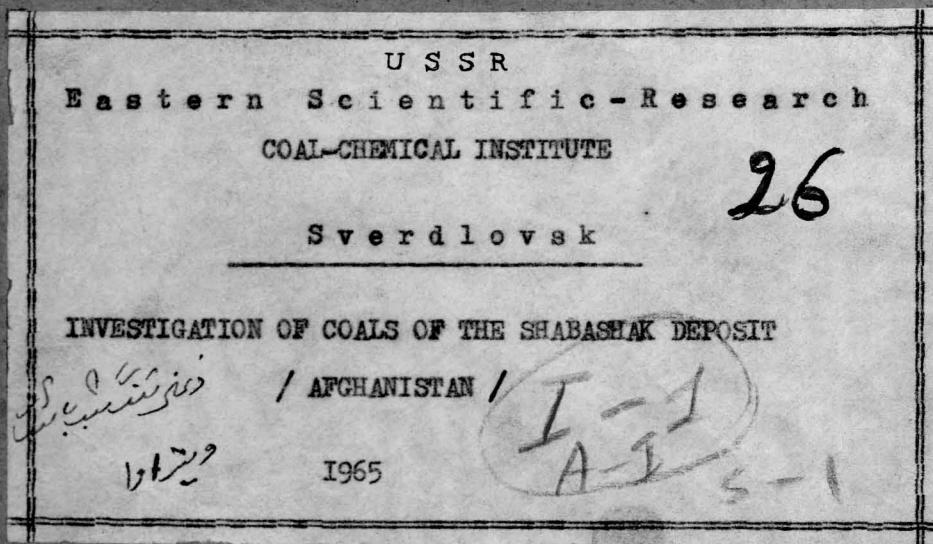


89

491

89


89

دھال

15

491
A

0491

نویسنده راپورت: پرسنل ویساوا تحقیق شوروی
موضوع راپورت: ملکت دھال شہابیہ
لسان راپورت: اردو
تاریخ راپورت: 1965
تعداد ورقہ: ۱۰۰

اصل ۱ جلد
کاپی ندارد
ترجمہ ندارد
نقشہ ندارد
فوتو ندارد

جملہ شد

(مدیریت اسناد علمی و کتابخانہ)

26

State Committee of Ferrous and Non-ferrous Metal Industry
the Gosplan of the USSR

EASTERN SCIENTIFIC-RESEARCH COAL-CHEMICAL INSTITUTE
" VUHIN "

Coal laboratory
Permitina K.S.
Vetrova A.K.
Lobanova L.I.

INVESTIGATION OF COALS OF THE SHABASHAK DEPOSIT
/ AFGHANISTAN /

Director of the Institute	V. Privalov
Vice-Director of scientific work	M. Tsiperovich
Chief of coal-coke department	N. Grjaznov
Chief of coal laboratory	V. Frishberg
Chief of coke laboratory	L. Erkin

Sverdlovsk, 1965

Participation in the investigations:

Coal laboratory:

Chief instructor of the group, c.t.s.

Permitina K.S.

Senior research worker

Vetrova A.K.

Instructor of the group

Olshanetsky L.G.

Coke laboratory:

Junior research worker

Lobanova L.I.

Junior research worker

Estrina G.L.

Junior research worker

Rivkin I.J.

Group of the chemical materials

Chief of the group

Kotelenets M.S.

Laboratory analyses and half-factory tests were done by the members of coal, coke, enriching and analytical laboratories and by the personnel of half-factory installation of the VUHIN.

Contents

	page
Introduction	4
Chapter I. General features of the coals of the Shabashak deposit	5
I.Brief geological information	5
2.Method of investigation	6
3.Petrographic characteristic	8
4.Ash content and enrichment	13
5.Physico-chemical properties	15
6.Depth of the oxidation zone	21
7.Yield of chemical products	23
Chapter II. Technological tests	26
I.Laboratory investigations	26
I.Production of moulding coke	27
2.Coking with coal ramming	29
3.Production of coke-briquette fuel .	31
4.Production of the lumpy fuel by way of briquette oxidizing, obtained out of semi-coke with binder	33
Not complete-factory tests	39
Conclusions	43
Bibliography	46
Annexes	

INTRODUCTION

Investigation of technological properties of the Afghanistan coals for estimation of their fitness in metallurgical coke production was done in the VUHIN according to the agreement with the Department of Foreign Relations of the Geological Committee of the USSR.

The object of the investigation is the Shabashak deposit coal which is being prospected by Soviet specialists.

The following work is stipulated by the project:

- a/ Laboratory investigation of 65 core and trench samples, taken at different depths in prospecting mines to determine the quality of the deposit coals and ascertain the oxidation zone.
- b/ Test of three enlarged samples in not full-factory conditions to estimate coals as raw materials for coking and preliminary characteristic of enrichment.

The materials of the investigation are summed up in two chapters:

1. General characteristic of coals
2. Technological tests.

CHAPTER I

General features of the coals of the Shabashak deposit.

I. Brief geological information.

The Shabashak deposit is situated in eastern part of the Darrah-i-Suf coal bearing area, in the Samangan province of the northern Afghanistan. The dimensions of the prospected area made approximately 2,5 by 2 km.

Productive deposits of about 650 m thick, belonging to the Middle Jurassic age, supposedly, are folded in a number of folds of latitudinal trend/Fig.I/.

The deposit was investigated by way of holes and also by small and comparatively deep prospecting holes - trenches and adits.

As a whole 29 coal seams are found at the deposit, 10 of which have workable thickness from 0,8 to 3 mm. They are seams I, 3, 7, 8, 14, 16, 17, 23, 26, 27. The indexing of seams is done from bottom to top according to their location in the coal-bearing strata. Some more thick and persistent beds 3, 7 and 23 are traced along the strike at 2-3 km and at a depth in the dip plane to 500 m.

The coal seams mainly have complex structure, including rock interlayers of different thickness- from 0,01 to 0,25 m. Coal bands are also not uniform

The structure of the coal seams in accordance with geological documentation of sampling is shown in Figs. 2a, 2b, 2c, 2d, 2e, 2f.

In table I the data of seam thickness and structure and sample characteristic are summed up. As it is seen, the samples represent all the seams of workable thickness. All in all 103 samples are taken, 100 of them are of small weight- from 0,5 to 15 kg, the majority are band and by layers samples.

Enlarged - technological samples up to 100 kg in weight each - are taken from the main more thick and persistent seams 3, 7 and 23.

2. Method of investigation.

For estimation of coal technological properties, particularly their fitness for coking, the method, shown in Fig. 3, is worked up in the VUHIN. The method embraces the possibility of investigation both in laboratory and not complete industrial conditions and allows the necessary data to be obtained for characteristic of initial coal quality, their dressing and concentrate properties /I/.

Different sample setting, and in the main, their small weight, but special technological samples, did not allow all investigations to be done completely according to the scheme.

The following order was accepted for the general characteristic of physico-chemical properties- determination of petrographic composition, degree of metamorphism, humidity, ash content, elementary composition, volatile matter, calorific power, caking, content of sulphur and phosphorus.

The initial coals of seam samples, taken from adits from the deepest place, and also technological samples, were subjected to complete technical / W_a , A_c , V , S_{total} , P_c / and qualitative-petrographic analyses, to determination of calorific power, numbers of swelling and plastometric tests; ash content was also determined.

In the concentrates of these samples, besides the above, the elementary composition of coal and the degree of its metamorphism were determined.

Initial coals of core and also trench samples of some coal bands and layers of the seam, taken from the adit, were investigated on a reduced scale- content of analytic moisture, ash, volatile matter issue and number of swelling were determined.

The concentrates were obtained only from the most important samples, necessary for the solving of the task. Their estimation was done on the basis of the same indexes, as those concentrates of seam samples, but the determination of ash content.

The concentrates of small weight samples, from 0,5 to 15 kg were obtained by way of coal delaminating, crushed to 1,5 mm in a solution of carbon tetrachloride of 1/4 kg/l in density and of coals, being weathered very much, / taken from seam outcrops/, - density of division being 1,6 kg/l.

Table I

Characteristic of seams and samples taken

Seam	Thickness, m from-to	Structure	Openings	Samples			Total quantity
				Bedded	Patches or seams	Techno- logi- cal	
I	0.95-1.40	compound	Trenches	2			2
3	2.15-2.30	"	Adit, trench	3	2	I	6
5	0.60-0.71	simple	Well, trench	2			
7	1.71-2.82	compound	Adit, wells, trenches	2	30	I	33
8	0.56-0.94	simple	Adit, wells	9			
I4	0.83-1.60	"	Adit, well, trenches	4			4
I5	1.99	compound	Trench	I			I
I6	1.80-2.16	"	Adit, well, trench	I	5		6
I7	0.83	simple	Well	I			I
I8	0.60	"	"	I			I
20	0.80	"	"	I			I
23	2.47-3.09	compound	Adit, well, trenches		28	I	29
26	0.75-2.15	"	Well, trench	I	2		3
27	1.83-2.10	"	" "	I	4		5
				Total:	29	71	3
							103

The concentrates of technological samples were obtained according to the scheme, shown in Fig.3.

All the investigations, but determination of numbers of swelling and metamorphism degree through the microscope, estimation of dressing were done according to the standard methods.

Numbers of swelling were determined by the method IGI-VUHIN/2. They give general information of coal caking. This method is expressive and allows the determination to be done of small weight of coal / 1 gr./. ALL the gamma of caking coals with the plastic layer from the outlined layer to 30-33 mm is characterised by the numbers of swelling ~ from 5 to 153 mm.

The degree of metamorphism of coals through the microscope is determined by the reflecting power of vitrinite in oil immersion / R_m , %. This method is advantageous in comparison with the visual one, used before, as the data are expressed in figures here and at more extended scale for each stage./3/.

The estimation of the coal enrichment is preliminary for enlarged samples by GOST 10100-62 on the basis of the results of coal delamination in the solution of $ZnCl_2$ of various density.

3. Petrographic characteristic.

First impressions of petrographic non-uniformity of the Shabashak deposit coals are obtained from macroscopic, though not complete, description of seams. As it is seen from Fig.2 their basis is semi-lustreous type of coal of different structure - from more or less uniform not-clear-banded to sharp banded and studded. Semi-lustreous type in the majority of cases alternates with semi-dull and dull varieties of coals, not seldom containing high ash content.

Microscopical investigation, the main results of which are given in table 2, shows more clear the main features of the coal material composition. Complex microcomponent composition is typical for the coals of all seams.

Ranging of content of the main groups of microcomponents /GOST 9414-60/ in seam samples, as well as in separate beds and seams of coal / see Annex I/ is rather wide, that is also caused by different content of mineral inclusions.

Investigation of concentrates gives more clear comprehension

Petrographical characteristic of coals of the Shabashak deposit

VUHIN number	P number	Sample characteristic		Sample location	Thickness, m	Rn, %	Degree of metamor- phism		Microcomponent composition, %			
		Name of seam	stage, substage				L	Vt	SV	F	M1	
1.	2	3	4	5	6	7	8	9	10	11	12	
653254	287	I	Trench 37	1.03	-	-	I	62	I7	I0	I0	
653164	techn. sample No.3	3	Adit No.2, 25 m from the mouth	2.16	-	gaseous, high	I	59	I0	II	I9	
653179	"-	3	Ditto, concentrate	2.16	-	"-	I	65	I2	I0	I2	
654439	"-	3	Ditto, after sec- ondary dressing	2.16	-	"-	I	67	I0	I2	I0	
653551	"-	3	Ditto, concentrate of density < I.4; yield 60 %	2.16	0.85	"-	I	68	I2	I4	5	
653324	293	5	Trench 6	0.73	-	-	2	59	I8	I3	8	
65 94	232	5	Well No.5 at a depth of 268.45-269.05 m	0.6	-	gaseous, high	2	60	I5	I6	7	
651049	232	5	Ditto, concentrate of density < I.4; yield 85%	0.6	0.92	"-	2	70	I5	I0	3	
65108	technol. sample No.I	7	Adit No.1, 40 m from the mouth	2.47	-	"-	2	55	I0	I6	I7	
65593	"-	7	Ditto, concentrate from semi-factory installation	2.47	-	"-	2	61	I4	I3	9	

I	2	3	4	5	6	7	8	9	10	II	12
6528I	Technol. sample No.I	7	Ditto, concentrate of density I.4; yield 62%	2.47	0.89	gaseous, high	I	74	II	9	5
65743	234	7	Well No.5, depth 210.80-212.53 m, concentrate of density < I.4; yield 33%	1.73	0.92	-" -	2	72	10	12	4
6574I	232	7	Well No.6, depth 749.05-351.2 m, concentrate of density < I.4; yield 41%	2.15	0.93	-" -	I	74	3	12	6
65I58	240	8	Adit 3, 29 m from the mouth	0.9	-	-" -	I	50	14	25	10
65746	240	8	Ditto, concentrate of density < I.4; yield 68%	0.9	0.89	-" -	2	54	17	23	4
653256	266	8	Adit 3, 25 m from the mouth	0.94		-" -	2	60	II	14	13
653585	266	8	Ditto, concentrate of density < I.4; yield 71%	0.94	0.88	-" -	I	70	10	15	4
65I02	218	I4	Well 5, depth 46.5-48.18m	1.63	-	-" -	I	59	15	16	9
65740	218	I4	Ditto, concentrate of density < I.4; yield 83 %	1.63	0.87	-" -	I	70	9	17	3
653I95	351	I6	Adit 5, I4 m from the mouth	1.90	0.80	-" -	2	60	14	12	12

I	2	3	4	5	6	7	8	9	10	II	12
6592	231a	I6	Well 6, depth I29.45- I31.25 m, upper patch, concentrate of density <1.4, yield 85%	0.30	0.82	"-	I	76	II	8	4
65100	231a	I6	Ditto, lower patch, concentrate of density <1.4; yield 79%	I.40	-	"-	I	72	II	I3	3
65154	228	I7	Well 6, at a depth of I28.2-I28.95 m	0.83	-	"-	I	60	9	I2	I7
658I3	228	I7	Ditto, concentrate of density <1.4; yield 58%	0.83	0.86	"-	I	64	I2	I8	5
65153	226	I8	Well 6, at a depth of II5.3-II5.9 m	0.60	-	"-	I	57	I4	I2	I7
658I0	226	I8	Ditto, concentrate of density <1.4; yield 55%	0.60	0.84	"-	I	73	II	7	8
659I	224	20	Well 6, depth 88.40- 89.20	0.80	-	"-	2	73	8	9	8
65808	224	20	Ditto, concentrate of density <1.4; yield 85%	0.80	0.82	"-	2	76	6	I3	3
652669	Technol. sample No.2	23	Adit No.4, 26 m from the mouth	2.62	-	"-	I	63	I2	II	I3
653I78	"-	23	Ditto, concentrate from semi-factory installation	2.62	-	"-	I	70	I3	I2	4

I	2	3	4	5	6	7	8	9	10	11	12
6592	231a	I6	Well 6, depth I29.45-I31.25 m, upper patch, concentrate of density < I.4, yield 85 %	0.50	0.82	"-	I	76	II	8	4
65100	231a	I6	Ditto, lower patch, concentrate of density < I.4; yield 79%	I.40	-	"-	I	72	II	I3	3
65154	228	I7	Well 6, at a depth of I28.2-I28.95 m	0.83	-	"-	I	60	9	I2	I7
65813	228	I7	Ditto, concentrate of density < I.4; yield 58%	0.83	0.86	"-	I	64	I2	I8	5
65153	226	I8	Well 6, at a depth of II5.3-II5.9 m	0.60	-	"-	I	57	I4	I2	I7
65810	226	I8	Ditto, concentrate of density < I.4; yield 55%	0.60	0.84	"-	I	73	II	7	8
6591	224	20	Well 6, depth 88.40-89.20	0.80	-	"-	2	73	8	9	8
65808	224	20	Ditto, concentrate of density < I.4; yield 85%	0.80	0.82	"-	2	76	6	I3	3
652669	Technol. sample No.2	23	Adit No.4, 26 m from the mouth	2.62	-	"-	I	63	I2	II	I3
653178	"-	23	Ditto, concentrate from semi-factory installation	2.62	-	"-	I	70	I3	I2	4

	I	2	3	4	5	6	7	8	9	10	II	12
653350	Technol.	23	sample No.2	Ditto, concentrate of density < 1.4; yield 81%	2.62	0.78	gaseous, high	I	72	10	I4	3
653336+	347+347a	26		Trench 86, summary sample by patches	2.67	-	-	I	55	I3	I9	I2
653339												
653259	300	26		Well 7, depth 61.45- 62.20 m	0.75	-	-	I	41	7	I2	38
653553	300	26		Ditto, concentrate of density < 1.4; yield 35%	0.75	0.69	gaseous, high	3	80	7	7	3
653261	296a+ 296s	27		Well 7, depth 53.40- 55.15	2.32	-	-" -	I	66	I4	I5	4
653552	-" -	27		Ditto, concentrate of density < 1.4; yield 87%	2.32	0.73	-" -	I	72	I3	II	3

of microcomponent composition of coals. Their basis is vitrinite, the content of which ranges between 55-75% and in some bands reaches 80%. At more effective enrichment and more opening of grains the vitrinite content increases as a rule.

The content of semivitrinite and fusinite is ^{relatively} rather high in coals, while leuptignite does not exceed 1-2%.

Moreover, the detailed investigation of the coals in passing light showed that the vitrinite of these coals is not a uniform matter. In its composition there are not only structureless / Fig. 4a/ ^{and} poor structural / Photo in 4B/ fragments, but there is a considerable number of remains with well preserved cell structure/ Photo 4 c/. There are no bright orange-red and red tints in the vitrinite colour. All this indicated indirectly the oxidizing environment of coal formation ^{which} being negative unfavourable factor for coal to show caking properties.

By the degree of metamorphism, as it is seen from the data of the reflection/ $R_m = 0,73-0,94\%$ the coals of the investigated seams are at the stage of gaseous ones, precisely - at the substage of gaseous high- and medium metteamorphized. Increasing of metamorphism is found from upper seams to lower ones, and the tendency of increasing of metamorphism together with the increasing of the seam occurrence depth, particularly seam No.7, is traced.

4. Ash content and enrichment.

The materials of the investigation of the united seam sample, some bands and layers, shown in annex I, prove that the ash content in coals ~~mn~~ is mainly high. It ranges between 14-30%, and only for some ~~mn~~ seams it does not exceed 10% /seams 5,20 and 27/. High ash content is the result of complex structure of coals and contamination of coal with rock interlayers, and dispersion mineral inclusions, which are extremely many in number in the dull varieties of coal.

The investigation of the coal enrichment was done by enlarged samples, taken for technological tests. The results of coal delamination in the solutions of chlorous maximum zinc of different density kg/l are given in table No.3. These data ~~show~~

Theoretical balance of dressing products and evaluation of dressing capacity of coals of the
Shabashak deposit

Techno- logical sample No.	Name of seam	Ash content of coal by tech- nologi- cal sample	Characteristic of grade I2-I mm %	Delamination Concentrate of density < 1.4, %	in heavy liquid, of grade I2-I mm				Content of fractions of middling product in non-rocky mass	Evaluation of dressing capacity by GOST 10100-62		
					Middling product of density 1.4-1.8%	Waste of density > 1.8, %	yield	ash	yield			
3	seam 3	20.0	62	23.2	57.6	8.6	29.6	30.4	12.8	73.5	34.0	very difficult
I	seam 7	21.4	68	24.5	59.7	8.5	27.6	31.0	12.7	73.0	32.0	very difficult
2	seam 23	15.6	61	16.6	80.4	4.3	6.6	26.6	13.0	82.8	7.5	middle

These data indicate difficult enrichment of high ash coals of seams 3 and 7 and better enrichment/ average/ of coal of seam 23. ASH content of the obtained concentrate of seams 3 and 7 made approximately 8,5%, and seam 23 - 6,6%.

Simultaneously the floatating of grade 1-0 mm was studied. The tests were done in the laboratory mechanical flotation -tool according to the method, accepted in the VUHIN, time of flotation being 10 minutes. As apolar reagent petroleum for tractors was taken, as surface-active reagents camphor oil and fractions of highest alcohols of the Lisichansky chemical enterprise were taken.

The results of flotation are summed up in table 4. Concentrate I is achieved in the duration of the first two minutes of flotation. It was found that for ash high-ash tailings heightened outlay of surface-active reagent will be needed; but when even 5% of camphor oil in the admixture of the reagents took part, ash content of tailings did not exceed 44,0%. Ash content of flotation concentrate in this case made 9,4%, at the concentrate yield, being equal to 85,5%.

Coal of seam No7 is especially difficult for floatation. At an average reagent regime , being optimal for the majority of coals of the Kuznetsk and Karaganda basins, the concentrate yield made 30-40%. Increasing of the concentrate yield up to 85-86% required heightened ~~minimum~~ outlay of surface-active reagents.

The reasons of difficult floatating of coals could not be found on the basis of the investigations done.

For more complete characteristic of mineral part of coals the composition of ore is investigated, and the results are summed up in table No.5. They show that ash composition of coals is more or less uniform; as in initial coals as well as in concentrates silica and alumina predominate, making up to 90% together.

5. Physico-chemical properties

In table No.6 the results of investigation of mainly/ workable seam coals of samples from the deepest openings, where oxidazing processes do not influence, are shown.

By the cited data, especially if ~~mainly~~ concentrate analyses are taken into consideration, it is seen that the indices' ranging of the main coal properties are regular and change, mainly

Results of technological sample flotation of coals of grade I-0 mm of the
Shabashak deposit

Experi- ment No.	Name of reagent	Expendi- ture of reagent, kg/tn	I concentrate		II concentrate		Summary concentrate		Tailings		
			yield %	ash %	yield %	ash %	yield %	ash %	yield %	ash %	
Technological sample No.3, seam 3											
1.	Tractor kerosene	98%	I.5	42.1	3.1	28.7	I2.0	70.8	9.5	29.2	35.0
	Camphor-oil	2%									
2.	Tractor kerosene	95%	I.5	69.4	8.0	II.9	I3.8	81.3	10.9	18.7	40.0
	Camphor-oil	5%									
Technological sample No.1, seam 7											
3.	Tractor kerosene		I.5	II.3	6.3	48.2	7.7	59.5	7.4	40.5	24.6
4.	Tractor kerosene	98%	I.5	45.9	6.9	25.8	I0.1	71.7	8.1	28.3	31.5
	Camphor-oil	2%									
5.	Tractor kerosene	95%	I.5	71.1	8.3	II4.4	I4.9	85.5	9.4	14.5	44.0
	Camphor-oil	5%									
Technological sample No.2, seam 23											
6.	Tractor kerosene		I.5	2.3	6.2	9.3	8.0	II.6	7.1	88.6	23.5
7.	Tractor kerosene	95%									
	Alcohols of the highest order										
		5%	2.0	65.5	5.8	I9.5	9.5	86.0	7.1	14.0	40.0

Composition of coals' ash of the Shabashak deposit

VUHIN No.	Party No.	Characteristic of samples		Components						Total 10
		Sample location		SiO ₂ 4	CaO 5	MgO 6	Fe ₂ O ₃ 7	Al ₂ O ₃ + TiO ₂ 8	SO ₃ 9	
I	2	3								
Seam 3										
653I64	Technolo- gical sample No.3	Adit No.2, 25 m from the mouth, 21 m from the day surface		48.07	3.46	I.II	2.09	43.50	0.70	98.93
653I79	--	Ditto, concentrate from semi-factory installation		46.44	4.36	I.I4	3.39	42.56	0.36	98.25
Seam 7										
65I08	Technolo- gical sample No.I	Adit No.1, 40 m from the mouth , 32.4 m from the day surface		50.24	2.60	I.I4	2.20	41.19	I.68	99.05
65595	--	Ditto, concentrate from semi-factory installation		49.05	3.24	I.26	3.21	41.33	I.76	99.85
6528I	--	Ditto, concentrate of density I.4		46.22	3.96	I.44	3.68	41.96	I.65	98.91
Seam 8										
65I58	240	Adit No.3, 29.5 m from the mouth, 31 m from the day surface		50.56	2.65	I.70	3.58	38.47	2.63	99.59
65746	240	Ditto, concentrate of density I.4		50.38	I.59	I.33	5.34	38.98	0.12	97.74
Seam 23										
652669	Technolo- gical sample No.2	Adit No.4, 26 m from the mouth, 24 m from the day surface		49.40	3.97	I.82	6.99	34.05	I.75	97.98
653I78	--	Ditto, concentrate from semi-factory installation		45.26	6.45	I.47	5.99	36.76	I.07 I.07	97.00

Table 6

- 18 -

PHYSICO-CHEMICAL PROPERTIES OF COALS OF THE SHABASHAK DEPOSIT

VUHIN No.	Party No.	sample location	thick- ness of seam, m	Content of vitrinite (Vt), %	Reflected capacity of vitrinite (km,%)	Technical analysis, %					Elementary composition for organic mass, %					Indices of caking capacity, mm		
						W ^a total	A ^c	V ^c	S ^c	P ^c	C	H	N	S org.	O	thickness of plastic bed (y)	numbers of swelling, mm	
I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	I8 (y)	I9
<u>SEAM 3</u>																		
653I64	Techno- logical sample 3	Adit No.2, 25m from the mouth, 21m from the day surface	2.16	59	-	2.5	20.0	36.9	0.52	0.138	-	-	-	-	-	7863	outlined	6
653I79	"	Ditto, I con- centrate from semi-factory plant	"	65	-	3.0	14.2	36.4	0.54	0.151	82.51	5.47	1.68	0.63	9.71	8138	10-II	9
654439	"	Ditto, after secondary dressing	"	67	-	2.5	11.9	36.6	0.55	0.144	82.92	5.44	1.66	0.63	9.35	8106	12-I3	I2
653551	"	Ditto, concen- trate of densi- ty <1.4; yield- 60%	"	68	0.85	2.0	7.2	36.0	0.55	0.161	82.38	5.41	1.76	0.60	9.85	8170	I2	I0
653348	"	Ditto, concentrate of density <1.4; yield-55%	"	70	0.84	2.2	6.4	37.0	0.65	-	82.85	5.69	1.74	0.70	9.02	8051	I3	27
<u>SEAM 5</u>																		
6594	232	Well No.5, at a depth of 268.45- 269.05 m	0.6	60	-	1.9	8.8	36.3	-	-	-	-	-	-	-	-	I3	I6
65I049	"	Ditto, concentrate of density <1.4; yield -85%	"	70	0.92	2.3	4.4	36.4	0.68	0.062	83.43	5.60	1.78	0.70	8.44	8117	I3	I6
<u>SEAM 7</u>																		
65I08	Technolo- gical sample No.1	Adit I, 40 m from the mouth, 32.4m from the day sur- face	2.47	55	6	2.6	21.4	37.3	0.55	0.051	-	-	-	-	-	7902	8	8

I	2	3	4	5	6	7	8	9	10	II	I2	I3	I4	I5	I6	I7	I8	I9
<u>SEAM 14</u>																		
65102	218	Well 5, depth 46.5-48.18 m	I.63	59	-	2.6	10.9	36.4	-	-	-	-	-	-	-	-	-	5
65740	"	Ditto, concentrate of density < I.4; yield 83%	"	70	0.87	2.5	4.4	35.6	0.39	0.073	82.6I	5.22	I.76	0.4I	10.0	8005	8	4
653257	350	Adit 6, I9.2m from the mouth, II.0 m from the day surface	I.36	63	-	2.8	I5.2	36.7	-	-	-	-	-	-	-	-	-	2
<u>SEAM 16</u>																		
6592	231a	Well 6, depth I29.45 -I31.25, upper patch	0.30	-	-	3.5	8.5	36.4	-	-	-	-	-	-	-	-	8	8
658II	"	Ditto, concentrate of density < I.4 ; yield 84 %	"	76	0.86	3.0	4.8	36.7	0.32	traces	8I.45	5.26	I.26	0.34	II.33	7920	8	8
65100	23I	Ditto, lower patch	I.40	-	-	3.3	9.9	36.6	-	-	-	-	-	-	-	-	-	4
65733	"	Ditto, concentrate of density < I.4; yield 77%	"	72	-	3.3	4.2	36.3	0.32	0.002	8I.8I	5.28	I.6I	0.34	10.96	7909	6	4
653195	35I	Adit 5, I4 m from the mouth, I6 m from the day surface	I.90	60	0.80	3.4	I3.8	38.0	-	-	-	-	-	-	-	-	-	4
<u>SEAM 17</u>																		
65153	228	Well 6, at a depth of I28.12-I28.95 m	0.83	60	-	2.9	I9.6	35.6	-	-	-	-	-	-	-	-	-	I
658I0	"	Ditto, concentrate of density I.4; yield 58%	"	64	0.86	2.8	6.I	36.0	0.66	traces	8I.83	5.26	I.52	0.66	10.73	7963	6	4
<u>SEAM 18</u>																		
65153	226	Well 6, at a depth of II5.30-II5.90 m	0.60	-	-	3.0	I9.9	38.0	-	-	-	-	-	-	-	-	-	3
658I0	"	Ditto, concentrate of density < I.4; yield 55%	"	73	0.84	2.5	6.8	38.6	0.49	0.152	8I.33	5.53	I.6I	0.53	II.0	802I	7	5
<u>SEAM 20</u>																		
659I	224	Well 6, at a depth of 88.40-89.20 m	0.80	73	-	3.6	9.3	37.7	-	-	-	-	-	-	-	-	-	3
65809	"	Ditto, concentrate of density < I.4; yield 85%	"	76	0.82	2.8	4.2	37.1	0.40	0.087	80.97	5.38	I.67	0.42	II.56	7960	6	5

I	:	2	:	3	:	4	:	5	:	6	:	7	:	8	:	9	:	10	:	II	:	I2	:	I3	:	I4	:	I5	:	I6	:	I7	:	I8	:	I9
<u>SEAM 23</u>																																				
652669	Technolo-	Adit 4, 26 m from the mouth,																																		
	gical	24 m from the day surface																																		
	sample 2		2.62	63	-	5.4	15.6	37.1	0.57	0.094	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7802	outlined	I							
653178	--	Ditto, concentrate from																																		
		semi-factory plant	"	70	-	4.2	6.0	37.3	0.38	0.089	81.45	5.23															II.23	7917	outlined	2						
653350	--	Ditto, concentrate of																																		
		density < 1.4; yield 81%	"	72	0.78	3.7	4.2	36.3	0.32	-	81.31	5.24															II.36	7953	outlined	2						
65155	219	Well 6, at a depth of																																		
		52.35-56.0m; upper patch	2.15	-	-	3.8	14.0	36.8	-	-	-	-																			2					
65739	--	Ditto, concentrate of																																		
		density < 1.4; yield 75%	"	59	0.78	3.9	4.0	35.9	0.34	0.082	81.83	5.13															II.62	7914	outlined	I						
<u>SEAM 26</u>																																				
653259	300	Well 7, at a depth of																														0				
		61.45-62.20 m	0.75	41	-	3.9	36.3	40.6	-	-	-	-																								
653553	"	Ditto, concentrate of																															5			
		density < 1.4; yield 35%	"	80	-	4.1	5.2	38.2	0.35	0.006	80.23	5.27															II.75	7832	-							
<u>SEAM 27</u>																																				
653261	296a and 296	Well 7, at a depth of																														0				
		53.4-55.15 m, upper																																		
		patch, depth 55.15-																																		
		55.72, lower patch	2.32	66	-	5.6	6.6	40.2	-	-	-	-																								
653552	"	Ditto, concentrate of																															2			
		density < 1.4; yield 87%	"	72	0.73	4.0	3.3	40.2	0.28	0.032	79.82	5.28															II.23	7859	outlined							

accordingly to metamorphism.

Thus with increase of metamorphism / from upper seams to lower/ it is observed:

- decrease of the volatile matter yield from 40 to 35%
- 6 increase of carbon content from 80 to 83%, and decrease of oxygen content from 13 to 8,5%.
- increase of calorific power from 7800 to 8200 Cal.
- increase of caking, expressed by the indices of the plastic layer from the outlined to 12-13 mm. As to swelling indices, the latters differentiate the coals not clearly enough, though it is found out that upper seam coals give the $\sqrt{}$ swelling numbers to 9 mm, and lower ones - from 9 to 27 mm.

The cited data show, that the ^{Shabashak} deposit coals are gaseous and in the main poorly caking. The best in caking coals of the lower seam group/ to 8 inclusive/ with plastic layer 10-12 mm are distinguished out of them. Caking of coals of other seams is characterised by the plastic layer less than 8 mm, and for seams 23, 26 and 27 it is not measured practically/marked on/.

The Shabashak coal deposit have little sulphur content. The sulphur content ranges from 0,28 to 0,72%. According to phosphorus content there are coals with low content / from traces to 0,004%/ and with high content / from 0,030 to 0,152%/ of phosphorus.

The highest ~~mf~~ phosphorus content is in coals of seams 3 and 18.

6. On the Depth of the oxidation zone.

Taking into consideration the fact, that the technological properties of coals change under the influence of oxidation, it was important to establish the representation of samples in this respect, sent for experimental coking.

Coking material, at present, let the question to be solved in two lines:

- a/ Comparison of the properties of technological sample concentrates, taken from the adits, with the properties of concentrates of core samples of the same seams, exposed by holes at greater depth.
- b/ Comparison of properties of coals of ~~mmmm~~ seams 7 and 23 by the samples, taken from different depths from the day surface in adits, where technological samples were taken.

Materials for establishment of the oxidation zone depth of coals of the
Shabashak deposit

Characteristic of samples / concentrates/			Content Vt, %	Technical analysis, %			Elementary composition for organic mass, %					Q	Indices of caking capacity, mm	
VUHIN No.	Party No.	Sample location		Depth from day surface, m	W ^a	A ^c	V ^r	C	H	N	S _{org.}		plastic bed	swelling
<u>Seam 7</u>														
65741	233	Well 6	74	349.05	1.9	6.3	36.3	82.79	5.53	1.53	0.45	9.70	808I	I2 II
65743	234	Well 5	72	210.80	2.1	6.0	36.3	82.92	5.43	1.63	0.6I	9.4I	8087	I2 I7
65281	technolo- gical No.1	Adit I, total	74	32.4	2.0	6.9	35.8	82.77	5.45	1.74	0.54	9.50	8007	I2 I4
65744	I50	Adit I, lower patch	74	32.4	2.2	4.0	35.7	82.86	5.37	1.80	0.60	9.37	813I	II 9
65732	24I	" "	78	30.0	2.2	4.3	37.0	82.83	5.58	1.83	0.55	9.2I	810I	I2 I9
65359I	I94a	" "	78	20.0	2.2	4.1	37.0	82.89	5.46	1.83	0.22	9.62	8176	I3 II
653345	I93a	" "	69	18.0	2.5	3.9	36.1	83.06	5.52	1.79	0.58	9.05	8100	I2 8
653344	I60a	" "	71	16.0	2.6	4.8	36.2	82.52	5.48	1.75	0.60	9.65	8159	I0 II
653346	I59a	" "	70	13.0	2.5	6.4	36.2	82.45	5.52	1.79	0.63	9.52	8130	II 8
653347	I58a	" "	70	10.0	2.6	6.8	35.7	82.82	5.46	1.7I	0.60	9.4I	8068	I0 I0
653355	I57a	" "	75	9.0	2.6	7.0	36.0	82.20	5.54	1.85	0.59	9.84	8070	I0 5
653349	29I	Trench 8, lower patch	-	67	9.2	6.7	37.3	73.06	3.92	1.63	0.48	20.9I	6603	0 /button in powder/ 0
653588	285	Trench I6, lower patch	-	72	II.6	6.6	39.1	71.88	3.95	1.7I	0.33	22.13	6474	" 0
<u>Seam 23</u>														
65739	219	Well 6	59	52.35	3.9	4.0	35.9	81.83	5.13	1.66	0.36	II.62	7914	outlined I
653350	technolo- gical No.2	Adit 4, total	72	24.0	3.7	4.2	36.3	81.3I	5.24	1.75	0.34	II.36	7954	" 2
658I2	244	Adit 4, upper patch	68	31.0	3.9	3.4	35.8	81.34	5.29	1.69	0.33	II.35	7889	" I
653834	271a	" "	70	17.0	3.2	4.4	35.6	81.7I	5.34	1.63	0.40	10.92	80II	" -
653554	I92a	" "	75	14.0	3.9	2.8	37.1	80.55	5.13	1.80	0.2I	I2.30	7878	" 2
653833	270a	" "	80	12.0	3.9	2.7	36.3	81.24	5.18	1.70	0.45	II.43	7925	0/button slightly agglu- tinated/ 2
653926	273a	" "	73	7.0	4.3	3.9	36.4	81.19	5.20	1.75	0.2I	II.65	7754	-- 0
543924	274a	" "	42	4.5	15.3	5.5	42.1	67.57	3.23	1.6I	0.28	27.3I	5705	0 /powder/ I
653925	356	Trench I47, upper patch	-	63	I2.3	5.1	40.2	69.89	3.59	1.59	I.18	24.75	6078	-- 0

These materials can be used for the characteristic of the oxidation zone depth.

The results of the investigation of seams 7 and 23 are given in table 7. They proved, that the coal of technological samples, taken out of adits, is not oxidized practically. Thus, coal of sample No.1, taken from seam 7 in adit No1 at a depth of 32,4 m, was close to the coal of core samples by its quality, taken at a depth of over 200 m. The same can be said of technological sample No.2 / seam 23/.

The materials of the investigation also show, that the depth of the oxidation zone in the place of ^{the above} adit laying /No.1 and No.4/ is not great, making approximately 10-15 m. But as it is known, that sampling mine ~~qum~~ openings are layed, as a rule, in lowered parts of the relief, where the oxidation zone is less, it would be prematurely to spread the established depth/ 10-15 m/ to the whole deposit. To solve this problem ~~mm~~ changing of coals' properties in openings, layed at the divides shoul be studied.

7. Yield of chemical products.

For coals of technological samples the yields of chemical products of half-coking were determined by GOST 3168-53 and coking by the method of VUHIN /4/. The results of investigations are respectively shown in table 8 and 9.

As the above material is of referent character, it does not require special explanation.

Yields of chemical products of semi-coking for the
coal of the Shabashak deposit

Table 8

Concentrate of samples	Tar	Pyroge- nous water	Semi-coke	Yield of gas, m ³ /tn	Gas + waste, %
Technological sample No.3, seam 3	9.65	4.85	78.10	50.0	7.20
" " No.1, seam 7	11.0	4.75	78.30	56.60	-
" " No.2, seam 23	10.75	6.30	76.70	61.50	6.45

Gas composition

Concentrates of samples	CO ₂	CH ₃ n	CO	H ₂	C ₂ H ₆	CH ₄	N ₂
Technological sample No.3, seam 3	9.65	4.83	9.40	13.17	11.2	47.7	4.05
Technological sample No.1, seam 7	10.0	4.30	8.80	14.35	15.30	44.80	4.55
Technological sample No.2, seam 23	12.80	11.80	12.00	8.5	47.0		

Yields of chemical products of coking of the Shabashak deposit coals

Sample No.	Name of coals	Technical analysis, %			Yield of dry coal, %				Yield of gas, * m ³ /tn	Yield of gas, for conventional fuel at 4000cal m ³ /tn	Gas composition, %					Specific gravity	Calorific power of gas					
		W ^a	A ^c	V ^r	pyro- genous water	tar	ben- zol	ammo- nia	coke		H ₂ O	CO ₂	C H m n	O ₂	CO	H ₂	CH ₄	N ₂				
653I79	Technological sample No.3, seam 3, I concentrate from semi-factory plant	3.04	14.16	36.43	7.44	4.50	1.01	0.38	71.58	15.09	303	335	0.46	3.91	2.76	0.50	II.92	52.16	26.23	2.06	0.5423	4428
654439	Technological sample No.3, seam 3, concentrate from semi-factory plant after secondary dressing	2.52	II.88	36.58	7.24	4.99	1.42	0.39	69.35	16.61	314	349	0.38	3.81	3.27	0.50	II.28	51.83	25.83	3.10	0.5486	4452
65593	Technological sample No.1, seam 7, concentrate from semi-factory plant	2.41	II.49	35.00	6.98	4.76	1.43	0.39	68.96	17.48	310	347	0.53	3.61	2.95	0.50	II.48	50.85	27.00	3.08	0.5520	4479
6528I	Technological sample No.1, seam 7, concentrate of density < 1.4	2.01	6.92	35.83	7.19	5.01	1.73	0.39	69.04	16.64	225	253	0.70	3.22	2.93	0.50	II.31	50.63	27.33	3.34	0.5501	4496
6574I	Sample 233, seam 7, well No.6, depth 349.05-351.2m, concentrate of density < 1.4	1.94	6.29	36.30	7.25	5.66	1.90	0.30	68.35	16.54	323	361	0.67	2.72	2.85	0.50	II.73	51.84	27.12	3.57	0.5336	4475
653I78	Technological sample No.2, seam 23, concentrate from semi-factory plant	4.16	6.02	37.28	7.66	3.76	1.52	0.49	66.98	19.59	347	354	0.50	5.65	2.19	0.50	II.60	51.40	22.61	2.55	0.5819	4083
653350	Technological sample No.2, seam 23, concentrate of density < 1.4	3.69	4.15	36.32	7.06	4.15	1.40	0.39	67.49	19.51	345	355	0.36	3.97	2.12	0.50	II.10	52.34	22.68	2.93	0.5578	4116
6550I7	Mixture of concentrates of technological samples Nos. 1 and 3 / experi- ment I22-5/	2.50	II.50	36.24	6.92	4.04	1.33	0.41	70.10	17.20	309	330	0.46	4.38	2.53	0.50	II.85	51.78	25.09	3.41	0.5557	4279

Chapter II

Technological tests

Laboratory investigation

As mentioned above, the coals of the prospected area of the Shabashak deposit are gaseous, poorly caking, petrographically non-uniform. It is well known, that it is practically impossible to obtain blast-furnace coke ~~in~~ ^{under} usual conditions of coking in chamber furnaces out of such coals.

Thus the program of investigations of the obtained coal samples was widened and supplied with investigations, on the basis of which it was possible to judge of the possibility of obtaining metallurgical / blast furnace or casting/ fuel out of the coals by means of other technological schemes. It was taken into account that coals of other type are absent for the present in Afghanistan, and so the possibility of coke obtaining by the charging method is excluded.

The enriched coals of technological samples of seams 3, 7 and 23 were tested under laboratory conditions as the raw material for the following processes:

1. Production of moulded coke by way of coal heating to the temperature of plastic condition with the following moulding and heating of the moulding. The process ~~is~~ ^{has been worked} ~~is~~ ^{out} in the USSR and now it is at a stage of ~~an~~ experimental-industrial installation.
2. Coking with ramming of the coal charge, it is a wide known method used at many enterprises, using the coals of the Selesia Projecting of the plant with ramming ~~is~~ ^{has been} projecting by Giprekoks, particularly.
3. Production of coke-briquette fuel.

Technology has being worked up in the USSR for production blast-furnace fuel, and at present being at the stage of half-factory tests.

4. Production of lumpy fuel by way of briquette oxidation, produced out of semi-coke with liaison, is used in industry in Polish People's Republic for obtaining cupola furnace fuel, and being transformed a little it is used in the Rumanian People's Republic.

for production of blast furnace fuel.

Estimation of quality of the obtained samples by the described method was done according to the following laboratory data: Appearing specific gravity, porosity and textural durability /GOST 9521-60/.

The results of laboratory investigations are following.

I. Production of moulded coke.

Production of moulded coke is done according to the method of the Institute of Combustible minerals /IGI/, suggested for estimation of coal moulding capacities /5/. Heating of coal was done before moulding in a rotating furnace with an electric heater at a speed of 70 degrees a minute. Moulding of plastic mass was done in pneumo-press with heated matrix. Recording of changing of coal load level during moulding and after removing of pressure was done automatically. Tempering of moulding was done in crucible furnaces at a speed of temperature rising of 3 degree a minute. The final temperature of coking is taken as 900°.

As the index of plastic mass readiness the relative swelling of moulding K is accepted, which represent the ratio of moulding height increase after the removing of the pressure ΔH to the height of moulding under the pressure H, being expressed in per cents.

$$K = \frac{\Delta H}{H} \cdot 100$$

Well prepared plastic mass is, usually, characterised by the value K, being equal to 15-16%.

For the tests coal of seam No.7 was used, the coal is typical for lower seams of the deposit. Taking into consideration the coal properties/ thickness of the plastic layers being 10-II mm; volatile matter yield - 35-36%, the experiments were done in the following regime: part of coal weight equal to 120 gr. , being crushed about 90% for the sieve of 3 mm was heated up to 380-430° before moulding during 5-6 minutes, then it was transferred to/ the press glass-matrix. In this case the temperature of the matrix corresponded to the coal temperature or was 10° higher. In all the experiments the moulding was done under the pressure of 10 kg/cm²; coal was under load for 30 seconds.

As it cleared out, mouldings, obtained at a temperature of

380°, had low plasticity, not uniform texture and were easily broken. Thus the further experiments were done with mouldings, obtained at coal heating to 390-430°, the latters happened to be plastic enough and in their fracture they had melted texture with separate impregnations of hard ~~particulare~~ fractions/ Fig.5/. These mouldings were subject to the following thermal treatment - tempering. The results of the experiments, made for the selection of the optimal technological regime, for coal of seam No.7, are shown in table IO.

Table IO.
Characteristic of ~~mikromass~~ mouldings and moulded coke, produced out of coal of seam 7.

Temperature of moulding °C	Relative swelling /K/ %	Characteristic of the moulded mass		Characteristic of coke	
		Appearing specific gravity, g/cm ³	Porosity %	Textural durability, %	
390	12,3	0,800	42,6	60,0	
400	16,2	0,880	44,3	62,1	
410	12,3	0,871	44,4	59,0	
420	10,8	0,920	42,4	53,0	
430	10,8	0,990	38,8	69,0	

Temperature of optimal plasticity of coal of seam 7 should be considered 400°, at which the index of plasticity K / relative ~~swelling~~ swelling at pressure removal/ makes 16,2%. Though the coke out of these mouldings appeared to be of lower durability/ textural durability - 62,1%, probably, because of heightened porosity /44,3%/ and not enough strong pores' walls of the coke. Technical characteristic of the coke is as follows: ash content - 20,8%, volatile matter issue - 1,8%.

The best result concerning textural durability /69,0%/ was obtained at coal heating up to 430°. Plasticity of the moulded mass decreased in this case down to 10,8%, that could be explained by more deep decomposition of coal. As a result of ~~gremtem~~ faster removal of volatile matter of the formed mass the porosity lowered, pores' walls became stronger and textural durability of the coke increased.

Thus, on the basis of laboratory investigations, the results, obtained concerning the possibility of production of moulded coke out of similar type of coals of the Shabashak deposit, give hope.

For the final conclusion the test in half-factory conditions are necessary, because higher speeds of coal heating can be reached, the speeds will help to obtain better in quality mouldings.

2. Coking with coal ramming.

One of the methods of coke production out of poor caking coals with the plasite layer 10-12 mm is the coking of preliminary condensed coal to $0,9 - 1,0 \text{ gr/cm}^3$.

The final estimation of coal fitting for the coke production out of condensed loading in laboratory conditions could not be done. Though these investigations help to the correct selection of technological conditions of the coal preparation, particularly, finding out the influence of condensation of coal charge upon the durability of the produced coke.

For laboratory investigations the VUHIN method was used/6/. Out of coal, moistened to 10% the optimum at which the highest durability of the rammed coal cake is achieved/ the briquettes of 73 mm in diametr and 65 mm in height were prepared. Condensation was done with the help of hand ~~mmmm~~ screw-press. The density of the briquettes changed from $0,8 \text{ g/cm}^2$ to $1,1 \text{ g/cm}^2$.

Correspondingly to the given density of the briquettes part of the coal weight changed from 240 to 330 ~~mmmm~~ gramms. The produced briquette together with the matrix-retort is installed in crucible electric furnace. The temperature had risen for 20 minutes; then the temperature of the furnace was rising at a speed of 30° a second. The process was over at a temperature of 900° in the centre of the retort.

Coals of seam 7, seam3 and their admixtures, and admixture of coals of seams 3 and 23 were tested. The results of coking are as follows: / table II/ briquettes of coals of seams 7 and 23 had fractures after coking but they were not broken.

The coke material was well melted /Fig.6/, Briquettes, obtained from the coal of seam 23, were easily broken; and in their fractures they had coarse-grained melted mass. Thus ~~mmmmmm~~ later this coal was used in mixture with the best /in caking coals.

The conducted investigations allow the following conclusi•

Table II

Determination of influence of coal briquettes' density
upon coke properties

Name of coal, composition of mixture	Density of briquette, g/cm ³	Characteristic of coke			Technical analysis	
		Apparent specific gravity, g/cm	Porosity %	Structural strength, %	A ^c	V ^r
Seam 4	0.8	0.820	44.6	65.3	-	-
	0.9	0.883	44.6	76.0	-	-
	1.0	0.990	38.0	77.5	-	-
	1.0	0.937	39.3	77.0	17.8	1.5
Seam 3	0.8	0.896	47.1	61.5	-	-
	0.9	0.950	42.7	74.4	-	-
	1.0	1.010	41.4	77.2	21.0	1.9
	1.1	0.954	40.3	77.6	-	-
Seam 7 - 50%	0.8	0.815	42.8	64.2	-	-
Seam 3 - 50%	0.9	0.904	40.2	74.5	-	-
	1.0	0.901	41.0	77.0	16.7	1.7
	1.1	0.945	38.5	77.4	-	-
Seam 3 - 50%	1.0	1.030	31.5	58.1	14.9	1.6
Seam 23 - 50%						
Seam 3 - 70%	1.0	0.992	35.3	67.2	-	-
Seam 23 - 30%						
Seam 3 - 80%	1.0	0.954	35.3	69.8	17.4	1.4
Seam 23 - 20%						
Seam 3 - 90%	1.0	0.935	43.7	72.0	-	-
Seam 23 - 10%						

sions to be done: together with increasing of density of the coal charge of all the tested samples the textural durability of the coke increases. Though beginning with ~~minimum~~ the density of 1,0 g/cm³, and for coal of seam 7 with the density of 0,9 g/cm³ the textural density does not increase, practically. Apparent specific gravity ^{of coke} increases, and its porosity together with the condensation of the charge lowers correspondingly.

It must be noted that the textural density 77% and the porosity on the order of 40% for the coals of seams 3 and 7 and their mixtures at the condensation of 1,0 g/cm³ correspond to metallurgical coke by these indices.

By the obtained data it followed that, probably, it is possible ^{only} to condense the coal cake up to the volumetric weight of 0,9 - 1,0 t/m³.

As at the tests of coal of seam 23 negative results were obtained, the coal was tested in mixture with the coal of seam 3 in the following proportions %: 50:50; 30:70; 20:80; 10:90. When testing the admixtures the condensity was taken equal to 1,0 g/cm³. In these admixtures the most favourable results were obtained in charges with the participation of coal of seam 23 at a quantity of no more than 20-10%; and in this case the textural durability of the coke made 69,8-72%. Thus, the coal of seam 23 in mixture ~~minimum~~ could be used in the restricted amount, and when the coal being introduced in the charge, the durability of the coke decreases. The data of the laboratory investigations were used for the determination of the regime of half-factory coking at the VUHIN installation, the results of which are given in the next part of the report.

3. Production of coke-briquette fuel.

The investigation ~~mf~~ was done with using of the coal of seam 7 and 23 in crushing 90% for sieve 3 mm.

As the ~~minesom~~ matter the extract "DYOSOL" - the waste of oil industry / temperature of softening 350° was tested.

In the experiments, made with coal of seam 7, the amount of the ~~minesom~~ matter changed from 5 to 7%, and with coal of seam 23 the optimal amount of the liasom matter being 7%.

The method of briquette production // was as follows:

the coal was ~~measured~~ charged into heated mixer and kept to tempe-

Quality of briquettes and coke-briquettes from the coal of the
Shabashak deposit, made by the method of briquetting with binder

Name of coal	Charge, %		Apparent specific gravity of raw bri- quettes, g/cm ³	Characteristic of coke-briquettes						
	coal	duosol		Technical analysis, %			Structural strength, %		Apparent specific gravity, g/cm ³	Porosity, %
			W ^a	A ^c	V ^r	grade + 1 mm	grade + 3mm			
Seam 7	93	7	1.18	0.98	17.99	1.49	73.2	41.5	1.02	38.7
	95	5	1.16	0.93	20.47	1.54	69.2	36.4	1.07	32.0
Seam 23	93	7	1.07	-	9.85	2.43	30.8	1.6	1.05	33.0

rature of 70-80° and after that was layed with liquid "Dyosol". The mixture ~~was~~ had been intermingled at a temperature of 75° for 20 minutes. The produced charge was briquetted at a ²⁰hydraulic press in a prees-form, heated to 70-80° at the given pressure of 200 kg/cm².

The briquette was discharged from the press-form and cooled in the air down the room temperature, and then was sent for coking. The dimensions of the briquettes are as follows: diametr - 50 mm, height - 40-45 mm.

Coking of the briquettes was done in a tubular furnace, in a metallic retort by the following graph: into the furnace heated to 300° a retort was installed, the temperature rose for 1,5° a minute up to 600° and, from 600° to 900° - 3° a minute. At the final temperature the coke was kept for 30 minutes. After the end of the exposure the retort was taken out of the furnace and after being cooled the briquettes were sent for the analysis.

The investigation of coal of seam No.7 ^{table 23/} showed that it is possible to obtain out of it, by briquetting with the liason in the amount of 5-7%, the coke-briquettes with satisfactory textural durability and, as a rule, with lowered porosity. The produced coke-briquettes are well melted, dense, lustreous, grey in colour./Bigs. 7 and 8/.

The coke-briquettes, obtained from seam 23, though looked good in appearance, had low textural durability.

4. Production of the lumpy fuel by way of briquette oxidizing, obtained out of semi-coke with binder.

Essence of the process, worked up in the Polish People's Republic, is in following: not caking or poorly caking coal with high yield of the volatile matter is subject to half-coking / more exactly average-temperature coking/; the coke is being crushed, mixed with heavy fractions of the primary tar of the half-coking of these coals, the mixture being briquetted, and the produced briquettes undergo oxidation treatment at a temperature of 200-300°. Under the influence of oxygen under sufficient temperature regime forming of hard space frame take place, the latter imparts ~~monomolodzieniach~~ greater mechanical durability to the briquette.

a. Production of average-temperature coke.

For production of average-temperature coke the enriched coal of seams Nos. 3 and 7 of 0-12 mm in size was used. Coking was done in the enlarged laboratory furnace, where the metallic retort with coal, located as thin circular layer of 25 mm thick was put.

Final temperature of coking made 750° . Average-temperature coke of coal of seams 3 and 7 was obtained as dense baked mass / Fig. 9 pos. I /, and of coal of seam 23 - as easily broken sticked mass.

The obtained coke was crushed in a roller crusher up to the class of 0 - 3 mm - 90-95%. The coke characteristic is represented in table I3.

Table I3.

Characteristic of average-temperature coke.

Name of coal	Technical analysis		
	W _a	A ^c	V ^c
Seam 7	1,2	15,7	2,63
Seam 3	4,1	20,1	2,29
Seam 23	4,4	9,25	2,62

Binding component

As a binding component a heavy part of the primary tar of the Angar factory was used. The tar was produced in the furnaces of the Lurgi system at an average-temperature coking/ temperature being 700-800% of the enriched coals of the Cheremkhovsky deposit / V^c ~ 35%/. The tar was divided into fractions at definite temperature regimes. As the binding component, the remain after distillation of the fraction, boiling at a temperature of 310° , was used. /The fraction yield less than 310° made 6-7%/. The temperature of softening of the binding component made 40° by the ring-pivot method.

At test of coal seams 3 and 23 as binding matter the primary tar with the temperature of softening 30° was used.

c. Preparation of briquettes.

The briquettes were prepared by the method, described in part 3, "Production of coke-briquette fuel".

Out of average-temperature coke, obtained from coal seam 7, 2 series of briquettes were prepared, containing 10 and 13% of the

Table I4

Quality of raw briquettes

binding of the ~~TISSON~~ matter. At preparing of briquettes out of average-temperature coke of coal seams 23 and 3 the amount of the liasom matter in the second series of the experiments was reduced ~~inymniam~~ down to 12% as it was determined that the content of the primary tar in the ~~mineral~~ coal of the Shabashak deposit is not more than 11%. The briquette shape is cylindrical, the diametr of the briquette is 51 mm, height is 47-49 mm, weight is 90-100 gr. Ten briquettes were manufactured for ~~mineral~~ each experiment.

Technical characteristic of the raw briquettes is shown in table No. I4.

d. Thermooxidation of the briquettes.

Low -temperature oxidation of the ^{raw} briquettes was done in special arranged retort, to the lower part of which by the copper coil, tightly fitting the walls of the retort, definite quantity of the air for oxidation was supplied in the course of heating. The retort with briquettes was put in a heated furnace and together with the beginning of the air supply from the laboratory gas-blower the given temperature regime was fixed. The temperature of oxidation was the same in all the experiments, equalling 250°. The duration of the oxidation changed from 5 to 10 hours.

e. Determination of the quality of the oxidized briquettes.

The following determinations were done for the characteristic of the quality of the produced fuel, besides technical composition, inferred and true~~d~~ specific gravities, textural durability and porosity:

- I. Durability of the ready briquettes for throwing down / part of weight, equalling 0,5 kg, the height of falling down - 1,8 m, number of throwings - 4/;
2. Durabilty of ready briquettes in the laboratory fire-bar drum of the IGI / $d=330$ mm; $l=255$ mm/ at 300 and 600 rotations.

Sifting was done on the sieves with square holes of 40,25 and 10 mm.

Besides, ~~mineral~~ measuring and weighting of the briquettes was done before and after oxidation trearment.

The results of the experiments of the briquette fuel production ~~mineral~~ are represented in table No.I5.

Results of experiments in obtaining briquette fuel

Name of coal	Experiment No.	Composition of mixture		Apparent specific gravity of briquettes, g/cm ³	Conditions of oxidative treatment			Quality of oxidative briquettes												Porosity, %	Technical analysis				
		COKE	tar		expenditure of air, 1/hr	temperature, °C	duration, hr.	Sieve composition (%) after downthrow, grades in mm				Sieve composition (%) after 300 rotations in a drum, grades in mm				Sieve composition (%) after 600 rotations in a drum, grades in mm				Structural strength, %	Specific gravity, g/cm ³	Specific gravity, apparent	true		
								+40	25-	10-	-10	+40	25-	10-	-10	+40	25-	10-	-10					A ^c	V ^f
Seam 7	1	90	10	0.976	30	250	5	98.4	-	-	I.6	-	-	-	-	-	-	-	-	51.8	I.III8	I.60I	29.8	I5.I	7.03
	2	87	13	0.997	"	"	5	99.0	-	-	I.0	-	-	-	-	-	-	-	-	60.6	I.I25	I.618	30.4	I4.7	8.39
	3	87	13	"	"	"	10	98.3	-	-	I.7	-	-	-	-	-	-	-	-	63.9	I.I35	I.620	30.2	I4.6	8.85
Seam 3	4	90	10	1.035	30	250	5	98.0	-	-	2.0	94.3	-	-	5.7	88.6	-	-	II.4	56.0	I.2II	I.502	I9.3	8.3	10.80
	5	88	12	1.073	"	"	5	98.7	-	-	I.3	96.4	-	-	3.6	95.2	-	-	6.8	61.2	I.222	I.499	I8.4	8.9	I3.75
	6	90	10	1.035	"	"	10	97.2	-	-	2.8	94.5	-	-	5.5	89.0	-	-	II.0	60.9	I.252	I.532	I8.0	9.8	6.38
Seam 23	7	90	10	0.946	30	250	5	97.2	-	I.2	I.6	92.8	-	-	7.3	86.0	-	-	I4.0	55.8	I.068	I.606	33.5	I9.4	5.78
	8	88	12	0.953	"	"	5	97.4	-	I.5	I.I	95.0	-	-	5.0	90.4	-	-	9.6	60.9	I.082	I.583	31.6	I8.2	6.6I
	9	90	10	0.943	"	"	10	96.5	I.I	0.7	I.7	93.2	-	-	6.8	87.1	-	-	I2.9	60.0	I.085	-	-	I9.8	6.I6

In all the experiments ~~mm~~ the oxidized briquettes have more or less satisfactory mechanical durability - briquettes are not breaking and fracturing /Fig.9, pos.2 and 3/. While being tested in the drum, the intermediate classes do not appear - only grating of sharp edges of the cylindrical briquettes takes place. Worse results of the total durability are obtained, when coke of coal seam 23 participates.

With the increase of the share of chemically active liaison in the briquettes, at the similar duration of the thermo-oxidation process, durability of the oxidized ~~membran~~ briquettes increases.

Increase of the oxidation treatment from 5 to 10 hours at the same amount of liaison, does not influence much the mechanical durability of the oxidized briquettes depends on both factors: it increases approximately by 5 unites with the increase of the share of the liaison in briquettes and by the same value it increases at the double increased duration of thermo-oxidation.

The peculiarity of the method of low-temperature oxidation is the formation during the time of oxidation ~~mm~~ heating process of the frame along the perimeter of the briquette, which is well melted, lustreous texture- more distinctly expressed in the experiment with samples of coals of seams 3 and 7, and less distinct- with sample of seam 23; there follows melted but not lustreous zone, and at last in the centre there is a dark, not melted core. The depth of melting depends on the amount of the liaison in briquettes and to a considerable degree on the duration of the oxidizing treatment, that offers the possibility to improve the texture of ~~mm~~ the oxidized briquettes at the minimum expense of the liaison /Experiments 6 and 9/. It looks like the time of oxidation as if compensates the shortage of the liaison in the briquettes, if to take into consideration the degree of the texture of the oxidized briquettes, being melted, and the index of its durability. Though ~~mm~~ in order to obtain the complete disappearance of the non-melted core in the centre of the briquette, a considerable time of oxidation treatment is required. In the conclusion it can be mentioned that some specific features of the quality of

the briquette fuel, caused by the method of its obtaining should be mentioned:

- a/ Practically, the absence of sedimentary phenomena in the process of thermo-treatment of the briquettes; in some cases insignificant increase of the volume of the ready briquettes is noticed.
- b/ A considerable number of the volatile matter remains in the oxidized briquettes
- c/ The yield of the ready product is rather high- 97-98%.
- d/ The quality of coals, used for the production of the average-temperature coke, does not influence essentially on the quality of the briquette fuel.
- e/ Briquettes, oxidized within the period of 5 hours, have satisfactory durability against percussion and grating effects even when the content of the liaison is 10%. At the minimal expense ^{binding} of the liaison by way of the increasing of the duration of the oxidation process up to 10 hours the texture of the briquette fuel can be considerably improved, the index of durability becomes more or less satisfactory.
- g/ The briquette fuel has rather low porosity; ~30%.

Not complete factory tests.

At a half-factory installation of the VUHIN in the city of Sverdlovsk experimental coking of coals of the Shabashak deposit with ramming of coal charge were done.

Coking was done in a coking-furnace with double-sided electric heating in a chamber with the volume of loading up to 250 kg of the condensed charge.

Thermo-technical conditions of heating correspond to nowadays ^{factory} dinas furnaces with the width of the camera - 400m. The temperature of the wall heating from the inside makes 1080°. Coking is finished when in the centre of the coal load the temperature reaches 950°.

The investigation of the obtained coke includes:

- a/ determination of the coke durability by the data of the small drum/ M40 and M10, in%/ and ^{modelled} fire-bar drum of Sundgren, accepted in the USSR / by the data " remain in the drum and content of 10-0 mm class in the fall out", in kg/;
- b/ determination of the sieve characteristic;
- c/ technical analysis.

It must be noted that coke, produced in half-factory furnace to a considerable degree corresponds to the coke, made in the furnaces of industrial type.

For coking coal of seams 3 and 7 was used, which before was enriched according to the following scheme: crushing to 12 mm, sifting for the classes I2-I and I00 mm, enrichment of the class I2-I in the separating machine and the class of I-0 mm in the flotating machine, composition of the ^{mixture out of} concentrates of separation and flotation in equal ratio of coals of seams 3 and 7.

Ramming of the charge was done in a special installation when the compactness of the charge reached 0,98-1,0 g/cm³. Before the coal is being moistened to I0-II%. The sieve composition of coal is 95%, for the sieve of 3 mm.

Character of the coal mixture loaded in the chamber is as follows:

I - II mm

A^c - II,5%

V' - 36,2%

Coal obtained at the result of enrichment allowed two parallel coking are to be done. The results are shown in table I6.

The data, shown in the table prove, that even at coking of compacted charge out of ^{coking} best coals of the Shabashak deposit the coke of lowered durability was produced. Though the coke of the chamber had rather good sieve composition, however it ~~cannot~~ cannot endure great mechanical load, and demolishes forming small classes and dust. The data of the investigation in the drum prove it.

The datum of the "remain" in a fire-bar drum was obtained within 225-230 kg at the content of the I0-0 mm class being 70-89 kg in the fall out. The data of the small drum are also rather low: M40 is about 50%, and M10- I6%. Textural durability of the coke is 72-77%.

The last published review, dedicated to the quality of the coke, produced in different countries, /8/, shows that coke produced out of coals of seams 3 and 7 is worse than others, used in a blast-furnace process. To some degree it approaches the quality of coke of the Klerton works /USA/. The latter is characterised by the indices - M40 - 40-49% and M10 - I2-I3%. If by the data of M40 the quality of coke is beyond doubt, then by the data M10, characterising the degree of its grating, coke of the coals of the Shabashak deposit is not satisfactory.

Such coke was never used for the blast-furnaces in the USSR. As a rule Soviet factories use the coke with the drum sample of over 310 kg/ by Sundgren/.

Before VUHIN made experimental blast-furnace castings with the coke of lowered mechanical durability. Some selected materials of the results of such tests are given below.

So, in 1951 during 6 days the casting in the blast-furnace of 600 m³ at the SVobodny Sokol plant was done; ~~mmmm~~ it was done with the coke, the remain of which in the drum of 257-285 kg at the content of the class 10-0 mm is 70 kg in the fall out. The results of casting were satisfactory for that period and the conclusion of the possibility of increasing of the blast-furnace running was drawn.

In the same blast-furnace in 1949 eighteen-day castings were done; the coke ~~mmmmmm~~ data were at the remain in the drum -250-287 kg, at the content of 10-0 class - 67-109 kg in the fall out.

Though in this case the furnace productivity decreased by 18,3%, however it was explained by technical reasons - being late to load the blast-furnace with raw materials. At that period of the blast-furnace operating the reduction of coke expense and limestones was noticed, as the coke being used usually for the blast-furnace, ^{considerable} had ~~mmmm~~ content of sulphur.

Thus the investigations showed, that functioning of the blast-furnaces of small volume on the coke with the drum sample about 250 kg is possible.

To clear out the possibilities of manufacturing the Shabashak coal using in the charge with other coals at a half-factory installation the coking of the charge of the following composition was done/%; coal of seams 3 & 7 of the Shabashak deposit - 50; Kuznetsk coal of ~~M~~ grade - 20; " " K₂ " - 30.

Out of the above charge rather solid coke is produced without being rammed; the following data are characteristic to it:
remain in the drum / kg/ - 303
content of class 10-0 mm in the fall out / kg/ - 66.

Thus the Shabashak deposit coals can be used in charges at rather a big quantity.

* $A^C = 10,4\%$ $V^r = 56,1\%$ $Y = 12$ min.

Characteristic of coke of semi-factory coking with ranning of
coal charge

Experiment Nos.	Period of coking , hr, min	Sieve composition, %					Indices of fire-bar drum, kg residue	Indices of small drum grade M40	A, %	V, %
		+80 mm mm	80-60 mm	60-40 mm	40-25 mm	25 mm				
I22-5	I7.40	I7.4	32.7	27.7	I2.6	9.6	250	70	I7.3	I.4
I47-5	I8.15	20.2	31.8	25.4	I0.4	I2.2	225	89	I6.0	I7.1

It should be noted in the conclusion that the results of all the tests done, were not satisfactory, concerning the possibility of arranging of modern metallurgical work only on the coals of the Shabashak deposit.

At the same time under the conditions of coke being rammed, the latter, fitting the blast-furnaces of small size can be produced out of the coals of lower seams.

It is not excluded also, that these coals would be acceptable for the production of moulded coke, though the completion of works on this process for big industrial enterprises can be possible, presumably, not earlier than in 1968-1969.

If such terms are acceptable for the beginning of projecting of mines and the metallurgical plant in Afghanistan, then it would be expedient to make experimental half-factory tests of the Shabashak deposit coals of seams 3 and 7 type; for this not less than 1000 kg of non-oxidized coals is required.

As to the method of production of coke-briquette fuel with using of binder of oil origin and technology of the briquette fuel by the Polish method, the possibility of their putting into life depends on both- the presence of corresponding oil materials in Afghanistan and on the consent of Soviet projecting institutions to project such installations.

CONCLUSIONS

As a result of the analyses of 100 samples of small weight / core and trench ones/ and 3 enlarged technological samples of coals of the Shabashak deposit, taken from its prospected part it was established:

- I. The coals are gaseous/ high and medium substage/, petrographically not uniform/ the vitrinite content in the concentrate is 55-75%/ and mainly they are poorly caking/ the thickness of plastic layer is 12 mm and less/.
2. Increasing of coal caking is observed in stratigraphic section of the deposit from upper seams to lower ones.
3. The depth of the oxidation zone is not determined accurately at the deposit. By the materials of the investigation of the coals out of

adits, the oxidation zone does not exceed 10-15 m.

4. According to characteristic of enrichment and ash content the coals of lower seams, especially of lower better caking ones, are attributed to the coals with high ash content and difficult for enrichment.

Out of main workable seams only coal of seam 23 has better indices. At present methods of enrichment ash content of the concentrate of over 1 mm in size will make as an average for the coal of lower and middle seams 9-9,5%.

Very bad flotation of dust is observed. The reason of it was not found out.

5. The coals are attributed to low sulphurous / less than 0.75% / with different phosphorus content/ from traces to 0,15% /.

6. At present technology of coking in chamber furnaces the metallurgical coke cannot be obtained out of the deposit coals, including coal of lower seams.

Producing of satisfactory, concerning durability, coke was possible out of charge only with using 50% of the Shabashak deposit coals of seams 3 and 7 in combination with the Kuzbass basin coals of the grades K /20% / and K2 /30% /.

7. Ramming of the coal's charge showed the possibility of producing out of coals of seams 3 and 7 the coke with the data of tests in a small drum M40- about 50%, and M10 - 16%, and in the fire-bar drum - about 230 kg at the content of 10-0 class- the fall out is 70-90 kg.

By its physico-mechanical properties the coke of the above characteristic cannot be used in the present blast-furnaces.

At the same time the data, ^{with} which the institute operated, show that coke produced of rammed coals, can be used as technological fuel for blast-furnaces of small size.

8. Laboratory investigations proved the possibility of producing the moulded coke out of coals of lower seams according to the technological schemes, worked out in the USSR. For final conclusion on this problem, the investigations in half-factory conditions must be done.

Taking into consideration the reak terms of work finishing of this process for industrial conditions, projecting of installations for producing of moulded coke , can be begun not earlier than in 1968-1969.

9. Laboratory tests proved that the coals of the deposit can be used for production of coke-briquetting fuel with using of binder of oil origin and technology of briquette fuel production by the Polish method.

Possibility of their realization depends on the presence of proper oil materials in Afghanistan and the consent of projecting institutions to project such installations.

Chief instructors of the theme: K.Permitina

A.Vetrova

L.Lobanova

V.Frishberg

Chief of the coke laboratory

Chief of the coke laboratory

L.Erkin

BIBLIOGRAPHY

1. K.S.Permitina, O.V.Shtemenko. About the methods of estimation of coals for coking. Collection of the VUHIN works - Preparation and coking of coals, number III, 1962.
2. T.G.Barkhatinova and others. Collection of the VUHIN works - Preparation and coking of coals, number IV, 1963.
3. Reshetko A.N. Photo-electric method of the determination of the degree of coal metamorphism. Collection of the VUHIN works, number IV, 1963.
4. M.S.Kotelents, A.V.Noskova. Investigation of the coals of eastern deposits for the determination of the yield of chemical materials of coking. Collection of the VUHIN works - Preparation and coking of coals, number II, 1960.
5. G.V.Speranskaja, D.L.Tsikirev. Investigation of the forced forming of plastic coal. Works of the DMeti, number. , 1962.
6. L.I.Erkin. Working out of the new coking technology with using gaseous and poorly caking coals. The report of the VUHIN, 1956.
7. G.L.Estrina, P.J.Nefedov. Searching of new kinds of liaison matter for producing coke-briquettes for moulding industry. The report of the VUHIN, 1964.
8. E.Ferletsky. Quality of the Polish blast-furnace coke in comparison with western countries."Gutpik" 4, 129-136, 1964.

Results of laboratory investigation of coals of the Shabashak deposit

VUHIN number	Party number	Sample characteristic		Seam thickness, m	Coke yield, lineal/ %	Petrographical characteristic							Technical analysis, %				
		Sampling location				Microcomponent composition, %				Degree of metamorphism			W ^a	A ^c	V	S ^c	P
I	2	3	4	5	6	7	8	9	10	II	I2	I3	I4	I5	I6	I7	
<u>Seam I</u>																	
653254	287	Trench No.77		1.03	furrow	I	62	I7	I0	I0	0.75	gaseous /oxidized coal/	I0.2	9.2	38.3	-	-
653335	288	" No.50		1.04	"	I	46	I9	25	9	-	I8.1	8.8	39.7	-	-	
<u>Seam 3</u>																	
653I64	technologi- cal sample 3	Adit No.2, 25 m from the mouth, 21 m from the day surface		2.16	-	I	59	I0	II	I9	-	gaseous, high	2.5	20.0	36.9	0.52	0.138
653I79	"	Ditto, concentrate		2.16	-	I	65	I2	I0	I2	-	"-	3.0	I4.2	36.4	0.54	0.151
653439		- " - after secondary dressing				I	67	I0	I2	I0	-	"-	2.5	II.9	36.6	0.55	0.144
653551	"	- " - mixture of concentrate, density I.4, grade-I2-I mm and I-0 mm				I	68	I2	I4	5	0.85	"-	2.0	7.2	36.0	0.55	0.161
653218	354	Adit No.2, 25 m from the mouth, 21 m from the day surface		2.15	-	-	-	-	-	-	-	"-	2.2	I7.1	37.1	-	-
653I87	353	Ditto, the upper part of the seam		2.15	-	-	-	-	-	-	-	"-	2.0	23.0	35.8	-	-
653I73	352	Ditto, the lower part of the seam		-	-	I	60	I3	I2	I4	-	"-	4.2	I5.4	38.6	-	-
653I80	355	Adit No.2, 18 m from the mouth, 15 m from the day surface		2.3	-	-	-	-	-	-	-	"-	I.9	I9.2	36.8	-	-
653348	II	Ditto, concentrate, density I.4; yield 55%		2.3	-	I	70	I2	I2	5	0.84	"-	2.2	6.4	37.0	0.65	-
653213	289	Trench No.53		2.22	-	I	49	20	I5	I5	-	"-	I7.8	20.9	41.1	-	-
653556	II	Ditto, concentrate of density I.6; yield 65%		2.22	-	I	51	I8	20	I0	-	"-	I4.2	I2.6	41.2	0.38	-

Elementary composition for organic mass, %							Indices of coking ability, mm	
C	H	N	S org.	O	Q		thickness of plastic seam (y)	numbers of swelling
18	19	20	21	22	23		24	25
-	-	-	-	-	-		-	I
-	-	-	-	-	-		-	0
-	-	-	-	-	7863	10	6	
82.51	5.47	1.68	0.63	9.71	8138	10-II	9	
82.92	5.44	1.66	0.63	9.35	8106	12-I3	12	
82.38	5.41	1.76	0.60	9.85	8170	12	7	
-	-	-	-	-	-		-	6
-	-	-	-	-	-		-	4
-	-	-	-	-	-		-	3
-	-	-	-	-	-		8	4
82.85	5.69	1.74	0.70	9.02	-	I3	27	
-	-	-	-	-	-		-	0
66.89	3.26	1.64	0.44	27.77	5670	0	0	

1	2	3	4	5	6	7	8	9	10	II	12	13	14	15	16	17	
<u>Seam 5</u>																	
6594	232	Well No.5 at a depth of 268.45- 269.05 m	0.6	100	2	60	15	16	7	-	gaseous, high	1.9	8.8	36.3	-	-	
651049	"	Ditto, concentrate of density yield 85%	1.4;	0.6	100	2	70	15	10	3	0.92	"	2.3	4.4	36.4	0.68 0.062	
653324	293	Trench No.6	0.73	-	2	59	18	15	8	-	-	10.0	7.2	38.8	-	-	
<u>Seam 7</u>																	
6593	234	Well No.5 at a depth of 210.8- 212.53 m	1.73	100	-	-	-	-	-	-	gaseous, high	2.0	28.3	37.6	-	-	
65743	"	Ditto, concentrate of density yield 35.0%	1.4;	"	-	2	72	10	12	4	0.92	"	2.1	6.0	36.3	0.57 traces	
65157	233	Well No.6 at a depth of 349.05- 351.2 m	2.15	100	-	-	-	-	-	-	"	2.0	31.7	38.7	-	-	
65741	"	Ditto, concentrate of density yield 41.0%	1.4;	2.15	100	I	74	7	12	6	0.93	"	1.9	6.3	36.3	0.42 traces	
65108	technologi- cal sample I	Adit No.1, 40 m from the mouth, 32.4 m from the day surface	2.47	-	2	55	10	16	17	-	"	2.6	21.4	37.3	0.55 0.051		
65281	"	Ditto, concentrate of density yield 60%	1.4;	2.47	-	I	74	II	9	5	0.89	"	2.0	6.9	35.8	0.5 0.056	
65593	"	Ditto, concentrate	2.47	-	2	61	14	13	9	0.89	"	2.4	II.5	35.0	0.55 0.057		
65110	I56	Adit No.1, 40 m from the mouth, 32.4 m from the day surface, upper patch	0.60	-	I	45	10	19	25	0.89	"	2.2	28.9	39.8	-	-	
65734	I56	Ditto, concentrate of density yield 35.0%	1.4;	0.60	-	I	72	II	9	7	0.89	"	1.9	6.2	36.2	-	-
6597	I55	Ditto, middle part of the seam	0.93	-	2	50	II	18	19	0.89	"	2.2	I7.8	35.5	-	-	
65745	I55	Ditto, concentrate of density yield 59 %	1.4;	0.93	-	I	70	12	13	4	0.89	"	1.9	5.7	34.9	0.58	-
65109	I50	Ditto, lower part of the seam	0.93	-	2	65	9	14	10	0.89	"	2.5	I0.9	36.6	-	-	
65744	I50	Ditto, concentrate of density yield 79%	1.4;	0.93	-	2	74	12	8	4	0.89	"	2.2	4.0	35.7	0.57	-
6598	243	Adit No.1, 35 m from the mouth, 30 m from the day surface. The upper part of the seam	0.55	-	I	45	10	10	34	-	"	2.2	32.4	39.6	-	-	

I	:	2	:	3	:	4	:	5	:	6	:	7	:	8	:	9	:	10	:	II	:	I2	:	I3	:	I4	:	I5	:	I6	:	I7
65747	243	Ditto, concentrate of density I.4; yield 35.0%		0.55	-	2	76	5	II	5	-											gaseous, high	2.3	6.I	37.6	-	-					
65103	242	Ditto, the middle part of the seam		0.90	-	I	53	6	II	23	-											-"	2.2	25.9	36.7	-	-					
65807	"	Ditto, concentrate of density I.4; yield 53.0%		0.90	-	I	73	7	I3	6	-											-"	2.2	7.0	36.2	-	-					
65104	241	Ditto, the lower part of the seam		0.90	-	I	77	6	6	10	-											-"	2.2	II.8	37.9	-	-					
65732	241	Ditto, concentrate of density I.4; yield 85.0%		0.90	-	I	78	7	10	4	-											-"	2.2	4.3	37.4	0.52	-					
653197	261	Adit No. I, 30 m from the mouth, 24 m from the day surface		2.32	I00	I	60	I2	I0	I7	-											-"	2.6	I9.9	37.8	-	-					
653191	I95	Ditto, upper part of the seam		2.32	-	-	-	-	-	-												-"	2.5	34.9	41.2	-	-					
653177	I95	" middle part of the seam		-	-	-	-	-	-	-												-"	2.1	22.I	36.4	-	-					
653205	I95a	" lower part of the seam		-	-	-	-	-	-	-												-"	3.0	I4.3	38.I	-	-					
653175	I94	Adit No. I, 25 m from the mouth, 20 m from the day surface, upper part of the seam		-	-	-	-	-	-	-												-"	2.6	36.5	39.2	-	-					
653189	I94	Ditto, middle part of the seam		-	-	-	-	-	-	-												-"	2.0	I9.I	35.6	-	-					
653181	I94a	" lower part of the seam		-	-	-	-	-	-	-												-"	2.6	I0.2	37.7	-	-					
653591	I94a	Ditto, concentrate of density I.4; yield 82 %		-	-	3	78	8	7	4	-											-"	2.2	4.I	37.4	0.19	-					
653316	I95	Adit No. I, 20.5 m from the mouth, 16 m from the day surface. Upper part of the seam		-	-	-	-	-	-	-												-"	2.4	34.8	37.9	-	-					
653214	I95	Ditto, middle part of the seam		-	-	-	-	-	-	-												-"	2.1	21.7	36.6	-	-					
653183	I95a	Ditto, lower part of the seam		-	-	-	-	-	-	-												-"	2.5	I3.I	37.5	-	-					
65345	I95a	Ditto, concentrate of density I.4; yield 80%		-	-	2	69	I2	I4	3	-											-"	2.5	3.9	36.I	0.55	-					
653201	I60	Adit No. I, 18 m from the mouth, 16 m from the day surface. Upper part of the seam		-	-	-	-	-	-	-												-"	3.0	34.8	39.I	-	-					
653341	I60	Ditto, middle part of the seam		-	-	-	-	-	-	-												-"	2.6	25.5	36.7	-	-					
653186	I60a	Ditto, lower part of the seam		-	-	-	-	-	-	-												-"	2.6	I7.I	36.8	-	-					
653344	I60a	Ditto, concentrate of density I.4; yield 67%		-	-	I	71	II	I3	4	-										-"	2.6	4.8	36.2	0.57	-						
653182	I59	Adit No. I, 16 m from the day surface. Upper part of the seam		-	-	-	-	-	-	-												-"	2.5	30.7	38.0	-	-					

I	:	2	:	3	:	4	:	5	:	6	:	7	:	8	:	9	:	10	:	II	:	12	:	13	:	14	:	15	:	16	:	17		
653I74		I59		Ditto, middle part of the seam		-		-		-		-		-		-		-		-		gaseous, high		2.5		23.6		36.8		-		-		
653I76		I59a		Ditto, lower part of the seam		-		-		-		-		-		-		-		-		"-		2.3		14.8		37.2		-		-		
653346		I59a		Ditto, concentrate of density I.4; yield 81 %		-		-		I		70		II		II		7		-		"-		2.5		6.4		36.2		0.58				
653320		I58		Adit No.1, 12.3 m from the mouth, 10 m from the day surface. Upper part of the seam		-		-		-		-		-		-		-		-		"-		2.0		19.8		36.5		-		-		
653204		I58		Middle part of the seam		-		-		-		-		-		-		-		-		"-		2.2		24.0		35.8		-		-		
653I84		I58a		Lower part of the seam		-		-		-		-		-		-		-		-		"-		2.3		13.8		36.4		-		-		
653347		I58a		Ditto, concentrate of density I.6; yield 86 %		-		-		I		70		II		II		5		-		"-		2.6		6.8		35.7		0.55		-		
653334		I57		Adit No.1, 9.1 m from the mouth, 9 m from the day surface. Upper part of the seam		-		-		-		-		-		-		-		-		"-		2.4		30.7		38.1		-		-		
653I88		I57		Ditto, middle part of the seam		-		-		-		-		-		-		-		-		"-		2.2		26.3		36.7		-		-		
65I93		I57a		" lower part of the seam		-		-		-		-		-		-		-		-		"-		3.1		I3.1		37.9		-		-		
653555		I57a		Ditto, concentrate of density I.4; yield 89 %		-		-		2		75		II		II		5		-		"-		2.6		7.0		36.0		0.54		-		
653330		29Ia		Trench 8, upper part of the seam		-		0		I		52		II		II		14		-		"-		10.6		16.7		39.9		-		-		
653I98		29I		Ditto, lower part of the seam		-		-		I		63		II		II		6		-		"-		8.9		II.6		38.6		-		-		
653349		29I		Ditto, concentrate of density I.6; yield 83 %		-		-		2		67		II		II		7		0.78		gaseous /oxidized coal/		9.2		6.7		37.3		0.45		-		
653338		285a		Trench 16, upper part of the seam		-		-		I		66		II		II		13		-		"-		21.2		I5.0		-		-		-		-
653I94		285		Ditto, lower part of the seam		-		-		I		71		II		II		10		-		"-		I3.2		9.8		39.8		-		-		
653588		285		Ditto, concentrate of density I.6; yield 90 %		-		-		2		72		II		II		6		-		"-		II.6		6.6		39.1		0.31		-		
653343		295		Well 6, depth 319.0-319.58 m		0.58		-		I		43		II		II		20		-		"-		2.4		24.9		35.3		-		-		
653832	"			Ditto, concentrate of density I.4; yield 46 %		0.58		-		I		64		II		II		6		0.88		"-		2.3		5.7		35.2		0.18		0.003		
65I58		240		Adit No.3, 29.5 m from the mouth, 31 m from the day surface		0.90		-		I		50		II		II		10		-		"-		2.6		I4.3		35.6		0.61		0.004		
65746	"			Ditto, concentrate of density I.4; yield 68.0%		0.90		-		2		54		II		II		4		0.89		"-		2.4		4.5		34.1		0.71		traces		

18	19	20	21	22	23	24	25
-	-	-	-	-	-	-	2
-	-	-	-	-	-	-	9
82.54	5.52	1.79	0.63	9.52	-	II	8
-	-	-	-	-	-	-	4
-	-	-	-	-	-	-	I
-	-	-	-	-	-	-	8
82.82	5.46	1.71	0.60	9.41	-	IO	IO
-	-	-	-	-	-	-	3
-	-	-	-	-	-	-	3
-	-	-	-	-	-	-	9
82.20	5.54	1.85	0.59	9.84	8070	IO	5
-	-	-	-	-	-	-	0
-	-	-	-	-	-	-	0
73.06	3.92	1.63	0.48	20.91	6603	button, loose	0
-	-	-	-	-	-	-	0
-	-	-	-	-	-	-	0
81.88	3.95	1.71	0.33	22.13	6474	-	0
-	-	-	-	-	-	-	4
82.94	5.46	1.63	0.20	9.77	8183	-	7
-	-	-	-	-	8014	-	7
83.05	5.26	1.70	0.74	9.25	8145	9	7

I	:	2	:	3	:	4	:	5	:	6	:	7	:	8	:	9	:	10	:	II	:	I2	:	I3	:	I4	:	I5	:	I6	:	I7
65733	23I	Ditto, concentrate of density I.4; yield 77.0%		I.40	100	I	72	II	I3	3	-													3.3	4.2	36.3	0.32	0.002				
653195	35I	Adit No.5, I4 m from the mouth, I6 m from the day surface		I.90	-	2	60	I4	I2	I2	0.80	"												3.4	I3.8	38.0	-	-				
653340	359	Trench I50, upper part		0.35	-	-	-	-	-	-	"	"												I4.1	I0.0	40.7	-	-				
653217	359a	Ditto, lower part		I.72	-	I	57	I6	I7	7	-	"												I9.2	9.4	40.4	-	-				
653190	36I	Trench I70, upper part		0.30	-	I	69	I5	9	7	-	"												I7.6	9.7	40.6	-	-				
653212	362	Ditto, lower part		I.58	-	-	50	22	20	8	-	"												I3.2	I0.5	40.0	-	-				
65154	228	Well No.6, at a depth of I28.I2-I28.95 m		0.83	100	I	60	9	I2	I7	-	"												2.9	I9.6	35.6	-	-				
65813	228	Ditto, concentrate of density I.4; yield 58.0%		0.83	100	I	64	I2	I8	5	0.86	gaseous, high												6.1	36.0	0.66	traces					
65153	226	Well No.6, at a depth of II5.30 - II5.90 m		0.60	100	I	57	I4	I2	I7	-	"												3.0	I9.9	38.0	-	-				
65810	226	Ditto, concentrate of density I.4; yield 55.0%		0.60	100	I	73	II	7	8	0.84	gaseous, high												2.5	6.8	38.6	0.49	0.152				
6591	224	Well No.6 at a depth of 88.40-89.20 m		0.80	8I	2	73	8	9	8	-	"												3.6	9.3	37.7	-	-				
65809	224	Ditto, concentrate of density I.4; yield 85.0%		0.80	8I	2	76	6	I3	3	0.82	gaseous, high												2.8	4.2	37.1	0.40	0.087				
65155	219	Well No.6, at a depth of 52.35-56.0m Upper part of the seam		2.15	-	-	-	-	-	-	-	"												3.8	I4.0	36.8	-	-				
65739	219	Ditto, concentrate of density I.4; yield 75.0%		2.15	8I	I	59	20	I6	4	0.78	gaseous high, transitional to middle												3.9	4.0	35.9	0.34	0.082				
6596	220	Ditto, rocky interbed		0.05	100	-	-	-	-	-	-	"											I.6	86.9		density	2.63I					
65152	221	Ditto, middle patch		0.90	-	-	-	-	-	-	-	"												3.8	I5.5	39.0	-	-				
65808	221	Ditto, concentrate of density I.4; yield 75 %		0.90	100	I	80	8	7	4	2	"												3.0	5.4	37.0	0.28	-				
65105	222	Ditto, rocky interbed		0.25	-	-	-	-	-	-	-	"											4.2	58.2I	-	density	I.923					
6595	223	" lower interbed		0.30	-	-	-	-	-	-	-	"												3.7	I4.9	36.4	-	-				
651048	223	Ditto, concentrate of density I.4; yield 61.0%		0.30	100	2	70	II	I2	5	-	"												3.6	5.0	36.3	0.72	0.01				

18	:	19	:	20	:	21	:	22	:	23	:	24	:	25
81.81		5.28		I.61		0.34		10.96		7909		6		4
-	-	-	-	-	-	-	-	-	-	-	-	-	-	4
-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	I
-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	I
81.83		5.26		I.52		0.66		10.73		7963		6		4
-	-	-	-	-	-	-	-	-	-	-	-	-	-	3
81.53		5.53		I.61		0.53		II.0		8021		7		5
-	-	-	-	-	-	-	-	-	-	-	-	-	-	3
80.97		5.38		I.67		0.42		II.56		7960		6		5
-	-	-	-	-	-	-	-	-	-	-	-	-	-	2
81.83		5.13		I.66		0.36		II.02		7914	outlined		I	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	2
81.39		5.36		I.53		0.30		II.42		7979	outlined		I	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	2
81.30		5.13		I.54		0.76		II.27		7996	outlined		I	

I	:	2	:	3	:	4	:	5	:	6	:	7	:	8	:	9	:	10	:	II	:	I2	:	I3	:	I4	:	I5	:	I6	:	I7
653262		I90		Adit No.4, 29.5 m from the mouth, 25.0 m from the day surface		0.80		-		-		-		-		-	10		II		gaseous, high	2.6	4.6	36.8	-	-	-	-				
653590		I90		Ditto, concentrate of density I.4; yield 93 %		0.8		-		I		7I		I2		I3		3		-		"-	3.8	2.5	36.5	0.5I	-	-				
653323		I91a		Adit No.4, 26.05 m from the mouth, 24 m from the day surface. Upper part of the seam		1.70		-		-		-		-		-	-	-			"-	3.8	7.4	35.2	-	-	-	-				
653751		I91a		Ditto, concentrate of density I.4; yield 83 %		1.70		-		I		70		I3		I2		4		-		"-	3.5	3.0	35.5	0.75	-	-				
653319		I91		Ditto, middle part of the seam		0.93		-		-		-		-		-	-	-			"-	4.5	6.3	38.9	-	-	-	-				
6599		244		Adit No.4, 24.5 m from the mouth, 31 m from the day surface. Upper part of the seam		0.80		-		I		60		10		24		5		-		"-	5.2	7.3	36.1	-	-	-	-			
65812		244		Ditto, concentrate of density I.4; yield 69.0 %		0.80		-		I		68		I3		I4		4		-		"-	3.9	3.4	35.8	0.3I	0.09I	-	-			
65101		245		Ditto, middle part of the seam		0.80		-		I		62		9		23		5		-		"-	4.0	4.7	36.9	-	-	-	-			
65731		245		Ditto, concentrate of density I.4; yield 92.0 %		0.80		-		I		75		10		10		4		-		"-	3.7	3.7	36.4	0.30	-	-	-			
65106		246		Ditto, rocky interbed		-		-		-		-		-		-	-	-			"-	1.8	85.49	-	-	-	density	-				
65156		247	" lower patch		0.86		-		I		70		7		12		10		-		"-	4.4	9.8	37.4	-	-	-	-				
65742		247		Ditto, concentrate of density I.4; yield 84.0 %		0.86		-		I		84		7		5		3		-		"-	3.5	4.4	38.2	0.54	-	-	-			
653318		271a		Adit No.4, 20 m from the mouth, 17 m from the day surface, upper part of the seam		1.54		-		-		-		-		-	-	-			"-	3.1	18.9	37.3	-	-	-	-				
653834		271a		Ditto, concentrate of density I.4; yield 65 %		1.54		-		I		70		II		I5		3		-		"-	3.2	4.4	35.6	0.38	-	-	-			
653196		271		Ditto, middle part of the seam		0.84		-		-		-		-		-	-	-			"-	4.3	7.2	38.2	-	-	-	-				
653200		I92a		Adit No.4, 18 m from the mouth, 14 m from the day surface. Upper part of the seam		1.60		-		-		-		-		-	-	-			"-	5.7	6.0	37.1	0.20	-	-	-				
653554		I92a		Ditto, concentrate of density I.4; yield 80 %		1.6		-	2		75		I3		7		3		-		"-	3.9	2.8	37.1	0.2I	-	-	-				
653260		I92		Ditto, lower part of the seam		0.84		-	-	-		-		-		-	-	-			"-	5.0	8.2	38.7	-	-	-	-				
653327		270a		Adit No.4, 15 m from the mouth, 12 m from the day surface. Upper part of the seam		1.68		-	2		70		I2		II		4		-		"-	5.3	5.2	36.1	-	-	-	-				
653833		270a		Ditto, concentrate of density I.4; yield 89 %		-		-	I		80		8		9		2		-		"-	3.9	2.7	36.3	0.44	-	-	-				
653329		270		Ditto, lower patch		0.84		-	-	-		-		-		-	-	-			"-	2.1	I7.5	36.3	-	-	-	-				
653255		272a		Adit No.4, 12 m from the mouth, 9.5 m from the day surface. Upper part of the seam		1.82		-	-	-		-		-		-	-	-			"-	3.8	9.6	36.0	-	-	-	-				

I	:	2	:	3	:	4	:	5	:	6	:	7	:	8	:	9	:	10	:	II	:	I2	:	I3	:	I4	:	I5	@:	I6	:	I7
653587		272a		Ditto, concentrate of density I.6; yield 79 %		I.82		-		I		70		I3		I3		3		-		gaseous, high		3.1		3.3		36.3		0.34		-
653342		272		Ditto lower part of the seam		0.84		-		-		-		-		-		-		-	"-		4.6		8.3		37.8		-		-	
653202		273a		Adit No.4, 9 m from the mouth, 7 m from the day surface		I.78		-		-		-		-		-		-		-	"-		5.0		5.5		37.1		-		-	
653926		273a		Ditto, concentrate of density I.6; yield 96 %		I.78		-		I		73		II		I2		3		-	"-		4.3		3.9		36.4		0.20		-	
653203		273		Ditto, lower part of the seam		0.84		-		-		-		-		-		-		-	"-		5.5		6.2		37.8		-		-	
653328		274a		Adit No.4, 6 m from the mouth, 4.5 m from the day surface. Upper part of the seam		I.73		-		-		-		-		-		-		-	"-		6.8		7.1		34.8		-		-	
653924		274a		Ditto, concentrate of density I.6; yield 95 %		I.73		-		I 42		22 42		2222		8 29		6		-	"-		I5.3		5.5		42.1		0.26		-	
653185		274		Ditto, lower part of the seam		0.85		-		-		-		-		-		-		-	"-		6.5		7.4		33.8		-		-	
653199		356		Trench I47, upper part of the seam		I.65		-		I		53		I7		I9		I0		-	"-		I4.6		8.2		40.4		-		-	
653925		356		Ditto, concentrate of density I.4; yield 86 %		I.65		-		I		63		I3		I7		6		-	"-		I2.3		5.1		40.2		0.17		-	
653216		357		Ditto, lower part of the seam		0.71		-		I		67		II		9		I0		-	"-		I6.3		I0.0		42.2		-		-	
653331		358		Trench I49, upper part of the seam		I.89		-		I		46		I9		I8		9		-	"-		21.4		7.3		40.7		-		-	
653326		358a		Ditto, lower part of the seam		I.02		-		2		46		I6		I6		20		-	"-		II.1		20.6		38.0		-		-	
652669		technologi- cal sample 2		Adit No.4, 26 m from the mouth, 24 m from the day surface		2.62		-		I		63		I2		II		I3		-	"-		5.4		I5.6		37.1		0.57		0.094	
653178		"		Ditto, concentrate from		-		-		I		70		I3		I2		4		-	"-		4.2		6.0		37.3		0.38		0.089	
653350		"		Ditto, concentrate of density I.4; yield 80.0 %		-		-		I		72		I0		I4		3		0.75		gaseous, high		3.7		4.2		36.3		0.32		-
653259		300		Well No.7, at a depth of 61.45-62.20m		0.75		-		I		41		7		I2		38		-	"-		3.9		36.3		40.6		-		-	
653553		"		Ditto, concentrate of density I.4; yield 35 %		-		-		3		80		7		7		3		0.69		"-		4.1		5.2		38.2		0.35		0.006
653356		347		Trench 86, lower part of the seam		0.55		-		I		59		II		I5		I4		-	"-		I4.5		I5.1		43.86		-		-	
653339		347a		Trench 86, middle part of the seam		I.52		-		I		53		I4		22		I0		-	"-		I5.8		9.6		41.95		-		-	

18 : 19 : 20 : 21 : 22 : 23 : 24 : 25

18 : 19 : 20 : 21 : 22 : 23 : 24 : 25

						outlined	0
79.82	5.28	1.38	0.29	13.23	7959	"	2
-	-	-	-	-	-	"	0
-	-	-	-	-	-	-	0
-	-	-	-	-	-	-	0

ВСЕСОЮЗНОЕ
ЭКСПОРТНО-ИМПОРТНОЕ ОБЪЕДИНЕНИЕ
„ТЕХНОЭКСПОРТ“

МОСКВА Ж-324 Овчинниковская наб. 18/1
Телеграммы: МОСКВА ТЕХНОЭКСПОРТ
Телефон: Б 0-14-48

VSESOJUZNOJE
EXPORTNO-IMPORTNOE OBJEDINENIE
„TECHNOEXPORT“

MOSCOW J-324 Ovchinnikovskaja nab. 18/1
Cables: MOSCOW TECHNOEXPORT
Telephone: B 0-14-48

Your ref: No.

196

31810
65/6150

Our ref: No.

31810

8 " July

1965

65/6150

31810
65/6154

Ministry of Mines and Industries,
Geological and Minerals Survey
Department
Kabul, Afghanistan

Dear Sirs,

In accordance with § 5 of Addendum No.8 to Contract
No.640 please find enclosed herewith Reports on the
results of researching coal deposit "Shabashek" carried
out as per item "b" of the above Addendum.

Truly yours,

V/O "Technoexport"

mgm/Poly Shabashek

Enclosure: The above Report in two copies - two books.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100