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Cover. Heat-pulse flowmeter logging at well AW-7 near Asheville, North Carolina, February 2010 (photograph by John Mazurek, USGS).
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Geophysical Logging Data from the Mills Gap Road
area near Asheville, North Carolina

By Melinda J. Chapman and Brad A. Huffman

Background and Description of Methods

In September 2009, the U.S. Geological Survey (USGS)
was requested to assist the U.S. Environmental Protection
Agency (EPA) Region 4 Superfund Section in the develop-
ment of a conceptual groundwater flow model in the area of
the Mills Gap Road contaminant investigation near Asheville,
North Carolina (Site ID A4P5) through an Interagency Grant
and work authorization IAD DW number 14946085. The
USGS approach included the application of established and
state-of-the-science borehole geophysical tools and methods
used to delineate and characterize fracture zones in the
regolith-fractured bedrock groundwater system. Borehole
geophysical logs were collected in eight wells in the Mills
Gap Road project area from January through June 2010. These
subsurface data were compared to local surface geologic
mapping data collected by the North Carolina Geological
Survey (NCGS) from January through May 2010.

Borehole geophysical logs and surface geologic mapping
methods were used to characterize both subsurface and surface
features in the fractured bedrock and overlying regolith. As
in most areas of the Piedmont and Blue Ridge Physiographic
Provinces in the southeastern United States, the groundwater
system in the metamorphic and igneous rocks is complex and
directly related to multiple periods of structural deformation,
metamorphism, and igneous intrusion. The groundwater
system in the Blue Ridge Physiographic Province consists
of two components—a shallow regolith component that
may include soil, saprolite, debris flow material, colluvium,
and alluvium, and a deeper fractured-bedrock component
(Chapman and others, 2005). Where present in the Blue Ridge
Physiographic Province, the regolith is the primary storage
reservoir and is the source of recharge to the bedrock fractures
(Heath, 1980, 1983, 1984, 1994; Heath and Jennings, 1995).
The bedrock has little primary porosity except where second-
ary openings are present in the form of fractures and other
discontinuities. These secondary openings are the primary
source of permeability. The bedrock is described by the NCGS
as composed of the regional Ashe Metamorphic Suite-Tallulah
Falls Formation, a metamorphosed and deformed package
of sediments of Late Proterozoic to Middle Ordovician
age that are interlayered with minor mafic intrusives and

volcanics. Lithologies consist of metagraywacke, schistose
metagraywacke, garnet mica schist, amphibolite, quartz and
quartz-tourmaline veins, and lesser zones of fault breccia

and gouge (Wooten and others, 2010). The observed regolith
component of the groundwater system in the study area is
described by Wooten and others (2010) as consisting of
transported colluvial and alluvial deposits and residual soil
formed from the in-place weathering of bedrock. MACTEC,
Inc. (2009) reported following a Phase 1 Remedial Investiga-
tion of the Mills Gap Road site that the zone of overburden
(regolith), determined from boreholes at the CTS Corporation
of Asheville site, ranges in thickness from 28 to 81 feet (ft)
below land surface (bls). This site is the location of a former
electroplating facility, hereafter referred to in this report as the
CTS site.

Dominant structural features and discontinuities
described in the report by Wooten and others (2010) describe
regional bedrock foliation and compositional layering as
principally striking to the north-northeast and northeast and, to
a lesser extent, to the north-northwest, except in the vicinity of
the Mills Gap Fault Zone (MGFZ). Foliation, compositional
layering and a younger mylonitic foliation are incrementally
realigned near the MGFZ from a regional northeast-southwest
strike trend to a west-northwest—east-southeast trend that is
subparallel to the fault zone.

Three surface joint sets are described in the report by
Wooten and others (2010). One joint set is associated with
the MGFZ and is grouped into the following strike azimuths:
115 degrees (°) and 295° parallel to the fault and 85° and
265° conjugate to the fault trend. A second joint set includes
strike azimuths of 25° and 205° that are subparallel to the
predominant northeast-southwest bedrock layering and
regional foliation, as well as north-northeast trending outcrop-
scale faults, and north-northeast-trending secondary quartz and
tourmaline veins. The third joint set includes strike azimuths
of 145° and 325°, northwest-southeast striking that may also
include some joints associated with the MGFZ, and 175° and
355°, regional north-south striking joints that may include
some joints subparallel to the predominant north-south striking
foliation (Wooten and others, 2010).

From January through June 2010, borehole geophysical
logs were collected from a total of eight open-borehole
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bedrock wells in the Mills Gap Road investigation area in

the vicinity of the CTS site (table 1; fig. 1). Six of the wells
(AW-4, AW-5, AW-7, ERT-7, Oaks-2, and ERT-6) were located
in the Oaks subdivision, approximately 0.5 mile (mi) northeast
of the site; one well (CHR) was located on Chapel Hill Church
Road, approximately 0.37 mi northeast of the site; and one
well (Well 1) was located on Concord Road, approximately
0.25 mi southeast of the site. Well depths ranged from 152

to 705 ft bls (table 1). From the compilation of casing depths
listed in table 1, the regolith thickness inferred ranges from
6.5 to 70 ft. Additionally, fracture orientations from acoustic
televiewer (ATV) image logs were available for four wells

on the CTS site (fig. 1; table 1). Logs collected from each

of the eight wells included caliper, electrical resistivity,

natural gamma, fluid temperature and resistivity, heat-pulse
flowmeter (both ambient and stressed), and optical televiewer
(OTV). ATV logs were run in two wells as part of the quality-
assurance procedures for the OTV tool. Field notes from
geophysical logging activities are included in Attachment 1.
Fracture zones were delineated at depth in each well by using
all of these borehole logs. The fracture delineations were

then used to guide the selection of downhole straddle-packer
sampling by the EPA Environmental Response Team (ERT)
and their contractors. Fracture orientations were determined
from OTV images. The fracture orientation data were

Table 1.

compared and used along with surface geologic mapping data
to build a conceptual model of groundwater flow in the study
area. Results of the NCGS surface geologic mapping study are
described in Wooten and others (2010).

A Note about Conventions Used to Record
Orientation Data

Bedrock discontinuities measured and recorded for this
study are planar features. Dip directions were recorded using
the convention that horizontal planes are recorded as having
0 degree dips, with values increasing for more steeply dipping
features toward 90° for vertical features. For planar features,
strike is defined as the compass orientation of the horizontal
line lying within that plane. Strike azimuths of 0 to 360°
were recorded using the familiar convention in which 0 and
360° correspond to map true north, 90° corresponds to east,
180° corresponds to south, etc. Because all lines extend in
two directions, bedrock discontinuities were measured and
recorded using the right-hand rule convention (strike azimuth
is measured with the dip inclined toward the right). Two planar
features assigned strikes that are parallel (for example, 45° and
225°) differ in that one feature dips to the southeast and the
other to the northwest, respectively.

U.S. Geological Survey well-logging and available construction data for wells at the CTS site.

[USGS, U.S. Geological Survey; NAD 83, North American Datum of 1983; NAVD 88, North American Vertical Datum of 1988; —, information not available;

na, not applicable]

. . Reported
usgs  [LAtitude  Longitude landsurface . oo gend Totaldepth  well yield
USGS (decimal (decimal elevation
Well number . county (feethbelow  (feetbelow  (gallons
site number number degrees) degrees) (above land surface) land surface) er
(NADS3)  (NADS3)  NAVD 88) P
minute)
Well 1 352932082300401 BU-111 35.49239 -82.50133 2,329.19 70 300 —
CHR 352948082300101 BU-110 35.496790 —82.50027 2,415.63 31 505 60
AW-4 352958082295301 BU-109 35.499480 —82.49799 2,399.75 62 707 2
AW-5 352958082295101 BU-106 35.499360 —82.49744 2,379.06 36 575 10
AW-7 352959082294901 BU-105 35.499940 —82.49689 2,330.26 17 576 20
ERT-7 352957082294801 BU-104 35.499120 —82.49677 2,313.47 7.5 152 —
Oaks-2 352957082295501 BU-108 35.499100 —82.49873 2,365.53 24 600 —
ERT-6 352956082295701 BU-107 35.498920 —82.49911 2,350.96 6.5 167 —
CTS-MW-1B na na 35.49179 -82.50682 2,439.39 68 146 —
CTS-MW-4B na na 35.49307 -82.50728 2,413.13 75 98 —
CTS-MW-9B na na 35.49357 -82.50434 2,415.11 63 80 —
CTS-MW-11B na na 35.49228 -82.50389 2,349.19 52 191 —
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A Note about Sampling Biases Inherent in
the Borehole Surveys and the Surface
Outcrop Measurements

Cursory inspection of the structural data tables and
diagrams in this report and in the Wooten and others (2010)
report show differences in their relative abundances of planar

features counted within the various general orientation classes.

This does not mean that the two sets of data are inconsistent
with each other but rather that the two datasets are more
useful when used together. Vertical boreholes are statistically
less likely to intersect steeply dipping planar features than
more flat-lying features, whereas surface outcrops provide

a relatively better sample of more steeply dipping features.
With the exception of the rare steep cliff face or high road
cut, outcrops provide relatively less opportunity to count and
measure flat-lying features.

Another difference is in the way features were tabulated
in the two studies. When interpreting features in borehole
images, hydrogeologists measure and count individual
features. During surface mapping, geologists assign measure-
ments to sets of features with similar orientation. For any
given map station, which may represent an entire outcrop or
group of outcrops, one recorded measurement could represent
a group of 1 or 10 or 100 parallel similar joints or foliations.

Brittle features tabulated for outcrops throughout the
entire NCGS study area are dominated by west-northwest and
ecast-southeast trending features. NCGS geologists visited a
relatively large number of outcrops located within the MGFZ,
partly because the steep terrain in the MGFZ affords numer-
ous outcrops for study and partly because the NCGS were
motivated to gain all available information about the structure,
which crosses the CTS site. As a result it is useful to consider
the statistics for brittle outcrop data in separate sets—one set
for the data collected from the MGFZ and another set for the
data collected outside the MGFZ.

Borehole Geophysical Logging
and Imaging

Data analyses from the collected downhole geophysical
logs and images from the eight wells include the delineation
of fracture zones and vertical borehole flow that were used
for later packer sampling conducted by the EPA’s ERT and
their contractors during March through May 2010. Appendix 1
contains borehole diagrams showing geophysical logs and

measured flow for each well logged. Most wells had measur-
able inflow at depth and outflow at shallow fracture zones
(fig. 2; Appendix 1). Well 1 had measured upflow throughout
the entire borehole and was flowing at land surface (see Field
Notes, Attachment 1).

Further characterization of subsurface bedrock structures
from the OTV images consisted of measuring the orientations
of downhole bedrock foliation, lithologic contacts, and
fractures. Orientations of subsurface foliation, lithologic
contacts, and fractures were determined by using WellCad®
software (from the OTV image; aLt, 2010). Fractures were
characterized as either primary (open; indicated by blue
tadpole symbols in Appendix 1) or secondary (partially open
or weathered; indicated by red tadpole symbols in Appen-

dix 1). Orientations interpreted from the OTV image logs were
adjusted for a local magnetic declination of 6° west and for
measured borehole deviation. Subsurface geologic features
were imported into Rockworks™ software (Rockware, Inc.,
2010) for statistical analyses using rose diagrams and three-
dimensional display of fracture planes at depth.

More than 8,700 subsurface structural measurements
(orientations) were interpreted from OTV images collected
from the eight wells logged in the Mills Gap Road project
area. Additionally, fracture orientation data were available
from interpretations of ATV image logs from four wells at the
CTS site (Marv Gobles, CTS Corporation, written commun.,
January 2010). Figure 3 presents strike orientations for all
structures measured in the eight wells logged by the USGS
and available fracture orientations from the four CTS wells.
Figure 4 presents an expanded view of orientations measured
in the six wells in the Oaks subdivision area. Dominant
orientations of structures logged in the eight individual wells
logged by the USGS are listed in table 2, with the most
common strike orientations being 10-20°and 20-30°. The
dominant orientation of the combined borehole structures in
the 12 wells trends to the northeast, striking from 0 to 30°
(fig. 5), which parallels the north-northeast-trending regional
bedrock foliation trend mapped by the NCGS throughout
much of the Mills Gap Road project area except in the MGFZ,
which has a west-northwest—east-southeast trend (Wooten
and others, 2010). Most fractures observed in the downhole
OTYV images were parallel to foliation, or “foliation-parting”
fractures (Williams and others, 2005). With the dominant
subsurface features measured being primarily confined to
a 0-30° strike orientation, there is potential for anisotropy
(permeability increases in a particular direction) in the
groundwater flow in this direction that could affect contami-
nant migration within the groundwater system in this area.


http://www.alt.lu/wellcad.htmfile:///D:\EPA Mills Gap Road\Tech memo\ aLt
http://www.rockware.com/
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Figure 2. AW-4 bhorehole geophysical logs showing fracture zones and vertical flow within the well.
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Figure 4. Rose diagrams showing strike orientations of all structures measured in the Oaks wells.

Table 2. Listing of dominant fracture strike azimuth for packer
depth intervals.
All structures strike azimuth per 10-degree (°) bin

Well (see rose diagrams in Appendix 3 )

number
0-10° 10-20° 20-30° 350-360°

Well 1 X
CHR X
AW-4 X
AW-5 X
AW-7 X

ERT-7 X

Oaks-2 X

ERT-6




8 Geophysical Logging Data from the Mills Gap Road area near Asheville, North Carolina

All Structures 12 wells

Rose diagram displaying strike azimuth of
measured borehole fractures. Length of
petal corresponds to percentage of
measurements.

Figure 5. Rose diagram showing combined strike orientations
of all structures measured in the eight wells logged as part of
this study and the four CTS wells.

Table 3. Listing of dominant foliation strike azimuth in the wells.

—_
(=]
o

Total measurements = 8,784

Subsurface Foliation

Subsurface foliation from the eight wells logged by the
USGS were delineated (green tadpoles, Appendix 1) primarily
striking 10-20° and 190-200° (table 3), with opposing dip
directions. Most borehole foliation populations indicated a
bimodal dip azimuth grouping (Appendix 2) with a secondary,
parallel foliation set having strikes of about 200° (see A Note
about Conventions Used to Record Orientation Data above)
and dipping in the opposite direction, to the northwest. The
bimodal distribution of subsurface foliation dip direction
may be the result of local-scale folding, where fold axes
have hinges with similar trends as foliation (Wooten and
others, 2010; see borehole example in fig. 6). The 10-20°
orientation is more representative of the surface geologic
mapping data. The 190-200° orientation may be a factor of the
sampling method in a vertical borehole (well). This apparent
discrepancy is described in the section above; see A Note
about Sampling Biases Inherent to the Borehole Surveys and
the Surface Outcrop Measurements). Borehole logs collected
in vertical wells favor the occurrence of encountering low-
angle features, such as foliation, in this area or simply a fact of
sampling a greater depth of section (as much as 700 ft bls in
well AW-4).

[Color designations correlate strike azimuth groups having the same bidirectional strike direction with opposite dip directions. >, greater than; X, primary;

Y, secondary]

Well Fracture strike azimuth per 10-degree (°) bin (see rose diagrams in Appendix 3)
Well 1 X Y
CHR X Y
AW-4 X X
AW-5 X Y Y
AW-7 X Y
ERT-7 Y
Oaks-2 Y
ERT-6 Y X
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These borehole foliation measurements are consistent
with the style and orientation of foliations described by the
NCGS based on their mapping of surface exposures in the
study area:

Bedrock foliation and compositional layering strike
principally to the NNE and NE, and to a lesser
extent, to the NNW, except in the vicinity of the Mills
Gap Fault Zone (MGFZ).....foliations, composi-
tional layering, and a younger mylonitic foliation
indicate these fabrics are incrementally realigned
near the MGFZ from a regional NE-SW strike

trend to that of a WNWESE trend subparallel to the
MGFZ. Outcrop-scale ductile folds deform bedrock
foliation. Observed ductile folds have hinges with
similar trends as foliation and are gently inclined to
recumbent with northwest vergence.

Overall, bedrock foliation generally dips toward the
SE except where locally deformed by folding, and
realignment in proximity to the MGFZ (Wooten and
others, 2010).

The bimodal nature of foliation dips measured in the
subsurface wells, most of which are located outside of the
MGFZ, can be explained by their position in the noses of the
type of folds described above. That most measured borehole
foliations dip to the east at shallow angles can be explained by
the fact that the metamorphic layering does not contain such
folds everywhere and the limbs of the folds are relatively long
and primarily dip to the east.

Foliation-Parting Low-Angle Fractures

Most of the fractures delineated from OTV images of the
eight open-borehole wells were considered parallel to foliation
or foliation-parting fractures (fig. 7). These types of fractures,
described in Williams and others (2005), are developed where
the foliation fabric dip angle is low, generally 30° or less;
these discontinuities can be enhanced by unloading through
weathering at land surface. Of the more than 3,600 fractures
measured from the OTV images collected from the eight
wells, 56 percent are considered to have low dip angles (30°
or less). These types of fractures are not as well represented
in the surface geologic mapping data (Wooten and others,
2010) because of the sampling bias described above in A Note
about Sampling Biases Inherent in the Borehole Surveys and
the Surface Outcrop Measurements. During field geologic
mapping by the NCGS, no distinction was made between
foliation with or without partings; however, the low-angle
joints measured primarily were subparallel to foliation.

Steeply Dipping Subsurface Fractures

Joint sets having dip angles greater than 60° were
observed as part of the surface geologic mapping by Wooten
and others (2010) and grouped into sets based on dominant
strike azimuths. (Note: Groups included a strike azimuth range
of 15° on either side.) An analysis of primary and secondary
subsurface fractures that also had dip angles greater than 60°
was made to evaluate the occurrence of similar features in the
wells that were logged. Steeply dipping (greater than 60° dip
angle) joint sets having the following strike azimuth groups
were categorized: 85 and 265°, 55°and 235°, 25 and 205°,
175 and 355°, 145 and 325°, and 115 and 295° (Wooten and
others, 2010). Recognizing that vertical boreholes tap steeply
dipping features much less frequently than shallow-dipping
features (such as foliation-parting fractures), a total of 272
steeply dipping fractures delineated from the wells were
categorized into these surface joint groups. From the eight
wells logged by the USGS, the dominant steeply dipping
fracture strike azimuth group measured in the wells was 25
and 205° (fig. 5; table 4), which parallels regional foliation but
has a steeper dip angle (Wooten and others, 2010). Secondary
joint groups delineated in the wells were 175 and 355°, also
parallel to regional foliation strike, and 115 and 295° (fig. 8),
parallel to the MGFZ orientation (Wooten and others, 2010).

Straddle-Packer Sample Zone Fracture
Orientations and Geologic Features

From the results of straddle-packer sampling (David
Edgerton, Lockheed Corporation, written commun., July
2010), specific orientations of fracture zone groups where
trichloroethylene (TCE) and toluene were detected were
analyzed for strike azimuth (Appendix 3). The most com-
monly measured orientation of the fracture zones where these
volatile organic compounds (VOCs) were detected are 20—30°
and 350-360° (table 5). The 20-30° orientation is parallel to
the dominant structural orientation for all subsurface features
(foliation, lithologic contacts, and fractures) in all eight wells
logged by the USGS as well as the fracture orientations
reported from the four CTS wells (fig. 5). This orientation also
is parallel to the dominant steeply dipping subsurface fracture
set (table 4) and is subparallel to the dominant subsurface
foliation orientation (table 3). These north-northeast-trending
orientations are parallel to the regional foliation orientation
as mapped by Wooten and others (2010) and the dominant
subsurface foliation 10-20° and the larger set of all subsurface
features (0-30°).

Structures parallel to the MGFZ joint features were
observed in all of the wells sampled using the straddle-
packer assembly (table 5). The fracture sets include Well 1
(288-298 ft bls), CHR (80-90 ft and 484—504 ft bls), AW-4
(115-121 ft bls), AW-5 (418-428 ft and 560570 ft bls),
ERT-7 (6-13 ft, 60—67 ft, and 80—86 ft bls) and Oaks-2
(64-70 ft bls, Appendix 3).
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Table 4. Dominant strike azimuths of primary and secondary borehole fractures with dips of
60 degrees (°) or greater, categorized by surface geologic joint groups.

[See Appendix 2 for bar graphs of individual wells. MGFZ, parallel to Mills Gap Fault Zone structures]

Joint group strike azimuth group (+/-15°)

Well

number 85:;’(';"F§')55° 55°and 235°  25°and 205° 175° and 355° 145° and 325° "5:“:2%950
Well 1 X

CHR X
AW-4 X

AW-5 X

AW-7 X

ERT-7 X

Oaks-2 X

ERT-6 X

Note: Joint groups are centered on either side of the principle azimuth direction and include a range of 15° on either
side. For example, 85° includes azimuths from 70° to 100°.

©
o

NUMBER OF BOREHOLE MEASUREMENTS
5 2 8 8 B 83 2
T T T T T T T
1 1 1 1 1 1 1

N
o
T

85° and 265° 55° and 235° 25° and 205° 175° and 355° 145° and 325° 115° and 295°
SURFACE JOINT GROUP

Figure 8. Strike azimuth of steeply dipping secondary fractures in wells categorized
into surface joint groups.
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14 Geophysical Logging Data from the Mills Gap Road area near Asheville, North Carolina

Three-dimensional views of fracture orientations where
VOCs were detected are shown in figures 9, 10, and 11.
Figure 9 is a view from east to west from wells CTS-MW-11B
to Well 1, respectively. Figure 10 is a view from south to
north from Well 1 to well CHR to well AW-4, respectively.
Figure 11 is a view from west to east showing all six wells
logged in the Oaks subdivision.

The cross sections shown as figures 12 and 13 (see fig. |
for locations) depict measured subsurface features and surface
geologic data in the areas of well locations. Depths to fracture
zones and the associated TCE and toluene concentrations
(David Edgerton, Lockheed Corporation, written commun.,
July 2010) are shown along with apparent dip angles and

West
2,400
&
S
=
=
i
=
o
m
<
o 2200 -
e
=
i
[am]
o
=
5
<
Green - foliation
Red - secondary fractures
Blue - primary fractures
Purple - VOC-contaminated fractures
2,000 -

directions measured in the wells. Cross-section A-A4" (fig. 12)
depicts surface and subsurface measurements and geologic
features (foliation, fractures, joint sets) from the CTS site
(Marv Gobles, CTS Corporation, written commun., Janu-
ary 2010) to Well 1 in an easterly direction, parallel to the
Mills Gap Fault structure and associated joint sets as mapped
by Wooten and others (2010). Cross-section B-B' (fig. 13)
depicts surface and subsurface measurements and geologic
features from Well 1 to well AW-4 in a northeasterly direction,
parallel to regional foliation strike and foliation-parallel joint
sets as mapped by the NCGS and subsurface OTV interpreta-
tions of foliation orientation.

East

Figure 9. Three-dimensional view of VOC-contaminated fracture zones reported for well CTS-MW-11B

and packer sampling in Well 1.
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Figure 10. Three-dimensional view of VOC-contaminated fracture zones (from packer sampling)
for Well 1, well CHR, and well AW-4.
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Figure 11. Three-dimensional view of VOC-contaminated fracture zones (from packer sampling) for
the six Oaks wells.
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Appendix 1

A. Borehole geophysical logs showing fracture zones and vertical borehole flow:

Well 1

Well CHR
Well AW-4
Well AW-5
Well AW-7
Well ERT-7
Well Oaks-2
Well ERT-6

B. Optical televiewer images and structural orientations of foliation, lithologic
contacts, and fractures:

Well 1

Well CHR
Well AW-4
Well AW-5
Well AW-7
Well ERT-7
Well Oaks-2
Well ERT-6
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Appendix 1A. Borehole geophysical logs showing fracture zones and vertical borehole flow in Well 1.
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Appendix 1A. Borehole geophysical logs showing fracture zones and vertical borehole flow in well CHR.
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Appendixes 23
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Appendix 1A. Borehole geophysical logs showing fracture zones and vertical borehole flow in well AW-4.
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Appendix 1A. Borehole geophysical logs showing fracture zones and vertical borehole flow in well AW-5.
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Appendix 1A. Borehole geophysical logs showing fracture zones and vertical borehole flow in well AW-7.
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Appendix 1A. Borehole geophysical logs showing fracture zones and vertical borehole flow in well ERT-7.
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Appendix 1A. Borehole geophysical logs showing fracture zones and vertical borehole flow in well Oaks-2.
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Appendix 1A. Borehole geophysical logs showing fracture zones and vertical borehole flow in well ERT-6.
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Appendix 1B. Optical televiewer images and structural orientations of foliation,

lithologic contacts, and fractures in Well 1.
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Appendix 1B. Optical televiewer images and structural orientations of foliation,

lithologic contacts, and fractures in well CHR.
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Appendix 1B. Optical televiewer images and structural orientations of foliation,

lithologic contacts, and fractures in well AW-4.
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Appendix 1B. Optical televiewer images and structural orientations of foliation,

lithologic contacts, and fractures in well AW-5.
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Appendix 1B. Optical televiewer images and structural orientations of foliation,
lithologic contacts, and fractures in well AW-7.
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Appendix 1B. Optical televiewer images and structural orientations of foliation,

lithologic contacts, and fractures in well ERT-7.
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Appendix 1B. Optical televiewer images and structural orientations of foliation,
lithologic contacts, and fractures in well Oaks-2.
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Appendix 1B. Optical televiewer images and structural orientations of foliation,
lithologic contacts, and fractures in well ERT-6.
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Appendix 2

Borehole foliation dip azimuth frequency distribution graphs as determined from optical
televiewer images:

Well 1

Well CHR
Well AW-4
Well AW-5
Well AW-7
Well ERT-7
Well Oaks-2
Well ERT-6
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Appendix 2. Borehole foliation dip azimuth frequency distribution graphs as determined from
optical televiewer images in Well 1.

90 rr—r—rrrrrr T rrrrrrrrrrrrrrrrrrrrrrr1rrrr1r 1T 1T 17T T 1T T T T T

80 - I Frequency of azimuth counts

0 -

50 - h

30 h

NUMBER OF COUNTS

20 40 60 8 100 120 140 160 180 200 220 240 260 280 300 320 340 360
AZIMUTH ORIENTATION BINS

Appendix 2. Borehole foliation dip azimuth frequency distribution graphs as determined from
optical televiewer images in well CHR.
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Appendix 2. Borehole foliation dip azimuth frequency distribution graphs as determined from

optical televiewer images in well AW-4,
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Appendix 2. Borehole foliation dip azimuth frequency distribution graphs as determined from

optical televiewer images in well AW-5.
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Appendix 2. Borehole foliation dip azimuth frequency distribution graphs as determined from
optical televiewer images in well AW-7.
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Appendix 2. Borehole foliation dip azimuth frequency distribution graphs as determined from
optical televiewer images in well ERT-7.
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Appendix 2. Borehole foliation dip azimuth frequency distribution graphs as determined from

optical televiewer images in well Oaks-2.
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Appendix 2. Borehole foliation dip azimuth frequency distribution graphs as determined from

optical televiewer images in well ERT-6.
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Appendix 3

Orientations of borehole fractures within packer zones from the following wells and
depth intervals:

Well 1: 68-78, 252262, and 288-298 ft bls

Well CHR: 4078, 8090, and 484-504 ft bls

Well AW-4: 115-121 and 680-690 ft bls

Well AW-5: 0-101, 183-189, 200210, 418-428, and 560-570 ft bls
Well AW-7: 53-58, 88-94, 167-173, 229-239, and 450460 ft bls
Well ERT-7: 6-13, 60-67, 69-75, and 80-86 ft bls

Well Oaks-2: 20-50, 64-70, 153170, 580-590 ft bls
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Appendix 3. Orientations of borehole fractures within packer zones from Well 1 at indicated depth intervals.
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Appendix 3. Orientations of borehole fractures within packer zones from well CHR at indicated depth intervals.
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Appendix 3. Orientations of borehole fractures within packer zones from well AW-4 at indicated depth intervals.

45



46 Geophysical Logging Data from the Mills Gap Road area near Asheville, North Carolina

WELL DEPTH, 418-428 FEET BELOW LAND SURFACE

EXPLANATION

Rose diagram displaying strike azimuth of
measured borehole fractures. Length of

WELL DEPTH, 560-570 FEET BELOW LAND SURFACE

Appendix 3. Orientations of borehole fractures within packer zones from well AW-5 at indicated depth intervals.
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Appendix 3. Orientations of borehole fractures within packer zones from well AW-7 at indicated depth intervals.
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Appendix 3. Orientations of borehole fractures within packer zones from well Oaks-2 at indicated depth intervals.
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