

Data Series 531

By James P. Dixon, U.S. Geological Survey, Scott D. Stihler, University of Alaska Fairbanks, John A. Power, U.S. Geological Survey, and Cheryl K. Searcy, U.S. Geological Survey

Data Series 531

U.S. Department of the Interior KEN SALAZAR, Secretary

U.S. Geological Survey Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2010

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, Cheryl, 2010, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2009: U.S. Geological Survey Data Series 531, 84 p.

Contents

Abstract		1
Introduction	on	1
Instrumen	tation	1
Data Acqu	isition and Processing	6
Seismic Ve	elocity Models	7
Seismicity		7
Summary		10
Acknowle	dgments	10
Reference	s Cited	10
Appendix A	A. Maps of Monitored Volcanoes with Earthquake Hypocenters Calculated in 2009	13
Appendix I	B. Parameters for Alaska Volcano Observatory Seismograph Stations in 2009	43
Appendix	C. Locations of the Alaska Volcano Observatory Seismograph Stations in 2009	51
Appendix I	D. Operational Status for Alaska Volcano Observatory Stations in 2009	67
Appendix I	E. Seismic Velocity Models Used in Locating the Earthquakes in 2009	73
Appendix I	F. Location of Volcanic Zones Modeled Using Multiple Cylinders	79
Appendix (G. Previous Alaska Volcano Observatory Earthquake Catalogs	81
Appendix I	H. Selected Papers Published in 2009 Using Data Provided by Alaska Volcano	
Ob	servatory	83
Figure	S	
Figure 1.	Map showing location of volcanoes mentioned in this report	2
Figure 2.	Graph showing number of AVO seismograph stations by type and year	4
Figure 3.	Log-log plot of representative displacement response curves for AVO	
	short-period stations using a L4 (black), S13 (red), or L22 (green) seismometer	5
Figure 4.	Log-log plot of representative displacement response curves for the AVO	
	broadband stations using a CMG-6TD (black) or CMG-40T (red) seismometer	5
Figure 5.	Graph showing number of earthquakes located per year in the AVO catalog	
	(black line) and number of monitored volcanoes per year (green bars)	8
Tables		
Table 1.	Number of permanent AVO seismograph stations by type and network in 2009	3
	Number of Alaska Volcano Observatory seismograph stations by type and year	4
	Volcano subnetwork designators	6
	Alaska Volcano Observatory event description codes	6
	Number of earthquakes located for each seismograph subnetwork in 2009	
	within 20 km of the volcanic centers in each subnetwork	9
Table 6.	Number of earthquakes located per year in the Alaska Volcano Observatory earthquake catalog	10

Conversion Factors and Datum

Conversion Factors

Multiply	Ву	To obtain	
kilometer (km)	0.6214	mile (mi)	
meter (m)	3.281	foot (ft)	

Datum

Horizontal coordinate information is referenced to North American Datum of 1927 (NAD 27).

By James P. Dixon¹, Scott D. Stihler², John A. Power³, and Cheryl Searcy³

Abstract

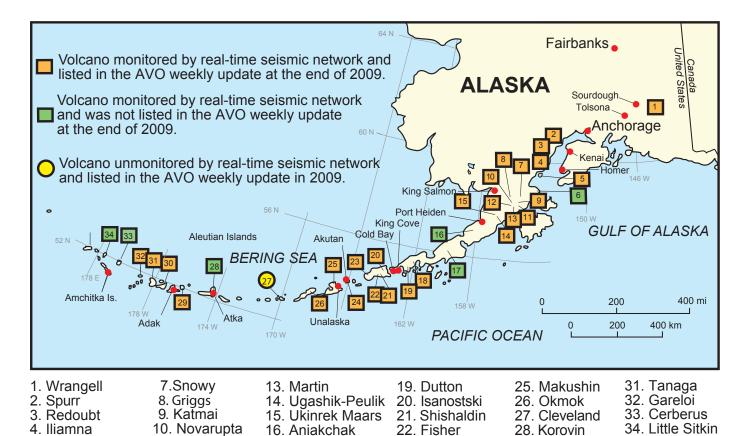
Between January 1 and December 31, 2009, the Alaska Volcano Observatory (AVO) located 8,829 earthquakes, of which 7,438 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. Monitoring highlights in 2009 include the eruption of Redoubt Volcano, as well as unrest at Okmok Caldera, Shishaldin Volcano, and Mount Veniaminof. Additionally severe seismograph subnetwork outages resulted in four volcanoes (Aniakchak, Fourpeaked, Korovin, and Veniaminof) being removed from the formal list of monitored volcanoes in late 2009. This catalog includes descriptions of: (1) locations of seismic instrumentation deployed during 2009; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2009; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, all files used to determine the earthquake locations in 2009, and a dataless SEED volume for the AVO seismograph network.

Introduction

The Alaska Volcano Observatory (AVO), established in 1988 as a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, monitors historically active volcanoes in Alaska (fig. 1). The primary objectives of the AVO seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism.

This catalog describes the location of seismic instrumentation deployed in the field, the earthquake detection, recording, analysis, and data archival systems, the seismic velocity models used for earthquake locations, and a summary of earthquakes located in 2009. A summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, all files used to determine the earthquake locations in 2009, and a dataless SEED volume for the AVO seismograph network are included in a data supplement to this report.

Instrumentation


The permanent AVO seismograph network is composed of 24 subnetworks each with 4 to 20 seismograph stations and 10 regional seismograph stations for a total of 197 stations (tables 1 and 2; fig. 2). Three seismograph stations, all in the Redoubt subnetwork, were added to the AVO seismograph networks in 2009. Two were installed with a broadband sensor (RDJH and RDWB) and a third was installed with a short-period sensor by Drift River (RDDR). The Drift River seismograph station was initially installed in February and named RDE. In the following July, the station was moved and subsequently renamed RDDR. In addition to the permanent network, temporary broadband stations were set up in the Katmai Volcanic Cluster and on Kasatochi Volcano.

Six volcanoes out of the 33 volcanic centers with seismograph networks were not on the formal list of permanently monitored volcanoes in the AVO weekly update at the end of 2009. To be included in the list of monitored volcanoes in the AVO weekly update, the seismic subnetwork on the volcano must be in place long enough so that the background seismicity is known and have no prolonged station outages that prevent AVO from locating earthquakes.

¹U.S. Geological Survey, Volcano Science Center, 903 Koyukuk Drive, Fairbanks, AK 99775

² University of Alaska Fairbanks, Geophysical Institute, 903 Koyukuk Drive, Fairbanks, AK 99775

³ U. S. Geological Survey, Volcano Science Center, 4210 University Drive, Anchorage, AK 99508

Westdahl

24. Akutan

Figure 1. Location of volcanoes mentioned in this report. Red dots show locations that are referred to in this report.

17. Veniaminof

18. Paylof

Loss of data due to telemetry failures since their installation has prevented Little Sitkin and Mount Cerberus, the active vent on Semisopochnoi Island, from being added to list of permanently monitored volcanoes. Four volcanoes: Aniakchak, Fourpeaked, Korovin, and Veniaminof were delisted on November 17, 2009. AVO could no longer seismically monitor these volcanic centers because of seismograph station outages and as such were designated as being unassigned with respect to their Volcano Alert Level.

11. Trident

Mageik

2

Augustine

Fourpeaked

The 154 single-component short-period seismograph stations were equipped with either Mark Products L4 or Teledyne-Geotech S13 seismometers with a natural period of 1 Hz. AVO also operated 22 three-component, short-period instruments during 2009. The instruments used at sites with three component sensors were either Mark Products L22, L4, or S13 seismometers. The L22 seismometer has a natural period of 2 Hz. Nineteen broadband stations were operated with either a Guralp CMG-40T seismometer (frequency range: 0.033–50 Hz), Guralp CMG-6TD seismometer (frequency range: 0.033–50 Hz), or Nanametrics Trillium 40 seismometer (frequency range: 0.025–50 Hz). The Augustine strong motion station (AU22) used a REFTEK 130-ANSS/02 strong motion sensor (frequency range: DC-500 Hz).

The majority of the short-period stations were digitized at 100 samples per second (sps). The Cerberus and Little Sitkin subnetworks were recorded at 50 sps due to limitations in data rates using very small aperture terminal telemetry between the recording hub located on Amchitka Island and Anchorage. Broadband stations were digitized at 50 sps with the exception of AUL, which is recorded at 100 sps. Each seismograph station is individually set to record above the noise level at each site and the range of calibration curves for short-period and broadband seismometers used in the AVO network are shown in figures 3 and 4. Calibration information for each station is found in a dataless SEED volume included in a data supplement to this report.

29. Great Sitkin

30. Kanaga

Data from short-period seismograph stations were telemetered using voltage-controlled oscillators (VCOs) to transform the signals generated by the seismometer (in response to ground velocity) from a voltage to a frequency-modulated carrier suitable for transmission over a radio link or telephone circuit. AVO used VCOs developed by McChesney (1999) to modulate signals in the field with one exception. Seismograph station NCG used an A1VCO, which is expected to be replaced when possible. Signals were transmitted via UHF and VHF radio to communication hubs located in Adak,

Table 1. Number of permanent AVO seismograph stations by type and network in 2009.

Subnetwork	Number of seismograph stations in each subnetwork	Number of station components in each subnetwork	Number of single- component short-period stations	Number of three- component short-period stations	Number of three- component broadband stations	Number of three- component strong motion stations
Akutan	12	26	5	1	6	0
Aniakchak	6	8	5	1	0	0
Augustine	9	18	6	1	1	1
Cerberus	6	8	5	1	0	0
Dutton	5	5	5	0	0	0
Fourpeaked	4	7	4	0	0	0
Gareloi	6	8	5	1	0	0
Great Sitkin	6	8	5	1	0	0
Iliamna	6	8	5	1	0	0
Kanaga	6	6	6	0	0	0
Katmai	20	30	15	3	2	0
Korovin	7	9	6	1	0	0
Little Sitkin	4	6	3	1	0	0
Makushin	7	9	6	1	0	0
Okmok	12	18	9	0	3	0
Pavlof	7	9	6	1	0	0
Peulik	7	9	6	1	0	0
Redoubt	10	19	6	2	2	0
Regional	11	15	9	0	1	0
Shishaldin	7	11	5	1	1	0
Spurr	15	23	11	1	3	0
Tanaga	6	8	5	1	0	0
Veniaminof	9	9	9	0	0	0
Westdahl	6	8	5	1	0	0
Wrangell	4	6	3	1	0	0
Totals	197	291	155	22	19	1

Akutan, Amchitka Island, Anchorage, Atka, Cold Bay, Homer, Kenai, King Cove, King Salmon, Port Heiden, Sourdough, Tolsona, and Unalaska (fig. 1). Data were then digitized at the Adak, Amchitka Island, Homer, Kenai, King Salmon, and Unalaska communication hubs and directed to AVO offices via high-speed digital circuits. From all other hubs (Akutan, Cold Bay, Port Heiden, Sourdough, and Tolsona), analog signals were relayed via leased telephone circuits to AVO offices in Anchorage or Fairbanks where the signals were subsequently digitized. Data from broadband seismograph stations were digitized at the station site and transmitted digitally using spread spectrum radios to communication hubs in Akutan,

Anchorage, Homer, and King Salmon, and Unalaska. These data were forwarded to AVO offices in Fairbanks and Anchorage via high-speed digital circuits.

Earthquakes located in 2009 with the AVO seismograph network are shown in appendix A. Locations and descriptions for all AVO stations operated during 2009 are contained in appendix B. Maps showing the locations of stations with respect to individual volcanoes are contained in appendix C. Estimates of each station's operational status for the catalog period are shown in appendix D. Other station information are available as part of the data supplement to this report.

 Table 2.
 Number of Alaska Volcano Observatory seismograph stations by type and year.

Year	Number of stations in the AVO seismograph network	Number of components in the AVO seismograph network	Number of single- component short-period stations	Number of three- component short-period stations	Number of three- component broadband stations	Number of three- component strong motion stations
1988	25	29	23	2	0	0
1989	28	32	26	2	0	0
1990	42	49	39	3	0	0
1991	36	42	33	3	0	0
1992	39	46	36	3	0	0
1993	44	51	41	3	0	0
1994	47	58	42	5	0	0
1995	57	67	52	5	0	0
1996	60	79	49	10	1	0
1997	96	125	83	12	2	0
1998	109	142	94	14	2	0
1999	122	156	106	14	2	0
2000	126	162	108	16	2	0
2001	139	177	120	17	3	0
2002	141	179	124	16	2	0
2003	161	217	135	18	9	0
2004	183	255	149	20	15	0
2005	189	266	151	23	15	0
2006	191	275	154	23	15	1
2007	194	281	154	22	17	1
2008	194	281	154	22	17	1
2009	197	288	155	22	19	1

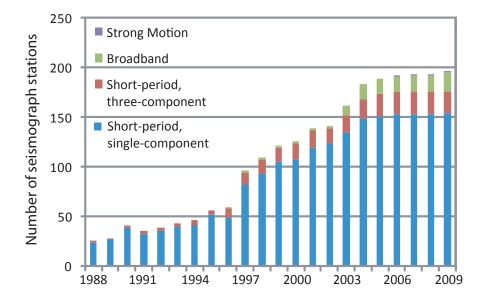
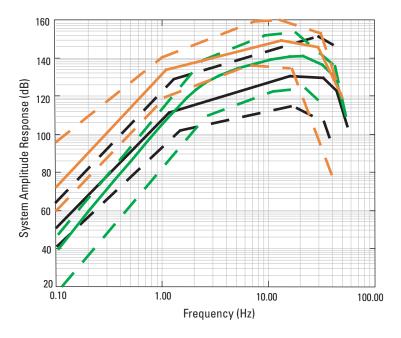
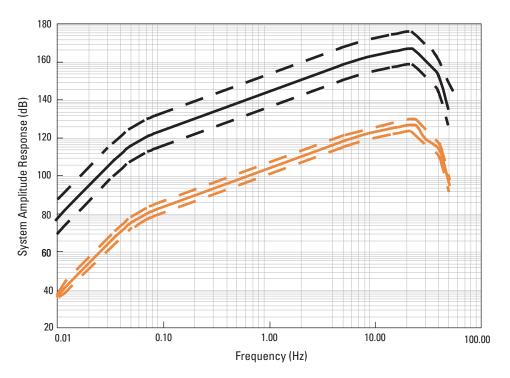




Figure 2. Number of AVO seismograph stations by type and year.

Figure 3. Log-log plot of representative displacement response curves for AVO short-period stations using a L4 (black), S13 (red), or L22 (green) seismometer. Solid lines indicate the typical curves and dashed lines show the range of curves for all AVO stations using the same seismometer.

Figure 4. Log-log plot of representative displacement response curves for the AVO broadband stations using a CMG-6TD (black) or CMG-40T (red) seismometer. Solid lines indicate the typical curve and dashed lines show the range of curves for all AVO stations using the same seismometer.

Data Acquisition and Processing

Data acquisition for the AVO seismograph network was accomplished with duplicate EARTHWORM systems (Johnson and others, 1995) located in Anchorage and Fairbanks. Data were recorded in both continuous and event detection modes. Event detected data were collected using the EARTHWORM modules Carlstatrig and Carlsubtrig, with the Carlstatrig parameters set as follows: Long-termaverage (LTA) time = 8 seconds, Ratio = 2.3, and Quiet = 4. Three station triggers from the Carlstatrig module are required for an event to trigger Carlsubtrig to create an event record. Carlsubtrig was modified such that a two-letter code (table 3) was appended to the filename of each trigger to identify the first subnetwork that triggered. If four or more subnetworks triggered on the same event, all data were saved in a single trigger and tagged as a regional event. All data are saved in Seismic Analysis Code format (Goldstein and others, 1999).

Event triggers were processed daily using the interactive seismic data analysis program XPICK (Robinson, 1990) and the earthquake location program HYPOELLIPSE (Lahr, 1999). Each event trigger was visually inspected and false triggers were deleted. Each subsequent event was identified by a description code (table 4) modified after Lahr and others (1994) and stored as a comment in the event location pick file. Earthquakes with a P-wave and S-wave separation of greater than 5 seconds on the closest station were assumed to come from non-volcanic sources and typically were not located. Each hypocenter was checked using a computer algorithm that identified events that did not meet the following minimum parameters: three P-phases, two S-phases, and standard hypocentral errors less than 15 km, as defined by Lahr (1999). If upon reevaluation, the minimum parameters could not be met, the event was removed from the final catalog listing. For the 8,829 earthquakes appearing in the 2009 AVO catalog, the average root-mean-square travel-time error was 0.12 seconds and the average vertical and horizontal hypocentral errors were 1.38 and 2.18 km, respectively. At the time of this report's publication, all hypocentral locations of earthquakes in the AVO seismic catalog have been made available as part of the Advanced National Seismic System (ANSS) catalog. AVO earthquake hypocentral locations are currently being added on a monthly basis to the ANSS catalog after a quality check is performed.

Additional data from seismograph stations operated by the Alaska Earthquake Information Center (AEIC), Global Seismograph Network, and West Coast and Alaska Tsunami Warning Center (WCATWC) were routinely utilized in event detection and location. Station parameters for the WCATWC and AEIC stations used by AVO in 2009 are provided in appendix B.

Table 3. Volcano subnetwork designators.

Volcano subnetwork	Network code	Volcanoes monitored		
Akutan	ak	Akutan Volcano		
Aniakchak	an	Aniakchak Crater		
Augustine	au	Augustine Volcano		
Cerberus	ce	Mount Cerberus		
Dutton	dt	Mount Dutton		
Iliamna	il	Iliamna Volcano		
Fourpeaked	fo	Fourpeaked Mountain		
Gareloi	ga	Mount Gareloi		
Great Sitkin	gs	Great Sitkin Volcano		
Kanaga	ki	Kanaga Volcano		
Katmai	ka	Mount Griggs, Mount Katmai, Mount Mageik and Mount Martin, Novarupta, Snowy Mountain, and Trident Volcano		
Korovin	ko	Korovin Volcano		
Little Sitkin	ls	Little Sitkin Volcano		
Makushin	ma	Makushin Volcano		
Okmok	ok	Okmok Caldera		
Pavlof	pv	Pavlof Volcano		
Peulik	pl	Ugashik-Peulik and Ukinrek Maars		
Redoubt	rd	Redoubt Volcano		
Regional Event	rg	none		
Shishaldin	sh	Fisher Caldera, Isanotski Peaks, and Shishaldin Volcano		
Spurr	sp	Mount Spurr		
Tanaga	ta	Tanaga Volcano		
Veniaminof	vn	Mount Veniaminof		
Westdahl	we	Fisher Caldera, and Westdahl Peak		
Wrangell	wa	Mount Wrangell		

Table 4. Alaska Volcano Observatory event description codes.

[Lower case letters refer to triggered events that are located. Upper case letters are used for triggered events that are not typically located]

Event classification	Classification code	
Volcano-Tectonic (VT)	a	
Low-Frequency (LF)	b	
Hybrid	h	
Shore-Ice	i	
Cause unknown	X	
Regional-Volcanic	R	
Regional-Tectonic	E	
Teleseismic	T	
Glacier	G	
Calibrations	C	
Other non-seismic	O	

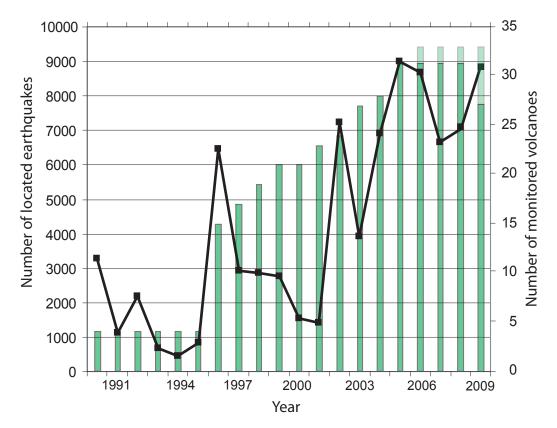
Seismic Velocity Models

During 2009, AVO used 12 local volcano-specific seismic velocity models and a regional seismic velocity model to locate earthquakes at Alaskan volcanoes. All velocity models were one-dimensional models utilizing horizontal layers to approximate the local seismic velocity structure. Each model, with one exception, assumed a series of constant velocity layers. The single exception was the Akutan velocity model (Power and others, 1996), which had a velocity gradient in a layer overlying a half-space of constant velocity.

One or more vertical cylindrical volumes were used to model the volcanic source zones for all volcanoes where a local velocity model was used. Earthquakes within these cylindrical volumes were located with a local model and earthquakes outside of the cylindrical volumes were located with the regional model. The top of each cylinder was set at 3 km above sea level and the bottom was set at a depth of 50 km below sea level. All cylindrical volumes had a radius of 20 km with the exception of the cylinders centered on Shishaldin and Mount Veniaminof. The cylinder centered on Shishaldin had a radius of 30 km in order to encompass Fisher Caldera and Isanotski Peaks. The cylinder centered on Veniaminof also had a radius of 30 km because of the large size of the volcanic edifice.

The Akutan, Augustine (Power, 1988), Iliamna (Roman and others, 2001), Okmok (Masterlark and others, 2010), Tanaga (J.A. Power, written commun., 2005), Veniaminof (Sánchez, 2005) and Westdahl (Dixon and others, 2005) velocity models were used to locate hypocenters that fell within cylindrical volumes described above, centered on each respective volcano. The Cold Bay velocity model (McNutt and Jacob, 1986) was used to locate earthquakes that fell within cylindrical volumes centered on Mount Dutton and Pavlof Volcano. Earthquakes at Fisher, Isanotski, and Shishaldin that fell within the cylindrical regions centered on Shishaldin Volcano also were located using the Cold Bay velocity model. Five overlapping cylinders defined the volume in which the Spurr velocity model (Jolly and others, 1994) was used, four overlapping cylinders defined the volume for the Redoubt velocity model (Lahr and others, 1994), and four overlapping cylinders defined the volume for the Katmai model (Searcy, 2003). The Andreanof velocity model, modified from that in Toth and Kisslinger (1984), was used to locate earthquakes within a volume defined by three cylinders centered on Kanaga Volcano, Mount Moffet, and Great Sitkin Volcano. Specific velocity models for Aniakchak Crater, Mount Cerberus, Mount Gareloi, Korovin Volcano, Little Sitkin Volcano, Makushin Volcano, Mount Peulik, and Mount Wrangell were not available in 2009 and the regional velocity model (Fogleman and others, 1993) was used to

locate earthquakes near these volcanoes. The cylindrical model parameters, regional velocity model, and volcanospecific models used to locate earthquakes in this report are summarized in appendix E. Figures showing the volcanic source zones modeled by multiple cylinders are shown in appendix F.


Seismicity

In 2009, the AVO located 8,829 earthquakes at the 33 volcanic centers with seismograph subnetworks (fig. 5, appendix A). The 8,829 earthquakes located in 2009 represent a 24 percent increase from the 7,097 earthquakes located in 2008 (Dixon and Stihler, 2009). Of the earthquakes located in 2009, 84 percent (7,438 earthquakes) were located within 20 km of a monitored volcanic center. The numbers of located earthquakes associated with volcanic centers during the last 2 years are shown in table 5. The number of located earthquakes in the AVO catalog by year are shown in table 6.

Using the 2009 earthquake catalog, the magnitude of completeness (Mc) for each subnetwork was calculated with the exception of seven subnetworks (table 5). Mc is the magnitude threshold above which we are reasonably certain that an event of Mc or greater was detected. The Mc was determined using a maximum likelihood estimate of the inflection point in the frequency magnitude distribution using the seismology analysis software ZMAP (Weimer, 2001). The Aniakchak, Cerberus, Gareloi, Great Sitkin, Pavlof, Veniaminof, and Wrangell subnetworks had insufficient numbers of located earthquakes to calculate a Mc. The Mc ranged from -0.1 to 1.5 for the individual subnetworks.

In 2009, the Volcanic Alert Level was raised at four monitored volcanic centers, Okmok, Redoubt, Shishaldin, and Veniaminof, with only the unrest at Redoubt accompanied by an increase in the number of located earthquakes when compared to previous years. The number of located earthquakes at Westdahl also showed a significant increase in 2009

Mount Redoubt started the year with the Volcano Alert Level at Advisory. On January 23, 2009, seismic activity consisting of numerous discrete small earthquakes and periods of nearly continuous volcanic tremor increased at the stations closest to Redoubt's summit. The Volcano Alert Level was raised to Watch 2 days later when this seismicity intensified. For the next month, seismicity waxed and waned but remained well above background levels. Following approximately 60 hours of elevated seismicity in the form of discrete earthquakes under the volcano, the eruption of Mount Redoubt began at 06:38 UTC on March 23, 2009, accompanied with a Volcano Alert Level change to Warning.

Figure 5. Number of earthquakes located per year in the AVO catalog (black line) and number of monitored volcanoes per year (green bars). The lighter green color indicates the number of volcanoes with seismic networks and not included on the formal list of monitored volcanoes.

A rich variety of seismic signals have been recorded at Redoubt throughout the eruption and in the preceding months of unrest. These seismic events included volcanic-tectonic earthquakes, volcanic tremor, signals resulting from the volcanic explosions, ground shaking from lahars and pyroclastic flows, and small, repetitive, multiplets associated with the slow extrusion of lava and dome growth.

Seismic activity at Mount Redoubt from mid-April through September was characterized by numerous small volcanic earthquakes and signals from small rock avalanches. On September 29, the Volcano Alert Level was moved to Normal because the volcano appeared to have returned to its normal background condition, posing no immediate threat of eruptive activity. In late December, a series of small repetitive earthquakes occurred in the vicinity of the volcano's summit prompting a raise in the Volcano Alert Level to Watch. The swarm quickly decreased after a few days and the Volcano Alert Level was returned to Normal shortly thereafter.

The number of located earthquakes near Westdahl Peak was well above average in 2009 compared to that in 2008. The increased seismicity was accompanied by an increase in the proportion of located deep long-period earthquakes compared to all located earthquakes. Along with the increase in deep, long-period earthquakes there was an observation from continuous GPS sensors of inflation at Westdahl in late 2009 (Dr. Jeff Freymueller, oral commun., University of Fairbanks, December 12, 2009). A similar pattern was seen in 2002–03 and was followed by an inferred intrusion in 2004 (Dixon and others, 2005).

At three volcanic centers, Okmok, Shishaldin, and Veniaminof, the periods of unrest were not accompanied by an increase in the yearly count of located earthquakes. At Okmok, the Volcanic Alert Level was raised to Advisory between March 2 and March 20 in response to short bursts of volcanic tremor occurring at an average rate of one per hour.

Table 5. Number of earthquakes located for each seismograph subnetwork in 2009 within 20 km of the volcanic centers in each subnetwork.

[The totals for 2009 are broken into three event types: volcanic-tectonic (VT), low-frequency (LF) and other (all other possible event types shown in table 4). Magnitude of completeness (Mc) for AVO seismograph subnetworks used the 2009 data]

Volcano subnetwork	Earthquakes located in 2008	Earthquakes located in 2009	2009 VT	2009 LF	2009 Other	2009 Mc
Akutan	105	45	41	4	0	0.8
Aniakchak	1	22	4	18	0	(1)
Augustine	116	34	29	0	5	-0.1
Cerberus	21	11	11	0	0	(1)
Dutton	19	32	28	0	4	0.8
Fourpeaked	11	16	16	0	0	1.0
Gareloi	87	30	28	0	2	(1)
Great Sitkin	33	36	35	0	1	(1)
Iliamna	102	173	159	13	1	0.3
Kanaga	478	28	26	0	2	1.5
Katmai Cluster	1,987	1,338	1,327	11	0	0.4
Korovin	47	78	72	6	0	0.3
Little Sitkin	235	57	57	0	0	0.7
Makushin	117	141	141	0	0	0.7
Okmok	635	151	148	3	0	1.2
Pavlof	9	7	7	0	0	(1)
Peulik	21	10	10	0	0	0.9
Redoubt	107	4,246	3,860	386	0	0.4
Shishaldin	290	257	227	30	0	0.6
Spurr	599	411	381	28	2	0.1
Tanaga	401	250	241	0	9	1.2
Veniaminof	17	4	3	1	0	(1)
Westdahl	11	56	37	19	0	1.0
Wrangell	83	5	5	0	0	(1)
Totals	5,318	7,438	6,893	519	26	(1)

¹ Insufficient number of located earthquakes and therefore an Mc could not be computed.

This increase above typical background activity quickly died away and by March 20 was back to background levels. The Volcanic Alert Level for Shishaldin was raised to Advisory for two time periods. On January 6, AVO seismic networks recorded a small but significant number of earthquakes below the volcano that was accompanied by a thermal anomaly observed in satellite imagery. This anomalous activity decreased to background by February 11 when the Volcanic Alert Level was lowered to Normal. There was no appreciable change in seismicity detected in the unrest at Shishaldin when the Volcanic Alert Level was raised to Advisory between July 10 and October 19 based on changes in observed satellite imagery. The unrest at Veniaminof began on May 7 when increased low level earthquake activity was detected and continued for 2 weeks. On May 26, when the seismic activity had diminished, the Volcano Alert Level was returned to Normal.

Six subnetworks (Akutan, Augustine, Cerberus, Gareloi, Pavlof, and Peulik), saw a decrease in the number of located earthquakes in 2009 compared to the number of earthquakes located in 2008. The remaining five subnetworks have an apparent decrease in located seismicity in 2009 compared to 2008 that is explained by station outages. The number of located earthquakes at the Aktuan, Aniakchak, Dutton, Fourpeaked, Great Sitkin, Iliamna, Little Sitkin, Kanaga Island, Makushin, Okmok, Shishaldin, Spurr, Tanaga, Veniaminof, and Wrangell subnetworks were similar to that in preceding years.

Table 6. Number of earthquakes located per year in the Alaska Volcano Observatory earthquake catalog.

Year	Number of earthquakes located per year	Number of earthquakes located per year within 20 km of a volcano	Volcanoes with an AVO seismograph network
1989	911	892	4
1990	3,285	3,148	4
1991	1,119	1,064	4
1992	2,184	2,104	4
1993	697	592	4
1994	441	407	4
1995	850	760	4
1996	6,466	4,259	14
1997	2,930	1,783	17
1998	2,873	1,886	20
1999	2,769	2,343	22
2000	1,551	1,225	22
2001	1,427	1,122	23
2002	7,242	6,578	24
2003	3,911	3,264	27
2004	6,928	6,105	30
2005	9,012	8,146	32
2006	8,666	7,782	33
2007	6,664	5,660	33
2008	7,097	5,318	33
2009	8,829	7,438	33

Summary

Between January 1 and December 31, 2009, AVO located 8,829 earthquakes, of which 7,438 occurred at or near volcanoes in Alaska. Monitoring highlights in 2009 include the eruption of Redoubt Volcano, as well as increased unrest at Mount Veniaminof, Shishaldin Volcano, and Okmok Caldera.

Available for download with this report is a compressed Unix tar-file containing a summary listing of earthquake hypocenters and all necessary HYPOELLIPSE input files to recalculate the hypocenters including station locations and calibrations, seismic velocity models, and phase information. A dataless SEED volume for the AVO Seismograph network is included in the data supplement. The reader should refer to Lahr (1999) for information on file formats and instructions for configuring and running the location program

HYPOELLIPSE. Continuous waveform data for selected AVO seismograph stations are archived and available through the Incorporated Research Institutions for Seismology (IRIS) (www.iris.edu). Archives of waveform data are maintained on DVD-ROM at AVO offices in Fairbanks and Anchorage.

AVO earthquake catalogs for 1989–2008 are listed in appendix G. Selected papers published in 2009 that utilized AVO seismic data are listed in appendix H.

Acknowledgments

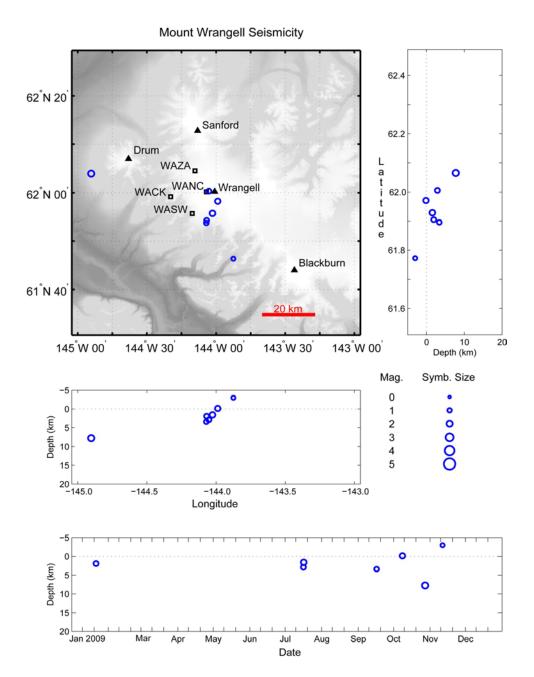
The contents of this report reflect a great deal of hard work by a large number of people including AVO, Alaska Earthquake Information Center (AEIC), and USGS personnel and various students, interns, and volunteers. We thank the AEIC and the West Coast and Alaska Tsunami Warning Center for the use of their data. We thank Wes Thelen of the U.S Geological Survey and Matt Gardine of the University of Alaska Fairbanks for formal reviews of the text and figures.

References Cited

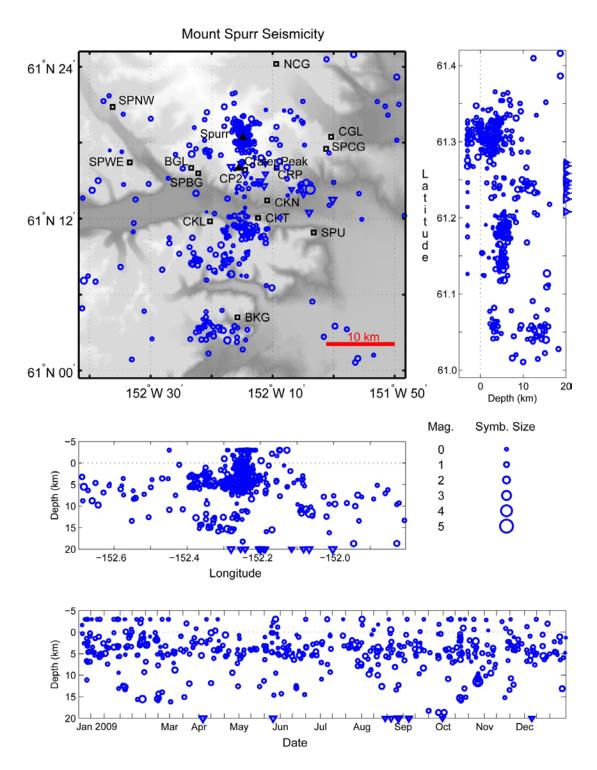
Dixon, J.P., Power, J.A., and Stihler, S.D., 2005, Seismic observations of Westdahl Volcano and Western Unimak Island, Alaska: 1999–2005 [abs.]: American Geophysical Union Transactions, v. 86, Fall Meeting Supplement, Abstract S11b-0169.

Dixon, J.P., and Stihler, S.D., 2009, Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2008: U.S. Geological Survey Data Series 467, 88 p. (Also available at http://pubs.usgs.gov/ds/467/.)

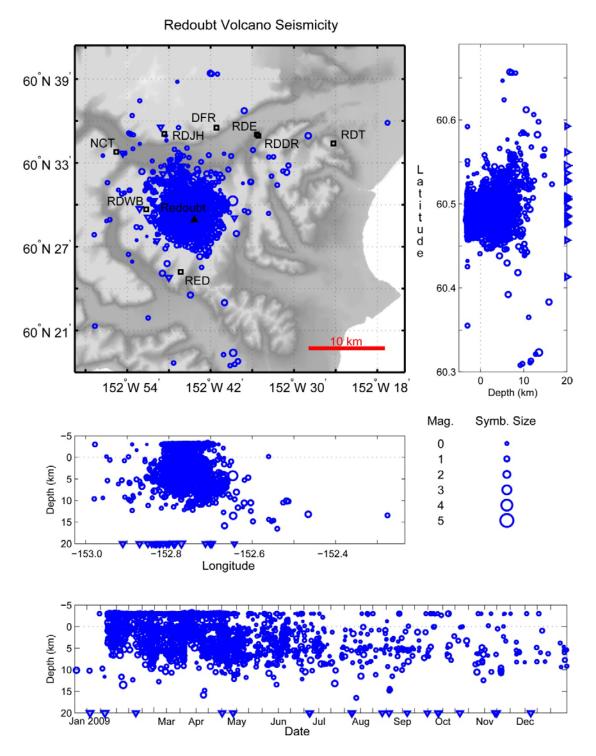
Fogleman, K.A., Lahr, J.C., Stephens, C.D., and Page, R.A., 1993, Earthquake locations determined by the southern Alaska seismograph network for October 1971 through May 1989: U.S. Geological Survey Open-File Report 93-309, 54 p.

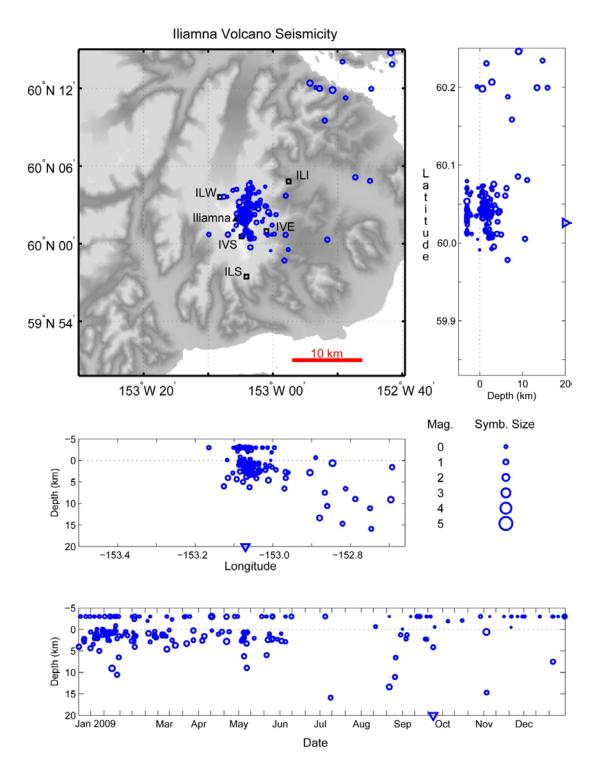

Goldstein, P., Dodge, D., and Firpo, M., 1999, SAC2000: Signal processing and analysis tools for seismologists and engineers, *in* Lee, W.H.K., Kanamori, H., Jennings, P.P., Kisslinger, C., eds., International Handbook of Engineers and Engineering Seismology, v. 81B, San Diego, CA, Academic Press, p. 1613-1614.

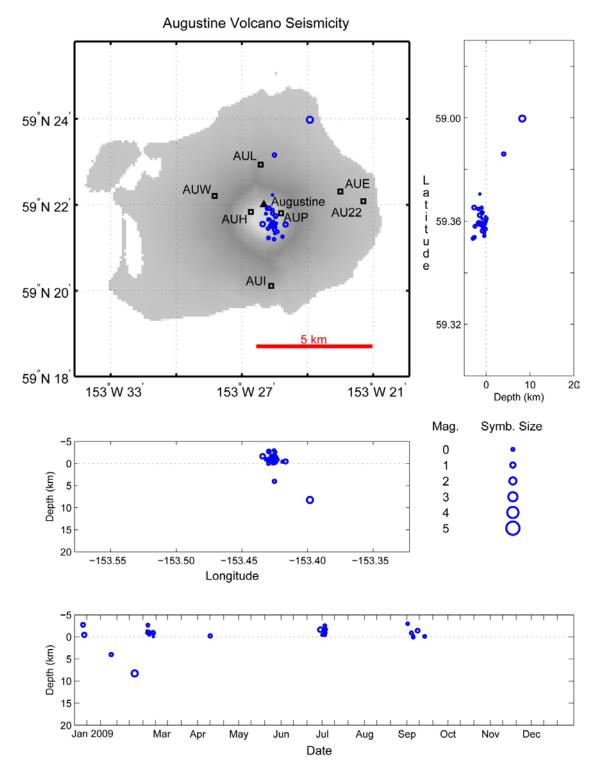
- Johnson, C.E., Bittenbinder, A., Bogaert, D., Dietz, L., and Kohler, W., 1995, EARTHWORM: A flexible approach to seismograph network processing: Incorporated Research Institutions for Seismology Newsletter, v. 14, no. 2, p. 1-4.
- Jolly, A.D., Page, R.A., and Power, J.A., 1994, Seismicity and stress in the vicinity of Mt. Spurr volcano, south-central Alaska: Journal of Geophysical Research, v. 99, p. 15305-15318.
- Lahr, J.C., 1999, HYPOELLIPSE: A computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern: U.S. Geological Survey Open-File Report 99-23, 116 p.
- Lahr, J.C., Chouet, B.A., Stephens, C.D., Power, J.A., and Page, R.A., 1994, Earthquake classification, location, and error analysis in a volcanic environment: Implications for the magmatic system of the 1989–90 eruptions at Redoubt Volcano, Alaska: Journal of Volcanology and Geothermal Research, v. 62, p. 137-152.
- Masterlark, T., Haney, M., Dickinson, H., Fournier, T., and Searcy, C., 2010, Rheological and structrual controls on the deformation of Okmok Volcano, Alaska: FEM's InSAR, and ambient noise tomography: Journal of Geophysical Research, v. 115, B02409, doi:10.1029/2009JB006324, accessed August 13, 2010, at http://www.agu.org/journals/ABS/2010/2009JB006324.shtml.
- McChesney, P.J., 1999, McVCO Handbook 1999: U.S. Geological Survey Open-File Report 99-361, 48 p. (Also available at http://geopubs.wr.usgs.gov/open-file/of99-361/.)
- McNutt, S.R., and Jacob, K.H, 1986, Determination of large-scale velocity structure of the crust and upper mantle in the vicinity of Pavlof Volcano, Alaska: Journal of Geophysical Research, v. 91, p. 5013-5022.

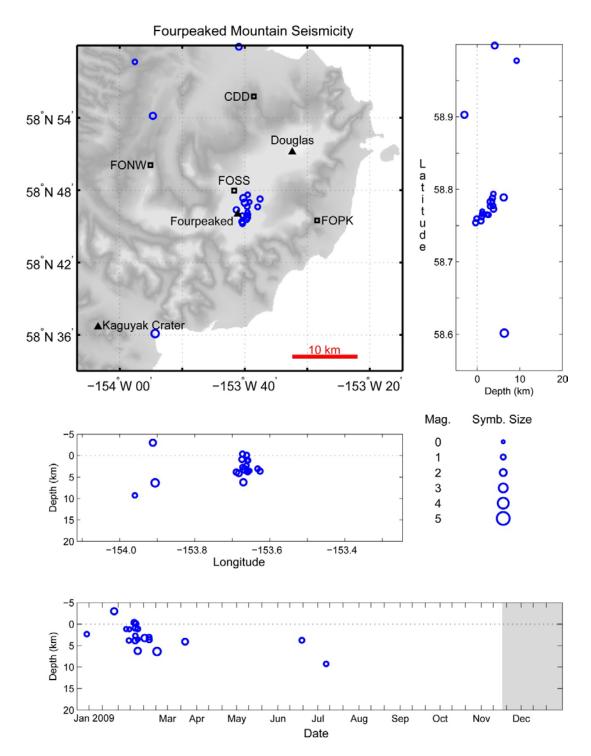

- Neal, C.A., Larsen, J.F., and Schaefer, Janet, 2009, The July–August 2008 hydrovolcanic eruption of Okmok Volcano, Umnak Island, Alaska: Alaska Geological Society Newsletter, v. 39, no. 5.
- Power, J.A., 1988, Seismicity associated with the 1986 eruption of Augustine Volcano, Alaska: Fairbanks, University of Alaska Fairbanks, Masters Thesis, 149 p.
- Power, J.A., Paskievitch, J.F., Richter, D.H., McGimsey, R.G., Stelling, P., Jolly, A.D., and Fletcher, H.J., 1996, 1996 seismicity and ground deformation at Akutan Volcano: American Geophysical Union Transactions, v. 77, p. F514.
- Robinson, M., 1990, XPICK users manual, version 2.7: University of Alaska Fairbanks, Seismology Lab, Geophysical Institute, 93 p.
- Roman, D.C., Power, J.A., Moran, S.C., Cashman, K.V., and Stihler, S.D., 2001, Unrest at Iliamna Volcano, Alaska in 1996, Evidence for a magmatic intrusion [abs.]: American Geophysical Union Transactions, v. 82, p. F1329.
- Sánchez, J.J., 2005, Volcano seismology from around the World: Case studies from Mount Pinatubo (Philippines), Galeras (Columbia), Mount Wrangell and Mount Veniaminof (Alaska): Fairbanks, University of Alaska Fairbanks, Ph.D. dissertation, 208 p.
- Searcy, C.K., 2003, Station corrections for the Katmai Region seismograph network: U.S. Geological Survey Open-File Report 03-403, 16 p.
- Toth, T., and Kisslinger, C., 1984, Revised focal depths and velocity model for local earthquakes in the Adak seismic zone: Bulletin of the Seismological Society of America, v. 74, p. 1349-1360.
- Wiemer, S., 2001, A software package to analyze seismicity: ZMAP: Seismological Research Letters, v. 72, p. 373-382.

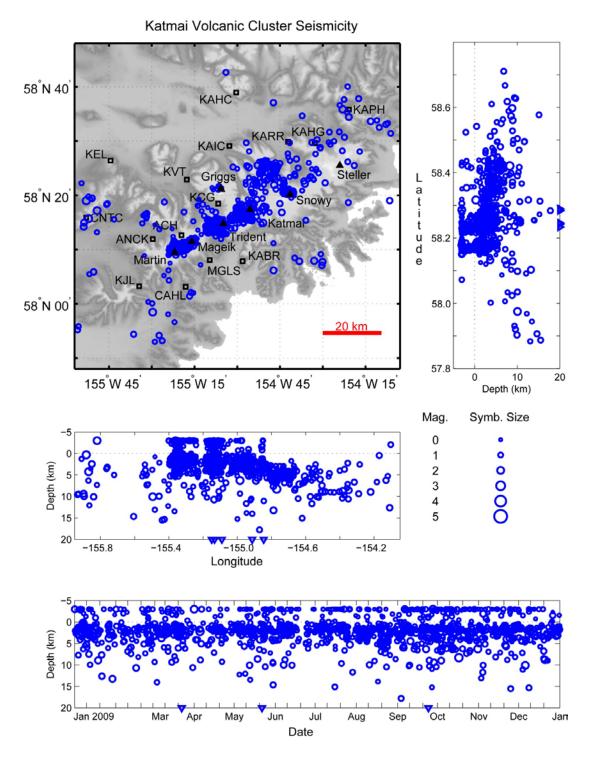
12	Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2009
	This page left intentionally blank

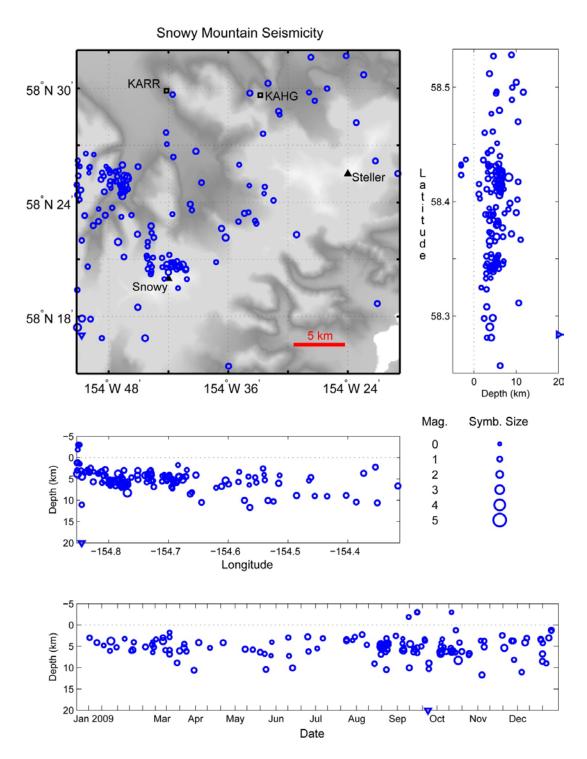

Appendix A. Maps of Monitored Volcanoes with Earthquake Hypocenters Calculated in 2009.

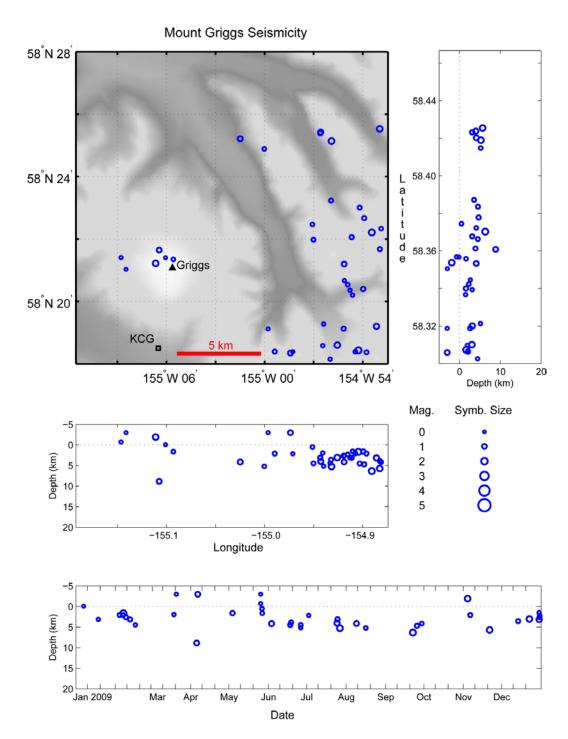

Figure A1. Summary plots of earthquakes located near Mount Wrangell in 2009. Open circles indicate hypocenters shallower than 20 km with symbols scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is $x \times 1.5$. See appendix B for station information.

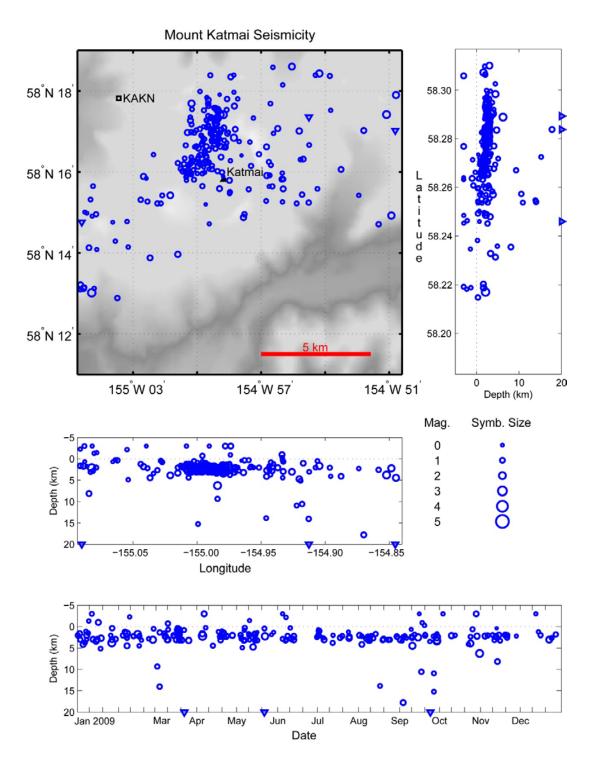

Figure A2. Summary plots of earthquakes located near Mount Spurr in 2009. Open circles indicate hypocenters shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.6. See appendix B for station information.

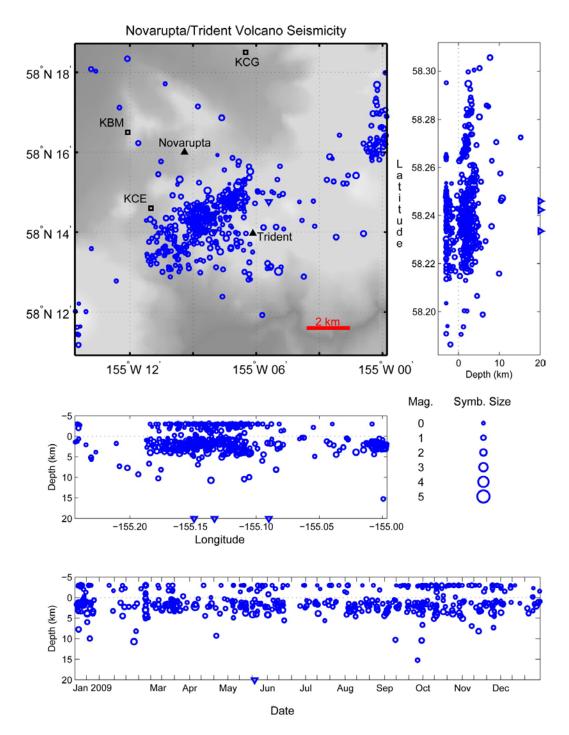

Figure A3. Summary plots of earthquakes located near Redoubt Volcano in 2009. Open circles indicate hypocenters shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.6. See appendix B for station information.

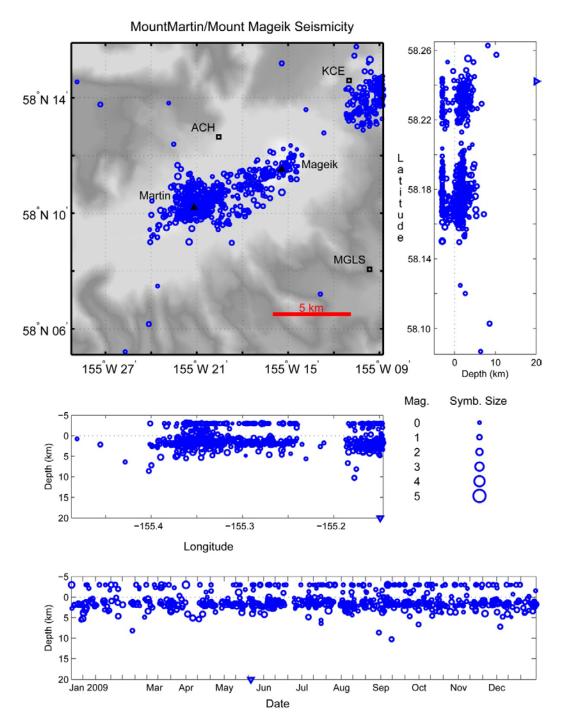

Figure A4. Summary plots of earthquakes located near Iliamna Volcano in 2009. Open circles indicate hypocenters shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.6. See appendix B for station information.

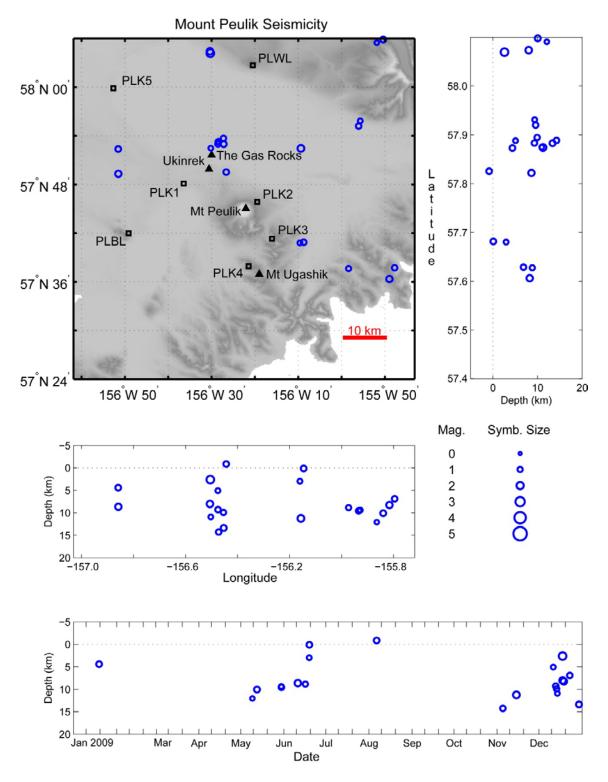

Figure A5. Summary plots of earthquakes located near Augustine Volcano in 2009. Open circles indicate hypocenters shallower than 20 km with symbols scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.2. See appendix B for station information.

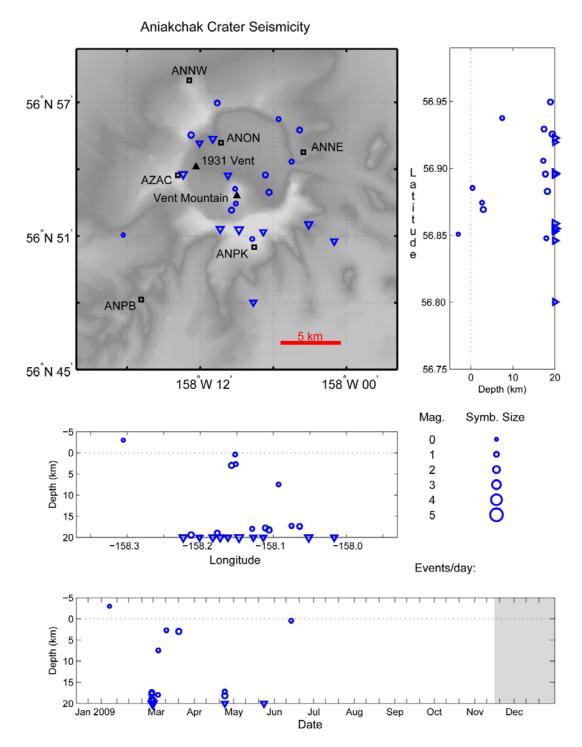

Figure A6. Summary plots of earthquakes located near Fourpeaked Mountain in 2009. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. The gray shaded area in time depth plot shows the time frame the subnetwork was not on the monitored volcano list. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.7. See appendix B for station information.

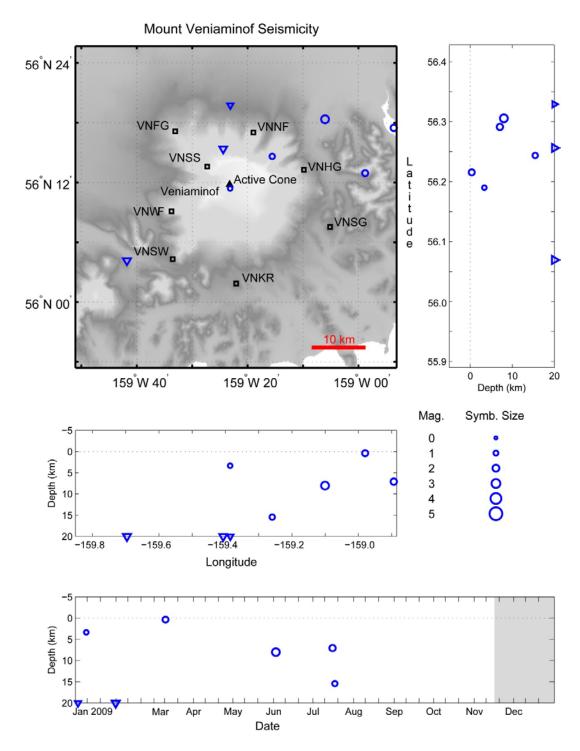

Figure A7. Summary plots of earthquakes located within the Katmai volcanic cluster in 2009. Open circles indicate hypocenters shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper with symbols scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x1.4. See appendix B for station information.

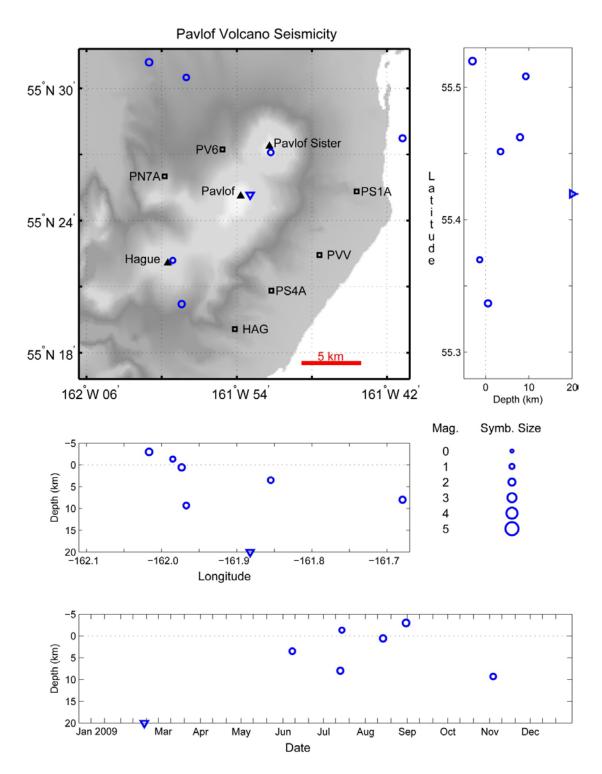

Figure A8. Summary plots of earthquakes located near Snowy Mountain in the Katmai volcanic cluster in 2009. Open circles show hypocenter locations shallower than 20 km and open triangles indicate times of hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.4. See appendix B for station information.

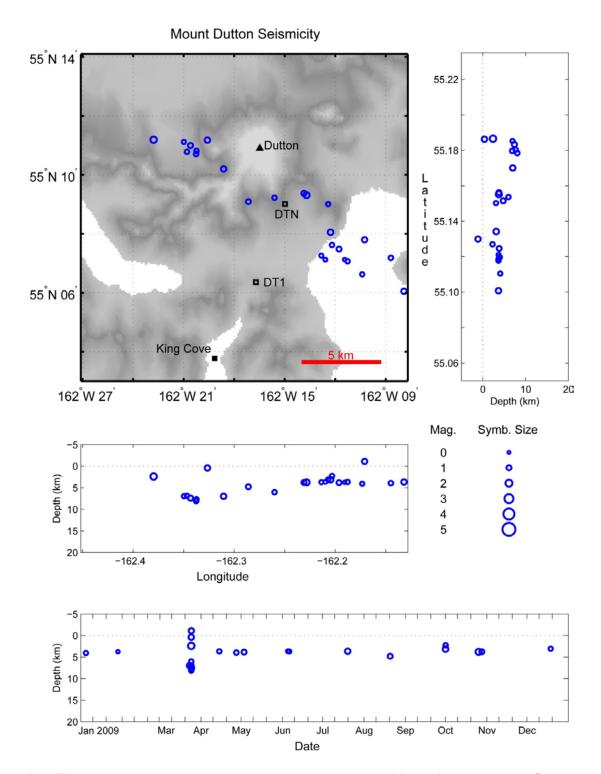

Figure A9. Summary plots of earthquakes located near Mount Griggs in the Katmai volcanic cluster in 2009. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.25. See appendix B for station information. Several earthquakes that appear on this figure appear on other figures.

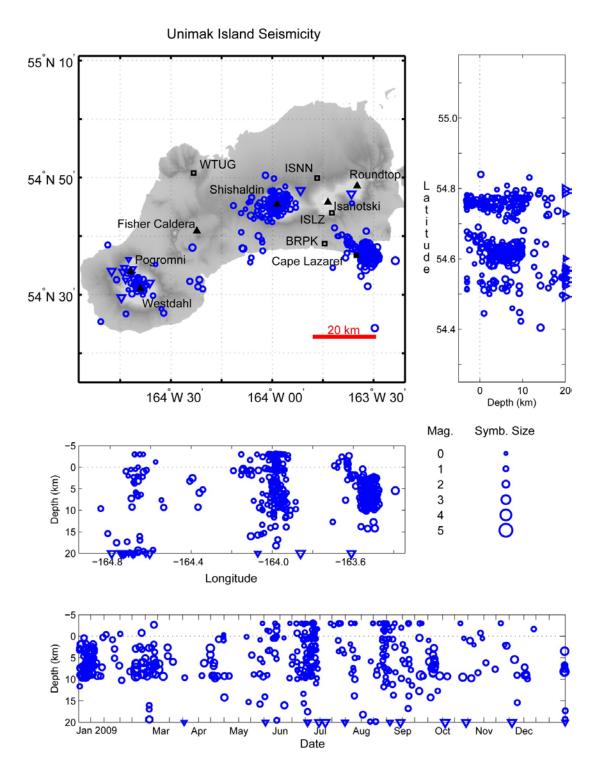

Figure A10. Summary plots of earthquakes located near Mount Katmai in the Katmai volcanic cluster in 2009. Open circles show hypocenter locations shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.2. See appendix B for station information. Several earthquakes that appear on this figure appear on other figures.

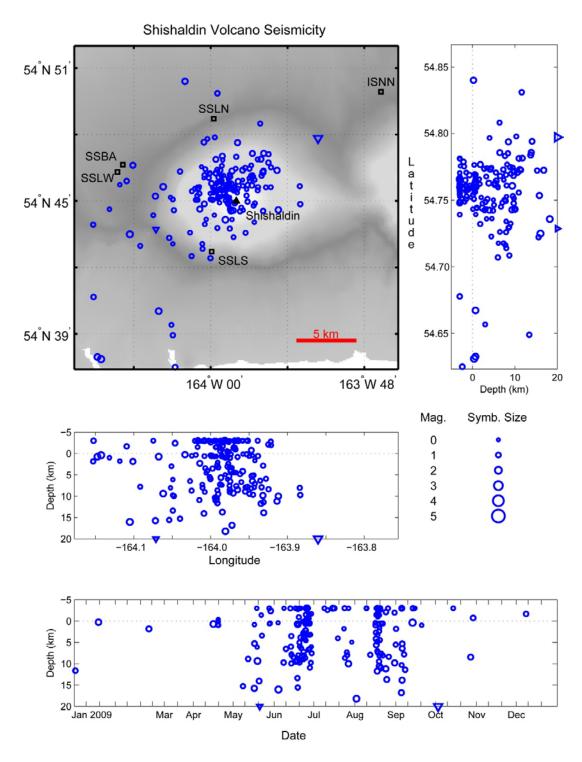

Figure A11. Summary plots of earthquakes located near Novarupta and Trident Volcano in the Katmai volcanic cluster in 2009. Open circles show hypocenter locations shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.2. See appendix B for station information. Several earthquakes that appear on this figure appear on other figures.

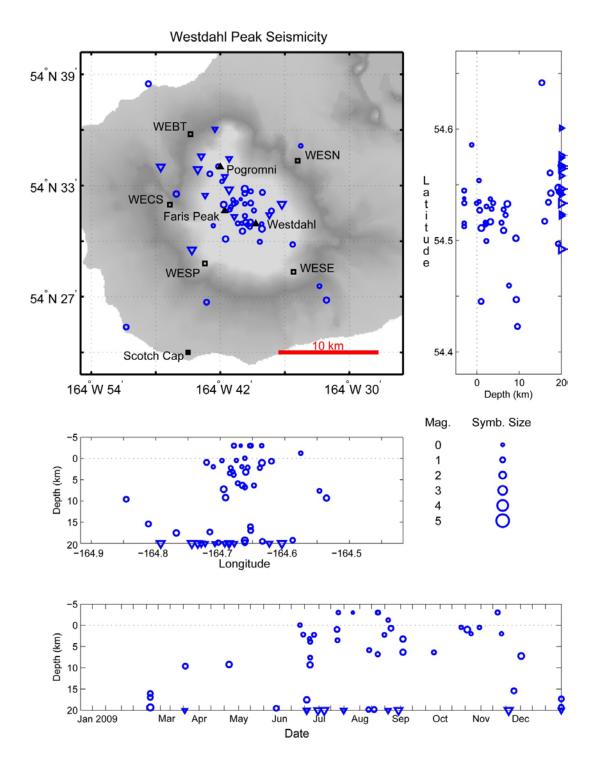

Figure A12. Summary plots of earthquakes located near Mount Mageik and Mount Martin in the Katmai volcanic cluster in 2009. Open circles show hypocenter locations shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.25. See appendix B for station information. Several earthquakes that appear on this figure appear on other figures.

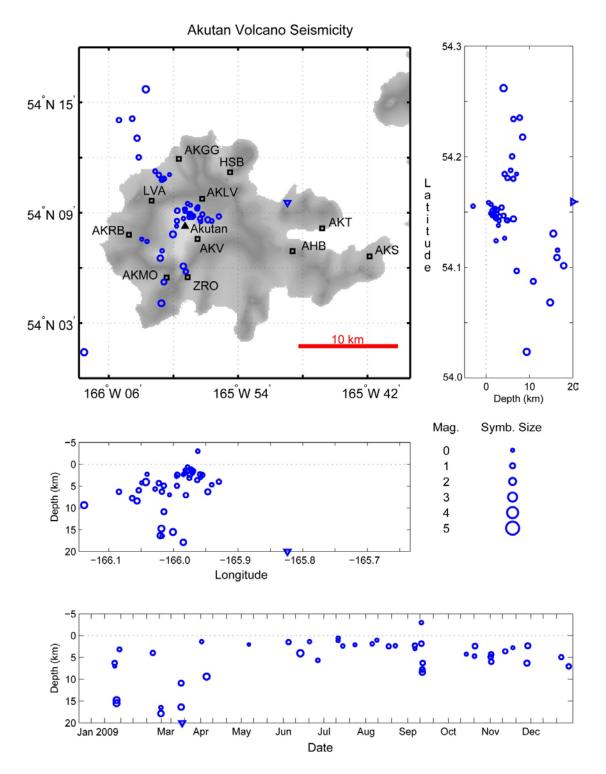

Figure A13. Summary plots of earthquakes located near Mount Peulik in 2009. Open circles indicate hypocenters shallower than 20 km with symbols scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x1.0. See appendix B for station information.

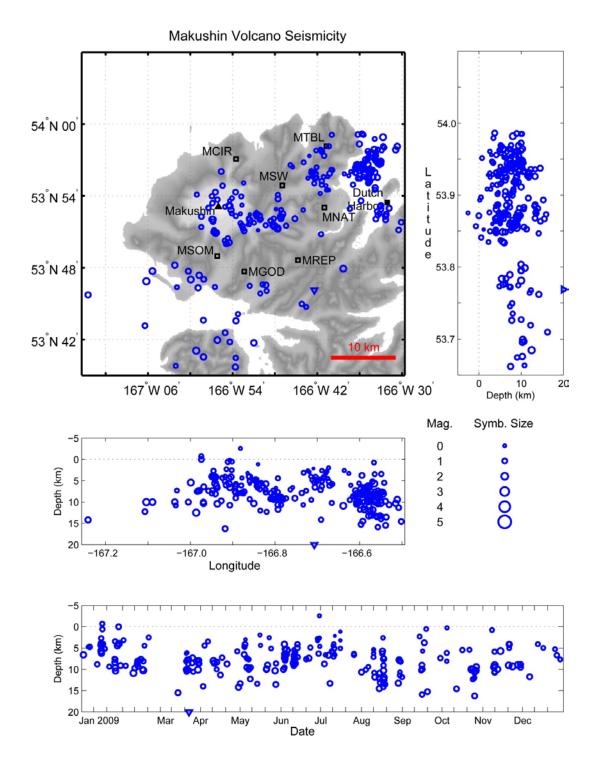

Figure A14. Summary plots of earthquakes located near Aniakchak Crater in 2009. Open circles indicates hypocenters shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper with symbols scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. The gray shaded area in time depth plot shows the time frame the subnetwork was not on the monitored volcano list. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.35. See appendix B for station information.

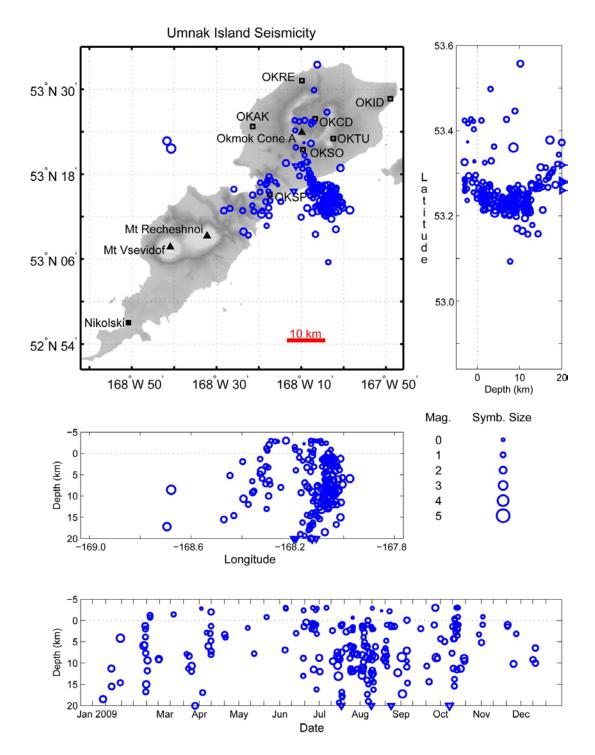

Figure A15. Summary plots of earthquakes located near Mount Veniaminof in 2009. Open circles show hypocenter locations shallower than 20 km and open triangles indicates hypocenters with depths of 20 km and deeper. Permanent seismograph stations are shown by open squares and labeled by station code. The gray shaded area in time depth plot shows the time frame the subnetwork was not on the monitored volcano list. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.8. See appendix B for station information.

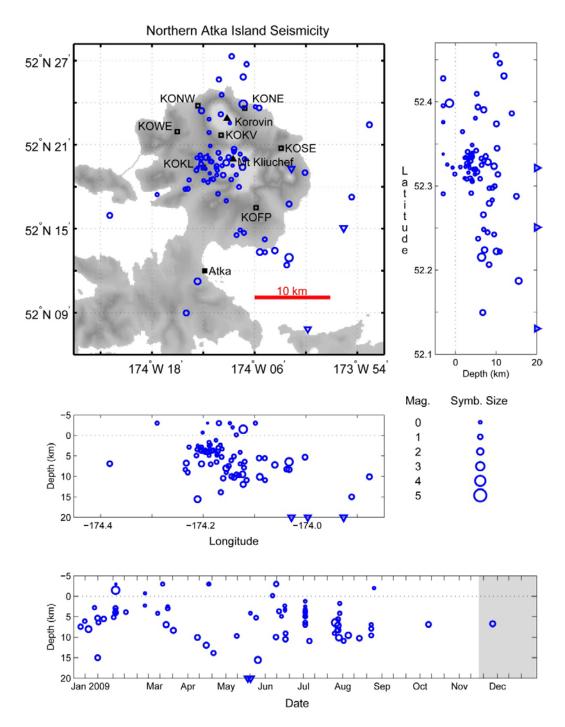

Figure A16. Summary plots of earthquakes located near Pavlof Volcano in 2009. Open circles indicate hypocenters shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper with symbols scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.35. See appendix B for station information.

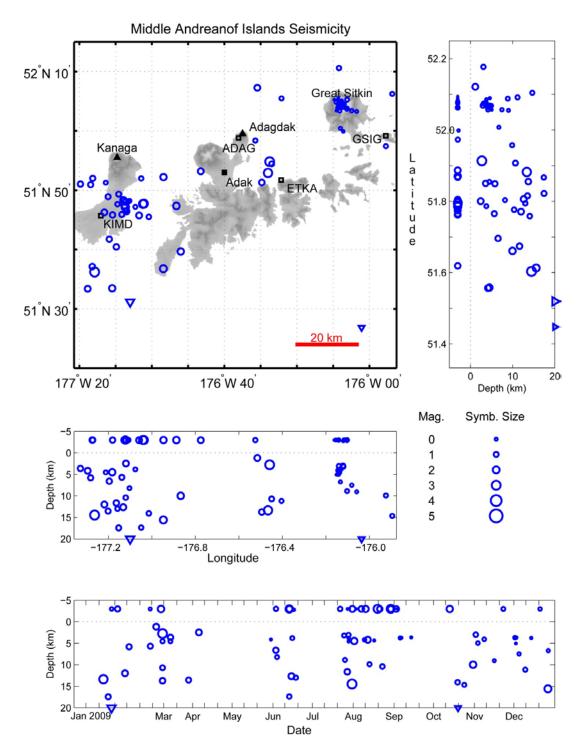

Figure A17. This summary plot shows earthquakes located near Mount Dutton in 2009. Open circles show hypocenter locations shallower than 20 km. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. Vertical exaggeration is x0.3. See appendix B for station information.

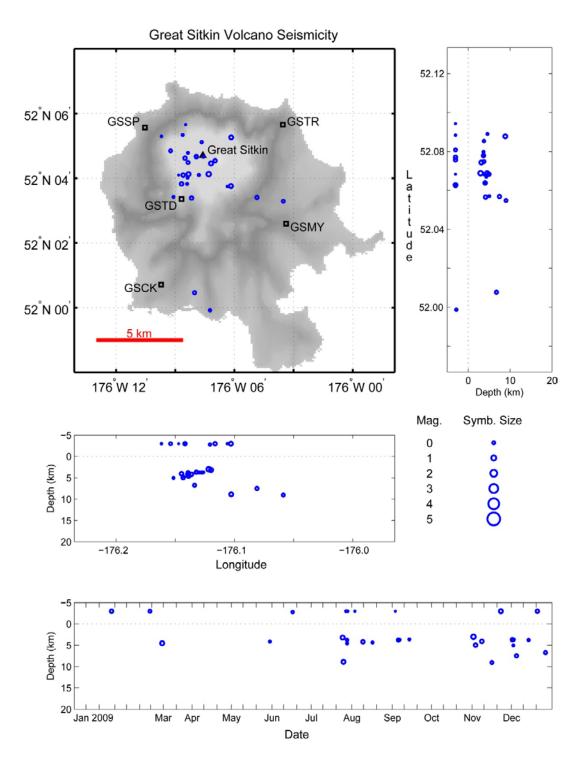

Figure A18. Summary plots of earthquakes located near Unimak Island in 2009. Open circles indicates hypocenters shallower than 20 km and open triangles indicates hypocenters with depths of 20 km and deeper with symbols scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x1.4. See appendix B for station information.

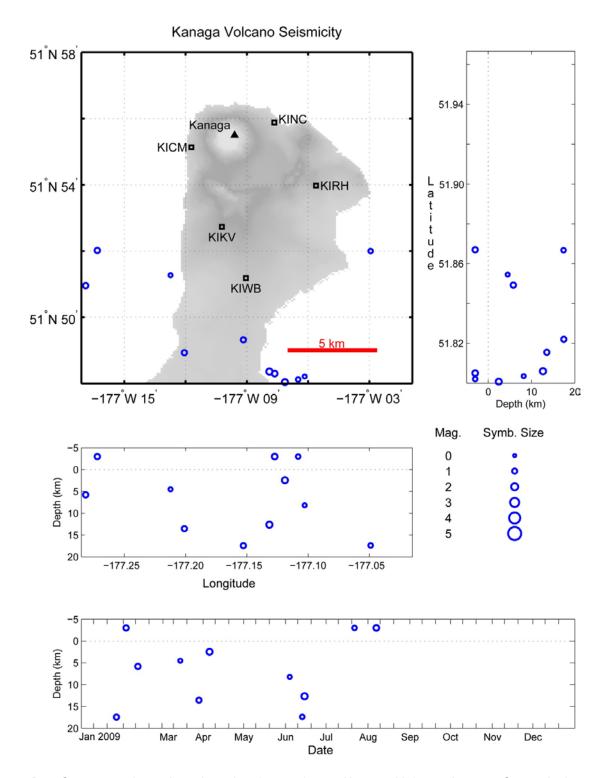

Figure A19. Summary plots of earthquakes located near Shishaldin Volcano in 2009. Open circles indicate hypocenters shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper with symbols scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.35. See appendix B for station information.

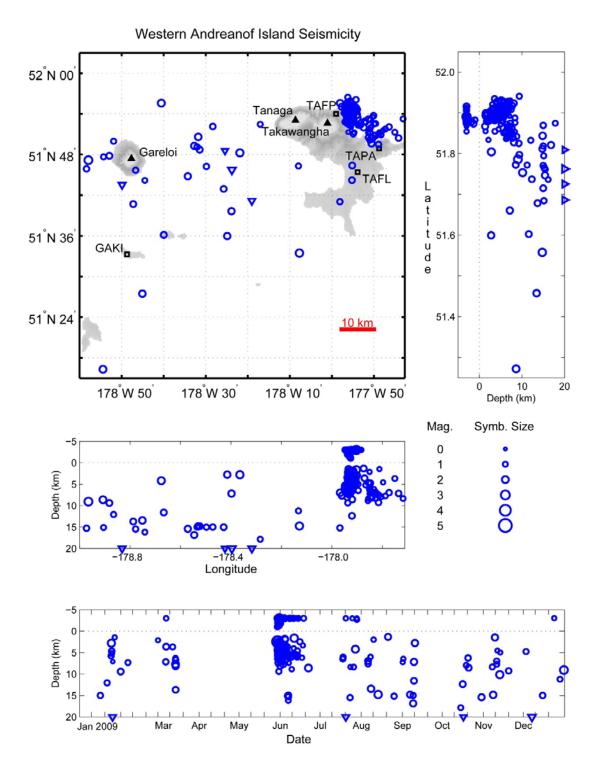

Figure A20. Summary plots of earthquakes located near Westdahl Peak in 2009. Open circles show hypocenter locations shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. Vertical exaggeration is x0.4. See appendix B for station information.

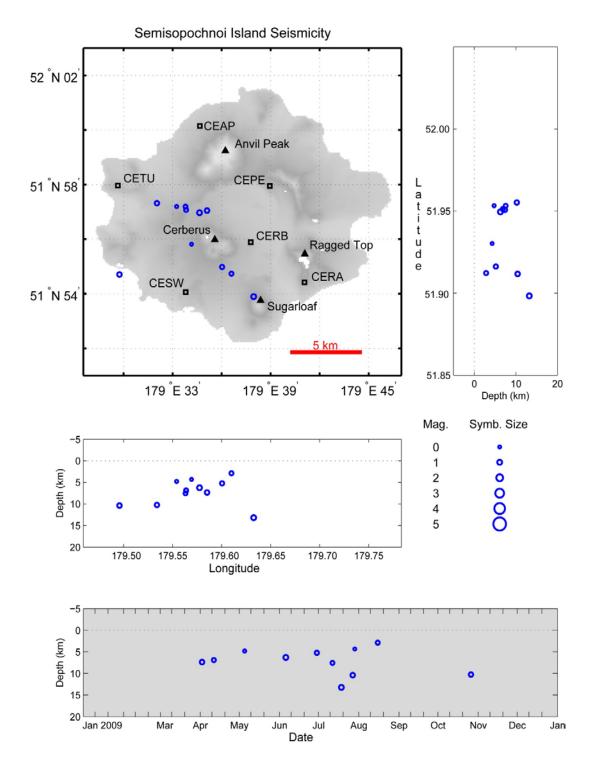

Figure A21. Summary plots of earthquakes located near Akutan Peak in 2009. Open circles indicate hypocenters shallower than 20 km and open triangles indicates hypocenters with depths of 20 km and deeper with symbols scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.45. See appendix B for station information.


Figure A22. Summary plots of earthquakes located near Makushin Volcano in 2009. Open circles show hypocenter locations shallower than 20 km and open triangle indicate hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. Vertical exaggeration is x0.7. See appendix B for station information.


Figure A23. Summary plots of earthquakes located on Umnak Island in 2009. Open circles show hypocenter locations shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. Vertical exaggeration is x1.1. See appendix B for station information.


Figure A24. Summary plots of earthquakes located near Korovin Volcano and Mount Kliuchef in 2009. Open circles show hypocenter locations shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. The gray shaded area in time depth plot shows the time frame the subnetwork was not on the monitored volcano list. Vertical exaggeration is x055. See appendix B for station information.


Figure A25. Summary plots of earthquakes located in the Middle Andreanof Islands in 2009. Open circles indicate hypocenters shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper. Hypocenter symbols are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers and solid squares are used to show other points of interest. Vertical exaggeration is x1.3. See appendix B for station information.


Figure A26. Summary plots of earthquakes located near Great Sitkin Volcano in 2009. Open circles indicate hypocenters shallower than 20 km and are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.25. See appendix B for station information.

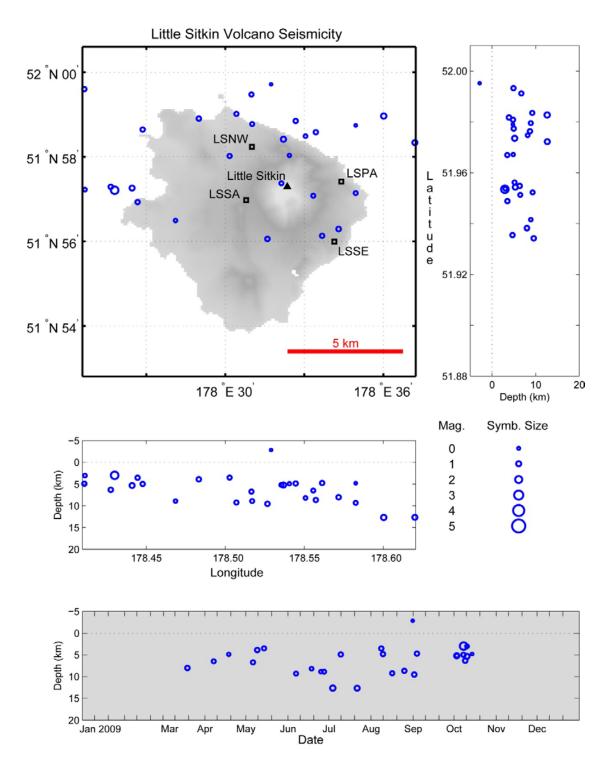

Figure A27. Summary plots of earthquakes located near Kanaga Volcano in 2009. Open circles indicate hypocenters shallower than 20 km and are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.25. See appendix B for station information.

Figure A28. Summary plots of earthquakes located in the Western Andreanof Islands in 2009. Open circles indicates hypocenters shallower than 20 km and open triangles indicate hypocenters with depths of 20 km and deeper with symbols scaled by magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. Vertical exaggeration is x0.4. See appendix B for station information.

Figure A29. Summary plots of earthquakes located on Semisopochnoi Island in 2009. Open circles indicates hypocenters shallower than 20 km and are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. The gray shaded area in time depth plot shows the time frame the subnetwork was not on the monitored volcano list. Vertical exaggeration is x0.3. See appendix B for station information.

Figure A30. Summary plots of earthquakes located near Little Sitkin Volcano in 2009. Open circles indicate hypocenters shallower than 20 km and are scaled with magnitude. Permanent seismograph stations are shown by open squares and labeled by station code. Solid triangles are used to show volcanic centers. The gray shaded area in time depth plot shows the time frame the subnetwork was not on the monitored volcano list. Vertical exaggeration is x0.2. See appendix B for station information.

Appendix B. Parameters for Alaska Volcano Observation Seismograph Stations (datum NAD27) in 2009.

This list includes station parameters for seismograph stations operated by the Alaska Volcano Observatory (AVO), Alaska Earthquake Information Center (AEIC) and the West Coast-Alaska Tsunami Warning Center (WC-ATWC) that were used to locate earthquakes in the AVO catalog. The open date is the date that data were first recorded and the close date is the date that recording was stopped. Discounting temporary data outages, date is available for each listed station between the open and close date. Stations still in operation are indicated by a dash in the close date column.

Station	Latitude (N) Longitude (E	Elevation (m)	<u>Seismometer</u>	Open date	Close date		
Akutan Peak subnet (12 stations – 26 components)								
AKULAII	54 06.916	-165 48.943	447	L4	1996/07/24	_		
AKBB ³	54 05.905	-165 55.907	310	CMG-6TD	2005/07/05	_		
AKGG ³		-165 59.495	326	CMG-6TD	2003/06/27	_		
AKLV ³	54 09.762	-165 57.336	551	CMG-6TD	2003/07/02	_		
AKMO ³	54 05.471	-166 00.634	277	CMG-6TD	2003/06/25	_		
AKRB ³		-166 04.125	334	CMG-6TD	2003/06/29	_		
AKS ³	54 06.624	-165 41.803	213	L22	1996/07/24	_		
AKT ³	54 08.15	-165 46.2	12	CMG-40T	1996/03/18	_		
AKV	54 07.571	-165 57.763	863	L4	1996/07/24	_		
HSB	54 11.205	-165 54.743	497	L4	1996/07/24	_		
LVA	54 09.654	-166 02.025	457	L4	1996/07/24	_		
ZRO	54 05.494	-165 58.678	446	L4	1996/07/24	-		
Aniakch	ak Crater s	ubnet (6 stations	s – 8 components	s)				
ANNE	56 54.763	-158 03.534	705	L4	1997/07/18	_		
ANNW		-158 12.895	816	L4	1997/07/18	_		
ANON ³	56 55.188	-158 10.293	445	L22	2000/07/10	_		
ANPB	56 48.141	-158 16.847	658	 L4	1997/07/18	_		
ANPK		-158 07.572	972	L4	1997/07/18	_		
AZAC	56 53.727	-158 13.841	1,057	L4	2003/07/12	-		
Augusti	ne Volcano	subnet (9 statio	ns – 18 compone	ents)				
$AU22^3$	59 22.247	-153 21.301	105	SM	2007/09/01	-		
AUE* [₽]	59 22.308	-153 22.504	168	S13	1980/10/29	-		
AUH	59 21.833	-153 26.591	890	S13	1978/12/01	-		
AUI^3	59 20.11	-153 25.66	293	S13	1978/04/06	-		
AUL	59 22.937	-153 26.142	360	S13	1980/10/29	-		
AUL^3	59 22.937	-153 26.142	360	CMG-6TD	1997/08/27	-		
AUNW*	59 22.694	-153 28.609	160	L4	2007/03/15	-		
AUP	59 21.805	-153 25.210	1,033	S13	1977/09/22	-		
AUSE	59 20.481	-153 23.850	152	L4	2006/02/03	-		
AUW	59 22.205	-153 28.249	276	S13	1976/10/17	-		
Mount C	Cerberus Su		- 8 components)					
CEAP	52 00.146	179 34.667	244	L4	2005/09/17	-		
CEPE	51 57.949	179 38.950	335	L4	2005/09/17	-		
CERA	51 54.419	179 41.074	305	L4	2005/09/26	-		
CERB ³	51 55.886	179 37.783	305	L4-3D	2005/09/18	-		
CESW	51 54.060	179 33.800	238	L4	2005/09/18	-		
CETU	51 57.965	179 29.651	335	L4	2005/09/22	-		

<u>Station</u>	Latitude (N) Longitude (E)	Elevation (m)	Seismometer	Open date	Close date		
Mount Dutton subnet (5 stations - 5 components)								
BLDY	55 11.670	-162 47.018	259	L4	1996/07/11	-		
DOL	55 08.976	-161 51.702	439	L4	1996/07/11	-		
DRR3	54 58.014		457	L4	1996/07/11	-		
DT1	55 06.427		198	L4	1991/06/21	-		
DTN	55 08.744	-162 15.419	396	S13	1988/07/16	-		
Fourpea	ked subnet	(4 stations - 7 co	omponents)					
CDD	58 55.771		622	S13	1981/08/17	-		
		-153 55.102	905	L-4	2006/10/19	-		
FOPK*		-153 28.433	546	L4	2006/09/25	-		
FOSS*P	58 47.965	-153 41.699	1268	L-4	2006/10/10	-		
Gareloi '		bnet (6 stations -	8 components)					
GAEA		-178 44.810	326	L4	2003/08/30	-		
GAKI		-178 48.725	99	L4	2003/09/01	-		
GALA		-178 46.292	315	L4	2003/08/30	-		
GANE		-178 46.603	322	L4	2003/09/02	-		
GANO	51 49.220		451	L4	2003/09/02	-		
GASW ³	51 46.731	-178 51.276	248	L22	2003/08/30	-		
		o subnet (6 statio		nts)				
GSCK	52 00.712	-176 09.718	384	L4	1999/09/15	-		
GSIG	51 59.181	-175 55.502	407	L4	1999/09/03	-		
GSMY		-176 03.376	418	L4	1999/09/03	-		
GSSP ₃		-176 10.541	295	L4	1999/09/15	-		
GSTD ³		-176 08.685	873	L22	1999/09/03	-		
GSTR	52 05.655	-176 03.546	536	L4	1999/09/03	-		
	Volcano su	bnet (6 stations -	8 components)					
ILI	60 04.877		771	L4	1987/09/15	-		
ILS	59 57.454		1,125	S13	1996/08/28	-		
ILW	60 03.585	-153 08.222	1,646	S13	1994/09/09	-		
INE	60 03.630	-153 03.732	1,634	S13	1990/08/29	-		
IVE ³	60 01.014	-153 00.981	1,173	S13,L22	1996/09/19	-		
IVS	60 00.55	-153 04.85	2,332	S13	1990/08/29	-		
		bnet (6 stations						
KICM	51 55.136	-177 11.718	183	L4	1999/09/15	-		
KIKV	51 52.730	-177 10.223	411	L4	1999/09/15	-		
KIMD	51 45.697	-177 14.093	183	L4	1999/09/15	-		
KINC	51 55.884	-177 07.657	198	L4	1999/09/15	-		
KIRH	51 53.976	-177 05.611	309	L4	1999/09/03	-		
KIWB	51 51.183	-177 09.049	244	L4	1999/09/03	-		

Station	Latitude (N	l) Longitude (E)	Elevation (m)	Seismometer	Open date Close	e date		
Katmai	Volcanic Cl	uster subnet (20	stations - 30 co	mnonents)				
ACH ³	58 12.64	-155 19.56	960	L22	1996/07/25	_		
ANCK	58 11.93	-155 29.64	869	L4	1996/07/25	_		
CAHL	58 03.15	-155 18.09	807	L4	1996/07/25	_		
CNTC	58 15.87	-155 53.02	1,158	L4	1996/07/25	_		
KA01 [#]	58 18.858	-155 05.870	810	CMT-6TD	2008/07/20	_		
KA02 [#]	58 15.116	-155 09.119	999	CMT3-ESP	2008/07/20	_		
KA03 [#]	58 15.611	-155 07.881	1, 015	CMT-6TD	2008/07/20	_		
KA04 [#]	58 13.354	-155 08.650	994	CMT-6TD	2008/07/20	_		
KA05 [#]	58 12.942	-155 05.083	935	CMT-6TD	2008/07/20	_		
KA06 [#]	58 12.660	-155 01.144	1, 003	CMT-6TD	2008/07/20	_		
KA11 [#]		-155 08.357	1, 098	CMT-6TD	2008/07/20	_		
KA12 [#]	58 13.904	-155 16.001	884	CMT-6TD	2008/07/20	_		
KA13 [#]		-155 11.507	899	CMT3-ESP	2008/07/20	_		
KA15 [#]		-155 11.143	926	CMT-6TD	2008/07/20	_		
KA16 [#]	58 10.800	-155 05.999	714	CMT-6TD	2008/07/20	_		
KABR	58 07.87	-154 58.15	884	L4	1998/08/12	_		
KABU ³	58 16.225	-155 16.934	1,065	CMT-6TD	2004/08/01	_		
KAHC	58 38.94	-155 00.36	1,250	L4	1998/10/12	_		
KAHG	58 29.64	-154 32.78	923	L4	1998/10/12	_		
KAIC	58 29.10	-155 02.75	734	L4	1998/10/12	_		
KAKN ³	58 17.819	-155 03.668	1,049	CMG-6TD	2004/08/01	_		
KAPH ³	58 35.81	-154 20.81	907	L22	1998/10/12	_		
KARR	58 29.87	-154 42.20	610	L4	1998/10/12	-		
KAWH	58 23.02	-154 47.95	777	L4	1998/10/12	_		
KBM	58 16.50	-155 12.10	732	L4	1991/07/22	-		
KCE	58 14.60	-155 11.00	777	L4	1991/07/22	_		
KCG^3	58 18.457	-155 06.684	762	L22	1988/08/01	_		
KEL	58 26.401	-155 44.442	975	L4	1988/08/01	_		
KJL	58 03.24	-155 34.39	792	L4	1996/07/25	-		
KVT	58 22.90	-155 17.70	457	L4	1988/08/01	-		
MGLS	58 08.06	-155 09.65	472	L4	1996/07/25	-		
16		ula 4 / 📆 4 - 4 '	0					
		ubnet (7 stations			0004/07/00			
KOFP		-174 05.832	662	L4	2004/07/02	-		
KOKL ³	52 19.393	-174 12.012	758 770	L4	2004/07/05	-		
KOKV ³	52 21.685	-174 09.915	776	L22	2004/07/05	-		
KONE	52 23.611	-174 07.156	253	L4	2004/07/10	-		
KONW		-174 12.629	334	L4	2004/07/04	-		
KOSE	52 20.749	-174 02.909	625	L4	2004/07/07	-		
KOWE	52 21.940	-174 15.040	527	L4	2004/07/06	-		
Little Si	Little Sitkin subnet (4 stations - 6 components)							
LSNW	51 58.232		290	L4	2005/09/30	-		
LSPA ³	51 57.413	178 34.405	335	L4-3D	2005/09/30	-		
LSSA	51 56.973	178 30.793	549	L4	2005/09/28	-		
LSSE	51 55.993	178 34.139	335	L4	2005/09/27	-		

Station	Latitude (N) Longitude (E)	Elevation (m) S	eismometer	Open date	Close date
			•			
		subnet (7 station			4000/07/05	
MCIR	53 57.086	-166 53.529	800	L4	1996/07/25	-
MGOD	53 47.683	-166 52.561	650	L4	1996/07/25	-
MNAT	53 53.028	-166 41.016	397	L4	1996/07/25	-
MREP		-166 44.736	785	L4	2002/01/01	-
MSOM	53 48.978		146	L4	1996/07/25	-
MSW ³	53 54.929	-166 47.186	418	L22	1996/07/25	-
MTBL	53 58.136	-166 40.760	810	L4	1996/07/25	-
Okmok	Caldera sul	onet (12 stations	- 18 component	s)		
OKAK	53 24.740	-168 21.465	165	L4	2005/07/11	-
OKCE ³	53 25.622	-168 09.858	515	CMG-6TD	2003/01/09	-
OKCF	53 23.749	-168 08.175	685	L4	2003/01/09	-
OKER	53 27.278	-168 02.960	956	L4	2003/01/09	-
OKFG ³	53 24.702	-167 54.568	201	CMG-6TD	2003/01/09	-
OKID	53 28.645	-167 48.972	437	L4	2003/01/09	-
OKRE	53 31.215	-168 09.846	422	L4	2003/01/09	-
OKSO ³	53 21.447	-168 09.591	460	CMG-6TD	2004/09/01	-
OKSP	53 15.156	-168 17.431	608	L4	2003/01/09	-
OKTU	53 23.035	-168 02.466	646	L4	2003/01/09	-
OKWE	53 28.328	-168 14.388	445	L4	2003/01/09	-
OKWR	53 26.084	-168 12.333	1,017	L4	2003/01/09	-
Paylof \	/olcano sub	onet (7 stations -	9 components)			
BLHA	55 42.276	-162 03.540	411	L4	1996/07/11	_
HAG	55 19.068	-161 54.144	516	L4	1996/07/11	_
PN7A ^P		-161 59.713	838	L4	1996/07/11	_
PS1A	55 25.254	-161 44.496	283	L4	1996/07/11	_
PS4A	55 20.808	-161 51.276	322	L4	1996/07/11	_
PV6 ³	55 27.217	-161 55.112	747	L22	1996/07/11	_
PVV	55 22.440	-161 47.396	173	L4	1996/07/11	<u>-</u>
IVV	33 22.440	-101 47.390	173	L4	1990/07/11	-
		et (7 stations - 9			0004/00/04	
PLBL	57 41.990	-156 49.131	461	L4	2004/08/01	-
PLK1	57 48.114	-156 36.433	78	L4	2004/08/01	-
PLK2	57 45.852	-156 19.458	401	L4	2004/08/01	-
PLK3 ³	57 41.320	-156 16.044	494	L22	2004/08/01	-
PLK4	57 37.928	-156 21.464	1,031	L4	2004/08/01	-
PLK5	57 59.864	-156 52.662	49	L4	2004/08/01	-
PLWL	58 02.696	-156 20.479	585	L4	2004/08/01	-

<u>Station</u>	Latitude (N) Longitude (E	Elevation (m) <u>Seismometer</u>	Open date	Close date
Redoub	t Volcano s	ubnet (10 stati	ons - 19 compo	onents)		
DFR ^P		-152 41.160	1,090	L4	1988/08/15	_
NCT		-152 55.568	1,079	L4	1988/08/14	_
RDDR		-152 35.181	905	L4	2009/07/01	-
RDE^R		-152 35.418	371	L4	2009/02/04	2009/07/01
$RDJH^3$	60 35.461	-152 48.213	1,414	CMG-6TD	2009/02/04	-
RDN	60 31.377	-152 44.273	1,400	L4	1988/08/13	-
RDT	60 34.394		930	L4	1971/08/09	-
RDWB ³	60 29.284	-152 50.415	1,546	CMG-6TD	2009/02/04	-
RED^3	60 25.192	-152 46.308	1,064	L4	1974/00/00	-
REF ³ *	60 29.362	-152 41.500	1,801	L22	1992/07/27	-
RSO	60 27.73	-152 45.23	1,921	L4	1990/03/01	-
Shishal	din Volcano	subnet (7 stat	ions - 11 comp	onents)		
BRPK		-163 44.449	393	L4	1997/07/27	_
ISLZ		-163 42.663	466	 L4	2008/08/17	_
ISNN		-163 46.706	466	 L4	1997/07/27	_
SSBA ³		-164 07.470	766	CMG-6TD	2008/08/01	_
SSLN		-163 59.756	637	L4	1997/07/27	_
SSLS ³		-163 59.926	817	L22	1997/07/27	_
SSLW	54 46.307		636	L4	1997/07/27	-
Mount 9	Snurr eubno	t (15 stations -	23 component	·e)		
BGL		-152 23.340	1,127	.s) L4	1989/08/13	_
BKG	61 04.21	-152 25.540	1,009	L4	1991/07/01	_
CGL	61 18.46	-152 13.70	1,082	L4 L4	1981/09/22	_
CKL	61 11.782		1,281	L4	1989/08/05	_ _
CKN	61 13.44	-152 20.200	735	L4	1991/08/19	_
CKT	61 12.05	-152 10.03	975	L4	1992/09/16	<u>-</u>
CP2	61 15.85	-152 14.51	1,981	L4	1992/10/23	_
CRP ³	61 16.02	-152 09.33	1,622	L4	1981/08/26	_
NCG	61 24.22	-152 09.40	1,244	L4	1989/08/06	_
SPBG ³	61 15.583	-152 22.194	1,087	CMG-6TD	2004/09/09	_
SPCG ³	61 17.512	-152 01.228	1,329	CMG-6TD	2004/09/08	_
SPCR ³	61 12.051	-152 12.409	984	CMG-6TD	2004/09/08	_
SPNW	61 20.826	-152 36.236	1,040	L4	2004/08/17	_
SPU		-152 03.26	800	L4	1971/08/10	_
SPWE	61 16.441		1,233	L4	2004/08/18	-
Tanaga	Volcano eu	hnet (6 station	s - 8 componei	nts)		
TACS		-178 08.363	918	L4	2003/08/28	_
TAFL	51 45.396	-177 53.867	186	L4	2003/06/28	_
TAFP ³	51 54.003	-177 58.997	440	L4 L22	2003/08/27	_
TANO	51 54.003	-177 38.997	269	L22 L4	2003/08/24	_
TAPA	51 48.932	-177 48.770	640	L4 L4	2003/08/27	_
TASE	51 40.932	-177 48.770	682	L4 L4	2003/08/24	<u>-</u>
.,	3. 00.000	11002.222	00 <u>2</u>		2000,00,24	

Mount Veniaminof subnet (9 stations - 9 components)	
BPBC 56 35.383 -158 27.153 584 L4 2002/10/03	_
VNFG 56 17.140 -159 33.066 1,068 L4 2002/02/06	_
VNHG 56 13.267 -159 09.853 966 L4 2002/02/06	-
VNKR 56 01.871 -159 22.068 620 L4 2002/02/06	_
VNNF 56 17.022 -159 18.961 1,153 L4 2002/06/20	-
VNSG 56 07.549 -159 05.121 761 L4 2002/02/06	-
VNSS 56 13.600 -159 27.290 1,733 L4 2002/02/06	_
VNSW 56 04.317 -159 33.508 716 L4 2002/06/20	-
VNWF 56 09.104 -159 33.733 1,095 L4 2002/02/06	-
Westdahl Peak subnet (6 stations - 8 components)	
WEBT 54 35.468 -164 45.183 467 L4 2008/08/02	-
WECS 54 31.853 -164 46.653 642 L4 2008/08/03	-
WESE 54 28.389 -164 35.038 953 L4 1998/08/28	-
WESN 54 34.620 -164 34.704 549 L4 1998/10/17	-
WESP ³ 54 28.611 -164 43.277 937 L22 2008/07/31	-
WTUG 54 50.847 -164 23.117 636 L4 1998/10/17	-
Mount Wrangell subnet (4 stations - 6 components)	
WACK ³ 61 59.178 -144 19.703 2,280 L22 2000/07/31	-
WANC 62 00.189 -144 4.195 4,190 L4 2000/07/31	-
WASW 61 55.692 -144 10.346 2,196 L4 2001/08/03	-
WAZA 62 04.506 -144 9.132 2,531 L4 2001/08/03	-
AVO Regional stations (10 stations - 12 components)	
ADAG 51 58.812 -176 36.104 286 L4 1999/09/15	-
AMKA ³ 51 22.70 179 18.11 116 Tri-40 2005/10/14	-
BGM 59 23.56 -155 13.76 625 L4 1978/09/08	-
BGR 60 45.45 -152 25.06 985 L4 1991/07/01	-
ETKA 51 51.712 -176 24.351 290 L4 1999/09/15	-
KC01 [#] 52 10.578 -175 29.493 32 CMG-6TD 2009/06/12	-
MMN 59 11.11 -154 20.20 442 \$13 1981/08/22	-
OPT 59 39.192 -153 13.796 602 S13 1974/00/00	-
PDB 59 47.09 -154 11.37 360 L4 1978/09/09	-
STLK 61 29.926 -151 49.963 945 L4 1997/09/01	_
SYI 58 36.607 -152 23.485 149 L4 1997/09/01	-

Station	Latitude (N) Longitude (E)	Elevat	ion (m)	<u>Seismometer</u>	Open date	Close date
AFIC G	lohal Seism	ograph Network	c and V	VCATW	C stations		
ADK	51 53.022	• •	116	TOA! II	STS-1	1966/01/01	_
AKUT	54 8.112	-174 11.730	55		STS-2	2002/10/03	_
ATKA	52 12.162		55		CMG-3ESP	2002/10/03	_
BAL	61 02.172	-142 20.652	1,541		L4	1973/08/24	_
BMR	60 58.092	-144 36.180	842		CMG-40T	1979/08/19	-
CHGN	56 18.084	-159 24.852	16		L4	2004/10/20	-
CUT	62 24.282	-150 16.164	168		L4	1986/07/18	-
DIV	61 07.782	-145 46.368	939		CMG-3ESP	1999/01/07	-
FALS	54 51.438	-163 24.930	46		CMG-3ESP	2002/06/19	-
GLB	61 26.508	-143 48.630	853		L4	1973/08/25	-
HOM	59 39.498	-151 38.592	198		L4	1981/01/01	-
KDAK	57 46.968	-152 35.010	152		KS-54000	1997/06/09	-
KLU	61 29.580	-145 55.236	1,021		L4	1972/07/23	-
MENT	62 56.280	-143 43.164	702		L4	2004/10/20	-
NIKH	52 58.386	-143 58.032	507		STS-2	2007/06/21	-
NIKO	52 56.328	-168 52.002	80		CMG-3ESP	2002/11/22	-
NKA	60 44.580	-151 14.274	100		L4	1971/09/13	-
PAX	62 58.224	-145 28.056	1,130		STS-2	1969/07/01	-
PLR	61 35.532	-149 7.842		100	L4	1984/09/21	-
PMR	61 35.532	-149 7.848	100		STS-2	1999/08/11	-
RC01	61 05.376	-149 44.208	383		CMG-40T	1998/08/07	-
SAW	61 48.456	-148 36.104	782		CMG-3ESP	1973/08/31	-
SCM	61 50.004	-147 19.644	1,039		S13	1966/06/01	-
SKN	61 58.836	-151 31.752	603		STS-2	1972/08/09	-
SLK	60 30.738	-150 13.254	655		L4	1984/07/30	-
SSN	61 27.840	-150 44.664	1,293		CMG-5T	1972/08/16	-
SWD	60 06.294	-149 27.042	68		CMG-40T	2001/06/02	-
UNV	53 50.790	-166 30.120	67		CMG-3ESP	1999/02/19	-

Station Codes:

- Three-component station
- Pressure sensor collocated with seismometer
- R Station removed in 2009
- * Seismic station has a both a high-gain and low-gain vertical component
- # Temporary three-component broadband station

Seismometer Codes: CMG-40T: Guralp CMG-40T three-component broadband seismometer

CMG-5T: Guralp CMG-5T three-component broadband seismometer

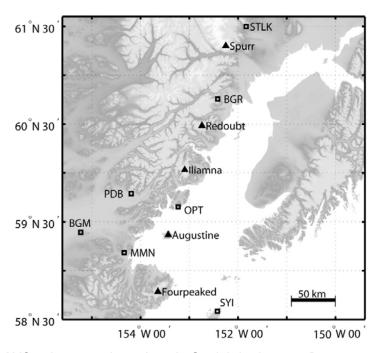
CMG-6TD: Guralp CMG-6TD three-component broadband seismometer

CMG-6TD: Guralp CMG-6TD three-component broadband seismometer CMG-3ESP: Guralp CMG-3ESP three-component broadband seismometer

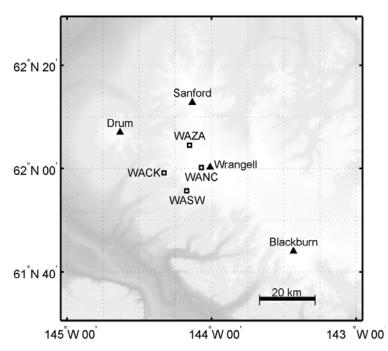
KS-54000: three-component broadband seismometer

L4, L4-3D: Mark Products L4 or L4-3D single-component short-period seismometer L22: Mark Products L22 three-component short-period seismometer

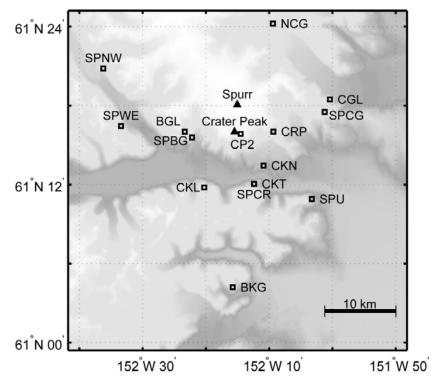
S13: Mark Products L22 tiffee-component short-period seismometer

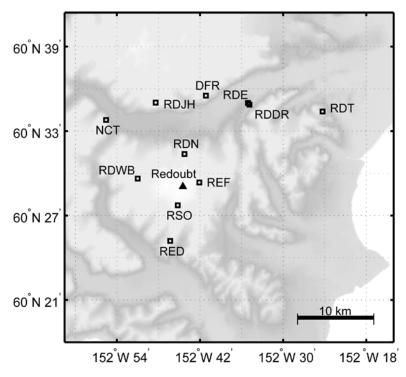

SM: Ref Tek 130-ANSS/02 strong motion seismometer STS-1: Streckeisen STS-1H/VBB broadband seismometer STS-2: Streckeisen STS-2 broadband seismometer

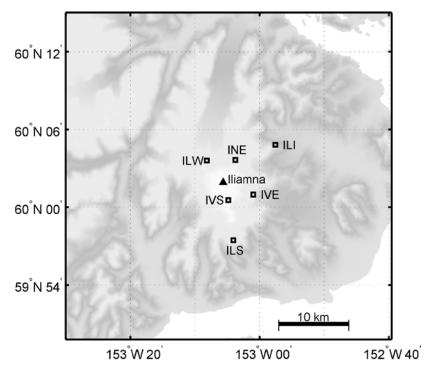
Tri-40: Nanometrics Trillium 40 three-component broadband seismometer

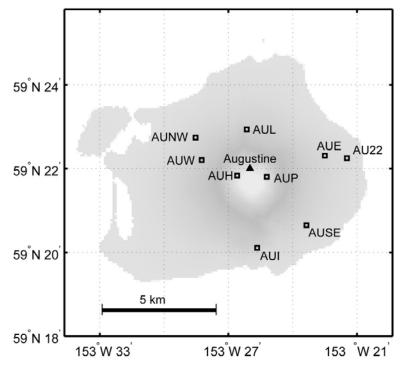

50

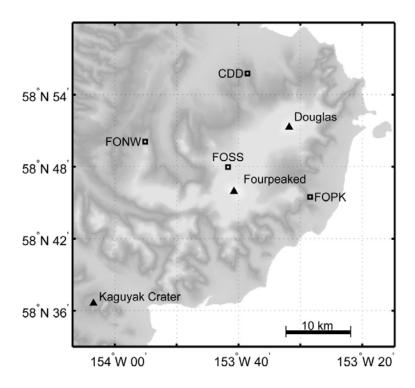
This page left intentionally blank.

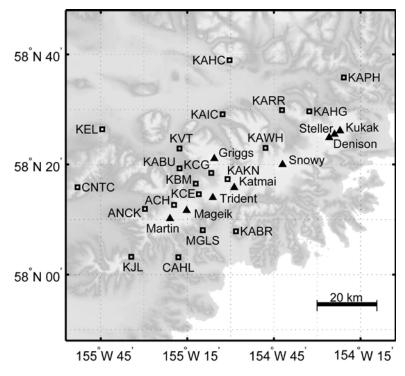

Appendix C. Locations (datum NAD27) of the AVO Seismograph Stations in 2009.

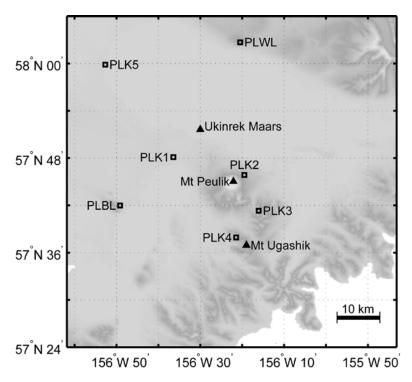

Figure C1. Regional AVO seismograph stations in Cook Inlet in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

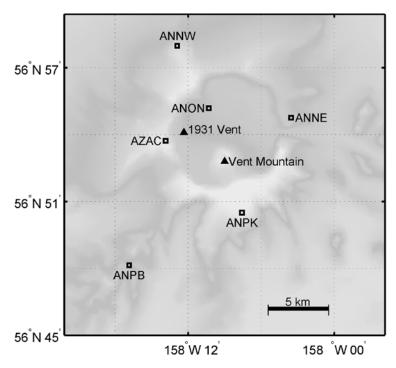

Figure C2. AVO seismograph stations near Mount Wrangell in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

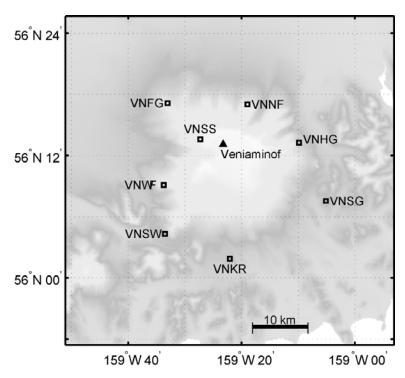

Figure C3. AVO seismograph stations near Mount Spurr in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

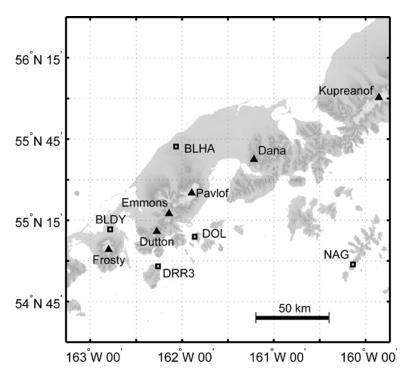

Figure C4. AVO seismograph stations near Redoubt Volcano in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

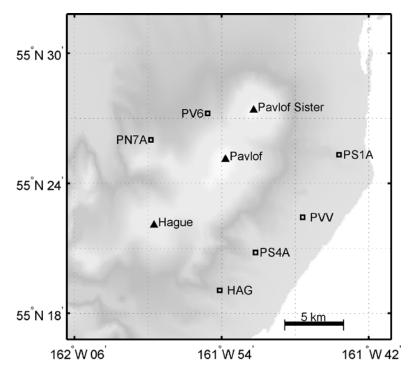

Figure C5. AVO seismograph stations near Iliamna Volcano in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

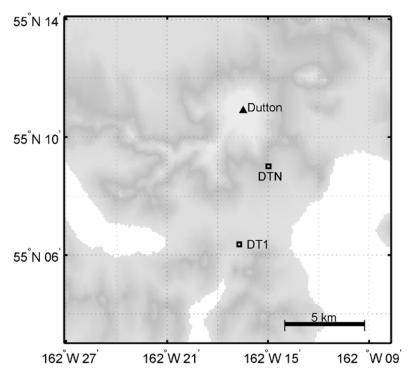

Figure C6. AVO seismograph stations near Augustine Volcano in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

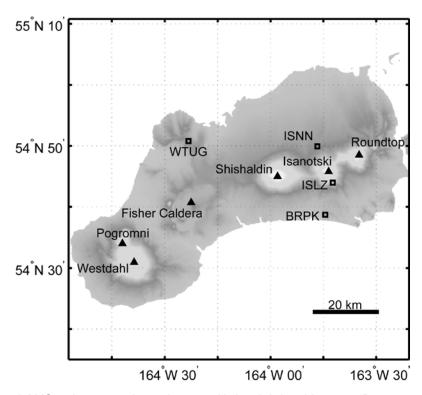

Figure C7. AVO seismograph stations near Fourpeaked Mountain in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

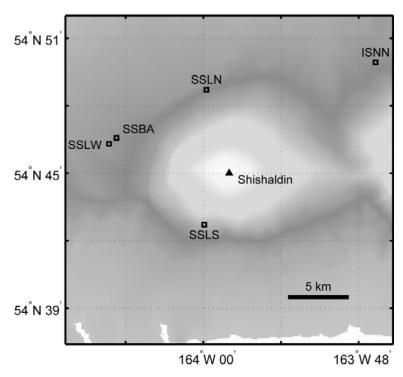

Figure C8. AVO seismograph stations near the Katmai volcanic cluster in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

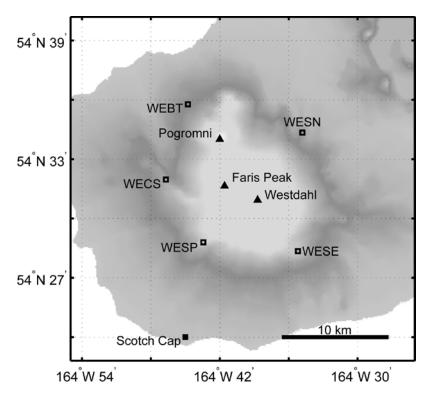

Figure C9. AVO seismograph stations near the Mount Peulik in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

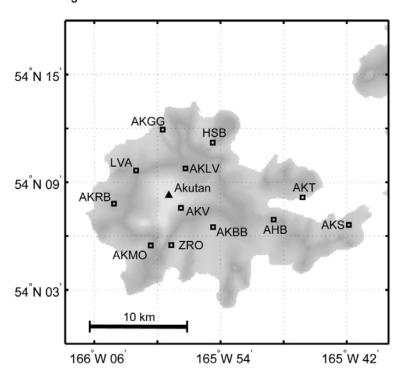

Figure C10. AVO seismograph stations near Aniakchak Crater in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

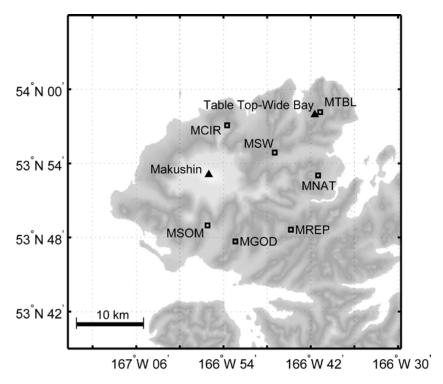

Figure C11. AVO seismograph stations near Mount Veniaminof in 2009. Seismograph station BPBC is not shown and is located 70 km northeast of Mount Veniaminof. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

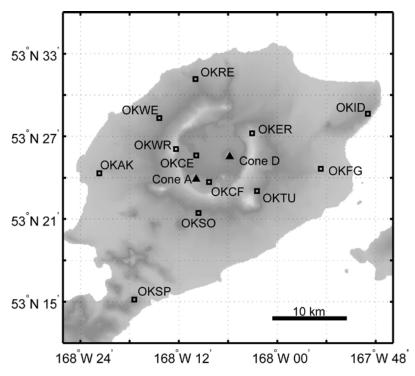

Figure C12. Regional AVO seismograph stations on the Alaska Peninsula in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

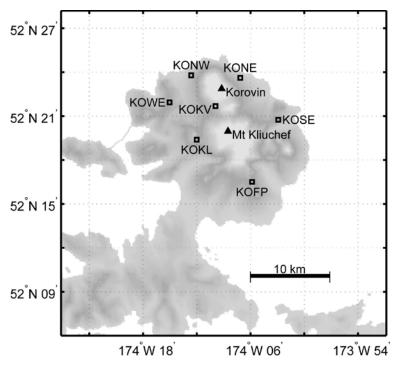

Figure C13. AVO seismograph stations near Pavlof Volcano in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

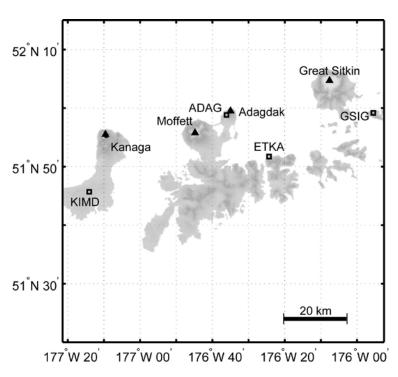

Figure C14. AVO seismograph stations near Mount Dutton in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

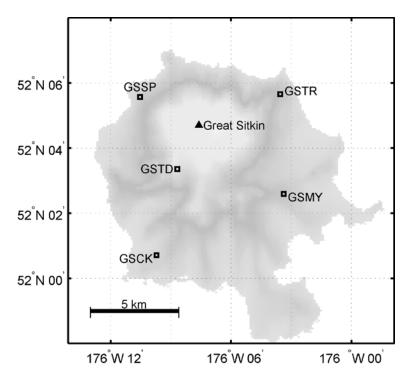

Figure C15. Regional AVO seismograph stations on Unimak Island in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

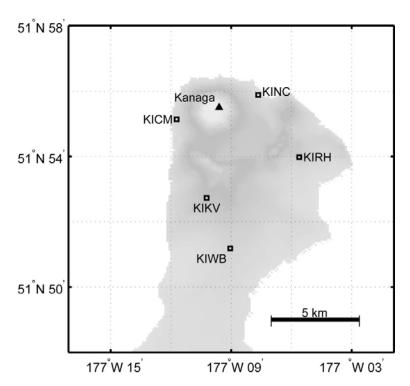

Figure C16. AVO seismograph stations near Shishaldin Volcano in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

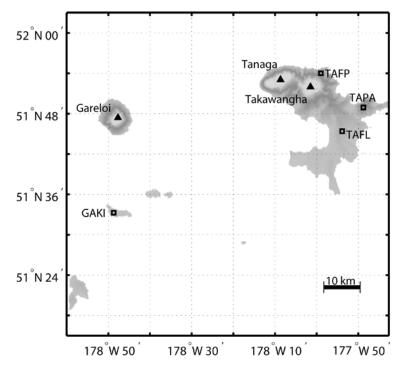

Figure C17. AVO seismograph stations near Westdahl Peak in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

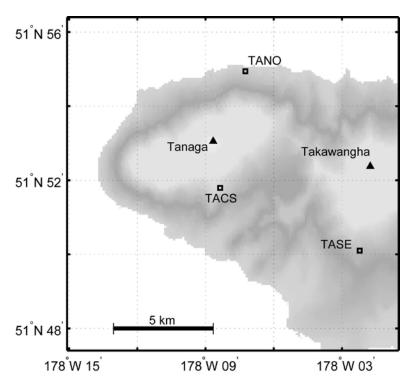

Figure C18. AVO seismograph stations near Akutan Peak in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

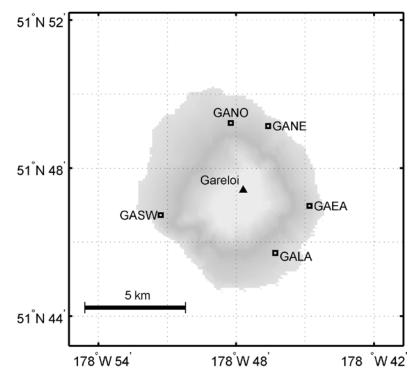

Figure C19. AVO seismograph stations near Makushin Volcano in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

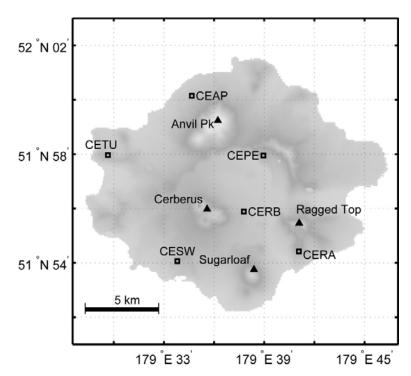

Figure C20. AVO seismograph stations near Okmok Volcano in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.


Figure C21. AVO seismograph stations on Atka Island in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.


Figure C22. Regional AVO seismograph stations around Adak Island in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.


Figure C23. AVO seismograph stations near Great Sitkin Volcano in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.


Figure C24. AVO seismograph stations near Kanaga Volcano in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.


Figure C25. Regional AVO seismograph stations around Tanaga Volcano and Mount Gareloi in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

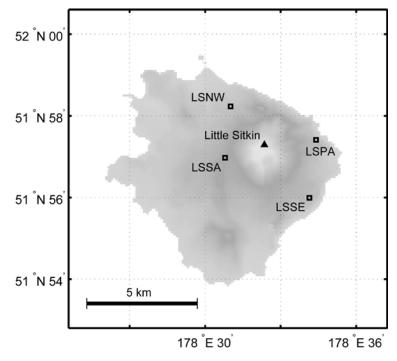
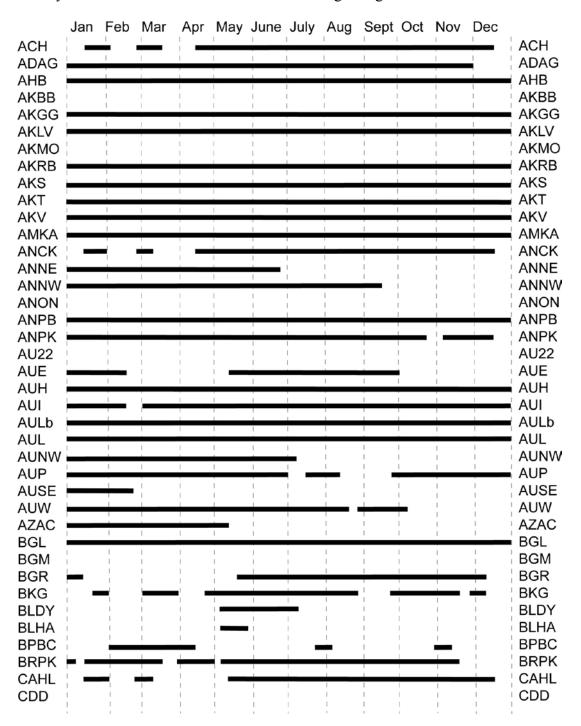
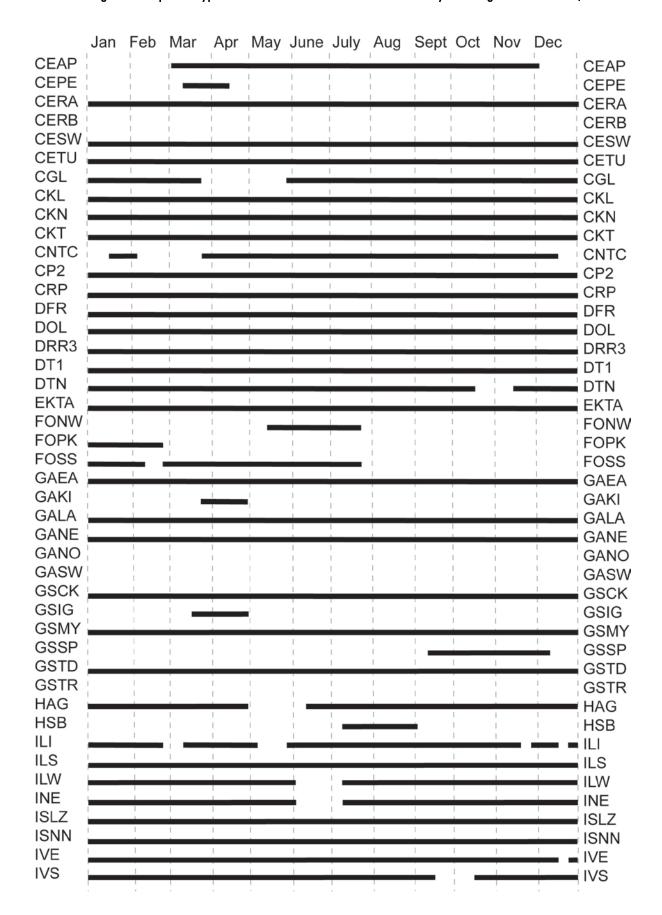
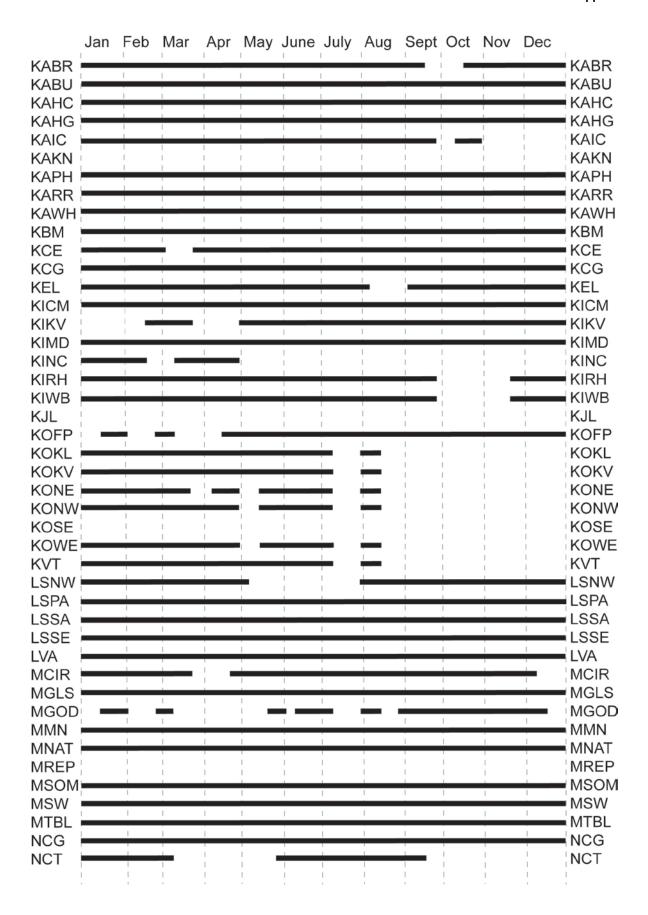

Figure C26. AVO seismograph stations near Tanaga Volcano in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

Figure C27. AVO seismograph stations near Mount Gareloi in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.

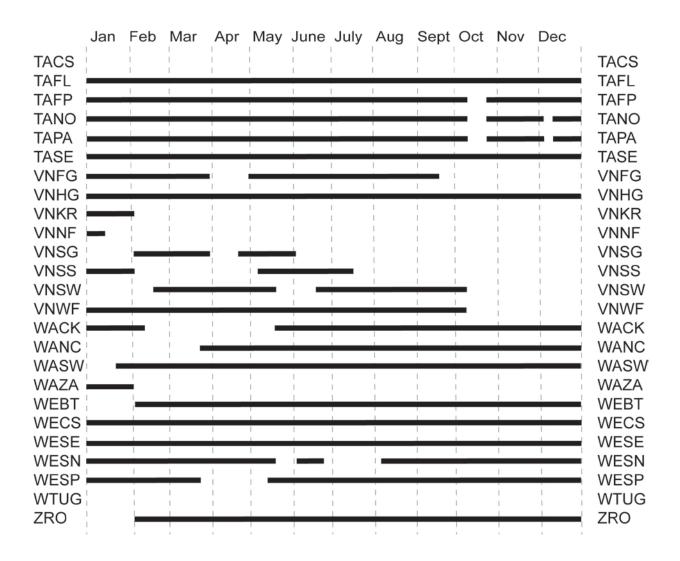
Figure C28. AVO seismograph stations on Semisopochnoi Island in 2009. Permanent stations are shown by open squares. Closed triangles show volcanic centers.


Figure C29. AVO seismograph stations on Little Sitkin Island in 2009. Seismograph station AMKA is not shown and is located 82 km south-southwest of Little Sitkin Volcano. Permanent stations are shown by open squares. Closed triangles show volcanic centers.


66 Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2009


This page left intentionally blank.

Appendix D. Operational Status for Alaska Volcano Observatory Stations in 2009.


A solid bar indicates periods of time a station was operational based on station use plots and weekly checks. Dashed vertical lines show the beginning/end of each month.

72 Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2009

This page left intentionally blank.

Appendix E. Seismic Velocity Models Used in Locating the Earthquakes in 2009.

Following the name of each velocity model is a list of volcano subnetworks for which the model is used. Depths are referenced to sea level, with negative values reflecting height above sea level.

Cylindrical Model Parameters (Latitude and Longitude are the center of the model).

Velocity Model	Latitude (°N)	Longitude (°E)	Radius (km)	Top (km)	Bottom (km)
Spurr	61.60	-152.40	20	-3	50
Spurr	61.47	-152.33	20	-3	50
Spurr	61.33	-152.25	20	-3	50
Spurr	61.17	-152.35	20	-3	50
Spurr	61.00	-152.45	20	-3	50
Redoubt	60.83	-152.55	20	-3	50
Redoubt	60.66	-152.66	20	-3	50
Redoubt	60.49	-152.75	20	-3	50
Redoubt	60.34	-152.86	20	-3	50
Iliamna	60.03	-153.09	20	-3	50
Augustine	59.36	-153.42	20	-3	50
Katmai	58.17	-155.35	20	-3	50
Katmai	58.29	-154.86	20	-3	50
Katmai	58.35	-155.09	20	-3	50
Katmai	58.43	-154.38	20	-3	50
Veniaminof	56.18	-159.38	30	-3	50
Cold Bay	55.42	-161.89	20	-3	50
Cold Bay	55.18	-162.27	20	-3	50
Cold Bay	54.76	-163.97	30	-3	50
Westdahl	54.52	-164.65	20	-3	50
Akutan	54.15	-165.97	20	-3	50
Okmok	53.40	-176.13	20	-3	50
Andreanof	52.08	-176.13	20	-3	50
Andreanof	51.93	-176.75	20	-3	50
Andreanof	51.92	-177.17	20	-3	50
Tanaga	51.89	-178.15	20	-3	50

Akutan Velocity Model (Power and others, 1996).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	2.30 +0.37 km/sec for each km of depth	-3.0	1.80
2	6.30	7.0	1.80

Andreanof Velocity Model (Toth and Kisslinger, 1984).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	3.50	-3.0	1.73
2	3.88	-2.8	1.73
3	4.25	-2.6	1.73
4	4.62	-2.4	1.73
5	5.00	-2.2	1.73
6	5.50	-2.0	1.73
7	5.62	-1.0	1.73
8	5.74	0.0	1.73
9	5.86	1.0	1.73
10	5.98	2.0	1.73
11	6.10	3.0	1.73
12	6.60	4.0	1.73
13	6.68	5.0	1.73
14	6.80	8.0	1.73
15	6.92	11.0	1.73
16	7.04	14.0	1.73
17	7.16	17.0	1.73
18	7.28	20.0	1.73
19	7.85	23.0	1.73
20	8.05	37.0	1.73

Augustine Velocity Model (Power, 1988).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	2.3	-3.0	1.80
2	2.6	-0.7	1.80
3	3.4	0.0	1.80
4	5.1	1.0	1.80
5	6.3	9.0	1.78
6	8.0	44.0	1.78

Cold Bay Velocity Model (McNutt and Jacob, 1986).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	3.05	-3.00	1.78
2	3.44	0.00	1.78
3	5.56	1.79	1.78
4	6.06	3.65	1.78
5	6.72	10.18	1.78
6	7.61	22.63	1.78
7	7.90	38.51	1.78

Iliamna Velocity Model (Roman and others, 2001).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	4.8	-3.0	1.78
2	6.1	-1.6	1.78
3	6.2	1.7	1.78
4	6.3	2.9	1.78
5	6.4	3.1	1.78
6	7.1	16.5	1.78

Katmai Velocity Model (Searcy, 2003).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	5.05	-3.0	1.78
2	5.10	1.0	1.78
3	5.41	2.0	1.78
4	5.49	3.0	1.78
5	5.65	4.0	1.78
6	5.67	5.0	1.78
7	5.69	6.0	1.78
8	5.76	7.0	1.78
9	5.80	8.0	1.78
10	6.00	9.0	1.78
11	6.04	10.0	1.78
12	6.08	12.0	1.78
13	6.30	15.0	1.78
14	6.73	20.0	1.78
15	7.54	25.0	1.78
16	7.78	33.0	1.78

Okmok Velocity Model (Masterlark and others, 2010).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	3.830	-3.0	1.78
2	3.891	0.0	1.78
3	5.084	1.0	1.78
4	5.187	2.0	1.78
5	5.470	3.0	1.78
6	6.185	4.0	1.78
7	6.191	10.0	1.78
8	6.454	12.0	1.78
9	6.896	16.0	1.78
10	7.414	20.0	1.78

Redoubt Velocity Model (Lahr and others, 1994).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	2.90	-3.0	1.80
2	5.10	-1.7	1.80
3	6.40	1.5	1.72
4	7.00	17.0	1.78

Spurr Velocity Model (Jolly and others, 1994).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	5.1	-3.00	1.81
2	5.5	-2.00	1.81
3	6.3	5.25	1.74
4	7.2	27.25	1.78

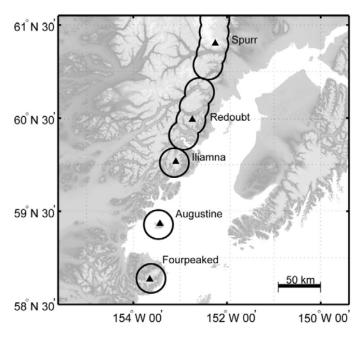
Tanaga Velocity Model (Power, written commun., 2005).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	4.0	-3.0	1.78
2	4.5	-1.2	1.78
3	5.0	0.0	1.78
4	5.6	4.0	1.78
5	6.9	10.0	1.78
6	7.2	15.0	1.78
7	7.8	20.0	1.78
8	8.1	33.0	1.78

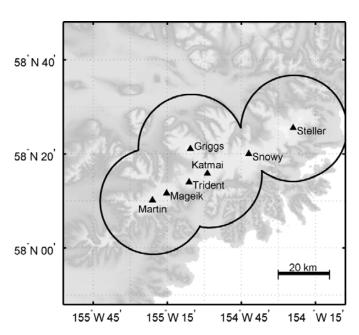
Veniaminof Velocity Model (Sánchez, 2005).

Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	4.82	-3.0	1.73
2	5.23	4.0	1.88
3	5.23	10.0	1.38
4	6.49	15.0	1.65
5	6.52	20.0	1.51
6	8.18	25.0	1.89
7	8.21	33.0	1.90
8	8.21	47.0	1.80
9	8.30	65.0	1.78

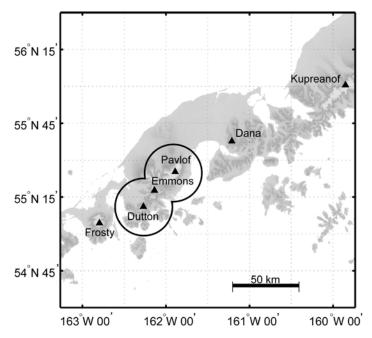
Westdahl Velocity Model (Dixon and others, 2005).


Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	3.03	-3.0	1.71
2	3.18	0.0	1.71
3	5.03	2.0	1.71
4	5.70	8.0	1.71
5	6.30	10.0	1.71
6	6.82	16.0	1.71
7	7.17	26.0	1.71
8	8.16	38.0	1.71

Regional Velocity Model (Fogleman and others, 1993).


Layer number	Vp (km/sec)	Top of layer (km)	Vp/Vs
1	5.3	-3.0	1.78
2	5.6	4.0	1.78
3	6.2	10.0	1.78
4	6.9	15.0	1.78
5	7.4	20.0	1.78
6	7.7	35.0	1.78
7	7.9	33.0	1.78
8	8.1	47.0	1.78
9	8.3	65.0	1.78

This page left intentionally blank.


Appendix F. Location of Volcanic Zones Modeled Using Multiple Cylinders.

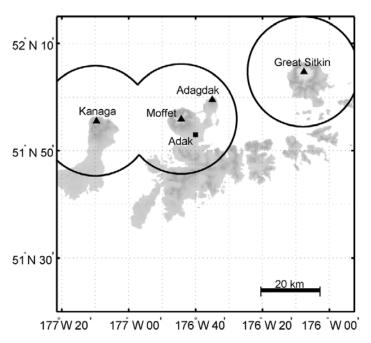

Figure F1. Volcanic zones for the Cook Inlet Volcanoes. Five overlapping cylinders model the Spurr volcanic zone. Four overlapping cylinders model the Redoubt volcanic zone. Single cylinders model the Iliamna, Augustine, and Fourpeaked volcanic zones.

Figure F2. Volcanic zone for the Katmai volcanic cluster. The volcanic zone is modeled using four overlapping cylinders centered on Mount Martin, Mount Katmai, Mount Griggs, and Mount Steller.

Figure F3. Volcanic zones for Pavlof Volcano and Mount Dutton. The volcanic zone is modeled using two overlapping cylinders centered on Mount Dutton and Pavlof Volcano.

Figure F4. Volcanic zones in the Adak region. The volcanic zones are modeled using cylinders centered on Kanaga Volcano, Mount Moffett, and Great Sitkin Volcano.

Appendix G. Previous Alaska Volcano Observatory Earthquake Catalogs.

Earthquake catalogs for 1989–present available from the U.S. Geological Survey.

- **1989–90:** Power, J.A., March, G.D., Lahr, J.C., Jolly, A.D., and Cruse, G.R., 1993, Catalog of earthquake hypocenters at Redoubt Volcano and Mount Spurr, Alaska: October 12, 1989 December 31, 1990: U.S. Geological Survey Open-File Report 93-685-A, 57 p.
- **1991–93:** Jolly, A.D., Power, J.A., Stihler, S.D., Rao, L.N., Davidson, G., Paskievitch, J., Estes, S., and Lahr, J.C., 1996, Catalog of earthquake hypocenters for Augustine, Redoubt, Iliamna, and Mount Spurr Volcanoes, Alaska: January 1, 1991 December 31, 1993: U.S. Geological Survey Open-File Report 96-70, 90 p.
- 1994–99: Jolly, A.D., Stihler, S.D., Power, J.A., Lahr, J.C., Paskievitch, J., Tytgat, G., Estes, S., Lockhart, A.B., Moran, S.C., McNutt, S.R., and Hammond, W.R., 2001, Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1, 1994 December 31, 1999: U.S. Geological Survey Open-File Report 01-189, 202 p. (Also available at http://geopubs.wr.usgs.gov/open-file/of01-189/.)
- **2000–01:** Dixon, J.P, Stihler, S.D., Power, J.A., Tytgat, G., Estes, S., Moran, S.C., Paskievitch, J., and McNutt, S.R., 2002, Catalog of Earthquake Hypocenters at Alaska Volcanoes: January 1, 2000 December 31, 2001: U.S. Geological Survey Open-File Report 02-342, 56 p. (Also available at http://geopubs.wr.usgs.gov/open-file/of02-342/.)
- Dixon, J.P., Stihler, S.D., Power, J.A., Tytgat, G., Moran, S.C., Sánchez, J.J., Estes, S., McNutt, S.R., and Paskievitch, J., 2003, Catalog of Earthquake Hypocenters at Alaska Volcanoes: January 1 December 31, 2002: U.S. Geological Survey Open-File Report 03-267, 58 p. (Also available at http://geopubs.wr.usgs.gov/open-file/of03-267/.)
- 2003: Dixon, J.P., Stihler, S.D., Power, J.A., Tytgat, G., Moran, S.C., Sánchez, J.J., Estes, S., McNutt, S.R., and Paskievitch, J., 2004, Catalog of Earthquake Hypocenters at Alaska Volcanoes: January 1 December 31, 2003: U.S. Geological Survey Open-File Report 2004-1234, 59 p. (Also available at http://pubs.usgs.gov/of/2004/1234/.)
- 2004: Dixon, J.P., Stihler, S.D., Power, J.A., Tytgat, G., Estes, S., Prejean, S., Sánchez, J.J., Sanches, R., McNutt, S.R., and Paskievitch, J., 2005, Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2004: U.S. Geological Survey Open-File Report 2005-1312, 74 p. (Also available at http://pubs.usgs.gov/of/2005/1312/.)
- 2005: Dixon, J.P., Stihler, S.D., Power, J.A., Tytgat, G., Estes, S., and McNutt, S.R., 2007, Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2005: U.S. Geological Survey Open-File Report 2007-1264, 78 p. (Also available at http://pubs.usgs.gov/of/2006/1264/.)
- 2006: Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, Cheryl, 2008, Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2006: U.S. Geological Survey Data Series 326, 78 p. (Also available at http://pubs.usgs.gov/ds/326/pdf/ds326.pdf.)
- **2007:** Dixon, J.P., Stihler, S.D., and Power, J.A., and Searcy, Cheryl, 2008, Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2007: U.S. Geological Survey Data Series 367, 82 p. (Also available at http://pubs.usgs.gov/ds/367/pdf/ds367.pdf.)

2008: Dixon, J.P., and Stihler, S.D, 2009, Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2008: U.S. Geological Survey Data Series 467, 88 p. (Also available at http://pubs.usgs.gov/ds/467/pdf/ds467.pdf.)

Appendix H. Selected Papers Published in 2009 Using Data Provided by Alaska Volcano Observatory.

Caplan-Auerbach, J., Bellesiles, A., and Fernandes, J.K., 2009, Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine Volcano, Alaska: Journal of Volcanology and Geothermal Research, v. 189, p. 12-18, doi:10.1016/j.jvolgeores.2009.10.002, http://www.sciencedirect.com/science/article/B6VCS-4XJ17NF-1/2/d6da07097cdde73f705d91c330d016e2.

Dixon, J.P., and Power, J.A., 2009, The January 2006 volcanic-tectonic earthquake swarm at Mount Martin, Alaska, *in* Haeussler, P.J., and Galloway, J.P., eds., Studies by the U.S. Geological Survey in Alaska, 2007: U.S. Geological Survey Professional Paper 1760-D, 17 p. (Also available at http://pubs.usgs.gov/pp/1760/d/.)

Larsen, J., Neal, C., Webley, P., Freymueller, J., Haney, M., McNutt, S., Schneider, D., Prejean, S., Schaefer, J., and Wessels, R., 2009, Eruption of Alaska volcano breaks historic pattern: Eos, Transactions, American Geophysical Union, v. 90, n. 20, p. 173-174, doi:10.1029/2009EO200001, accessed August 13, 2010, at http://www.agu.org/pubs/crossref/2009/2009EO200001.shtml.

Statz-Boyer, P., Thurber, C., Pesicek, J., Prejean, S., 2009, High-precision relocation of earthquakes at Iliamna Volcano, Alaska: Journal of Volcanology and Geothermal Research, v. 184, p. 323-332, doi: 10.1016/j.jvolgeores.2009.04.016, accessed August 13, 2010, at http://dx.doi.org/10.1016/j.jvolgeores.2009.04.016.

This page left intentionally blank.

Publishing support provided by the U.S. Geological Survey Publishing Network, Tacoma Publishing Service Center

For more information concerning the research in this report, contact the Director, Alaska Science Center U.S. Geological Survey 4210 University Dr. Anchorage, Alaska 99508-4650 http://alaska.usgs.gov