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Conversion Factors 
SI to Inch/Pound 

Multiply     By To obtain 

Length 

meter (m) 3.281 foot (ft) 

kilometer (km) 0.6214 mile (mi) 

meter (m) 1.094 yard (yd) 

Rate 

meter per year (m/yr) 3.218 foot per year (ft/yr) 

millimeter per year (mm/yr) 0.03937 inch per year (in/yr) 

 

Horizontal coordinate information is referenced to the World Geodetic System 84 (WGS84). 
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A Bayesian Network to Predict Vulnerability to Sea-Level 
Rise: Data Report 

By Benjamin T. Gutierrez, Nathaniel G. Plant, and E. Robert Thieler 

Abstract 
During the 21st century, sea-level rise is projected to have a wide range of effects on coastal 

environments, development, and infrastructure. Consequently, there has been an increased focus on developing 
modeling or other analytical approaches to evaluate potential impacts to inform coastal management.  This 
report provides the data that were used to develop and evaluate the performance of a Bayesian network 
designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-
level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled 
as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the 
Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal 
responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline 
change in response to different future sea-level-rise scenarios.    

Introduction 
Despite the limitations of forecasting shoreline changes far into the future, sets of basic data such as 

historical shoreline positions have been used to identify and evaluate the potential for future shoreline changes 
(Thieler and Hammar-Klose, 1999; hereafter abbreviated as THK99). This work was conducted as part of a 
study to evaluate how a probabilistic approach using a Bayesian network (BN) (Jensen and Nielsen, 2007) 
could be used to calculate the probability of long-term shoreline change given knowledge of the rate of relative 
sea-level rise and other basic physical parameters. The Bayesian approach has been used in the artificial 
intelligence, medical-, and ecological-research communities to evaluate and translate scientific information and 
(or) expert judgments into probabilistic terms (see review by Berger, 2000). More recently, BNs have been used 
in the earth and environmental sciences, particularly to address ecological questions (Borsuk and others, 2004; 
Wilson and others, 2008). The Bayesian statistical framework is ideal for datasets derived from historical to 
modern observations of phenomena such as long-term shoreline change. For this study, a BN provided a means 
of integrating observations to evaluate the relationships between forcing factors (for example, rate of sea-level 
rise, wave height, or tidal range), and coastal responses (for example, shoreline-change rate). The predictions 
can also be used to estimate outcome uncertainty that can be expressed both in numbers (for example, 90 
percent) and established likelihood terms (for example, “very likely,” Intergovernmental Panel on Climate Change, 
2007). Communicating information about the effects of sea-level-rise in terms of probability may improve 
scientists’ ability to support decisionmaking and address specific management questions regarding the effects of 
sea-level rise.  

This report provides the data that were used by the U.S. Geological Survey to develop and evaluate a 
BN to calculate probabilities of long-term shoreline change (Gutierrez and others, 2011). The BN was 
developed and tested over a two-year period in 2009 and 2010 and implemented using a commercial software 
package, Netica (Norsys, 2009).  Input data were extracted from the Coastal Vulnerability Index (CVI, Thieler 
and Hammar-Klose, 1999), which was developed to describe physical processes or conditions at specific 
locations along the U.S. Atlantic coast. The data included with this report provide probabilities of long-term 
shoreline change computed using the BN developed for this study. A detailed account of the results of this 
analysis can be found in Gutierrez and others (2011). 
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Development of the Bayesian Network 
This section reviews the methodology that was used to implement the Bayesian network.  The first part 

provides a brief review of Bayes theorem and how a Bayesian network was structured to address long-term 
shoreline change.  The second part reviews the data that were used to calculate probabilities of shoreline change 
using the Bayesian network. 

Bayesian Networks 
A Bayesian network provides a framework to evaluate the probability of a specific outcome based on 

causal relationships among variables identified by users. Bayes’ theorem relates the probability of one event R 
given the occurrence of another event O (Bayes, 1763; Gelman and others, 2004): 
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On the left side of this equation, p(Ri|Oj) is the conditional probability of a particular response, Ri, given 
a set of observations Oj. For example, a particular response might be the joint occurrence of a particular rate of 
sea-level rise and a particular rate of shoreline change. The ith response scenario refers to the number of input 
scenarios that can be considered. Likewise, the jth observation refers to the set of observations that are 
considered for each scenario, such as wave height, rate of sea-level rise, or one of the other variables. On the 
right side of this equation, p(Oj|Ri) is the likelihood of the observations for a known response. This term 
indicates the strength of the correlation between observation and response, such as the rate of sea-level rise and 
shoreline change. The correlation is high if the observations are accurate and if response variables are sensitive 
to the observed variables. The second term in the numerator p(Ri) is the prior probability of the response, which 
is the probability of a particular response integrated over all expected observation scenarios. The denominator 
p(Oj) is a normalization factor to account for the likelihood of the observations. 
 

The Norsys software package Netica (Norsys, 1992–2009) was used to construct a BN for the data from 
THK99. The network was configured on the basis of simple causal relationships among six variables (fig. 1). 
These variables, often referred to as decision nodes in a BN, were divided into three categories:  driving forces, 
geological boundary conditions, and a response variable used as a vulnerability indicator. The rate of relative 
sea-level rise, wave height, and tidal range are considered driving forces. The geomorphic setting and coastal 
slope are considered geological boundary conditions. The shoreline-change rate was the response variable. Each 
node (that is, variable) is resolved by five classes, or binned values, corresponding to risk categories defined in 
THK99 (table 1). We structured the BN to reflect our understanding of how the variables influence long-term 
shoreline change.  
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Figure 1. Diagram showing the structure of the Bayesian network (BN) used for this study. The rate of relative sea-level 
rise, mean wave height, and tidal range were assumed to be driving forces; the coastal slope and geomorphic setting 
were assumed to be geological boundary conditions; and the shoreline-change rate was considered to be the 
vulnerability indicator. 

 
Table 1. Variables used in the Bayesian network. 
 

Variable   Binned values   
 1 2 3 4 5 

Geomorphology1 
1 – Very low risk–  
Rocky, cliffs along 

coasts, fjords 

2 – Low risk–  
Medium cliffs, 
indented coasts 

3 – Moderate risk–  
Low cliffs, glacial 

drift, alluvial plains 

4 – High risk–  
Cobble beaches, 

estuarine and 
lagoonal coasts 

5 – Very high risk–  
Barrier beaches, 

sand beaches, salt 
marsh, mud flats, 

deltas, mangroves, 
coral reefs 

Shoreline change 
(m/yr) > 2.0 1.0 – 2.0 -1.0 – 1.0 -2.0 – -1.0 < -2.0 

Coastal slope (%) > 0.2 0.2 – 0.07 0.07 – 0.04 0.04 – 0.025 < 0.025 
Relative sea-level 
change (mm/yr) < 1.8 1.8 – 2.5 2.5 – 2.95 2.95 – 3.16 > 3.16 

Mean wave height 
(m) < 0.55 0.55 – 0.85 0.85 – 1.05 1.05 – 1.25 > 1.25 

Mean tidal range 
(m) > 6.0 4.1 – 6.0 2.0 – 4.0 1.0 – 1.9 < 1.0 

1The geomorphology ranking is based on the sea-level rise vulnerability classification used by THK99. 
[m/yr, meters per year; %, percent; mm/yr, millimeters per year; m, meters; >, greater than; <, less than] 
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The THK99 Dataset 
The six variables used in THK99 were defined for the coastlines of the continental United States (fig. 1, 

table 1). The THK99 data were originally gridded to a shoreline data layer at about 5-km resolution that 
included inland coastal waterways.  For this study, we focused on the U.S. Atlantic coast and removed data 
points for inland waterways for which no shoreline-change data were available; this coverage matched the 
original extent of the data in Dolan and others (1985), which were used to provide the long-term shoreline-
change rates in THK99. The input data include the ocean-facing shores of the U.S. Atlantic coast from the 
Canadian border to Key West, Florida, and portions of Chesapeake and Delaware Bays. Data in each node of 
the BN are binned according to the same risk categories defined in THK99 (table 1). The resulting BN 
predictions are applicable at the same spatial scale as the input. The variables are described briefly below and 
explained in detail in THK99.  
 

Rate of Relative Sea-Level Rise—Computed by fitting a linear trend to National Ocean Service (NOS) 
long-term (50–more than 100 years) tide-gauge observations and interpolating alongshore between stations. In 
the BN used here, the rate of sea-level rise is assumed to influence the geomorphic setting and the shoreline- 
change rate. 
 

Mean Wave Height—Computed from U.S. Army Corps of Engineers Wave Information Studies (WIS) 
hindcast data (Hubertz and others 1996) and interpolated alongshore between WIS stations. Wave height 
reflects the wave climatology and potential sediment transport in a particular area and is assumed to influence 
the geomorphic setting and the shoreline-change rate.  
 

Mean Tidal Range—Computed from NOS tide gauges and interpolated alongshore between stations. 
Tidal range influences the characteristics of coastal landforms such as barrier islands (Hayes, 1979). THK99 
and Morton (2003) also point out that in areas where storm surges may occur, regions with low tidal ranges can 
have higher potential for inundation and consequently greater risk of dune breaching than areas with higher tidal 
range. The tidal range is assumed to influence the geomorphic setting and the shoreline change rate. 
 

Geomorphic Setting—Based on an ordinal vulnerability classification of sea-level rise by Gornitz and 
Kanciruk (1989) and modified by THK99 to include the division of barrier islands into transgressive and 
regressive types (Nummedal, 1983). Coastal landforms develop as a result of the interaction of many factors. It 
is assumed that the rate of sea-level rise, mean wave height, mean tidal range, and coastal slope all contribute to 
the development of a given coastal landform that can be identified as a distinct geomorphic setting  and that the 
geomorphic setting influences the shoreline-change rate. Simplifying the THK99 definitions in this paper, 
geomorphic settings 1 and 2 represent very low and low vulnerability settings, setting 3 moderate vulnerability, 
and settings 4 and 5 high and very high vulnerability, respectively (table 1). 
 

Coastal Slope—Computed from gridded National Geophysical Data Center and U.S. Navy topographic 
and bathymetric data extending approximately 50 km landward and seaward of the local shoreline. Coastal 
slope is a measure of the gradient of the substrate on which the local geomorphology has formed and which 
influences the development of coastal landforms in a region (Roy and others, 1994). Coastal slope can affect the 
shoreline-change rate because shallow gradients can result in greater horizontal displacement per unit rise in sea 
level (Pilkey and Davis, 1987). 
 

Shoreline-Change Rate—Decadal-to-centennial-scale historical rates of shoreline change based on data 
compiled by May and others (1983) and Dolan and others (1985) into the Coastal Erosion Information System 
(CEIS) (May and others, 1982) (fig. 2). The data in CEIS are drawn from a wide variety of sources, including 
published reports, historical shoreline-change maps, field surveys, and aerial-photo analyses; however, the lack 
of a standard method among coastal scientists for analyzing shoreline changes (Morton and Miller, 2005) has 
resulted in the inclusion of data based on a variety of reference features, measurement techniques, and rate-of-
change calculations. Thus, while CEIS represents the best data currently available for the entire Atlantic coast in 
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a format amenable to this analysis, actual regional and local erosion rates may differ significantly (compare to 
May and others, 1983; Dolan and others, 1990). We updated data for the southern shore of Delaware Bay and 
the northern Chesapeake Bay with shoreline-change rates from Dolan and Peatross (1992); this update was 
deemed necessary because of possible gridding errors in the original THK99 dataset, which was based on an 
older shoreline-change dataset (Dolan and others, 1985). In the BN used here, shoreline-change rate is the 
response variable and is assumed to be influenced by the other variables in the network. 
 
 

 
 
 

Figure 2. Map showing shoreline-change rates for the U.S. Atlantic coast showing the spatial extent of the dataset that 
was use as input data for the Bayesian network used in this paper. Negative rates of shoreline change denote erosion.  

 

 

 



12 
 

Mapping Bayesian Network Predictions 
The BN constructed using the Netica software can be used to evaluate the probability of different input 

scenarios. Alternatively, for this study, we also developed an interface based on the MathWorks Matlab data-
analysis software, which allowed systematic evaluations of our specific input scenarios. Using this approach, 
we used the BN to generate probability-density functions for shoreline-change rates for input scenarios, each of 
which corresponds to a geographic location. We also generated a dataset of the input data and discrete 
probability-density distributions that were calculated using the BN and are provided with this report. The results 
allowed us to create maps depicting the probability of shoreline change (for example, fig. 3). In figure 3, the 
discrete probabilities of shoreline changes being less than -1 m/yr (erosion) were mapped to depict the 
probability of erosion along the U.S. Atlantic coast.  These values are the sum of the two shoreline change 
categories indicating erosion (shoreline change rates less than -2 m/yr, and shoreline change rates between -1 
and -2 m/yr). The probabilities are color coded to reflect categories used to communicate the likelihood of an 
outcome that were developed by the Intergovernmental Panel on Climate Change (2007). 

 

Figure 3. Map showing the U.S. Atlantic coast showing the probability of shoreline change less than -1 m/yr (erosion) 
calculated using the Bayesian network. The probabilities are color coded and labeled with terms developed by the 
Intergovernmental Panel on Climate Change. 

Geospatial Data 
Data used for this analysis are available as a downloadable file that includes input data and output 

probabilities calculated using the BN. All vector data are delivered as Environmental Systems Research 
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Institute (ESRI) shapefiles in the geographic coordinate system (WGS84) and distributed with Federal 
Geographic Data Committee (FGDC) compliant metadata in Extensible Markup Language (*.xml) format. 
Tabular data are delivered as dBase IV (*.dbf) structured files, which can be read with ESRI ArcGIS software 
as well as many other available spreadsheet programs. Metadata are also provided for all spatial and tabular data 
in text (*.txt) and FGDC Classic (*.html) format. ESRI ArcCatalog 9.x or higher can also be used to examine 
the metadata in a variety of additional formats. 

The data provided with this report consist of a shapefile and accompanying spreadsheet that contain 
input data for each location as well as the corresponding output, which consists of probability-density 
distributions for discrete shoreline-change rates . As described in an earlier section of the report (see “The 
THK99 Dataset”), the input data were acquired for the Atlantic coast and modified from THK99. Each set of 
input values for each location was evaluated using the BN to produce the output probability distributions (see 
“Mapping Bayesian Network Predictions”).   

The input data consist of seven fields: 
a. identifier (ID)  
b. Decimal longitude 
c. Decimal latitude 
d. Slope (percent) 
e. Geomorphology 
f. Rate of relative sea-level rise (mm/yr) 
g. Mean wave height (m) 
h. Tidal range (m) 
i. Erosion rate (m/yr) 

 
The output probability distributions consist of five classes corresponding to the five fields (fig. 2): 

h. pErosion2—probability of shoreline change less than -2 m/yr 
i. pErosion1—probability of shoreline change less than -1 m/yr to -2 m/yr 
j. pStable—probability of shoreline change less than 1 m/yr to -1 m/yr 
k. pAccretion1—probability of shoreline change greater than 1 m/yr to 2 m/yr 
l. pAccretion2—probability of shoreline change greater than 2 m/yr 

Metadata 
Link to Metadata in on-line version:  for review see “ProbSLC_AtlanticData.html” 
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