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Construction Diagrams, Geophysical Logs, and Lithologic 
Descriptions for Boreholes USGS 103, 105, 108, 131, 135, 
NRF-15, and NRF-16, Idaho National Laboratory, Idaho 

By Mary K.V. Hodges, Stephanie M. Orr, Katherine E. Potter, and Tynan LeMaitre 

Abstract 
This report, prepared in cooperation with the U.S. 

Department of Energy, summarizes construction, geophysical, 
and lithologic data collected from about 4,509 feet of core 
from seven boreholes deepened or drilled by the U.S. 
Geological Survey (USGS), Idaho National Laboratory 
(INL) Project Office, from 2006 to 2009 at the INL. USGS 
103, 105, 108, and 131 were deepened and cored from 759 
to 1,307 feet, 800 to 1,409 feet, 760 to 1,218 feet, and 808 
to 1,239 feet, respectively. Boreholes USGS 135, NRF-15, 
and NRF-16 were drilled and continuously cored from land 
surface to 1,198, 759, and 425 feet, respectively. Cores were 
photographed and digitally logged by using commercially 
available software. Borehole descriptions summarize location, 
completion date, and amount and type of core recovered. 

Introduction
The Idaho National Laboratory (INL), operated by the 

U.S. Department of Energy (DOE), occupies about 890 mi2 
of the eastern Snake River Plain (ESRP) in eastern Idaho 
(fig. 1). Facilities at the INL are used in the development of 
peacetime atomic-energy applications, nuclear safety research, 
defense programs, environmental research, and advanced 
energy concepts. Wastewater containing radionuclide and 
chemical wastes generated at these facilities was discharged 
to onsite infiltration ponds, evaporation ponds, and disposal 
wells from 1952 to 1983. Most aqueous wastes have been 
discharged to infiltration ponds since 1983. Solid and liquid 
radioactive and chemical wastes have been buried in trenches 
and pits excavated in surficial sediment at the Radioactive 
Waste Management Complex (RWMC, fig. 1). Past disposal 
practices have resulted in detectable concentrations of selected 

radiochemical, inorganic, and organic waste constituents in 
water collected from INL monitoring wells completed in the 
ESRP aquifer (Mann and Beasley, 1994; Cecil and others, 
1998; Bartholomay and Tucker, 2000; Davis, 2010).

The U.S. Geological Survey (USGS) has conducted 
hydrologic, geologic, and geophysical research at the INL 
since 1949. Early work characterized water resources 
and geology in the INL area prior to construction of 
nuclear‑reactor testing facilities. Since completion of those 
studies, the USGS has maintained groundwater quality and 
water-level monitoring networks at the INL to collect data for 
research on hydrologic trends, and to trace the movement of 
facility-related radiochemical and chemical contaminants in 
the ESRP aquifer.

Hundreds of monitoring wells at the INL penetrate the 
upper 200 ft of the ESRP aquifer where most groundwater 
movement probably occurs (Ackerman and others, 2006, 
p. 39). Additional boreholes were core drilled to investigate 
the geology and hydrology of the ESRP aquifer because 
recently published data indicate that boreholes that extend 
several hundred feet into the aquifer provide data useful for 
constructing and evaluating groundwater conceptual, flow, and 
transport models.

Between 2006 and 2009, the USGS, in cooperation with 
the DOE Idaho Operations Office, deepened and cored four 
boreholes originally drilled from 759 to 808 ft below land 
surface (BLS). The USGS also cored three new boreholes 
from land surface—USGS 135, NRF-15, and NRF-16. 
Boreholes USGS 103, 105, 108, 131, and 135 were cored 
to install multilevel monitoring systems (Bartholomay and 
Twining, 2010; Fisher and Twining, 2010). Boreholes NRF-15 
and NRF-16 were cored to provide monitoring wells for the 
Naval Reactor Facility (NRF). Geologic information collected 
from these boreholes is used to refine the three-dimensional 
geologic framework of the ESRP aquifer at the INL.
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Purpose and Scope

This report summarizes the geologic setting of the 
ESRP aquifer, describes geophysical methods used to 
help characterize the subsurface, and presents information 
collected from each borehole. Of the seven boreholes, four 
were continuously cored and three were partially cored. 
Wireline geophysical logs were run through drill stem and in 
open boreholes to better define stratigraphy and hydrologic 
properties of the ESRP aquifer. Cores were examined, 
described, and photographed.

Geologic Setting

The ESRP formed when the North American Plate moved 
southwestward across a fixed melting anomaly that severely 
disrupted the crust (Pierce and Morgan, 1992; Pierce and 
others, 2002; Morgan and McIntosh, 2005, p. 288). Thermal 
disruption caused a series of volcanic fields characterized 
by initial uplift, followed by bimodal magmatism (rhyolitic 
resurgent caldera eruptions followed and buried by basalt 
eruptions) and ongoing subsidence caused by emplacement of 
a mafic midcrustal sill (Braile and others, 1982; Anders and 
Sleep, 1992, p. 15, 379; Peng and Humphries, 1998, p. 7,171; 
Rodgers and others, 2002; Shervais and others, 2006, p. 365). 
The resulting volcanic plain is 200 mi long from southwest to 
northeast and roughly 50 mi wide from southeast to northwest. 
The ESRP rises from King Hill, Idaho (altitude 2,492 ft 
National Geodetic Vertical Datum of 1929 (NGVD 1929), 
stream gage on Snake River, (U.S. Geological Survey 2011d) 
to the edge of the Yellowstone Plateau volcanic field (altitude 
6,710 ft, NGVD 1929, stream gage on Henry’s Fork near 
Ashton, Idaho, (U.S. Geological Survey, 2011c), a difference 
of 4,218 ft.

Olivine tholeiitic basalt flows, erupted as tube-fed, 
inflated, pahoehoe, comprise more than 85 percent of the 
subsurface volume of the ESRP at the INL (Kuntz and others, 
1992; Anderson and Liszewski, 1997). A typical ESRP basalt 
flow has vesicular zones and cooling fractures on the top 
and sides, with vesicle sheets, pipe vesicles, megavesicles in 
the interior, and a diktytaxitic to massive core (fig. 2) (Self 
and others, 1998; Hughes and others, 2002). We consider a 
basalt flow group to be the product of a single monogenetic 
volcano, and a basalt flow as the result of a single eruption 
episode. Paleomagnetic or geochemical analyses are required 
to distinguish flow groups. Flows can be distinguished by 
inspection of core and geophysical logs, especially caliper, 
gamma-gamma, natural gamma, and neutron, natural gamma, 
logs used in concert, which allows identification of the 
vesicular tops and bases of the flows. Where flows succeed 
each other without sediment deposition, flows may make 
molds of the underlying surface (“flow and mold structures,” 
see appendixes A–G). Near-vent flows are thinner than more 
distal flows, and accumulations of thin flows have a larger 

volume of high conductivity zones than the same volume of 
thick flows; therefore, spaces occupied by vents tend to have 
more fractured, high-conductivity volume than spaces distal 
to vents (Anderson and others, 1999). Distribution of basalt 
flows is controlled by previously existing topography, rate of 
effusion, and duration of eruption.

Eolian, fluvial, alluvial, and lacustrine sediments are 
found in ESRP drill cores, and are predominantly fine grained 
(Bestland and others, 2002; Blair, 2002), although difficulty in 
retrieving coarse-grained sediments in core may have biased 
the core record to some extent. Provenance and detrital-zircon 
studies indicate that the Big Lost River has been the main 
source of sediment since late Pliocene time on the part of the 
ESRP occupied by the INL. A depocenter informally named 
the Big Lost Trough is the result of the deposition from the 
Big Lost River around the INL (Geslin and others, 2002).

Sediment layers penetrated by these boreholes are as 
much as 146 ft (USGS 103). The Big Lost Trough (fig. 1) 
(Bestland and others, 2002; Blair, 2002; Geslin and others, 
2002) is bounded to the northwest by mountains and on the 
other three sides by informally named volcanic highlands—
the Axial Volcanic Zone and the Arco-Big Southern Butte 
Volcanic Rift Zone (fig. 1). Boreholes in and near the Big Lost 
Trough (fig. 1), such as USGS 103, 108, 131, and NRF‑15, 
contain substantially greater amounts of sediment than 
boreholes in other parts of the INL site, such as USGS 135. 

Deposits of rhyolitic and other evolved-composition 
ashes are rare, but can be useful time markers. Preservation 
of such deposits depends on the simultaneous occurrence of 
an ash-producing eruption upwind of the ESRP and either a 
basaltic eruption or a sedimentary depositional environment 
that allows quick burial of the ash. None of the boreholes 
reported here penetrated to the depth of the caldera-related 
rhyolitic rocks that underlie the ESRP basalts (Doherty, 1979; 
Doherty and others, 1979).

Borehole Construction

The USGS INL Drilling Program uses a truck-mounted 
wireline core rig, two coring systems, and support equipment 
for rotary coring in volcanic rock and sediment. This rig is 
capable of drilling depths that exceed 1,400 ft. The USGS 
INL Project Office drilling crew drills PQ- and HQ-diameter 
core (fig. 3). The PQ rotary coring produces a 4.8-in. borehole 
and a 3.3-in. diameter core (fig. 3C). The HQ rotary coring 
system produces a 3.8-in. borehole and a 2.5‑in. diameter core 
(figs. 3A and 3B). PQ and HQ rotary core systems use similar 
diamond and carbide bits, core catchers, latch assemblies, 
and retrieval systems (fig. 4). Core was retrieved by using a 
wireline latching mechanism (quadlatch) at the top of the core 
barrel assembly. Support equipment includes a 350 lb/in2, 
900 ft3/min capacity diesel air compressor, pipe trailer, and a 
3,000-gal water truck.
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Figure 2.  Typical olivine tholeiitic pahoehoe basalt flow, showing zones and structures and fracture frequency and vesicle 
characteristics (modified from Self and others, 1998, p. 90, fig. 3). Photograph of pahoehoe lobe surface courtesy of Scott Hughes, 
Idaho State University, Pocatello, Idaho.

For boreholes drilled from the surface, casing was 
driven through surficial sediment. Once surface casing was 
placed, boreholes USGS 135, NRF-15, and NRF-16 were 
continuously cored to 1,198; 759; and 423 ft, respectively. 
Borehole USGS 131, previously cored to 808 ft (Twining and 
others, 2008), was deepened to 1,239 ft in 2010. Borehole 
USGS 103 had 6-in. casing set to 752 ft and then cored to 
1,307 ft. Borehole USGS 105 had 5-in. casing set to 801 ft and 
then cored to a total depth of 1,409 ft. Borehole USGS 108 
had 5-in. casing set to 758 ft and then cored to 1,218 ft. 

Drilling fluid included a mixture of air and water used 
to cool the bit face and circulate drill cuttings. Under rare 
circumstances, foam additives were used to help stabilize the 
borehole and lift the cuttings to the surface. 

Boreholes drilled on the ESRP mostly penetrate basalt; 
thickness of sediment layers varied from less than a foot to 

tens of feet. Generally, diktytaxitic to massive basalt cored 
well; sediment layers, flow tops, and flow bottoms caused 
problems, especially where series of thin flows resulted in 
unstable rock. Core recovery of fine sediment usually is more 
successful than recovery of coarse sand and gravel. Under 
saturated conditions, sediment recovery results were mixed 
because it was difficult to trap wet sediment inside of the core 
barrel during retrieval. 

Boreholes USGS 103, 105, 108, and 135 were 
completed as monitoring wells with Westbay™ multilevel 
monitoring systems. Borehole NRF-15 was completed as 
a two‑piezometer, water-level monitoring well. Borehole 
NRF‑16 was screened to be used as a water-quality and 
water‑level monitoring well. Borehole USGS 131 was 
damaged during drilling and is currently (2011) on standby. 
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Geophysical Logs
The USGS has been collecting geophysical data at the 

INL since 1952. These data have been used to characterize 
subsurface basalt and sediment in the ESRP aquifer. 

The borehole geophysical data used in this report include: 
caliper, gamma-gamma, natural gamma, and neutron logs. 
Borehole video logs were used to corroborate stratigraphic 
information where necessary. Figure 5 shows examples of 
features that can be identified with geophysical logging 
techniques.

Borehole geophysical logs are available in Log ASCII 
Standard and LOG format (a proprietary binary format) and 
are available through the USGS INL Project Office (U.S. 
Geological Survey 2011b) or through the INL Hydrologic 
Data Repository. The following summary describes the four 
types of geophysical logs used in this report.

Caliper Logs

The caliper tool provides an electronic wall trace of the 
drill-hole diameter by using three extendable spring-loaded 
arms that are capable of detecting limited changes in borehole 
diameter (changes in diameter larger than 0.15 in.). Changes 
in borehole diameter, detected by the amount of deflection of 
the caliper arms, are recorded as the caliper tool is brought up 
from the bottom of the borehole.

Caliper logs were run in open boreholes immediately 
after the drill string was removed. Borehole caving prevented 
a continuous caliper profile in some boreholes. As the drill 
string was being removed, multiple caliper logs were run, 
when necessary, to capture borehole diameter data above and 
below intervals prone to caving, and these multiple logs were 
consolidated where feasible. Caliper data were used to identify 
fracture locations, areas of competent basalt, and cavernous 
zones (fig. 5). Caliper logs also were used when designing 
monitoring wells to determine location of casing, annular seal, 
and well screen.

Gamma-Gamma Logs

The gamma-gamma density log, also known as the 
induced gamma-density log, measures bulk density of 
the formation near the borehole. Two separately spaced 
detectors record induced gamma-radiation intensity from an 
encapsulated radioactive source after the gamma signal is 
backscattered or absorbed in a drill hole, borehole fluid, or 
surrounding media (Chase and others, 1964). The induced 
gamma signal is attenuated in direct proportion to the bulk 
density of a formation.

Very dense materials increase scatter and cause increased 
absorption of gamma radiation; the increased absorption of 
gamma radiation results in fewer particles returning to the 
detector. The opposite is true for fractured and low-density 
materials. Examples of density differences recorded by 
gamma-gamma logs are shown in figure 5.

Gamma-gamma logging requires one source and two 
separately spaced detectors, referred to as the short- and 
long-spaced detectors. The short-spaced detector has a smaller 
area of investigation than the long-spaced detector. Although 
the resolution of the long-spaced detector is lower than the 
short-spaced detector, data from the long-spaced detector are 
less affected by well casing and near-borehole conditions than 
are data from the short-spaced detector (Glover and others, 
2002). Gamma-gamma logs included in this report show data 
collected from the long-spaced detector.

Natural Gamma Logs

Natural gamma logs record gamma radiation emitted by 
naturally occurring radioisotopes. Natural gamma logs are 
used at the INL to identify sedimentary layers in boreholes 
and basalts that contain higher or lower potassium-40 
concentrations than the basalts layers above or below. Some 
examples of naturally occurring radioisotopes in the ESRP 
are potassium-40, bismuth-214, lead-214, actinium-228, 
thorium-232, and uranium-238 (Barraclough and others, 
1976). Sediments, which mostly consist of mineral grains 
eroded from nearby mountains, naturally contain greater 
concentrations of gamma-emitting isotopes, usually 
potassium-40, than basalts. Most ESRP basalts do not contain 
large amounts of naturally occurring gamma-emitting isotopes. 
The gamma detector measures total gamma radiation without 
distinguishing between individual contributions of the various 
isotopes.

The probe used for recording the natural gamma log 
contains a single pressure-housed sodium iodide scintillation 
detector. Naturally occurring gamma radiation hits the sodium 
iodide crystal and causes a visible light emission called a 
scintillation. A photomultiplier tube detects scintillations and 
transforms those emissions into pulses of electrical energy, 
which are recorded and a digital image produced in a log of 
gamma-radiation responses.

Examples of elevated natural gamma response caused 
by the sediment layers and changes in natural gamma 
signal resulting from basalts with different potassium-40 
concentrations are shown in figure 5.
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Figure 5.  Typical hydrogeologic features that are discernible in caliper, gamma-gamma, natural gamma, and 
neutron logs in boreholes at the Idaho National Laboratory, Idaho.
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Neutron Logs

The neutron log records the continuous measurement of 
the induced radiation produced by bombarding surrounding 
media (casing, formation, and fluid) with fast neutrons 
(energies greater than 105 electron volts) from a sealed 
neutron source, which collide with surrounding atomic nuclei 
until captured (Keys, 1990, p. 95). The neutron tool used by 
the USGS INL Project Office has an Americium/Beryllium 
neutron source, and a Helium-3 detector that counts slow 
(thermal) neutrons (those neutrons that have energies less than 
0.025 electron volt).

Hydrogen nuclei have about the same mass as neutrons, 
so neutrons that collide with hydrogen nuclei are slowed 
and are recorded at a lower rate than those neutrons that 
collide with nuclei other than hydrogen. Hydrogen content is 
inversely proportional to thermal neutron count at the detector, 
when the spacing between source and detector is greater than 
11.8 in., as in the neutron tool used by the USGS INL Project 
Office (Keys, 1990, p. 95–96). Because water is the most 
common hydrogen-bearing substance in ESRP boreholes, 
neutron logs are considered to be good indicators of saturated 
formation porosity. When combined with natural gamma logs 
to provide information about sediment location, neutron logs 
also may help identify perched water zones in the unsaturated 
zone (fig. 5). Neutron response changes related to perched 
water and zones of higher and lower water-filled porosity are 
shown in figure 5.

Core Logs

Core logs (appendixes A–G) were created by using 
a standardized method to record lithologic logs with 
photographs of core (Johnson and others, 2005). Core 
was logged with commercial logging software by using a 
procedure developed by the USGS INL Project Office for 
use at the Lithologic Core Storage Library (U.S. Geological 
Survey, 2011a). The method deliberately maximizes 
description and minimizes interpretation.

Data recorded are: depth below land surface; core 
photograph; igneous, soil, and sedimentary structures; 
miscellaneous information (such as notes about where samples 
were collected); a lithologic description; a histogram of 
numeric value for fracture frequency; a line graph of mean 
vesicle size for an interval; and a colored curve of vesicle 
volume percentage. Core logs in this report show fracture 
values for natural fractures, fractures related to drilling are 
ignored.

Core logs for boreholes in this report, including depth, 
core photographs, major structures, lithologic description, 
degree of fracture, and size and frequency of vesicles are in 
appendixes A–G. 

Core Log Columns
The left-most column of every core log is depth, in feet 

BLS (fig. 6). The second column contains a photograph of the 
core. The third column contains igneous, soil, or sedimentary 
symbols to highlight structures of particular interest. Basalt 
structures of interest were vesicle zones, large vesicles, 
vesicle planes, megavesicles, vesicle cylinders, pipe vesicles, 
vesicle sheets, flow and mold structures, and spatter features 
(agglomerated spatter). Sediment was classified based on soil 
texture (American Society for Testing and Materials, 1985) 
unified soil classification system (table 1) and particle size 
(table 2). Some intervals of sediment core were sampled for 
sediment property analysis before being logged.

The fourth column contains a colored lithology symbol 
(fig. 6). The fifth column is for miscellaneous text, such as 
notes about where samples were collected. The sixth column 
is for written lithologic descriptions. Lithology was described 
in standard geological terms for color, texture, composition 
(minerals), xenoliths, alteration, and major structures. Color 
was visually matched by using a Munsell® Rock Color Chart 
(Rock Color Chart Committee, 2009). Soil structures were 
logged according to information from the Soil Survey Manual 
(Soil Survey Division Staff, 1993).

The seventh column is a histogram representation for 
fracture frequency, a numeric value based on number of 
fractures per interval. Fracture data for the core in this report 
are derived from natural fractures, not drilling fractures. 
Fracture frequency numeric values are 0 for intervals of 
unfractured core, 1 for very slightly fractured core (pieces 
averaged 3–5 ft), 2 for slightly fractured core (pieces averaged 
1–3 ft), 3 for moderately fractured core (pieces averaged 
0.33–1.0 ft), 4 for intensely fractured core (pieces averaged 
0.0875–0.33 ft), 5 for extremely fractured core (pieces 
averaged less than 0.0875 ft).

The eighth column contains a line graph of estimated 
mean vesicle size in 0.1 in. and a yellow-filled curve that 
describes the estimated volume percentage of vesicles per 
interval of basalt. Vesicle size and percentage were visually 
estimated by using charts adapted from Compton (1962).
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Table 1.  American Society for Testing and Materials (ASTM) unified soil classification system used in core logs.

[American Society for Testing and Materials, 1985. Abbreviations: µm, micometer; mm, millimeter; >, greater than] 

Major divisions Group symbol Group name

Coarse grained soils
(> 50 percent retained 

on
#200 sieve, aperture
75 µm)

Gravel
(> 50 percent of coarse
fraction retained on #4 sieve,
aperture 4.75 mm)

Clean gravels GW Well-graded gravel,
Fine to coarse gravel

GP Poorly graded gravel

Gravels with fines
(appreciable amount
of fines)

GM Silty gravel

GC Clayey gravel

Sand
(>50 percent of coarse
fraction passes #4 sieve,
aperture 4.75 mm)

Clean sands
(little or no fines) SW Well-graded sand,

Fine to coarse sand

SP Poorly graded sand

Sand with fines
(appreciable amount
of fines)

SM Silty sand

SC Clayey sand

Fine grained soils
(fines)
(> 50 percent passes
#200 sieve aperture
75 µm)

Silt and clay Inorganic ML Silt

CL Clay

Organic OL Organic silt, organic clay

Silt and clay Inorganic MH Silt of high plasticity, elastic silt

CH Clay of high plasticity, fat clay

Organic OH Organic clay, organic silt

Highly organic soils PT Peat

Table 2.  Wentworth scale of particle sizes used in core logs.

[Modified from Wentworth, 1922] 

Wentworth grain-size scale

Millimeters (mm) Wentworth size class

4,0915 Boulder
2.S6 Cobble

64 Pebble
4 Granule
2 Very coarse sand
1 Coarse sand
0.5 Medium sand
0.25 Fine sand
0.125 Very fine sand
0.0625 Coarse silt
0.031 Medium silt
0.0078 Fine silt
0.0039 Very fine silt
0.00006 Clay
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Core Photographs
Photographs for logging are taken with a custom-built jig 

mounted on a rolling table (fig. 7). The jig controls depth of 
field, light intensity, angle, and position of core boxes assuring 
consistent photographs. Well name, depth intervals, and color 
charts are photographed with the core, to assist in photograph 
processing. Core photographs were stacked for presentation by 
using commercially available software. 

Core Descriptions
Lithologic descriptions were constructed from 

examination of cores and supplemented with geophysical data. 
After the core was drilled and extracted,the core was marked 
in the field for vertical direction and depth. Examination of 
core was done at the Lithologic Core Storage Library at the 
INL Central Facilities Area. Geophysical data were used 
during the examination to identify areas of missing or lost core 
and to check the accuracy of depths marked on core.

Most of the core from boreholes the ESRP is olivine 
tholeiite basalt from flows that vary in thickness. Individual 
basalt flows could be distinguished from one another by 
locating vesicular and fractured flow tops, diktytaxitic 
to massive interiors, and vesicular flow bottoms. Basalt 
color, composition, and texture were described by using 
a standardized format. Alteration was described where 
appropriate.

Sediment layers are the other main core component, and 
these layers vary in composition and thickness. Most sediment 
layers generally are fine-grained, and include large amounts 
of silt, clay, fine sand, and limited amounts of coarse sand and 
gravel. Coarse-grained sediments may be under‑represented 
because of the difficulty in recovering coarse-grained 
unconsolidated sediment, especially in the saturated zone. 
Fine-grained sediment is the result of eolian, fluvial, and 
lacustrine deposition (Blair, 2002). Some sediment tops were 
oxidized or baked (yellowish red to red in color) where heated 
by overlying basalt.

Borehole Descriptions
Borehole descriptions include: location, completion 

date, core size, core depth, core recovery footage, and a 
general description of recovered core (appendixes A–G). Four 
boreholes were continuously cored, and three were partially 
cored. Additional information includes sediment layer and 
basalt flow group thicknesses and the approximate number 
of basalt flow groups. A basalt flow group is composed of the 

basalt flows from one monogenetic volcano; basalt flows in a 
basalt flow group will have similar paleomagnetic inclinations 
and bulk chemistry. Thickness and number of basalt flow 
groups for three boreholes (USGS 103, 105, and 108) were 
approximated from neutron and natural gamma logs. Natural 
gamma logs are especially useful in separating basalt flow 
groups, because the logs reliably identify thin sediment layers. 
The number of basalt flow groups can be only approximated in 
uncored boreholes. 

Four boreholes were cored from the surface, and core 
from these four boreholes was analyzed paleomagnetically 
(Duane E. Champion, U.S. Geological Survey, written 
commun., 2010; Champion and others, 2011), which allows 
a more accurate determination of the number of basalt flow 
groups penetrated by these boreholes, than estimation of the 
number of basalt flow groups by locating flow tops and bases 
through inspection of core or geophysical logs. Borehole data 
are summarized in table 3.

tac11-0682_fig07

Figure 7.  Rolling table and jig used to log and photograph 
cores collected at Idaho National Laboratory, Idaho.
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Borehole USGS 103

Borehole USGS 103 is near the southern boundary of the 
INL (fig. 1). Borehole USGS 103 was air rotary drilled from 
land surface to 760 ft BLS in 1980. USGS 103 was deepened 
and cored from 760 to 1,307 ft in 2006. The core is PQ size 
from 760 to 859 ft, and is HQ size from 859 to 1,307 ft. 
Combined recovery for basalt and sediment was about 
96 percent for core drilled from 760 to 1,307 ft BLS (table 3). 
A well diagram, simplified lithology, and geophysical logs for 
borehole USGS 103 are shown in figure 8. 

Olivine tholeiite basalt from borehole USGS 103 is 
medium light to dark gray in color and vesicular to dense in 
texture. About 82 percent of the total thickness penetrated 
in this borehole is basalt, 10 percent is sediment (including 

surface sediment), and 8 percent is rhyolite (table 3). About 
17 basalt flow groups were identified in borehole USGS 103; 
those groups in the upper, uncored part were identified by 
geophysical logs. The approximate average thickness of basalt 
flow groups in borehole USGS 103 is 64 ft. Rhyolite in the 
upper uncored part of this well was identified from cuttings, 
geophysical logs, and drillers’ notes. About 10 sediment layers 
were identified in borehole USGS 103; those layers in the 
upper, uncored part were identified in the natural gamma log. 
A multilevel monitoring system was permanently installed 
in borehole USGS 103 in 2007. Borehole USGS 103 is used 
for multilevel aquifer potentiometric head, temperature, and 
water-quality studies (Bartholomay and Twining, 2010; Fisher 
and Twining, 2011).
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Borehole USGS 105

Borehole USGS 105 is near the southern boundary of 
the INL. Borehole USGS 105 was air rotary drilled from 
land surface to 800 ft BLS in 1980. Borehole USGS 105 
was deepened and cored from 800 to 1,409 ft in 2008. 
Borehole USGS 105 core is HQ size from 800 to 1,409 ft 
BLS. Ninety-eight percent of the core from 800 to 1,409 ft 
BLS was recovered. A well diagram, simplified lithology, 
and geophysical logs for borehole USGS 105 are shown in 
figure 9. 

Olivine tholeiite basalt from borehole USGS 105 is 
medium light to dark gray to purple to red-brown in color, 
and vesicular to dense in texture. About 19 basalt flow groups 
were identified in borehole USGS 105; those groups in the 
upper, uncored part were identified by geophysical logs. 

The approximate average thickness of basalt flow groups in 
borehole USGS 105 is 73 ft. Rhyolite in the upper uncored 
part of this well was identified from cuttings, geophysical logs, 
and drillers’ notes. About eight sediment layers were identified 
in borehole USGS 105; those layers in the upper, uncored part 
were identified in the natural gamma log. About 91 percent 
of the thickness penetrated by borehole USGS 105 is basalt, 
2 percent is sediment (including surface sediment), 7 percent 
is rhyolite (table 3). 

A multilevel monitoring system was permanently 
installed in borehole USGS 105 in 2009. Borehole USGS 
105 is used for multilevel aquifer potentiometric head, 
temperature, and water-quality studies. Examples of such 
data collected for other wells are given in Bartholomay and 
Twining (2010), and in Fisher and Twining (2011).
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Borehole USGS 108

Borehole USGS 108 is near the southern boundary of 
the INL (fig. 1). Borehole USGS 108 was air rotary drilled 
from land surface to 760 ft BLS in 1980. Borehole USGS 
108 was deepened and cored from 760 to 1,218 ft in 2008. 
The core is HQ size from 760 to 1,218 ft. About 97 percent 
of the core drilled from 760 to 1,218 ft BLS was recovered. A 
well diagram, simplified lithology, and geophysical logs for 
borehole USGS 108 are shown in figure 10.

Olivine tholeiite in borehole USGS 108 is medium light 
to dark gray to purple to red-brown in color, and vesicular to 
dense in texture. About 24 basalt flow groups were identified 
in borehole USGS 108; those groups in the upper, uncored 
part were identified by geophysical logs. Approximate average 

thickness of basalt flow groups in USGS 108 is 43 ft. About 
84 percent of the thickness penetrated by borehole USGS 108 
is basalt, 12 percent is sediment (including surface sediment), 
4 percent is rhyolite. Rhyolite in the upper uncored part of 
this well was identified from cuttings, geophysical logs, and 
drillers’ notes. About 10 sediment layers were identified in 
borehole USGS 108; those layers in the upper, uncored part 
were identified in the natural gamma log. 

A multilevel monitoring system was permanently 
installed in borehole USGS 108 in 2010. The well is used 
for multilevel aquifer potentiometric head, temperature, and 
water-quality studies. Examples of such data collected for 
other boreholes are given in Bartholomay and Twining (2010), 
and in Fisher and Twining (2011).
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Borehole USGS 131

Borehole USGS 131 is south of Central Facilities Area, 
near Highway 26 (fig. 1). Borehole USGS 131 was cored from 
land surface to 808 ft BLS in 2003, and a core log of borehole 
USGS 131 to 808 ft BLS was published in 2008 (Twining and 
others, 2008). Borehole USGS 131 was deepened and cored 
from 808 to 1,239 ft in 2010. Borehole USGS 131 core is PQ 
size from 10 to 619 ft BLS, and core is HQ size from 619 to 
1,239 ft BLS. About 97 percent of the core drilled from 808 
to 1,239 ft BLS was recovered. A well diagram, simplified 
lithology, and geophysical logs for borehole USGS 131 are 
shown in figure 11.

Olivine tholeiite basalt in borehole USGS 131 is 
medium-gray to blackish-red in color and vesicular to dense 

in texture. Paleomagnetic measurements on core from 10 
to 808 ft BLS indicate that 11 basalt flow groups are in that 
interval. Preliminary paleomagnetic analyses and geophysical 
logs indicate that three or four more flow groups are in the 
interval from 808 to 1,239 ft BLS (Duane E. Champion, 
U.S. Geological Survey, written commun., November 2010). 
Basalt flow group thickness averaged 82 ft (table 3). About 
92 percent of the thickness penetrated by borehole USGS 131 
is olivine tholeiite basalt, and 8 percent is sediment (including 
surface sediment), which ranges in particle size from clay to 
gravel. Paleomagnetic measurements on basalt core from land 
surface to 808 ft BLS from borehole USGS 131 are available 
in Champion and others (2011). Borehole USGS 131 was 
damaged during drilling and is on standby until further notice.
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Borehole USGS 135

Borehole USGS 135 is in the extreme southwestern 
corner of the INL. Borehole USGS 135 was cored from land 
surface to 1,198 ft BLS in 2007. Borehole USGS 135 core 
is PQ size from land surface to 803 ft BLS and HQ from 
803 ft to 1,198 ft. About 96 percent of the core drilled from 
8 to 1,198 ft BLS was recovered. A well diagram, simplified 
lithology, and geophysical logs for USGS 135 are shown in 
figure 12.

Olivine tholeiite basalt core from USGS 135 ranges from 
scoriaceous to dense, and from dark gray to brownish gray to 
very light gray in color. Basalt samples from borehole USGS 
135 was analyzed for bulk rock major and trace element 

geochemistry. Results of geochemical analysis of borehole 
USGS 135 were reported in Potter (2010). Paleomagnetic 
measurements on basalt core from borehole USGS 135 were 
made, and results were reported in Champion and others 
(2011). Average basalt flow group thickness in borehole 
USGS 135 is 83 ft. About 97 percent of the thickness 
penetrated by borehole USGS 135 is basalt, and 3 percent is 
sediment (including surface sediment). 

A multilevel monitoring system was permanently 
installed in borehole USGS 135 in 2009. Borehole USGS 
135 is used for multilevel aquifer potentiometric head, 
temperature, and water-quality studies. Examples of such data 
collected for other boreholes are given in Bartholomay and 
Twining (2010), and in Fisher and Twining (2011). 
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Borehole NRF-15

Borehole NRF-15 is about 0.5 mi north of the Naval 
Reactor Facility (fig. 1). Borehole NRF-15 was cored from 17 
to 759 ft BLS in 2008. Borehole NRF-15 core is PQ size from 
land surface to 514 ft BLS, and is HQ size from 514 to 759 ft 
BLS. About 88 percent of the core drilled from 16.5 to 759 ft 
BLS was recovered. A well diagram, simplified lithology, and 
geophysical logs for borehole NRF-15 are shown in figure 13.

Olivine tholeiite basalt from borehole NRF-15 is 
gray, dark gray, blackish red, or brownish gray in color, 

and vesicular to dense in texture. Sediment size ranges 
from clay to sand. Paleomagnetic measurements indicate 
that 14 basalt flow groups are in borehole NRF-15 (Duane 
E. Champion, U.S. Geological Survey, written commun., 
2010). Borehole NRF-15 penetrates 12 basalt flow groups 
that average 53 ft thick. About 84 percent of the thickness 
penetrated by borehole NRF-15 is basalt, and 16 percent is 
sediment (including surface sediment). Borehole NRF-15 was 
completed as a dual piezometer water-level monitoring well in 
2010.
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Borehole NRF-16

Borehole NRF-16 is about 1.5 mi north of the Naval 
Reactor Facility (fig. 1). Borehole NRF-16 was cored from 
7 to 425 ft BLS in 2009. Borehole NRF-16 core is PQ size 
from land surface to 425 ft BLS. About 94 percent of the core 
drilled from 7 to 424 ft BLS was recovered. Figure 14 shows a 
well diagram, simplified lithology, and geophysical logs.

Olivine tholeiite basalt from borehole NRF-16 ranges 
from vesicular to dense in texture and is dark gray to grayish 
red to light gray in color. Sediment in core from borehole 
NRF-16 ranges from clay to fine sand in size. Paleomagnetic 

measurements (Duane E. Champion, U.S. Geological Survey, 
written commun., May 2011) of basalt core from borehole 
NRF-16 indicate that eight basalt flow groups are an average 
of 51 ft thick in borehole NRF-16. About 95 percent of the 
thickness penetrated by borehole NRF-16 is basalt, 4 percent 
is sediment (including surface sediment), and 1 percent is 
missing core that cannot be assigned to either sediment or 
basalt. A completion summary for borehole NRF-16 including 
drilling and borehole construction methods, geophysical 
logging, hydrologic description, aquifer test, water quality 
analysis and hydraulic property estimates is available in 
Twining and others (2010). 
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Summary
Seven boreholes with depths ranging from 425 to 

1,409 feet below land surface (BLS) were drilled or deepened 
from 2006 to 2009. About 4,509 feet of core were recovered. 
Olivine tholeiite basalt is the dominant rock type penetrated 
by all boreholes in this report, ranging from 82 percent in 
borehole USGS 103 to 97 percent basalt in borehole USGS 
135. Sediment layers penetrated by these boreholes range 
from 1 to 100 feet thick (estimated from geophysical logs in 
boreholes USGS 103, 105, and 108), with grain sizes ranging 
from clay to gravel. Boreholes USGS 103, 108, 131, and 
NRF‑15 yielded the most sediment. Depth to water ranged 
from 359.03 ft BLS in borehole NRF-16, the northernmost 
borehole in the report to 718.40 feet BLS in borehole USGS 
135, the borehole farthest to the southwest. 

Boreholes USGS 103, 105, and 108 penetrate 45–100 feet 
of rhyolite, according to geophysical logs and drillers’ notes. 
No rhyolite was recovered from these boreholes. Borehole 
USGS 131 has two limited intervals of reworked rhyolite ash.
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Appendix A.  Partial Core Log for Borehole USGS 103, 760–1,307 Feet Below Land 
Surface, Idaho National Laboratory, Idaho

Data are available for download at http://pubs.usgs.gov/ds/660/.

Appendix B.  Partial Core Log for Borehole USGS 105, 800–1,409 Feet Below Land 
Surface, Idaho National Laboratory, Idaho

Data are available for download at http://pubs.usgs.gov/ds/660/.

Appendix C.  Partial Core Log for Borehole USGS 108, 760–1,218 Feet Below Land 
Surface, Idaho National Laboratory, Idaho

Data are available for download at http://pubs.usgs.gov/ds/660/.

Appendix D.  Partial Core Log for Borehole USGS 131, 808–1,238 Feet Below Land 
Surface, Idaho National Laboratory, Idaho

Data are available for download at http://pubs.usgs.gov/ds/660/.

Appendix E.  Core Log for Borehole USGS 135, Idaho National Laboratory, Idaho
Data are available for download at http://pubs.usgs.gov/ds/660/.

Appendix F.  Core Log for Borehole NRF-15, Idaho National Laboratory, Idaho
Data are available for download at http://pubs.usgs.gov/ds/660/.

Appendix G.  Core Log for Borehole NRF-16, Idaho National Laboratory, Idaho
Data are available for download at http://pubs.usgs.gov/ds/660/.
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