Skip Links

USGS - science for a changing world

Data Series 167

Prepared in cooperation with the California State Water Resources Control Board
Version 1.1

Ground-Water Quality Data in the North San Francisco Bay Hydrologic Provinces, California, 2004: Results from the California Ground-Water Ambient Monitoring and Assessment (GAMA) Program

By Justin T. Kulongoski, Kenneth Belitz, and Barbara J. Dawson

Thumbnail of and link to report PDF (10.5 MB)Abstract

Ground-water quality in the ~1,000 square-mile (mi2) North San Francisco Bay study unit was investigated from August to November, 2004, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. Samples were collected from 89 public-supply wells, 7 hydrothermal wells, and 1 hydrothermal spring in Napa, Sonoma and Marin Counties. Eighty-four of the public-supply wells sampled were selected to provide a spatially distributed, randomized monitoring network for statistical calculations and constituent detection frequency. The study was designed to provide a spatially-unbiased assessment of raw ground-water quality within the study unit, as well as a statistically-consistent basis for comparing the water quality of different study units.

Ground-water samples were analyzed for major and minor ions, trace elements, nutrients, volatile organic compounds, pesticides and pesticide degradates, waste-water indicators, dissolved methane, nitrogen, carbon dioxide and noble gases (in collaboration with Lawrence Livermore National Laboratory). Naturally occurring isotopes (tritium, carbon-14, oxygen-18, deuterium and helium-4) also were measured in the samples to help identify the source and age of the ground water. Results show that no anthropogenic constituents were detected at concentrations higher than those levels set for regulatory purposes, and relatively few naturally-occurring constituents were detected at concentrations greater than regulatory levels.

In this study, 21 of the 88 volatile organic compounds (VOCs) and gasoline additives and (or) oxygenates investigated were detected in ground-water samples, however, detected concentrations were one-half to one-forty-thousandth the maximum contaminant levels (MCL). Thirty-two percent of the randomized wells sampled had at least a single detection of a VOC or gasoline additive and (or) oxygenate. The most frequently detected compounds were chloroform, found in 12 of the 84 randomized wells; carbon disulfide, found in 8 of the 84 randomized wells; and toluene, found in 4 of the 84 randomized wells. Trihalomethanes were the most frequently detected class of VOCs.

Nine of the 122 pesticides and (or) pesticide degradates investigated were detected in ground-water samples, however, concentrations were one-seventieth to one-eight-hundredth the MCLs. Seventeen percent of the randomized wells sampled had at least a single detection of pesticide and pesticide degradate. Herbicides were the most frequently detected class of pesticides. The most frequently detected compound was simazine, found in 8 of the 84 of the randomized wells. Chlordiamino-s-triazine and deisopropyl atrazine were both found in 2 of the 84 randomized wells sampled.

Thirteen out of 63 compounds that may be indicative of the prescence of waste-water were detected in ground-water samples. Twenty-six percent of the randomized wells sampled for waste-water indicators had at least one detection. Isophorone was the most frequently detected in 6 of the 84 randomized wells. Bisphenol-A, caffeine, and indole each were detected in 3 of the 84 randomized wells.

Major and minor ions and dissolved solids (DS) samples were collected at 33 public-supply wells; 3 samples had DS concentrations above the secondary maximum contaminant level (SMCL) of 500 mg/L. Ground-water samples from 32 public-supply wells were analyzed for trace elements. Arsenic concentrations above the MCL of 10 μg/L were measured at 4 public-supply wells, boron concentrations above the detection level for the purpose of reporting (DLR) of 100 μg/L were measured at 19 wells. Iron concentrations above the SMCL of 300 μg/L were measured at 7 wells, a lead concentration above the California notification level (NL) of 15 μg/L at one well, and manganese concentrations above the SMCL of 50 μg/L were measured at 17 wells. Vanadium concentrations above the DLR of 3 μg/L were measured at 9 public-supply wells; and chromium(VI) concentrations above the DLR of 1 μg/L were measured at 48 public-supply wells.

Major and minor ions and dissolved solids (DS) samples were collected at 33 public-supply wells; 3 samples had DS concentrations above the secondary maximum contaminant level (SMCL) of 500 mg/L. Ground-water samples from 32 public-supply wells were analyzed for trace elements. Arsenic concentrations above the MCL of 10 μg/L were measured at 4 public-supply wells, boron concentrations above the detection level for the purpose of reporting (DLR) of 100 μg/L were measured at 19 wells. Iron concentrations above the SMCL of 300 μg/L were measured at 7 wells, a lead concentration above the California notification level (NL) of 15 μg/L at one well, and manganese concentrations above the SMCL of 50 μg/L were measured at 17 wells. Vanadium concentrations above the DLR of 3 μg/L were measured at 9 public-supply wells; and chromium(VI) concentrations above the DLR of 1 μg/L were measured at 48 public-supply wells.

Microbial constituents were analyzed in 22 ground-water samples. Total coliform was detected in three wells. Counts ranged from 2 colonies per 100 mL to 20 colonies per 100 mL. MCLs for microbial constituents are based on reoccurring detection, and will be monitored during future sampling.

First posted June 2006

Revised September 13, 2013

For additional information contact:
Director, California Water Science Center
U.S. Geological Survey
6000 J Street, Placer Hall
Sacramento, California 95819
http://ca.water.usgs.gov

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Kulongoski, J.T., Belitz, Kenneth, and Dawson, B.J., 2006, Ground-water quality data in the North San Francisco Bay hydrologic provinces, California, 2004: Results from the California Ground-Water Ambient Monitoring and Assessment (GAMA) Program: U.S. Geological Survey Data Series Report 167, 100 p.



Contents

Abstract

Introduction

Hydrologic Setting of the North San Francisco Bay GAMA Study Unit

Methods

Results

Summary

References

Tables