7                          | 0.012                                   | 88                    | 0.007                              | 1.2                                | 0.022                             |  |  |
| Prometon                                                              | 8                       | 1                          | 0.012                                   | 13                    | < 0.012                            | 0.014                              | < 0.012                           |  |  |
| Prometryn                                                             | 8                       | 2                          | 0.010                                   | 25                    | < 0.010                            | 0.332                              | < 0.010                           |  |  |
| Propanil                                                              | 8                       | 1                          | 0.008-0.010                             | 13                    | < 0.008                            | 0.011                              | < 0.008                           |  |  |
| Simazine                                                              | 8                       | 0                          | 0.008                                   | 0                     | < 0.008                            | < 0.008                            | < 0.008                           |  |  |
| Tebuthiuron                                                           | 8                       | 0                          | 0.028-0.072                             | 0                     | < 0.028                            | < 0.072                            | < 0.028                           |  |  |
| Terbuthylazine                                                        | 8                       | 0                          | 0.008-0.009                             | 0                     | < 0.008                            | < 0.009                            | < 0.008                           |  |  |
|                                                                       |                         | Station class              | sification OSPL w                       | i ag (station         | number 06918070                    | ))                                 |                                   |  |  |
| Acetochlor                                                            | 6                       | 5                          | 0.010                                   | 83                    | 0.005                              | 0.186                              | 0.073                             |  |  |
| Atrazine                                                              | 6                       | 6                          | 0.008                                   | 100                   | 0.030                              | 3.16                               | 0.739                             |  |  |
| CIAT                                                                  | 6                       | 5                          | 0.014                                   | 83                    | < 0.014                            | 0.26                               | 0.097                             |  |  |
| cis-propiconazole                                                     | 6                       | 0                          | 0.008                                   | 0                     | < 0.008                            | < 0.008                            | < 0.008                           |  |  |
| 3,4-dichloroaniline                                                   | 6                       | 0                          | 0.008                                   | 0                     | < 0.008                            | < 0.008                            | < 0.008                           |  |  |
| Dicrotophos                                                           | 6                       | 0                          | 0.004-0.014                             | 0                     | < 0.004                            | < 0.014                            | < 0.014                           |  |  |
| Metalaxyl                                                             | 1                       | 0                          | 0.014                                   | 0                     | < 0.014                            | < 0.014                            | < 0.014                           |  |  |
| Metolachlor                                                           | 6                       | 6                          | 0.012                                   | 100                   | 0.015                              | 0.635                              | 0.208                             |  |  |
| Metribuzin                                                            | 6                       | 4                          | 0.012                                   | 67                    | < 0.012                            | 0.091                              | 0.030                             |  |  |
| Prometon                                                              | 6                       | 2                          | 0.012                                   | 33                    | 0.008                              | 0.011                              | < 0.012                           |  |  |
| Prometryn                                                             | 6                       | 0                          | 0.010                                   | 0                     | < 0.010                            | < 0.010                            | < 0.010                           |  |  |
| Propanil                                                              | 6                       | 0                          | 0.008-0.010                             | 0                     | < 0.008                            | < 0.010                            | < 0.010                           |  |  |
| Simazine                                                              | 6                       | 0                          | 0.008-0.022                             | 0                     | < 0.008                            | < 0.022                            | < 0.014                           |  |  |
| Tebuthiuron                                                           | 6                       | 1                          | 0.028-0.072                             | 17                    | < 0.028                            | 0.018                              | < 0.028                           |  |  |
| Terbuthylazine                                                        | 6                       | 0                          | 0.008                                   | 0                     | < 0.008                            | < 0.008                            | < 0.008                           |  |  |
|                                                                       |                         | Station cla                | ssification URBA                        | N (station nu         | ımber 07052250)                    |                                    |                                   |  |  |
| Acetochlor                                                            | 8                       | 1                          | 0.010                                   | 13                    | < 0.010                            | 0.006                              | < 0.010                           |  |  |
| Atrazine                                                              | 8                       | 5                          | 0.008                                   | 63                    | < 0.008                            | 0.076                              | 0.0135                            |  |  |
| CIAT                                                                  | 8                       | 5                          | 0.014                                   | 63                    | 0.006                              | 0.018                              | < 0.014                           |  |  |
| cis-propiconazole                                                     | 8                       | 0                          | 0.008-0.040                             | 0                     | < 0.008                            | < 0.040                            | < 0.008                           |  |  |
| 3,4-dichloroaniline                                                   | 8                       | 0                          | 0.008                                   | 0                     | < 0.008                            | < 0.008                            | < 0.008                           |  |  |
| Dicrotophos                                                           | 8                       | 0                          | 0.004-0.014                             | 0                     | < 0.004                            | < 0.014                            | < 0.014                           |  |  |

#### 22 Quality of Surface Water in Missouri, Water Year 2019

#### Table 6. Summary of detections of selected pesticides for water year 2019 in Missouri.—Continued

[Water year 2019 defined as October 1, 2018, through September 30, 2019. µg/L, microgram per liter; MIALPL, Mississippi Alluvial Plain; <, less than; CIAT, 2-chloro-4-isopropylamino-6-amino-s-triazine; OSPL wi ag, Osage Plains watershed indicator, agriculture; URBAN, urban; BRMIT, Big River—Mississippi River at Thebes, Illinois; NA, not analyzed; BRMIG, Big River—Mississippi River below Grafton, Illinois; BRMOH, Big River—Missouri River at Hermann, Missouri]

| Analyte             | Number<br>of<br>samples | Number<br>of<br>detections | Laboratory<br>reporting level<br>(µg/L) | Percent<br>detections | Minimum<br>concentration<br>(µg/L) | Maximum<br>concentration<br>(µg/L) | Median<br>concentration<br>(µg/L) |
|---------------------|-------------------------|----------------------------|-----------------------------------------|-----------------------|------------------------------------|------------------------------------|-----------------------------------|
|                     | Stat                    | tion classifica            | ation URBAN (sta                        | tion number           | 07052250)—Cont                     | inued                              |                                   |
| Metalaxyl           | 1                       | 0                          | 0.258                                   | 0                     | <0.258                             | <0.258                             | <0.258                            |
| Metolachlor         | 8                       | 5                          | 0.012-0.019                             | 63                    | 0.007                              | 0.017                              | < 0.012                           |
| Metribuzin          | 8                       | 0                          | 0.008-0.012                             | 0                     | < 0.008                            | < 0.012                            | < 0.012                           |
| Prometon            | 8                       | 8                          | 0.008                                   | 100                   | 0.004                              | 0.060                              | 0.0115                            |
| Prometryn           | 8                       | 0                          | 0.010                                   | 0                     | < 0.010                            | < 0.010                            | < 0.010                           |
| Propanil            | 8                       | 0                          | 0.008-0.010                             | 0                     | < 0.008                            | < 0.010                            | < 0.010                           |
| Simazine            | 8                       | 0                          | 0.008                                   | 0                     | < 0.008                            | < 0.008                            | < 0.008                           |
| Tebuthiuron         | 8                       | 8                          | 0.028                                   | 100                   | 0.026                              | 0.205                              | 0.052                             |
| Terbuthylazine      | 8                       | 1                          | 0.008                                   | 13                    | < 0.008                            | 0.011                              | < 0.008                           |
|                     |                         | Station cla                | assification BRM                        | IT (station nu        | mber 07022000)                     |                                    |                                   |
| Acetochlor          | 14                      | 14                         | 0.010                                   | 100                   | 0.0185                             | 0.851                              | 0.0308                            |
| Atrazine            | 14                      | 13                         | 0.0559                                  | 93                    | 0.0549                             | 3.77                               | 0.213                             |
| CIAT                | 14                      | 12                         | 0.050                                   | 86                    | 0.0237                             | 0.205                              | 0.0637                            |
| cis-propiconazole   | NA                      | NA                         | NA                                      | NA                    | NA                                 | NA                                 | NA                                |
| 3,4-dichloroaniline | NA                      | NA                         | NA                                      | NA                    | NA                                 | NA                                 | NA                                |
| Dicrotophos         | 13                      | 0                          | 0.004-0.005                             | 0                     | < 0.004                            | < 0.005                            | < 0.004                           |
| Metalaxyl           | 14                      | 9                          | 0.006                                   | 64                    | 0.0022                             | 0.0062                             | < 0.006                           |
| Metolachlor         | 14                      | 14                         | 0.0032                                  | 100                   | 0.0598                             | 1.33                               | 0.177                             |
| Metribuzin          | 14                      | 7                          | 0.020-0.025                             | 50                    | 0.012                              | 0.089                              | < 0.020                           |
| Prometon            | 14                      | 10                         | 0.004                                   | 71                    | 0.001                              | 0.0041                             | < 0.004                           |
| Prometryn           | 14                      | 4                          | 0.0042                                  | 29                    | 0.0012                             | 0.0031                             | < 0.0042                          |
| Propanil            | 14                      | 0                          | 0.012                                   | 0                     | < 0.012                            | < 0.012                            | < 0.012                           |
| Simazine            | 14                      | 12                         | 0.0010                                  | 86                    | 0.0030                             | 0.107                              | 0.025                             |
| Tebuthiuron         | 14                      | 12                         | 0.003                                   | 86                    | 0.0014                             | 0.0053                             | < 0.003                           |
| Terbuthylazine      | 14                      | 2                          | 0.001-0.0036                            | 14                    | 0.0014                             | 0.0014                             | < 0.0036                          |
|                     |                         | Station cla                | assification BRM                        | IG (station nu        | ımber 05587455)                    |                                    |                                   |
| Acetochlor          | 14                      | 14                         | 0.010                                   | 100                   | 0.012                              | 0.950                              | 0.058                             |
| Atrazine            | 14                      | 14                         | 0.0068                                  | 100                   | 0.020                              | 2.83                               | 0.233                             |
| CIAT                | 14                      | 13                         | 0.025                                   | 93                    | 0.018                              | 0.337                              | 0.084                             |
| cis-propiconazole   | NA                      | NA                         | NA                                      | NA                    | NA                                 | NA                                 | NA                                |
| 3,4-dichloroaniline | NA                      | NA                         | NA                                      | NA                    | NA                                 | NA                                 | NA                                |
| Dicrotophos         | 13                      | 0                          | 0.004-0.0010                            | 0                     | < 0.004                            | < 0.010                            | < 0.004                           |
| Metalaxyl           | 14                      | 9                          | 0.006                                   | 64                    | 0.003                              | 0.010                              | < 0.006                           |
| Metolachlor         | 14                      | 14                         | 0.0032                                  | 100                   | 0.048                              | 2.61                               | 0.286                             |
| Metribuzin          | 14                      | 6                          | 0.020                                   | 43                    | < 0.020                            | 0.134                              | < 0.020                           |
| Prometon            | 14                      | 11                         | 0.004                                   | 79                    | 0.0008                             | 0.006                              | < 0.004                           |
| Prometryn           | 14                      | 0                          | 0.0042                                  | 0                     | < 0.0042                           | < 0.0042                           | < 0.0042                          |
| Propanil            | 14                      | 0                          | 0.012-0.025                             | 0                     | < 0.012                            | < 0.025                            | < 0.012                           |

#### Table 6. Summary of detections of selected pesticides for water year 2019 in Missouri.—Continued

[Water year 2019 defined as October 1, 2018, through September 30, 2019. µg/L, microgram per liter; MIALPL, Mississippi Alluvial Plain; <, less than; CIAT, 2-chloro-4-isopropylamino-6-amino-s-triazine; OSPL wi ag, Osage Plains watershed indicator, agriculture; URBAN, urban; BRMIT, Big River—Mississippi River at Thebes, Illinois; NA, not analyzed; BRMIG, Big River—Mississippi River below Grafton, Illinois; BRMOH, Big River—Missouri River at Hermann, Missouri]

| Analyte             | Number<br>of<br>samples | Number<br>of<br>detections | Laboratory<br>reporting level<br>(µg/L) | Percent<br>detections | Minimum<br>concentration<br>(µg/L) | Maximum<br>concentration<br>(µg/L) | Median<br>concentration<br>(µg/L) |
|---------------------|-------------------------|----------------------------|-----------------------------------------|-----------------------|------------------------------------|------------------------------------|-----------------------------------|
|                     | Stat                    | tion classifica            | ation BRMIG (sta                        | tion number (         | 05587455)—Conti                    | inued                              |                                   |
| Simazine            | 14                      | 8                          | 0.0072-0.025                            | 57                    | 0.007                              | 0.036                              | < 0.010                           |
| Tebuthiuron         | 14                      | 9                          | 0.003                                   | 64                    | 0.002                              | 0.003                              | < 0.003                           |
| Terbuthylazine      | 14                      | 3                          | 0.0036-0.025                            | 21                    | 0.002                              | < 0.025                            | < 0.0036                          |
|                     |                         | Station cla                | ssification BRM0                        | DH (station nu        | umber 06934500)                    |                                    |                                   |
| Acetochlor          | 13                      | 10                         | 0.010-0.014                             | 77                    | < 0.010                            | 0.650                              | 0.065                             |
| Atrazine            | 13                      | 13                         | 0.007                                   | 100                   | 0.063                              | 4.14                               | 0.606                             |
| CIAT                | 13                      | 13                         | 0.011                                   | 100                   | 0.022                              | 0.277                              | 0.107                             |
| cis-propiconazole   | NA                      | NA                         | NA                                      | NA                    | NA                                 | NA                                 | NA                                |
| 3,4-dichloroaniline | NA                      | NA                         | NA                                      | NA                    | NA                                 | NA                                 | NA                                |
| Dicrotophos         | 13                      | 0                          | 0.004-0.005                             | 0                     | < 0.004                            | < 0.005                            | < 0.004                           |
| Metalaxyl           | 13                      | 6                          | 0.006-0.025                             | 46                    | 0.002                              | 0.010                              | < 0.006                           |
| Metolachlor         | 13                      | 13                         | 0.0032                                  | 100                   | 0.025                              | 1.94                               | 0.443                             |
| Metribuzin          | 13                      | 9                          | 0.020-0.025                             | 69                    | 0.011                              | 0.123                              | < 0.025                           |
| Prometon            | 13                      | 7                          | 0.004                                   | 54                    | 0.001                              | 0.006                              | < 0.004                           |
| Prometryn           | 13                      | 5                          | 0.004                                   | 38                    | 0.0027                             | 0.0068                             | < 0.004                           |
| Propanil            | 13                      | 0                          | 0.012-0.025                             | 0                     | < 0.012                            | < 0.025                            | < 0.012                           |
| Simazine            | 13                      | 9                          | 0.007-0.025                             | 63                    | < 0.007                            | 0.043                              | 0.010                             |
| Tebuthiuron         | 13                      | 10                         | 0.003-0.025                             | 77                    | 0.001                              | 0.007                              | 0.003                             |
| Terbuthylazine      | 12                      | 0                          | 0.004-0.025                             | 77                    | < 0.004                            | < 0.025                            | < 0.004                           |

## Summary

The U.S. Geological Survey (USGS), in cooperation with the Missouri Department of Natural Resources, collects surface-water quality data in Missouri each water year (October 1 through September 30). These data, stored and maintained in the USGS National Water Information System database, are collected as part of the Missouri Ambient Water-Quality Monitoring Network (AWQMN) and constitute a permanent, accessible source of representative, reliable, impartial, and timely information for developing an enhanced understanding of the State's water resources. In addition to the AWQMN, the USGS also collects data at two USGS National Water Quality Monitoring Program stations and, in cooperation with the U.S. Army Corps of Engineers, routinely collects suspended-sediment concentration data on the Missouri and Mississippi Rivers.

Surface-water quality data collected during water year 2019 at 73 stations (71 AWQMN and AWQMN alternate stations as well as 2 National Water Quality Monitoring Program stations) are summarized in this report, among which are 4 stations with suspended-sediment data collected in cooperation with the U.S. Army Corps of Engineers. Stations were classified corresponding to physiographic province, primary land use, or unique hydrologic characteristics of the stations. The annual summary of selected constituents provides Missouri Department of Natural Resources with current information to assess the quality of surface water within the State and ensure the objectives of the AWQMN are being met. The data collected also provide support for the design, implementation, and evaluation of preventive and remediation programs.

A comparison of 2019 water year streamflow data to long-term streamflow and a summary of hydrologic conditions, including peak streamflows, monthly mean streamflows, and 7-day low flows are presented for selected streamflow-gaging stations in the State. The water-quality analyses presented in this report are for dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, *Escherichia coli* bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, and dissolved and total recoverable lead and zinc. Plots of the concentrations of these constituents are presented by the different station classes. In addition, summary data for 15 pesticides are presented for 7 stations.

## **References Cited**

- Barr, M.N., 2010, Quality of surface water in Missouri, water year 2009: U.S. Geological Survey Open-File Report 2010–1233, 22 p., accessed November 5, 2019, at https://doi.org/10.3133/ofr20101233.
- Barr, M.N., 2011, Quality of surface water in Missouri, water year 2010: U.S. Geological Survey Data Series 636, 21 p., accessed November 5, 2019, at https://doi.org/10.3133/ds636.

Barr, M.N., 2013, Quality of surface water in Missouri, water year 2011: U.S. Geological Survey Data Series 734, 22 p., accessed November 4, 2019, at https://doi.org/10.3133/ds734.

Barr, M.N., 2014, Quality of surface water in Missouri, water year 2012: U.S. Geological Survey Data Series 818, 24 p., accessed November 4, 2019, at https://doi.org/10.3133/ds818.

Barr, M.N., 2015, Quality of surface water in Missouri, water year 2014: U.S. Geological Survey Data Series 971, 22 p., accessed November 4, 2019, at https://doi.org/10.3133/ds971.

Barr, M.N., and Bartels, K.A., 2018, Quality of surface water in Missouri, water year 2016: U.S. Geological Survey Data Series 1086, 25 p., accessed November 5, 2019, at https://doi.org/10.3133/ds1086.

- Barr, M.N., and Bartels, K.A., 2019, Quality of surface water in Missouri, water year 2017: U.S. Geological Survey Data Series 1108, 25 p., accessed November 6, 2019, at https://doi.org/10.3133/ds1108.
- Barr, M.N., and Davis, J.V., 2010, Surface-water quality conditions and long-term trends at selected sites within the ambient water-quality monitoring network in Missouri, water years 1993–2008: U.S. Geological Survey Scientific Investigations Report 2010–5078, 42 p. [Also available at https://doi.org/10.3133/sir20105078.]
- Barr, M.N., and Heimann, D.C., 2016, Quality of surface water in Missouri, water year 2015: U.S. Geological Survey Data Series 1023, 22 p., accessed November 4, 2019, at https://doi.org/10.3133/ds1023.

Barr, M.N., and Schneider, R.E., 2014, Quality of surface water in Missouri, water year 2013: U.S. Geological Survey Data Series 886, 21 p., accessed November 5, 2019, at https://doi.org/10.3133/ds886.

Childress, C.J.O., Foreman, W.T., Connor, B.F., and Maloney, T.J., 1999, New reporting procedures based on long-term method detection levels and some considerations for interpretations of water-quality data provided by the U.S. Geological Survey National Water Quality Laboratory: U.S. Geological Survey Open-File Report 99–193, 19 p. [Also available at https://doi.org/10.3133/ofr99193.]

Edwards, T.K., and Glysson, G.D., 1999, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. C2, 89 p., accessed November 6, 2019, at https://pubs.usgs.gov/twri/twri3-c2/.

Fenneman, N.M., 1938, Physiography of eastern United States: New York, McGraw-Hill Book Co., Inc., 689 p.

Fishman, M.J., ed., 1993, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of inorganic and organic constituents in water and fluvial sediments: U.S. Geological Survey Open-File Report 93–125, 217 p. [Also available at https://doi.org/10.3133/ofr93125.]

Garbarino, J.R., Kanagy, L.K., and Cree, M.E., 2006, Determination of elements in natural-water, biota, sediment and soil samples using collision/reaction cell inductively coupled plasma-mass spectrometry: U.S. Geological Survey Techniques and Methods, book 5, chap. B1, 88 p. [Also available at https://doi.org/10.3133/tm5B1.]

Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. C1, 64 p., accessed December 2, 2019, at https://pubs.usgs.gov/twri/ twri5c1/.

Hauck, H.S., and Harris, T.E., 2006, Water resources data— Missouri, water year 2005: U.S. Geological Survey Water Data Report MO-05-1, 724 p., accessed November 5, 2019 at https://pubs.usgs.gov/wdr/2005/wdr-mo-05/pdf/intro.pdf.

Kay, R.T., 2019, Quality of surface water in Missouri, water year 2018: U.S. Geological Survey Data Series 1119, 25 p., accessed January 5, 2019, at https://doi.org/10.3133/ds1119. Missouri Department of Natural Resources, 2019, Water quality, chap. 7 *of* Rules of Department of Natural Resources—Division 20—Clean Water Commission: Jefferson City, Mo., Missouri Department of Natural Resources, Clean Water Commission, p. 54–131, accessed April 21, 2019, at https://s1.sos.mo.gov/cmsimages/adrules/ csr/current/10csr/10c20-7a.pdf.

Missouri Department of Natural Resources, 2020, Missouri integrated water quality report and section 303(d) list, 2018: Jefferson City, Mo., Missouri Department of Natural Resources, Water Protection Program, accessed April 30, 2020, at https://dnr.mo.gov/env/wpp/waterquality/303d/ docs/2020-305b-report.pdf.

Myers, D.N., Stoeckel, D.M., Bushon, R.N., Francy, D.S., and Brady, A.M.G., 2014, Fecal indicator bacteria (ver. 2.1):
U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A7, sec. 7.1, accessed November 14, 2019, at https://doi.org/10.3133/twri09A7.

National Oceanic and Atmospheric Administration, 2019a, State of the climate—National overview— Annual 2018: National Oceanic and Atmospheric Administration, National Centers for Environmental Information, accessed October 23, 2019, at https://www.ncdc.noaa.gov/sotc/national/201813.

National Oceanic and Atmospheric Administration, 2019b, Climate at a glance—Missouri climate summary: National Oceanic and Atmospheric Administration, National Climatic Data Center database, accessed March 8, 2019, at https://www.ncdc.noaa.gov/cag/.

Otero-Benitez, W., and Davis, J.V., 2009a, Quality of surface water in Missouri, water year 2007: U.S. Geological Survey Open-File Report 2009–1096, 19 p., accessed November 8, 2019, at https://doi.org/10.3133/ofr20091096.

Otero-Benitez, W., and Davis, J.V., 2009b, Quality of surface water in Missouri, water year 2008: U.S. Geological Survey Open-File Report 2009–1214, 18 p., accessed November 8, 2019, at https://doi.org/10.3133/ofr20091214.

Patton, C.J., and Kryskalla, J.R., 2011, Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods: U.S. Geological Survey Techniques and Methods, book 5, chap. B8, 48 p. [Also available at https://doi.org/10.3133/tm5B8.]

#### 26 Quality of Surface Water in Missouri, Water Year 2019

- Patton, C.J., and Truitt, E.P., 1992, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of total phosphorus by a Kjeldahl digestion method and an automated colorimetric finish that includes dialysis: U.S. Geological Survey Open-File Report 92–146, 39 p. [Also available at https://doi.org/10.3133/ofr92146.]
- Sandstrom, M.W., Stroppel, M.E., Foreman, W.T., and Schroeder, M.P., 2001, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of moderate-use pesticides and selected degradates in water by C–18 solid-phase extraction and gas chromatography/mass spectrometry: U.S. Geological Survey Water-Resources Investigations Report 01–4098, 70 p. [Also available at https://nwql.usgs.gov/pubs/WRIR/WRIR-01-4098.pdf.]
- Sandstrom, M.W., Kanagy, L.K., Anderson, C.A., and Kanagy, C.J., 2015, Determination of pesticides and pesticide degradates in filtered water by direct aqueous-injection liquid chromatography-tandem mass spectrometry: U.S. Geological Survey Techniques and Methods, book 5, chap. B11, 54 p., accessed November 14, 2019, at https://doi.org/10.3133/tm5B11.
- Sandstrom, M.W., and Wilde, F.D., 2014, Syringe-filter procedure for processing samples for analysis of organic compounds by DAI LC–MS/MS: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap A5, sec. 2.2.B, accessed November 14, 2019, at https://doi.org/10.3133/twri09A5.
- Slater, L.J., and Villarini, G., 2017, Evaluating the drivers of seasonal streamflow in the U.S. Midwest: Water, v. 9, no. 9, p. 695–717, accessed November 14, 2019, https://doi.org/10.3390/w9090695.
- U.S. Census Bureau, 2019, U.S. population estimates: U.S. Census Bureau, accessed November 5, 2019, at https://www.census.gov/quickfacts/fact/table/MO/ PST045219.
- U.S. Environmental Protection Agency, 1997, Guidelines for preparation of the comprehensive State water quality assessments (305(b) reports) and electronic updates (1997): Washington, D.C., U.S. Environmental Protection Agency, Office of Water, EPA–841–B97–002A, [variously paged], accessed November 19, 2019, at https://www.epa.gov/tmdl.
- U.S. Environmental Protection Agency, 2012, 2012 edition of the drinking water standards and health advisories: U.S. Environmental Protection Agency Document EPA 822–S–12–001, 12 p. [Also available at https://rais.ornl.gov/documents/2012\_drinking\_water.pdf.]

- U.S. Environmental Protection Agency, 2015, National recommended water quality criteria—Aquatic life criteria table: U.S. Environmental Protection Agency web page, accessed October 26, 2015, at https://water.epa.gov/ scitech/swguidance/standards/criteria/current/index.cfm. [Also available at https://www.epa.gov/wqc/nationalrecommended-water-quality-criteria-aquatic-lifecriteria-table.]
- U.S. Environmental Protection Agency, 2019, Aquatic life benchmarks and ecological risk assessments for registered pesticides: U.S. Environmental Protection Agency web page, accessed August 2, 2020, at https://www.epa.gov/ pesticide-science-and-assessing-pesticide-risks/aquatic-lifebenchmarks-and-ecological-risk.
- U.S. Environmental Protection Agency, 2020, Human health benchmarks for pesticides: U.S. Environmental Protection Agency web page, accessed August 2, 2020, at https://iaspub.epa.gov/apex/pesticides/f?p= HHBP:home:718507398498:.
- U.S. Geological Survey, 2006a, Collection of water samples (ver. 2.0): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A4, accessed November 6, 2019, at https://doi.org/10.3133/twri09A4.
- U.S. Geological Survey, 2006b–2010, Water resources data for the United States—Annual water data report: U.S. Geological Survey, accessed November 6, 2019, at https://wdr.water.usgs.gov/.
- U.S. Geological Survey, 2019, USGS water data for the Nation: U.S. Geological Survey National Water Information System database, accessed April 2, 2019, at https://doi.org/10.5066/F7P55KJN.
- Wilde, F.D., ed., variously dated, Field measurements: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6, accessed November 26, 2019, at https://doi.org/10.3133/twri09A6.
- Wilde, F.D., Radtke, D.B., Gibs, J., and Iwatsubo, R.T., eds., 2004, with updates through 2009, Processing of water samples (ver. 2.2): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A5, accessed November 26, 2019, at https://doi.org/10.3133/twri09A5.
- Zaugg, S.D., Sandstrom, M.W., Smith, S.G., and Fehlberg, K.M., 1995, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of pesticides in water by C–18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring: U.S. Geological Survey Open-File Report 95–181, 49 p., https://doi.org/10.3133/ofr95181.

For more information about this publication, contact: Director, USGS Central Midwest Water Science Center 1400 Independence Road Rolla, MO 65401 573-308-3667 For additional information, visit: https://www.usgs.gov/centers/cm-water

Publishing support provided by the U.S. Geological Survey Science Publishing Network, Rolla and Sacramento Publishing Service Centers

**≥USGS** 

ISSN 2327-638X (online) https://doi.org/10.3133/ds1132